Elliptic Curves 5

Damien Robert ${ }^{12}$

${ }^{1}$ Inria Bordeaux Sud Ouest ${ }^{2}$ Univesité de Bordeaux

06 November 2020

The Weil pairing

- The Weil pairing is a non degenerated bilinear pairing

$$
e_{W, \ell}: E[\ell] \times E[\ell] \rightarrow \mu_{\ell}
$$

- $e_{W, \ell}(P, Q)=(-1) \frac{e^{\ell} \frac{f_{\ell, P}\left((Q)-\left(0_{E}\right)\right)}{f_{\ell, Q}\left((P)-\left(0_{E}\right)\right)}}{\text { where }} \operatorname{div} f_{\ell, P}=\ell(P)-\ell\left(0_{E}\right)$.
- $e_{W, \ell}(P, Q)=\frac{f_{\ell, P}(Q)}{f_{\ell, Q}(P)}$ if the functions $f_{\ell, P}$ and $f_{\ell, Q}$ are normalised at 0_{E}.

Uniformisers and valuations

- If $P=\left(x_{P}, y_{P}\right), y_{P} \neq 0$, a uniformiser is $\pi_{P}=x-x_{P}$.
- If $g(x, y)=g_{1}(x)+y g_{2}(x), g(x)=\left(x-x_{P}\right)^{n} g_{1}^{\prime}(x)+y g_{2}^{\prime}(x)$, then $v_{P}(g)=n+v_{x_{P}} N\left(g^{\prime}\right)$.
- If $P=\left(x_{P}, 0\right)$ a Weierstrass point, a uniformiser is $\pi_{P}=y$.
- If $g(x, y)=g_{1}(x)+y g_{2}(x), v_{P}(g)=\min \left(2 v_{x_{P}}\left(g_{1}\right), 1+2 v_{x_{P}}\left(g_{2}\right)\right)$. Ex: $v_{P}\left(x-x_{P}\right)=2$.
- If $P=0_{E}$, a uniformiser is $\pi_{P}=x / y$.
- $v_{P}(g)=-\operatorname{deg}(g)$ with $\operatorname{deg}(x)=2$ and $\operatorname{deg}(y)=3$.

Divisors

Definition

- Let C / k be a smooth curve. A divisor D is a (finite) formal sum of points in $C(\bar{k})$:

$$
D=n_{1}\left(P_{1}\right)+\cdots+n_{k}\left(P_{k}\right)
$$

- The degree of D is $\operatorname{deg} D=\sum n_{i}$.
- There is an obvious group law on divisors: if $D_{1}=\sum n_{i}\left(P_{i}\right)$, $D_{2}=\sum m_{i}\left(P_{i}\right), D_{1}+D_{2}=\sum\left(n_{i}+m_{i}\right)\left(P_{i}\right)$. The zero divisor is $D=0$.
- The support of D is $\left\{P_{1}, \ldots, P_{k}\right\}$ where $n_{i} \neq 0$.

Example

- If $C=\mathbb{P}^{1}, D=(0)+2(1)-3(\infty)$ if of degree 0 .
- $D=3(0)+2(1)$ is of degree 5 .

Principal divisors

Definition

If $f \in k(C)$, its associated divisor is

$$
\operatorname{div}(f)=\sum_{P \in C(\bar{k})} v_{P}(f)(P)
$$

Example

- If $C=\mathbb{P}^{1}, f=x(x-1)^{2}, \operatorname{div}(f)=(0)+2(1)-3(\infty)$.
- If $C=\mathbb{P}^{1}, f=x^{3} /(x-2)^{4}, \operatorname{div}(f)=3(0)-4(2)+1(\infty)$.
- If $C=\mathbb{P}^{1}, D=3(0)+2(1)$ does not come from a f.
- If $E: y^{2}=h(x)$ is an elliptic curve, $f=y$, $\operatorname{div} f=\left(P_{1}\right)+\left(P_{2}\right)+\left(P_{3}\right)-3(\infty)$, where P_{1}, P_{2}, P_{3} are the three Weierstrass points.
- If $f=x, \operatorname{div}(f)=(\sqrt{(} h(0)))+(-\sqrt{(} h(0)))-2(\infty)$.
- $\operatorname{div}(\bar{f})=\overline{\operatorname{div}(f)}$.

