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The Weil pairing

Let 𝐸/𝔽𝑞 be an elliptic curve, and ℓ ∤ 𝑝;
The Weil pairing is a non degenerate bilinear pairing

𝑒𝑊,ℓ ∶ 𝐸[ℓ] × 𝐸[ℓ] → 𝜇ℓ

𝑒𝑊,ℓ(𝑃, 𝑄) = (−1)ℓ 𝑓ℓ,𝑃((𝑄)−(0𝐸))
𝑓ℓ,𝑄((𝑃)−(0𝐸)) where 𝑑𝑖𝑣 𝑓ℓ,𝑃 = ℓ(𝑃) − ℓ(0𝐸).

𝑒𝑊,ℓ(𝑃, 𝑄) = 𝑓ℓ,𝑃(𝑄)
𝑓ℓ,𝑄(𝑃) if the functions 𝑓ℓ,𝑃 and 𝑓ℓ,𝑄 are normalised at 0𝐸.



Properties

Bilinearity on the right: 𝑒𝑊,ℓ(𝑃, 𝑄 + 𝑅) = 𝑒𝑊,ℓ(𝑃, 𝑄)𝑒𝑊,ℓ(𝑃, 𝑅);
Bilinearity on the left 𝑒𝑊,ℓ(𝑃 + 𝑄, 𝑅) = 𝑒𝑊,ℓ(𝑃, 𝑅)𝑒𝑊,ℓ(𝑄, 𝑅);
Non degeneracy on the right: if 𝑒𝑊,ℓ(𝑃, 𝑄) = 1 for all 𝑃 ∈ 𝐸[ℓ](𝔽𝑞),
𝑄 = 0𝐸;

Non degeneracy on the left if 𝑒𝑊,ℓ(𝑃, 𝑄) = 1 for all 𝑄 ∈ 𝐸[ℓ](𝔽𝑞),
𝑃 = 0𝐸.

Antisymmetry: 𝑒𝑊,ℓ(𝑃, 𝑄) = 𝑒𝑊,ℓ(𝑄, 𝑃)−1. (Exercice!)

Corollary: 𝑒𝑊,ℓ(𝑃, 𝑃) = 1 (in caracteristic ≠ 2)



Computing the Weil pairing

We recall that 𝑓ℓ,𝑃 can be computed via a double and add algorithm;

This uses the (normalised) 𝜇𝑃,𝑄 function,
𝑑𝑖𝑣 𝜇𝑃,𝑄 = (𝑃) + (𝑄) − (𝑃 + 𝑄) − (0𝐸).
This computation introduces intermediate zeroes and poles.

This is because Miller’s algorithm evaluate intermediate functions
𝑓𝜆,𝑃(𝑄);
The zeroes and poles of these functions are multiple of 𝑃;
So if there is a problem during the computation, 𝑓𝜆,𝑃(𝑄) is not well
defined, then 𝑄 = 𝑚𝑃;
We know then that 𝑒𝑊,ℓ(𝑃, 𝑄) = 𝑒𝑊,ℓ(𝑃, 𝑃)𝑚 = 1!



The embedding degree

𝑒𝑊,ℓ has value in 𝜇ℓ, the group of ℓ-roots of unity of 𝔽𝑞;

What is the smallest extension 𝔽𝑞𝑘 such that 𝜇ℓ ⊂ 𝔽𝑞𝑘?

Let 𝜁 be a primitive ℓ-root of unity. Then 𝜁 ∈ 𝔽𝑞𝑘 if and only if

𝜋𝑞𝑘(𝜁) = 𝜁, ie 𝜁𝑞𝑘 = 𝜁, ie 𝑞𝑘 = 1 mod ℓ.
The embedding degree 𝑘 is thus the order of 𝑞 in ℤ/ℓ𝑍.

If ℓ is prime, we have 𝑘 ∣ ℓ − 1.
Recall that 𝐸(𝔽𝑞) = 𝑞 + 1 − 𝑡, 𝑡 the trace of the Frobenius.

If 𝐸(𝔽𝑞) has a point of ℓ-torsion, ℓ ∣ #𝐸(𝔽𝑞) so 𝑞 ≡ 𝑡 − 1 mod ℓ.
The embedding degree is then also the order of 𝑡 − 1 in ℤ/ℓℤ.



The embedding degree

If 𝐸[ℓ] ⊂ 𝐸(𝔽𝑞), the embedding degree 𝑘 is 1.

