Elliptic Curves 6

Damien Robert ${ }^{12}$

${ }^{1}$ Inria Bordeaux Sud Ouest ${ }^{2}$ Univesité de Bordeaux

13 November 2020

The Weil pairing

- Let E / \mathbb{F}_{q} be an elliptic curve, and $\ell \nmid p$;
- The Weil pairing is a non degenerate bilinear pairing

$$
e_{W, \ell}: E[\ell] \times E[\ell] \rightarrow \mu_{\ell}
$$

- $e_{W, \ell}(P, Q)=(-1) \frac{\ell}{f_{\ell, P}\left((Q)-\left(0_{E}\right)\right)} f_{\ell, Q}\left((P)-\left(0_{E}\right)\right) \quad$ where $\operatorname{div} f_{\ell, P}=\ell(P)-\ell\left(0_{E}\right)$.
- $e_{W, \ell}(P, Q)=\frac{f_{\ell, P}(Q)}{f_{\ell, Q}(P)}$ if the functions $f_{\ell, P}$ and $f_{\ell, Q}$ are normalised at 0_{E}.

Properties

- Bilinearity on the right: $e_{W, \ell}(P, Q+R)=e_{W, \ell}(P, Q) e_{W, \ell}(P, R)$;
- Bilinearity on the left $e_{W, \ell}(P+Q, R)=e_{W, \ell}(P, R) e_{W, \ell}(Q, R)$;
- Non degeneracy on the right: if $e_{W, \ell}(P, Q)=1$ for all $P \in E[\ell]\left(\overline{\mathbb{F}}_{q}\right)$, $Q=0_{E}$;
- Non degeneracy on the left if $e_{W, \ell}(P, Q)=1$ for all $Q \in E[\ell]\left(\overline{\mathbb{F}}_{q}\right)$, $P=0_{E}$.
- Antisymmetry: $e_{W, \ell}(P, Q)=e_{W, \ell}(Q, P)^{-1}$. (Exercice!)
- Corollary: $e_{W, \ell}(P, P)=1$ (in caracteristic $\neq 2$)

Computing the Weil pairing

- We recall that $f_{\ell, P}$ can be computed via a double and add algorithm;
- This uses the (normalised) $\mu_{P, Q}$ function,

$$
\operatorname{div} \mu_{P, Q}=(P)+(Q)-(P+Q)-\left(0_{E}\right)
$$

- This computation introduces intermediate zeroes and poles.
- This is because Miller's algorithm evaluate intermediate functions $f_{\lambda, P}(Q)$;
- The zeroes and poles of these functions are multiple of P;
- So if there is a problem during the computation, $f_{\lambda, P}(Q)$ is not well defined, then $Q=m P$;
- We know then that $e_{W, \ell}(P, Q)=e_{W, \ell}(P, P)^{m}=1$!

The embedding degree

- $e_{W, \ell}$ has value in μ_{ℓ}, the group of ℓ-roots of unity of $\overline{\mathbb{F}}_{q}$;
- What is the smallest extension $\mathbb{F}_{q^{k}}$ such that $\mu_{\ell} \subset \mathbb{F}_{q^{k}}$?
- Let ζ be a primitive ℓ-root of unity. Then $\zeta \in \mathbb{F}_{q^{k}}$ if and only if

$$
\pi_{q^{k}}(\zeta)=\zeta, \text { ie } \zeta^{q^{k}}=\zeta, \text { ie } q^{k}=1 \bmod \ell
$$

- The embedding degree k is thus the order of q in $\mathbb{Z} / \ell Z$.
- If ℓ is prime, we have $k \mid \ell-1$.
- Recall that $E\left(\mathbb{F}_{q}\right)=q+1-t, t$ the trace of the Frobenius.
- If $E\left(\mathbb{F}_{q}\right)$ has a point of ℓ-torsion, $\ell \mid \# E\left(\mathbb{F}_{q}\right)$ so $q \equiv t-1 \bmod \ell$.
- The embedding degree is then also the order of $t-1$ in $\mathbb{Z} / \ell \mathbb{Z}$.