Principal divisors

Theorem

If $D=\operatorname{div}(f), \operatorname{deg}(D)=0$.

Proof.

If $C=\mathbb{P}^{1}, f=\Pi\left(x-a_{i}\right)^{n_{i}}, \operatorname{div}(f)=\sum n_{i}\left(a_{i}\right)-\left(\sum a_{i}\right)(\infty)$,
$\operatorname{deg} \operatorname{div} f=\sum n_{i}-\sum n_{i}=0$.
If $C=E$, and P is not a Weierstrass point,
$v_{P}(f)+v_{-P}(f)=v_{P}(f)+v_{P}(\bar{f})=v_{P}(N f)=v_{x_{P}}(N f)$. If P is a
Weierstrass point, $v_{P}(f)=v_{P}(\bar{f})$, so $v_{P}(N f)=2 v_{P}(f)$, but $v_{P}(N f)=2 v_{x_{p}}(N f)$ since $v_{P}\left(x-x_{P}\right)=2$, so $v_{P}(f)=v_{x_{P}}(N f)$. We get that $\operatorname{deg} \operatorname{div}_{E} f=\sum v_{P}(f)=\sum v_{x_{P}}(N f)=\operatorname{deg} \operatorname{div}_{\mathbb{P}^{1}} N(f)=0$.

Principal divisors

Proposition

If div $f_{1}=\operatorname{div} f_{2}$, then $f_{1}=\lambda f_{2}, \lambda \in k^{*}$.

Proof.

$\operatorname{div} f_{1}-\operatorname{div} f_{2}=\operatorname{div}\left(f_{1} / f_{2}\right)=0$. So $g=f_{1} / f_{2}$ has no zeroes nor poles. If $C=\mathbb{P}^{1}$, then it is easy to check that g is constant. If $C=E$, then $N g$ has no zeroes nor poles on \mathbb{P}^{1}, so is constant, so g is constant.

In other word: a function f is completely determined, up to a constant, by its divisor $D=\operatorname{div} f$.

Principal divisors

- D is principal if $D=\operatorname{div} f$;
- D_{1} is linearly equivalent to D_{2} if $D_{1}-D_{2}$ is principal: $D_{1}=D_{2}+\operatorname{divf}$. Notation: $D_{1} \simeq D_{2}$.
- D is principal $\leftrightarrow D$ is linearly equivalent to 0 . Notation: $D \simeq 0$.

Principal divisors on \mathbb{P}^{1}

Proposition

If $C=\mathbb{P}^{1}, D$ is principal iff $\operatorname{deg} D=0$.

Proof.

D principal $\Rightarrow \operatorname{deg} D=0$ is true for all curves. Conversely, if
$D=\sum n_{i}\left(a_{i}\right)+m(\infty)$, then $m=-\sum n_{i}$ since $\operatorname{deg} D=0$, so we take $f=\Pi\left(x-a_{i}\right)^{n_{i}}$.

Remark

A (proper smooth) curve C is isomorphic to \mathbb{P}^{1} iff there is a rational function such that div $f=(P)-(Q), P \neq Q$. Indeed $f: C \rightarrow \mathbb{P}^{1}$ is an isomorphism which sends P to 0 and Q to ∞.

Principal divisors on elliptic curves

Definition

Let $D=\sum n_{i}\left(P_{i}\right)$ be a divisor of degree 0 on an elliptic curve E. We define $[D]=\sum n_{i} P_{i} \in E$, the realisation of D in E.

Theorem

A divisor D on E is principal if and only if $\operatorname{deg} D=0$ and $[D]=0_{E}$.

Corollary

If $\operatorname{deg} D=0, D \simeq([D])-\left(0_{E}\right)$.

Proof.