In particular, ℓ ∣ 𝑞 − 1.
If 𝐸(𝔽𝑞) = ℤ/𝑎ℤ ⊕ ℤ/𝑏ℤ with 𝑎 ∣ 𝑏, then 𝐸[𝑎] ⊂ 𝐸(𝔽𝑞) so 𝑎 ∣ 𝑞 − 1.



General definition of the Weil pairing

Let 𝐷𝑃 be any divisor linearly equivalent to (𝑃) − (0𝐸);
Then ℓ𝐷𝑃 is principal, let 𝑓ℓ𝐷𝑃

be any function with this divisor;

𝑒𝑊,ℓ(𝑃, 𝑄) =
𝑓ℓ𝐷𝑃(𝐷𝑄)
𝑓ℓ𝐷𝑄

(𝐷𝑃) ;

Exemple: 𝐷𝑃 = (𝑃 + 𝑅) − (𝑅).



An alternative definition of the Weil pairing

Let 𝐷𝑃 = (𝑃) − (0𝐸), and [ℓ]∗𝐷𝑃 = ∑𝑇′∣ℓ𝑇′=𝑃(𝑇′) − ∑𝑇∣ℓ𝑇=0𝐸
(𝑇);

If 𝑃0 is such that 𝑃 = ℓ𝑃0, [ℓ]∗𝐷𝑃 = ∑𝑇∣ℓ𝑇=0𝐸
((𝑃0 + 𝑇) − (𝑇));

Exercice: if 𝑃 ∈ 𝐸[ℓ], [ℓ]∗𝐷𝑃 is principal;

Let 𝑔ℓ,𝑃 be the corresponding normalised function;

Then 𝑒ℓ,𝑊(𝑃, 𝑄) = 𝑔ℓ,𝑃(𝑥+𝑄)
𝑔ℓ,𝑃(𝑥) .

The proof uses Weil’s reciprocity theorem.

Note: in general, 𝑑𝑖𝑣 𝑓 ∘ [ℓ] = [ℓ]∗ 𝑑𝑖𝑣 𝑓;
Application: 𝑔ℓ

ℓ,𝑃 = 𝑓ℓ,𝑃 ∘ [ℓ];
Indeed both are normalised functions with divisor [ℓ]∗(ℓ(𝑃) − ℓ(0𝐸)).



Bilinearity

𝑒𝑊,ℓ(𝑃, 𝑄 + 𝑅) =
𝑔ℓ,𝑃(𝑥 + 𝑄 + 𝑅)

𝑔ℓ,𝑃(𝑥) (1)

=
𝑔ℓ,𝑃(𝑥 + 𝑄 + 𝑅)

𝑔ℓ,𝑃(𝑥 + 𝑅)
𝑔ℓ,𝑃(𝑥 + 𝑅)

𝑔ℓ,𝑃(𝑥) (2)

𝑒𝑊,ℓ(𝑃, 𝑄)𝑒𝑊,ℓ(𝑃, 𝑅) (3)

Corollary

𝑒𝑊,ℓ(𝑃, 𝑄)𝑟 = 𝑒𝑊,ℓ(𝑟𝑃, 𝑄) = 𝑒𝑊,ℓ(0𝐸, 𝑃) = 1.



Non degeneracy

If 𝑒𝑊,ℓ(𝑃, 𝑄) = 1 for all 𝑄 ∈ 𝐸[ℓ](𝔽𝑞), then 𝑔ℓ,𝑃(𝑥 + 𝑄) = 𝑔ℓ,𝑃(𝑥) for

all 𝑄 ∈ 𝐸[ℓ](𝔽𝑞).
Then 𝑔ℓ,𝑃 = ℎ ∘ [ℓ].
So 𝑑𝑖𝑣 𝑔ℓ,𝑃 = [ℓ]∗ 𝑑𝑖𝑣 ℎ and 𝑑𝑖𝑣 ℎ = (𝑃) − (0𝐸).
This implies 𝑃 = 0𝐸.

Corollary

Fix 𝜁 a primitive ℓ-root of unity. If 𝑃 ∈ 𝐸[ℓ] is primitive (if ℓ is prime this means
𝑃 ≠ 0), there is a 𝑄 such that 𝑒𝑊,ℓ(𝑃, 𝑄) = 𝜁. We say that (𝑃, 𝑄) is a
symplectic basis of 𝐸[ℓ].

Corollary

Every group morphism 𝐸[ℓ] → 𝜇ℓ (“a character”) is of the form
𝑄 ↦ 𝑒𝑊,ℓ(𝑃, 𝑄).