The embedding degree

- If $E[\ell] \subset E\left(\mathbb{F}_{q}\right)$, the embedding degree k is 1 .
- In particular, $\ell \mid q-1$.
- If $E\left(\mathbb{F}_{q}\right)=\mathbb{Z} / a \mathbb{Z} \oplus \mathbb{Z} / b \mathbb{Z}$ with $a \mid b$, then $E[a] \subset E\left(\mathbb{F}_{q}\right)$ so $a \mid q-1$.

General definition of the Weil pairing

- Let D_{P} be any divisor linearly equivalent to $(P)-\left(0_{E}\right)$;
- Then ℓD_{P} is principal, let $f_{\ell D_{P}}$ be any function with this divisor;
- $e_{W, \ell}(P, Q)=\frac{f_{D_{P}}\left(D_{Q}\right)}{f_{\ell D_{Q}}\left(D_{P}\right)}$;
- Exemple: $D_{P}=(P+R)-(R)$.

An alternative definition of the Weil pairing

- Let $D_{P}=(P)-\left(0_{E}\right)$, and $[\ell]^{*} D_{P}=\sum_{T^{\prime} \mid \ell T^{\prime}=P}\left(T^{\prime}\right)-\sum_{T \mid \ell T=0_{E}}(T)$;
- If P_{0} is such that $P=\ell P_{0},[\ell]^{*} D_{P}=\sum_{T \mid \ell T=0_{E}}\left(\left(P_{0}+T\right)-(T)\right)$;
- Exercice: if $P \in E[\ell]$, [$]^{*} D_{P}$ is principal;
- Let $g_{\ell, P}$ be the corresponding normalised function;
- Then $e_{\ell, W}(P, Q)=\frac{g_{\ell, P}(x+Q)}{g_{\ell, P}(x)}$.
- The proof uses Weil's reciprocity theorem.
- Note: in general, $\operatorname{div} f \circ[\ell]=[\ell]^{*} \operatorname{div} f$;
- Application: $g_{\ell, P}^{\ell}=f_{\ell, P} \circ[\ell]$;
- Indeed both are normalised functions with divisor $[\ell]^{*}\left(\ell(P)-\ell\left(0_{E}\right)\right)$.

Bilinearity

$$
\begin{align*}
e_{W, \ell}(P, Q+R) & =\frac{g_{\ell, P}(x+Q+R)}{g_{\ell, P}(x)} \tag{1}\\
& =\frac{g_{\ell, P}(x+Q+R)}{g_{\ell, P}(x+R)} \frac{g_{\ell, P}(x+R)}{g_{\ell, P}(x)} \tag{2}\\
& e_{W, \ell}(P, Q) e_{W, \ell}(P, R) \tag{3}
\end{align*}
$$

Corollary

$$
e_{W, \ell}(P, Q)^{r}=e_{W, \ell}(r P, Q)=e_{W, \ell}\left(0_{E}, P\right)=1
$$

Non degeneracy

- If $e_{W, \ell}(P, Q)=1$ for all $Q \in E[\ell]\left(\overline{\mathbb{F}}_{q}\right)$, then $g_{\ell, P}(x+Q)=g_{\ell, P}(x)$ for all $Q \in E[\ell]\left(\overline{\mathbb{F}}_{q}\right)$.
- Then $g_{\ell, P}=h \circ[\ell]$.
- So $\operatorname{div}_{\ell, P}=[\ell]^{*} \operatorname{div} h$ and divh $=(P)-\left(0_{E}\right)$.
- This implies $P=0_{E}$.

Corollary

Fix ζ a primitive ℓ-root of unity. If $P \in E[\ell]$ is primitive (if ℓ is prime this means $P \neq 0)$, there is a Q such that $e_{W, \ell}(P, Q)=\zeta$. We say that (P, Q) is a symplectic basis of $E[\ell]$.

Corollary

Every group morphism $E[\ell] \rightarrow \mu_{\ell}$ ("a character") is of the form $Q \mapsto e_{W, \ell}(P, Q)$.

