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Preface

The field of elliptic cuves is an old and well-studied part of number theory. Until the 1980s
it was rather arcane outside of a small community of specialists. This changed, abruptly, after
Hendrik Lenstra showed how elliptic curves could be used in an efficient algorithm to factor large
integers, and Miller and Koblitz showed how they could be used in a version of the Diffie-Hellman
key exchange protocol, replacing the multiplicative group of non-zero elements of a finite field.
This version was argued to be invulnerable to the so-called “Factor Base" attacks against the
original system. Elliptic curves also have an extra feature that the multiplicative groups lack —
a pairing.

Pairings are ubiquitous in mathematics. They range from the ordinary inner product in
vector spaces, to integration of cycles against differential forms, and to many fundamental uses
in algebraic topology. A particular analytic pairing, defined on points of finite order in elliptic
curves and abelian varieties over the complex numbers, was given an algebraic definition in 1948
by André Weil. This algebraic version proved to be important in the arithmetic theory of elliptic
curves and abelian varieties.

In 1985, Miller and Koblitz independently proposed that the group of an elliptic curve over
a finite field be used as a replacement for the group of invertible residues in a finite field in the
Diffie-Hellman protocol. Motivated by an attempt to relate the discrete logarithm problem in
the two different kinds of groups, Miller recalled that the Weil pairing (if it could be efficiently
calculated) would relate the arithmetic in an elliptic curve with multiplication in a finite field.
This led him to devise an efficient algorithm to calculate the Weil pairing. This was later shown
to give an attack against the discrete logarithm problem for supersingular elliptic curves over a
finite field by Menezes, Okamoto, and Vanstone, and over a small set of other classes of curves
by Frey and Rück.

Meanwhile, in 1984, Adi Shamir had proposed an interesting thought experiment he called
“Identity-Based Cryptosystems.” If it could be realized it could allow, for example, using a
person’s email address as their public key in a public key cryptosystem. However, it was not
clear how this could be practically implemented. In 1999, Antoine Joux took the first steps in
work that was completed the next year by by Dan Boneh and Matt Franklin. These three authors
used the Weil pairing algorithm of Miller as an essential building block. Thus the burgeoning
field of Pairing-Based Cryptography was born.

The security of various cryptosystems is usually predicated on the presumed difficulty of
specific computational problems. As cryptographic protocols have grown more sophisticated,
the number of such assumptions has multiplied.

If G is a finite cyclic group (written additively) with generator P , the Computational Diffie-
Hellman (CDH) problem is to recover abP when given P, aP and bP . The discrete logarithm
(DL) problem is to recover a when given P and aP . The presumed difficulty of the Diffie-Hellman
problem is the basis for the security of the Diffie-Hellman cryptosystem. If one can solve DL one
can solve CDH, and, to date, this has been the only approach. The closely related distinguishing
Diffie-Hellman problem (DDH) is to distinguish a triple of the form (aP, bP, abP ) from a triple
of the form (aP, bP, cP ) where c is random.

In its abstract form, a pairing is a map e : M ×N → R, where M,N,R are abelian groups,
and e is bilinear and non-degenerate (meaning that if 0 6= P ∈ M there is a Q ∈ N such that
e(P,Q) 6= 0). By bilinearity we have e(aP, bQ) = abe(P,Q). One can see that in the case where
M = N , if CDL is easy in R, then we can solve the DDH in M .

Boneh and Franklin realized that if we were in the above situation (along with a slightly more
technical assumption called the bilinear Diffie-Hellman assumption — BDH), we could leverage

vii



viii Preface

this disparity into creating a viable IBE. Indeed, this was the case for elliptic curves defined over
certain fields (assuming standard conjectures). Since then many other applications of pairings
have been found, many of which are detailed in this volume. As with any new field there are
many subsidiary technical problems that arise and practicalities concerning implementation. A
number of these are detailed here.

In conclusion, it is a pleasure to see a comprehensive survey of this important field in the
present volume.

Victor S. Miller
Princeton, New Jersey



Symbol Description

δ A non-zero integer
p A prime number
q A power of a prime number
Fp The finite field of characteristic p
πp The Frobenius automorphism
Fpδ The extension of degree δ of Fp
Fp The algebraic closure of Fp
E(Fp) An elliptic curve E defined over Fp
P∞ The point at infinity of an elliptic

curve E
#E(Fp) The order of E(Fp) (also denoted n)
r A prime number dividing #E(Fp)
E(Fp)[r] The subgroup of E(Fp) with order r
k The embedding degree of E(Fp) with

respect to r
E′ A twisted elliptic curve of E

d The degree of the twist between E

and E′
G1 A subgroup of order r of E(Fp)
G2 A subgroup of order r of E(Fpk) \

E(Fp)
G3 A subgroup of order r of Fpk
e A pairing e : G1 ×G2 → G3

eT The Tate pairing
eA Ate pairing
etA twisted Ate pairing
Ker The kernel of a morphism
Im The image of a morphism
card(G) The cardinal of the set G
O An order in an imaginary quadratic

field
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1.1 Introduction

Initially used in cryptography to break the discrete logarithm problem in the group of points of
some elliptic curves, by providing a reduction to the discrete logarithm in finite fields [37] (where
subexponential attacks are known), pairings are now considered to be one of the most suitable
mathematical tools to design secure and efficient cryptographic protocols. The cryptography
relying on pairings is known under the generic term of “pairing-based cryptography.”

In this chapter, we review the cryptographic building blocks where the use of a bilinear
pairing is definitely an advantage, compared to the historical use of finite fields as in traditional
constructions. For each of these blocks, we also explain how they can be used in practice for
real-world applications.

1-1



1-2 Guide to Pairing-Based Cryptography

1.2 Preliminaries on Pairings

We first give some preliminaries on pairings. More details will be given throughout this book,
and here we only sketch some properties and notation that we will need in order to introduce
the necessary notions.

1.2.1 Pairing and Bilinear Environment

We first define three groups: G1,G2 (each with additive notation), and GT (with multiplicative
notation), all of prime order denoted r. In this chapter, a pairing e is then defined as a map
e : G1 ×G2 → GT having the following properties:

1. bilinearity, i.e., for all P1 ∈ G1, P2 ∈ G2 and a, b ∈ Zr we have:

e([a]P1, [b]P2) = e(P1, P2)ab ; and

2. non-degeneracy, i.e., for P1 6= 0G1 and P2 6= 0G2 , e(P1, P2) 6= 1GT ;

where 0G1 (resp. 0G2 and 1GT ) is the neutral element of the group G1 (resp. G2 and GT ). The
notation [a]P1 here corresponds to the scalar multiplication (in an additive group) of a generator
P1 ∈ G1 by a scalar a ∈ Zr (i.e., P + P + · · ·+ P , a times when a > 0 or −P − P − . . .− P , a
times when a < 0). Additionally to these mathematical properties, cryptographers most of the
time want a pairing to be efficiently computable and hard to inverse, so that these two
notions sometimes directly appear in the definition of a pairing.

The above bilinear property can be derived into a lot of equalities, permitting us to play
with the scalars and moving them from one “group” to another. We have, for example:

e([a]X1, [b]X2) = e([b]X1, [a]X2) = e([ab]X1, X2) = e([a]X1, X2)b = e([b]X1, X2)a = · · ·

In the sequel, we then consider a bilinear environment as a tuple

(r,G1,G2,GT , P1, P2, e),

where r, G1, G2, GT , and e are defined as above, and where P1 (resp. P2) is a generator of G1
(resp. G2).

1.2.2 Types of Pairings

There are several ways to describe a pairing, but today the most efficient ones are defined when
the groups G1 and G2 are elliptic curves, and the group GT is the multiplicative group of a finite
field. Galbraith, Patterson and Smart [32] have defined three types of pairings:

• type 1, when G1 = G2;
• type 2, when G1 6= G2 but an efficiently computable isomorphism φ : G2 → G1 is

known, while none is known in the other direction;
• type 3, when G1 6= G2 and no efficiently computable isomorphism is known between

G1 and G2, in either direction.

Although type 1 pairings were mostly used in the earlyage of pairing-based cryptography,
they have gradually been discarded in favor of type 3 pairings. Indeed, today type 1 is not
attractive enough from an efficiency point of view, since it involves very large curves.

The constructions given in this chapter all require the use of asymmetric pairings (i.e., of
type 2 or type 3). For simplicity, we will only consider pairings of type 3, which is not a strong
restriction (see [22]) since these pairings offer the best efficiency. They are moreover compatible
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TABLE 1.1 Comparison of the size of parameters, in bits, for different types of cryptography.

Security level 96 128 256
RSA-based factorization module 1776 3248 15424

Discrete logarithm-based
key 192 256 512

group 1776 3248 15424
group (elliptic curve) 192 256 512

Pairing-based
scalar 192 256 512

group G1 192 256 512
group G2 384 512 1024
group GT 1776 3248 15424

with several computational assumptions, such as the Decision Diffie-Hellman (DDH) in G1 or G2,
also known as the XDH assumption [14], which does not hold in type 1 pairings (see Remark 1.1
in Section 1.3.3 for some details).

1.2.3 Choice of Parameters

We now consider the size of the parameters that need to be manipulated when using a pairing
(some details will also be given throughout the book). Generally speaking, the size of the
security parameters is related to the infeasibility of executing best-known attacks on the studied
cryptographic system. By convention, a security level corresponds to the minimum size for an
exhaustive search among the set of all possible secret keys. The figures given for “RSA-based,”
“discrete logarithm-based,” and “pairing-based” are computed by using in particular, the best
algorithms to solve the related problems. One can refer to Chapter 10 for more details on the
choice of parameters.

Focusing on pairing-based cryptography, for a given security level, minimal sizes for r (the
size of the elliptic curve subgroup) and qk (the size of the finite field underlying GT ) have to
be chosen. The integers r and q are prime numbers, and k is called the embedding degree. For
128-bit security, the most relevant choice for an elliptic curve today is the Barreto-Naerhig [8],
of equation Y 2 = X3 + 5 over Fq. With such a curve, the most suitable pairing seems to be the
optimal Ate [41], which can be written

e : E(Fq)× E(Fq2 ) −→ F∗q12

where E(Fq) (resp. E(Fq2 )) denotes the elliptic curve defined over the finite field Fq (resp. Fq2).
For a 128-bit security level, this then gives us the following parameters:

• size of the order q = 256 bits (for scalars);
• size of G1 = 256 bits;
• size of G2 = 512 bits; and
• size of GT = 3248 bits.

Table 1.1 then compares the size of the different parameters for different types of cryptography.
The scores are given based on a work by the ECRYPT II [1].
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1.3 Preliminaries on Cryptography

1.3.1 Cryptography in a Nutshell

Cryptography, the art of secret writing, has historically been used to hide the communication
between parties. It is today known to address the needs of several important security services:

• confidentiality, to be convinced that only the intended receiver of a message can
read it;

• authentication, to be convinced that a person with whom one is communicating is
the right person;

• integrity, to be convinced that a received message has not been modified; and
• non-repudiation, to be convinced that the origin of a message cannot repudiate it.

But nowadays, cryptographers, most of the time by using techniques from public key cryptogra-
phy, design much more sophisticated tools that permit then to solve modern (and more complex)
problems arising from our digital society:

• perform computations over encrypted data;
• share confidential data;
• guarantee both anonymity and accountability of customers;
• ensure both privacy protection and profiling...

The construction of these new cryptographic solutions requires the use of new mathematical
tools, and, in this context, pairings are the most important and most often used ones in the
current literature.

Before giving some details about pairings, we start by introducing more formally the notions
of hash function, encryption, and signature that will be used in this chapter.

1.3.2 Hash Function

Algorithms. Generally speaking, a hash function is a mathematical function defined by

H : {0, 1}∗ −→ {0, 1}k

where k is a “small” parameter. It is then a function that permits us to transform data of
arbitrary-size into a representative data with a fixed size. In cryptography, a hash function mech-
anism Hash only needs to define the above mathematical function and, in the sequel, we most of
the time only use the mathematical notation H. Sometimes, the output of H is not an element
in {0, 1}k but a group element, and the hash function is then defined as, e.g., H : {0, 1}∗ −→ G.

Security. Regarding security, a cryptographically secure hash function should verify the fol-
lowing properties.

• Pre-image resistance, which means that for a given output h ∈ {0, 1}k, it is com-
putationally infeasible to find a value m ∈ {0, 1}∗ such that H(m) = h.

• 2nd pre-image resistance, saying that for a given input m ∈ {0, 1}∗, it is compu-
tationally infeasible to find a value m′ ∈ {0, 1}∗ such that H(m) = H(m′).

• Collision resistance, which says that it is computationally infeasible to find two
values m,m′ ∈ {0, 1}∗ such that H(m) = H(m′).

Based on these security properties, and due to the birthday paradox [43], the value k should be
taken to be equal to 256 for 128-bit security. One can refer to Chapter 8 for more details on
hash functions.
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1.3.3 Encryption

An encryption scheme aims at protecting the confidentiality of some messages.

Algorithms. In the public key cryptography setting, such a scheme is composed of four main
algorithms:

• the Setup algorithm, which, on input of a security parameter λ, outputs a set of
parameters param, which depends on the schemes used;

• the key generation KeyGen, which, on input of the parameters param, outputs a key
pair composed of a public key pk and a secret key (also called private key) sk;

• the encryption algorithm per se Enc, which, on input of the parameters param, the
public key pk, and a message m (also called a plaintext), outputs a ciphertext c;

• the decryption algorithm Dec, which, on input of the parameters param, the secret
key sk, and the ciphertext c, outputs the corresponding message m.

Security. Regarding security, the expected property that an encryption scheme should verify is
the following one.

• Indistinguishability, which states that an adversary against the scheme is not able,
given two messages m0 and m1 that (s)he may have chosen, and a ciphertext of either
m0 or m1, to determine which message this ciphertext encrypts. For details, we refer
the reader to, e.g., [9].

Example. We give an example of encryption scheme that will be used in the sequel: ElGamal [27].
The key generation is executed as follows:

• let G be a group (for example, the set of points of an elliptic curve) of prime order r
and let P be a generator of G;

• the secret key is x ∈ Z∗r and the public key is Y = [x]P .

The encryption and decryption steps are then given by Algorithms 1.1 and 1.2, respectively.

ALGORITHM 1.1 ElGamal encryption algorithm Enc.
Input : message m ∈ G, public key pk = (P, Y ) ∈ G2.
Output: ciphertext c = (T1, T2) ∈ G2.

1 choose ρr ∈ Z∗r at random
2 compute T1 = m + [ρ]Y and T2 = [ρ]P
3 output c = (T1, T2).

ALGORITHM 1.2 ElGamal decryption algorithm Dec.
Input : ciphertext c = (T1, T2) ∈ G2, secret key sk = x ∈ Z∗r .
Output: message m ∈ G.

1 output m = T1 − [x]T2.

Remark 1.1 The ElGamal encryption scheme is secure if the Decisional Diffie-Hellman (DDH)
assumption holds. This assumption states that it is hard to distinguish between the following
two tuples:

(P, [a]P, [b]P, [c]P ) and (P, [a]P, [b]P, [ab]P );
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where P is the generator of a group G of prime order r and where a, b, c are random integers in
Z∗r .

In fact, this problem is easy (and the ElGamal encryption scheme is not secure in this setting)
if the group G is related to a type 1 pairing (see Section 1.2.2) since one can easily test whether

e([a]P, [b]P ) = e(P, [c]P )

or not, which is equivalent to ab = c or not. For similar reasons this problem is also easy in G1
or in G2 in a type 2 pairing (since we can advantageously use the isomorphism φ : G2 → G1).
As said previously, in a type 3 pairing, when the DDH assumption holds in G1 or G2, we then
talk about the XDH assumption [14].

1.3.4 Signature

A digital signature is the basic cryptographic tool to prove, at the same time, the authenticity
of a message (it comes from the right person if we plug in, e.g., a PKI), its integrity, and its
non-repudiation.

Algorithms. A signature scheme is composed of four main algorithms:

• the Setup algorithm, which, on inputting a security parameter λ, outputs a set of
parameters param, which is specific to the schemes used;

• the key generation KeyGen, which, on input of the parameters param, outputs a key
pair composed of a public key pk and a secret (or private) key sk;

• the signature algorithm Sign, which, on input of the parameters param, the secret key
sk, and a message m, outputs a digital signature σ on m;

• the verification algorithm Verif, which, on input of the parameters param, the public
key pk, a message m, and a putative signature σ, outputs either 1 if the signature is
correct under pk, or 0 otherwise.

Security. Regarding security, a signature scheme should verify the following property.

• Unforgeability, which states that it should be infeasible for an attacker of the system
to provide a message and its signature that have never been generated by the true
owner of the private key. There are then several possibilities for such a defrauder to
attack a digital signature scheme, and we refer the interested reader to [33] for more
(formal) details.

Example. We give an example of a signature scheme that will be used in the sequel: RSA-
PSS [38, 11]. The key generation is executed as follows:

• let n = pq with p and q two distinct prime numbers of sufficient size (see Table 1.1);
• let e be an integer that is prime to ϕ(n) and d such that ed ≡ 1 (mod ϕ(n));
• let H : {0, 1}∗ → {0, 1}λ2 , F : {0, 1}∗ → {0, 1}λ0 , G : {0, 1}∗ → {0, 1}λ1 be crypto-

graphic hash functions with λ = λ0 + λ1 + λ2 + 1;
• sk = (p, q, d) and pk = (n, e)

The signature and verification algorithms are then given by Algorithms 1.3 and 1.4, respec-
tively, where ‖ denotes the concatenation operation.
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ALGORITHM 1.3 RSA-PSS signature algorithm Sign.
Input : message m ∈ Zn, public key pk = (n, e) ∈ Z2, secret key sk = (p, q, d) ∈ Z3.
Output: signature (σ, y) ∈ Z2

n.
1 choose ρ at random
2 compute w = H(m‖ρ), s = G(w)⊕ ρ, and t = F(w)
3 compute y = 0‖w‖s‖t
4 compute σ = yd (mod n)
5 output (σ, y).

ALGORITHM 1.4 RSA-PSS verification algorithm Verif.
Input : message m ∈ Zn, public key pk = (n, e) ∈ Z2, signature (σ, y) ∈ Z2

n.
Output: verification ok or not.

1 parse y = 0‖w‖s‖t
2 compute ρ = s⊕ G(w)
3 check that y = σe (mod n)
4 check that w = H(m‖ρ), and t = F(w)

1.3.5 Security Model for Cryptography and Pairings

In public key cryptography, there are most of the time three steps to provide evidence that a
proposed scheme is secure.

The first step consists of giving a model that idealizes the studied cryptographic protocol.
This is exactly what has been done above for encryption and signature schemes with the formal
definition of algorithms and parameters. It also consists of clearly defining what an adversary
can do to break the security of an encryption or signature scheme.

The next step is to define assumptions stating the difficulty to break some mathematical
problems, such as the computation of discrete logarithms or the factorization of integers.

The final step is to prove that breaking the security of the scheme is as hard as solving a
mathematical problem supposed to be intractable. During this step, there are some cases where
the cryptographer idealizes some cryptographic functions. For example, for a hash function, we
talk about the “random oracle model” [10] when we assume that the outputs of a cryptographic
hash function are indistinguishable from random values, except that two equal inputs will always
give the same output (to keep the deterministic property of a hash function). When there is no
such idealization, then we talk about the “standard model.”

Most of today’s constructions that are proved to be secure in the standard model are based on
pairings. This is for example the case for non-interactive zero-knowledge proofs of knowledge,
secure in the random oracle using the Fiat-Shamir heuristic [29], and secure in the standard
model using the Groth-Sahai technique [35] for pairing equations. Such proofs are for example
used to design group signature schemes, as we will see in Section 1.5.

1.4 Short Signatures

Digital signatures are today one of the most famous cryptographic tools used in real-world
applications. Since the introduction of public key cryptography, and the publication of RSA
cryptosystem [38], many new signature schemes have been proposed, and one of the most chal-
lenging tasks for cryptographers has been to design such tools tailored for lightweight devices.
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In particular, the way to shorten the size of a digital signature is of primary importance when
communication time between two devices is sensitive. As we will see, digital signatures based
on the use of a pairing are much more appropriate to this context than traditional ones.

1.4.1 Use Cases

The size of a signed message is an important matter in several use cases. We here describe two
of them, based on real-life constraints.

Signed SMS. It is commonly known that an SMS (Short Message Service) is a short message
that is sent from one mobile phone to another via the OTA (Over The Air) communication layer.
Its payload length is limited by the constraints of the signalling protocol to precisely 140 bytes,
which is very small. Although different techniques to obtain a MAC (Message Authentication
Code) on an SMS (see for example the ETSI 102 225 standard on secured packet structure
for UICC-based applications [2]) exist, they do not permit us to achieve the non-repudiation
property that necessitates the use of a true digital signature. Yet non-repudiation can be useful
in this context.

For example, such a signed SMS could be used for payment transactions. Peer-to-peer
authenticated payments from one mobile phone to another could be made possible using such a
short digital signature, without increasing the number of necessary SMSs to be sent. Another
use is the possibility for a consumer to digitally sign a contract for a new phone package or for
a new option.

The size of an SMS can be seen as an important constraint in these cases. For a 128-bit
security, an RSA signature necessitates (see below for a more detailed comparison) 4096 bits,
and thus 4 SMS to be sent (without taking into account the signed message and an additional
potential PKI certificate). By contrast, a BLS signature (see [17] and below) only necessitates
256 bits, that is, roughly 1/4 of an SMS!

Sensor node on-line authentication. Sensor nodes (or RFID tags) are among the less powerful
devices used in real-world applications and the communication rate with a reader is very slow.
As a typical example, the communication rate between an RFID tag and a reader is only from
9.6 to 19.2 kbits per second. In several practical use cases, such devices have to be authenticated
by their environment. As a consequence, the communication rate is an important factor that
must be taken into account: the less information the sensor node has to send, the fastest the
communications will be. Then a small signature for authentication purposes would be a great
advantage to optimize the exchanges.

1.4.2 Related Work: Pairing or Not Pairing

Regarding the state-of-the-art on signature schemes, we can here compare the traditionally
implemented ones (namely RSA [38] and EC-DSA [3]) and the most interesting pairing-based
signature schemes. The resulting comparison is given in Table 1.2. For the pairing-based sig-
nature scheme, we have chosen the BLS one [17] since it is presumably the best suitable choice
for our purpose. The size of the parameters are guided by ECRYPT II recommendations on
cryptography [1]. The recommended parameters show that there is currently a little advantage
to using a pairing-based signature instead of a traditional one. Thus, replacing a current RSA
or EC-DSA implementation with a BLS one is relevant only in some particular cases, where the
size of a signature is a stringent constraint.

Apart from the space complexity, time performances are also very good for such schemes.
For example, the signature generation of the BLS [17] scheme (see below) is approximately twice
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TABLE 1.2 Comparison of the size of digital signatures.

Signature scheme Security level Size of signature
RSA

96 bits
1776 bits

EC-DSA 384 bits
BLS 192 bits
RSA

128 bits
3248 bits

EC-DSA 512 bits
BLS 256 bits
RSA

256 bits
15424 bits

EC-DSA 1024 bits
BLS 512 bits

more efficient than the one for EC-DSA [3]. Regarding the verification process, recent results [41]
show that this step can now be executed in nearly 200 ms in a smart card.

1.4.3 An Example

In this section, we give the construction of the BLS signature scheme [17], with the slight modi-
fication that we describe this scheme in a type 3 pairing setting, as argued above.

Setup and key generation. We consider a bilinear environment (r,G1,G2,GT , P1, P2, e), which
is chosen during the execution of the Setup algorithm. We also consider a cryptographic hash
function H : {0, 1}∗ −→ G1 (modeled as a random oracle [10]).

The key generation algorithm KeyGen consists, for the signer, of choosing at random his/her
secret key x ∈ Z∗r and computing the corresponding verification public key pk as Y = [x]P2.

Signature and verification. The signature generation and verification algorithms are then given
by Algorithms 1.5 and 1.6, respectively. The verification is correct since

e(σ, P2) = e([x]H(m), P2);
= e(H(m), [x]P2) by using the bilinear property of e;
= e(H(m), Y ).

ALGORITHM 1.5 BLS signature algorithm Sign.
Input : message m ∈ {0, 1}∗, public key pk = Y ∈ G2, secret key sk = x ∈ Z∗r .
Output: signature σ ∈ G1.

1 output σ = [x]H(m).

ALGORITHM 1.6 BLS verification algorithm Verif.
Input : message m ∈ {0, 1}∗, public key pk = Y ∈ G2, signature σ ∈ G1.
Output: verification ok or not.

1 check that e(σ, P2) = e(H(m), Y ).
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1.5 Group Signature Schemes

In a nutshell, a group signature scheme permits members of a group to produce signatures on
behalf of the group, in such a way that any verifier of the resulting signature can be convinced
that the signature has been produced by a group member, but without being able to determine
which one. Group signatures are anonymous and untraceable for everybody, except a designated
authority who can, if necessary, “open” a signature to identify the actual signer. They are then
used to provide at the same time user anonymity and user accountability.

There exist several variants of group signature, and one of the most promising ones, in the
context of mobile services, is called an anonymous credential system. Such a system allows a
user to obtain a credential (a driving license, a student card, etc.) from one organization and
then later prove possession of this credential to another organization without revealing anything
more than the fact that (s)he owns such a credential. Anonymous credentials systems also allow
selective disclosure by permitting the user to reveal only some credential attributes or to prove
that they satisfy some properties (e.g., age < 25) while hiding all the other credential attribute
information (this is in contrast to classical credentials, which only allow the release of all the
contained attributes).

1.5.1 General Presentation and Short Model

Algorithms. A group signature scheme is composed of the following algorithms:

• the Setup algorithm, which, on input of the security parameter λ, outputs the issuer’s
secret key ik, the opener’s secret key ok, and the group public key gpk;

• the user key generation UKGn, which, on input gpk, outputs the key pair (upk[i], usk[i])
for the i-th user;

• the joining interactive protocol Join, which is divided into two interactive algorithms.
The issuer plays Iss, which takes on input gpk, ik, and upk[i]. If the issuer accepts,
(s)he makes a new entry for i in its registration table reg. The user i executes UJoin,
which, on inputs gpk, usk[i], outputs a private membership signing key denoted msk[i];

• the group signature algorithm GSign, which, on inputs gpk, a message m, and a private
signing key msk[i], outputs a group signature σ on m;

• the verification algorithm GVerif, which, on inputs gpk, a message m, and a group
signature σ, outputs 1 if the signature is valid, and 0 otherwise;

• the opening algorithm Open which, on inputs gpk, a message m, a group signature σ,
and the opener key ok, outputs, in a deterministic way, an integer i ≥ 0 (corresponding
to the identity of the group member) and, in a probabilistic way, a proof τ that the
i-th user has produced the signature σ on m;

• the Judge algorithm, which, on inputs gpk, a message m, a group signature σ, the
public key upk[j] of j-th user, and a proof τ , outputs 1 if τ is valid and 0 otherwise.

Security. As explained in [12], it is possible to summarize the set of security properties one
group signature scheme should satisfy into the four following points.

• Correctness, which means that, when executed by honest players, the verification
of a group signature outputs 1 with overwhelming probability, and the opening neces-
sarily outputs the right group member’s identity and a proof τ that will be accepted
by the Judge algorithm with overwhelming probability.

• Anonymity, which means that an adversary, given a signature produced by a user
(among two users that (s)he may have chosen), is not able to guess (with significant
probability) which user among the two generated the signature. This property also
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includes the user unlinkability, in the sense that it is infeasible to determine whether
two different valid group signatures come from the same group member or not.

• Traceability, which means that an adversary is not able to output a valid group
signature which, once opened, does not identify him/her. This is different from the
correctness property since here, the group member is not honest.

• Non-frameability, which means that an adversary is not able to falsely accuse an
honest user of having produced a valid group signature (s)he did not produce.

1.5.2 Use Cases

There are multiple use cases where group signatures, and their variants, are relevant. We here
sketch some of them.

Electronic voting. The aim of electronic voting is to replace traditional paper-ballot voting.
Electronic voting possesses numerous advantages: counting is faster, it is more convenient for
voters as they do not need to go to a polling station in order to vote, voter turnout can be
increased, etc.

Several cryptographic-based electronic voting systems [31, 6, 30] have been proposed in the
literature. A possible solution to achieve both the anonymity of the ballot and the verifiability
of the outcome of the election is to use an anonymous signature, such as a group signature, or
a close variant called list signature [21].

Generally speaking, a voter (i) has to prove that (s)he has the right to vote and (ii) wants
to protect the secrecy of his vote (the anonymity of his ballot). Both points are verified if the
user can prove that (s)he belongs to the set of eligible voters, while being anonymous. This is
exactly the aim of a group signature.

Anonymous electronic cash. The aim of electronic cash (or e-cash) is to replace traditional
(material) cash. In electronic cash, a user can withdraw coins in the bank, and then spend
them in any shop. Later on, the merchant can deposit the received coins to his own bank. One
crucial point with traditional cash is that the user is anonymous and non-traceable when using
his money, even with respect to the bank. The latter has in fact no way to make the link between
a withdrawal and a spending. One desirable aim of e-cash is to emulate a system satisfying such
a property: This is what is called anonymous e-cash.

Several attempts have been done and since the so-called compact e-cash system [18], almost
all constructions follow the same principle: When a user withdraws $1, (s)he becomes a member
of the group of users who have withdrawn $1. A spending corresponds to a transfer of this coin
to a merchant. The transfer is signed, using a group signature, to avoid non-repudiation of this
transaction.

Again, a group signature is a good basis to construct a secure e-cash system. There remains
however, some additional work to obtain all the desired functionalities of a truly secure and
efficient e-cash system, such as the way to efficiently make non-traceable consecutive payments
by the same user [20], to manage double spendings [18], to make a coin transferable [19], etc.

Complex anonymous access control. Generally speaking, a group signature scheme permits
anonymous access control: a voter can anonymously access the polling place, a payer can anony-
mously access the right to pay, a user can anonymously access a building... However, a group
signature scheme permits us to manage only with a single group, and then very simple ac-
cess control policies. As introduced at the beginning of this section, an anonymous credential
scheme [23], on the contrary, allows us to manage several groups at once. Let us imagine, for
example, a service provider wanting to offer some special rights to certain categories of its cus-
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tomers, such as students under 25 or seniors over 60. A group signature would not be relevant
in this case.

This service provider does not necessarily need to obtain all the information about the user
(name, address, exact age, etc.) but needs to be sure that these pieces of information (age and
student status), called attributes, are correct and that they have been certified by a trusted
entity (e.g., the university or the country’s authority).

In an anonymous credential system, the trusted entity can certify the attributes (e.g., name,
date of birth, nationality, address, etc.) by signing them. Then, each user in possession of such
credentials can prove to a third party that (s)he has the correct attributes, and then access
the service, while minimizing the information given to the service provider. A user could, for
example, prove that (s)he is less than 25, in a certified way, without giving his exact age.

With anonymous credentials systems, a user needs to register only once in order to belong
to several groups (such as the group of persons being less than 25, the group of French people,
etc.).

1.5.3 Related Work: Pairing or Not Pairing

A lot of work has been done on group signature schemes, and there exist numerous constructions.
Among all of them, the most efficient ones follow the same principle [7]:

• a user is the i-th member of the group if (s)he obtained from the issuer a digital
signature (denoted msk[i]) on his/her secret value usk[i];

• the anonymity is obtained by not revealing the signature or the secret value during the
group signature generation, but only proving the knowledge of the secret usk[i] and its
signature upk[i] (valid under the issuer’s public key) without revealing the secret or
the signature. This can be done by using a well-suited non-interactive zero-knowledge
(NIZK) proof of knowledge [39], a cryptographic tool dedicated for such a purpose;

• the anonymity revocation is obtained by adding to the group signature (and to the
NIZK proof) the encryption of a part of the issuer’s signature msk[i], such that the
resulting ciphertext can be decrypted by the opener in order to identify the group
member. Since the issuer knows the link between upk[i] and the identity of the i-th
group member (stored during the Join protocol), the integer i can be output.

One of the main components for a group signature scheme is then a digital signature scheme that
is used by the issuer. Such a signature scheme should (i) permit the issuer to sign a secret value
in a blinded manner and (ii) be suitable for an NIZK proof of knowledge. Several constructions
exist, which are today mostly of two kinds.

The first one [34] is secure in the standard model (see Section 1.3.5) and can at that time
only be instantiated by using a pairing and Groth-Sahai NIZK proofs [35]. The second one [7,
14] is secure in the random oracle model [10], by using the Fiat-Shamir heuristic [29], and
is much more efficient than the previous one. In the latter family, there are two kinds of
cryptographic assumptions, either based on the flexible RSA assumption [7], or on pairing-based
assumptions [14]. The second case is more relevant for a practical implementation, as it permits
us to handle the smallest parameters, as shown in Section 1.2.3, and to use short signatures.

1.5.4 An Example

Boneh, Boyen, and Shacham proposed in 2004 a short group signature scheme [14] based on the
strong Diffie-Hellman [13] and the decisional linear assumptions.

Key generation. Let (r,G1,G2,GT , P1, P2, e) be a bilinear environment. Let H ∈ G1, ζ1, ζ2 ∈ Z∗r
and U, V ∈ G1 such that [ζ1]U = [ζ2]V = H. Let γ ∈ Z∗r and W = [γ]P2. Then, ζ1 and ζ2
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are the secret values ok to open (i.e., revoke the anonymity of) a signature, γ is the secret key
ik to add group members, and (r, P1, P2, H, U, V,W ) is the whole group public key. All these
parameters are generated during the Setup algorithm.

During the Join protocol, each group member obtains from the issuer a pair (A, x) ∈ G1×Z∗r
such that A = [1/(γ + x)]P1. This pair verifies e(A,W + [x]P2) = e(P1, P2). The value x is the
member’s secret usk[i] (generated by the UKGn algorithm) and A is the key used to retrieve the
identity of a member in case of opening (i.e., anonymity revocation).

Group signature generation. The group signature algorithm GSign is then given in Algorithm 1.7.
Here (T1, T2, T3) is a linear encryption of A (see [14] for such an encryption scheme) and the tuple
(c, sα, sβ , sx, sδ1 , sδ2 ) is an NIZK proof of knowledge of a valid certificate (using the Fiat-Shamir
heuristic [29]). More precisely, it corresponds to a proof of knowledge of a couple (A, x) such
that:

• (A, x) is a valid signature under the issuer’s public key W , as

e(A,W + [x]P2) = e(P1, P2);

• the tuple (T1, T2, T3) is a valid linear encryption of A.

ALGORITHM 1.7 Group signature algorithm GSign.
Input : message m, public key (r, P1, P2, H, U, V,W ), secret key (A, x).
Output: signature σ = (T1, T2, T3,Π).

1 choose at random α, β ∈ Zr
2 compute T1 = [α]U , T2 = [β]V and T3 = A+ [α+ β]H
3 compute δ1 = xα and δ2 = xβ

4 compute the NIZK proof Π = (c, sα, sβ , sx, sδ1 , sδ2 ) as given by Algorithm 1.8
5 output σ = (T1, T2, T3,Π).

ALGORITHM 1.8 Group signature NIZK proof algorithm.
Input : message m, public key (r, P1, P2, H, U, V,W ), secret key (A, x), ciphertext

(T1, T2, T3), scalars (δ1, δ2).
Output: NIZK proof Π = (c, sα, sβ , sx, sδ1 , sδ2 ).

1 choose at random rα, rβ , rx, rδ1 , rδ2 ∈ Z∗r
2 compute t1 = [rα]U
3 compute t2 = [rβ ]V
4 compute t3 = [rx]T1 − [rδ1 ]U
5 compute t4 = [rx]T2 − [rδ2 ]V
6 compute t5 = e(T3, P2)rxe(H,W )−rα−rβe(H,P2)−rδ1−rδ2

7 compute c = H(m‖T1‖T2‖T3‖t1‖t2‖t3‖t4‖t5)
8 compute sα = rα − cα, sβ = rβ − cβ, sx = rx − cx, sδ1 = rδ1 − cδ1 and sδ2 = rδ2 − cδ2
9 output Π = (c, sα, sβ , sx, sδ1 , sδ2 ).

Verification and opening. The verification algorithm GVerif consists then in verifying this proof
of knowledge Π, as described in Algorithm 1.9, using standard techniques, and the open one
Open is the decryption of the linear encryption (T1, T2, T3) as:

A = T3 − [ζ1]T1− [ζ2]T2.
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ALGORITHM 1.9 Group signature NIZK proof verification algorithm GVerif.
Input : message m, public key (r, P1, P2, H, U, V,W ), ciphertext (T1, T2, T3), NIZK proof

Π = (c, sα, sβ , sx, sδ1 , sδ2 ).
Output: verification ok or not.

1 compute t̃1 = [c]T1 + [sα]U
2 compute t̃2 = [c]T2 + [sβ ]V
3 compute t̃3 = [sx]T1 − [sδ1 ]U
4 compute t̃4 = [sx]T2 − [sδ2 ]V
5 compute t̃5 =

(
e(P1, P2)/e(T3,W )

)c
e(T3, P2)sxe(H,W )−sα−sβe(H,P2)−sδ1−sδ2

6 check that c = H(m‖T1‖T2‖T3‖t̃1‖t̃2‖t̃3‖t̃4‖t̃5).

1.6 Identity-Based Encryption

In public key encryption schemes, as said previously, everyone can encrypt a message by using
the public key and only the entity having access to the related secret key will be able to decrypt
and read the initial message. But, most of the time, one does not want to send a message
to a "public key" but to an entity. This is the objective of Public Key Infrastructures (PKI),
introduced in [42]. In fact, the role of a PKI certificate is to make the link between a public
key and the owner of this key, thanks to a signature delivered by one (or several) designated
trusted certification authority (CA). But the main problem of PKI is that they are relatively
complex to deploy and maintain. An alternative is to use identity-based cryptography [40], for
which the public key, needed, for example, to encrypt a message, is replaced by the identity of
the receiver. For encryption purposes (even if the equivalent exists for signature), we talk about
Identity-Based Encryption, or IBE for short.

1.6.1 General Presentation and Short Model

Algorithms. An IBE is generally composed of the following algorithm, which is close to a standard
encryption scheme, given above in Section 1.3.3:

• the Setup algorithm, which, on input of a security parameter λ, outputs a set of
parameters param, and additionally a master key pair composed of a secret key msk
and a corresponding public key mpk. The role of the master secret key is to compute
the secret keys for users, based on their identity;

• the key extraction algorithm Ext, which, on input of the parameters param, the master
secret key msk, and the identity id of a user, outputs a user secret key usk;

• the encryption algorithm Enc, which, on input of the parameters param, the master
public key mpk, an identity id, and a message m, outputs a ciphertext c;

• the decryption algorithm Dec, which, on input of the parameters param, a user secret
key usk, and the ciphertext c, outputs the corresponding message m.

Security. An identity-based encryption scheme should verify the following property.

• A special kind of indistinguishability, the main difference with the traditional def-
inition (see Section 1.3.3) being that the adversary has access to several secret keys,
based on identities of his/her choice, and that (s)he is challenged on a public key id
of his/her choice. We refer to [16] for more details.
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1.6.2 Use Cases

An IBE permits us to avoid the use of a PKI, and thus may decrease the workload inherent to
PKI. However, the generation of the secret key w.r.t. the identity should be done by a specific
authority: There are then some similarities between such an authority and a PKI certification
authority. The real deployment of such a cryptographic tool could also lead to some problems
that necessitate further work. In particular, the fact that the authority knows the secret keys of
the users could be an issue in some use cases. Moreover, how to deal with the compromise of a
secret key, in particular if this key is related to the name of the user? How to change it? These
concerns need to be clearly taken into account but several cryptographic solutions already exist.

Regarding the use of an IBE in the real world, one possibility would be to design a secure
channel between two smartphones in order to make it possible for the underlying users to ex-
change some information, such as an electronic ticket, in a secure way. Another possibility would
be to establish such a secure channel between a TEE (Trusted Execution Environment, that is,
an environment hosted by a mobile device that runs in isolation from the devices main operating
system) and the SIM card. This is a new way to design a solution related to the GlobalPlatform
industry association and its standardization of the TEE interfaces [5]. In fact, a key provisioning
service can only be done this way on the SIM card side, while permitting us to securely exchange
information between the TEE and the SIM card.

1.6.3 Related Work: Pairing or Not Pairing

The concept of identity-based cryptography was introduced by Shamir in 1984 [40] but until
2001, no proposal was deemed secure enough for a real use. In 2001, two different schemes
were proposed. The first one, due to Cocks [26] and based on quadratic residues, is not efficient
enough. The second one, proposed by Boneh and Franklin [16], was then the first IBE scheme
which is both secure and efficient. It mainly exploits the structure of a pairing.

Since then, researchers have proposed several schemes to improve (in terms of security, effi-
ciency, or functionality) the latter scheme, and they are all based on the use of a pairing.

1.6.4 An Example

As an example, we describe in this section the Boneh-Franklin IBE [16], essentially for its sim-
plicity. Again, we describe the scheme in the case where one uses a type 3 pairing (instead of a
type 1 as used in [16]).

Setup and key generation. We then consider a bilinear environment (r,G1,G2,GT , P1, P2, e),
which is chosen during the execution of the Setup of the system. We also consider two cryp-
tographic hash functions H1 : {0, 1}∗ −→ G∗2 and H2 : GT −→ {0, 1}` where ` is the size in
bits of a message to be encrypted. The Setup also outputs a master secret key msk ∈ Z∗r . The
corresponding master public key is then mpk = [msk]P1.

The key extraction algorithm Ext consists of computing Pid = H1(id) and usk = [msk]Pid ∈
G2.

Encryption and decryption. The encryption Enc and decryption Dec algorithms are then given
by Algorithms 1.10 and 1.11, respectively. The main idea is to produce a one-time-pad (as for
the hash ElGamal encryption [24]), where randomness is obtained by a hash function with an
input that can be computed by using the pairing and either a random ρ and the identity, or the
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user secret key. More precisely, the result is correct, since

e(U, usk) = e([ρ]P1, [msk]Pid)
= e([msk]P1, [ρ]Pid) by using twice the bilinear property of e
= e(mpk, [ρ]Pid).