Case ℓ not prime

If ℓ = 𝑚𝑛, 𝑃 ∈ 𝐸[𝑛𝑚], 𝑄 ∈ 𝐸[𝑛], then 𝑒𝑊,𝑚𝑛(𝑃, 𝑄) = 𝑒𝑊,𝑛𝑚𝑃, 𝑄.

Exemple: if 𝑃, 𝑄 ∈ 𝐸[ℓ], 𝑒𝑊,ℓ2(𝑃, 𝑄) = 1.
Exemple: if 𝑃, 𝑄 ∈ 𝐸[ℓ], 𝑃 = ℓ𝑃0, 𝑒𝑊,ℓ2(𝑃0, 𝑄) = 𝑒𝑊,ℓ(𝑃, 𝑄).



Applications

Cryptography: discrete logarithm problem in the group ⟨𝑃⟩, 𝑃 a point of
ℓ-torsion of an elliptic curve;

ℓ is a large prime, around 2256 for 128 bits of security

The Weil pairing allows to reduce the DLP from 𝐸(𝔽𝑞𝑘) to the DLP in

𝜇ℓ ⊂ 𝔽∗
𝑞𝑘

We have subexponential algorithms for the DLP in 𝔽∗
𝑞𝑘.

So if 𝑘 is small: subexponential attack on 𝐸!
Expected: 𝑞 mod ℓ is “random”, so has order ≈ ℓ. Very large
embedding degree.

Exemple: a supersingular curve over 𝔽𝑝 (𝑝 > 3) has 𝑡 = 0.
The embedding degree is 𝑘 = 2.
Reduction of the DLP to 𝔽𝑝2.

⇒ We need larger extensions to work securely with supersingular curves
(at least 𝑞 > 21024)!



Constructive applications

Tripartite Diffie-Helman;

Lot of cryptographic applications;

Provide instance where Diffie-Helman is hard but decisional
Diffie-Helman is easy;

Problem: find curves suitable for crypto ℓ ∣ #𝐸(𝔽𝑞) with suitable
embedding degree.

Ideally, 𝑞 ≈ 2256 and 𝑘 ≈ 12, 20.



Field of definition of 𝐸[ℓ], ℓ prime

Characteristic polynomial of the Frobenius: 𝜒𝜋(𝑋) = 𝑋2 − 𝑡𝑋 + 𝑞;
This is the characteristic polynomial of 𝜋 acting on 𝐸[ℓ];
𝐸[ℓ] ⊂ 𝐸(𝔽𝑞𝑘) iff 𝜋𝑘 = Id;

Three possibilities: 𝜋 = (𝜆1 0
0 𝜆2

), with 𝜆1𝜆2 ≡ 𝑞 mod ℓ.

The order of 𝜋 is then the order of 𝜆1 (or 𝜆2) in 𝔽𝑞.

𝜋 = (𝜆 0
0 𝜆), with 𝜆2 ≡ 𝑞 mod ℓ.

The order of 𝜋 is the order of 𝜆.

𝜋 = (𝜆 1
0 𝜆), with 𝜆2 ≡ 𝑞 mod ℓ.

𝜋𝑟 = (𝜆𝑟 𝑟
0 𝜆𝑟);

The order of 𝜋 is then 𝑜𝑟𝑑(𝜆) ∨ ℓ.



Field of definition of 𝐸[ℓ], ℓ prime

In the crypto setting, there is one point of ℓ-torsion in 𝐸[ℓ](𝔽𝑞).

Three possibilities: 𝜋 = (1 0
0 𝑞).

If 𝑘 is the embedding degree, 𝐸[ℓ] ⊂ 𝐸(𝔽𝑞𝑘)

𝜋 = (1 0
0 1).

𝐸[ℓ] ⊂ 𝐸(𝔽𝑞).

𝜋 = (1 1
0 1).

𝐸[ℓ] ⊂ 𝐸(𝔽𝑞ℓ).



Field of definition of 𝐸[ℓ], ℓ prime

Assume that 𝜋 = (1 0
0 𝑞), with 𝑞 ≠ 1 mod ℓ, ie 𝑘 ≠ 1.

This is the usual cryptographic situation.