Case ℓ not prime

- If $\ell=m n, P \in E[n m], Q \in E[n]$, then $e_{W, m n}(P, Q)=e_{W, n} m P, Q$.
- Exemple: if $P, Q \in E[\ell], e_{W, \ell^{2}}(P, Q)=1$.
- Exemple: if $P, Q \in E[\ell], P=\ell P_{0}, e_{W, \ell^{2}}\left(P_{0}, Q\right)=e_{W, \ell}(P, Q)$.

Applications

- Cryptography: discrete logarithm problem in the group $\langle P\rangle, P$ a point of ℓ-torsion of an elliptic curve;
- ℓ is a large prime, around 2^{256} for 128 bits of security
- The Weil pairing allows to reduce the DLP from $E\left(\mathbb{F}_{q^{k}}\right)$ to the DLP in $\mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*}$
- We have subexponential algorithms for the DLP in $\mathbb{F}_{q^{k}}^{*}$.
- So if k is small: subexponential attack on E !
- Expected: $q \bmod \ell$ is "random", so has order $\approx \ell$. Very large embedding degree.
- Exemple: a supersingular curve over $\mathbb{F}_{p}(p>3)$ has $t=0$.
- The embedding degree is $k=2$.
- Reduction of the DLP to $\mathbb{F}_{p^{2}}$.
\Rightarrow We need larger extensions to work securely with supersingular curves (at least $q>2^{1024}$)!

Constructive applications

- Tripartite Diffie-Helman;
- Lot of cryptographic applications;
- Provide instance where Diffie-Helman is hard but decisional Diffie-Helman is easy;
- Problem: find curves suitable for crypto $\ell \mid \# E\left(\mathbb{F}_{q}\right)$ with suitable embedding degree.
- Ideally, $q \approx 2^{256}$ and $k \approx 12,20$.

Field of definition of $E[\ell], \ell$ prime

- Characteristic polynomial of the Frobenius: $\chi_{\pi}(X)=X^{2}-t X+q$;
- This is the characteristic polynomial of π acting on $E[\ell]$;
- $E[\ell] \subset E\left(\mathbb{F}_{q^{k}}\right)$ iff $\pi^{k}=\mathrm{Id}$;
- Three possibilities: $\pi=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, with $\lambda_{1} \lambda_{2} \equiv q \bmod \ell$.
- The order of π is then the order of $\lambda_{1}\left(\operatorname{or} \lambda_{2}\right)$ in \mathbb{F}_{q}.
- $\pi=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$, with $\lambda^{2} \equiv q \bmod \ell$.
- The order of π is the order of λ.
- $\pi=\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)$, with $\lambda^{2} \equiv q \bmod \ell$.
- $\pi^{r}=\left(\begin{array}{cc}\lambda^{r} & r \\ 0 & \lambda^{r}\end{array}\right)$;
- The order of π is then $\operatorname{ord}(\lambda) \vee \ell$.

Field of definition of $E[\ell], \ell$ prime

- In the crypto setting, there is one point of ℓ-torsion in $E[\ell]\left(\mathbb{F}_{q}\right)$.
- Three possibilities: $\pi=\left(\begin{array}{ll}1 & 0 \\ 0 & q\end{array}\right)$.
- If k is the embedding degree, $E[\ell] \subset E\left(\mathbb{F}_{q^{k}}\right)$
- $\pi=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
- $E[\ell] \subset E\left(\mathbb{F}_{q}\right)$.
- $\pi=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
- $E[\ell] \subset E\left(\mathbb{F}_{q^{\ell}}\right)$.

Field of definition of $E[\ell], \ell$ prime

- Assume that $\pi=\left(\begin{array}{ll}1 & 0 \\ 0 & q\end{array}\right)$, with $q \neq 1 \bmod \ell$, ie $k \neq 1$.
- This is the usual cryptographic situation.
- Let $G_{1} \subset E[\ell]$ correspond to the eigenvalue 1 .
$G_{1}=\{P \in E[\ell], \pi(P)=P\}$.
- Let $G_{2} \subset E[\ell]$ correspond to the eigenvalue q.
$G_{2}=\{P \in E[\ell], \pi(P)=q P\}$.
- $G_{1}=E[\ell]\left(\mathbb{F}_{q}\right), G_{2} \subset E[\ell]\left(\mathbb{F}_{q^{k}}\right), E[\ell]=G_{1} \oplus G_{2}$.