ALGORITHM 1.10 Boneh-Franklin IBE encryption algorithm Enc.
Input : message m ∈ {0, 1}`, identity id, master public key mpk = [msk]P1 ∈ G1.
Output: ciphertext c = (U, V ) ∈ G1 × {0, 1}`.

1 compute Pid = H1(id)
2 choose at random ρ ∈ Z∗r
3 compute U = [ρ]P1
4 compute T = e(mpk, [ρ]Pid) ∈ GT and V = m⊕H2(T )
5 output c = (U, V ).

ALGORITHM 1.11 Boneh-Franklin IBE decryption algorithm Dec.
Input : ciphertext c = (U, V ) ∈ G1 × {0, 1}`, secret key usk = [msk]Pid ∈ G2.
Output: message m ∈ {0, 1}`.

1 compute T ′ = e(U, usk)
2 output m = V ⊕H2(T ′).

1.7 Broadcast Encryption and Traitor Tracing

The concept of Broadcast Encryption (BE) has been introduced by Fiat and Naor [28], as a
variant of standard encryption schemes. It permits a broadcaster to encrypt messages to a group
of users who have subscribed to a broadcast channel. In a nutshell, the message is encrypted once
with a single public key and each user can independently decrypt it by using his/her own secret
key. There are several variants of broadcast encryption schemes, depending on the expected
properties. In the following, we will focus on Traitor Tracing (TT) schemes.

1.7.1 General Presentation and Short Model

A traitor tracing scheme permits us to detect and identify cards/subscribers involved in the
fraudulent dissemination of a secret key, and has been proposed by Chor, Fiat, and Naor [25].
The idea behind, it is that by putting special keys in the entitlement flow sent to the decoder/box,
and retrieving the key disseminated by piracy services, one can discriminate the involved box
and then identify the defrauder.

There are mainly three actors in a traitor tracing scheme:

• a key manager KM generating the keys, and then giving the keys to other actors;
• a content manager CM managing the contents, from the encryption to the distribu-

tion;
• a set U of users reading contents, each user being identified by an integer i.

In practice, a content is most of the time encrypted by using a specific or standard secret key
encryption scheme (e.g., AES) with a session key Ksess. The main problem related to broadcast
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and traitor tracing is then to give access to this key Ksess in a secure and efficient way. This
is done by broadcasting a unique encapsulation key Esess that will be used by each user, using
some personal credentials.

Algorithms. More formally, a traitor tracing system is defined by the following algorithms:

• the Setup algorithm executed by KM, which, on input of a security parameter λ,
generates the key manager secret key msk and the parameters param.

• the user key generation algorithm UserKG, which, on input of the parameters param,
the key manager secret key msk, and the index i of the user, outputs the user secret
key uski for user i. It also adds a new entry into the list L of registered users.

• the encoding algorithm Enc, which is executed by KM, and, on input of the public
parameters, outputs a session key Ksess and an encapsulation key Esess.

• the decoding algorithm Dec, which, on input of the parameters param, a user secret
key uski and an encapsulation key Esess, outputs, in a deterministic way, the related
session key Ksess.

• the Identify algorithm, which, on input of the parameters param, the manager secret
key msk, and a public decoder D, outputs the index i0 of a user who participated in
the creation of the decoder.

Security. A traitor tracing scheme should first verify a variant of the standard indistinguishability
property (see [15] for more details). Additionally, many security models have been proposed for
the tracing part, which mostly differ on the assumptions made on D. In the full version of [15],
Boneh and Franklin considered the three following models.

• Non-blackbox, which assumes that it is possible to extract a secret key sk from D.
The security of the construction then implicitly relies on the hardness of producing
a new secret key, which cannot be linked to an existing one registered in the list of
registered users L;

• Single-key blackbox, which considers a decoder D embedding a secret key sk. D
can then be seen as an oracle which, on input of an encapsulation key Esess, returns
the output of the decoding algorithm, as Dec(param, sk,Esess);

• Blackbox, for which no assumption on D should be made, except that it decodes
with non-negligible probability.

1.7.2 Use Cases

The main use case related to traitor tracing is Pay-TV service, which is nowadays largely deployed
in many countries. In a nutshell, it implies a key manager which manages users, a content
manager whose role is to broadcast a protected content (executing the Enc algorithm), and
finally users (or consumers) who, after a subscription, can access the protected content. Modern
Pay-TV services most of time necessitate the user to have a decoder (a.k.a. a box) and a
subscription smart card. The latter is given to consumers by the key manager (executing the
UserKG algorithm), and permits them (using the Dec algorithm) to decrypt the content protected
by the broadcaster. One can find in the literature several ways to attack such a system: (i)
content dump inside the box, which can be prevented by a trusted video path and detected
by using a forensics watermarking; (ii) content dump outside the box, which is prevented by
increasing the robustness of the link protection algorithms and detected by using a forensics
watermarking; (iii) smart card reverse engineering (but such an attack may be hard to perform
owing to smart card robustness); and (iv) retrieval and publication of the secret key used to
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protect the content. Traitor tracing schemes are potential solutions to thwart this latter kind of
attack.

In fact, the cryptographic part used in such systems is made of several encapsulations of
encrypted keys and other data. More precisely, modern Pay TV services are most of the time
based on the following key encapsulation:

• the digital content is encrypted by a secret key called a control word cw and is streamed
to the user’s decoders. The same control word is used by all users;

• the control word cw is sent encrypted by the content manager CM to the user’s
decoders, and is updated every couple of seconds, in an Entitlement Control Message
(ECM). Each ECM contains the new control word and some other data, such as access
rights and an integrity message. The control word is encrypted by the exploitation
key ek, which is specific to each user;

• the exploitation key ek is sent encrypted by the key manager KM to the user’s
decoders, and is updated every week/month according to the key manager’s policy, in
an Entitlement Management Message (EMM). Each EMM contains the new exploitation
key ek and some other data, such as new access rights and an integrity message. The
exploitation key ek is encrypted by a specific management key mk.

One question that should be answered, to design the most suitable traitor tracing scheme, is
where to put the scheme in the whole service. In fact, some time ago, fraudsters marketed new
decoders based on the use of one or several valid secret keys. Nowadays, fraudsters most of the
time publish, over the Internet, the new control word every couple of seconds. In a traitor tracing
scheme, one needs to obtain the output of a traitor decryption execution, so as to identify the
underlying fraudsters. Then, it seems better to consider implementing a traitor scheme such that
the publication of a control word by a fraudster permits us to identify him. As a consequence,
the traitor tracing is used at the compilation of the Entitlement Control Message. It follows
that the control word cw corresponds to the session key Ksess and that the ECM contains the
encapsulation key Esess.

It follows that the control word will be the output of the traitor tracing encapsulation step.
An important consequence is that the user decoder has to execute the de-encapsulation algorithm
every couple of seconds. Then, we clearly need a very efficient traitor tracing scheme, at least
for the de-encapsulation phase. As this step is in practice sometimes done inside a smart card,
the efficiency constraint can be very important for a real deployment.

1.7.3 Related Work: Pairing or Not Pairing

In this chapter, we only focus on the non-blackbox security model, as existing efficient schemes
only comply with this model. There are then currently two kinds of construction for traitor
tracing schemes:

• combinatorial schemes are based on secret key cryptography. Most of the time a
tree is generated, in which the leaves correspond to users, and nodes to subgroups.
Each user needs all the secret keys along the path from the root to his/her correspond-
ing leaf to be able to decrypt a message. The resulting schemes are time efficient but
very space consuming due to key storage;

• algebraic schemes are based on public key cryptography. Their usage implies mod-
ifying traditional public key encryption schemes so that several users can decrypt a
message, and tracing traitors is possible. They permit us to manage only one key per
user, independently of the number of customers and defrauders to manage. But, for
a long time, the efficiency was missing. Today, several practical solutions exist and
they are all based on the use of a pairing.
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1.7.4 An Example

As an example, we describe in this section the traitor tracing system given in [36] as it was the
most efficient one at the time. We describe it in the case of a type 3 pairing (instead of a type
1 as used in [36]).

Setup and key generation. We consider a bilinear environment (r,G1,G2,GT , P1, P2, e), which is
chosen during the execution of the Setup of the system. The Setup also outputs two generators
R1 ∈ G1 and R2 ∈ G2 such that e(P1, P2) = e(R1, R2).

Remark 1.2 To compute such generators, one obvious solution is, for example, to first choose
P1 ∈ G1 and R2 ∈ G2 and then to choose at random a secret x ∈ Z∗r and compute R1 = [x]P1 ∈
G1 and P2 = [x]R2 ∈ G2. The secret value x can then be deleted as it is sensitive and no longer
useful.

The next step consists of choosing e, v ∈ Z∗r , then computing d = e−1 (mod r) and

P̃ = [d]P1, R̃ = [d]R1, R̄ = [v]R1, R̂ = [dv]R1.

Similarly to x, the value d can be deleted, as we do not need it anymore.
We finally define the parameters param to be (P1, R1, P̃ , R̃, R̄, R̂) and the manager secret key

as msk = (e, v, P2).
Regarding the user key generation algorithm UserKG, the key manager first has to generate

at random ai ∈ Z∗r (ai 6= r − 1) and then compute the following values:

Ai = [ai + v]P2,

bi = 1
ai + 1 − e (mod r).

The user secret key is then the couple uski = (Ai, bi).

Encoding and decoding. The encoding algorithm Enc is given in Algorithm 1.12. It can be
seen as a variant of the ElGamal encryption scheme (see [27] and Section 1.3.3) in a pairing
setting. The session key Ksess = e(P1, P2)k is then used to encrypt the content, using the appro-
priate secret key-based cryptographic algorithm. The corresponding encrypted content is then
denoted by EC and is output by a suitable secret key encryption scheme (e.g., AES) and the key
Ksess.

ALGORITHM 1.12 Traitor tracing encoding algorithm Enc.
Input : parameters (P1, R1, P̃ , R̃, R̄, R̂).
Output: couple (Ksess,Esess).

1 choose at random ρ ∈ Z∗r
2 compute C1 = [ρ]P1

3 compute C2 = [ρ]R̃ (= [ρd]R1)
4 compute C3 = [ρ]P̃ (= [ρd]P1)
5 compute C4 = [ρ]R̄ (= [ρv]R1)
6 compute C5 = [ρ]R̂ (= [ρdv]R1)
7 compute Ksess = e(P1, P2)k
8 compute Esess = (C1, C2, C3, C4, C5)
9 output (Ksess,Esess).
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The decoding algorithm Dec is given by Algorithm 1.13. Using Ksess and the used secret key
decryption algorithm (e.g., AES), the user can then retrieve the plain content by decrypting EC.

ALGORITHM 1.13 Traitor tracing decoding algorithm Dec.
Input : encapsulation key Esess, user secret key (uski = (Ai, bi).
Output: session key Ksess ∈ GT .

1 compute Ksess = e(C1 + [bi]C3, Ai) · e([bi](C2 − C5)− C2 − C4, R2).

Tracing. Finally, for the Identify algorithm, we give the way to interact with a fraudulent user ĩ
able to decrypt the content key. This can be done by the key manager since it has access to the
values (̃i, e(P1, P2)bĩ) for each user ĩ having the decoder secret key uskĩ = (Aĩ, bĩ).

For this purpose, the key manager computes a probe encapsulation key as shown in Algo-
rithm 1.14.

ALGORITHM 1.14 Traitor tracing probe encoding algorithm Enc.
Input : parameters (P1, R1, P̃ , R̃, R̄, R̂).
Output: couple (K̃sess, Ẽsess).

1 choose at random ρ1, ρ2 ∈ Z∗r
2 compute C̃1 = [ρ1]P1

3 compute C̃2 = [ρ1]R̃+ [ρ2]R1 (= [ρ1d+ ρ2]R1)
4 compute C̃3 = [ρ1]P̃ (= [ρ1d]P1)
5 compute C̃4 = [ρ1]R̄ (= [ρ1v]R1)
6 compute C̃5 = [ρ1]R̂ (= [ρ1dv]R1)
7 compute K̃sess = e(P1, P2)k

8 compute Ẽsess = (C̃1, C̃2, C̃3, C̃4, C̃5)
9 output (K̃sess, Ẽsess).

We then assume the existence of a fraudulous decoder D embedding a unique user secret key
denoted (Ã, b̃). The execution of the decryption algorithm on inputting the probe encapsulation
key Ẽsess will output the value

FK = e(P1, P2)−k · e(P1, P2)ρ2 (̃b−1).

Finally, on inputting the set of (̃i, e(P1, P2)bĩ) and FK, it becomes possible to perform an ex-
haustive search (in the number of users) on the right ĩ such that bĩ = b̃, using FK.

1.8 Conclusion

In this chapter, we have introduced and explained the concept of “pairing-based cryptography.”
We have shown that a pairing is now an important, and sometimes essential, building block for
the design of secure and efficient cryptographic protocols used in real-world applications: sensor
node authentication, electronic voting, anonymous access control, Pay-TV, etc. The recent
introduction of pairings in the ISO/IEC 15946 standard [4] can be seen as an evidence of their
maturity and their timeliness for industrial applications.
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In this chapter we will review the essential mathematical concepts, definitions, and properties
required for the formal description of bilinear pairings. The chapter is organized into three main
parts. First, we give in Section 2.1 basic algebra definitions, which will be used in the remaining
part of this book. Then, in Section 2.2, we state several facts on finite fields, extension finite
fields and their arithmetic. Finally in Section 2.3, we give a basic introduction to elliptic curves
and their properties, which are especially relevant for pairing-based cryptography.

A more extensive and formal discussion of the above subjects are studied in the specialized
references [3, 5, 6, 10, 16, 17, 18, 19, 20].

2.1 Algebra

In order to make this book accessible to readers not too familiar with the mathematics of
pairings, we recall basic elements as far as they are needed. We present elementary mathematical
definitions and properties. They can be found, for instance, in [11].

2.1.1 Group

DEFINITION 2.1 (Group) A group (G, ?), also denoted by G when it causes no troubles,
is a non-empty set G together with a binary operation called a group law ?. The group law
satisfies the following properties:

• The group G is closed under the group law, i.e., ∀ a ∈ G and ∀ b ∈ G then (a?b) ∈ G.
• There exists an element in G, called its neutral element (or identity) and denoted

by e, such that for all a ∈ G, a ? e = a = e ? a.

2-1
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• The group law is associative, i.e., a ? (b ? c) = (a ? b) ? c.
• Each element of G admits a (unique) symmetric (also called its inverse), i.e., for all
a ∈ G there exists b ∈ G such that a ? b = e = b ? a. When the group law is additive
(respectively, multiplicative), the inverse of a is usually denoted by −a (respectively,
a−1).

In this book, most groups are commutative or abelian. This means that for all a, b ∈ G,
a ? b = b ? a.

Example 2.1
• The set of positive integers N is not a group under addition. For instance, 1 does not

admit an inverse.
• The set of integers forms a group under addition, denoted by (Z,+). Its neutral

element is 0.
• The set of integers is not a group under multiplication. Indeed, 2 does not admit an

inverse for the multiplication over Z.

Remark 2.1 The notation (G, ?, e) can also be used in order to describe a group G together
with its binary operation and neutral element. Given an element g ∈ G, in this chapter we use
?m(g) to denote the application of the operation ? m− 1 times over the element g, with m ∈ N.
When the operation ? is the addition + (respectively, the multiplication ×), the neutral element
is denoted by 0 (respectively, 1).

DEFINITION 2.2 (Group order) The order of a group (G, ?) is defined as the number
of elements in G.

Remark 2.2 Groups may have finite or infinite order.

Example 2.2
• The group (Z,+) has an infinite order.
• The group ({0, 1},+) such that the addition if performed modulo 2 (i.e., 1 + 1 = 0)

is a finite group of order 2.

DEFINITION 2.3 (Order of a group element) Let (G, ?) be a group. Then, the order
of g ∈ G is the smallest positive integer r, such that ?r(g) = e.

Example 2.3 Given G = (G, ?), let g ∈ G be an element of order 3, then,

?3(g) = g ? g ? g = e, and ?i (g) 6= e, for 0 < i < 3.

Remark 2.3 Let G be a finite group with order n ∈ N. Then, for all g ∈ G, the order of g
divides the group order n, which implies that ?n(g) = e.

DEFINITION 2.4 (Group generator) Given the group (G, ?), we say that g ∈ G is a
group generator, if for all h ∈ G there exists a unique i ∈ N, such that, h = ?i(g).

Example 2.4 The element 1 is a generator of the group (Z,+).

DEFINITION 2.5 (Cyclic group) A group (G, ?) is cyclic, if there exists at least one
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generator g ∈ G. The cyclic group generated by g is denoted by G = 〈g〉.

The number of generator elements in a finite cyclic group (G, ?) of order n is defined as ϕ(n),
where ϕ(·) denotes the Euler’s totien function.? Therefore if G is a group of prime order p, then
G has ϕ(p) = p− 1 generators, i.e., ∀g ∈ G such that g 6= e, G = 〈g〉.

Remark 2.4 A group can be described using either additive or multiplicative notation. We il-
lustrate the construction of additive or multiplicative cyclic groups in the following Examples, 2.5
and 2.6.

Example 2.5 Additive notation If a group is described additively using the symbol + to
denote the group operation, then usually the identity element is denoted by 0, and the additive
inverse of a ∈ G is −a. Let m ∈ N, then the application of the operator + over the element a,
m − 1 times, is denoted as ma. The finite set Zn = {0, 1, . . . , n − 1} forms an abelian group
(Zn,+) with neutral element 0 and of order n. The operator + is defined under addition modulo
n. Specifically, if n = 4, then the group operation is applied over the group elements Z4, as
shown in the following Cayley table,?

⊕4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

One could remark that (Z4,+) is cyclic with ϕ(4) = 2 generators, which are 3 and 1.

3 ≡ 3 mod 4,
3 + 3 ≡ 2 mod 4,

3 + 3 + 3 ≡ 1 mod 4,
3 + 3 + 3 + 3 ≡ 0 mod 4,

1 ≡ 1 mod 4,
1 + 1 ≡ 2 mod 4,

1 + 1 + 1 ≡ 3 mod 4,
1 + 1 + 1 + 1 ≡ 0 mod 4.

Example 2.6 Multiplicative notation
When a group is described multiplicatively, the group operation is denoted as ×, and 1

(respectively a−1 ) represents the identity element (respectively, the multiplicative inverse of
a ∈ G). Applying the operator ×, m − 1 times over the element a, with m ∈ N, is denoted as
am .

Given a positive integer n, let Z∗n denote the set of elements in Zn different than zero, that
are relatively prime to n, as

Z∗n = {a ∈ Zn | gcd(a, n) = 1}.

It is easy to see that (Z∗n,×) is an abelian group of order ϕ(n), whose group operation is the
integer multiplication modulo n. The following Cayley table shows the group structure for the
case n = 10, where Z∗10 = {1, 3, 7, 9}:

?Euler’s totient function: Let n be a positive integer, then ϕ(n) gives the number of positive integers
smaller than or equal to n, that happen to be co-prime to n.
?A Cayley table describes the structure of a finite group by showing all the possible group operations
that can be performed among the group elements.
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�10 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Moreover, (Z∗10,×) is a cyclic group equipped with ϕ(4) = 2 generators, namely, 3 and 7. It is
easy to verify that the repeated application of the group operation over these two generators
produces all the elements in the group:

3 ≡ 3 mod 10,
3 · 3 ≡ 9 mod 10,

3 · 3 · 3 ≡ 7 mod 10,
3 · 3 · 3 · 3 ≡ 1 mod 10,

7 ≡ 7 mod 10,
7 · 7 ≡ 9 mod 10,

7 · 7 · 7 ≡ 3 mod 10,
7 · 7 · 7 · 7 ≡ 1 mod 10.

Example 2.7 Likewise, if p is a prime number, then the set Z∗p = Zp − {0} of order p − 1
forms a cyclic finite group (Z∗p,×, 1).

2.1.2 Subgroup

DEFINITION 2.6 (Subgroup) Let (G, ?) be a group. A subgroup of G is a non-empty
subset H of G, such that (H, ?) is also a group. More precisely, H is closed under ?, for all a ∈ H
then a−1 ∈ H, and H contains the same neutral element e of G.

THEOREM 2.1 Lagrange’s theorem [18] . Let (G, ?) be a finite abelian group and let
H = (H, ?) be a subgroup of G. Then the order of H divides the order of G.

THEOREM 2.2 [18, Theorem 8.6]. Let (G, ?) be an abelian group, and let m be an integer
number. The set

G{m} = {a ∈ G | ?m (a) = e},
forms a subgroup in G, which is denoted as (G{m}, ?).

Example 2.8 The set (Z∗13,×) is an abelian group of order 12 where Z∗13 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
The sets

Z∗13{2} = {1, 12} = {a ∈ Z∗13 | a2 = 1},
Z∗13{3} = {1, 3, 9} = {a ∈ Z∗13 | a3 = 1},
Z∗13{4} = {1, 5, 8, 12} = {a ∈ Z∗13 | a4 = 1},
Z∗13{5} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} = {a ∈ Z∗13 | a5 = 1},
Z∗13{6} = {1, 3, 4, 9, 10, 12} = {a ∈ Z∗13 | a6 = 1}

. . .

form subgroups of (Z∗13,×). The following Cayley table describes the structure of the subgroup
(Z∗13{4},×):

�13 1 5 8 12
1 1 5 8 12
5 5 12 1 8
8 8 1 12 5
12 12 8 5 1
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THEOREM 2.3 [18, Theorem 8.7]. Let (G, ?) be an abelian group, and let m be an integer
number such that,

?m(G) = {?m(a) | a ∈ G},
then (?m(G), ?) is a subgroup of G.

Example 2.9 Once again, let us consider the abelian group (Z∗13,×). Applying Theorem 2.3
with m = 9 yields

(Z∗13)9 = {a9 | a ∈ Z∗13} = {1, 5, 8, 12}.
One can easily check that

19 ≡ 1 mod 13,
29 ≡ 5 mod 13,
39 ≡ 1 mod 13,
49 ≡ 12 mod 13,
59 ≡ 5 mod 13,
69 ≡ 5 mod 13,
79 ≡ 8 mod 13,
89 ≡ 8 mod 13,
99 ≡ 1 mod 13,
109 ≡ 12 mod 13,
119 ≡ 8 mod 13,
129 ≡ 12 mod 13.

Hence, ((Z∗13)9,×) ∼= (Z∗13{4},×) is a subgroup of (Z∗13,×). Repeating the same procedure
for 2 ≤ m ≤ 6, the following sets are obtained,

(Z∗13)2 = {1, 3, 4, 9, 10, 12},
(Z∗13)3 = {1, 5, 8, 12},
(Z∗13)4 = {1, 3, 9},
(Z∗13)5 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
(Z∗13)6 = {1, 12}.

which corresponds with the ones obtained from Example 2.8.

Considering Examples 2.8 and 2.9, it is interesting to note that since the group order of
(Z∗13, · , 1) factorizes as 12 = 4× 3, then,

(Z∗13)4 = Z∗13{3},
(Z∗13)3 = Z∗13{4},

and also, since 12 = 6× 2,

(Z∗13)6 = Z∗13{2},
(Z∗13)2 = Z∗13{6}.

In general, given the group G = (G,×), if the group order can be factorized as, c× r, then

{ac | a ∈ G} = {a ∈ G | ar = 1};

or if the group is described additively as G = (G,+), then,

{ca | a ∈ G} = {a ∈ G | ra = 0}.
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2.1.3 Cosets

DEFINITION 2.7 (Equivalence relation) Let H = (H, ?) be a subgroup of G = (G, ?).
For all a, b ∈ G, we say that a ≡ b (mod H), if a ? b̄ ∈ H, where b̄ is the inverse of b. The
expression ≡ (mod H) is known as the equivalence relation.

Remark 2.5 This notion is useful because it allows us to classify all the elements in G into
equivalence classes.

Given a ∈ G, we denote by [a]H the equivalence class that contains the group element a. This
class is defined as

[a]H = a ?H = {a ? h | h ∈ H},
Notice that x ∈ [a]H ⇐⇒ x ≡ a (mod H).

Remark 2.6 The equivalence classes are often called the cosets of H in G.

DEFINITION 2.8 (The quotient group) The set of all cosets is denoted as G/H and it
forms a group (G/H, ?), where the neutral is denoted [e]H, and

[a]H ? [b]H = [a ? b]H.

This group is called the quotient group of G modulo H.

Example 2.10 Given the set Z6 = {0, 1, 2, 3, 4, 5}, such that G = (Z6,+) is an abelian group
under addition modulo 6, by Theorem 2.3, it follows that H = (3Z6,+) is a subgroup of G,
where 3Z6 = {0, 3}. The cosets of H in G are

[0]H = 0 + 3Z6 = {0, 3}
[1]H = 1 + 3Z6 = {1, 4}
[2]H = 2 + 3Z6 = {2, 5}

since [3]H = [0]H, [4]H = [1]H, and [5]H = [2]H. The structure of the abelian group G/H =
({[0]H, [1]H, [2]H},+, [0]H) is shown in the following Cayley table

+ [0]H [1]H [2]H
[0]H [0]H [1]H [2]H
[1]H [1]H [2]H [0]H
[2]H [2]H [0]H [1]H

.

Notice that the group G/H has the same structure of the abelian group (Z3,+),

⊕3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1 .

Hence, one can write G/H ∼= (Z3,+).

2.1.4 Morphism of Groups

In what follows, maps between groups, or more elaborate algebraic structures, are considered.
So let us introduce this concept and some of its related notions.
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DEFINITION 2.9 (Morphism) Let (G, ?) and (G′, ?′) be two groups, with neutral elements
e and e′, respectively. A (group)morphism (or homomorphism) f from G to G′ is a structure-
preserving map, i.e., it verifies the following conditions:

• For all a ∈ G and all b ∈ G, f(a ? b) = f(a) ?′ f(b).
• f(e) = e′.
• For each a ∈ G, f(a−1) = (f(a))−1.

Actually, it may be shown that a map f : G→ G′ is a group morphism if and only if f(a ? b) =
f(a) ?′ f(b), for all a, b ∈ G.

Example 2.11 Let (G, ?) and (G′, ?′) be two groups, with neutral elements e and e′, respec-
tively. The following map is a morphism:

G → G′,
x → e′.

Let (G,+) be a commutative group, with neutral element e. Let us define recursively n · x
for x ∈ G and n an integer by 0 · x = e, and (n+ 1) · x = x+ (n · x). Whence n · x = x+ · · ·+ x︸ ︷︷ ︸

n times x

.

One now extends this notation to negative integers by setting n · x = −(|n| · x) for each n < 0.
Then the following map is a morphism:{

Z → G,
n 7→ n · x.

With each group morphism are associated two subgroups, the kernel and the image of the
morphism.

DEFINITION 2.10 (Kernel, Image) Let G and G′ be two groups, and let f be a morphism
from G to G′.
The kernel of f is defined by

Ker(f) = {g ∈ G : f(g) = e′}

where e′ is the neutral element of G′.
The image of f : G→ G′ is defined by

Im(f) = {g′ ∈ G′ : ∃g ∈ G, f(g) = g′}.

Property 2.1 Let f be a morphism from G to G′. The kernel of f is a subgroup of G. The
image of f is a subgroup of G′.

DEFINITION 2.11 Let G and G′ be two groups.

• An isomorphism between G and G′ is a morphism that is a bijection. Then its
inverse is an isomorphism from G′ to G. In this case, G and G′ are said to be
isomorphic.

• An endomorphism is a morphism from G to itself.
• An automorphism is a morphism that is both an isomorphism and an endomor-

phism.
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Example 2.12 For every group G, the identity map is an automorphism.

G → G,
x 7→ x.

The inverse map is also an automorphism:

G → G,
x 7→ −x.

2.2 Finite Fields

2.2.1 Ring

Fields, and, more particularly, finite fields, together with elliptic curves, play a fundamental role
in the construction of pairings. Here one summarizes their main definitions and results, as far
as they are needed hereafter. For further information, refer to [16], for example.

Before introducing finite fields, we present the structure of rings, which is more general.

DEFINITION 2.12 (Ring) A ring R is a set with two binary operations +,× such that

• (R,+) is a commutative group (with 0 as neutral element).
• R is closed under ×, which is an associative operation with a neutral element (denoted

by 1).
• × distributes over addition on the left a × (b + c) = a × b + a × c, and on the right,

(a+ b)× c = a× c+ b× c.
A ring R is said to be commutative if × is commutative.

Example 2.13 The set (Z,+,×) is a ring.

Given two rings, say (R,+,×) and (R′,+′,×′), a map f : R→ R′ is a homomorphism of
rings whenever it is a morphism of groups from (R,+) to (R′,+′), and for every a, b ∈ R, f(a×
b) = f(a)×′ f(b), and f(1) = 1′. The homomorphism f is said to be an endomorphism (resp.
isomorphism, automorphism) when the rings R and R′ are the same (resp. if furthermore f
is a bijection, resp. if f is both an endomorphism and an isomorphism).

DEFINITION 2.13 (Ring ideal) Let (R,+,×) be a ring and (R,+) be its additive group.
An ideal I of R is an additive subgroup of R that absorbs multiplication by elements of R.
Formally, an ideal I verifies the following properties:

• (I,+) is a subgroup of (R,+),
• ∀x ∈ I, ∀r ∈ R : x× r, r × x ∈ I.

Example 2.14 In the ring (Z,+,×):

• The set of even integers is an ideal of Z.
• Let p be a prime number, then the set of multiples of p is an ideal of Z denoted by
pZ = {a ∈ Z such that ∃x ∈ Z, a = x× p}.
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DEFINITION 2.14 (Quotient ring) Let (R,+,×) be a ring and I be an ideal of R. The
quotient ring is the ring denoted by R/I whose elements are the cosets of I in R subject to
special + and × operations.

Example 2.15 Let p be a prime number, then Z/pZ = {0, 1, 2, . . . , p − 1} with the addition
and multiplication inherited from Z modulo p is a quotient ring.

DEFINITION 2.15 (Equivalence class) Let (R,+,×) be a ring and I an ideal of R. We
define the equivalence relation ≡ mod I as follows: a ≡ b mod I if and only if (a− b) ∈ I.

If a ≡ b mod I, then a and b are said to be congruent modulo I. The equivalence class
of an element a ∈ R is given by [a]I = a+ I := {a+ r : r ∈ I}.

2.2.2 Finite Fields

In this subsection, we formally define finite fields and their basic properties. As mentioned above,
finite fields are the most important mathematical objects for bilinear pairing constructions.

2.2.3 Definition

A finite field is a field with finitely many elements. We first give the definition of a general
field.

DEFINITION 2.16 (Field) A field F is a set endowed with two binary operations, usually
denoted by + (the addition of the field) and by × (the multiplication), which satisfy the following
properties:

• (F,+) is a commutative group. One denotes by 0 the neutral element of (F,+).
• Let F? be the subset of F consisting of non-zero elements, i.e., F? = F \ { 0 }. Then,

(F?,×) is a commutative group. The elements of F? are said to be invertible for the
multiplication law.

• Finally, + and × interact properly through the distributivity property: for every
a, b, c ∈ F, a× (b+ c) = a× b+ a× c.

Example 2.16 The set of real numbers (R,+,×) is a field.

One observes that a field is a commutative ring R for which R \ { 0 } is a group under multipli-
cation (and in particular 0 6= 1).

A homomorphism of fields is a homomorphism of rings between two fields (endomorphisms,
isomorphisms, and automorphisms of fields are defined likewise). Two fields are said to be
isomorphic whenever there exists an isomorphism of field from one to the other.

DEFINITION 2.17 A subfield of a field F is a subset of F, which is itself a field with
respect to the field operations inherited from F. The intersection of all subfields of F is itself a
field, called its prime subfield. Of course, it is contained into every subfield of F.

The description of the prime subfield as an intersection of all subfields of F, although syn-
thetically, may not be very useful in practice. Fortunately, prime subfields may be described
differently. Let F be a field. Let us define φ : Z → F be the homomorphism of rings defined by
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φ(n) = n · 1 = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n times 1

. Recall that φ is a morphism of groups from (Z,+) to (F,+). The

kernel of φ is an ideal of Z. By the way, the ideals of Z are completely known: these are exactly
pZ = { pn : n ∈ Z }, for p ranging over Z. It turns out that there is a unique integer p, called the
characteristic of F, such that the kernel of φ is pZ [16]. Moreover, p is either a prime number
or is equal to 0.

Fields of characteristic zero are necessarily infinite fields. So a finite field has a prime number
characteristic. In this case one may give yet another definition of the characteristic of a finite
field: it is the least integer n > 0 such that n · 1 = 0 (notice that such an integer necessarily
exists as otherwise {n · 1: n > 0 } would be infinite).

DEFINITION 2.18 (Field characteristic) Given a field F, we say that n is its field
characteristic, if n is the smallest positive integer such that n ·1 = 0. If such an integer n cannot
be defined, we say that the field F has characteristic 0.

Example 2.17
• The field (R,+,×) is a field of characteristic zero.
• Let p be a prime number. If the characteristic of F is p, then F is finite. Therefore,

the set Fp = {0, 1, 2, . . . , p− 2, p− 1} defines a finite field (Fp,+,×), with respect to
the addition and multiplication operations modulo p.

Remark 2.7 In pairing-based cryptography, one can consider finite fields of small character-
istic (2 or 3) or finite fields of a large prime characteristic. Nevertheless, as shown in [13, 2],
pairings over finite fields of small characteristic are no longer secure with respect to the discrete
logarithm problem (see Chapter 9). As a consequence, in what follows, one focuses on finite
fields of large prime characteristic. A large prime is a prime number p ≥ 5, in practice, the size
in bits of a large prime p is at least 256 bits; see Chapters 3, 4, and 10. We make the following
obvious observation: any large prime number is an odd integer.

A large prime characteristic finite field is determined — up to isomorphism — by its char-
acteristic, a prime number p and its cardinal. Recall here that the cardinal of a field F is just
the number of its elements. It is usually denoted by card(F) or by #(F).

DEFINITION 2.19 (Prime field) Let p be a prime number. Then, the ring Z/pZ of the
integers mod p is a finite field of characteristic p, with p elements, which is denoted by Fp and
called the prime field of characteristic p.

Remark 2.8 For each prime number p, and each field F of characteristic p, the prime subfield
of F is isomorphic to Fp.

THEOREM 2.4 If F is a finite field of characteristic p, then there exists an integer n > 0
such that card(F) = pn.

Example 2.18
• F2 is a finite field. Its cardinal is 2 and it can be represented as F2 = {0, 1}.
• F3 = {0, 1, 2}, its cardinal is 3.
• There is no finite field of characteristic 6.
• For every prime number p, Fp = {0, 1, 2, . . . , p− 1}.
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2.2.4 Properties

The computation of pairings relies on the arithmetic of finite fields. In particular, several im-
portant optimizations in a pairing execution are based on Fermat’s little theorem (for instance,
the so-called denominator elimination in a pairing computation; see Chapter 3).

THEOREM 2.5 (Fermat’s little theorem) Let p be a prime number and x a non-zero
element of Fp. Then, the following identities are true:

xp ≡ x mod p,

if x 6= 0 mod p, x(p−1) ≡ 1 mod p.

DEFINITION 2.20 (Order) The order of an element x ∈ Fp is the smallest integer α such
that xα ≡ 1 mod p.

Another important homomorphism when working over finite fields is the Frobenius map.

PROPOSITION 2.1 (Frobenius automorphism) Let F be a finite field of characteristic
p > 0. The map

πp : F → F,
x → xp

is an automorphism of field called the Frobenius automorphism. If F = Fp then the Frobenius
automorphism is the identity.

Remark 2.9 The Frobenius can also be denoted by π when p is clearly defined.

2.2.5 Extensions of Finite Fields

We will need to define the extension of finite fields Fpk for p, a prime number, and k, a positive
integer. The construction of extension of finite fields can be done using a polynomial represen-
tation of the field elements. Before formally introducing the extension of a finite field, we first
present the definition and properties of polynomials over Fp.

Polynomials over Fp

Let Fp[X] denote the set of polynomials in the variable X and with coefficients in Fp. We define
the notion of irreducible polynomials below.

DEFINITION 2.21 (Irreducible polynomial) A non-constant polynomial P (X) ∈ Fp[X]
of degree n is said to be irreducible over Fp if it cannot be factored into the product of two
non-constant polynomials in the ring Fp[X] of degree smaller than n.

Example 2.19 Let p = 257 and let Fp = {0, 1, 2, . . . , 255, 256}. The polynomial P (X) =
X4 − 3 is an irreducible polynomial over Fp.

As a consequence of the existence of irreducible polynomials over Fp, the roots of a polyno-
mial over Fp[X] are not all included in Fp. If they were, we could not talk about irreducible
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polynomials. In a general way, the roots of a polynomial over Fp[X] are all included in Fp. We
give here an informal definition of the splitting field of a polynomial and of the algebraic closure
of a finite field.

DEFINITION 2.22 Let p be a prime number and Fp be the finite field of characteristic p.

1. The splitting field of a polynomial P (X) ∈ Fp[X] is the smallest field containing all
the roots of P (X).

2. The algebraic closure of Fp, denoted by Fp, is the set of all roots of all polynomials
with coefficients in Fp. Up to an isomorphism, the algebraic closure of a field is unique.

3. A field F is algebraically closed if every non-constant polynomials in F[X] presents
at least one root in F. To put it in another way, the only irreducible polynomials in
the polynomial ring F[X] are those of degree one.

We can prove the existence and uniqueness of any finite field, given its characteristic and cardi-
nality.

THEOREM 2.6 Let p be a prime number and n a non-zero positive integer. Let q = pn.

1. There exists at least one finite field of characteristic p and cardinality q, the splitting
field of the polynomial Xq −X over Fp.

2. This finite field is denoted Fq and it is unique up to a homomorphism.

Remark 2.10 The uniqueness of the finite field of q elements is in fact stronger. Indeed, let
Fp be an algebraic closure of Fp. There is in Fp one and only one finite field of q elements, which
is the finite field composed of the roots of the polynomial Xq −X.

DEFINITION 2.23 The multiplicative subgroup of a finite field Fq is denoted by F?q , for
q, a power of a prime number. It is composed by the field elements that have a multiplicative
inverse, i.e., they are invertible by the multiplication operation.

Let p be a prime number and q = pn for a non-zero integer n. The value of a pairing is an
element belonging to the multiplicative subgroup in a finite field Fq.

THEOREM 2.7 The multiplicative subgroup F?q of Fq is cyclic and isomorphic to Z/(q−1)Z,
for q a power of a prime number.

DEFINITION 2.24 (Generator) Let Fq be a finite field, and F?q be its multiplicative
subgroup, where q is a power of a prime number. There exists an element g such that any
element of F?q is a power of g. Such an element g is called a generator of F?q .

Example 2.20
• For a prime number p, F?p = {1, 2, . . . , p − 2, p − 1}. The generators of F?p are the

elements of order p− 1.
• F?2 = {1} and 1 is a generator of F?2.
• F?3 = {1, 2} and 2 is a generator of F?3. The element 1 is not a generator of F?3.
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The arithmetic of pairings involves the construction of tower extension fields. An extension
field of Fp can be seen as a finite field of characteristic p bigger than Fp and including Fp. We
present a constructive definition of an extension field of degree k > 1 of a finite field Fp based
on the use of a quotient ring.

DEFINITION 2.25 [Extension field] Let p be a prime number and k a non-zero positive
integer. An extension field of degree k of Fp, denoted by Fpk , is a finite field of characteristic
p given by the quotient Fp[X]/(P (X)Fp[X]), where P (X) ∈ Fp[X] is an irreducible polynomial
of degree k. The set P (X)Fp[X] is the set of polynomials admitting P (X) in their factorization,
otherwise P (X)Fp[X] is the ideal of Fp[X] generated by P (X) and denoted (P (X)).

Remark 2.11
• The extension field Fpk can be denoted by Fp[X]/(P (X)Fp[X]) or Fp[X]/(P (X)).
• The extension field Fpk of degree k of Fp can be described as the set of polynomials

with coefficient in Fp and of degree strictly less than k.

Fpk = {R(X) ∈ Fp[X], such that deg(R) < k}.

Property 2.2 The cardinal of Fpk is pk.

We can construct a basis of Fpk in order to describe any element of Fpk . The polynomial
P (X) used to construct the extension of degree k is irreducible over Fp. But in Fpk , we know
that P (X) = 0 in Fpk (see Definition 2.25).

Property 2.3 Basis of an extension field Let p be a prime number, k an integer greater
than 1. Let P (X) ∈ Fp[X] be an irreducible polynomial of degree k. Let Fpk = Fp[X]/(P (X)Fp[X])
be the extension field of degree k of Fp constructed over P (X).

Let γ be a root of P (X) in Fpk . The variable γ can be seen as a class of X in Fpk . A
basis BF

pk
of Fpk as a vector space is given by the powers of γ strictly smaller than k: BF

pk
=

{1, γ, γ2, . . . , γk−1}.

Remark 2.12 Thanks to Property 2.3, we can prove that card(Fpk) = pk, as presented in
Property 2.2.

Example 2.21 The polynomial P (X) = X4 − 3 is irreducible over F257. As deg(P (X)) = 4,
we can construct an extension of degree 4 of F257. Let γ be a root of P (X) in F2574 . We can
describe the elements of F2574 as

F2574 ∼= {a0 + a1γ + a2γ
2 + a3γ

3, ai ∈ F257}.

Example 2.22 Given the irreducible polynomial P (X) = X2 +X+ 1, the finite field F22 , can
be defined as:

F22 = F2[X]/(X2 +X + 1) = {bz + a | a, b ∈ F2} = {0, 1, X,X + 1}.

In other words, F22 is a finite field with order 22 = 4, whose elements are the set of polynomials
in F2[X] modulo X2 +X + 1.
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The structure of the abelian groups F+
22 and F∗22 are described in the following Cayley tables:

⊕X2+X+1 0 1 X X + 1
0 0 1 X X + 1
1 1 0 X + 1 X

X X X + 1 0 1
X + 1 X + 1 X 1 0

�X2+X+1 1 X X + 1
1 1 X X + 1
X X X + 1 1

X + 1 X + 1 1 X

.