Let 𝐺1 ⊂ 𝐸[ℓ] correspond to the eigenvalue 1.
𝐺1 = {𝑃 ∈ 𝐸[ℓ], 𝜋(𝑃) = 𝑃}.
Let 𝐺2 ⊂ 𝐸[ℓ] correspond to the eigenvalue 𝑞.
𝐺2 = {𝑃 ∈ 𝐸[ℓ], 𝜋(𝑃) = 𝑞𝑃}.
𝐺1 = 𝐸[ℓ](𝔽𝑞), 𝐺2 ⊂ 𝐸[ℓ](𝔽𝑞𝑘), 𝐸[ℓ] = 𝐺1 ⊕ 𝐺2.

Corollary

The Weil pairing is non degenerate when restricted to 𝐺1 × 𝐺2 or to 𝐺2 × 𝐺1.



The Tate pairing

Let 𝐸/𝔽𝑞 be an elliptic curve, and ℓ ∤ 𝑝 such that 𝐸(𝔽𝑞) contains a
point of 𝑟-torsion;
The Tate pairing is a non degenerate bilinear pairing
𝑒𝑇,ℓ ∶ 𝐸[ℓ](𝔽𝑞𝑘) × 𝐸(𝔽𝑞𝑘)/ℓ𝐸(𝔽𝑞𝑘) → 𝔽∗

𝑞𝑘/𝔽∗,ℓ
𝑞𝑘

𝑒𝑇,ℓ(𝑃, 𝑄) = 𝑓ℓ,𝑃((𝑄) − (0𝐸)) where 𝑑𝑖𝑣 𝑓ℓ,𝑃 = ℓ(𝑃) − ℓ(0𝐸).
𝑒𝑇,ℓ(𝑃, 𝑄) = 𝑓ℓ,𝑃(𝑄) if the function 𝑓ℓ,𝑃 is normalised at 0𝐸.



General definition of the Tate pairing

Let 𝐷𝑃 be any divisor linearly equivalent to (𝑃) − (0𝐸);
Then ℓ𝐷𝑃 is principal, let 𝑓ℓ𝐷𝑃

be any function with this divisor;

𝑒𝑇,ℓ(𝑃, 𝑄) = 𝑓ℓ𝐷𝑃
(𝐷𝑄);

Exemple: 𝑒𝑇,ℓ(𝑃, 𝑄) = 𝑓ℓ,𝑃(𝑄+𝑅)
𝑓ℓ,𝑃(𝑅) .

This allows to circumvent the problem of intermediate poles and zeroes
introduced by Miller’s algorithm.

Warning: unlike for the Weil pairing, we may have 𝑒𝑇,ℓ(𝑃, 𝑃) ≠ 1.



Normalisation of the Tate pairing

𝔽∗
𝑞𝑘/𝔽∗,ℓ

𝑞𝑘 ≃ 𝜇ℓ via 𝑥 ↦ 𝑥
𝑞𝑘−1

ℓ .

The (normalised or reduced) Tate pairing is a non degenerate bilinear
pairing 𝑒𝑇,ℓ ∶ 𝐸[ℓ](𝔽𝑞𝑘) × 𝐸(𝔽𝑞𝑘)/ℓ𝐸(𝔽𝑞𝑘) → 𝜇ℓ,

𝑒𝑇,ℓ(𝑃, 𝑄) = 𝑓ℓ,𝑃(𝑄)
𝑞𝑘−1

ℓ

This power to
𝑞𝑘−1

ℓ is called the final exponentiation;

If ℓ is prime and 𝐸(𝔽𝑞𝑘) does not contain a point of ℓ2-torsion,

𝐸[ℓ](𝔽𝑞𝑘) ≃ 𝐸(𝔽𝑞𝑘)/ℓ𝐸(𝔽𝑞𝑘) since the inclusion is injective and they
have the same cardinal.

The (normalised) Tate pairing is then a non degenerate bilinear pairing
𝑒𝑇,ℓ ∶ 𝐸[ℓ](𝔽𝑞𝑘) × 𝐸[ℓ](𝔽𝑞𝑘) → 𝜇ℓ.