Corollary

The Weil pairing is non degenerate when restricted to $G_{1} \times G_{2}$ or to $G_{2} \times G_{1}$.

The Tate pairing

- Let E / \mathbb{F}_{q} be an elliptic curve, and $\ell \nmid p$ such that $E\left(\mathbb{F}_{q}\right)$ contains a point of r-torsion;
- The Tate pairing is a non degenerate bilinear pairing $e_{T, \ell}: E[\ell]\left(\mathbb{F}_{q^{k}}\right) \times E\left(\mathbb{F}_{q^{k}}\right) / \ell E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} / \mathbb{F}_{q^{k}}^{*, \ell}$
- $e_{T, \ell}(P, Q)=f_{\ell, P}\left((Q)-\left(0_{E}\right)\right)$ where div $f_{\ell, P}=\ell(P)-\ell\left(0_{E}\right)$.
- $e_{T, \ell}(P, Q)=f_{\ell, P}(Q)$ if the function $f_{\ell, P}$ is normalised at 0_{E}.

General definition of the Tate pairing

- Let D_{P} be any divisor linearly equivalent to $(P)-\left(0_{E}\right)$;
- Then ℓD_{P} is principal, let $f_{\ell D_{P}}$ be any function with this divisor;
- $e_{T, \ell}(P, Q)=f_{\ell D_{P}}\left(D_{Q}\right)$;
- Exemple: $e_{T, \ell}(P, Q)=\frac{f_{,, P}(Q+R)}{f_{\ell, P^{P}}(R)}$.
- This allows to circumvent the problem of intermediate poles and zeroes introduced by Miller's algorithm.
- Warning: unlike for the Weil pairing, we may have $e_{T, \ell}(P, P) \neq 1$.

Normalisation of the Tate pairing

- $\mathbb{F}_{q^{k}}^{*} / \mathbb{F}_{q^{k}}^{*, \ell} \simeq \mu_{\ell}$ via $x \mapsto x^{\frac{q^{k}-1}{\ell}}$.
- The (normalised or reduced) Tate pairing is a non degenerate bilinear pairing $e_{T, \ell}: E[\ell]\left(\mathbb{F}_{q^{k}}\right) \times E\left(\mathbb{F}_{q^{k}}\right) / \ell E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mu_{\ell}$,
- $e_{T, \ell}(P, Q)=f_{\ell, P}(Q)^{\frac{q^{k}-1}{l}}$
- This power to $\frac{q^{k}-1}{\ell}$ is called the final exponentiation;
- If ℓ is prime and $E\left(\mathbb{F}_{q^{k}}\right)$ does not contain a point of ℓ^{2}-torsion, $E[\ell]\left(\mathbb{F}_{q^{k}}\right) \simeq E\left(\mathbb{F}_{q^{k}}\right) / \ell E\left(\mathbb{F}_{q^{k}}\right)$ since the inclusion is injective and they have the same cardinal.
- The (normalised) Tate pairing is then a non degenerate bilinear pairing $e_{T, \ell}: E[\ell]\left(\mathbb{F}_{q^{k}}\right) \times E[\ell]\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mu_{\ell}$.

Alternative definition of the reduced Tate pairing

- Let $P \in E[\ell]\left(\mathbb{F}_{q^{k}}\right), Q \in E\left(\mathbb{F}_{q^{k}}\right) / \ell E\left(\mathbb{F}_{q^{k}}\right)$;
- Let Q_{0} such that $Q=\ell Q_{0}$;
- Then $e_{T, \ell}(P, Q)=e_{W, \ell}\left(P, \pi^{k} Q_{0}-Q_{0}\right)$;
- This does not depend on the choice of Q_{0} (if $E[\ell] \subset E\left(\mathbb{F}_{q^{k}}\right)$ this is because another choice $Q_{1}=Q_{0}+T, T \in E[\ell] \subset E\left(\mathbb{F}_{q^{k}}\right)$ so $\pi^{k} T-T=0$).
- If $Q \in \ell E\left(\mathbb{F}_{q^{k}}\right)$, we may take $Q_{0} \in E\left(\mathbb{F}_{q^{k}}\right)$, so $\pi^{k} Q_{0}=Q_{0}$, $e_{T, \ell}(P, Q)=1$.
- This allows to prove bilinearity and non degeneracy.