Remark 2.13 We can notice that the finite field F22 = ({0, 1, X,X + 1},+,×) contains the
prime field, F2 = ({0, 1},+,×).

2.2.6 Arithmetic of Finite Fields

In this section, we briefly present the arithmetic over a finite field Fp. We will also introduce
the arithmetic of an extension of a finite field Fp. The arithmetic over extension fields is based
on the polynomial arithmetic over Fp. For a more detailed description of this topic, the reader
is referred to Chapter 5.

2.2.7 The Arithmetic of Fp

The arithmetic over the finite field Fp for p a prime number is the modular arithmetic mod p.
The addition (respectively, subtraction) in Fp is usually implemented as the classical addition
(respectively, subtraction) possibly followed by a subtraction (respectively addition) of p.
ALGORITHM 2.1 Addition over Fp.

Input : a ∈ Fp and b ∈ Fp
Output: c = a+ b ∈ Fp

1 c← a+ b

2 if c ≥ p then
3 c← c− p
4 end
5 return c

ALGORITHM 2.2 Subtraction over Fp.
Input : a ∈ Fp and b ∈ Fp
Output: c = a− b ∈ Fp

1 c← a− b
2 if c < 0 then
3 c← c+ p

4 end
5 return c

The most efficient multiplication in Fp is often performed using Barrett’s or Montgomery’s
algorithms. These two algorithms include the modular reduction in the multiplication.

The choice of the multiplication algorithm is adapted to the bit size of the operands or the
targeted device. We present here one of the most used algorithms for the modular multiplica-
tion: the Montgomery algorithm. The Montgomery multiplication is performed between two
elements of Fp represented in the Montgomery representation. A more detailed introduction to
Montgomery multiplication is presented in Chapter 5.
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The inversion in Fp is an expensive operation. It is avoided as often as possible. When an
inversion must be performed, several methods exist. We can cite, for example, the Extended
Euclidean algorithm, or the use of Fermat’s little theorem.

THEOREM 2.8 Let p be a prime number and x ∈ F?p, then xp−2 = x−1.

2.2.8 The Arithmetic of Fpk

The arithmetic of Fpk = Fp[X]/(P (X)) is based on the arithmetic of polynomials modulo P (X),
combined with the arithmetic over Fp. In order to have an efficient arithmetic over Fpk , the
polynomial P (X) should be chosen sparse on the model of Xk − β for a small β ∈ Fp [15].

DEFINITION 2.26 (kth root of unity) Let F be a field. An element x ∈ F is a kth root
of unity, if xk = 1 ∈ F.

The probability that a random element in Fp is a kth root in Fp is highly dependent on k. We
can compute this probability when p ≡ 1 mod k.

Property 2.4 Let p be a prime number, k an integer greater than 1. If p ≡ 1 mod k, then a
random element α ∈ Fp is a kth root with a probability 1/k.

Proof. Let α be a kth root in Fp. Therefore, there is an element x ∈ Fp such that xk ≡ α mod p.
As p ≡ 1 mod k, we have that k divides (p− 1). We can then raise the equality xk ≡ α mod p

to the power (p−1)
k :

α ≡ xk mod p,

α
(p−1)
k ≡ xk

(p−1)
k mod p,

α
(p−1)
k ≡ x(p−1) mod p,

α
(p−1)
k ≡ 1 mod p.

Hence, α is a kth root in Fp if and only if α belongs to the subgroup of Fp of order (p−1)
k . The

cardinality of this subgroup is exactly (p−1)
k .

COROLLARY 2.1 Let β ∈ Fp be a random element. If p ≡ 1 mod k, then the polynomial
Xk − β is irreducible over Fp with a probability p−1

k .

If Fpk is constructed using a polynomial Xk − β, the multiplication in Fpk of the two elements

U(X) =
k−1∑
i=0

uiX
i and V (X) =

k−1∑
i=0

viX
i

can be performed into two steps. First we compute the polynomial product W = U × V ,
followed by the polynomial reduction W (X) modulo P (X). The binomial form of P (X) makes
the second step quite easy. Let us split into two parts the result W (X) = U(X) × V (X),
W (X) = W +XkW , where degW < k and degW < k. The polynomial reduction consists then
of the operation W +β(W ), performed in at most k multiplications in Fp and k additions in Fp.

The most expensive part of the multiplication in Fpk is the polynomial multiplication. Several
ways to improve on this will be further discussed in Chapter 5, which is devoted to the arithmetic
of finite fields.
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Example 2.23 Using once again the field extension of Example 2.21, let a = 3 + γ3 and
b = 234γ + 36γ2 be two elements of F2574 . In order to compute c = a × b ∈ F2574 , we first
compute the product:

c = a× b,
= (3 + γ3)× (234γ + 36γ2),
= 702γ + 108γ2 + 234γ4 + 36γ5,

= 188γ + 108γ2 + 234γ4 + 36γ5.

Then we perform the polynomial reduction considering that γ4 = 3.

c = 188γ + 108γ2 + 234γ4 + 36γ5,

= 3× 234 + (188 + 3× 36)γ + 108γ2,

= 702 + 296γ + 108γ2,

= 188 + 39γ + 108γ2.

2.2.9 Quadratic Residuosity

DEFINITION 2.27 (Norm) Let p be a prime number and let n ∈ N. The conjugates of
a ∈ Fpn are the elements api , where 0 ≤ i ≤ n− 1. The norm of a, denoted as |a|, is given by
the product of all the conjugates of a, i.e.,

|a| =
n−1∏
i=0

ap
i

. (2.1)

The problem of computing a field square root of any arbitrary element a ∈ Fp consists of finding
a second element b ∈ Fp such that b2 = a. The following definitions are relevant for computing
square roots over finite fields.

DEFINITION 2.28 (Quadratic Residue) A field element a ∈ Fp is called a quadratic
residue, if there exists a field element x such that:

x2 = a.

We say that x is the square root of a in the field Fp.

DEFINITION 2.29 (Quadratic Residuosity test (Euler’s criterion)) The square
root of an element a ∈ F∗p exists if and only if a p−1

2 = 1. We denote by χp(a) the value of a p−1
2 .

For a non-zero field element a, χp(a) = ±1. If χp(a) = 1, we say that the element a is a quadratic
residue in Fp. In F∗p there exist exactly (p− 1)/2 quadratic residues.

Remark 2.14 The quadratic residuosity test of a field element a, denoted in this book as
χp(a), is sometimes called the quadratic character of a.

Therefore, a quadratic residuosity test over the field element a ∈ Fp can be performed by
computing the exponentiation a q−1

2 . A computationally cheaper way to perform this test uses
the law of quadratic reciprocity, as shown in Algorithm 2.3.
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ALGORITHM 2.3 Quadratic residuosity test χp in Fp.
Input : a ∈ F∗p and the field characteristic p
Output: k = 1 if a is a quadratic residue in Fp, k = −1 otherwise

1 tab← {0, 1, 0,−1, 0,−1, 0, 1}
2 k ← 1
3 while a > 0 do
4 v ← 0
5 while a is even do
6 a← a/2
7 v ← v + 1
8 if v is odd then
9 k ← tab[p mod 8] · k

10 end
11 c1 ← p mod 4
12 c2 ← a mod 4
13 if c1 = c2 and c1 = 3 then
14 k ← −k
15 end
16 t← a

17 a← p mod t

18 p← t

19 end
20 end
21 return k

2.3 Elliptic Curves

Elliptic curves are mathematical tools known from the eighteenth century. They seem to appear
first in the work of Fagnano, published on December 23, 1751. They were related to the study
of an ellipse perimeter. However, Washington in [20, Chapter 1] traces the discovery of the
group addition law back to Diophantus (around 250 A.D.). Washington also points out that the
description of the so-called congruent number problem, which can be solved with elliptic curves,
appeared in Arab manuscripts around 900 A.D. Anyway, in this section, we give a simplified
presentation of elliptic curves used nowadays in pairing-based cryptography.

We do not give the proof of theorems, but we give references in which to find them. We begin
with the definition of an elliptic curve over finite fields. We are able to calculate the cardinals
of those elliptic curves, and we illustrate this with the proper algorithm. Elliptic curves used in
pairing-based cryptography must admit an r-torsion group with a reasonable embedding degree.
We define those notions and introduce the notion of pairing-friendly elliptic curves. We also
present two isogenies useful for the computation of pairings: the Frobenius map and the twist
of an elliptic curve. We then discuss the arithmetic of points of an elliptic curve. Finally, we
discuss several representations and systems of coordinates for the points of an elliptic curve.

2.3.1 Definition

By definition, an elliptic curve is a smooth curve defined by a polynomial equation of degree
three. The most general form of such a curve defined over a field F is a set of projective points
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whose coordinates satisfy an equation:

f(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0, (2.2)

with coefficients a, . . . , j in the field F.
In order to ensure that the polynomial f(x, y) is actually of degree three, at least one of the

coefficients a, b, c, or d must be non-zero.
It is also required that the polynomial f(x, y) is absolutely irreducible, which means that

it is irreducible in the algebraic closure of the field F, in order to ensure that the roots of this
polynomial are not roots of a polynomial of lower degree.

In the projective plane P2, Equation (2.2) leads to an homogeneous equation with indeter-
minates x, y, and z:

ax3 + bx2y + cxy2 + dy3 + ex2z + fxysz + gy2z + hxz2 + iyz2 + jz3 = 0. (2.3)

When the projective plane P2 is considered as the union of the affine plane together with
the projective line at infinity, the roots of Equation (2.3) are exactly the solutions x and y of
Equation (2.2) and z = 1, plus the point at infinity of the curve that is solution of Equation (2.3)
with z = 0.

DEFINITION 2.30 (Smooth curve) A curve is said to be smooth if it admits a single
tangent line on each of its points. This means that, for every point (x, y, z) of the curve, the linear
mapping Dxyz : (dx, dy, dz) 7→ f ′x(x, y, z)dx+f ′y(x, y, z)dy+f ′z(x, y, z)dz is not the null mapping,
where f ′x() (respectively, f ′y() and f ′z()) is the derivate of f with respect to x (respectively, y and
z).

DEFINITION 2.31 (Projective Weierstrass equation) An elliptic curve E over a finite
field Fp, for p a prime number is the set of points verifying the Weierstrass equation:

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3, (2.4)

for ai ∈ Fp.

Remark 2.15 We note that the indexes of the constants a1, a3, a2, a4, and a6 are not chosen
at random. They are the complement to 6 of the degree of the monomials, counting a degree
two, three, and zero for x, y, and z, respectively.

Depending on the characteristic of the field F, it is possible to simplify the equation given
by the Weierstrass form using a change of variables. In characteristic 2 and 3, there are two
equations of the short Weierstrass form of an elliptic curve. The two equations are respectively
defined for ordinary or supersingular elliptic curve. We give the definitions of ordinary and
supersingular elliptic curves in Section 2.3.5.

In characteristic 2, the Weieirstrass equation can be transformed into

y2z + xyz = x3 + ax2z + bz3 or y2z + cyz2 = x3 + axz2 + bz3.

In characteristic 3, the Weierstrass equation can be transformed into

y2z = x3 + ax2z + bz3 or y2z = x3 + axz2 + bz3.

In the sequel, we only consider elliptic curves over finite fields of characteristic different from
2 and 3. Indeed, the pairing computation in characteristic 2 or 3 are not considered as secure
according to the recent work [12, 2].
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DEFINITION 2.32 (Projective definition) Let F be a field of characteristic different
from 2 and from 3. An elliptic curve is the subset of the projective plane P2 defined by:

E =
{

(X,Y, Z) ∈ P2(F) | Y 2Z = X3 + aXZ2 + bZ3},
where ∆ = 4a3 + 27b2 is non-zero.

The condition ∆ = 4a3 + 27b2 6= 0 means that the polynomial x3 + ax + b has no double root,
i.e., that this polynomial and its derivative polynomial are relatively prime.

When Z is non-zero, a projective point (X,Y, Z) admits a representative with z = 1 and the
equation of the curve becomes:

y2 = x3 + ax+ b.

When Z is zero, that is on the line at infinity, the points of the curve satisfy x3 = 0, and so x = 0.
There exists only one point of the curve on the line at infinity, denoted P∞ and representing all
points whose coordinates are equivalent to (0, 1, 0). This point can be seen as the intersection
of the vertical lines.

These remarks lead to the affine definition of elliptic curves. An elliptic curve is then con-
sidered as a subset of the affine plane, together with an additional point, called point at infinity,
which corresponds to the point of the curve on the line at infinity. We denote by 0E the point
at infinity.

DEFINITION 2.33 (Affine definition) Let F be a field of characteristic different from 2
and from 3. An elliptic curve is a set defined by:

E(F) =
{

(x, y) ∈ F2 | y2 = x3 + ax2 + b
}
∪
{
P∞
}
,

where ∆ = 4a3 +27b2 is non-zero and where P∞ is an additional point called the point at infinity
of the curve.

We give the previous definitions considering the affine and projective coordinates for the
plane. It is possible to describe an elliptic curve using a different system of coordinates. We can
cite, for example, the Jacobian and Chudnosky coordinate systems. The projective and Jacobian
coordinates are the most frequently used for practical implementations. Indeed, the operations
over the points of an elliptic curve are more efficient using these systems of coordinates. We
describe an elliptic curve using the Weierstrass model. Other models of elliptic curves exist,
such as the Edwards and Jacobi forms. We do not describe them, as the pairing computations
are more efficient in the Weierstrass model. One can refer, for instance, to [7, 21, 8, 9] for the
description of the pairing computation in other models of elliptic curves.

Remark 2.16 Let F be a field and E an elliptic curve. The set of points of E(F) forms a
group for the addition. The point at infinity is the neutral element for the addition over an
elliptic curve.

2.3.2 Arithmetic over an Elliptic Curve

In the projective plane, an elliptic curve and a line have exactly three points of intersection.
Note that in the affine plane, a vertical line and a curve of equation y3 + ax + b have only two
common points. The point at infinity of elliptic curves is the third common point.

This remark allows to define a composition law, denoted as an addition, on the points of an
elliptic curve. This law is defined by the following rules:
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y2 = x3 − x+ 1
∆ > 0

-

6

   
   

   
 

P
Q

R

P +Q = −R

P +Q+R = P∞

-

6

y2 = x3 − x
∆ < 0

FIGURE 2.1 This figure illustrates two elliptic curves defined on the field of real numbers. It also
displays the addition law. To add points P and Q, draw the line (PQ). It intersects the curve at
point R. The sum of P and Q is the symmetric of R relatively to the horizontal axis.

1. The neutral element is the point at infinity.
2. If three points of the curve are aligned on the same line, their sum is the point at

infinity (See Figure 2.1).
3. If two points P and Q have the same abscissa, i.e., if xP = xQ, then the third point of

the curve that is on the line (PQ) is the point at infinity. It follows from the second
rule above that in this case, the sum of P and Q is the point at infinity. Thus, the
points P and Q are opposite. In other words, the opposite of the point P = (xP , yP )
is the point −P = (xP ,−yP ).

4. If two points P and Q do not have the same abscissa, then the line (PQ) meets the
curve on a third point R, which is, according to the second rule, the opposite of the
sum P +Q. Figure 2.1 illustrates the construction of the sum of P and Q.

5. The double of a point P is obtained similarly by considering the line tangent to the
curve passing by the point P .

Affine coordinates

The curve together with this composition law is an Abelian group. The most difficult group
axiom to verify is the associativity: For all points P , Q, and R on the curve, one has: P +
(Q+R) = (P +Q) +R. The addition formula is directly deduced from the above rules. Let P
and Q be two non-opposite points of the curve. The slope of the line (PQ) expressed in affine
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coordinates is:
λ = yQ − yP

xQ − xP
.

The abscissa of the sum S of P and Q is given by:

xS = λ2 − xP − xQ.

The ordinate of S is:

yS = −λ(xS − xP )− yP = −λ3 + 2λxP + λxQ − yP .

If P = Q, the doubling formula is similar. The only difference is the expression of the slope of
the tangent to the curve, which is:

λ = 3x2
P + a

2yP
.

Projective coordinates

The computation of the slope λ in affine coordinates requires a division. The quotient is com-
puted by the extended Euclidean algorithm, and this is an arithmetic operation considerably
more costly than field multiplication. With homogeneous coordinates (X,Y, Z) in the projec-
tive plane, it is possible to avoid this division at the price of computing more products. Recall
that the projective coordinates (X,Y, Z), with Z 6= 0, represent the affine point (X/Z, Y/Z).
Conversely, the affine point (x, y) admits homogeneous coordinates (X,Y, 1). As a consequence,
we can deduce the equations of the addition and doubling of points over an elliptic curve in
projective coordinates from the equations in affine coordinates. Using projective coordinates
involves faster computation for adding and doubling over an elliptic curve.

In projective coordinates, the equation of an elliptic curve over Fp, with p a large prime
number, is:

E(Fp) = {(X,Y, Z) ∈ F3
p, such that Y 2Z = X3 + aXZ2 + bZ3.

The point at infinity, denoted 0E , admits the following coordinates: 0E = (0, 1, 0).
The opposite of the point P = (XP , YP , ZP ) is −P = (XP ,−YP , ZP ).

Adding

Let P = (XP , YP , ZP ) and Q = (XQ, YQ, ZQ) be two points of the curve given by homogeneous
coordinates.

Let A = YQZP − YPZQ, B = XQZP −XPZQ, C = A2ZPZQ −B3 − 2B2XPZQ.
Then, the three coordinates of the sum S of P and Q are given by:

XS = BC,

YS = A(B2XPZQ − C)−B3YPZQ,

ZS = B3ZPZQ.

The computation of the sum of two points requires 12 multiplications and 5 squares in the base
field.

Remark 2.17 Mixed additionWe denote by mixed addition an addition of two points P and
Q, where one of the points is given in projective coordinates and the other in affine coordinates.
In the case of a mixed addition, the cost of an addition of a point is 9 multiplications and 2
squares in the base field.
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Doubling

Let P = (XP , YP , ZP ), a point of the curve given by homogeneous coordinates.
Let A = aZ2

P +3X2
1 , B = YPZP , C = XPYPB, and D = A2−8C, then the three coordinates

of the double S of P are given by:

XS = 2BD,
YS = A(4C −D)− 8Y 2

PB
2,

ZS = 8B3.

The computation of the double of a point requires 7 multiplications and 5 squares in the base
field.

Remark 2.18 There exist other systems of coordinates over an elliptic curve, for instance, the
Jacobian coordinates. The cost of a pairing computation depends on the system of coordinates.
In Chapters 3 and 10, the best tradeoff between the cost of a pairing computation and the choice
of system of coordinates is presented.

Jacobian coordinates

In Jacobian coordinates, the elliptic curve E(Fp) is given by

E(Fp) = {(X,Y, Z) ∈ F3
p, such that Y 2 = X3 + aXZ4 + bZ6.

The point at infinity is 0E = (1, 1, 0).

The opposite of the point P = (XP , YP , ZP ) is −P = (XP ,−YP , ZP ).
Let P = (XP , YP , ZP ) be a point given in Jacobian coordinates. The Jacobian coordinates

are homogeneous following the rule: for λ, a non zero integer, then P ≡ (λ2XP , λ
3YP , λZP ).

If ZP 6= 0, the point P in Jacobian coordinates is equivalent to the point (XP /Z
2
P , YP /Z

3
P )

in affine coordinates.

Adding

Let P = (XP , YP , ZP ) and Q = (XQ, YQ, ZQ) be two points of the curve given by Jacobian
coordinates.

Let A = XPZ
2
Q, B = XQZ

2
P , C = YPZ

3
Q, D = YQZ

3
P , E = B −A, and F = D − C.

Then, the three coordinates of the sum S of P and Q are given by:

XS = −E3 − 2AE2 + F 2,

YS = −CE3 + F (AE2 −XS),
ZS = EZPZQ.

The computation of the sum of two points requires 12 multiplications and 4 squares in the base
field.

Remark 2.19 Mixed additionWe denote by mixed addition an addition of two points P and
Q where one of the points is given in Jacobian coordinates and the other in affine coordinates.
In the case of a mixed addition, the cost of an addition of a point is 8 multiplications and 3
squares in the base field.

Doubling

Let P = (XP , YP , ZP ) be a point of the curve given by Jacobian coordinates.
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Let A = 4XPY
2
P , B = 3X2

P +aZ4
P , then the three coordinates of the double S of P are given

by:

XS = −2A+B2,

YS = −8Y 4
P +B(A−XS),

ZS = 2YPZP .

The computation of the double of a point requires 4 multiplications and 6 squares in the base
field.

Remark 2.20 When a = −3, a small optimization of the complexity of a doubling can be
performed by computing B = 3X2

P + aZ4
P as B = 3(XP − ZP )(XP + ZP ). In this case, the

computation of the double of a point requires 5 multiplications and 4 squares in the base field.

2.3.3 Isogeny over Elliptic Curves

DEFINITION 2.34 (Isogeny) Let E1 and E2 be two elliptic curves. Let y2 = x3 +a1x+b1
be the equation of E1 and y2 = x3 + a2x+ b2 be the equation of E2. An isogeny from E1 to E2
is a rational mapping from E1 to E2 that fixes the point at infinity.

According to this definition, an isogeny is given by two rational fractions in the indeterminates
x and y such that for each point of E1, the obtained values define a point that belongs to E2.

Example 2.24
1. For all integers n, the multiplication by n is an isogeny from a curve to itself.
2. The so-called Frobenius isogeny is defined on a curve over the finite field Fq by (x, y) 7→

πq(x, y) = (xq, yq).
3. On a curve E of equation y2 = x3 + b, the mapping (x, y) 7→ (jx, y), where j is a

primitive cubic root of unity, defines an isogeny of E.
4. On a curve E of equation y2 = x3 + ax, the mapping (x, y) 7→ (−x, iy), where i is an

element of the field F such that i2 = −1, defines an isogeny of E.

PROPOSITION 2.2 Reduced form of an isogeny Any isogeny ϕ(x, y) admits a reduced
expression:

ϕ(x, y) =
(
r(x), ys(x)

)
,

where r(x) and s(x) are rational fractions over the field F.

Example 2.25 The reduced form of the Frobenius isogeny is

πq(x, y) =
(
xq, y(x3 + ax+ b)(q−1)/2).

2.3.4 Cardinality

The cardinality of an elliptic curve over a finite field Fq, for q, for instance ref [6] or [18] of this
chapter, a power of prime number p, can, be computed by an algorithm discovered by Schoof in
1985.

DEFINITION 2.35 (Trace) The trace of an elliptic curve over the finite field Fq is the
integer t defined by

t = q + 1− Card
(
E(Fq)

)
.
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Knowing the trace of an elliptic curve, the cardinality can be deduced from the trace by:
Card

(
E(Fq)

)
= q + 1− t.

The Schoof algorithm computes the trace of an elliptic curve over the finite field Fq. It is
used to compute the number of points of the curve with coordinates in the field Fq. The Schoof
algorithm is presented in Algorithm 2.4, which is based on the following proposition:
ALGORITHM 2.4 Schoof’s algorithm.

Input : E an elliptic curve over a finite field Fq
Output: The trace t of E(Fq)

1 Choose an integer ` ≥ 3 and build an `-torsion point P = (xP , yP )
2 We want to solve the characteristic equation of the Frobenius: π2

q (P )− [ϑ]π − q(P )− (q
mod l)P = 0E . Compute (x1, y1) =

(
xq

2

P , y
q2

P

)
+ (q mod `) · (xP , yP ).

3 Compute πq(P ) = (xqP , y
q
P ) and find by exhaustive search an integer ϑ modulo ` that

satisfies:
ϑ · (xqP , y

q
P ) = (x1, y1).

4 Thus the trace t of the curve is congruent to ϑ modulo `.
5 Repeat the previous steps with different values of the integer `, pairwise relatively prime,
until their product is greater that 4√q.

6 The Chinese Remainder Theorem [16] allows us to compute the trace t of the curve and
conclude the algorithm.

PROPOSITION 2.3 Frobenius Let E be an elliptic curve over the finite field Fq. The
mapping πq − [1] : P 7→ πq(P ) − P is a separable isogeny whose degree is the cardinality of E
over Fq.

THEOREM 2.9 (Hasse boundary) The trace t of an elliptic curve over the field Fq is
bounded by:

−2√q ≤ t ≤ 2√q.

Equivalently, the cardinality of the curve is bounded by:

q + 1− 2√q ≤ Card
(
E(Fq)

)
≤ q + 1 + 2√q.

DEFINITION 2.36 (n-torsion group) Let E be an elliptic curve over an algebraically
closed field. For any non-zero integer n, the n-torsion group of the elliptic curve E is the
kernel of the multiplication by n. It is denoted E[n]:

E[n] = ker([n]) = {P ∈ E | nP = P∞}.

Even if the elliptic curve is defined over a finite field, the coordinates of the points of any n-
torsion group are considered in the algebraic closure of the field. As any isogeny kernel, the
n-torsion group is always finite.

Example 2.26
1. The 1-torsion group is the subgroup reduced to the neutral element P∞.
2. The 2 torsion group is the set of points of the curve such that P + P = P∞, that is,

points equal to their negate. They are the so-called special points of the curve:

E[2] = {P∞, Pα, Pβ , Pγ},
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where Pα = (α, 0), Pβ = (β, 0), Pγ = (γ, 0), where α, β, γ are the three distinct roots
of the equation x3 + ax+ b = 0.

3. The 3-torsion group is the set of the so-called inflexion points of the curve, satisfying
3P = P∞.

THEOREM 2.10 (Structure of the n-torsion group) [19, Corollary 6.4] Let E be an
elliptic curve defined over a finite field of characteristic p.

• For any non-zero integer n prime with p, the n-torsion group of E is isomorphic to
the direct product Z/nZ× Z/nZ.

• If n = pe, for e an integer, then either E[n] ∼= {O} for all e = 1, 2, 3, . . ., or E[n] ∼=
Z/(pe)Z for all e = 1, 2, 3, . . .

COROLLARY 2.2 (Cardinality of the n-torsion group) For any non-zero integer n,
the n-torsion group of an elliptic curve contains n2 points.

Remark 2.21 (Base of the n-torsion group) For any non-zero integer n and any elliptic
curve, there exist two points S and T of the curve such that any point P of the n-torsion group
of the curve can be expressed as

P = aS + bT,

where a and b are two elements of Z/nZ.

THEOREM 2.11 (Cassel’s theorem) The group of points of an elliptic curve over a finite
field Fq is either cyclic, or isomorphic to a direct product of two cyclic groups Z/n1Z× Z/n2Z,
where n1 divides n2.

Let n be any non-zero integer and Fq any finite field. The multiplicative subgroup of the
n-roots of unity in Fq is denoted by µn. It is by definition:

µn = {x ∈ Fq | xn = 1}.

The embeding degree of µn relatively to Fq is the least degree of an extension of Fq that contains
µn.

PROPOSITION 2.4 Let n be an integer that divides the cardinality of an elliptic curve over
the finite field Fq and such that n does not divide q − 1. The n-torsion group is included in the
set of points of the elliptic curve whose coordinates belong to the extension of degree k of Fq if
and only if n divides qk − 1.

Example 2.27 If the cardinality of the curve is q+1, which means that the trace of the curve
is zero, then n divides q2 − 1. In this case, all the n-torsion points have coordinates in the field
Fq2 . The embedding degree of µn relative to Fq is 2.

2.3.5 Supersingular and Ordinary Elliptic Curves

Elliptic curves are divided into two families: the supersingular and ordinary elliptic curves [19,
Chapter V §3 and 4]. The following definition highlights the difference between ordinary and
supersingular elliptic curves.



2-26 Guide to Pairing-Based Cryptography

DEFINITION 2.37 (Supersingular and ordinary elliptic curve) Let p be a prime
number greater than 3, q = pn for n a positive integer, and let E(Fq) be an elliptic curve over
Fq. The curve E is supersingular if the following assertions are verified:

• #E(Fq) ≡ 1 mod p, or #E(Fq) = q + 1 mod p, or t = 0,
• E does not admit a point of order p over Fq.

A non-supersingular elliptic curve is said to be ordinary.

Example 2.28
• The elliptic curve defined over F257 by the equation y2 = x3 + b, for b ∈ F?257, is a

supersingular curve.
• More generally, an elliptic curve defined over Fp by the equation y2 = x3 + x is

supersingular if and only if p ≡ 3 mod 4.

Remark 2.22 The supersingular elliptic curves are classified in [4]. The embedding degree of
a supersingular elliptic curve is at the most 6.

The security level of pairing-based cryptography will be studied in the following chapters. We
can now remark that in order to follow the recommendations of the NIST [1], the supersingular
elliptic curves should be discarded.

2.3.6 Twist of an Elliptic Curve

Let E and E′ be two elliptic curves. We said that E′ is a twist of E if there is an isomorphism
between E and E′. In this section, we will only give the necessary tools on twisted elliptic
curves for pairing-based cryptography, i.e., the definition and a theorem describing explicitly
the equations of possible twisted elliptic curves. A nice theoretical description of the twists is
presented in [19], for instance.

DEFINITION 2.38 (Twist of an elliptic curve) Let E and E′ be two elliptic curves
defined over Fq, for q, a power of a prime number p. Then, the curve E′ is a twist of degree
d of E if we can define an isomorphism Ψd over Fqd from E′ into E and such that d is minimal:

Ψd : E′(Fq) → E(Fqd).

The possible number of twists for a given elliptic curve is bounded. It highly depends on
the group of endomorphisms of the elliptic curve E. Theorem 2.12 gives the classification of the
potential twists.

THEOREM 2.12 Let E be an elliptic curve defined by the short Weiestrass equation y2 =
x3 + ax+ b over an extension Fq of a finite field Fp, for p a prime number, k a positive integer
such that q = pk. According to the value of k, the potential degrees for a twist are d =2, 3, 4 or
6.

In practice, we will consider that E is defined over Fpk . The curve E is considered in its
short Weiestrass form, y2 = x3 + ax+ b.

We will denote by E′ the twisted elliptic curve of E defined over Fpk/d a subfield of Fpk , for d
a divisor of k. According to our definition, we have that q = pk/d. We describe the possible twist
using the notation pk/d as it will be the one used for the description of pairings. The equations
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of the potential twisted elliptic curve are described below. For each potential degree d, we give
the corresponding equation of E′(Fpk/d), the twisted elliptic curve of E. We explicitly give the
morphism Ψd : E′ → E.

• d = 2. Let ν ∈ Fpk/2 be such that the polynomial X2 − ν is irreducible over Fpk/2 .
The equation of E′ over Fpk/2 is E′ : νy2 = x3 + ax + b. The morphism Ψ2 is given
by:

Ψ2 : E′(Fpk/2 ) → E(Fpk)
(x, y) → (x, yν1/2).

• d = 4. The elliptic curve E admits a twist of degree 4 if and only if b = 0. Let
ν ∈ Fpk/4 be such that the polynomial X4 − ν is irreducible over Fpk/4 . The equation
of E′ over Fpk/4 is y2 = x3 + a

ν x. The morphism Ψ4 is given by:

Ψ4 : E′(Fpk/4 ) → E(Fpk)
(x, y) → (xν1/2, yν3/4).

• d = 3 (respectively 6), the curve E admits a twist of degree 3 (respectively 6) if and
only if a = 0. Let ν ∈ Fpk/dbe such that the polynomial X3− ν (respectively X6− ν)
is irreducible over Fpk/d . The equation of E′ is y2 = x3 + b

ν . The morphism Ψ3 is
given by:

Ψd : E′(Fpk/d) → E(Fpk)
(x, y) → (xν1/3, yν1/2).

We can compute the cardinal of a twisted elliptic curve according to the degree of the
twist [14].

PROPOSITION 2.5 ([14]) Let E(Fq) be an ordinary elliptic curve with Card(E(Fq)) =
q + 1 − t, admitting a twist E′ of degree d. Then the possible group orders of E′(Fq) are the
following:

d = 2 Card(E(Fq)) = q + 1− t
d = 3 Card(E(Fq)) = q + 1− (3f − t)/2 with t2 − 4q = −3f2

Card(E(Fq)) = q + 1 + (3f + t)/2 with t2 − 4q = −3f2

d = 4 Card(E(Fq)) = q + 1 + f with t2 − 4q = −f2

Card(E(Fq)) = q + 1− f with t2 − 4q = −f2

d = 6 Card(E(Fq)) = q + 1 + (3f − t)/2 with t2 − 4q = −3f2

Card(E(Fq)) = q + 1− (3f + t)/2 with t2 − 4q = −3f2.

2.4 Conclusion

In this chapter, we present the elementary mathematical notions that will be used in the following
chapters. We present definitions, properties and examples of groups, finite fields, and elliptic
curves.
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We recall from Section 1.2 that a pairing is a map e : G1 × G2 → GT between finite abelian
groups G1, G2 and GT , that satisfies the following conditions:

• e is bilinear, which means that e(P + Q,R) = e(P,R) × e(Q,R) and e(P,Q + R) =
e(P,Q)× e(P,R);

• e is non-degenerate, which means that for any P ∈ G1 there is a Q ∈ G2 such that
e(P,Q) 6= 1, and for any Q ∈ G2 there is a P ∈ G1 such that e(P,Q) 6= 1.

A pairing e is suitable for use in cryptography when furthermore it is easy to compute, but
difficult to invert. Inverting a pairing e means given z ∈ GT to find P ∈ G1 and Q ∈ G2 such
that e(P,Q) = z.

The most efficient cryptographic pairings currently known come from elliptic curves (or
higher-dimensional algebraic varieties). Starting from an elliptic curve E defined over a finite
field Fq, we consider the Weil pairing and the Tate pairing associated to it. This allowed
cryptographers to construct a map such that:

• G1 and G2 are subgroups of the rational points of E defined over an extension Fqk of
Fq;

• GT is the group (F∗
qk
,×) where the group law is given by the field multiplication on

Fqk (or more precisely GT = µr ⊂ F∗
qk

is the subgroup of r-th roots of unity);

3-1
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• The pairing e can be efficiently computed using Miller’s algorithm (see Algorithm 3.2);
• Currently the most efficient way to invert e is to solve the Diffie-Helman problem on

G1, G2 or GT .

In this chapter we introduce pairings associated to an elliptic curve E over a finite field Fq
and explain how to compute them efficiently, via an algorithm that evaluates functions on points
of the curve. We first explain in Section 3.1 how to represent functions efficiently by looking at
their associated divisors, and then give Miller’s algorithm, which allows us to evaluate them.

In Section 3.2 we present the general theory of the Weil and Tate pairing, and we review the
main recent optimizations for their computation: the Ate, twisted Ate, and optimal pairings,
which are preferred in implementations nowadays. Finally, we give concrete formulae to compute
them in practice in Section 3.3. Since the group GT is a subgroup of the multiplicative group of
Fqk , security requirements involve choosing a base field Fq with large characteristic (see [2] or
Chapter 9).

For simplicity, in Sections 3.1 and 3.2, points on the elliptic curve are represented in affine
coordinates. Using this representation, formulae for pairing computation are easy to write down.
However, note that affine coordinates involve divisions and are not efficient for a practical im-
plementation. We study more efficient representations of points in Section 3.3.

For the cryptographic usage of pairings, only a specific version of Miller’s algorithm and the
Weil and Tate pairing need to be presented. This is the version we give in Section 3.1 and 3.2,
where we omit most proofs. For the sake of completness, we give the general version of pairings
along with complete proofs in Section 3.4.

Notation
We recall that an elliptic curve defined over a field with characteristic greater than 5 can

always be given in short Weierstrass form, as explained in Chapter 2. In the remainder of this
chapter, all elliptic curves are defined over a field K with characteristic greater than 5 and
will be given by a short Weierstrass equation. We denote this equation by y2 = H(x), with
H(x) = x3 + ax+ b and a, b ∈ K.

3.1 Functions, Divisors, and Miller’s Algorithm

3.1.1 Functions and Divisors on Curves

Pairing computations will rely crucially on evaluating functions on points of elliptic curves. A
convenient way to represent functions is by their divisor. We first give a gentle introduction to
the theory of divisors by looking at examples of functions on the line before considering elliptic
curves.

Let A1 be the affine line over an algebraically closed field K. Adding the point at infinity
means that we work on the projective line P1 = A1 ∪ {∞}. Rational functions K(P1) on A1

are simply the rational functions K(t). Let f = P/Q =
∏

(t−xi)ni∏
(t−yi)mi

∈ K(t) be such a rational
function, where the numerator P and the denominator Q are assumed to be prime with each
other. Then the points xi are zeroes of f with multiplicity mi and the points yi are poles of f
with multiplicity ni. This allows us to define a multiplicity ordx(f) for every point x ∈ P1(K)

ordx(f) =

 n if x is a zero of f with multiplicity n,
−n if x is a pole of f of multiplicity n,
0 if x is neither a zero nor a pole.

For example, f has no pole in A1 if and only if it is a polynomial P (t).
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Given a rational function f = P/Q as above, we can also define the evaluation of f on the
point at infinity ∞. Here is how to compute the evaluation of f at ∞: the change of variables
u = 1/t sends ∞ to 0. Define g by g(u) = f(1/u). This gives the relation f(t) = g(u) when
t = 1/u. We can then define the order of f at ∞ as the order of g at 0, and when the order
is 0 we can define the value of f at ∞ as the value of g at 0. One can then easily check that
ord∞(f) = −deg f = degQ− degP .

We associate a formal sum to a function f :

div(f) =
∑

x∈P1(K)

ordx(f)[x],

where we use the notation [x] to represent the point x ∈ P1(K) in the formal sum. This formal
sum is called the divisor of f . Since there is only a finite number of poles or zeroes, it is in fact
finite. Moreover, f is characterized by div(f) up to the multiplication by a constant: If f1 and
f2 are two rational functions such that div(f1) = div(f2), then f1 and f2 have the same poles
and zeroes, so they differ by a multiplicative constant.

More generally, a divisor D is defined to be a formal sum of a finite number of points:

D =
∑

x∈P1(K)

ni[xi].

To a divisor D one can associate its degree deg(D) =
∑
ni. By the remark above concerning

the multiplicity of f at∞, we get that deg div(f) = 0. Conversely, given a divisor D of degree 0,
it is easy to construct a rational function f such that div(f) = D.

The whole theory extends when we replace the line P1 by a (geometrically connected smooth)
curve C. If P ∈ C(K) is a point of C, then there is always a uniformizer tP , which is a rational
function on C with a simple zero at P . Thus if f ∈ K(C) is a rational function on C, then we
can always write f = tmP · g where g is a function having no poles or zeroes at P . We then define
the multiplicity ordP (f) of f at P to be m. If the multiplicity ordP (f) is zero, that is if P is
neither a pole nor a zero of f , then one can define the value of f at P to be f(P ).

In the case of the projective line P1, a uniformizer at x is t − x and a uniformizer at ∞ is
u = 1

t . Hence this new notion of multiplicity coincides with the one introduced above.
For an elliptic curve E we have the following uniformizers:

• tP = x− xP , except when H(xP ) = 0;
• tP = y − yP , except when H ′(xP ) = 0;
• t0E = x/y.

We denote by DiscP the discriminant of a polynomial P , and we recall that the discriminant
is non-zero if and only if P does not admit a double root. Since E is an elliptic curve, DiscH 6= 0
and we cannot have H(xP ) = 0 and H ′(xP ) = 0 at the same time. Hence there is indeed a
uniformizer for every point P ∈ E(K).

One can also define a divisor on E as a formal finite sum of geometric points D =
∑
ni[Pi]

of E, and associate to a rational function f ∈ K(E) a divisor div(f) =
∑

P∈E(K) ordP (f)[P ].
One can check that ordP (f) = 0 for all but a finite number of P , so we get a well-defined divisor.
The degree degD of a divisor D =

∑
ni[Pi] is

∑
ni. A divisor D is said to be principal when

there exists a function f such that D = div(f). Two divisors D1 and D2 are said to be linearly
equivalent when there exists a function f such that D1 = D2 + div(f). It is easy to check that a
divisor D is principal if and only if it is equivalent to the zero divisor, and that two divisors D1
and D2 are linearly equivalent if and only if D1 −D2 is linearly equivalent to the zero divisor.
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PROPOSITION 3.1 Let E be an elliptic curve over an algebraically closed field K.

1. Let f, g ∈ K(E) be two rational functions, then div(f) = div(g) if and only g differs
from f by a multiplicative constant;

2. If f ∈ K(E) is a rational function, then div(f) is a divisor of degree 0;
3. Conversely, if D =

∑
ni[Pi] is a divisor on E of degree 0, then D is the divisor of a

function f ∈ K(E) (i.e., D is a principal divisor) if and only if
∑
niPi = 0E ∈ E(K)

(where the last sum is not formal but comes from the addition on the elliptic curve).

Proof. See [22, Proposition 3.4]. In fact, for the last item, given a divisor D =
∑
ni[Pi] of

degree 0, we give in Section 3.4.2 an explicit algorithm that constructs a rational function f such
that D = [P ]− [0E ]+div(f) and P =

∑
niPi ∈ E(K). If P = 0E then D = div(f) is a principal

divisor. It remains to show that if P 6= 0E then the divisor [P ] − [0E ] is not principal. But if
we had a function f such that div(f) = [P ]− [0E ], then the morphism E → P1

K
: x 7→ (1 : f(x))

associated to f would be birational. (Indeed, since f has one simple zero and one simple pole,
one could get every degree of zero divisors as the divisor of a suitable rational function of f . So
the function field of k(E) would be k(f).) But this is absurd: E is an elliptic curve so it has
genus 1, it cannot have genus 0.

An elliptic curve E defined over Fq can also be seen as an elliptic curve EFq over the algebraic
closure Fq. We say that a divisor D =

∑
ni[Pi] of EFq is rational when it is invariant under the

action of the Frobenius endomorphism π. If f ∈ Fq(E) is a rational function defined over Fq,
then div(f) is rational. Conversely, if f ∈ Fq(E) has a rational divisor div(f), then there exists
a non-zero constant λ such that λf ∈ Fq(E) [22, Chapter II §2].