Miller's algorithm gives an explicit function f_{D} whose divisor is $D-([D])+\left(0_{E}\right)$. It remains to show that $D=(P)-\left(0_{E}\right)$ cannot be principal if $P \neq 0_{E}$. But if it was, then E would be isomorphic to \mathbb{P}^{1}.

Principal divisors on elliptic curves

- If $D=\sum n_{i}\left(P_{i}\right)$ with $\operatorname{deg} D=\sum n_{i}=0$ and $[D]=\sum n_{i} P_{i}=0_{E}$, then D is principal, so we define f_{D} a function such that $D=\operatorname{div} f_{D}$;
- f_{D} is determined up to a constant. We can completely normalise f_{D} by asking that $f_{D}\left(0_{E}\right)=1$. This is valid iff 0_{E} is not a pole or a zero of D.
- More generally, if $m=v_{0_{E}}(D)$, we can ask that $\left(f_{D} / \pi_{0_{E}}^{m}\right)\left(0_{E}\right)=1$.
- If $D=\sum n_{i}\left(P_{i}\right)$ is any divisor, then
$D^{\prime}=D-([D])-(\operatorname{deg} D-1)\left(0_{E}\right)$ is principal. We define $f_{D}=f_{D^{\prime}}$.
- If $D=(P)+(-P)-2\left(0_{E}\right), f_{D}=x-x_{P}$.
- If P is a point of ℓ-torsion, $\ell(P)-\ell\left(0_{E}\right)$ is principal, and we define $f_{\ell, P}$ be its normalised function.
- More generally, we let $f_{\ell, P}$ be normalised such that $\operatorname{div} f_{\ell, P}=\ell(P)-(\ell P)-(\ell-1)\left(0_{E}\right)$.

Miller's algorithm

- We let $\mu_{P, Q}$ the normalised function such that

$$
\operatorname{div} \mu_{P, Q}=(P)+(Q)-(P+Q)-\left(0_{E}\right) .
$$

- If $D=(P)+(Q)+D_{1}$, then $D \simeq(P+Q)-\left(0_{E}\right)+D_{1}$ via $D=\operatorname{div}\left(\mu_{P, Q}\right)+(P+Q)-\left(0_{E}\right)+D_{1}$.
- If $D_{1}=R+D_{2}$,
$D=\operatorname{div}\left(\mu_{P, Q}\right)+\operatorname{div}\left(\mu_{P+Q, R}\right)(P+Q+R)-\left(0_{E}\right)+D_{2}=$ $\operatorname{div}\left(\mu_{P, Q} \mu_{P+Q, R}\right)+(P+Q+R)-\left(0_{E}\right)+D_{2}$.
- We reduce D until D is of the form $(P)-\left(0_{E}\right)$. D is principal iff $P=0_{E}$, in which case the algorithm gives us f_{D}.

on $E: y^{2}=x^{3}+a x+b$

- If $P=-Q, \mu_{P, Q}=\left(x-x_{P}\right)$.
- Otherwise, $\mu_{P, Q}=\frac{l_{P, Q}}{v_{P+Q}}$ where $l_{P, Q}$ is the line going through P and Q (or the tangent line at P if $P=Q$), and v_{P+Q} is the vertical line going through $P+Q$.
- Let $R=-P-Q$ be the third point of intersection of $l_{P, Q}$.
- $l_{P, Q}=y-y_{P}-\alpha\left(x-x_{P}\right), \alpha=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}$ or $\frac{3 x_{P}^{2}+a}{2 y_{P}}$;
- $\operatorname{div} l_{P, Q}=(P)+(Q)+(R)-3\left(0_{E}\right)$.
- $v_{P+Q}=x-x_{P+Q}$
- $\operatorname{div} v_{P+Q}=(R)+(-R)-2\left(0_{E}\right)=(-P-Q)+(P+Q)-2\left(0_{E}\right)$.
- $\mu_{P, Q}=\frac{y-y_{P}-\alpha\left(x-x_{P}\right)}{x-x_{P+Q}}=\frac{y-y_{P}-\alpha\left(x-x_{P}\right)}{x+x_{P}+x_{Q}-\alpha^{2}}$;
- $\operatorname{div} \mu_{P, Q}=(P)+(Q)-(P+Q)-\left(0_{E}\right)$.