Proof.

$e_{W, \ell}\left(P, \pi^{k} Q_{0}-Q_{0}\right)=\frac{g_{\ell, P}\left(\pi^{k} Q_{0}\right)}{g_{\ell, p}\left(Q_{0}\right)}=g_{\ell, p}\left(Q_{0}\right)^{q^{k}-1}=g_{\ell, p}^{\ell}\left(Q_{0}\right)^{\frac{q^{k}-1}{\ell}}=$ $f_{\ell, P}(Q)^{\frac{q^{k}-1}{\ell}}=e T, \ell(P, Q)$ using that $g_{P}^{\ell}=f_{\ell, P} \circ[\ell]$.

Restricting the Tate pairing to subgroups (ℓ prime)

- The Tate pairing stays non degenerate when restricted to

$$
G_{2} \times E\left(\mathbb{F}_{q}\right) / \ell E\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} / \mathbb{F}_{q^{k}}^{*, \ell}
$$

- If $E\left(\mathbb{F}_{q}\right)$ does not contain a point of ℓ^{2}-torsion, $E\left(\mathbb{F}_{q}\right) / \ell E\left(\mathbb{F}_{q}\right) \simeq G_{1}=E[\ell]\left(\mathbb{F}_{q}\right)$ so the Tate pairing is non degenerate on $G_{2} \times G_{1}$.
- In particular, if the embedding degree $k=1$ but $E[\ell] \not \subset E\left(\mathbb{F}_{q}\right)$, the Tate pairing is non degenerate on $E[\ell]\left(\mathbb{F}_{q}\right) \times E[\ell]\left(\mathbb{F}_{q}\right)$ (while the Weil pairing degenerates).
- In this situation, if $P \in E[\ell]\left(\mathbb{F}_{q}\right), e_{T, \ell}(P, P) \neq 1$.
- If $k>1$, and $E\left(\mathbb{F}_{q^{k}}\right)$ does not contain a point of ℓ^{2}-torsion, the Tate pairing is non degenerate on $G_{1} \times G_{2}$.

Algorithmic computation of the Tate pairing (ℓ prime)

- If $P \in G_{1}$ and $Q \in G_{2}$, all the computations of $f_{\ell, P}$ are done over \mathbb{F}_{q}, its only the evaluation at the end which is done over $\mathbb{F}_{q^{k}}$;
- Since $\mathbb{F}_{q^{k}}$ is the smallest extension of \mathbb{F}_{q} containing μ_{ℓ}, if $z \in \mathbb{F}_{q^{d}}$ is in a strict subfield $(d \mid k, d \neq k)$, then it is killed by the final exponentiation: $z^{q^{\frac{k^{k}-1}{\ell}}} \in \mu_{\ell} \cap \mathbb{F}_{q^{d}}=\{1\}$.
- If $k=2 d$ is even, and $Q \in G_{2}$, then $x_{Q} \in \mathbb{F}_{q^{d}}$.
- Indeed $\pi(Q)=q Q$. But since $q^{k} \equiv 1 \bmod \ell, q^{d} \equiv-1 \bmod \ell($ since k is the embedding degree).
- So $\pi^{d}(Q)=-Q, \pi^{d}\left(x_{Q}\right)=x_{Q}, x_{Q} \in \mathbb{F}_{q^{d}}$.
- Since the denominators durinr Miller's algorithm for the evaluation of $f_{\ell, P}$ only involve x_{Q} (and the coordinates of P which are in \mathbb{F}_{q}), the denominator is in $\mathbb{F}_{q^{d}}$.
- It is killed by the final exponentiation!