3.1.2 Miller’s Algorithm

Let F be a principal divisor. Then by definition there is a rational function f on E such that
F = div f . Then f is uniquely determined up to a constant. If 0E is neither a pole nor a
zero of f , then one can uniquely define f by requiring that f(0E) = 1. More generally, we can
define the normalized function associated to a principal divisor as follows: Since ord0E (x/y) = 1,
(x/y)ord0E (f) has the same order at 0E as f . In particular, the function

(
f

(x/y)ord0E (F )

)
is defined

at 0E , and we can normalize f uniquely by requiring that the above function has value 1 at 0E .
This gives the following definition.

DEFINITION 3.1 Let F be a principal divisor. We define fF to be the unique function
such that F = div fF and

(
fF

(x/y)ord0E (F )

)
(0E) = 1. Such a function is called normalized at 0E

(or simply normalized). If F is rational, then fF is rational too.

If P and Q are points on E, then [P ]+ [Q]− [P +Q]− [0E ] is principal. Indeed, it has degree
0 and P +Q− 20E − (P +Q) + 0E = 0E , so by Proposition 3.1 there exists a function µP,Q such
that div(µP,Q) = [P ] + [Q]− [P +Q]− [0E ].

DEFINITION 3.2 We denote by µP,Q the normalized function with principal divisor [P ] +
[Q]− [P +Q]− [0E ].

If E is given by a short Weierstrass equation, we can construct µP,Q explicitly: If P = −Q,
then P +Q = 0E , and we can choose

µP,Q = x− xP . (3.1)
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Otherwise, let lP,Q be the line going through P and Q (if P = Q then we take lP,Q to be
the tangent to the elliptic curve at P ). Then by definition of the addition law on E, we have
that div(lP,Q) = [P ] + [Q] + [−P − Q] − 3[0E ]. Now let vP,Q = x − xP+Q be the vertical line
going through P + Q and −P − Q. Then div(vP,Q) = [P + Q] + [−P − Q] − 2[0E ], so that
div( lP,QvP,Q

) = [P ] + [Q]− [P +Q]− [0E ] and one can take µP,Q = lP,Q
vP,Q

.
To compute xP+Q, we know that −P − Q is the third intersection point between the line

lP,Q : y = αx+β and the elliptic curve E : y2 = x3+ax+b. So x−P−Q, xP , xQ are all roots of the
degree-three equation x3+ax+b−(αx+β)2 = 0, and we get that xP+Q = x−P−Q = α2−xP−xQ.
Putting everything together, we finally obtain

µP,Q = y − α(x− xP )− yP
x+ (xP + xQ)− α2 , (3.2)

with α = yP−yQ
xP−xQ when P 6= Q and α = H′(xP )

2yP when P = Q.
One can check that the functions µP,Q defined above are normalized (see Section 3.4). Let

R ∈ E. The following lemma explains how to evaluate µP,Q on R (in the usual cases encountered
in cryptographic applications, we refer to Lemma 3.4 for the remaining cases).

LEMMA 3.1 (Evaluating µP,Q) Let P = (xP , yP ), Q = (xQ, yQ), and R = (xR, yR) be
points on E.

• Suppose that P , Q, and P + Q are all different from 0E. Then µP,Q = lP,Q
vP,Q

where
lP,Q = y − αx − β with α = yP−yQ

xP−xQ when P 6= Q and α = H ′(xP ) when P = Q,
β = yP − αxP = yQ − αxQ and vP,Q = x− xP+Q with xP+Q = α2 − xP − xQ.
Assume that R is not equal to P , Q, P +Q, −P −Q, or 0E; then we have

µP,Q(R) = yR − αxR − β
xR − xP+Q

. (3.3)

(If R = −P −Q and −P −Q 6= P,Q, P +Q, 0E then µP,Q is well defined on R, but
computing the exact value requires more work; see Lemma 3.4 for the formula.)

• If P = −Q (but P 6= 0E) so that P +Q = 0E, then µP,Q = x− xP .
Assume that R is different from 0E, then µP,Q(R) = xR − xP .

• If P = 0E or Q = 0E, then µP,Q = 1.

Let P 6= 0E a point of r-torsion on E. Then r[P ]− r[0E ] is a principal divisor be [22, Corollary
III.3.5]. As a consequence, we have the following definition.

DEFINITION 3.3 We denote by fr,P the normalized function with principal divisor r[P ]−
r[0E ].

All pairing computations will involve the following key computation: Given P 6= 0E, a point
of r-torsion on E, and Q 6= P, 0E, a point of the elliptic curve, evaluate fr,P (Q). To explain
how to compute fr,P , first we need to extend its definition.

DEFINITION 3.4 Let λ ∈ N and P ∈ E(K); we define fλ,P ∈ K(E) to be the function
normalized at 0E such that

div(fλ,P ) = λ[P ]− [λP ]− (λ− 1)[0E ].
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Note that if r ∈ N and P ∈ E[r], then fr,P is indeed the normalized function with divisor
r[P ]− r[0E ].

PROPOSITION 3.2 Let P be as above, and λ, ν ∈ N. We have

fλ+ν,P = fλ,P fν,P fλ,ν,P ,

where fλ,ν,P = µλP,νP is the function associated to the divisor [(λ + ν)P ] − [λP ] − [νP ] + [0E ]
and normalized at 0E.

Proof. We have seen in Lemma 3.1 that the function µλX,νX defined in Equations (3.1) and (3.2)
is normalized and has for associated divisor [(λ+ ν)X]− [(λ)X]− [(ν)X] + [0E ]. By definition of
fλ,X , we have that div(fλ+ν,X) = (λ+ν)[X]− [(λ+ν)X]− (λ+ν−1)[0E ] = λ[X]− [λX]− (λ−
1)[0E ] + ν[X]− [νX]− (ν − 1)[0E ] + [(λ+ ν)X]− [λX]− [νX] + [0E ] = div(fλ,Xfν,X fλ,ν,X). So
fλ+ν,X = fλ,Xfν,X fλ,ν,X , since they have the same associated divisor and are both normalized
at 0E .

Proposition 3.2 is the main ingredient that we need to compute fr,P , using a double-and-add
algorithm, whose pseudocode is described in Algorithm 3.2. Here is how this algorithms works:
given P ∈ E[r], we compute rP as we would with a standard double-and-add algorithm. If the
current point is T = λP , then at each step in the loop we perform a doubling T 7→ 2T , and
whenever the current bit of r is a 1, we also do an extra addition T 7→ T +P . The only difference
between Miller’s algorithm and scalar multiplication is that, at each step in the Miller loop, we
also keep track of the function fλ,P (corresponding to the principal divisor λ[P ]−[T ]−(λ−1)[0E ]).
During the doubling and addition step we increment this function using Proposition 3.2, until in
the end we obtain fr,P , which we can evaluate on Q. Note that in practice we do the evaluations
directly at each step because representing the full function fr,P would be too expensive.

Remark 3.1

• One should be careful that at the last step, the sum (whether it is a doubling or an
addition) gives 0E , so the corresponding Miller function is simply x− xT .

• There is one drawback in evaluating the intermediate Miller functions µλP,νP directly
on Q: If Q /∈ {0E , P}, then fr,P (Q) is well defined. But if Q is a zero or pole
of µλP,νP , then Algorithm 3.1 fails to give the correct result. A solution to compute
fr,P (Q) anyway is to change the addition chain used to try to get other Miller functions
µλP,νP that do not have a pole or zero on Q. Another solution is given in Section 3.4.
We note that this situation can happen only when Q is a multiple of P .

Using Lemma 3.1, we get an explicit version of Algorithm 3.1, for an elliptic curve y2 =
x3 + ax+ b. For efficiency reasons, we only do one division at the end.

3.2 Pairings on Elliptic Curves

3.2.1 The Weil Pairing

The first pairing on elliptic curves has been defined by Weil. Although it is usually not used in
practice for cryptography (rather than the Tate pairing), it is important for historical reasons,
and also because the original construction of the Tate pairing uses the Weil pairing.
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ALGORITHM 3.1 Miller’s algorithm (general version).

Input: r ∈ N, I = [log r] + 1, P = (xP , yP ) ∈ E[r](K), Q = (xQ, yQ) ∈ E(K).

Output: fr,P (Q).

1. Compute the binary decomposition: r :=
∑I

i=s bi2i. Let T = P, f = 1.

2. For i in [I − 1..1] compute

(a) f = f2µT,T (Q);
(b) T = 2T ;
(c) If bi = 1, then compute

i. f = fµT,P (Q);
ii. T = T + P .

Return f .

THEOREM 3.1 Let E be an elliptic curve defined over a finite field K, r ≥ 2 an integer
prime to the characteristic of K and P and Q two points of r-torsion on E. Then

eW,r = (−1)r fr,P (Q)
fr,Q(P ) (3.4)

is well defined when P 6= Q and P,Q 6= 0E. One can extend the application to the domain
E[r] × E[r] by requiring that eW,r(P, 0E) = eW,r(0E , P ) = eW,r(P, P ) = 1. Furthermore, the
application eW,r : E[r] × E[r] → µr obtained in this way is a pairing, called the Weil pairing.
The pairing eW,r is alternate, which means that eW,r(P,Q) = eW,r(Q,P )−1.

Proof. See [22, Section III.8] or Section 3.4.3.

Note that the Weil pairing is defined over any field K of characteristic prime to r, and
takes its values in µr ⊂ K. For cryptographic applications, we consider K = Fq, with q a prime
number, and we define the embedding degree k to be such that Fqk is the smallest field containing
µr. In other words, Fqk = Fq(µr) or alternatively, k is the smallest integer such that r | qk − 1.

Computing the Weil pairing

To compute the Weil pairing in practice we use Algorithm 3.2 twice to compute fr,P (Q) and
fr,Q(P ). Note that in this case, by Remark 3.1, whenever Miller’s algorithm fails because we
have an intermediate zero or pole, then Q is a multiple of P so eW,r(P,Q) = 1. Indeed, if
Q = λP then eW,r(P,Q) = eW,r(P, P )λ = 1 because eW,r(P, P ) = 1 (eW,r is alternate).

3.2.2 The Tate Pairing

The Tate pairing was defined by Tate for number fields in [24, 18] and used by Frey and Rück
in the case of finite fields [7]. For simplicity, we assume that K = Fq, with q prime, and that
k is the embedding degree corresponding to r (although the construction is valid for any finite
field).
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ALGORITHM 3.2 Miller’s algorithm for affine short Weierstrass coordinates.

Input: r ∈ N, I = [log r] + 1, P = (xP , yP ) ∈ E[r](K), Q = (xQ, yQ) ∈ E(K).

Output: fr,P (Q).

1. Compute the binary decomposition: r :=
∑I

i=s bi2i. Let T = P, f1 = 1, f2 = 1.

2. For i in [I − 1..1], compute (except at the last step)

(a) α = 3x2
T+a

2yT , the slope of the tangent of E at T ;

(b) x2T = α2 − 2xT , y2T = −yT − α(x2T − xT );
(c) f1 = f2

1 (yQ − yT − α(xQ − xT )), f2 = f2
2 (xQ + 2xT − α2);

(d) T = 2T .
(e) If bi = 1, then compute

i. α = yT−yP
xT−xP , the slope of the line going through P and T ;

ii. xT+P = α2 − xT − xP , yT+P = −yT − α(xT+P − xT );
iii. f1 = f2

1 (yQ − α(xQ − xT )− yT ), f2 = f2(xQ + (xP + xT )− α2);
iv. T = T + P .

3. At the last step: f1 = f1(xQ − xT ).

Return
f1

f2
.

THEOREM 3.2 Let E be an elliptic curve, r a prime number dividing #E(Fq), P ∈
E[r](Fqk) a point of r-torsion defined over Fqk and Q ∈ E(Fqk) a point of the elliptic curve
defined over Fqk , Let R be any point in E(Fqk) such that {R,Q+R} ∩ {P, 0E} = ∅.
Then

eT,r(P,Q) =
(
fr,P (Q+R)
fr,P (R)

) qk−1
r

(3.5)

is well defined and does not depend on R.
Furthermore, the application

E[r](Fqk)× E(Fqk)/rE(Fqk) → µr

(P,Q) 7→ eT,r(P,Q)

is a pairing, called the Tate pairing.

Proof. See [7]. We give an elementary proof in Section 3.4.4 when all the r-torsion is rational
over Fqk .

When E(Fqk) does not contain a point of r2-torsion (which is always the case in the crypto-
graphic setting because r is a large prime), then the Tate pairing restricted to the r-torsion is
also non-degenerate.

PROPOSITION 3.3 Assume that E[r] ⊂ E(Fqk) and that there are no points of r2-torsion
in E(Fqk). Then the inclusion E[r](Fqk) ⊂ E(Fqk) induces an isomorphism E[r] ' E(Fqk)/rE(Fqk)
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so the Tate pairing eT,r is a non-degenerate pairing

E[r]× E[r]→ µr.

Proof. Suppose that P ∈ E[r](Fqk) is equivalent to 0 in E(Fqk)/rE(Fqk). Then by definition
there exists a point P0 ∈ E(Fqk) such that P = rP0. This means that P0 is a point of r2-torsion.
By hypothesis there are no non-trivial points of r2-torsion in E(Fqk), hence we deduce that
E[r]→ E(Fqk)/rE(Fqk) is injective. Since both groups have cardinality r2 (this is shown in the
proof of Theorem 3.11), the injection is an isomorphism.

Computing the Tate pairing

In practice, to compute the Tate pairing, when Q is not a multiple of P one can take R = 0E so
that

eT,r(P,Q) = fr,P (Q)
qk−1
r . (3.6)

(We can’t apply Theorem 3.2 directly with R = 0E , but Theorem 3.11 will show that for-
mula (3.6) is correct). We use Algorithm 3.2 to compute fr,P (Q) and then we do the final
exponentiation by a fast exponentiation algorithm. By Remark 3.1 there are no problems dur-
ing the execution of Miller’s algorithm.

Unlike for the Weil pairing, eT,r(P, P ) may not be trivial, so if we want to compute eT,r(P, P ),
or eT,r(P,Q) with Q a multiple of P , then we need to use Equation 3.18 with R a random point
in E(Fqk). If we are unlucky and get an intermediate zero or pole, we restart the computation
with another random R. An alternative method is to use the general Miller’s algorithm described
in Section 3.4.2 to compute the Tate pairing.

3.2.3 Using the Weil and the Tate Pairing in Cryptography

For the applications of the Weil and Tate pairing to cryptography, we will always consider an
elliptic curve E defined over Fq and a large prime number r such that r | #E(Fq). When the
embedding degree k is greater than one, then E[r] is defined over Fqk , and we can define two
subgroups G1 and G2 of interest for pairing computations.

LEMMA 3.2 (The central setting for cryptography) Let E be an elliptic curve defined
over Fq, r a large prime number such that r | #E(Fq), and πq the Frobenius endomorphism. Let
k be the embedding degree relative to r, and assume that k > 1. Then E[r] = G1 ×G2 ⊂ E(Fqk)
where

G1 = E[r](Fq) = {P ∈ E[r] | πqP = P}, (3.7)

G2 = {P ∈ E[r] | πqP = [q]P}. (3.8)

G1 is called the rational subgroup of E[r], while G2 is called the trace zero subgroup.

Proof. The characteristic polynomial of the Frobenius modulo r is the degree-two polynomial
X2 − tX + q modulo r where t is the trace. Let λ1 and λ2 be the two eigenvalues. Since
r | #E(Fq), there is a rational point of r-torsion in E(Fq) so that λ1 = 1. This implies that
λ2 = q. Furthermore, since k > 1, then q 6= 1 (mod r). The two eigenvalues are then distinct,
so the action of πq on E[r] is diagonalisable, and we have

E[r] = Ker(πq − Id)⊕Ker(πq − q Id) = G1 ⊕G2.
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Furthermore, let φ be the endomorphism given by the trace of the Frobenius (i.e., φ =
1 + πq + · · · + πk−1

q ). Then φ acts on G1 by multiplication by k (which in the cryptographic
setting will be prime to r), and on G2 the trace acts by multiplication by qk−1

q−1 . Since the
embedding degree k is greater than 1 by hypothesis, then r | qk−1 and r - q−1. Hence r | qk−1

q−1 .
We conclude that the trace restricted to E[r] has G2 as kernel and G1 as image [3, 4]. This
explains the name trace zero subgroup for G2.

In practice, when using pairing-friendly elliptic curves to compute pairings for cryptographic
applications, we will always be in the situation of Lemma 3.2. It will be convenient to restrict
the Tate pairing to the subgroups G1 and G2 rather than to deal with the full r-torsion. Under
some additional hypotheses (which always hold in the cryptographic setting), the Tate pairing
restricted to G1 ×G2 or to G2 ×G1 is non-degenerate.

PROPOSITION 3.4 Assume that we are in the situation of Lemma 3.2. Then the restriction
of eW,r to G1 ×G2 or to G2 ×G1 is non-degenerate. If, furthermore there are no points of r2-
torsion in E(Fqk), then the restriction of eT,r to G1 ×G2 or to G2 ×G1 is also non-degenerate.
More generally, if G3 is any cyclic subgroup of E[r] different from G1 and G2, then the Weil
and Tate pairing restricted to G1 ×G3, G3 ×G1, G2 ×G3, and G3 ×G2 are non-degenerate.

Proof. Note that the Weil pairing is non-degenerate on E[r], but is trivial on G1×G1 and G2×G2
(because these groups are cyclic and the Weil pairing is alternate). Then since E[r] = G1 ×G2,
the Weil pairing has to be non-degenerate on G1 × G2 and G2 × G1. Given P ∈ G1 there
exists Q ∈ G2 such that eW,r(P,Q) 6= 1. There exists T ∈ G1 such that Q + T ∈ G3, and
eW,r(P,Q + T ) = eW,r(P,Q) 6= 1. Hence the Weil pairing on G1 × G3 is non-degenerate. The
same reasoning holds for the other groups. We refer to Section 3.4.4 for the proof for the Tate
pairing.

In the remainder of this chapter, we will always assume that we are in the setting of Proposi-
tion 3.4. Moreover, we focus on the optimization of the computation of the Tate pairing, since
it is now preferred to the Weil pairing in cryptographic settings. This choice is explained by the
fact that the Miller loop only needs to compute the evaluation of a single fr,P function.

Denominator elimination

The final exponentiation of the Tate pairing kills any element γ which lives in a strict subfield
of Fqk . In particular we see that replacing fr,P by γfr,P in Equation (3.5) does not change the
result. In the execution of Algorithm 3.2, we can then modify the Miller functions fλ,ν,P by a
factor γ in a strict subfield of Fqk without affecting the final result.

Suppose that P and Q are in G1 or G2 and the embedding degree k is even. Remember
that by Lemma 3.1, the Miller function is fλ,ν,P = µλP,νP = lλP,νP

vλP,νP
. Then by Lemma 3.3 below,

vλP,νP (Q) = xQ−x(λ+ν)P lives in a strict subfield of Fqk , so this factor will be killed by the final
exponentiation. Hence in this situation we don’t need to compute the division by vλP,νP (Q) in
Miller’s algorithm for the Tate pairing; this is called denominator elimination.

LEMMA 3.3 Let E be an elliptic curve defined over Fq, such that E[r] ⊂ E(Fqk) with k

even. Let Q ∈ G1 or Q ∈ G2. Then xQ ∈ Fqk/2 .

Proof. If Q ∈ G1 then Q ∈ E(Fq), so both xQ and yQ are in Fq ⊂ Fqk/2 . Now if Q ∈ G2, then by
definition of G2 we know that πk/2q (Q) = qk/2Q. By definition of the embedding degree k, qk = 1
mod r, so qk/2 = ±1 mod r. But since k is the smallest integer such that qk = 1 mod r, we



Pairings 3-11

then have qk/2 = −1 mod r. So πk/2q (Q) = −Q, and in particular πk/2q (xQ) = x−Q = xQ. So
xQ is fixed by πk/2q , which means that xQ ∈ Fqk/2 .

To sum up, denominator elimination yields Algorithm 3.3 to compute the Tate pairing over
G1 ×G2 or G2 ×G1.

ALGORITHM 3.3 Tate’s pairing over G1 ×G2 or G2 ×G1.

Input: r ∈ N an odd prime dividing #E(Fq) s.t. k > 1 is the corresponding embedding degree
and there are no points of r2-torsion in E(Fqk), P ∈ G1, Q ∈ G2 (or P ∈ G2, Q ∈ G1).

Output: The reduced Tate pairing eT,r(P,Q) = fr,P (Q) q
k−1
r .

1. Compute the binary decomposition: r :=
∑I

i=0 bi2i. Let T = P, f = 1.

2. For i in [I..0] compute

(a) α, the slope of the tangent of E at T .
(b) f = f2lT,T (Q),
(c) T = 2T ,
(d) If bi = 1, then compute

i. f = f2lT,P (Q)
ii. T = T + P ,

Return
f
qk−1
r .

Finding a non-trivial pairing

For all cryptographic applications of pairings, one needs to find two points P and Q on the
elliptic curve such that e(P,Q) 6= 1. For instance, the original use of the Weil pairing was used
in [19] as an attack method by reducing the DLP from elliptic curves to finite fields: the MOV
attack (see Chapter 9). For the reduction to work, given P ∈ E[r](Fq), one needs to find a
point Q such that eW,r(P,Q) 6= 1. Then the DLP between (P, nP ) over E(Fq) reduces to a DLP
between (eW,r(P,Q), eW,r(P,Q)n) over a finite field.

When the embedding degree k is greater than 1 as in Lemma 3.2, then taking any Q ∈
G2 \ 0E gives a non-degenerate pairing eW,r(P,Q). The same is true for the Tate pairing by
Proposition 3.4. However when the embedding degree k is 1, and E[r](Fq) =< P > is cyclic, then
eW,r(P, P ) = 1. To get a non-degenerate Weil pairing one needs to find a Q ∈ E[r] \ E[r](Fq),
and such a point lives over an extension of degree r. But if we replace the Weil pairing by the
Tate pairing, then in this case eT,r(P, P ) 6= 1 by Section 3.4.4. This property was the original
reason for the use of the Tate pairing in the article [7].

Pairings of type I,II,III

We conclude the discussion in this section by explaining how to instantiate pairings used in
cryptographic protocols, following the classification into three types introduced in Section 1.2.2.

• Type III: The Tate pairing restricted to G1 × G2 (indeed it is non-degenerate by
Proposition 3.4).
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• Type II: Let P ∈ E[r] be a point neither in G1 nor in G2 and define G3 =< P >

to be the cyclic subgroup generated by P . Then by Proposition 3.4 the Tate pairing
restricted to G1×G3 is non-degenerate. Furthermore, since the trace of the Frobenius
has image G1 and kernel G2, the restriction of the trace to G3 is an isomorphism
between G3 and G1, so the the Tate pairing on G1 ×G3 is of Type II.

• Type I: An instantiation of Type I pairings is given by the Tate pairing on G × G,
where G = E[r](Fq), when the embedding degree k = 1 and E[r](Fq) is cyclic as
discussed in the paragraph above and in Section 3.4.4.
Another example is given by supersingular elliptic curves, in the situation of Lemma 3.2.
Indeed, for a supersingular elliptic curve E there exists a distorsion map ψ : G1 =
E[r](Fq) → E[r](Fqk) such that ψ(G1) 6= G1. In particular, eW,r(P,ψ(P )) 6= 1 and
eT,r(P,ψ(P )) 6= 1, so composing the Weil or Tate pairing with the distorsion map
gives a pairing on G1×G1. We refer to [26, 8] for more details on the construction of
ψ.

3.2.4 Ate and Optimal Ate Pairings

Miller’s basic algorithm described in the previous section is an extension of the double-and-
add method for finding a point multiple. With the inception of pairing-based protocols in the
early 2000s, the cryptographic community put in a lot of effort in simplifying and optimizing
this algorithm. The complexity of Miller’s algorithm heavily depends on the length of the Miller
loop. Major progress in pairing computation was made in 2006, with the introduction of the loop-
shortening technique. This construction, called the eta pairing, was first proposed by Barreto et
al. on supersingular curves and further simplified and extended to ordinary curves by Hess et
al. In this section, we detail this construction and give explicit formulae for its implementation.

By definition, when Q ∈ G2, πq(Q) = qQ. So one can use the Frobenius endomorphism πq
to speed up the scalar multiplication Q 7→ rQ. Since Miller’s algorithm is an extended version
of the scalar multiplication, one can try to use this property of the Frobenius to speed up the
computation of the Miller function fr,Q. The first idea was to replace r by qk − 1 (which is a
multiple of r), and use the Frobenius to speed up the computation of fqk,Q. This leads to the
following result given by Hess et al. [10].

THEOREM 3.3 Let E be an elliptic curve defined over Fq and r a large prime with r|#E(Fq).
Let k > 1 be the embedding degree and let G1 = E[r]∩Ker(πq−Id) and G2 = E[r]∩Ker(πq−q Id).
Let λ ≡ q (mod r) and m = (λk − 1)/r. For Q ∈ G2 and P ∈ G1 we have

(i) (Q,P ) 7→ (fλ,Q(P ))(qk−1)/r defines a bilinear map on G2 ×G1.
(ii) Then eT,r(Q,P )m = fλ,Q(P )c(qk−1)/r where c =

∑k−1
i=0 λ

k−1−iqi ≡ kqk−1 (mod r),
so this map is non-degenerate if r - m.

In particular, let t be the trace of the Frobenius, T = t − 1, and L = (T k − 1)/r. Then T ≡ q

(mod r) so

aT : G2 ×G1 7→ µr

(Q,P ) 7→ (fT,Q(P ))(qk−1)/r

defines a pairing on G2 ×G1 when r - L, which we call the Ate pairing.

By Hasse’s Theorem 2.9, the trace of the Frobenius t is such that |t| ≤ 2√q. If t is suitably small
with respect to r, then the Ate pairing can be computed using a Miller loop of shorter size and
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is thus faster than the Tate pairing. The exact same algorithm as Algorithm 3.3 allows us to
compute the Ate pairing by replacing r with T (since denominator elimination holds, too).

Other pairings may be obtained from Theorem 3.3, by setting λ ≡ qi (mod r) [27]. Pushing
the idea further, one may look at a multiple of cr of r so that we can write cr =

∑
ciq

i with ci
small coefficients. When Q ∈ G2, computing the scalar multiplication by cr requires computing
the points ciQ, using the Frobenius to compute the ciqiQ and then summing everything. The
same idea applied to pairings shows that one can then use a suitable combination of Miller
functions fci,Q to construct a bilinear pairing that is a power m of the Tate pairing. Once again
when r - m we get a new pairing.

THEOREM 3.4 Let λ =
∑φ(k)−1

i=0 ciq
i such that λ = mr, for some integer m. Then

a[c0,...,cl] : G2 ×G1 → µr defined as

(Q,P )→

φ(k)−1∏
i=0

fq
i

ci,Q
(P ) ·

φ(k)−1∏
i=0

lsi+1Q,ciqiQ(P )
vsiQ(P )

(qk−1)/r

, (3.9)

with si =
∑φ(k)−1

j=i cjq
j defines a bilinear map. This pairing is non-degenerate if and only if

mkqk−1 6= ((qk − 1)/r)
∑φ(k)−1

i=0 iciq
i−1 (mod r), and we call it the optimal Ate pairing.

Proof. The optimal Ate pairing was proposed by Vercauteren [25]. See Section 3.4.5 where we
follow the lines of his proof.

3.2.5 Using Twists to Speed up Pairing Computations

The group G1 is defined over the base field Fq, so it admits an efficient representation. In
particular, when computing the Tate pairing over G1×G2, the Miller functions are defined over
Fq, so most of the operations during the computation are performed in Fq.

We explain here why G2 also admits an efficient representation: It is isomorphic to a subgroup
of order r on a twist defined over a subfield of Fqk . We prove this result here and we will show
in the next section that this allows us to do part of the pairing computations in a subfield Fqe ,
with e | k, rather than in Fqk .

THEOREM 3.5 Let E be an ordinary elliptic curve over Fq admitting a twist of degree
d. Assume that r is an integer such that r||#E(Fq) and let k > 2 be the embedding degree.
Then there is a unique twist E′ such that r||#E′(Fqe), where e = k/ gcd(k, d). Furthermore,
if we denote by G′2 the unique subgroup of order r of E′(Fqe) and by Ψ : E′ → E the twisting
isomorphism, the subgroup G2 is given by G2 = φ(G′2) and verifies the equation

G2 = E[r] ∩Ker([ξd]πqe − Id),

where [ξd] is an automorphism of order dividing d.

Proof. Replacing d by gcd(k, d), we can assume that d | k and that e = k/d. Take Q ∈ G2. By
the definition of G2 we know that πe(Q) = qeQ. But since k is the smallest integer such that
qk = 1 (mod r), we have that qe = ξd (mod r), where ξda is d-th primitive root of unity in Fqk .
Note that we have an isomorphism [·] : µd → Aut(E) ( [22, Corollary III.10.2]). Points in G2
are eigenvectors for any endomorphism on the curve, and we denote by [ξd] the automorphism
such that [ξd]Q = ξ−1

d Q (mod r).
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Let E′ be a twist of degree d of E, defined over Fqe , such that Ψ◦ (Ψ−1)σ (with ·σ the action
of the Frobenius on the coefficients of the automorphism) is the automorphism [ξd] on E. If we
denote by πqe the Frobenius morphism on E′, we observe that Ψ ◦πqe ◦Ψ−1 = Ψ ◦ (Ψ−1)σ ◦πqe .
Therefore, we have

G2 ⊆ Ker([ξd]πqe − Id).

Let G′2 = Ψ−1(G2). Then Ψ ◦ πqe ◦ Ψ−1(G2) = G2. It follows that G′2 is invariant under πqe ,
hence it is defined over Fqe .

Using this result, one can compute the Miller loop for the Ate (or optimal Ate) pairing
aT (Q,P ) by working over G′2 to compute the multiples of Ψ−1(Q), and going back to G2 only to
evaluate the Miller functions on P . Alternatively one can do the full computation on the twist
E′, as shown in [6].

THEOREM 3.6 Let E be an elliptic curve defined over Fq. Assume that r is an integer
such that r||#E(Fq) and let k > 2 be the embedding degree. Let E′ be the twist of degree d and
Ψ : E′ → E the associated twist isomorphism, as in Theorem 3.5. Consider Q ∈ G2, P ∈ G1,
and let Q′ = Ψ−1(Q) and P ′ = Ψ−1(P ). Let aT (Q,P ) be the Ate pairing of Q and P . Then

aT (Q,P )gcd(d,6) = aT (Q′, P ′)gcd(d,6)

where aT (Q′, P ′) = fT,Q′(P ′)(qk−1)/r uses the same parameter loop.

This shows that the pairing onG2×G1 may be seen as aG1×G2 pairing on a twist defined over
Fqe . Indeed, since G2 = E[r]∩Ker([ξd]πqe−Id) by Theorem 3.5, G1 = E[r]∩Ker([ξd]πqe−qe Id),
so Ψ−1(G2) = G1(E′) and Ψ−1(G1) = G2(E′), with G1(E′) and G2(E′) the subgroups giving
the eigenvectors of the Frobenius on E′.

The twist improves the Ate pairing on G2 × G1 by giving an efficient representation of G2.
Alternatively, it can be used to give a shorter Miller loop for pairings on G1 ×G2 [13].

THEOREM 3.7 Let λ ≡ q (mod r) and m = (λk − 1)/r. Assume that E has a twist of
degree d and set n = gcd(k, d), e = k/n.

(i) (P,Q) 7→ (fλe,P (Q))(qk−1)/r defines a bilinear map on G1 ×G2.
(ii) eT,r(P,Q)m = fλe,P (Q)c(qk−1)/r where c =

∑n−1
i=0 λ

e(n−1−i)qei ≡ nqe(n−1) (mod r),
so this map is non-degenerate if r - m.

In particular, if t is the trace of the Frobenius, T = t − 1, and L = (T k − 1)/r, then
(P,Q) 7→ (fT e,P (Q))(qk−1)/r defines a pairing if r - L, which we call the twisted Ate pairing.

One can also define a twisted optimal Ate pairing on G1 ×G2. This was given by Hess [12],
using a general formula for the pairing function. We present it here in a simplified way, better
suited for implementations.

THEOREM 3.8 Assume that E has a twist of degree d and set n = gcd(k, d), e = k/n. Let
λ =

∑φ(k)/e−1
i=0 ciq

ie such that λ = mr, for some integer m. Then

a[c0,...,cl] : G1 ×G2 → µr (3.10)

(P,Q) →

φ(k)/e−1∏
i=0

fq
ie

ci,P
(Q) ·

φ(k)/e−1∏
i=0

lsi+1P,ciqieP (Q)
vsiP (Q)

(qk−1)/r

,
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where si =
∑φ(k)/e−1

j=i cjq
je, defines a bilinear map on G1 ×G2. This pairing is non-degenerate

if and only if mkqk−1 6= ((qk − 1)/r)
∑φ(k)/e−1

i=0 iciq
e(i−1) (mod r).

Proof. See Section 3.4.5.

3.2.6 The Optimal Ate and Twisted Optimal Ate in Practice

In order for the optimal Ate and twisted optimal Ate pairings to give a short Miller loop, we
would like the coefficients ci to be as small as possible. The idea is to search for the coefficients
ci in Equations 3.9 and 3.10 by computing short vectors in the following lattice:

r 0 0 . . . 0
−q 1 0 . . . 0
−q2 0 1 . . . 0
...

...
...

...
−ql 0 0 . . . 1

 , (3.11)

where l is either φ(k) − 1 in the optimal Ate pairing case, and φ(k)/e − 1, in the twisted Ate
case. The volume of this lattice is r, hence by Minkowski’s theorem there is a short vector v in
the lattice such that ||v||∞ ≤ r1/l+1.

Starting from this bound and Theorem 3.4, Vercauteren discusses the existence of pairings
that may be computed with a Miller loop of size (log r)/φ(k). Note that Theorem 3.4 does not
guarantee that the pairing defined in Equation 3.9 can be computed in (log r)/φ(k) operations.
If the procedure described above produces a short vector with several ci coefficients different
from zero, then computing each fci,Q(P ) separately costs O((log r)/φ(k)) operations. Possible
optimizations would be to use multi-exponentiation techniques or a parallel version of Miller’s
algorithm to compute all the fci,Q(P ) functions at once. However, in the case of parametric
families introduced in Chapter 4, the entire computation can be carried with a single basic
Miller loop, and the pairing given in Theorem 3.4 is indeed optimal, thanks to the special
form of the short vectors we obtain. To explain this idea, we give explicit formulae for this
computation in the case of several Brezing-Weng-type constructions of pairing-friendly curves.
Since k is small, these formulae can be obtained by computing short vectors for the lattice given
by the matrix 3.11, by using an available implementation of the LLL algorithm. We recommend
using, for instance, the functions LLL() or BKZ() in Sage [23].

Example 3.1 [25, Vercauteren] We consider the Barreto-Naehrig family of curves that was
introduced in [?]. We are briefly reminded here that these families have embedding degree 12
and are given by the following parametrizations:

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,
t(x) = 6x2 + 1,
q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.

By Theorem 3.3, the length of Miller’s loop for the Ate pairing is log2r
2 . We will show that the

complexity of the computation of the optimal Ate pairing for this family is O( log2 r
4 ). Indeed, in

order to apply Theorem 3.4, we compute the following short vector:

[6x+ 2, 1,−1, 1].

Note that in this case, 3 out of the 4 coefficients in the short vector are trivial. We conclude
that the optimal twisted Ate pairing for this family of curves is given by the simple formula:

(f6x+2,Q(P ) · lQ3,−Q2 (P )l−Q2+Q3,Q1 (P )lQ1−Q2+Q3,[6x+2]Q(P ))
q12−1
r ,
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where Qi = Qq
i , for i = 1, 2, 3. Note that the evaluation at Q of vertical lines can actually be

ignored because of the final exponentiation. The only costly computation is that of f6x+2,Q(P )
and costs O(log r/2) operations. While the twisted Ate has loop length log r, a search for a
short vector giving the optimal twisted Ate pairing gives

[6x2 + 2x, 2x+ 1].

Hence we need to compute fx,P (Q), fx2,P (Q) and the complexity of computation is O(log r/2).

Example 3.2 We consider here the family of curves with k = 18 proposed by Kachisa et al.,
whose construction is given in Chapter 4. We briefly recall that this family is parametrized by
the following polynomials:

r(x) = x6 + 37x3 + 343,

t(x) = 1
7(x4 + 16x+ 7),

q(x) = 1
21(x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401).

A similar search for the optimal twisted Ate pairing on curves with embedding degree 18 gives,
for example, the short vector

[1, x3 + 18].

Hence the complexity of Miller’s algorithm is log2r
2 . The optimal Ate pairing computation for

curves with k = 18 has complexity O( log r6 ).

Building on these results, Vercauteren [25] introduces the concept of optimal pairing, i.e., no, a
pairing that is computed in log r/φ(k) Miller iterations. He puts forward the following conjecture:

Optimality conjecture: Any non-degenerate pairing on an elliptic curve without any effi-
ciently computable endomorphisms different from the powers of the Frobenius requires at least
O(log r/φ(k)) basic Miller iterations.

Hess [12] proved the optimality conjecture for all known pairing functions. The pairings
given by the formulae in Theorem 3.4 are the fastest known pairings at the time of this writing.
On curves endowed with efficiently computable endomorphisms other than the Frobenius (such
as automorphisms), it is currently not known how to use the action of these endomorphisms to
improve on pairing computation.

Choosing the right pairing

Assume that we are in the situation of Proposition 3.4, and let P ∈ G1 and Q ∈ G2. Then one
may choose among the Tate pairing er,W (P,Q), the Ate (or Optimal Ate) pairing ar,T (P,Q), the
twisted Ate pairing . . . Furthermore, when k is even, we can apply denominator elimination for
the Tate pairing thanks to the final exponentiation. On the downside, one should remember that
the final exponentiation may be expensive too. Indeed, the loop length of the final exponentiation
is around k log q compared to log q for the Miller step. So the implementation of the final
exponentiation step should not be neglected and we will give in Chapter 7 efficient algorithms
for its computation.

We conclude that the choice of parameters for applications is a complex matter, with multiple
aspects to take into account. Therefore, we devote the whole of Chapter 10 to discussing this
problem. In the remainder of this chapter, we give optimized formulae for computing one step
of a Miller loop.
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3.3 Formulae for Pairing Computation

One of the most efficient ways of computing pairings on an elliptic curve given by a Weierstrass
equation is to use Jacobian coordinates [17], [9]. A point [X,Y, Z] in Jacobian coordinates
represents the affine point (X/Z2, Y/Z3) on the elliptic curve. A point in projective coordinates
[X,Y, Z] represents the point (X/Z, Y/Z) on the elliptic curve.

In this section we denote by s and m the costs of squaring and multiplication in Fq and
by S and M the costs of these operations in the extension field Fqk , if k > 1. We denote by
da the cost of the multiplication by a constant a. Sometimes, if q is a sparse prime (such as
a generalized Mersenne prime), we may assume that s/m = 0.8. However, when constructing
pairing friendly curves, it is difficult to obtain such primes. Hence, we generally have s/m ≈ 1.

3.3.1 Curves with Twists of Degree 2

In the remainder of this section, we suppose that the embedding degree is even and that E has
a twist of order 2 defined over Fqk/2 . From Theorem 3.5 and by using the equations of twists
given in Subsection 2.3.6, we derive an efficient representation of points in G2. It follows that
the subgroup G2 = 〈Q〉 ⊂ E(Fqk) can be chosen such that the x-coordinates of all its points
lie in Fqk/2 and the y-coordinates are products of elements of Fqk/2 with

√
β, where β is not a

square in Fqk/2 and
√
β is a fixed square root in Fqk .

For curves with twists of degree 2, the fastest known formulae for Miller’s algorithm dou-
bling [14] and addition steps [1] are in Jacobian coordinates. Therefore we represent the point
T as T = [X1, Y1, Z1,W1], where [X1, Y1, Z1] are the Jacobian coordinates of the point T on the
Weierstrass curve and W1 = Z2

1 .

The doubling step
We will look at the doubling step in the Miller loop. We represent the point T as T =

(X1, Y1, Z1,W1), where (X1, Y1, Z1) are the Jacobian coordinates of the point T on the Weier-
strass curve and W1 = Z2

1 . We compute 2T = (X3, Y3, Z3,W3) as:

X3 = (3X2
1 + aW 2

1 )2 − 8X1Y
2
1 ,

Y3 = (3X2
1 + aW 2

1 )(4X1Y
2
1 −X3)− 8Y 4

1 ,

Z3 = 2Y1Z1,

W3 = Z2
3 .

We write the normalized function lT,T that appears in Algorithm (3.3) as :

lT,T (xQ, yQ) = (Z3W1y − 2Y 2
1 − (3X2

1 + aW 2
1 )(W1x−X1))/(Z3W1).

Thanks to elimination in the final exponentiation, the term Z3W1 can be ignored. For k = 2,
we have that x ∈ Fq and we can compute the function lT,T as:

lT,T (x, y) = Z3W1y − 2Y 2
1 − (3X2

1 + aW 2
1 )(W1x−X1).

For k > 2, we have that x is in Fqk/2 and the computation is slightly different:

lT,T (x, y) = Z3W1y − 2Y 2
1 −W1(3X2

1 + aW 2
1 )x+X1(3X2

1 + aW 2
1 ).

The computations are done in the following order:
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A = W 2
1 , B = X2

1 , C = Y 2
1 , D = C2, E = (X1 + C)2 −B −D,

F = 3B + aA, G = F 2, X3 = −4E +G, Y3 = −8D + F · (2E −X3),
Z3 = (Y1 + Z1)2 − C −W1,W3 = Z2

3 , H = (Z3 +W1)2 −W3 −A, I = H · y,
J = (F +W1)2 −G−A, K = J · x, L = (F +X1)2 −G−B

lT,T = I − 4C −K + L, f = f2 · lT,T .

The operation count gives 10s+3m+1a+1S+1M for k = 2 and 11s+(k+1)m+1da+1S+1M
if k > 2.