Alternative definition of the reduced Tate pairing

Let 𝑃 ∈ 𝐸[ℓ](𝔽𝑞𝑘), 𝑄 ∈ 𝐸(𝔽𝑞𝑘)/ℓ𝐸(𝔽𝑞𝑘);
Let 𝑄0 such that 𝑄 = ℓ𝑄0;

Then 𝑒𝑇,ℓ(𝑃, 𝑄) = 𝑒𝑊,ℓ(𝑃, 𝜋𝑘𝑄0 − 𝑄0);
This does not depend on the choice of 𝑄0 (if 𝐸[ℓ] ⊂ 𝐸(𝔽𝑞𝑘) this is

because another choice 𝑄1 = 𝑄0 + 𝑇, 𝑇 ∈ 𝐸[ℓ] ⊂ 𝐸(𝔽𝑞𝑘) so

𝜋𝑘𝑇 − 𝑇 = 0).
If 𝑄 ∈ ℓ𝐸(𝔽𝑞𝑘), we may take 𝑄0 ∈ 𝐸(𝔽𝑞𝑘), so 𝜋𝑘𝑄0 = 𝑄0,

𝑒𝑇,ℓ(𝑃, 𝑄) = 1.
This allows to prove bilinearity and non degeneracy.

Proof.

𝑒𝑊,ℓ(𝑃, 𝜋𝑘𝑄0 − 𝑄0) = 𝑔ℓ,𝑃(𝜋𝑘𝑄0)
𝑔ℓ,𝑃(𝑄0) = 𝑔ℓ,𝑝(𝑄0)𝑞𝑘−1 = 𝑔ℓ

ℓ,𝑝(𝑄0)
𝑞𝑘−1

ℓ =

𝑓ℓ,𝑃(𝑄)
𝑞𝑘−1

ℓ = 𝑒𝑇, ℓ(𝑃, 𝑄) using that 𝑔ℓ
𝑃 = 𝑓ℓ,𝑃 ∘ [ℓ].



Restricting the Tate pairing to subgroups (ℓ prime)

The Tate pairing stays non degenerate when restricted to
𝐺2 × 𝐸(𝔽𝑞)/ℓ𝐸(𝔽𝑞) → 𝔽∗

𝑞𝑘/𝔽∗,ℓ
𝑞𝑘

If 𝐸(𝔽𝑞) does not contain a point of ℓ2-torsion,
𝐸(𝔽𝑞)/ℓ𝐸(𝔽𝑞) ≃ 𝐺1 = 𝐸[ℓ](𝔽𝑞) so the Tate pairing is non degenerate
on 𝐺2 × 𝐺1.

In particular, if the embedding degree 𝑘 = 1 but 𝐸[ℓ] ⊄ 𝐸(𝔽𝑞), the Tate
pairing is non degenerate on 𝐸[ℓ](𝔽𝑞) × 𝐸[ℓ](𝔽𝑞) (while the Weil
pairing degenerates).

In this situation, if 𝑃 ∈ 𝐸[ℓ](𝔽𝑞), 𝑒𝑇,ℓ(𝑃, 𝑃) ≠ 1.
If 𝑘 > 1, and 𝐸(𝔽𝑞𝑘) does not contain a point of ℓ2-torsion, the Tate

pairing is non degenerate on 𝐺1 × 𝐺2.



Algorithmic computation of the Tate pairing (ℓ prime)

If 𝑃 ∈ 𝐺1 and 𝑄 ∈ 𝐺2, all the computations of 𝑓ℓ,𝑃 are done over 𝔽𝑞,
its only the evaluation at the end which is done over 𝔽𝑞𝑘;

Since 𝔽𝑞𝑘 is the smallest extension of 𝔽𝑞 containing 𝜇ℓ, if 𝑧 ∈ 𝔽𝑞𝑑 is in

a strict subfield (𝑑 ∣ 𝑘, 𝑑 ≠ 𝑘), then it is killed by the final

exponentiation: 𝑧
𝑞𝑘−1

ℓ ∈ 𝜇ℓ ∩ 𝔽𝑞𝑑 = {1}.
If 𝑘 = 2𝑑 is even, and 𝑄 ∈ 𝐺2, then 𝑥𝑄 ∈ 𝔽𝑞𝑑.

Indeed 𝜋(𝑄) = 𝑞𝑄. But since 𝑞𝑘 ≡ 1 mod ℓ, 𝑞𝑑 ≡ −1 mod ℓ (since
𝑘 is the embedding degree).

So 𝜋𝑑(𝑄) = −𝑄, 𝜋𝑑(𝑥𝑄) = 𝑥𝑄, 𝑥𝑄 ∈ 𝔽𝑞𝑑.

Since the denominators durinr Miller’s algorithm for the evaluation of
𝑓ℓ,𝑃 only involve 𝑥𝑄 (and the coordinates of 𝑃 which are in 𝔽𝑞), the
denominator is in 𝔽𝑞𝑑.

It is killed by the final exponentiation!