Double and add algorithms

- If $D=\operatorname{div} f_{\ell, P}=\ell(P)-(\ell P)-(\ell-1)(0)$, the naïve Miller algorithm to get $f_{\ell, P}$ computes $P, P+P, P+P+P, \ldots, \ell P$.
- But to compute ℓP directly we can use a double and add algorithm;
- We can do the same in Miller's algorithm: decompose $D=D_{1}+2 D_{2}+4 D_{3}+\cdots+2^{n} D_{n}$, and do double and add.

Proposition

$$
f_{\ell_{1}+\ell_{2}, P}=f_{\ell_{1}, P} \cdot f_{\ell_{2}, P} \cdot \mu_{\ell_{1} P, \ell_{2} P}
$$

- Double and add algorithm:
- Initialisation: $T=P, f=1=f_{1, P}$.
- Double: $f:=f^{2} \mu_{Q, Q}, Q:=Q+Q$;
- Add if $b_{i}=1: f:=f \mu_{Q, P}, Q:=Q+P$.

Evaluating a function at a divisor

- If $f \in k(C)$ and $D=\sum n_{i}\left(P_{i}\right), f(C)=\prod f\left(P_{i}\right)^{n_{i}}$.
- This is well defined is D and f have disjoint support. (Otherwise we may still define $f(D)$ by normalizing f along uniformisers on the intersection of the supports).
- If $\operatorname{deg} D=0, f(D)=(\lambda f)(D)$. So if E is a principal divisor, $f_{E}(D)$ is well defined and does not depend on a choice of normalisation of f_{E}.

Theorem (Weil's reciprocity)

Let D_{1}, D_{2} be two principal divisors (with disjoint support).

$$
f_{D_{1}}\left(D_{2}\right)=f_{D_{2}}\left(D_{1}\right)
$$

Remark

- If D_{1} and D_{2} have non disjoint support, we have $f_{D_{1}}\left(D_{2}\right)=\epsilon f_{D_{2}}\left(D_{1}\right)$ with $\epsilon= \pm 1=(-1)^{\sum_{P} v_{P}\left(D_{1}\right) v_{P}\left(D_{2}\right)}$.
- If $C=\mathbb{P}^{1}, f, g \in k[x], \operatorname{div} f(\operatorname{div} g)=\operatorname{Res}(f, g)$, so Weil's reciprocity comes from $\operatorname{Res}(f, g)=(-1)^{\operatorname{deg} f \operatorname{deg} g} \operatorname{Res}(g, f)(f, g$ have a common pole at ∞).

Evaluating $f_{\ell, P}(Q)$

- $f_{\ell, P}((Q)-(0))=f_{\ell, P}(Q)$ by our choice of normalisation.
- Double and add algorithm:
- Initialisation: $T=P, f=1$.
- Double: $\alpha=\frac{3 x_{T}^{2}+a}{2 y_{T}}, x_{2 T}=\alpha^{2}-2 x_{T}, y_{2 T}=-y_{T}-\alpha\left(x_{2 T}-x_{T}\right)$,

$$
f:=f^{2} \frac{y_{Q}-y_{T}-\alpha\left(x_{Q}-x_{T}\right)}{x_{Q}+2 x_{T}-\alpha^{2}}, T:=2 T ;
$$

- Add if $b_{i}=1: \alpha=\frac{y_{T}-y_{P}}{x_{T}-x_{P}}, x_{T+P}=\alpha^{2}-x_{T}-x_{P}$,
$y_{T+P}=-y_{T}-\alpha\left(x_{T+P}-x_{T}\right), f:=f \frac{y_{Q}-y_{T}-\alpha\left(x_{Q}-x_{T}\right)}{x_{Q}+x_{P}+x_{T}-\alpha^{2}}, T:=T+P ;$
- Warning, at the last step $f:=f\left(x_{Q}-x_{T}\right)$.