The mixed addition step
In implementations, it is often possible to choose the point P such that its Z-coordinate is 1,

in order to save some operations. The addition of two points T = [X1, Y1, Z1] and P = [X2, Y2, 1]
is called mixed addition.

The result of the addition of T = [X1, Y1, Z1,W1] and P = [X2, Y2, 1] is T+P = [X3, Y3, Z3,W3]
with:

X3 = (X1 +X2Z
2
1 )(X1 −X2Z

2
1 )2 + (Y2Z

3
1 − Y1)2,

Y3 = (Y2Z
3
1 − Y1)(X1(X1 −X2Z

2
1 )2 −X3) + Y1(X1 −X2Z

2
1 )2,

Z3 = Z1(X2Z
2
1 −X1),

W3 = Z2
3 ,

T3 = W3xQ −X3.

The line lT,P is given by the equation:

lT,P = Z3yQ − Y2Z3 − (2Y2Z
3
1 − 2Y1)(xQ −X2).

The computations are done in the following order:

A = Y 2
2 , B = X2 ·W1, D = ((Y2 + Z1)2 −A−W1) ·W1, H = B −X1, I = H2

E = 4I, J = H · E,L1 = D − 2Y1, V = X1 · E,X3 = L2
1 − J − 2V,

Y3 = (D − Y1) · (V −X3)− 2Y1 · I
Z3 = (Z1 +H)2 −W1 − I,W3 = Z2

3 , lT,P = 2Z3 · yQ − (Y2 + Z3)2 +A+W3 − 2L1 · (xQ −X2).

The operation count gives 6s + 6m + km + 1M [1].

3.3.2 Curves with Equation y2 = x3 + ax

These curves have twists of degree 4 and assume k is divisible. Therefore, by using the equations
for twists given in Section 2.3.6 and Theorem 3.5, we derive that a point Q ∈ G2 may be written
as

(xQ, yQ) = (x′Qν1/2, y′Qν
3/4),

where xQ′ , yQ′ , ν ∈ Fqk/4 and X4 − ν is an irreducible polynomial. Moreover, thanks to the
simple form of the Weierstrass equation, the doubling and addition formulae for these curves
are simpler and faster than in the case of curves allowing only twists of degree 2. The fastest
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formulae for pairing computation on these curves [6] use Jacobian coordinates. In the doubling
step, we compute 2T as

X3 = (X2
1 − aZ2

1 )2,

Y3 = 2Y1(X2
1 − aZ2

1 )((X2
1 + aZ2

1 )2 + 4aZ2
1X

2
1 ),

Z3 = 4Y 2
1 .

The line function is

lT,T = −2(3X2
1Z1 + aZ3

1 )xQ + (4Y1Z1)yQ + 2(X3
1 − aZ2

1X1).

The computation is done using the following sequence of operations:

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = aC,X3 = (A−D)2,

E = 2(A+D)2 −X3, F = ((A−D + Y1)2 −B −X3), Y3 = E · F,Z3 = 4B,
G = −2Z1(3 ·A+D), H = 2((Y1 + Z1)2 −B − C), II = (X1 +A−D)2 −X3 −A,

lT,T = G · xQ +H · yQ + II.

The total cost is (2k/d + 2)m + 8s + 1da. In the mixed addition step of T = (X1, Y1, Z1) and
P = (X2, Y2, 1) the sum is T + P = (X3, Y3, Z3) with

X3 = (Y1 − Y2Z
2
1 )2 − (X1 +X2Z1)S,

Y3 = ((Y1 − Y2Z
2
1 )(X1S −X3)− Y1SU)UZ1,

Z3 = (UZ1)2,

where S = (X1−X2Z1)2Z1 and U = X1−X2Z1. This is computed with the following operations:

A = Z2
1 , E = X2 · Z1, G = Y2 ·A,H = X1 − E, I = 2(Y1 −G), II = I2, J = 2Z1 ·H

K = 4J ·H,X3 = 2II − (X1 + E) ·K,Z3 = J2

Y3 = ((J + I)2 − Z3 − II) · (X1 ·K −X3)− Y1 ·K2, Z3 = 2Z3

lT,P = I ·X2 − I · xQ + J · yQ − J · Y2.

The total cost of the computation is ((2k/d) + 9)m + 5s.

3.3.3 Curves with equation y2 = x3 + b

These curves have twists of degree 6. Therefore, by using the equations for twists given in
Section 2.3.6 and Theorem 2.12, we derive that a point Q ∈ G2 may be written as

(xQ, yQ) = (x′Qν1/3, y′Qν
1/2),

where xQ′ , yQ′ , ν ∈ Fqk/6 and X6− ν is an irreducible polynomial. The fastest existing formulae
on these curves use projective coordinates. Following [6], we compute 2T as:

X3 = 2X1Y1(Y 2
1 − 9bZ2

1 ),
Y3 = Y 4

1 + 18bY 2
1 Z

2
1 − 27b2Z4

1 ,

Z3 = 8Y 3
1 Z1.
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TABLE 3.1 Cost of one step in Miller’s algorithm for even embedding degree.

Doubling Mixed addition
k = 2 k ≥ 4

J [14],[1] 3m + 10s + 1a + 1M + 1S (1+k)m+11s+1a+1M+1S (6+k)m+6s+1M

J ,y2 = x3 + b (2k/d+2)m+7s+1a+1M+1S (2k/d+2)m+7s+1a+1M+1S (2k/d+9)m+2s+1M
e = 2, 6 [6]

J , y2 = x3 + ax (2k/d+2)m+8s+1a+ 1M+1S (2k/d+2)m+8s+1a+ 1M+1S (2k/d+12)m+4s+1M
e = 2, 4 [6]

The line equation is

lT,T = 3X2
1 · xQ − 2Y1Z1 · yQ + 3bZ2

1 − Y 2
1 .

The computation is performed in the following order:

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = 3bC,E = (X1 + Y1)2 −A−B,

F = (Y1 + Z1)2 −B − C,G = 3D,X3 = E · (B −G),
Y3 = (B +G)2 − 12D2, Z3 = 4B · F,H = 3A, I = −F, J = D −B.

lT,T = H · xQ + I · yQ + J.

The total count for the above sequence of operations is (2k/d)m + 5s + 1db. In the mixed
addition step of T = (X1, Y1, Z1) and P = (X2, Y2, 1) the sum is T + P = (X3, Y3, Z3) with

X3 = (X1 − Z1X2)(Z1(Y1 − Z1Y2)2 − c(X1 + Z1X2)(XS − Z1X2)2),
Y3 = (Y1 − Z1Y2)(c(X1 + Z1X2)(X1Z2 − Z1X2)2 − Z1(Y1 − Z1Y2)2)− cY1(X1Z2 − Z1X2)3,

Z3 = cZ1(X1 − Z1X2)3,

where c = 1/b. The line formula is given by

lT,P = (Y1 − Z1Y2) · (X2 − xQ)− (X1 − Z1X2) · Y2 + (X1 − Z1X2) · Z2yQ

The computation is performed using the following sequence of operations:

t1 = Z1 ·X2, t1 = X1 − t1, t2 = Z1 · Y2, t2 = Ys − t2, {T, P} = c1 · t2 − t1 · Y2 + t1 · yQ
t3 = t21, t3 = c · t3, X3 = t3 ·X1, t3 = t1 · t3, t4 = t22

t4 = t4 · Z1, t4 = t3 + t4, t4 = t4 −X3, X3 = −X3 + t4, t2 = t2 ·X3, Y3 = t3 · Y1

Y3 = t2 − Y3, X3 = t1 · t4, Z3 = Z1 · t3,

where c1 = X2 − xQ. The total cost is (2k/d + 9)m + 2s. In Table 3.1 we summarize all these
results.

3.4 Appendix: TheGeneral Formof theWeil and TatePairing

The versions of the Tate and Weil pairing we gave required us to evaluate a function on a point.
In this section we will give a generalized definition that requires us to evaluate a function on a
divisor.

Furthermore, we have seen that during the execution of Miller’s algorithm, some intermediate
poles and zeroes are introduced. As we pointed out, this is not really a problem in practice, since
this situation only happens when computing a pairing between P and Q with Q a multiple of
P . As explained in Section 3.2.2, for the Tate pairing we can circumvent the problem by using
a random point R.
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Another way to circumvent the problem is to define the (extended) evaluation of a function
on a point or a divisor even in the case when the supports are non-disjoint. This allows us to
generalize Miller’s algorithm so that it always works and to give a more general definition of
the Weil and Tate pairing. From this more general definition, we can prove their bilinearity and
that they are non-degenerate.

3.4.1 Evaluating Functions on a Divisor

If D =
∑
ni[Pi] is a divisor on E, we define the support supp(D) as the set {Pi | ni 6= 0}. By

abuse of langage we define the support of f as the support of div f , so the support of f is simply
the union of the zeroes and poles of f .

If the support of f and the support of D are disjoint, then one can define the evaluation of
f on D =

∑
niPi as

f(D) =
∏
i

f(Pi)ni . (3.12)

It is easy to check that we have (fg)(D) = f(D) · g(D) and f(D1 +D2) = f(D1).f(D2).
One can extend this definition even when the supports are non-disjoint by fixing once and for

all uniformizers tP for every point P ∈ E(K). Then one can define the extended evaluation of
f at P as ( f

t
ordP (f)
P

(P ), ordP (f)). We will often simply refer to f

t
ordP (f)
P

(P ) as the value of f at P
and to ordP (f) as the valuation (or the order) of this value. If P is not in the support of f then
the extended evaluation of f at P is simply (f(P ), 0). One can define a product on the extended
values by taking the product of the values and adding the valuations: (α, n).(β,m) = (αβ, n+m).
This definition of the product allows us to have the standard property:

(fg)(P ) = f(P ) · g(P ).

By using Equation (3.12) one can define the extended evaluation of f at a divisor D =
∑
niPi

as f(D) =
∏
i f(Pi)ni where this time the product is on extended values. By the definition of

f(D) and the product on extended values, we have (fg)(D) = f(D) · g(D) and f(D1 + D2) =
f(D1) · f(D2).

When D and f do not have disjoint supports, one needs to be careful that the extended value
f(D) depends on the choice of uniformizers and is not intrinsic to the curve. For example, if P
is a point in the support of f with order n, then changing the uniformizer tP at P by t′P = αtP
changes the value by α−n (but the order stays the same). So in the following we fix once and
for all the following uniformizers for the elliptic curve:

• t0E = x/y;
• tP = x− xP , except when H(xP ) = 0;
• tP = y, when H(xP ) = 0 (so yP = 0).

A powerful tool used in computing evaluation of divisors is Weil’s reciprocity theorem.

THEOREM 3.9 (Weil’s reciprocity theorem) Let f, g ∈ K(E). Then

f(div(g)) = (−1)
∑

P
ordP (f) ordP (g)

g(div(f)).

Expressing the above equation in terms of divisors (see Definition 3.1), we get the following refor-
mulation: Let D1 and D2 be two degree 0 divisors and define ε(D1, D2) = (−1)

∑
P

ordP (D1) ordP (D2).
If D1 and D2 are principal, then

fD1 (D2) = ε(D1, D2)fD2 (D1).
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Proof. See [21, p. 44–46].

3.4.2 Miller’s Algorithm for Pairing Computation

Let f ∈ k(E) be a rational function on E and D a divisor of degree 0. Then f(D) depends only
on div(f), not on f . Indeed, if g has the same divisor as f , there exists λ ∈ K∗ such that g = λf

so that g(D) = λdegDf(D) = f(D). One can see the divisor F = div f as an efficient way to
encode the rational function f . Recall that we note fF the normalized function with divisor F .

As we have seen in Section 3.2, all pairing computations involve the following computation:
Given P 6= 0E a point of r-torsion on E, and Q 6= P, 0E a point of the elliptic curve, evaluate
fr,P (Q). We recall that fr,P is the normalized function with divisor r([P ]− [0E ]).

This computation is a particular case of the following more general framework: Let P 6= 0E
be a point of r-torsion on E, and Q 6= 0E a point of the elliptic curve. Let DP and DQ be two
divisors linearly equivalent to [P ]− [0E ] and [Q]− [0E ], respectively. Then evaluate the function
frDP on the divisor DQ.

The evaluation makes sense because r[P ] − r[0E ] is a principal divisor by Proposition 3.1,
so rDP is principal too. Taking DP = [P ]− [0E ] and DQ = [Q]− [0E ], we recover the previous
computation since by Definition 3.3, the evaluation of a function associated to r[P ] − r[0E ]
on [Q] − [0E ] is simply fr,P (Q). One has to take care here that the divisors r[P ] − r[0E ] and
[Q]−[0E ] do not have disjoint support, so the evaluations above are to be understood as extended
evaluations: If P 6= Q then the value fr,P (Q) has valuation −r, otherwise the value has valuation
r − r = 0.

We have seen in Section 3.1 how to use Miller’s algorithm to compute fr,P (Q). More generally,
given F and D, two degree-zero divisors, we give a general version of Miller’s algorithm, which
allows us to compute the value fF (D). The key principle behind this extended Miller’s algorithm
is to use the functions µP,Q introduced in Definition 3.2.

Whenever we have two points P and Q different from 0E in the support of F , we can
decompose F as F = [P ] + [Q] +F ′ and then use the function µP,Q to get F = [P ] + [Q]− [P +
Q] − [0E ] + [P + Q] + [0E ] + F ′ = div(µP,Q) + [P + Q] + [0E ] + F ′ = div(µP,Q) + F1, where
F1 = [P + Q] + [0E ] + F ′. This decomposition of F means that we just need to evaluate µP,Q
and F1 on D and then take the product. Since µP,Q is an explicit function, evaluating it on D
simply means evaluating it on each point in the support of D and then taking the product.

Now to evaluate F1 on D we proceed as we did for F and decompose F1 again. Each time
we decompose the divisor, we decrease the number of non-zero points in the support (counted
with multiplicities). After a finite number of iterations, we find a divisor Fn of degree 0, which
has at most one non-zero point in its support (counted with multiplicity). So Fn is of the form
[P ] − [0E ] and since F is principal, Fn is principal too, and by Proposition 3.1 we have that
P + 0E = 0E , or in other words P = 0E and Fn = 0. Of course, fFn = 1 and Fn(D) = 1.

So evaluating F on D decomposes to the evaluation of the functions µP,Q appearing in the
decomposition of F on the points in the support of D. We give explicit formulae in Lemma 3.4.

LEMMA 3.4 (Evaluating µP,Q) Let P = (xP , yP ), Q = (xQ, yQ), and R = (xR, yR)
be points on E, Then µP,Q = lP,Q

vP,Q
where lP,Q = y − αx − β with α = yP−yQ

xP−xQ when P 6= Q

and α = H ′(xP ) when P = Q, β = yP − αxP = yQ − αxQ , and, vP,Q = x − xP+Q with
xP+Q = α2 − xP − xQ.

Assume that P , Q, and P + Q are all different from 0E.The extended value of vP,Q(R) is
given by the following cases (taking into account that div(vP,Q) = [P +Q] + [−P −Q]− 2[0E ]):

• If R is different from P +Q, −P −Q or 0E, then R is not in the support of div(vP,Q)
and we have a value with valuation 0: vP,Q(R) = xR − xP+Q;
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• If R = 0E then we have a value with valuation −2. By definition, since the uniformizer
at 0E is the function y/x:

vP,Q(0E) = x− xP+Q

(y/x)−2 (0E) = x2(x− xP+Q)
y2 (0E) = 1

because y2 = x3 + ax+ b;
• If R = P + Q or R = −P − Q but P + Q 6= −P − Q (or in other words P + Q is

not a point of 2 torsion), then we have a value with valuation 1. The uniformizer is
x− xR because H(xR) 6= 0 since R is not a point of 2-torsion, and the value is

vP,Q(R) = x− xP+Q

x− xR
(xR) = 1

because in this case xR = xP+Q;
• If R = P +Q and P +Q is a point of 2-torsion, then this time we have a value with

valuation 2. Since H(xR) = 0, the uniformizer is y, so we have

vP,Q(R) = x− xP+Q

y2 (xR) = 1
H ′(xP+Q) .

Indeed, if we write H(x) = (x−xP+Q)g(x), then since y2 = H(x) we have x−xP+Q
y2 (xR) =

1
g(xP+Q) , and we compute H ′(x) = (x − xP+Q)g′(x) + g(x) so that H ′(xP+Q) =
g(xP+Q).

The extended value of lP,Q(R) is given by the following cases (taking into account that
div(lP,Q) = [P ] + [Q] + [−P −Q]− 3[0E ]):

• If R is different from P , Q, −P −Q, or 0E, then R is not in the support of div lP,Q
and we have a simple value with valuation 0: lP,Q(R) = yR − αxR − β;

• If R = 0E then we have a value with valuation −3 and

lP,Q(0E) = y − αx− β
(x/y)−3 (0E) = (y − αx− β)x3

y3 (0E) = 1;

• If R = P or R = Q or R = −P −Q but lP,Q is not tangent to E at R, then we have
a value with valuation 1. If R is not a point of 2- torsion then, the uniformizer is
tR = x− xR and the value is

lP,Q(R) = y − αx− β
x− xR

(R) = y − yR − α(x− xR)
x− xR

(R) = y − yR
x− xR

(R)−α = H ′(xR)
2yR

−α.

If R is a point of two torsion, then the uniformizer is tR = y and the value is

lP,Q(R) = y − αx− β
y

(R) = 1− αx− xR
y

(R) = 1.

• If R = P , R = Q or R = −P − Q, and lP,Q is tangent to E at R but is not an
inflection point, then we have a value of valuation 2. In this case R cannot be a
point of 2- torsion, so the uniformizer is tR = x − xR. To compute the value we
must compute the formal series corresponding to y in the completion of K[E] along
x − xR up to order 2: y = yR + α(x − xR) + α2(x − xR)2 + O(x − xR)3. We have
α2 = H′′(xR)/2−α2

2yR , so the value is

lP,Q(R) = y − yR − α(x− xR)
(x− xR)2 (R) = α2.



3-24 Guide to Pairing-Based Cryptography

• Finally, when R is an inflection point of H, so that R = P = Q = −P − Q (and in
particular is a point of 3-torsion), then we have a value with valuation 3. We compute
the formal series corresponding to y in the completion of K[E] along x − xR up to
order 3: y = yR + α(x − xR) + 0(x − xR)2 + α3(x − xR)3 + O((x − xR)4). We have
α3 = 1

2yR and

lP,Q(R) = y − yR − α(x− xR)
(x− xR)3 (R) = α3.

Combining these values we can now compute the extended value of µP,Q(R) (taking into
account that div(µP,Q) = [P ] + [Q]− [P +Q]− [0E ]):

• When R is not equal to P , Q, P +Q, −P −Q, or 0E then the valuation is 0 and we
have a simple value:

µP,Q(R) = yR − αxR − β
xR − xP+Q

. (3.13)

(If R = −P −Q and R is not in the support of div(µP,Q) then the valuation is also 0,
but Equation (3.13) is not well defined, so to compute the value we need to look at the
particular cases above);

• When R = 0E the valuation is −1 and we have

µP,Q(0E) = 1. (3.14)

Since the value is 1 we see that the function µP,Q is indeed normalized at 0E;
• For all the other cases we refer to the study of the special cases done for vP,Q and
lP,Q above.

Finally, when P = −Q (but P 6= 0E) so that P + Q = 0E, then µP,Q = x − xP and the
extended value of µP,Q at R is given by the same formulae as the study of vP,Q(R) above.

The second key insight into Miller’s algorithm is to speed up the decomposition algorithm
above by using a double - and - add algorithm. Indeed, when P is a point on an elliptic curve, the
scalar multiplication P 7→ r.P is computed a lot faster when doing a double- and- add algorithm
than when doing a naive decomposition rP = P + P + · · · + P : The complexity is O(log r)
additions rather than O(r). Proposition 3.2 and Algorithm 3.1 outline a similar strategy to
evaluate the function fF where F is the divisor r[P ] − r[0E ]. More generally, by decomposing
a divisor F as F = F1 + 2F2 + 4F3 + · · · + 2nFn, one can derive a general double - and - add
algorithm for divisor evaluation.

3.4.3 The General Definition of the Weil Pairing

THEOREM 3.10 Let E be an elliptic curve, r a prime number, and P and Q two points of
r-torsion on E. Let DP be a divisor linearly equivalent to [P ] − [0E ] and let DQ be a divisor
linearly equivalent to [Q]− [0E ]. Then

eW,r(P,Q) = ε(DP , DQ)r frDP (DQ)
frDQ(DP ) (3.15)

is well defined, does not depend on the choice of uniformizers nor on the choice of DP and DQ

(ε(DP , DQ) = ±1 is defined in Theorem 3.9 and has value 1 if DP and DQ have disjoint support).
Furthermore, the application E[r]×E[r]→ µr : (P,Q) 7→ eW,r(P,Q) is a pairing, called the Weil
pairing. The pairing eW,r is an alternate pairing, which means that eW,r(P,Q) = eW,r(Q,P )−1.
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Remark 3.2 We recover Theorem 3.1 by taking DP = [P ]−[0E ] and DQ = [Q]−[0E ]. Indeed,
by Proposition 3.2, we get

eW,r = (−1)r fr,P (Q)
fr,Q(P ) .

Proof. The fact that eW,r is alternate is immediate from Equation (3.15).
We have seen in Section 3.4.2 that the divisor r[P ] − r[0E ] is principal. We deduce that if

DP is linearly equivalent to [P ]− [0E ] then rDP is also principal, hence Equation (3.15) is well
defined.

Let DP,1 and DP,2 be two divisors linearly equivalent to [P ] − [0E ]. Then there exists a
rational function g ∈ k(E) such that DP,1 = DP,2 + div g. Then

ε(DP1 , DQ)r
frDP,1 (DQ)
frDQ(DP,1) = ε(DP1 , DQ)r

frDP,2 (DQ) · g(DQ)r

frDQ(DP,2) · frDQ(div g) . (3.16)

But by Weil’s reciprocity theorem (Theorem 3.9), we have

frDQ(div g) = ε(div g, rDQ)g(rDQ) = ε(div g, rDQ)g(DQ)r.

Since ε(DP1 , DQ)rε(div g, rDQ) = ε(DP1 , DQ)r, Equation (3.16) simplifies to

ε(DP1 , DQ)r
frDP,1 (DQ)
frDQ(DP,1) = ε(DP2 , DQ)r

frDP,2 (DQ)
frDQ(DP,2) ,

which shows that eW,r(P,Q) does not depend on the linear equivalence class of DP . Likewise
by (anti-)symmetry, it does not depend on the linear equivalence class of DQ.

To show that it does not depend on the choice of uniformizers, we can as well take DP =
[P ] − [0E ] and DQ = [Q] − [0E ] (so that ε(DP , DQ) = −1). Then a function associated to
rDP is the function frDP = fr,P defined in Definition 3.4. If R is a point on the elliptic curve,
the evaluation fr,P (R) does not depend on the choice of uniformizers, except when R is in the
support of div fr,P (i.e. if R = P or R = 0E).

Going back to the definition of eW,r(P,Q) as

eW,r(P,Q) = (−1)r fr,P ([Q]− [0E ])
fr,Q([P ]− [0E ]) = (−1)r

fr([P ]−[0E ])([Q]− [0E ])
fr([Q]−[0E ])([P ]− [0E ]) ,

we see that the result does not depend on the uniformizers, except possibly when we change the
uniformizer for 0E , and (when P = Q) when we change the uniformizer for P . But if we replace
the uniformizer x/y for 0E by αx/y, then both the numerator and denominator are multiplied
by αr, hence the result stays the same. Likewise, when P = Q and we change the uniformizer
at P (actually from the definition it is obvious that eW,r(P, P ) = 1, whatever the uniformizer at
P ).

We are left with showing bilinearity and non-degeneracy. For that it will be convenient to
give yet another form of the Weil pairing, which is not convenient for computations but gives
easier proofs. If D = [R] is a divisor, we define r∗D as r∗D =

∑
S∈E(K),rS=R[S]. This extends

by linearity to define a divisor r∗D for a general divisor D. If D is of degree 0, then r∗D is also
of degree 0. Furthermore, if D = div(f), then r∗D = div(f ◦ [r]).

If DP = [P ]− [0E ], then using Proposition 3.1 one can check that r∗DP is a principal divisor.
Let gP be a function corresponding to r∗DP . By definition of gP , if P0 is a point in E such that
P = rP0, then div gP =

∑
T∈E[r][P0 +T ]− [T ]. Now the function x 7→ gP (x+Q) has for divisor
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div gP (x+Q) =
∑

T∈E[r][P0 +T−Q]− [T−Q]. But since Q ∈ E[r], then div gP (x+Q) = div gP ,
hence both functions differ by a constant. We claim that this constant is eW,r(P,Q), hence:

eW,r(P,Q) = gP (x+Q)/gP (x) (3.17)

(whenever the right-hand side is well defined).
Fix DQ = [Q] − [0E ], let Q0 be such that Q = rQ0, gQ is a function with divisor r∗DQ

(and normalized at 0E), and define hQ to be the function normalized at 0E with divisor (r −
1)[Q0]+ [Q0−Q]−r[0E ] (which exists by Proposition 3.1). Let HQ =

∏
T∈E[r] hQ(x+T ). Then

HQ = grQ = fQ ◦ r. Indeed, they all have associated divisor
∑

T∈E[r] r[Q0 + T ] − r[T ] and are
normalized. Now by Theorem 3.9, we have that hQ(div gP ) = (−1)rgP (div hQ), which gives the
equation ∏

T∈E[r] hQ(P0 + T )∏
T∈E[r] hQ(T ) = (−1)rgrP ([Q0]− [0E ])gP (Q0 −Q)

gP (Q0) .

Combining with grQ = HQ we find that

grQ([P0]− [0E ]) = HQ([P0]− [0E ]) = (−1)rgrP ([Q0]− [0E ])gP (Q0 −Q)
gP (Q0) .

Since grQ = fQ ◦r, we have that fr,Q(DP ) = grQ([P0]− [0E ]), and similarly fr,P (DQ) = grP ([Q0]−
[0E ]). Putting everything together, we compute

eW,r(P,Q) = (−1)r frDP (DQ)
frDQ(DP ) = (−1)r fr,P (DQ)

fr,Q(DP ) = (−1)r g
r
P ([Q0]− [0E ])
grQ([P0]− [0E ]) = gP (Q0)

gP (Q0 −Q) .

which proves Equation (3.17) (with x = Q0 −Q).
Using this reformulation, we compute

eW,r(P,Q1+Q2) = gP (x+Q1 +Q2)
gP (x) = gP (x+Q1 +Q2)

gP (x+Q2)
gP (x+Q2)
gP (x) = eW,r(P,Q1)eW,r(P,Q2)

so eW,r is bilinear on the right. Now by (anti-)symmetry, using Equation 3.15, eW,r is also
bilinear on the left: e(P1 + P2, Q) = e(P1, Q)e(P2, Q), so it is indeed bilinear. Furthermore,
using bilinearity, eW,r(P,Q)r = eW,r(P, 0E) = 1, so eW,r(P,Q) is a r-root of unity.

We now show non-degeneracy, following [22, Proposition 8.1]. Once more by symmetry we
just need non-degeneracy on the left, that is, given P 6= 0E we need to show that there exists
a Q such that eW,r(P,Q) 6= 1. If this were not the case then by Equation 3.17 we would have
gP (x + Q) = gP (x) for all Q ∈ E[r]. So gP would be a function invariant by translation by
a point of r-torsion; this means that there would exist a rational function g on the curve E
such that gP = g ◦ [r] by [22, Theorem 4.10.b]. Then div(gP ) = [r]∗ div(g), but by definition
div(gP ) = [r]∗DP . So div g = DP = [P ] − [0E ], but DP is not principal by Proposition 3.1, so
this is absurd.

3.4.4 The General Definition of the Tate Pairing

THEOREM 3.11 Let E/Fq be an elliptic curve, r a prime number dividing #E(Fq), P ∈
E[r](Fqk) a point of r-torsion defined over Fqk , and Q ∈ E(Fqk) a point of the elliptic curve
defined over Fqk . Let DP be a divisor linearly equivalent to [P ] − [0E ] and DQ be a divisor
linearly equivalent to [Q]− [0E ]. Then

eT,r(P,Q) = (frDP (DQ))
qk−1
r (3.18)

is well defined, does not depend on the choice of uniformizers or on the choice of DP and DQ.
Furthermore the application E[r](Fqk) × E(Fqk)/rE(Fqk) → µr : (P,Q) 7→ eT,r(P,Q) is a

pairing, called the Tate pairing.
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Remark 3.3 There are two versions of the Tate pairing: The first one is to define the pairing
as simply frDP (DQ) and see the Tate pairing as a pairing with values in F∗

qk
/F∗,r

qk
, meaning

that we identify two values differing by an r-power. The second one, which we have used in
Equation 3.18, is to use the bijection F∗

qk
/F∗,r

qk
→ µr : γ 7→ γ

qk−1
r . Indeed, if γ = γ′αr, then

(αr) q
k−1
r = αq

k−1 = 1 so γ
qk−1
r = (γ′) q

k−1
r . We call the exponentiation by qk−1

r the final

exponentiation, and the value eT,r(P,Q) = (frDP (DQ))
qk−1
r the reduced Tate pairing.

There is an important difference to keep in mind between the Weil pairing and the Tate pair-
ing. The Weil pairing is geometric: The value of eW,r(P,Q) does not depend on the field of defi-
nition we are working on, whereas the Tate pairing is arithmetic. For instance, if P ∈ E[r](Fqk)
and Q ∈ E(Fqk), but we look at the Tate pairing over Fqrk , then the final exponentiation is to
the power of q

rk−1
r so that eT,r,F

qrk
(P,Q) = 1 (the Tate pairing stays non-degenerate over Fqrk

but one needs to take Q in E(Fqrk) to get a non-trivial pairing with P for the Tate pairing over
Fqrk).

Proof. We first show that the value does not depend on the linear equivalence class of DP and
DQ. Unlike the Weil pairing where P and Q played symmetric roles, for the Tate pairing we
have to handle the left argument and the right argument separately.

Let DP,2 = DP,1 + div(g), where g is a rational function. Let frDP,1 be a function corre-
sponding to the principal divisor rDP,1 , then a function corresponding to rDP,2 is frDP,1gr. We
compute

frDP,2 (DQ)
qk−1
r = frDP,1 (DQ)

qk−1
r · g(DQ)r

qk−1
r = frDP,1 (DQ)

qk−1
r .

So we can as well take DP = r[P ]− r[0E ].
Likewise, if DQ,2 = DQ,1 + div h, then by Theorem 3.9, we have that frDP (div h) =

εh(div frDP ) = εh(r[P ] − r[0E ]) = εh([P ] − [0E ])r where ε = ε(div f, div h). Since ε = ±1,
ε
qk−1
r = 1 and we compute:

frDP (DQ,2)
qk−1
r = frDP (DQ,1)

qk−1
r · frDP (div h)

qk−1
r = frDP (DQ,1)

qk−1
r · h([P ]− [0E ])r

qk−1
r

= frDP (DQ,1)
qk−1
r .

To show that eT,r does not depend on the choice of uniformizers, we can takeDP = [P ]−[0E ],
DQ = [Q] − [0E ], and by Proposition 3.2 choose frDP = fr,P . Since div(fr,P ) = r[P ] − r[0E ],
changing uniformizers does not affect fr,P (DQ) except at 0E and P (when P = Q). But if we
replace the uniformizer x/y at 0E by γx/y, then the value fr,P (DQ) is multiplied by γr, which
is then killed by the final exponentiation. Likewise for the uniformizer at P .

It remains to show that eT,r is a pairing. For simplicity here we assume that E(Fqk) contains
all of E[r]. For the general case, we refer to [11, 20, 5].

For the bilinearity and the non-degeneracy, as for the Weil pairing it will be more convenient
to give an alternative definition of the Tate pairing. Let P and Q be as in the theorem. Let
Q0 ∈ E(Fq) be a point such that Q = rQ0. Let π be the Frobenius endomorphism of Fq, which
acts on the points of E. Then πk is the Frobenius endomorphism of Fqk . LetQ1 = πkQ0−Q0. We
compute rQ1 = πkrQ0−rQ0 = πkQ−Q = 0E (where we used the fact that scalar multiplication
commutes with the Frobenius, and that Q is defined over Fqk , so that πkQ = Q). So Q1 is a
point of r-torsion. Furthermore, it does not depend on Q0: If we replace Q0 by Q0 + T where
T ∈ E[r], then we compute (πk − 1)(Q0 + T ) = Q1 + (πk − 1)(T ) = Q1, because T ∈ E(Fqk).
So the application πk−1

r : E(Fqk)→ E[r], Q 7→ Q1 is well defined, and it is easy to check that it
is an endomorphism of EF

qk
. We have

eT,r(P,Q) = eW,r(P,
πk − 1
r

Q). (3.19)
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Equation (3.19) shows a strong link between the Weil and Tate pairing. To show Equa-
tion (3.19), we use Equation (3.17) to get eW,r(P, πkQ0 − Q0) = gP (πkQ0)

gP (Q0) . Now since P is
defined over Fqk , gP is in Fqk(E), so πk commutes with gP . We thus get

gP (πkQ0)
gP (Q0) = gP (Q0)q

k−1 = (grP (Q0))
qk−1
r = fr,P (Q)

qk−1
r ,

where in the last equation we have used that grP = fr,P ◦ [r]. This shows the equivalence between
the two definitions of the Tate pairing.

Using Equation (3.19) we see that the Tate pairing is bilinear. For the non-degeneracy, we
have to show that πk−1

r : E(Fqk)→ E[r] is surjective. Indeed, because the Weil pairing is non-
degenerate, Equation (3.19) will then show that the Tate pairing is non-degenerate too. The
kernel of πk−1

r restricted to E(Fqk) is rE(Fqk), so the image is isomorphic to E(Fqk)/rE(Fqk).
Now E(Fqk) is a finite abelian group of the form Z/aZ⊕Z/bZ with a | b, and since E(Fqk) ⊃ E[r],
we know that r | a and r | b. We deduce that E(Fqk)/rE(Fqk) is isomorphic to Z/rZ⊕Z/rZ, in
particular it has cardinal r2, so the application is indeed surjective.

Taking DP = [P ]− [0E ] and DQ = [Q+R]− [R] where R is any point in E(Fqk) (this divisor
is equivalent to [Q]− [0E ] by Proposition 3.1), we recover the formula from Theorem 3.2:

eT,r(P,Q) =
(
fr,P (Q+R)
fr,P (R)

) qk−1
r

.

If we take R = 0E , we find
eT,r(P,Q) = fr,P (Q)

qk−1
r .

Here Q may be a pole or zero of fr,P , so we need to use the general Miller’s algorithm to compute
the extended evaluation.

Restriction of the Tate pairing to subgroups

We give a proof of Proposition 3.4 that the restriction of the Tate pairing to G1 × G2 is non-
degenerate:

Proof. Recall that since k > 1 and the assumptions in Lemma 3.2 hold, G1 is the subgroup of E[r]
of eigenvectors for the eigenvalue 1 and G2 corresponds to eigenvectors for the eigenvalue q 6= 1
mod r. We have already proved in Proposition 3.4 that the restriction of the Weil pairing to
G1 ×G2 or to G2 ×G1 is non-degenerate.

Since the endomorphism πk−1
r commutes with the Frobenius π, it stabilizes G1 and G2. The

alternative definition of the Tate pairing given by Equation (3.19) shows that the Tate pairing
restricted to G1 ×G2 or to G2 ×G1 is also non-degenerate.

Likewise, the Tate pairing restricted to G1 × G1 or to G2 × G2 is degenerate, because the
Weil pairing is degenerate. The same reasoning as in the proof for the Weil pairing shows that
the Tate pairing on G1 ×G3 (and the other groups) is non degenerate.

Remark 3.4 By the proof, eT,r(P, P ) = 1 when P ∈ G1 or P ∈ G2. However, unlike the
Weil pairing, we can have eT,r(P, P ) 6= 1 when P ∈ E[r](Fqk) but P 6∈ G1 and P 6∈ G2. See for
instance [16], where the authors study the link between the Tate self pairing and the structure
of the isogeny graph.
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The case of embedding degree 1

Let E be an elliptic curve defined over Fq such that r | #E(Fq). By Lemma 3.2, if the embedding
degree k is greater than 1, then E[r] ⊂ E(Fqk) and we can apply the proof of Theorem 3.11.

If k = 1, then E(Fq) may not contain the full r-torsion, so we can’t apply the elementary
proof we have given. But even in this case one can still show using Galois cohomology that
both Theorem 3.11 and the alternative definition of the Tate pairing given by Equation 3.19
stay true. In this case πk−1

r is not a well-defined endomorphism, but represents a cocycle in a
Galois cohomology class such that Equation 3.19 stays well defined over Fq.

Moreover, when E(Fq) does not contain points of r2-torsion, then by a similar argument as
in Proposition 3.4, we can show that eT,r : E[r](Fq)× E[r](Fq) → µr ⊂ F∗q is still a pairing. In
particular, when the rational r-torsion is cyclic, if P ∈ E[r](Fq) then eT,r(P, P ) 6= 1.

3.4.5 The Optimal Ate and Twisted Optimal Ate Pairing

In order to prove the formulae for the Ate and twisted Ate, we need the following lemma.

LEMMA 3.5 Let E be an elliptic curve defined over a finite field Fq

• For any point P on the elliptic curve E

fab,P = f ba,P · fb,aP . (3.20)

• Let φ be an endomorphism of E of degree d, with trivial kernel. Then for any integer
λ

fλ,φ(P ) = fdλ,P .

Proof. The first equation may be proved easily by writing down the divisors for the functions
involved. For the second item, see [15].

We prove here Theorem 3.4.

Proof. Let l = φ(k). It is easy to see that:

fλ,Q(P ) =
l−1∏
i=0

fciqi,Q(P )
l−1∏
i=0

lsi+1Q,ciqiQ(P )
vsiQ(P ) .

By Equation 3.20 and Lemma 3.5, we compute fciqi,Q(P ) as

fciqi,Q(P ) = f ci
qi,Q

fci,qiQ(P ) = f ci
qi,Q

(P )fq
i

ci,Q
(P ). (3.21)

As a consequence, we obtain that

eT,r(Q,P )m =
l∏
i=0

(
f ci
qi,Q

(P )
)(qk−1)/r

· a[c0,...,cl](Q,P ).

Since the left-hand side and the factor in brackets are pairings, we conclude that a[c0,...,cl] is a
bilinear map. By Theorem 3.3, we have that the left-hand side is

eT,r(Q,P )m = fq,Q(P )mkq
k−1((qk−1)/r)−1

.
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The product on the right-hand side right writes as

l∏
i=0

(
f ci
qi,Q

(P )
)

= fq,Q(P )
∑l

i=0
iciq

i−1
.

We conclude that if mkqk−1((qk − 1)/r)−1 .
∑l

i=0 iciq
i−1, then a[c0,...,cl] is a non-degenerate

map. This concludes the proof for the optimal Ate pairing.

For the twisted optimal Ate pairing, the proof of Theorem 3.8 is made similar to the one above
by inverting the roles of P and Q. We give it below.

Proof. Note that by Theorem 3.5, we have that

G2 = Ker(ξd ◦ πqe − Id).

It follows easily that

G1 = Ker(ξd ◦ πqe − qe Id).

As a consequence, in (3.21) we compute fciqie,P (Q) by applying Lemma 3.5 for the endomorphism
ξd ◦ πqe . The rest of the computation follows naturally.
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4.1 Introduction

Pairing-based cryptosystems require elliptic curves that are secure and enable efficient pairing
computation. It turns out that, for a random elliptic curve, these two conditions are rarely
both satisfied. Therefore, specific construction methods have been developed. In this chap-
ter, we survey the main methods used for generating elliptic curves suitable for pairing-based
cryptography.

Let E be an elliptic curve over a finite field Fq. The embedding degree k of E with respect
to a prime divisor r of #E(Fq) coprime to q is defined to be the smallest integer such that r
divides qk − 1. If r does not divide q − 1, then k is the degree of the smallest extension of Fq
over which the full r-torsion of E is defined, and therefore, over which the Weil or Tate pairings
and their variants are defined.

In order to guarantee security, the discrete logarithm problem should be computationally
infeasible in cyclic subgroups of E[r] and in F∗

qk
. The best-known algorithm for discrete logarithm

computation on elliptic curves is the parallelized Pollard rho algorithm, which has a running
time O(

√
r) [37, 48]. On the other hand, the best known algorithms for discrete logarithm

computation in finite fields are index calculus attacks, which have a running time subexponential
in the field size. Notice that index calculus attacks have recently been improved (see Chapter
9) and are likely to get more efficient the a near future. In particular, it is now recommended to
avoid fields of characteristic 2 and 3 (see [1, 20] for the description of concrete attacks in these
cases).

4-1
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TABLE 4.1 Sizes of curve parameters and corresponding embedding degrees to obtain commonly
desired levels of security.

Security level Subgroup size Extension field size Embedding degree k
in bits r in bits qk in bits ρ ≈ 1 ρ ≈ 2
80 160 960 – 1280 6 – 8 3 – 4
112 224 2200 – 3600 10 – 16 5 – 8
128 256 3000 – 5000 12 – 20 6 – 10
192 384 8000 – 10000 20 – 26 10 – 13
256 512 14000 – 18000 28 – 36 14 – 18

In order to guarantee efficient arithmetic on the elliptic curve, it is also important that r is
a large factor of #E(Fq). A convenient way to formalize this idea is to consider the quantity

ρ = log q
log r .

When q is large, #E(Fq) has roughly the same bit size as q (because of the Hasse-Weil bounds,
see Chapter 2), so ρ measures the ratio between the size of #E(Fq) and the size of r. If #E(Fq)
is prime (the “ideal” case), then ρ ≈ 1. In any case, ρ should be reasonably close to 1. Notice
that it is fairly easy to generate curves with ρ ≈ 2 for any k and r of arbitrary size using the
Cocks-Pinch method (see Section 4.4.1).

The value of k is entirely determined by ρ and the choice of the bit sizes of r and qk, since
log qk/ log r = kρ. Table 4.1, taken from [18], gives ranges for r and qk (q prime) and k to match
commonly desired levels of security. Notice that in some particular cases, it may be interesting to
choose r or qk with higher size than the sizes proposed by Table 4.1 in order to reach embedding
degrees that would allow for curves with particularly efficient pairing computation, or other
interesting properties (see Chapter 11).

Based on the above discussion, Freeman, Scott, and Teske [18] gave the following definition:

DEFINITION 4.1 An elliptic curve E/Fq is pairing-friendly if the following two conditions
hold:

1. #E(Fq) has a prime factor r ≥ √q,
2. the embedding degree of E with respect to r is less than log2(r)/8.

The first condition in Definition 4.1 is equivalent to ρ ≤ 2. The bound log2(r)/8 in the
second condition in Definition 4.1 is chosen to roughly reflect the bounds on k given in Table
4.1.

Pairing-friendly elliptic curves are rare: Balasubramanian and Koblitz [3] proved that for a
random elliptic curve E over a random field Fq, the probability that E has embedding degree
less than (log q)2 with respect to some prime r ≈ q is vanishingly small, and that the embedding
degree should be expected to be around r. Moreover, according to the results of Luca and
Shparlinski [29] and Urroz, Luca, and Shparlinski [47] there are very few finite fields on which
there exists an elliptic curve having a fixed small embedding degree with respect to some r ≥√
q. In conclusion, trying to find a pairing-friendly curve by selecting curves randomly and

counting their points is hopeless because it is highly unlikely that a random curve has the
desired properties.

The first proposed elliptic curves with prescribed embedding degree are supersingular (i.e.,
have gcd(q, t) > 1) [8, 9, 22]. However, a supersingular elliptic curve always has embedding
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degree at most 6, and at most 3 if we exclude characteristics 2 and 3 (see Section 4.3 for a
discussion about supersingular elliptic curves). In order to achieve higher embedding degrees,
we must be able to construct ordinary elliptic curves with a prescribed embedding degree. The
only known way to solve this problem is to first find parameters of a curve with the desired
properties and then construct a curve with these parameters via the Complex Multiplication
method. The CM method is described in Section 4.2.1. Finding the parameters of an ordinary
pairing-friendly elliptic curve will be the main topic of this chapter.

4.2 Generating Pairing-Friendly Elliptic Curves

Let E/Fq be an elliptic curve, r be a prime not dividing q, and k be an integer such that
E[r] ⊆ E(Fqk). As explained in Chapter 3, the Weil Pairing eW,r : E[r]× E[r]→ µr (where µr
is the group of rth roots of unity in an algebraic closure of Fq) is defined by rational functions.
It follows that µr is a subgroup of the multiplicative group F∗

qk
, or in other words, that r divides

qk− 1. Balasubramanian and Koblitz [3] proved that under few assumptions, this last condition
is sufficient to ensure that E[r] ⊆ E(Fqk):

PROPOSITION 4.1 ([3]) Let E/Fq be an elliptic curve and r be a prime that divides
#E(Fq) but does not divide q − 1. Then E(Fqk) contains r2 points of r-torsion if and only if
r | (qk − 1).

Proof. We only need to prove sufficiency. If r | (qk − 1), then r - q, so that E[r] ' Z/rZ×Z/rZ
(see Chapter 2) and thus E[r] can be seen as a 2-dimensional Fr-vector space. By assumption,
E(Fq) contains a non-trivial r-torsion point P . Let Q be such that (P,Q) is a basis of E[r].
In this basis, the matrix of the Frobenius πq is of the form

( 1 a
0 q
)
(taking into account that its

determinant is q). Setting Q′ = Q + bP , where b = (q − 1)−1a mod r (b is well-defined since
r - (q − 1)), we get πq(Q′) = qQ + aP + bP = qQ′ − (q − 1)bP + aP = qQ′, where the third
equality comes from the fact that (q− 1)b = a mod r. Then the matrix of the Frobenius in the
basis (P,Q′) is

( 1 0
0 q
)
and its kth power is the identity (because qk = 1 mod r), which means

that E[r] ⊆ E(Fqk).

DEFINITION 4.2 Let E/Fq be an elliptic curve and r be a prime divisor of #E(Fq) coprime
to q. The embedding degree k of E with respect to r (or to a subgroup of E(Fq) of order r) is
the smallest integer such that r divides qk − 1.

The discussion above shows that if the embedding degree k is greater than 1, then it is also
the degree of the smallest extension on which the full r-torsion is defined.

Remark 4.1 Hitt [21] observed that the Weil and the Tate pairings actually take values in
Fp(µr), where q = pm, which can be a proper subfield of Fqk if q is not prime. An example of
this phenomenon is given in Section 4.3, case k = 3 (see also [7]).

Let r be a prime divisor of #E(Fq) = q+1−t coprime to q. The property “E has embedding
degree k with respect to r” only depends on the triple (r, t, q). Conversely, if (r, t, q) is a triple
satisfying the conditions defining this property such, and that q is a prime or a power of a prime
and such that t ∈

]
−2√q, 2√q

[
is an integer coprime to q, then there exists an ordinary elliptic

curve E/Fq with #E(Fq) = q + 1− t [14, 49], which will have embedding degree k with respect
to r. No general method to get an equation for such a curve exists, but the particular case where
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4q − t2 has a small square-free part (less than 1012, taking into account Sutherland’s work [45])
can be handled using the Complex Multiplication (CM) method due to Atkin and Morain [2].

4.2.1 The Complex Multiplication Method

We give a quick overview of how the CM method works. For simplicity, we assume that q is
prime. The classical references are [2, 12] and [27, 43] for the mathematical background.

Let t ∈
]
−2√q, 2√q

[
be an integer coprime to q and D the positive square-free integer

defined by 4q − t2 = Dy2, y ∈ Z. The endomorphism ring of an elliptic curve with q + 1 − t
points is isomorphic to an order in the imaginary quadratic field K = Q(

√
−D) containing the

Frobenius πq = t± y
√
−D. This property nearly determines its number of points: If E/Fq has

an endomorphism ring isomorphic to an order O of K containing πq, then both the Frobenius
of E and πq have norm q, so they must be equal up to complex conjugation and multiplication
by a unit, and therefore, E has a twist with q + 1− t points.

We are led to consider the problem of finding the equation of a curve having an endomorphism
ring isomorphic to an order O of K containing πq, and actually, we can always take O to be the
ring of algebraic integers OK of K.

There are two particular cases where this problem can be directly solved using elementary
arguments, namely D = 1 or 3. The rings of integers of Q(

√
−1) and Q(

√
−3) are the only

orders in quadratic imaginary fields containing more than 2 units; they contain 4 and 6 units,
respectively. The corresponding curves are easy to identify since the only shapes of Weierstrass
equations allowing more than 2 automorphisms are y2 = x3 + cx, c ∈ F∗q (4 automorphisms) and
y2 = x3 + c, c ∈ F∗q (6 automorphisms).

The problem of finding an elliptic curve E with End(E) ' OK has a natural solution over
the field of complex numbers. Indeed, elliptic curves over C “correspond” to one-dimensional
complex tori, so we can take E to be the quotient of C byOK (or more generally, by any fractional
ideal of OK). A Weierstrass equation for the corresponding curve can be recovered from its j-
invariant j(E). An important result of CM theory is that j(E) is an algebraic integer (actually,
more is true: K(j(E)) is the Hilbert class field of K). The minimal polynomial HD(x) of j(E)
(the Hilbert class polynomial of K) can be computed using the theory of modular functions.
Finally, it can be proved that the endomorphism ring of E is going to “behave well” when we
reduce E modulo a prime [27], Theorem 13.4.12.

ALGORITHM 4.1 The CM method.
Input: q prime, t ∈

]
−2√q, 2√q

[
a nonzero integer and D the positive square-free integer

defined by 4q − t2 = Dy2, y ∈ Z.
1 if D = 1 then let E/Fq be defined by y2 = x3 + x

2 if D = 3 then let E/Fq be defined by y2 = x3 + 1
3 else
4 compute the Hilbert class polynomial HD(x)
5 compute a root j of HD(x) in Fq
6 let E/Fq be defined by y2 = x3 − 3cx+ 2c, c = j/(j − 1728)
7 return the twist of E having q + 1− t points.

The discussion above is summarized in Algorithm 4.1. The main problem is that step 4 can
be done efficiently only if D < 1012 [45]. The right twist of E can be found by using the fact
that if an elliptic curve E′/Fq has N points, then for any point P ∈ E′(Fq), we have NP = P∞;
another way to proceed is to use the method proposed by Rubin and Silverberg [39].
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4.2.2 Conditions on the Parameters

In order to be able to construct pairing-friendly ordinary elliptic curves with prescribed embed-
ding degree k, we need to find triples (r, t, q) such that

1. q is prime or a power of a prime,
2. r is prime,
3. t is coprime to q,
4. r divides q + 1− t,
5. r | (qk − 1) and r - (qi − 1) for 1 ≤ i < k,
6. 4q − t2 = Dy2, for some sufficiently small positive integer D and some integer y.

Conditions 3 and 6 ensure that there exists an ordinary elliptic curve E/Fq with #E(Fq) =
q + 1 − t, which can be efficiently constructed via Algorithm 4.1 (in particular, condition 6
implies that t ∈

]
−2√q, 2√q

[
). In some cases, it may be preferable to fix D in advance (for

instance, if we want to guarantee that the curve to be constructed has some extra twists). If q
is prime, then condition 3 is equivalent to t 6= 0; in the case where t = 0, it is still possible to
efficiently construct an elliptic curve with the desired properties (see Section 4.3). Notice that
all the known methods for generating (r, t, q) satisfying these conditions are generally outputting
q prime.

It can be interesting to write condition 4 as q + 1 − t = hr for some integer h, called the
co-factor. Then, condition 6 becomes

4hr − (t− 2)2 = Dy2.

For any integer ` ≥ 1, we denote by Φ`(x) the `th cyclotomic polynomial and ϕ(`) its degree
(so ϕ is Euler’s totient function). We recall that cyclotomic polynomials have integer coefficients
and can be defined recursively by setting Φ1(x) = x− 1 and using the formula

x` − 1 =
∏
d|`

Φd(x) (4.1)

for ` > 1, so the roots of Φ`(x) in Q are exactly the primitive `th roots of unity. For more details
about the theory of cyclotomic polynomials, see Lidl and Niederreiter’s book [28].

The next proposition gives a different statement of condition 5 above, which is easier to
handle in practice:

PROPOSITION 4.2 Let k be a positive integer, q be a prime or a power of a prime, and r
be a prime not dividing kq. Then the following conditions are equivalent:

1. r | (qk − 1) and r - (qi − 1) for 1 ≤ i < k,
2. r | Φk(q).

Proof. If r | (qk − 1) and r - (qi − 1) for 1 ≤ i < k, then (4.1) and the fact that r is prime imply
that r divides Φk(q). Conversely, if r | Φk(q), then r | (qk − 1), and it remains to check that
r - (qi − 1) for 1 ≤ i < k. We follow Menezes’ proof [31], Lemma 6.2. Let f(x) = xk − 1. Since
r - k, we have gcd(f(x), f ′(x)) = 1 in Fr[x], so f(x) has only single roots in Fr. Using (4.1) and
the fact that q is a root of Φk(x) over Fr, we obtain Φd(q) 6= 0 mod r for d | k, 1 ≤ d < k.
Therefore, r - (qd − 1), for d | k, 1 ≤ d < k. Finally, r - (qi − 1) for any i that does not divide k,
since in this case we would have r | qgcd(i,k) − 1.

Taking into account that q = t − 1 mod r, Proposition 4.2 tells us that we can replace
condition 5 above with the following:

5’. r divides Φk(t− 1).
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4.2.3 Classification of Pairing-Friendly Elliptic Curves

A large number of constructions of pairing-friendly elliptic curves with prescribed embedding
degree has been proposed. In order to help to navigate through the forest of constructions,
Freeman, Scott, and Teske [18] introduced the following classification:

1. Curves not in families:
(a) supersingular elliptic curves,
(b) ordinary elliptic curves (Cocks-Pinch curves [13], Dupont-Enge-Morain curves

[15]),
2. Families of curves:

(a) sparse families (MNT curves [33] and their generalizations [19, 42], Freeman’s
family [17]),

(b) complete families (cyclotomic families, sporadic families, Scott-Barreto families).

The highest-level distinction they make is between methods that construct individual curves
and those that construct families of curves. Supersingular elliptic curves, which are discussed
in Section 4.3, do not fall into families. There are also two constructions in the literature that
produce ordinary elliptic curves with prescribed embedding degree that are not given in terms
of families: the method of Cocks and Pinch [13] and that of Dupont, Enge, and Morain [15];
we discuss them in Section 4.4. The first-mentioned method has the advantage to offer more
flexibility for the choice of the size of r and can be modified to construct complete families of
curves. The remaining constructions of ordinary elliptic curves with prescribed embedding degree
fall into the category of families of curves. These methods produce polynomials r(x), t(x), q(x) ∈
Q[x] such that the triple (r(x0), t(x0), q(x0)) is expected to satisfy conditions from Section 4.2.2
for infinitely many x0 ∈ Z; for more details about the notion of families, see Section 4.5. The
construction of curves from a family depends on our being able to find integers x, y satisfying
an equation of the form Dy2 = 4q(x) − t(x)2 for some fixed positive integer D. For some
constructions, y can be written as a polynomial in x; the corresponding families are referred
to as complete (see Section 4.5.2 for examples of complete families). The families that are not
complete are referred to as sparse (see Section 4.5.1 for examples of sparse families).

4.3 Supersingular Elliptic Curves

We start by recalling the well-known Deuring-Waterhouse theorem, which gives the possible
traces for a supersingular elliptic curve:

THEOREM 4.1 ([14, 49]) Let t be an integer. There exists a supersingular elliptic curve
over Fq, q = ps, p prime with (q + 1 − t) rational points if and only if one of the following
conditions is satisfied:

1. t = 0, s is odd, or s is even and p 6= 1 mod 4,
2. t = ±√q, s is even and p 6= 1 mod 3,
3. t = ±√pq, s is odd and p = 2 or 3,
4. t = ±2√q, s is even.

A consequence of this theorem is that supersingular elliptic curves have embedding degree
k ∈ {1, 2, 3, 4, 6} in general and k ≤ 3 if we assume that p > 3. Therefore, any supersingular
elliptic curve is pairing-friendly in the sense of Definition 4.1 as long as it has a large prime
order subgroup. Moreover, contrary to ordinary pairing-friendly elliptic curves with k ≥ 2,
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supersingular elliptic curves have the advantage of having distortion maps (i.e., endomorphisms
inducing a non-trivial map from G1 to G2).

Due to the recent results of Granger, Kleinjung, and Zumbragel [20] and Adj, Menezes,
Oliveira, and Rodriguez-Henriquez [1], it is advised to avoid supersingular elliptic curves on
fields of characteristic 2 or 3, so we will not consider these cases. We discuss the cases where
k = 2 or 3 and q is a prime or the square of a prime p. In all the remaining of this section, we
assume that p > 3.

Embedding degree k = 2. An elliptic curve E/Fq has embedding degree 2 with respect
to an odd prime r if and only if r divides q + 1. According to Theorem 4.1, any supersingular
elliptic curve over a prime field Fq has q + 1 points, and thus has embedding degree 2 with
respect to any odd order subgroup.

Elliptic curves over Fq, where q is prime, having equation y2 = x3 +cx, c ∈ F∗q or y2 = x3 +c,
c ∈ F∗q are supersingular if and only if q = 3 mod 4 and q = 2 mod 3, respectively [44].
Therefore, if q 6= 1 mod 12, it is easy to get the equation of a supersingular elliptic curve over
Fq.

In the case where q = 1 mod 12, following Bröker’s method [12], we can use the fact that an
elliptic curve over a number field with complex multiplication by K = Q(

√
−D) has supersingular

reduction modulo a good reduction prime of norm q if and only if
(
−D
q

)
6= 1 (see [27], Theorem

13.4.12). So a supersingular elliptic curve over E/Fq can be constructed using Algorithm 4.1
with any small prime D such that

(
−D
q

)
= −1 and D = 3 mod 4 as an input (the condition

D = 3 mod 4 guarantees that HD(x) has a root in Fq, see [12]).
Therefore, the case k = 2 offers lots of flexibility: If we fix some prime r and choose any h

such that q = hr − 1 is a prime, then we can efficiently construct a supersingular elliptic curve
E/Fq with hr = q + 1 points and embedding degree 2 with respect to r. Moreover, Koblitz
and Menezes [25] give some explicit determinations of distortion maps in the case where E has
equation y2 = x3 + cx or y2 = x3 + c.

Embedding degree k = 3. It can be seen from Theorem 4.1 that a supersingular elliptic
curve over Fq has embedding degree 3 with respect to a subgroup of order r > 3 if and only
if q = ps with s even and p = 2 mod 3, and t = ±√q. The curves satisfying these conditions
are exactly the curves with equation y2 = x3 + c, where c is a non-cube in F∗q [34]. For q = p2,
#E(Fq) is equal to Φ6(p) if t = p and Φ3(p) if t = −p, so the minimal embedding field is
Fp6 = Fq3 in the first case and Fp3 = Fq3/2 in the second case.

4.4 General Methods

In this section, we describe the Cocks-Pinch method and the Dupont-Enge-Morain method.
These methods can be used to construct curves of arbitrary embedding degree, but they both give
curves with ρ ≈ 2. However, the Cocks-Pinch method can be generalized to produce complete
families with ρ < 2 (see Section 4.5.2). The Cocks-Pinch method also has the advantage to offer
more flexibility in the choice of r.

Let k be a fixed arbitrary integer. Both methods consist in finding some integers r prime, t,
y and a discriminant D such that

1. Φk(t− 1) = 0 mod r,
2. Dy2 + (t− 2)2 = 0 mod r.

If q = (t2 +Dy2)/4 is a prime number (or a power of a prime number, but this is unlikely), then
we are done since 4(q + 1− t) = Dy2 + (t− 2)2 = 0 mod r.
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4.4.1 The Cocks-Pinch Method

We fix D. Condition 1 above says that t− 1 is a primitive kth root of unity in Fr, in particular
the cyclic group F∗r has elements of order k, which is equivalent to k | (r−1). Condition 2 implies
that −D is a square modulo r. If we pick some r satisfying these two conditions, it is possible
to compute t and y with the desired properties. The Cocks-Pinch method is summarized in
Algorithm 4.2. We see that the best possible ρ-values are achieved when t and y in step 4 are
chosen to have an absolute value smaller than r (in general, this yields two possibilities for each
parameter). In this case, we can expect that t and y will have the same size as r and that q will
have twice the size of r, so ρ ≈ 2.

ALGORITHM 4.2 The Cocks-Pinch method.
Input: A positive integer k and a square-free positive integer D.

1 Choose a prime r such that r = 1 mod k and
(−D

r

)
= 1

2 choose a primitive kth root of unity z ∈ Fr and let t′ = z + 1
3 let y′ = (t′ − 2)/

√
−D ∈ Fr

4 take t and y to be representative elements in the classes t′ and y′
5 set q = (t2 +Dy2)/4
6 if q is a prime or a power of a prime, return (r, t, q).

4.4.2 The Dupont-Enge-Morain Method

If we watch conditions 1 and 2 at the beginning of this section as a system of two polynomial
equations in t, a natural way to check the existence of solutions is to consider the resultant of
the corresponding polynomials. Indeed, two polynomials have a common root in Fr if and only
if their resultant is zero modulo r (for more details about resultants, see [26]). If we choose r,
y, and D such that this condition on the resultant is satisfied, then the system can be solved
by computing a root of the gcd of the two polynomials. This root will be in Fr if and only if
Φk(x − 1) splits in linear factors in Fr, so we shall ask that k|(r − 1) (see Section 4.4.1). The
Dupont-Enge-Morain method is summarized in Algorithm 4.3. For the same reason as in Section
4.4.1, we get curves with ρ ≈ 2.

ALGORITHM 4.3 The Dupont-Enge-Morain method.
Input: A positive integer k.

1 Compute the resultant R(a) = Resx
(
Φk(x− 1), a+ (x− 2)2)

2 choose some positive integers D (small) and y such that R(Dy2) has a large prime factor
r = 1 mod k

3 compute g(x) = gcd
(
Φk(x− 1), Dy2 + (x− 2)2) in Fr[x] and choose a root t′ ∈ Fr of g(x)

4 take t to be a representative element in the class t′
5 set q = (t2 +Dy2)/4
6 if q is a prime or a power of a prime, return (r, t, q) and D.

Freeman, Scott, and Teske [18] proved that the polynomial R(a) ∈ Z[a] in Algorithm 4.3
represents primes and that moreover, the condition r = 1 mod k is automatically satisfied in
the case where r = R(Dy2) is an odd prime. In any case, r has to be roughly of the size of
R(Dy2), since it is only feasible to compute an r of cryptographic size if the remaining factors
of R(Dy2) are small.
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Like the Cocks-Pinch method, the Dupont-Enge-Morain method is effective for generating
curves with arbitrary embedding degree. However, whereas in the former method we could
choose the size of r nearly arbitrarily, in this method r has to be roughly of the size of R(Dy2).
Since the polynomial R(a) has degree ϕ(k), the prime r we find will grow roughly like aϕ(k). Thus
the possible r are more restricted in the Dupont-Enge-Morain method than in the Cocks-Pinch
method.

4.5 Families of Curves

Several authors proposed parameters (r, t, q), which are values of some polynomials r(x), t(x), q(x) ∈
Q[x] satisfying the equations in Section 4.2.2. This strategy allows us to achieve particularly
good ρ-values and provides a better control on the size of the parameters. In order to formalize
these ideas, Freeman, Scott, and Teske [18] introduced the notion of families of pairing-friendly
curves.

Before stating definitions, notice that q(x0) has to be a prime number (or a power of a prime,
but this is difficult to achieve in practice), and r(x0) has to be a prime number or a prime number
times a small integer. Very little is known about polynomials having an infinity of prime values
(it is not even known whether x2 + 1 takes infinitely many prime values), but there are rather
precise conjectures on the subject. Of course, a polynomial f(x) ∈ Z[x] cannot take an infinity
of prime values if it is reducible or has a negative leading coefficient; another case that must
be ruled out is when all the values of f(x) have a common divisor greater than 1 (for instance,
f(x) = x2 + x + 2 only takes even values). Bouniakowsky’s conjecture [10] (stated in the mid-
nineteenth century) predicts that if f(x) does not belong to one of the two cases above, then it
takes infinitely many prime values (notice that this conjecture is true for degree 1 polynomials:
this is Dirichlet’s theorem on arithmetic progressions). Schinzel’s hypothesis H [40] generalizes
this conjecture: It states that if f1(x), . . . , f`(x) ∈ Z[x] are irreducible polynomials with positive
leading coefficient such that all the values of the product

∏`
i=1 fi(x) do not have a common

divisor greater than 1, then f1(x), . . . , f`(x) are taking simultaneously prime values infinitely
many times. Finally, the Bateman and Horn conjecture [6] extends Schinzel’s hypothesis H by
predicting the asymptotic distribution of integers where the fi’s are taking prime values. The
natural extension of these conjectures to polynomials with rational coefficients motivates the
following definition:

DEFINITION 4.3 ([18]) A polynomial f(x) ∈ Q[x] represents primes if the following con-
ditions are satisfied:

1. f(x) is non-constant, irreducible, and has positive leading coefficient,
2. f(x0) ∈ Z for some x0 ∈ Z (equivalently, for infinitely many x0 ∈ Z),
3. gcd({f(x0) : x0, f(x0) ∈ Z}) = 1

Notice that if either f(x0) = ±1 for some x0 ∈ Z or f(x) takes two distinct prime values,
then conditions 2 and 3 of Definition 4.3 are both satisfied.

DEFINITION 4.4 ([18]) A polynomial f(x) ∈ Q[x] is integer-valued if f(x0) ∈ Z for all
x0 ∈ Z.

For example, f(x) = 1
2 (x2 + x+ 2) is integer-valued and represents primes.
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DEFINITION 4.5 ([18]) Let r(x), t(x), q(x) ∈ Q[x] be nonzero polynomials, k be a positive
integer, and D be a square-free positive integer.

1. The triple (r(x), t(x), q(x)) parametrizes a family of elliptic curves with embedding
degree k and discriminant D if the following conditions are satisfied:
(a) q(x) = p(x)d for some d ≥ 1 and p(x) that represents primes,
(b) r(x) is non-constant, irreducible, integer-valued, and has positive leading coeffi-

cient,
(c) r(x) divides Φk(t(x)− 1),
(d) r(x) divides q(x) + 1− t(x),
(e) the equation Dy2 = 4q(x)− t(x)2 in (x, y) has infinitely many integer solutions.

2. If these conditions are satisfied, the triple (r(x), t(x), q(x)) is referred to as a family
and an elliptic curve with parameters (r(x0), t(x0), q(x0)), x0 ∈ Z is referred to as
belonging to the family (r(x), t(x), q(x)).

3. A family (r(x), t(x), q(x)) is ordinary if gcd(t(x), q(x)) = 1.
4. A family (r(x), t(x), q(x)) is complete if there exists y(x) ∈ Q[x] such that Dy(x)2 =

4q(x)− t(x)2; otherwise, the family is sparse.
5. The triple (r(x), t(x), q(x)) parametrizes a potential family of elliptic curves if condi-

tions 1b–1e are satisfied (so p(x) may or may not represent primes).
6. The ρ-value of a (potential) family (r(x), t(x), q(x)) is

deg q(x)
deg r(x) .

Condition 1e in Definition 4.5 implies that deg t(x) ≤ (deg q(x))/2, so deg(q(x) + 1 −
t(x)) = deg q(x). Writing condition 1d of Definition 4.5 as q(x) + 1 − t(x) = h(x)r(x), h(x) ∈
Q[x], we see that any family (r(x), t(x), q(x)) has ρ-value at least 1. Moreover, if a family
(r(x), t(x), q(x)) contains infinitely many elliptic curves of prime order, then we must have
h(x) = 1, so (r(x), t(x), q(x)) has ρ-value equal to 1. However, notice that the condition ρ = 1 is
not sufficient to ensure that a family contains elliptic curves of prime order: It can happen that
h(x) is equal to an integer h > 1.

Remark 4.2 In order to have a good control on the bit-size of the parameters r and q,
Freeman, Scott, and Teske [18] recommend using families such that r(x) has small degree (less
than 40).

4.5.1 MNT Curves

Miyaji, Nakabayashi, and Takano [33] were the first authors to construct families of ordinary
pairing-friendly elliptic curves. Their aim was actually to derive explicit conditions to avoid
the MOV attack [32]. They gave a necessary and sufficient condition for an elliptic curve of
prime order to have an embedding degree k = 3, 4, or 6, by directly solving the equation
Φk(q) = λ(q+ 1− t); an essential ingredient for the success of this approach is to have ϕ(k) = 2.
The MNT families are sparse in the sense of Definition 4.5. This method has been generalized
to curves whose order is a prime times a small cofactor [19, 42].

THEOREM 4.2 (Miyaji, Nakabayashi, Takano, [33]) Let q be a prime and E/Fq be
an ordinary elliptic curve such that #E(Fq) = q + 1− t is a prime greater than 3.
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1. E has embedding degree k = 3 if and only if t = −1± 6x and q = 12x2 − 1 for some
x ∈ Z,

2. E has embedding degree k = 4 if and only if t = −x or t = x+ 1, and q = x2 + x+ 1
for some x ∈ Z,

3. E has embedding degree k = 6 if and only if t = 1 ± 2x and q = 4x2 + 1 for some
x ∈ Z.

Actually, Miyaji et al. proved the theorem for q > 64, but the remaining cases can be
demonstrated via a brute-force search [18].

Remark 4.3 Karabina and Teske [24] proved that if r and q are odd primes, then there exists
an elliptic curve E/Fq with embedding degree 6, discriminant D, and #E(Fq) = r if and only if
there exists an elliptic curve E′/Fr with embedding degree 4, discriminant D, and #E′(Fr) = q.

Theorem 4.2 gives triples (r(x), t(x), q(x)) that parametrize families of pairing-friendly elliptic
curves of discriminant D (for some fixed square-free positive integer D) if and only if the CM
equation

Dy2 = 4q(x)− t(x)2 (4.2)

has infinitely many integer solutions. The right-hand side of (4.2) is a quadratic polynomial,
and by completing the square, it is possible to transform this equation into a generalized Pell
equation

X2 − SDY 2 = M. (4.3)

The general strategy to solve (4.3) is to find the minimal positive integer solution (U, V ) (i.e.,
U > 0, V > 0, and V minimal) to the Pell equation U2 − SDV 2 = 1 by computing the simple
continued fraction expansion of

√
SD, and then find a so-called fundamental solution (X0, Y0)

of (4.3) (see [30, 38]). Such a solution may or may not exist. If it does exist, then for j ∈ Z, the
couple (Xj , Yj) defined by

Xj + Yj
√
SD = (U + V

√
SD)j(X0 + Y0

√
SD)

yields an infinite sequence of solutions to (4.3).
A drawback of MNT curves is that the consecutive solutions (Xj , Yj) grow exponentially

in size, so very few x-values will give a solution; the MNT families are sparse in the sense of
Definition 4.5. In fact, Luca and Shparlinski [29] gave a heuristic argument that for any upper
bound D, there exist only a finite number of MNT curves with discriminant D ≤ D, with no
bound on the field size. On the other hand, specific sample curves of cryptographic interest have
been found, such as MNT curves of 160-bit, 192-bit, or 256-bit prime order (see, for example,
[36] and [41]).

4.5.2 Complete Families

The Brezing and Weng method

The most-used method to produce complete families of pairing-friendly elliptic curves is due to
Brezing and Weng [11] (it generalizes the constructions by Barreto, Lynn, and Scott [4]). Their
idea is to use the Cocks-Pinch method described in Section 4.4.1 with polynomials as input
instead of integers. The Brezing and Weng method is summarized in Algorithm 4.4.

The ρ-value of a family generated by Algorithm 4.4 is
2 max{deg t(x),deg y(x)}

deg r(x) ,
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ALGORITHM 4.4 The Brezing and Weng method.
Input: A positive integer k and a square-free positive integer D.

1 Find an irreducible polynomial r(x) ∈ Z[x] with positive leading coefficient such that the
number field K = Q[x]/r(x) contains

√
−D and the primitive kth roots of unity

2 choose a primitive kth root of unity ζk ∈ K
3 let t(x) ∈ Q[x] be a polynomial mapping to ζk + 1
4 let y(x) ∈ Q[x] be a polynomial mapping to (ζk − 1)/

√
−D (so if

√
−D 7→ s(x), then

y(x) = (2− t(x))s(x)/D mod r(x))
5 set q(x) = (t(x)2 +Dy(x)2)/4
6 if q(x) represents primes and y(x0) ∈ Z for some x0 ∈ Z , return (r(x), t(x), q(x)).

which is strictly smaller than 2, as long as we choose t(x) and y(x) to have degree strictly less
than r(x). In general, it is expected that the degrees of t(x) and y(x) are exactly deg r(x)− 1,
so that ρ ≈ 2. But it turns out that much smaller ρ-values can be achieved for some particular
choices of r(x).

There are numerous examples of constructions using this method; see [18] for an extensive
survey. We give some examples covering the constructions that are currently considered as good
candidates for practical applications.

Examples

An obvious choice is to take r(x) to be a cyclotomic polynomial Φ`(x), where k | `; Murphy
and Fitzpatrick [35] give conditions on ` to ensure that the cyclotomic field K = Q[x]/Φ`(x)
contains some quadratic subfield and explain how to represent its elements. This gives general
constructions that cover a large range of k values (provided by the fact that q(x) = (t(x)2 +
Dy(x)2)/4 represents primes) [18]. Such families are called cyclotomic families.

The following example of cyclotomic families appears in [4] and [11] in particular cases, and
in [18] in its full generality. It makes use of the fact that if a cyclotomic field contains a cube
root of unity, then it also contains

√
−3. This leads to (potential) families in all cases where k

is not divisible by 18.

Example 4.1 Let k be a positive integer.

• If k ≡ 1 mod 6, let

r(x) = Φ6k(x),
t(x) = −xk+1 + x+ 1,

q(x) = 1
3(x+ 1)2(x2k − xk + 1)− x2k+1.

• If k ≡ 2 mod 6, let

r(x) = Φ3k(x),
t(x) = xk/2+1 − x+ 1,

q(x) = 1
3(x− 1)2(xk − xk/2 + 1) + xk+1.

• If k ≡ 3 mod 6, let

r(x) = Φ2k(x),
t(x) = −xk/3+1 + x+ 1,

q(x) = 1
3(x+ 1)2(x2k/3 − xk/3 + 1)− x2k/3+1.
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• If k ≡ 4 mod 6, let

r(x) = Φ3k(x),
t(x) = x3 + 1,

q(x) = 1
3(x3 − 1)2(xk − xk/2 + 1) + x3.

• If k ≡ 5 mod 6, let

r(x) = Φ6k(x),
t(x) = xk+1 + 1,

q(x) = 1
3(x2 − x+ 1)(x2k − xk + 1) + xk+1.

• If k ≡ 0 mod 6, let

r(x) = Φk(x),
t(x) = x+ 1,

q(x) = 1
3(x− 1)2(xk/3 − xk/6 + 1) + x.

It has been checked that q(x) is irreducible for k ≤ 1000 and 18 - k [18]. In this case, it is easy
to see that q(x) represents primes and thus the triple (r(x), t(x), q(x)) parametrizes a complete
family with embedding degree k and discriminant 3. Let ` = lcm(6, k). Then the ρ-value of any
such family is ρ = (`/3 + 6)/ϕ(`) if k ≡ 4 (mod 6), and (`/3 + 2)/ϕ(`) otherwise. In particular,
we have ρ ≤ 2 for all k ≤ 1000 except for k = 4 and ρ < 2 for all 5 ≤ k ≤ 1000 except for
k = 6 and 10. Algorithm 4.4 is used with r(x) = Φ`(x), and

√
−3 is represented by 2x`/6 − 1 in

K = Q[x]/r(x) ∼= Q(ζk, ζ6).

Using non-cyclotomic polynomials r(x) to define (perhaps trivial) extensions of cyclotomic
fields may turn out to be even more efficient in some cases. Such constructions are much less
general than the cyclotomic constructions, so they are referred to as sporadic.

One possibility is to take r(x) to be an irreducible factor of Φ`(u(x)). If Φ`(u(x)) is ir-
reducible, we gain nothing as we will just be evaluating r(x), t(x), and q(x) at u(x). But if
Φ`(u(x)) is reducible, then we may get particularly good results.

The following example was given by Barreto and Naehrig [5] (they originally presented their
construction as an MNT-type family). They used the work of Galbraith, McKee, and Valença
[19], who gave a list of the quadratic u(x) such that Φ`(u(x)) is reducible, for ϕ(`) = 4.

Example 4.2 (BN curves) Let

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,
t(x) = 6x2 + 1,
q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.

Then (r(x), t(x), q(x)) parametrizes a complete family with embedding degree k = 12, discrimi-
nant 3 and ρ-value 1. In this case, we have Φ12(6x2) = r(x)r(−x) and ζ12 is represented by 6x2

in K = Q[x]/r(x) and
√
−3 = 2ζ2

12 − 1.

Freeman, Scott, and Teske [18] gave several other examples in the same vein by doing a
computer search for further factorizations of Φ`(u(x)), including the example below, which has
been independently found by Tanaka and Nakamula [46].
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Example 4.3 Let

r(x) = 9x4 + 12x3 + 8x2 + 4x+ 1,
t(x) = −9x3 − 3x2 − 2x,

q(x) = 1
4(81x6 + 54x5 + 45x4 + 12x3 + 13x2 + 6x+ 1).

Then (r(x), t(x), q(x)) parametrizes a complete family with embedding degree k = 8, discrimi-
nant 1, and ρ-value 3/2. In this case, u(x) = 9x3 + 3x2 + 2x+ 1.

Remark 4.4 As noticed by Freeman, Scott, and Teske, Example 4.1 gives a better ρ-value
than Example 4.3 for k = 8, but Example 4.3 has the advantage of having D = 1, which allows
the use of quartic twists.

Kachisa, Schaefer, and Scott [23] proposed to take r(x) to be the minimal polynomial of some
well-chosen primitive element of a cyclotomic field. In particular, they obtained the following
examples:

Example 4.4 (KSS 16 curves) Let

r(x) = x8 + 48x4 + 625,

t(x) = 1
35(2x5 + 41x+ 35),

q(x) = 1
980(x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x+ 3125).

Then (r(x), t(x), q(x)) parametrizes a complete family with embedding degree k = 16, discrimi-
nant 1, and ρ-value 5/4.

Example 4.5 (KSS 18 curves) Let

r(x) = x6 + 37x3 + 343,

t(x) = 1
7(x4 + 16x+ 7),

q(x) = 1
21(x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401).

Then (r(x), t(x), q(x)) parametrizes a complete family with embedding degree k = 18, discrimi-
nant 3, and ρ-value 4/3.

Example 4.6 (KSS 32 curves) Let

r(x) = x16 + 57120x8 + 815730721,

t(x) = 1
3107(−2x9 − 56403x+ 3107),

q(x) = 1
2970292(x18 − 6x17 + 13x16 + 57120x10 − 344632x9 + 742560x8 + 8157307212

−4948305594x+ 10604499373).

Then (r(x), t(x), q(x)) parametrizes a complete family with embedding degree k = 32, discrimi-
nant 1, and ρ-value 9/8.
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Example 4.7 (KSS 36 curves) Let

r(x) = x12 + 683x6 + 117649,

t(x) = 1
259(2x7 + 757x+ 259),

q(x) = 1
28749(x14 − 4x13 + 7x12 + 683x8 − 2510x7 + 4781x6 + 117649x2 − 386569x

+823543).

Then (r(x), t(x), q(x)) parametrizes a complete family with embedding degree k = 36, discrimi-
nant 3, and ρ-value 7/6.

More discriminants

When the Brezing and Weng method is used to construct a family of elliptic curves, the discrim-
inant D needs to be fixed in advance and the first step of Algorithm 4.4 requires us to find some
finite extension of a cyclotomic field containing

√
−D. For this reason, the known constructions

of complete families offer a rather limited choice for D. For implementation purposes, it is
preferable to use curves with D = 1 or 3 (see Chapters 6 and 11). However, there are known
methods to improve the efficiency of Pollard’s rho algorithm on such curves [16]. These methods
lead to a decrease in security of only a few bits, but some users may take their existence as a
warning that curves with CM discriminant having a particular shape are in some sense special
and should be avoided. Motivated by these arguments, Freeman, Scott, and Teske [18] proved
the following result, which enables us to get complete families with variable discriminant:

PROPOSITION 4.3 ([18]) Suppose that (r(x), t(x), q(x)) parametrizes a complete potential
family of elliptic curves with embedding degree k and discriminant D and let y(x) ∈ Q[x] such
that Dy(x)2 = 4q(x) − t(x)2. Suppose that r(x), t(x), and q(x) are even polynomials and y(x)
is an odd polynomial, and define r′(x), t′(x), q′(x), and y′(x) by

r(x) = r′(x2), t(x) = t′(x2), q(x) = q′(x2), y(x) = xy′(x2).

Let α be an integer such that

1. αD is square-free,
2. r′(αx2) is irreducible,
3. y′(αx2) takes integer values.

Then the triple (r′(αx2), t′(αx2), q′(αx2)) parametrizes a complete potential family of elliptic
curves with embedding degree k, discriminant αD, and the same ρ-value as (r(x), t(x), q(x)).

Proof. For any integer α > 0 satisfying the conditions of Proposition 4.3, we must verify
conditions 1b–1e of Definition 4.5 for the triple (r′(αx2), t′(αx2), q′(αx2)). If r′(αx2) is irre-
ducible, then condition 1b on r′(αx2) follows from the same condition on r(x). Conditions 1c
and 1d are identities on the polynomials r(x), t(x), q(x), so they still hold when we evaluate
at
√
αx, and the identity Dy(x)2 = 4q(x) − t(x)2 evaluated at

√
αx gives Dαx2y′(αx2)2 =

4q′(αx2) − t′(αx2)2, so condition 1e is satisfied if y′(αx2) takes integer values. Finally, the
ρ-value of (r′(αx2), t′(αx2), q′(αx2)) is (2 deg q′(x))/(2 deg r′(x)) = deg q(x)/deg r(x).

Freeman, Scott and Teske also give an algorithm for generating variable-discriminant cyclo-
tomic families for any k such that gcd(k, 24) ∈ {1, 2, 3, 6, 12}.
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TABLE 4.2 Best ρ-values for families of curves with k ≤ 50.

fixed D ≤ 3 variable D
k ρ D deg r(x) Constr. ρ D deg r(x) Constr.
1 2.000 3 2 4.1 2.000 any 1 (6.17)
2 any# 1,3 – §4.3 any# 3 mod 4 – §4.3
3 1.000# 3 2 §4.3 1.000 some 2 §4.5.1
4 1.500 3 4 (6.9) 1.000 some 2 §4.5.1
5 1.500 3 8 4.1 1.750 any odd 8 (6.2)+
6 1.250 1 4 (6.16) 1.000 some 2 §4.5.1
7 1.333 3 12 4.1, (6.20)+ 1.333 3 mod 4 12 (6.20)+
8 1.250 3 8 4.1 – – – –
9 1.333 3 6 4.1 1.833 any odd 12 (6.2)+
10 1.500 1,3 8 (6.5), (6.24)+ 1.000 some 4 (§5.3)
11 1.200 3 20 4.1, (6.20)+ 1.200 3 mod 4 20 (6.20)+
12 1.000 3 4 4.2 1.750 2 mod 8 8 (6.7)+
13 1.167 3 24 4.1 1.250 any odd 24 (6.2)+
14 1.333 3 12 4.1 1.500 any odd 12 (6.3)+
15 1.500 3 8 4.1 1.750 any even 32 (6.7)*+
16 1.250 1 8 4.4 – – – –
17 1.125 3 32 4.1 1.188 any odd 32 (6.2)+
18 1.333 3 6 4.5 1.583 2 mod 4 24 (6.7)+
19 1.111 3 36 4.1 1.111 3 mod 4 36 (6.20)+
20 1.375 3 16 4.1 – – – –
21 1.333 3 12 4.1 1.792 2 mod 4 48 (6.7)+
22 1.300 1 20 (6.3) 1.300 any odd 20 (6.3)+
23 1 .091 3 44 4.1, (6.20)+ 1.091 3 mod 4 44 (6.20)+
24 1.250 3 8 4.1 – – – –
25 1.300 3 40 4.1 1.350 any odd 40 (6.2)+
26 1.167 3 24 4.1, (6.24)+ 1.167 3 mod 4 24 (6.24)+
27 1.111 3 18 4.1 1.472 2 mod 4 72 (6.7)+
28 1.333 1 12 (6.4) 1.917 6 mod 8 24 (6.7)*+
29 1 .071 3 56 4.1 1.107 any odd 56 (6.2)+
30 1.500 3 8 4.1 1.813 2 mod 4 32 (6.7)+
31 1 .067 3 60 4.1, (6.20)+ 1.067 3 mod 4 60 (6.20)+
32 1.063 3 32 4.1 – – – –
33 1.200 3 20 4.1 1.575 2 mod 4 80 (6.7)+
34 1.125 3 32 (6.24)+ 1.125 3 mod 4 32 (6.24)+
35 1 .500 3 48 4.1, (6.20)+ 1.500 3 mod 4 48 (6.20)+
36 1.167 3 12 4.7 1.417 2 mod 8 24 (6.7)+
37 1 .056 3 72 4.1 1.083 any odd 72 (6.2)+
38 1.111 3 36 4.1 1.167 any odd 36 (6.3) +
39 1.167 3 24 4.1 1.521 2 mod 4 96 (6.7)+
40 1.375 1 16 (6.15) – – – –
41 1 .050 3 80 4.1 1.075 any odd 80 (6.2)+
42 1.333 3 12 4.1 1.625 2 mod 4 48 (6.7)+
43 1 .048 3 84 4.1, (6.20)+ 1 .048 3 mod 4 84 (6.20)+
44 1.150 3 40 4.1 1.750 6 mod 8 40 (6.7)*+
45 1.333 3 24 4.1 1.729 2 mod 4 96 (6.7)+
46 1 .136 1 44 (6.3) 1.136 any odd 44 (6.3)+
47 1 .043 3 92 4.1 1 .043 3 mod 4 92 (6.20)+
48 1.125 3 16 4.1 – – – –
49 1 .190 3 84 4.1 1.214 any odd 84 (6.2)+
50 1.300 3 40 4.1, (6.24)+ 1.300 3 mod 4 40 (6.24)+

Note: See pages 4-17 for explanations of the symbols and fonts.

4.6 Curves with a Small ρ-Value: The FST Table

Freeman, Scott, and Teske [18] determined the best, known values of ρ for families of curves
with embedding degree k ≤ 50. We reproduce their table in Table 4.2, which shows two different
constructions for each embedding degree k: The first construction listed is the one that yields
the smallest ρ-value when the CM discriminant D is 1 or 3. Table 4.2 shows that in a large
majority of cases, the optimal ρ-value is achieved by Example 4.1; Other constructions do better
for some small k, k ≡ 4 (mod 6), and k divisible by 18. The second construction indicates
the optimal ρ-values for families with variable CM discriminant, the allowed discriminants D,
and the constructions that produce these ρ-values. Note that to date we know of no variable-
discriminant construction when k = 20 or when k is a multiple of 8; in these cases a family with
D ≤ 3 or a Cocks-Pinch curve must be used.
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Freeman, Scott, and Teske checked that all of the families listed in Table 4.2 can be used to
produce explicit examples of pairing-friendly elliptic curves, and that for parameters of crypto-
graphic size the ρ-value of a curve is very close to the ρ-value of its family.

All families in the table except for one lead to curves over prime fields, and the minimum
embedding field is Fqk for such curves. The lone exception is the supersingular family with k = 3.
The minimum embedding field for a curve in this family is either Fq3 or Fq3/2 ; see Section 4.3
for details. If a curve over a prime field is required, Example 4.1 gives a family with ρ-value 2.

Explanation of symbols in Table 4.2
bold Entries in bold in the table indicate that curves of prime order can be constructed

with the given embedding degree.
italic Entries in italic indicate that while the ρ-value achieved for the given family may be

optimal, the degrees of the polynomials involved are too high to make the construction
practical (see Remark 4.2).

# The ρ-values marked with a # are achieved by supersingular curves.
+ A construction marked with a + indicates that the given basic construction is com-

bined with the substitution x2 7→ αx2 (Proposition 4.3) to construct families with the
given discriminant.

* For k = 15, 28, or 44 and variable D, a variant of the FST-Construction 6.7 is used.
We refer to [18] for details.

− Entries missing from the table for a given embedding degree k indicate that there is
no known family of curves of the given type (i.e., small D or variable D) for that
particular k. In these cases the Cocks-Pinch method should be used to achieve the
desired embedding degree and discriminant, constructing a curve with ρ ≈ 2.

() The construction numbers in brackets are referring to the corresponding construction
in [18].

4.7 Conclusion

The selection of a pairing-friendly elliptic curve for a given application depends on many factors.
The most important is the desired security level. Fixing bit sizes for the prime-order subgroup
of the elliptic curve and of the extension field determines k (up to ρ), since log qk/ log r = kρ.
However, notice that it is possible to reach other embedding degrees by choosing r or q of
bigger size than the required size. For efficiency reasons, k is usually taken to be a multiple
of the order of the automorphism group of E (that is, 4 for D = 1, 6 for D = 3, and 2
otherwise). Furthermore, taking k of the shape 2i3j is a popular choice, since it allows efficient
field arithmetic.

A usual recommendation in Elliptic Curve Cryptography is to choose curves that are as
general as possible, since any specificity could potentially lead to an attack. On the other hand,
some specificities can allow substantial efficiency improvements. For instance, curves with D = 1
or 3 have some extra twists that can be used for compression (see Chapter 3).

This question of choosing between genericity and efficiency also occurs in the choice of the
method to generate the parameters of a pairing-friendly elliptic curve. The curves obtained
from the methods described in Section 4.4 are best fulfilling the genericity criterion, but pairing
computations on such curves are rather slow (in particular, these curves have ρ ≈ 2). The
constructions from Section 4.4 are therefore recommended in cases where efficiency is not crucial.
The Cocks-Pinch method is usually preferred to the Dupont-Enge-Morain method, since it allows
more flexibility in the choice of r.
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The parameters of curves from families have a very specific shape, since they are given by
polynomials; this property could be used in some (yet unknown) attack. On the other hand,
this property can allow some interesting optimizations (see Chapters 6 and 11).

Curves from sparse families (such as MNT curves) and supersingular curves (in characteristic
greater than 3) are a good choice for low security levels, since they have a small embedding degree.
Notice that generating a curve from a sparse family requires us to solve a Pell equation.

All the complete families given in this chapter have D = 1 or 3. Curves in these families have
an equation of the shape y2 = x3 + ax for D = 1 and y2 = x3 + a for D = 3 (see Section 4.2.1).
A result from Freeman, Scott, and Teske (see Section 4.5.2) allows the users considering such
curves as suspicious to derive from these families some new families with other discriminants.
Table 4.2, taken from [18], gives the best-known values of ρ for families of curves with embedding
degree k ≤ 50.
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A careful implementation of elementary field arithmetic operations is a crucial step to achieving
efficient implementations of pairing-based cryptography. In this chapter, we describe the algo-
rithms that perform several basic arithmetic operations over the field Fp, sometimes referred to
as base field arithmetic. We also study the main arithmetic operations defined over finite field
extensions. In particular, we will carefully study the arithmetic operations over the quadratic
and cubic field extensions Fp2 and Fp3 , as described in a series of papers such as [13, 14, 22, 28].

The chapter is organized as follows. In Section 5.1 we present elementary definitions and
properties of the base field arithmetic. Then, in Section 5.2 we present the construction of
the so-called tower field extensions, using quadratic and cubic extensions. We illustrate the
optimization of pairings computation based on the cyclotomic subgroup arithmetic in Section 5.3.
In Section 5.4, we present the notion of lazy reduction and an alternative representation of
finite fields, the residue number system representation. Finally, we provide some Sage code in
Section 5.5. The interested reader may download our field arithmetic Sage code from
http://sandia.cs.cinvestav.mx/Site/GuidePBCcode.

5.1 Base Field Arithmetic

In this section we will review the algorithms for performing multi-precision addition, subtrac-
tion, multiplication, and exponentiation over the field Fp. We give special importance to the

5-1
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multiplication operation, covering the schoolbook integer multiplication, and the Barrett and
Montgomery reduction methods. Furthermore, we also discuss the computation of squaring,
exponentiation, multiplicative inverse, and square root over the field Fp.

5.1.1 Field Element Representation

Base field arithmetic over a prime field Fp, is the most important layer for achieving high-
performance pairing-based implementations. Efficient field arithmetic implementations must
consider the processor’s word size and the bitsize of the prime p used by the cryptographic ap-
plication. In contemporary microprocessor architectures, the processor’s word size ranges from 8
bits, for the smallest mobile processors, up to 64 bits, for high-end Intel or ARM microprocessors.
On the other hand, typical cryptographic applications need to offer at least 80 bits of security
level, but most commonly, a 128-bit security level is preferred for commercial applications.? This
forces us to choose primes with a considerable size in bits, typically, bigger than 256 bits (see
Table 1.1 in Chapter 1 for a summary of the cryptographic key length recommendations for
RSA, discrete-logarithm-based, and pairing-based cryptographic schemes).

Let W be the target processor word size, and let a ∈ Fp with |a| ' |p|, where |a| denotes the
size in bits of a. Then, a can be represented as an array of n words as,

a = (an−1, an−2, ... , a0),

where a = a0 +a12W +a222·W + ....+an−12(n−1)·W , with n = d(blog2 pc+1)/W e, and |ai| ≤W .
We say that a0 is the least-significant word of a, whereas an−1 corresponds to its most-significant
word. As a typical example, consider the case where a 64-bit word size architecture is being
targeted and |a| = 256. Then, a can be represented as an 4-word array as,

a = (a3, a2, a1, a0).

Remark 5.1 Why should we use multi-precision representation? Many mathematical
software packages (such as Sage, Magma, Maple, etc.), support the so-called infinite precision
computation. This implies that in those packages the arithmetic operands can seemingly be
represented as single precision variables. Nevertheless, in order to achieve high performance
implementations, which are commonly written in low-level programming languages, such as C
or even assembly languages, one cannot but resort to the multi-precision representation of the
aritmetic operands. Hence, this will be the scenario to be analyzed in the remainder of this
chapter.

5.1.2 Addition and Subtraction

Let a, b ∈ Fp. The addition in the finite field Fp is defined as (a+b) mod p. In order to implement
this operation for big numbers, i.e., numbers with a bitsize larger than W bits, which must be
represented in a multi-precision array, one performs the addition word by word as shown in
Algorithm 5.1. Notice that in Step 3 for i > 0, the output carry of the previous addition is taken
into account, and hence, the operation ci = ai + bi + carry, is computed. The addition-with-
carry operation is easy to code in assembly languages as most microprocessors include an addc

?The security level of a given cryptographic scheme is defined as the minimum number of computational
steps that an attacker must perform in order to obtain the scheme’s secret key.
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ALGORITHM 5.1 Addition in Fp.
Input : An n-word prime p, and two integers a, b ∈ [0, p− 1] where

a = (an−1, an−2, . . . , a0) and b = (bn−1, bn−2, . . . , b0)
Output: c = (a+ b) mod p

1 carry← 0;
2 for i = 0→ n− 1 do
3 (ci, carry)← Add_with_Carry(ai, bi, carry);
4 end
5 c←(cn−1,. . . , c2, c1, c0);
6 if carry = 1 or c > p then
7 c← c− p; // Algorithm 5.2
8 end
9 return c;

ALGORITHM 5.2 Subtraction in Fp.
Input : An n-word prime p, and two integers a, b ∈ [0, p− 1] where

a = (an−1, an−2, . . . , a0) and b = (bn−1, bn−2, . . . , b0)
Output: c = (a− b) mod p

1 (c0,borrow)← Subtract(a0, b0)
2 for i = 1→ n− 1 do
3 (ci,borrow)← Subtract_with_borrow(ai, bi, borrow);
4 end
5 c← (cn−1, . . . , c2, c1, c0);
6 if borrow then
7 c← c+ p; // Algorithm 5.1
8 end
9 return c;

native instruction. Conversely, a Java implementation of Algorithm 5.1 would likely require
additions and comparisons in order to implement Step 3. Steps 6–8 guarantee that the returned
result c is always less than p.

In the case of the subtraction operation, the procedure is essentially the same, except that
in this case, the word subtraction operations are performed with borrows, as shown in Algo-
rithm 5.2. Once again, several microprocessors include native support for performing subtrac-
tion of two operands with an input borrow. Otherwise, this operation must be emulated using
subtractions and comparisons.

5.1.3 Integer Multiplication

Multiplication is the most used and therefore the most crucial operation for the efficient com-
putation of bilinear pairings. It is customary to use it as a unit of metrics in order to estimate
the computational cost of cryptographic primitives.
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Schoolbook integer multiplication

The integer multiplication t = a · b is performed word by word according to the school-book
method, at a computational cost of n2 and (n− 1)2 word multiplications and additions, respec-
tively. In the case when p is a 256-bit prime, and the word size is W = 64, the following familiar
figure depicts the schoolbook method strategy,

a3 a2 a1 a0
× b3 b2 b1 b0

pp03 pp02 pp01 pp00
pp13 pp12 pp11 pp10

pp23 pp22 pp21 pp20
+ pp33 pp32 pp31 pp30
t7 t6 t5 t4 t3 t2 t1 t0

Notice that the double-word partial product variables ppij , for 0 ≤ i, j < n, which in the
following discussion will be denoted using a (Carry, Sum) pair notation, are produced from the
word product aj · bi. Furthermore, notice that the products tk, for 0 ≤ k ≤ 2n − 1 are single
word numbers. Algorithm 5.3 shows the schoolbook procedure for computing the product a · b.

ALGORITHM 5.3 The schoolbook multiplication algorithm.
Input : Two integers a, b ∈ [0, p− 1], where a = (an−1, an−2, . . . , a0) and

b = (bn−1, bn−2, . . . , b0)
Output: t = a · b

1 Initially ti ← 0 for all i = 0, 1, . . . , 2n− 1.;
2 for i = 0→ n− 1 do
3 C ← 0;
4 for j = 0→ n− 1 do
5 (C, S)← ti+j + aj · bi + C;
6 ti+j ← S;
7 end
8 ti+j+1 ← C;
9 end

10 return (t2n−1, t2n−2 · · · t0);

In order to properly implement Step 5 of Algorithm 5.3,

(C, S) := ti+j + aj · bi + C,

where the variables ti+j , aj , bi, C, and S each hold a single-word, or aW -bit number. The inner-
product operation above requires that we multiply two W -bit numbers and add this product to
the previous C variable, which is also a W -bit number, and then add this result to the running
partial product word ti+j . From these three operations we obtain a 2W -bit number, since the
maximum possible value is

2W − 1 + (2W − 1)(2W − 1) + 2W − 1 = 22W − 1.

A brief inspection of the steps of this algorithm reveals that the total number of inner-product
steps is equal to n2.
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ALGORITHM 5.4 The schoolbook squaring algorithm.
Input : The integer a ∈ [0, p− 1], where a = (an−1, an−2, . . . , a0)
Output: t = a · a

1 Initially ti ← 0 for all i = 0, 1, . . . , 2n− 1.
2 for i = 0→ n− 1 do
3 (C, S)← ti+j + ai · ai;
4 for j = i+ 1→ n− 1 do
5 (C, S)← ti+j + 2aj · ai + C;
6 ti+j ← S;
7 end
8 ti+j+1 ← C;
9 end

10 return (t2n−1, t2n−2 · · · t0);

Remark 5.2 Squaring is easierNotice that integer squaring, i.e., the operation of computing
t = a · a, is an easier operation than multiplication. Indeed, since ppij = ai · aj = pji, half of
the single-precision multiplications can be skipped. The corresponding procedure is shown in
Algorithm 5.4. However, we warn the reader that the carry-sum pair produced in Step 5 may be 1
bit longer than a single-precision number that requires W bits. Thus, we need to accommodate
this ‘extra’ bit during the execution of the operations in Steps 5, 6, and 8 of Algorithm 5.4.
The resolution of this carry may depend on the way the carry bits are handled by the particular
processor architecture. This issue, being rather implementation-dependent, will not be discussed
any further in this chapter.

Karatsuba multiplier

The Karatsuba multiplier allows us to reduce the number of word multiplications required for the
multi-precision integer product t = a · b. Indeed, by exploiting the “divide and conquer” strat-
egy, the Karatsuba multiplier effectively reduces the school-book method quadratic complexity
O(n2) on the number of word multiplications to a superlinear complexity of just O(nlog23) word
multiplications.

Let us assume that a = (a1, a0) and b = (b1, b0) with |a| = |b| = 2W. Then, the product a · b
can be obtained as,

a · b = a0b0 + (a0b1 + a1b0)2W + a1b122W

= a0b0 + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)2W + a1b122W ,

where the product a · b can be computed using just three word multiplications as opposed to
four that the traditional schoolbook method would require. This is a performance advantage,
since in most platforms, the cost of one-word addition and subtraction are far cheaper than the
cost of one-word multiplication. Clearly, this method can be used recursively for operands with
larger word size.

However, depending on the particular platform where this method is implemented, there
would be a practical limit due to the overhead associated with the way that the addition carries
are generated and propagated through the remaining computations. Because of this, the Karat-
suba approach is usually performed until a certain threshold, and after that it is combined with
the schoolbook method. This strategy is sometimes called a shallow Karatsuba approach. The
interested reader is referred to [44, 47, 53] for a careful analysis of how to perform an optimal
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combination of the Karatsuba and the schoolbook method in software and hardware platforms.?

5.1.4 Reduction

Let a = (an−1, an−2, ..., a0) and b = (bn−1, bn−2, ..., b0). A classical method for obtaining the
modular multiplication defined as c = (a · b) mod p, consists of performing the integer multi-
plication t = a · b first, and then the reduction step, c = t mod p. At first glance, in order to
obtain the reduction c = t mod p, it would appear that it is necessary to perform a division by p,
which is a relatively expensive operation. Fortunately, there exist better algorithmic approaches
to deal with this problem. In this chapter we analyze in detail the Barrett and the Montgomery
reductions.

Barrett reduction

Introduced at Crypto 1986 by Paul Barrett [12], the Barrett reduction algorithm finds t mod p
for a positive integer t and a modulus p, such that |t| ≈ 2|p|. For cryptographic applications,
p is often selected as a prime number. The Barrett reduction becomes advantageous if many
reductions are performed using the same modulus p [29]. The method requires us to precompute
the per-modulus constant parameter,

µ =
⌊b2k
p

⌋
where b is usually selected as a power of two close to the word size processor, and k = blogb pc+1.

The Barrett reduction algorithm is based in the following observation: Given t = Qp + R,

where 0 ≤ R < p, the quotient Q =
⌊
t
p

⌋
can be written as,

Q =
⌊
bt/bk−1c ·

(
b2k/p

)
·
(
1/bk+1) ⌋ =

⌊
bt/bk−1c · µ ·

(
1/bk+1) ⌋.

ALGORITHM 5.5 Barrett Reduction as presented in [29].
Input : p, b ≥ 3, k = blogb pc+ 1, 0 ≤ t < b2k, and µ = bb2k/pc
Output: r = t mod p

1 q̂ ←
⌊
bt/bk−1c · µ/bk+1⌋;

2 r ← (t mod bk+1)− (q̂ · p mod bk+1);
3 if r < 0 then
4 r ← r + bk+1;
5 end
6 while r ≥ p do
7 r ← r − p;
8 end
9 return r;

Notice that once Q has been found, then the remainder R can readily be computed as
R = t−Qp ≡ t mod p. Algorithm 5.5 presents the Barrett reduction, where the remainder R is
computed. The correctness of this procedure can be outlined as follows.

?The Toom-Cook algorithm can be seen as a generalization of the Karatsuba algorithm (see [34, Section
4.3.3.A: Digital methods]).
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In step 1, one has that,

0 ≤ q̂ =
⌊⌊ t

bk−1

⌋
· µ

bk+1

⌋
≤
⌊z
p

⌋
= Q,

where q̂ is an approximation of Q such that Q ≤ q̂ + 2. Steps 2–5 guarantee that

r = (t− q̂ · p) mod bk+1,

and also that r is a positive integer. Furthermore, notice that 0 ≤ z − Qp < p, which implies
that 0 ≤ z− q̂p ≤ z− (Q−2)p < 3p. Hence, Steps 6–8 require at most 2 subtractions to compute
the remainder R = t mod p.

Remark 5.3 Implementation notes. It can be shown that Algorithm 5.5 requires (k2 +
5k + 2)/2 and (k2 + 3k)/2 word multiplications to compute q̂ in Step 1 and q̂ · p in Step 2,
respectively. Hence, this method can compute R = t mod p at a cost of approximately k2 + 4k
word multiplications. This implies that the combination of the schoolbook multiplication plus
the Barrett reduction can compute a field multiplication c = a · b mod p, at a cost of about
2k2 + 4k word multiplications.

Example 5.1 As a toy example, let us consider the case where the processor word size is 4
bits and p = 2113. By selecting the parameter b as b = 24, we represent the prime p in base b
as the three 4-bit word number, p = (8, 4, 1)16, where k = |p| = 3. This fixes the per-modulus
constant µ as, µ = bb2k/pc = (1, F, 0, 3)16.

Assume now that we want to multiply the operands a0, a1 ∈ Fp, with a0 = 1528 = (5, F, 8)16
and a1 = 1657 = (6, 7, 9)16. This can be accomplished using Algorithm 5.3 to first obtain the
integer product t = a0 · a1 = (2, 6, A, 2, 3, 8)16, followed by the execution of Algorithm 5.5, to
complete the computation of the field multiplication as,

a0 · a1 mod p = t mod p = 522 = (2, 0, A)16.

Indeed, this is the case: The execution of Steps 1 and 2 of Algorithm 5.5 yield q̂ = (4, A,E)16,

and r = (2, 0, A)16, respectively. Since we already have that r < p, this ends the computation.

The Montgomery multiplier

The Montgomery multiplier [40] is arguably the most popular and efficient method for performing
field multiplication over large prime fields. As we will discuss next, this procedure replaces costly
divisions by the prime p with divisions by r, where r is chosen as a power of two, r = 2k, and k
is a positive integer greater than or equal to the size of the prime p in bits, i.e., k− 1 < |p| < k.

The above strategy is accomplished by projecting an integer a ∈ Fp to the integer ã ∈ Fp, by
means of the bijective mapping, ã = a · r mod p. The integer ã is called the p-residue of a, and
the integer ã is said to be in the Montgomery domain. We define the Montgomery product as,

MontPr(ã, b̃) = ã · b̃ · r−1 mod p.

Given the integer a, its p-residue ã can be computed using the Montgomery product of a times
1, since, MontPr(ã, 1) = ã · 1 · r−1 mod p = a mod p.

Algorithm 5.6 shows the procedure to compute the Montgomery product, whose main algo-
rithmic idea is based on the following observation. In Step 1 we compute t = ã · b̃. Then, we
look for a value q such that t+ q · p is a multiple of r, i.e., t+ q · p ≡ 0 mod r. This implies that
the required value q is given as, q ≡ −t · p−1 mod r.

Step 3 computes the operation, u = (t+ q · p)/r. Notice that from the discussion above, we
know that u is an integer, and since r has been chosen as a power of two, the division by r
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ALGORITHM 5.6 Montgomery product.
Input : An n-word prime p, r = 2n·W , a parameter p′ as defined in Eq. (5.1), and two

p-residues ã, b̃.
Output: u = MontPr(ã, b̃)

1 t← ã · b̃;
2 q ← t · p′ mod r;
3 u← (t+ q · p)/r;
4 if u > p then
5 return u− p;
6 else
7 return u;
8 end
9 return u;

can be implemented as a simple shift operation. Now, since u · r = (t + q · p) ≡ t mod p, then
u ≡ t · r−1 ≡ ã · b̃ · r−1 mod p, as required. Furthermore, assuming that 0 ≤ t < p · r, then since
q < r, it follows that u ≤ 2p. Then, Steps 3–7 suffice to guarantee that the returned value u will
always be less than p.

For efficiency reasons, Algorithm 5.6 requires the pre-computation of a constant p′ such that,

r · r−1 − p · p′ = 1, (5.1)

which can be easily found by means of the extended Euclidean algorithm (cf. §5.1.6).
As we have seen, the Montgomery product exploits the fact that, owing to the selection of r

as a power of two, the division and multiplication by r are fast and efficient operations. However,
it is noticed that this algorithm has the associated overhead of performing the pre-computation
of the parameter p′, as well as the computation of the operands’ p-residues, and the mapping of
the Montgomery product back to the integers. Hence, this method is mainly used in scenarios
where many multiplications must be performed one after the other (cf. §5.1.5).

Example 5.2 Let us consider again the case where the processor word size is 4 bits and p =
2113 = (8, 4, 1)16. Since p is a three 4-bit word number, for this case we have that r = 23·4 = 212.

Then, using the extended Euclidean algorithm, we get p′ = −1985 since,

−r · 1024 + p · 1985 = 1.

Using Algorithm 5.6, we want to compute the Montgomery product MontPr(ã, b̃) in the field
Fp, with a = 1528 and b = 1657. We find that the p-residues of the operands a, b, are given as,

ã = a · r mod p = 2095,
b̃ = b · r mod p = 116.

The execution of Steps 1 and 2 of Algorithm 5.6 yield t = 243020, and u = 1869, respectively.
Since we already have that u < p, this ends the computation. Hence, MontPr(ã, b̃) = 1869.

The Montgomery product shown in Algorithm 5.6 can be used to compute the field multiplication
c = a · b mod p, as shown in Algorithm 5.7.

Example 5.3 We already found in Example 5.2 that for p = 2113, a = 1528, and b = 1657,
we get c̃ = MontPr(ã, b̃) = 1869. Using Algorithm 5.7, we find that MontPr(c̃, 1) = 522. Hence,
we conclude that c = a · b mod p = 522.
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ALGORITHM 5.7 Montgomery field multiplication over Fp.
Input : An n-word prime p, r = 2n·W , and two integers a, b ∈ Fp
Output: c = a · b mod p

1 ā← a · r mod p;
2 b̄← b · r mod p;
3 c̄← MontPr(ā, b̄); // Algorithm 5.6
4 c← MontPr(c̄, 1); // Algorithm 5.6
5 return c;

Remark 5.4 A slight improvement in the Montgomery field multiplication Notice
that a more efficient algorithm for obtaining the field multiplication can be devised by observing
the property,

MonPro(Ā, B) = (A · r) ·B · r−1 = A ·B (mod n),

which modifies Algorithm 5.7 as shown in Algorithm 5.8.

ALGORITHM 5.8 Improved version of the Montgomery field multiplication over Fp.
Input : An n-word prime p, r = 2n∗W , and two integers a, b ∈ Fp
Output: c = a · b mod p

1 ā← a · r mod p;
2 c← MontPr(ā, b); // Algorithm 5.6
3 return c;

There exist several variants for efficiently implementing the Montgomery product procedure
shown in Algorithm 5.6. In this chapter we will describe the Montgomery product variants SOS
and CIOS as they were presented in [36].

The SOS method

The Separated Operand Scanning (SOS) method computes the Montgomery multiplication into
two phases. First, the integer product t = a · b is performed via Algorithm 5.3. Then, t is
Montgomery reduced by computing the value u corresponding to Step 3 of Algorithm 5.6, using
the formula u = (t + m · p)/r, where m = t · p′ mod r and r = 2n·W . Let us recall that W
represents the processor’s word size in bits, and n the number of words required to store the
prime p. The SOS Montgomery reduction procedure is shown in Algorithm 5.9.

The computational cost of the SOS Montgomery product method is of 2n2 + n word multi-
plications, since n2 word multiplications are required for obtaining the product a · b, and n2 + n

to compute u. Moreover, this method requires 4n2 + 4n+ 2 word additions [36].

Remark 5.5 Rationale of the SOS Montgomery reduction. Algorithm 5.9 assumes that
after executing Algorithm 5.3, the input parameter t holds the integer product t = a · b. Then,
the product q · p is computed and added to t in Steps 1–9. Furthermore, since q = t · p′ mod r,
is computed word by word, one can take advantage of the identity p′0 = p′ mod 2W in order
to use p′0 instead of p′ all the way through.? Notice that the function Add in Step 8 computes

?This observation was first pointed out in [24].



5-10 Guide to Pairing-Based Cryptography

ALGORITHM 5.9 Montgomery SOS reduction.
Input : t = (t2n−1, t2n−2, ..., t0), p = (pn−1, pn−2, ..., p0) and p′0, the least-significant

word of p′ as defined in Eq. (5.1).
Output: u = (t+ (t · p′ mod r) · p)/r

1 for i = 0→ n− 1 do
2 C ← 0;
3 q ← ti · p′0 mod 2W ;
4 for j = 0→ n− 1 do
5 (C, S)← ti+j + q · pj + C;
6 ti+j ← S;
7 end
8 ti+n ← Add(ti+n, C);
9 end

10 for i = 0→ n− 1 do
11 ui ← ti+n;
12 end
13 return u;

the word-level addition of ti+n with C, and it propagates the obtained result until there is no
output carry. Finally, the division by r = 2nω is performed by assigning to the variable u the n
most significant words of t (see Steps 10–12). Once that u has been obtained, it must be checked
whether it is greater than p or not. If this is indeed the case, then one extra subtraction by p
must be performed.

Remark 5.6 SOS Montgomery method combined with the Karatsuba approach is
more efficient. The combination of the SOS Montgomery method along with the Karatsuba
approach discussed in §5.1.3 can compute one Montgomery product at a computational cost of
about 1.75n2 + n word multiplications.

The CIOS method

The Coarsely Integrated Operand Scanning (CIOS) method integrates the integer multiplica-
tion and reduction steps. More concretely, instead of performing the product a · b followed
by the Montgomery reduction, the multiplication and reduction operations are performed in
an interleaved fashion within the main loop. This approach produces correct results, because
q = t ·p′ mod r depends only on the value ti, which is computed by the i-th iteration of the main
loop of Algorithm 5.10 [36].

Remark 5.7 Implementation notes of the Montgomery CIOS product As a benefit
of the approach of multiplying and then reducing, the auxiliary variable t requires just n + 2
words, which has to be compared with the auxiliary variable t of the SOS method that requires
2n words. The computational cost of this procedure is of 2n2 + n and 4n2 + 4n + 2 word
multiplications and additions, respectively.

5.1.5 Exponentiation

Let a ∈ F∗p and e ∈ Z+. The modular exponentiation in the base field is defined as ae mod p.
This operation can be performed using the well-known binary exponentiation algorithm as shown
in Algorithm 5.11, invoking the Montgomery multiplier as its main building block.
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ALGORITHM 5.10 Montgomery CIOS product.
Input : a = (an−1, an−2, ..., a0), b = (bn−1, bn−2, ..., b0), p = (pn−1, pn−2, ..., p0) and p′0,

the least significant word of p′ as defined in Eq. (5.1).
Output: t =MontPr(a, b)

1 t = (tn+1, tn, ..., t0)← 0;
2 for i = 0→ n− 1 do
3 C ← 0;
4 for j = 0→ n− 1 do
5 (C, S)← tj + aj · bi + C;
6 tj ← S;
7 end
8 (C, S)← tn + C, tn ← S, tn+1 ← C;
9 C ← 0;

10 q ← t0 · p′0 mod 2ω;
11 (C, S)← t0 + q · p0;
12 for j = 1→ n− 1 do
13 (C, S)← tj + q · pj + C;
14 tj−1 ← S;
15 end
16 (C, S)← tn + C, tn−1 ← S, tn ← tn+1 + C;
17 end
18 if t > p then
19 return t− p;
20 else
21 return t;
22 end

5.1.6 Multiplicative Inverse

For a, b ∈ F∗p, we say that b is the multiplicative inverse of a, denoted as b = a−1 ∈ F∗p, iff
a · b ≡ 1 mod p. From the definitions of finite fields, b = a−1 always exists and it is unique (see
Chapter 2).

The two most popular algorithms for finding the multiplicative inverse are the extended
Euclidean algorithm, and the computation of the inverse via Fermat’s little theorem. The latter
is computed based on the identity, a−1 = ap−2 mod p, as it was briefly discussed in Chapter 2
(see Theorem 2.8 and its discussion). Since this technique tends to be expensive it will not be
discussed any further in this Chapter.?

Multiplicative inverse via the extended Euclidean algorithm

Given two integers a and b, we say that the greatest common divisor of a and b is the largest
integer d = gcd(a, b) that divides both a and b. Based on the property gcd(a, b) = gcd(b, a mod

?But the interested reader may want to check out [51, Appendix A], where multiplicative inverses were
computed via Fermat’s little theorem in a real implementation.
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ALGORITHM 5.11 Montgomery exponentiation.
Input : A n-word prime p, r = 2n·W , a ∈ Fp, e = (e`, ..., e0)2
Output: A = ae mod p

1 ā← a · r mod p;
2 Ā← r mod p;
3 for i = `→ 0 do
4 Ā← MontPr(Ā, Ā);
5 if ei = 1 then
6 Ā← MontPr(Ā, ā);
7 end
8 end
9 return A← MontPr(Ā, 1);

b), the ancient Extended Euclidean Algorithhm (EEA)? is able to find the unique integers s, t
that satisfy Bezout’s formula,

a · s+ b · t = d,

where d = gcd(a, b).
The literature is replete with different versions of the extended Euclidean algorithm. The

interested reader is referred to [29, Chapter 2], [34], for a comprehensive survey of the most
efficient variants of this algorithm and their related computational complexity. In this Chapter
we restrict ourselves to presenting the binary algorithm for inversion in Fp as reported in [29].
The corresponding procedure is shown in Algorithm 5.12.

Remark 5.8 Computational complexity of the binary algorithm for inversion. One
important advantage of the procedure shown in Algorithm 5.12 is that it completely avoids
costly divisions by trading all of them with divisions by two, which can be trivially implemented
as right shift operations. Furthermore, it is known that the number of iterations performed by
Algorithm 5.12 will always lie between ` and 2`, where, ` = |p|.

Remark 5.9 Side-channel security of the binary algorithm for inversion. As will
be studied in Chapter 12, we will often face adversaries trying to exploit side-channels attacks.
One standard countermeasure to thwart these attacks is to implement algorithms that enjoy
a constant-time nature in their execution, meaning that the algorithm execution time does
not depend on any secret parameter values. Unfortunately, Algorithm 5.12 does not enjoy this
property, as the total number of iterations in its execution is highly correlated with the operand a.
Fortunately, most side-channel attacks can effectively be thwarted by using blinding techniques
(see Remark 8.3 in Chapter 8). For example, one can randomly multiply by a blind factor ω
and invoke Algorithm 5.12 to compute the inverse of a · ω. Then, we simply multiply the result
so obtained by ω to get the desired inverse a−1.

?This algorithm was presented in Euclid’s Elements, published 300 B.C. Nevertheless, some scholars
believe that it might have been previously known by Aristotle and Eudoxus, some 100 years earlier than
Euclid’s time. Knuth pointed out that it can be considered the oldest non-trivial algorithm that has
survived to modern era [34].
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ALGORITHM 5.12 Binary algorithm for inversion over Fp.
Input : A prime p and a ∈ Fp
Output: a−1 mod p

1 u← a, v ← p;
2 x1 ← 1, x2 ← 0;
3 while u 6= 1 AND v 6= 1 do
4 while u is even do
5 u← u/2;
6 if x1 is even then
7 x1 ← x1/2;
8 else
9 x1 ← (x1 + p)/2;

10 end
11 end
12 while v is even do
13 v ← v/2;
14 if x2 is even then
15 x2 ← x2/2;
16 else
17 x2 ← (x2 + p)/2;
18 end
19 end
20 if u ≥ v then
21 u← u− v, x1 ← x1 − x2;
22 else
23 v ← v − u, x2 ← x2 − x1;
24 end
25 end
26 if u == 1 then
27 return x1 mod p;
28 else
29 return x2 mod p;
30 end

Montgomery multiplicative inverse

As we have seen in the previous section, in the Montgomery arithmetic one selects the value
r ≥ 2`, where ` = |p| is the size in bits of the prime p. Let ã = a·r mod p, the Montgomery multi-
plicative inverse ã is defined as ã−1 = a−1 · r mod p. The Montgomery multiplicative inverse [29]
is computed into two steps. The first one consists of finding a partial multiplicative inverse a−12k
with k ∈ [`, 2`]. The second step consists of finding the Montgomery inverse multiplicative as
defined above by repeated divisions by two until the required value is obtained.

5.1.7 Square Root

Taking square roots in the base field is an important building block for computing the hashing
into elliptic curves, as we will review in detail in Chapter 8. This hashing operation, which was
first introduced in the landmark paper [16], is a crucial building block for the vast majority of
pairing-based protocols.



5-14 Guide to Pairing-Based Cryptography

The problem of computing the square root of an element a ∈ Fp consists of finding an
element x ∈ Fp, such that, x2 = a mod p. According to Fermat’s little theorem, it follows that
ap−1 = 1 mod p. Hence, a p−1

2 = ±1 mod p. Let g ∈ Fp be a generator. Then, for a = gi with
i ∈ Z+, one has that a p−1

2 = (gi) p−1
2 ± 1 mod p. For all i even it holds that (g i2 )p−1 = 1 mod p,

where g i2 is a root of a, otherwise (gi) p−1
2 = −1 mod p, which implies that the element a has

no square root over Fp. We denote by χp(a) the value of a p−1
2 . If χp(a) = 1, we say that the

element a is a quadratic residue (QR) in Fp. It is known that in F∗p there exist exactly (p− 1)/2
quadratic residues.

There exist several algorithms for computing the square root of a field element depending
on the form of the prime p that defines the field. One can consider two general cases, when
p ≡ 3 mod 4, and when p ≡ 1 mod 4. The computation of the square root in the former case
can be performed with a simple exponentiation, as x = a

p+1
4 . This can easily be verified from

Fermat’s little theorem. Since ap ≡ a mod p, we have that,

x2 = a
p+1

2 = (ap+1) 1
2 = (apa) 1

2 = (a2) 1
2 = a.

Therefore x2 = a, as required. Note that the above derivation only holds iff 4|p + 1. Algo-
rithm 5.13 due to Shanks [48], computes the square root of an arbitrary field element a ∈ Fp,
with p mod 4 = 3. Notice that the quadratic residuosity test (See §2.2.9) has been integrated
into Algorithm 5.13. If a is a quadratic residue, the procedure returns its square root and false
otherwise.

ALGORITHM 5.13 Shanks algorithm.
Input : a ∈ F∗p
Output: false or x ∈ F∗p such that x2 = a

1 a1 ← a
p−3

4

2 a0 ← a2
1a

3 if a0 = −1 then
4 return false:
5 end
6 x← a1a

7 return x

In the second case, when p ≡ 1 mod 4, no simple and general algorithm is known. However,
fast algorithms for computing a square root in Fp when p ≡ 5 mod 8 or p ≡ 9 mod 16 have
been reported [1]. For the case when p ≡ 5 mod 8, Atkin developed in 1992 an efficient and
deterministic square root algorithm that is able to find the square root of a QR using only
one field exponentiation plus a few multiplications in Fp [4]. A modification of the Atkin’s
algorithm was presented by Müller in [41], which allows one to compute square roots in Fp when
p ≡ 9 mod 16, at a price of two exponentiations. For the case when p ≡ 1 mod 16, no specialized
algorithm is known. Hence, for this class of finite fields one must use a general algorithm, such
as the Tonelli-Shanks algorithm [50] or a modified version of the Cipolla-Lehmer algorithm [20]
as presented by Müller in [41].

Algorithm 5.14 presents a variant of the Tonelli-Shanks procedure where the quadratic test
of an arbitrary field element a ∈ Fp has been incorporated into the algorithm. It is noticed that
the computational complexity of Algorithm 5.14 varies depending on whether the input is or is
not a quadratic residue in Fp.

Remark 5.10 Computational complexity of the Tonelli-Shanks algorithm. By taking
into account the average contribution of QR and QNR inputs, and using the complexity analysis
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ALGORITHM 5.14 Tonelli-Shanks algorithm.
Input : a ∈ F∗p
Output: false or x ∈ F∗p such that x2 = a

1 PRECOMPUTATION
2 Obtain (s, t) such that p− 1 = 2st where t is odd;
3 c0 ← 1;
4 while c0 = 1 do
5 Select c ∈ F∗p randomly;
6 z ← ct;
7 c0 = c2

s−1 ;
8 end
9 MAIN COMPUTATION

10 ω ← a
t−1

2 ;
11 a0 ← (ω2a)2s−1 ;
12 if a0 = −1 then
13 return false;
14 end
15 v ← s, x← aω, b← xω;
16 while b 6= 1 do
17 Find the least integer m ≥ 0 such that b2m = 1;
18 ω ← z2v−m−1

, z ← ω2, b← bz, x← xω, v ← m;
19 end
20 return x;

given in [39, 1] for the classical Tonelli-Shanks algorithm, it is not difficult to see that the average
computational cost of Algorithm 5.14 is given as

1
2

[
blog2(p)c+ 4

]
Mp +

[
blog2(p)c+ 1

8
(
s2 + 3s− 16

)
+ 1

2s
]
Sp, (5.2)

where Mp and Sp stand for field multiplication and squaring over Fp, respectively.

5.2 Tower Fields

ain arithmetic operations must be computed in extension fields of the form Fpk , for moderate
values of k. Hence, a major design aspect is to represent the field so that its arithmetic can be
performed at the highest efficiency. With the aim of producing a more efficient arithmetic over
field extensions Fpn , several authors [5, 11], have proposed the idea of expressing a prime field
extension Fpn = Fp[z]/f(z) as Fq, where q = pm and m|n, such that

Fpn = Fq[v]/h(v) , where h(v) ∈ Fq[v] is a polynomial of degree n
m

Fq = Fp[u]/g(u) , where g(u) ∈ Fp[u] is a polynomial of degree m.

This approach is known as tower fields. Tower fields have been universally used in software and
hardware implementations of bilinear pairings [3, 13, 15, 22, 25, 31, 35, 42, 54]. See also [21,
Chapter 11] for a historical description of this strategy.

It is noted that the extension n and the prime p are the main factors that determine the
optimal structure of a tower field [13]. Concretely, given the positive parameters a and b, we
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say that a finite field Fpn is pairing friendly [35], if n = 2a3b, such that Fpn can be expressed
through the quadratic extensions of a and the cubic extensions b of the base field [13].

Moreover, for all n = 2a3b, if 4 - n, then the tower field can be built by means of irreducible
binomials. This is a great advantage from the implementation point of view, as the field arith-
metic becomes much more efficient when using low hamming weight irreducible polynomials. On
the other hand, if n ≡ 0 mod 4, one requires the condition pn ≡ 1 mod 4 in order to use this
same representation [37, Theorem 3.75].

Example 5.4 Let p = 97. Then the finite field Fp6 can be expressed as a cubic extension of
the quadratic extension field Fp2 as

Fp6 = Fp2 [v]/(v3 − u),
Fp2 = Fp[u]/(u2 + 5),

where −u and 5 must not be a square or a cube over Fp2 and Fp, respectively.

In the rest of this section, we describe the field arithmetic associated to tower fields over
quadratic and cubic extensions of a pairing-friendly finite field Fq, where q = pm for m > 0.
We use the notation ⊕, 	, ⊗, and � for denoting the addition, subtraction, multiplication, and
division over the field Fq, respectively.

5.2.1 Field Arithmetic over Quadratic Extensions

The quadratic extension over a field Fq is represented as

Fq2 = Fq[u]/(u2 − β), (5.3)

where u2 − β is an irreducible binomial over Fq, which is always guaranteed when β ∈ Fq is not
a square.

Addition

Given two elements a, b ∈ Fq2 , the operation a+b, can be computed as shown in Algorithm 5.15,
at a cost of 2 additions in the base field Fq.

ALGORITHM 5.15 Field addition in the quadratic extension Fq2 .
Input : a = (a0 + a1u), b = (b0 + b1u) ∈ Fq2

Output: c = a+ b ∈ Fpn

1 c0 ← a0 ⊕ b0;
2 c1 ← a1 ⊕ b1;
3 return c = c0 + c1u;

Multiplication

The field multiplication of two field elements a, b ∈ Fq2 , is defined as

(a0 + a1u) · (b0 + b1u) = (a0b0 + a1b1β) + (a0b1 + a1b0)u.
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This operation can be efficiently implemented using the Karatsuba approach, where

(a0b1 + a1b0) = (a0 + a1) · (b0 + b1)− a0b0 − a1b1.

ALGORITHM 5.16 Field multiplication in the quadratic extension Fq2 .
Input : a = (a0 + a1u), b = (b0 + b1u) ∈ Fq2

Output: c = a · b ∈ Fq2

1 v0 ← a0 ⊗ b0;
2 v1 ← a1 ⊗ b1;
3 c0 ← v0 ⊕ βv1;
4 c1 ← (a0 ⊕ a1)⊗ (b0 ⊕ b1)	 v0 	 v1;
5 return c = c0 + c1u;

Algorithm 5.16 requires a total of 3 multiplications and 5 additions in the base field Fq, as well
as one mβ computation, where mβ denotes the cost of performing the product of an arbitrary
element a0 ∈ Fq by the constant β of the irreducible binomial used to generate the quadratic
extension (see Equation (5.3)).

Squaring

In the particular case when β = 1, i.e., u2 = −1, the operation a2, with a ∈ Fq2 , can be computed
using the so-called squaring complex method that yields the following identity [30, Chapter 12]:

(a0 + a1u)2 = (a0 + a1) · (a0 − a1) + 2a0a1u. (5.4)

Algorithm 5.17 is a generalization of Equation (5.4), which computes (a0 + a1u)2, for β 6= 1, at
a cost of 2mβ , 2 multiplications, and 5 base field additions, Fq.

ALGORITHM 5.17 Field squaring in the quadratic field Fq2 .
Input : a = (a0 + a1u) ∈ Fq2

Output: c = a2 ∈ Fq2

1 v0 ← a0 	 a1;
2 v3 ← a0 	 βa1;
3 v2 ← a0 ⊗ a1;
4 v0 ← (v0 ⊗ v3)⊕ v2;
5 c1 ← v2 ⊕ v2;
6 c0 ← v0 ⊕ βv2;
7 return c = c0 + c1u;
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Square root

This task can be achieved using the complex method proposed by Scott in [46] and described in
detail in [1]. The corresponding procedure is presented in Algorithm 5.18.

ALGORITHM 5.18 Complex method for computing square roots over a quadratic
extension field Fq2 .

Input : Irreducible binomial f(u) = u2 − β such that Fq2 ∼= Fq[u]/(u2 − β), β ∈ Fq, with
q = pn, a = a0 + a1u ∈ F∗q2

Output: If it exists x = x0 + x1u ∈ Fq2 such that, x2 = a, false otherwise
1 if a1 = 0 then
2 return √a0; (in Fq)
3 end
4 λ← a2

0 − β · a2
1;

5 if χq(λ) = −1 then
6 return false;
7 end
8 λ←

√
λ; (in Fq)

9 δ ← a0+λ
2 ;

10 γ ← χq(δ);
11 if γ = −1 then
12 δ ← a0−λ

2 ;
13 end
14 x0 ←

√
δ; (in Fq)

15 x1 ← a1
2x0

;
16 x← x0 + x1u;
17 return x;

Taking advantage of the fact that the field characteristic p for several popular pairing-friendly
elliptic curves (including the Barreto-Naehrig curves) is usually selected so that p ≡ 3 mod
4 [42, 2], then it is possible to perform the square root computation of the steps 2 and 8 in
Algorithm 5.18, by performing the powering

√
λ = λ(p+1)/4 with λ ∈ Fp. This approach has the

added advantage of keeping a constant-time behavior of Algorithm 5.18, which is an important
feature to avoid side-channel attacks, as was mentioned in Remark 5.9.

Field inversion

The multiplicative inverse of a field element in the multiplicative group of the field extension
Fq2 can be computed using the following identity:

(a0 + a1u)−1 = a0 − a1u

(a0 − a1u) · (a0 + a1u) = a0 − a1u

a2
0 − a2

1β
.

The above computation costs one multiplication by the constant β, 2 multiplications, 2 squarings,
2 additions, and 1 multiplicative inversion over the base field Fq.

5.2.2 Field Arithmetic over Cubic Extensions

The cubic extension of a finite field Fq is represented by the polynomials in Fq[w] modulo the
irreducible binomial, w3 − α ∈ Fq[w], i.e.,

Fq3 = Fq[w]/(w3 − α), (5.5)
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ALGORITHM 5.19 Field inversion in the quadratic extension Fq2 .
Input : a = (a0 + a1u) ∈ Fq2

Output: c = a−1 ∈ Fq2

1 v0 ← a2
0;

2 v1 ← a2
1;

3 v0 ← v0 	 βv1;
4 v1 ← v−1

0 ;
5 c0 ← a0 ⊗ v1;
6 c1 ← −a1 ⊗ v1;
7 return c = c0 + c1u;

where α is not a cube in Fq.

Addition

Field addition of two elements a, b ∈ Fq3 can be computed using Algorithm 5.20, at a cost of 3
additions in the base field Fq.

ALGORITHM 5.20 Field addition in the cubic extension Fq3 .
Input : a = (a0 + a1w + a2w

2), b = (b0 + b1w + b2w
2) ∈ Fq3

Output: c = a+ b ∈ Fpn
1 c0 ← a0 ⊕ b0;
2 c1 ← a1 ⊕ b1;
3 c2 ← a2 ⊕ b2;
4 return c = c0 + c1w + c2w

2;

Multiplication

The product of two field elements in the cubic extension of Fq, can be efficiently computed using
once again the Karatsuba approach, at a cost of 2 multiplications by α, 6 multiplications, and
15 additions in the base field Fq.

ALGORITHM 5.21 Field multiplication in the cubic extension Fq3 .
Input : a = (a0 + a1w + a2w

2), b = (b0 + b1w + b2w
2) ∈ Fq3

Output: c = a · b ∈ Fq3

1 v0 ← a0 ⊗ b0;
2 v1 ← a1 ⊗ b1;
3 v2 ← a2 ⊗ b2;
4 c0 ← ((a1 ⊕ a2)⊗ (b1 ⊕ b2)	 v1 	 v2)α⊕ v0;
5 c1 ← (a0 ⊕ a1)⊗ (b0 + b1)	 v0 	 v1 ⊕ αv2;
6 c2 ← (a0 ⊕ a2)⊗ (b0 ⊕ b2)	 v0 	 v2 ⊕ v1;
7 return c = c0 + c1w + c2w

2;
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Squaring

Chung and Hasan presented in [19] an optimal formula for computing field squarings. Algo-
rithm 5.22 computes a2 ∈ Fq3 at a cost of 2 multiplications by α, 2 multiplications, 3 squarings,
and 10 additions in the base field Fq.

ALGORITHM 5.22 Field squaring in the cubic extension Fq3 .
Input : a = (a0 + a1w + a2w

2) ∈ Fq3

Output: c = a2 ∈ Fq3

1 v4 ← 2(a0 ⊗ a1);
2 v5 ← a2

2;
3 c1 ← (αv5 ⊕+v4);
4 v2 ← v4 	 v5;
5 v3 ← a2

0;
6 v4 ← a0 	 a1 ⊕ a2;
7 v5 ← 2(a1 ⊗ a2);
8 v4 ← v2

4 ;
9 c0 ← αv5 ⊕ v3;

10 c2 ← (v2 ⊕ v4 ⊕ v5 	 v3);
11 return c = c0 + c1w + c2w

2;

Inversion

Algorithm 5.23 is based on the method described by Scott in [46]. In this approach we begin by
precomputing the temporary values,

A = a2
0 − αa1a2, B = αa2

2 − a0a1, C = a2
1 − a0a2, F = αa1C + a0A+ αa2B,

then the operation
(a0 + a1w + a2w

2)−1 = (A+Bw + Cw2)/F,

is computed at a cost of 4 multiplications by the constant α, 9 multiplications, 3 squarings, 5
additions, and one inverse in the base field Fq.

5.2.3 Cost Summary

Table 5.1 shows the cost of the basic field arithmetic operations in the quadratic and cubic
extensions of the base field Fq, where ’M’, ’S’, ’A’, ’I’, stand for multiplication, squaring, addition
and inversion in the base field Fq.

TABLE 5.1 Summary of the field arithmetic cost for the cubic and quadratic extensions of a base
field Fq.

Operation Cost in Cost in
Fq2 Fq3

Addition 2A 2A
Multiplication 3M+5A+mβ 6M + 15A+2mα

Squaring 2M+5A+2mβ 2M+3S+10A+2mα
Inversion 2M+2S+2A+I+mβ 9M+3S+5A+4mα
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ALGORITHM 5.23 Field inversion in the cubic extension Fq3 .
Input : a = (a0 + a1w + a2w

2) ∈ Fq3

Output: c = a−1 ∈ Fq3

1 v0 ← a2
0;

2 v1 ← a2
1;

3 v2 ← a2
2;

4 v3 ← a0 ⊗ a1;
5 v4 ← a0 ⊗ a2;
6 v5 ← a1 ⊗ a2;
7 A← v0 	 αv5;
8 B ← αv2 	 v3;
9 C ← v1 	 v4;

10 v6 ← a0 ⊗A;
11 v6 ← v6 ⊕ (αa2 ⊗B);
12 v6 ← v6 ⊕ (αa1 ⊗ C);
13 F ← 1/v6;
14 c0 ← A⊗ F ;
15 c1 ← B ⊗ F ;
16 c2 ← C ⊗ F ;
17 return c = c0 + c1w + c2w

2;

5.3 Cyclotomic Groups

The final result of any pairing is naturally inside a cyclotomic subgroup. Hence, the exponentia-
tion techniques to be studied in this section are especially tailored for the efficient exponentiation
in the group GT , as it was defined in Chapter 3. It is worth mentioning that due to the action of
the easy part of the final exponentiation, which will be studied in Chapter 7, the field elements
become unitary. This has the important consequence that inversions can be computed almost
for free.

5.3.1 Basic Definitions

DEFINITION 5.1 (Roots of unity) Let n ∈ N. A solution z in any field F to the equation

zn − 1 = 0

is called a root of unity in F.

Example 5.5 For all n ∈ N, the only n-th roots of unity in R, the field of the reals, are ±1.

Example 5.6 Let n = 4 and Fp be a finite field of characteristic p = 7. The set of the 4-th
roots of unity in the field F7 is {1, 6}, since:

14 ≡ 1 mod 7,

64 ≡ 1 mod 7.
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DEFINITION 5.2 (Splitting field) Let F be a field and K be an extension field of F. For
any polynomial f(z) ∈ F[z] of degree n ≥ 0, K is called a splitting field for f(z) over F iff there
are elements a ∈ F and a0, a1, . . . an ∈ K such that

f(z) = a(z − a0) · (z − a1) · · · (z − an),

and K is the smallest extension field that contains both F and also {a0, a1, . . . , an}.

Example 5.7 Let f(z) = z4 − 1 ∈ R[z]. Since

z4 − 1 = (z − 1) · (z − i) · (z + 1) · (z + i)

and C is the smallest extension of R that contains {1,−1, i,−i}, then C is a splitting field for
z4 − 1 = 0 over R.

Example 5.8 Let f(z) = z4−1 ∈ Q[z]. A splitting field for f(z) over Q is Q(i) = {r+si|r, s ∈
Q}.

Example 5.9 Let f(z) = z4 − 1 ∈ F7[z]. A splitting field for f(z) over F7 is F7[x]/x2 + 1,
since

z4 − 1 = (z − 6) · (z − 1) · (z − 6x) · (z + 6x),

and {1, 6,−x,−6x} ∈ F7[x]/x2 + 1.

Note that a splitting field for f(z) over F depends not only on the polynomial but on the
field F as well.

The splitting field K over F for a polynomial zn − 1 is called the field of n-th roots of
unity over F. Let K× be the group, under multiplication, of all nonzero elements in the field
K. The n-th roots of unity in K constitute a subgroup of K× with finite order n, denoted by,

K(n) = {ζ ∈ K : ζn = 1}.

Since it exists at least one generator ζj ∈ K(n) such that

K(n) = (ζj , ζ2
j , ζ

3
j , . . . , ζ

n
j ).

This group is known to be cyclic.
In particular, the number of generators in the field K(n) is given by ϕ(n), where ϕ(·) denotes

the Euler’s totient function. Any generator ζj of K(n) is called a primitive n-th root of unity
in K.

Example 5.10 The set of the primitive 4-th roots of the unity in C is {i,−i}, i.e., the group
C(4) is generated by these two elements, as shown next:

C(4) = {i1 = i, i2 = −1, i3 = −i, i4 = 1}
C(4) = {(−i)1 = −i, (−i)2 = −1, (−i)3 = i, (−i)4 = 1}.
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DEFINITION 5.3 (Cyclotomic polynomial) Let n ∈ N and K be the field of n-th roots of
unity over F. The n-th cyclotomic polynomial Φn(z) in K is an irreducible polynomial of degree
ϕ(n) and coefficients in {1,−1}, whose roots are the primitive n-th roots of unity in K :

Φn(z) =
ϕ(n)∏
j=0

(z − ζj).

Example 5.11 The 4-th cyclotomic polynomial in C is given by:

Φ4(z) = z2 + 1 = (z − i)(z + i).

Note that for the field of 4-th roots of unity F7[x]/x2 + 1 over F7, it is also true that

Φ4(z) = z2 + 1 = (z − 6x)(z + 6x).

Since the set of primitive n-th roots of unity is a subset of the roots of zn− 1, it follows that
Φn(z) is a divisor of zn − 1. By definition, let n, j ∈ Z+ such that j|n and j <= n,

zn − 1 =
∏
j

Φj(z). (5.6)

Example 5.12 Let n = 12.

{j ∈ N : j|12 and j ≤ 12} = {1, 2, 3, 4, 6, 12}, therefore,

z12 − 1 = Φ1(z) · Φ2(z) · Φ3(z) · Φ4(z) · Φ6(z) · Φ12(z)

where

Φ1(z) = z − 1,
Φ2(z) = z + 1,
Φ3(z) = z2 + z + 1,
Φ4(z) = z2 + 1,
Φ6(z) = z2 − z + 1,

Φ12(z) = z4 − z2 + 1.

DEFINITION 5.4 (Cyclotomic group) Given a prime number p, let Fpn be an extension
field of Fp and let F×pn be the group, under multiplication, of all non-zero elements in the field
Fpn . The n-th cyclotomic group GΦn(p) is a subgroup of F×pn defined by:

GΦn(p) = {α ∈ Fpn : αΦn(p) = 1}

In the implementation of asymmetric parings, the properties of the n-th cyclotomic subgroups
have been extensively exploited to speed up the computation of the last step, known as the final
exponentiation step, which is carefully studied in Chapter 7. Because of that, there has been
a widespread interest in improving the computational efficiency of the arithmetic in the group
GΦn(p). The following section describes two of the most interesting approaches that optimized
the squaring in the cyclotomic group, namely, the improvement presented by Granger et al.
in [26] and the algorithm proposed by Karabina in [32].
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5.3.2 Squaring in Cyclotomic Subgroups

According to the definition of the n-th cyclotomic group, it follows that GΦn(p) ⊂ F×pn , where F×pn
is the multiplicative group comprised by all non-zero elements in the field Fpn . In this section,
we are interested in extension fields Fpn with 6|n such that Fpn can be represented by the tower
field,

Fpn=(q2)3 = Fq2 [v]/v3 − γ
Fq2 = Fq[w]/w2 − ξ

where q = p2a−13b−1 .

Therefore, any element α ∈ Fpn is written as:

α = (a0 + a1w) + (b0 + b1w)v + (c0 + c1w)v2 = (a+ bv + cv2),

where ai, bi, ci ∈ Fq. With this representation, the computation of α2 can be done in a
conventional way at a cost of 3 squarings and 3 multiplications in Fq2 ,

α2 = (a+ bv + cv2)2

= (a2 + 2bcγ) + (2ab+ c2γ)v + (2ac+ b2)z2.

Granger-Scott squaring-friendly-fields

Granger and Scott introduced in [26] the concept of Squaring-Friendly-Fields (SFF), which are
extension fields of the form Fq6 for which q = pi ≡ 1 mod 6 is a prime power. Let α ∈ GΦn(p) ⊂
F×pn , such that Fpn is a SFF and 6|n. Since

αΦn(p)=pn/3−pn/6+1 = 1,

Granger et al. demonstrated that the following algebraic relations hold,

bc = a2 − a/γ,
ab = c2γ − b,
ac = b2 − c,

where a, b and c are the conjugates of a, b, and c respectively. In this way, the effort of computing

α2 = (3a2 − 2a) + (3c2γ + 2b)v + (3b2 − 2c)

is reduced to 3 squares in Fq2 , i.e., around 6 multiplications in Fq.

Karabina’s compressed squaring formulae

Several proposals have strived to compute the arithmetic in the cyclotomic subgroup using a
compressed representation of the elements. Although the arithmetic becomes more efficient,
the main challenge of these methods lies in the effort that the decompression of the elements
requires.

The Karabina approach of [32] introduced new compress formulas that improve the squaring
method proposed by Granger et al. for exponentiation algorithms where the exponent has a low
Hamming weight. In addition, the decompression in Karabina’s formulas has a very low cost,
which makes the implementation of this method in the Final Exponentiation more convenient.
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Without going into details of how the formulas were defined, let α ∈ GΦn(p) ⊂ F×pn such that
Fpn is a SSF and 6|n. Using the tower field described in the last section, the computation of

α2 = ((a0 + a1w) + (b0 + b1w)v + (c0 + c1w)v2)2

can be done in three steps:

1. Compress the element α using the following formula:

C(α) = (b0 + b1w)v + (c0 + c1w)v2.

2. Compute C(α)2 = (B0 +B1w)v + (C0 + C1w)v2, where

B0 = 2b0 + 3((c0 + c1)2 − c20 − c21), B1 = 3(c20 + c21ξ)− 2b1,

C0 = 3(b20 + b21ξ)− 2c0, C1 = 2c1 + 3(b0 + b1)2 − b20 − b21).

Note that the cost of computing C(α)2 is around 6 squares in Fq.

3. Recover the full representation of the element by computing

α2 = D(C(α2)) = (A0 +A1w) + (B0 +B1w)z + (C0 + C1w)z2, where

 A1 = C2
1ξ+3C2

0−2B1
4B0

, A0 = (2A2
1 +B0C1 − 3B1C0)ξ + 1 if B0 6= 0

A1 = 2C0C1
B1

, A0 = (2A2
1 − 3B1C0)ξ + 1 if B0 = 0

 .

The decompression procedure as described above has a cost of around 3 squares, 3
multiplications, and 1 inversion in Fq.

5.3.3 Exponentiation in the Cyclotomic Group

Let G = (G, ·, 1) be a cyclic finite group described multiplicatively, and let g be a generator of
G, the exponentiation gx, where x is an integer number and can be computed by representing
the exponent x as a binary number, x =

∑`
i=0 xi2i, such that,

gx = g
∑`

i=0
xi2i =

∏̀
i=0

gxi2
i

=
∏̀
i=0

[g2i ]xi =
∏
xi=1

g2i .

This computation requires ` = log2(x) and wH(x) squaring and multiplication operations, respec-
tively, where wH(x) denotes the Hamming weight of x. In the particular case where g ∈ GΦn(p),

the Karabina method presented in [32] can be applied for the efficient computation of gx, by
using the following procedure:

1. Obtain the signed representation of the exponent x =
∑`

i=0 2ixi, such that xi =
{0, 1,−1}.

2. Compute C(g2i) for 0 ≤ i ≤ ` and store the values hj = C(g2i) whenever the bit
xi 6= 0.

3. Decompress the stored values hj , i.e., compute, D(C(g±2i)) if xi 6= 0.
4. Finally, compute gx as,

gx =
∏
g±2i if xi 6= 0.
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5.4 Lazy Reduction and RNS Representation

The arithmetic operations we are performing in pairing-based cryptography nowadays involve
large characteristic, at least 256 bits. When the computation can be parallelized, the Residue
Number System (RNS) representation can be a nice alternative to the classic representation of
finite field presented in the previous Section. The RNS representation breaks a large integer
into a set of smaller integers. The arithmetic operations over large integers are decomposed into
several smaller calculation that can be performed in parallel. Several works study the efficiency
of the multiplication in RNS representation [43, 33, 49, 10]. The complexity of a multiplication
in the RNS representation is O(n), where n is the number of words in a given basis of an
integer. It implies that a multiplication in this representation is cheaper when compared with
the Montgomery algorithm.

Unfortunately, the Montgomery reduction in RNS representation is more expensive than an
ordinary Montgomery reduction. This drawback is balanced by reducing the number of reduc-
tions using the lazy reduction technic. Lazy reduction consists of performing several arithmetic
operations before performing a reduction. It is adapted for expressions like AB ± CD ± EF
in Fp. Some implementations of pairings using lazy reduction were proposed by Scott [46] and
generalized by Aranha et al. in [3]. In [23, 18], the authors combined the lazy reduction with
the use of the RNS representation in order to perform a pairing implementation.

5.4.1 The Residue Number Systems (RNS)

The Residue Number Systems are a corollary of the Chinese Remainder Theorem (CRT). Assume
that we want to construct the arithmetic over Fp using the RNS representation. Let mi, for i =
1, n be coprime numbers such that M =

∏n
i=1mi > p. A number a ∈ Fp is represented in RNS

representation by its residues (a1, a2, . . . , an) such that ai = a mod mi. The ai are called the
RNS-digits of a in the base BM . The main advantage of this representation is that arithmetical
operations (+,−,×, /) over large integers a and b in Fp are transformed into operations on the
small residue values. Each operation over the residues can be performed in parallel, as they are
independent. A good introduction to RNS representation can be found in [34]. In particular, the
multiplication over Fp is reduced to n multiplications of independent RNS-digits. The choice of
the mi has a direct influence on the complexity of the multiplication. A classical optimization
is to choose the mi such that mi = 2h − ci, where ci is small and sparse, i.e., ci < 2h/2. The
reduction modulomi is then obtained with few shifts and additions [8, 10, 17]. As a consequence,
an RNS digit-product can be considered to be equivalent to a 1.1 word-product (word = h-bits).
Of course, this estimation is highly dependent on the platform of implementation.

In practice, the number of moduli in an RNS base and the number of words in a normal
binary system to represent field size p are equivalent in the complexity analysis, and we use n
to denote both of those parameters.

RNS Montgomery reduction

We now focus on the multiplication modulo p using the Montgomery algorithm presented in [6, 7].
The main difference between the Mongotmery multiplication and the multiplication in the

RNS representation is the number of bases. The Montgomery multiplication is applied in a clas-
sical radix B number system, the value Bn occurs in the reduction, division, and Montgomery
factor. In RNS, this value is replaced byM . However, an auxiliary RNS basis is needed to handle
the inverse of M . Since M−1 does not exist in base M , a new base, BM ′ = {m′1,m′2, . . . ,m′s},
where M is co-prime with M ′, is introduced to perform the division (i.e., (T + QN)/R). Note
that all the moduli from both BM and BM ′ are pairwise coprime asM andM ′ are coprime. The
overhead is two base extensions. Algorithm 5.24 presents the computation of a Montgomery
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representation in the RNS arithmetic. Hence, some operations as the initial product must be
performed on the two bases, which cost 2n words-products.

Let a and b be two numbers given in RNS representation; the RNS multiplication evaluates
r = abM−1 mod p in RNS. As in the classical Montgomery algorithm given in Algorithm 5.6,
this problem can be overcome by using Montgomery representation where a′ = a ×M mod p,
which is stable for Montgomery product and addition. Of course, the conversion is done only
once at the beginning by performing Montgomery product with a and (M2 mod p) as operands,
and once at the end of the complete cryptographic computing with 1 as second operand. Hence,
this transformation will be neglected in the following. Moreover, as the RNS is not redundant,
this representation is well suited for cryptography without any conversion [9].

Algorithm 5.24 presents the RNS Montgomery reduction (r can be considered the result of
an RNS product on the two bases), where all the operations considered are in RNS. We explicit
with respect to on which basis the operations are performed.

ALGORITHM 5.24 RNS Montgomery Reduction of r mod p.
Input : Two RNS bases BM = (m1, . . . ,mn), and BM ′ = (m′n+1, . . . ,m

′
2n), such that

M =
∏n
i=1mi < M ′ =

∏n
i=1mn+i and gcd(M,M ′) = 1. A prime number p

such that 4p < M and gcd(p,M) = 1. The prime p is represented in basis BM ′
and −p−1 is precomputed in basis BM A positive integer r represented in RNS
in both bases, with r < Mp.

Output: A positive integer ρ ≡ rM−1 (mod p) represented in RNS in both bases, with
ρ < 2p.

1 q ← (r)× (−p−1) in BM ; [q in BM ] −→ [q in BM ′ ] [First base extension];
2 ρ← (r + q × p)×M−1 in BM ′ ;
3 [ρ in BM ]←− [ρ in BM ′ ] [Second base extension];

The base extension can be performed using the Kawamura method [7], which is described in
Algorithm 5.25.

The set of instructions 1 and 3 of Algorithm 5.24 are RNS additions or multiplications, which
are performed independently for each element of the basis, so they are very efficient (linear). The
set of instructions 2 and 4 represent RNS base extensions that are quadratic and then costly.
To reduce this cost, we can use two different full RNS extensions as shown in [6, 7].

We can show that the overall complexity of Algorithm 5.24 is 7
5n

2+ 8
5n RNS digit-products [8].

If we operate with an architecture of n basic word-arithmetic cells, the RNS arithmetic can
be easily performed in a parallel manner due to the independence of the RNS digit operations.
A parallel evaluation of the multiplication (in both bases) requires only 2 steps, whereas Algo-
rithm 5.24 can be done in 12

5 n+ 3
5 steps [8].

Advantages of the RNS

The number of operations needed for the reduction in RNS representation is higher when com-
pared with the number of operations in classical representation. Indeed, for the classical Mont-
gomery reduction, we perform n2 +n word-products. However, the RNS representation presents
important advantages:

• Assuming that for ECC size the multiplication needs n2 word-products, the RNS ap-
proach is asymptotically quite interesting for a modular multiplication that represents
2n2 + n word-products in classical systems and

( 7
5n

2 + 18
5 n
)
× 1.1 in RNS.

• As shown in [27], the RNS arithmetic is easy to implement, particularly in hardware.
It provides a reduced cost for multiplication and addition and a competitive modular
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ALGORITHM 5.25 Kawamura’s Base extension [7].
Input : Two RNS bases BM = (m1, . . . ,mn), and BM ′ = (m′n+1, . . . ,m

′
2n), such that

M =
∏n
i=1mi < M ′ =

∏n
i=1mn+i and gcd(M,M ′) = 1. The representation

QM of an integer in the base M
Output: The representation QM ′ of Q in the base M ′

1 for i = 1 to n do
2 ξi = |ximi/M |mi
3 end
4 δ = errinit

5 for i = 1 to n do
6 (QM ′)i = 0
7 end
8 for i = 1 to n do
9 δ = δ + eval(ξi,mi)

10 for j = 1 to n′ do
11 (QM ′)j = ((QM ′)j + ξiM/mi) mod m′j if δ ≥ 1 then
12 (QM ′)j = ((QM ′)j −M) mod m′j
13 end
14 end
15 δ = δ − bδc
16 end

reduction. Furthermore, due to the independence of the modular operations, compu-
tations can be performed in a random way and the architecture can be parallelized.

• A RNS based architecture is flexible: With a given structure of n modular digit
operators, it is possible to handle any values of p such that 4p < M . Hence, the same
architecture can be used for different levels of security and several base fields for each
of these levels.

• There is a large gap between the cost of the reduction and the cost of the multiplication
( 7

5n
2 vs. 2n), which is much smaller in classical systems (n2 +n vs. n2). We can take

a great advantage of this gap by accumulating multiplications before reduction. This
method is called lazy reduction.

5.4.2 Lazy Reduction

The Lazy reduction technique is used in order to optimize arithmetical implementations in
general [52, 38, 45], and for pairing-based cryptography [46, 3].

The method consists of delaying the modular reduction step after computing several products,
which must be summed. It is well suited for expressions like AB ± CD ± EF in Fp, where
p is an n-word prime number. Lazy reduction performs only one reduction for patterns like
AB ± CD ± EF ; hence, it trades expensive reductions with multi-precision additions. In an
RNS context, as a multiplication takes only 2n word operations, the lazy reduction dramatically
decreases the complexity.

Example 5.13 Assume we want to evaluate the expression AB+CD ∈ Fp. A classical imple-
mentation involves two modular multiplications and then requires 4n2 +2n word-products, using
the digit-serial Montgomery modular multiplication [36]. In a lazy reduction implementation,
we first compute the two multiplications and add them before a unique reduction step. Thus it
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requires only 3n2 + n word-products.

The combined use of lazy reduction and RNS arithmetic is very interesting, as it overcomes
the gap of complexity between the multiplication and the reduction step. Indeed, while the
classical computation of AB + CD requires 14

5 n
2 + 36

5 n RNS digit-products, the use of lazy
reduction requires only 7

5n
2 + 28

5 n RNS digit-products. Hence, lazy reduction is particularly well
adapted to RNS arithmetic. This has already been used in [8] for elliptic curve cryptography
and by [23, 18] for pairing-based cryptography.

Remark 5.11 Obviously, using the lazy reduction technique implies that the reduction al-
gorithm can take larger integers as input. In the Example 5.13, the reduction algorithm must
handle numbers less than 2p2 instead of less than p2. As a consequence, M must be larger than
p.

There are several means to ensure that M > p:

• In cryptography, the size of p is chosen as an exact multiple of the word size of the
architecture. In this case, we need an additional word to handle M . This solution
can be costly if n is small, as, for example, on 64-bit architecture.

• We can choose the size of p to be a little bit smaller than an exact multiple of the
word size of the architecture. The drawback is that we obtain security levels that
are not standard. But the consequences are not catastrophic. For example, a 254-bit
prime p is used in [3, 14], ensuring 127 bits of security, which is one bit then less the
standard recommendation.

• Another method is to use larger words, like 36-bit words on FPGA. It induces suffi-
ciently extra bits to handle M for cryptographic applications [27].

5.4.3 Fast arithmetic in Fpd Combining Lazy Reduction and RNS

Efficient arithmetic in finite extensions of prime fields is usually done with sparse polynomials
with small coefficients, so that the cost of the reduction modulo this polynomial is given by some
additions, as it is described in Sections 2.2.8 and 5.2. This means that if the irreducible poly-
nomial defining Fpd is well chosen, the cost of the reduction step in Fpd arithmetic is negligible
compared to a multiplication in Fp[X]. In pairing-based cryptography, such cheap reduction
always holds. Hence we will focus only on multiplication in Fp[X].

We use the results from Section 5.2 to make our comparison in the following examples.

Example 5.14 Example for a degree-2 extension. Let p be a prime number such that
p ≡ 3 mod 4. Then −1 is not a square in Fp. The degree-2 extension can be constructed as
Fp2 = Fp[u]/(u2 + 1). We want to compute the product of P = a0 + a1u and Q = b0 + b1u.
Using schoolbook multiplication, we have

PQ = a0b0 − a1b1 + (a0b1 + a1b0)u.

In this case, the lazy reduction is interesting since the ab+ cd pattern occurs. This multipli-
cation in Fp2 involves 4 multiplications in Fp but only 2 modular reductions. One could remark
that as elements in Fp2 have 2 independent components, it is not possible to have less than 2
reductions in Fp in the general case. Using the Karatsuba method, we perform 3 multiplications
in Fp and also 2 modular reductions, thanks to the formula

PQ = a0b0 − a1b1 + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)u.
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This formula makes the use of the RNS representation interesting. Indeed, the expensive step
of the RNS, namely the reduction step, is used linearly when Fpd arithmetic is performed, whereas
the cheaper step, namely the multiplication step, is used quadratically or sub-quadratically in
d, the degree of the extension.

More precisely, we have Property 5.1 from [23].

PROPOSITION 5.1 Let p be a prime number that can be represented by n words in radix
representation and an RNS-digit in RNS representation. Let Fpd be a finite extension of Fp
defined by a sparse polynomial with small coefficients. We assume that the multiplication in
Fp[X] requires dλ multiplications in Fp, with 1 < λ ≤ 2, and that we use lazy reduction in Fp.
A multiplication in Fpd then requires

• (dλ + d)n2 + dn word multiplications in radix representation,

• 1.1×
(

7d
5 n

2 + 10dλ+8d
5 n

)
word multiplications if RNS is used.

Most of the gain is due to the accumulation of many products before reducing, and not only
2 as in [8]. Of course, both the classical and the RNS reduction algorithms must be adapted.
Indeed, input data can have a large size compared to p because of this accumulation process.
More precisely, input data have maximal size d′p2 where d′ has the same size as d (it is not equal
to d only because of the polynomial reduction step). Then it is sufficient to choose the RNS basis
such that M > d′p. Moreover, if we want to use the output of the reduction algorithm (which
is in [0, 2p[) as an input without a final comparison and subtraction, each product becomes less
than 4p so that we have to choose M > 4d′p. This is not restrictive in practice as long as d is
not too large, as explained in [23].

For values of d and n greater than or equal to 6, the gain is spectacular. For instance, if
n = d = 6 and λ = 1.5 (which is a mean between Karatsuba and Toom–Cook complexities), a
multiplication in Fp6 requires 781 word multiplications in radix representation, while it requires
only 590 in RNS. Of course this is just a rough estimation to give an idea of the expected gain.
Each particular situation must be studied in detail. We illustrate this method with an example
from [23] over a degree-6 extension.

Example 5.15 Example of degree-6 extension in 192 bits
In this example, we give an explicit example of degree-6 extension of a 192-bit prime field.

This example comes from [23] and is linked to an MNT curve suitable for pairing-based cryp-
tography; see Chapter 4. Let Fp be defined by the prime number

p = 4691249309589066676602717919800805068538803592363589996389.

In this case, Fp6 can be defined by a quadratic extension of a cubic extension thanks to the
polynomials u3 − 2 and w2 − α where α is a cubic root of 2.

Fp3 = Fp[u]/(u3 − 2) = Fp[α] and

Fp6 = Fp3 [w]/(w2 − α) = Fp3 [β].

As we want to use lazy reduction, the arithmetic of this extension must be completely
unrolled. Hence let

A = a0 + a1α+a2α
2+
(
a3 + a4α+a5α

2)β and
B = b0 + b1α+b2α2+

(
b3 + b4α+b5α2)β

be two elements of Fp6 . Using Karatsuba on the quadratic extension leads to
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AB =
(
a0 + a1α+a2α

2) (b0 + b1α+b2α2)+α
(
a3 + a4α+a5α

2) (b3 + b4α+b5α2)+[(
a0 + a3 + (a1 + a4)α+(a2 + a5)α2) (b0 + b3 + (b1 + b4)α+ (b2 + b5)α2)
−
(
a0 + a1α+a2α

2) (b0 + b1α+b2α2)− (a3 + a4α+a5α
2) (b3 + b4α+b5α2)]β .

Using Karatsuba again to compute each of these 3 products leads to
AB = a0b0 + 2 (a4b4 + (a1 + a2)(b1 + b2)− a1b1 + (a3 + a5)(b3 + b5)− a3b3 − a5b5)

+[a3b3 + (a0 + a1)(b0 + b1)− a0b0 − a1b1 + 2( a2b2 + (a4 + a5)(b4 + b5)− a4b4 − a5b5 )]α

+[a1b1 + 2a5b5 + (a0 + a2)(b0 + b2)− a0b0 − a2b2 + (a3 + a4)(b3 + b4)− a3b3 − a4b4]α2

+[(a0 + a3)(b0 + b3)− a0b0 − a3b3 + 2 ((a1 + a2 + a4 + a5)(b1 + b2 + b4 + b5)− (a1 + a4)(b1 + b4)
− (a2 + a5)(b2 + b5)− (a1 + a2)(b1 + b2) + a1b1 + a2b2 − (a4 + a5)(b4 + b5) + a4b4 + a5b5)]β
+[(a0 + a1 + a3 + a4)(b0 + b1 + b3 + b4)− (a0 + a3)(b0 + b3)− (a1 + a4)(b1 + b4)− (a0 + a1)(b0 + b1)
+ a0b0 + a1b1 − (a3 + a4)(b3 + b4) + a3b3 + a4b4 + 2 ((a2 + a5)(b2 + b5)− a2b2 − a5b5)]αβ
+[(a1 + a4)(b1 + b4)− a1b1 − a4b4 + (a0 + a2 + a3 + a5)(b0 + b2 + b3 + b5)− (a0 + a3)(b0 + b3)

− (a2 + a5)(b2 + b5)− (a0 + a2)(b0 + b2) + a0b0 + a2b2 − (a3 + a5)(b3 + b5) + a3b3 + a5b5]α2β .

It is easy to verify that this formula requires 18 multiplications in Fp. Of course it also
requires many additions but this is due to the Karatsuba method, not to lazy reduction. As
we use the lazy reduction technique, it requires only 6 reductions thanks to the accumulation
of all the operations in each component. However, this accumulation implies that the input of
the reduction step can be very large. More precisely, thanks to the existence of the schoolbook
method for computing AB, we can easily prove that if the components of A and B (i.e., the
ai and the bi) are between 0 and 2p (which is the case when Algorithm 5.6 or 5.24 is used
for reduction) then each component of AB is between 0 and 44p2. This means that Bn in
Montgomery representation and M in RNS representation must be greater than 44p to perform
lazy reduction in this degree-6 field.

5.5 SAGE Appendix

In this chapter we have detailed the finite field arithmetic that is required for implementing
bilinear pairings. The methods described in this chapter can be seen as high-level algorithms
that apply completely independent of the underlying hardware architecture.

A low-level implementation will have to deal with the fact that a computer word is not
enough to represent arbitrary finite field elements. Hence, a low-level implementation would
need to represent these rather large integers into several processor words to perform multi-
precision arithmetic. This process is dependent on the target hardware or software platform.
A low-level implementation is discussed at length in Chapter 11, where the specific details of a
pairing function implementation as well as general comments on selected ready-to-use pairing
libraries are given.

In this section, a finite field arithmetic SAGE code is presented. This code will hopefully be
useful to the reader for better understanding the field arithmetic algorithms discussed in this
chapter.
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5.5.1 Arithmetic in Fp

In this Section we present the SAGE code for the algorithms performing multi-precision addition,
subtraction, multiplication, exponentiation, inversion, and square root over the field Fp.

Listing 1 File fp.sage. Addition in Fp. Algorithm 5.1.

1 #Input : a, b \in F_p
2 # Output : a+b \in F_p
3 def Fp_addC (a,b):
4 c = a + b
5
6 if c >= p:
7 c = c - p
8
9 return c
10
11
12
13 #Input : a, b \in Z
14 # Output : a+b
15 def Fp_addNR (a,b):
16 c = a + b
17
18 return c

Listing 2 File fp.sage. Substraction in Fp. Algorithm 5.2.

1 #Input : a, b \in F_p
2 # Output : a-b \in F_p
3 def Fp_subC (a,b):
4 c = a - b
5 if a < b:
6 c = c + p
7
8 return c

Listing 3 File params.sage. Barret reduction parameters for Algorithm 5.5, p-prime for Fp.

1 # Barret reduction
2 B_W = 64
3 B_b = 2^ B_W
4 B_k = Integer (math.ceil(math.log(p,B_b )+1))
5 B_mu = B_b ^(2* B_k) // p
6 B_mask = 2^( B_W *( B_k +1)) -1
7 B_expo = B_b ^( B_k + 1)
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Listing 4 File fp.sage. Barret reduction in Fp for Algorithm 5.5, see parameters in Listing 3.

1 #rs = (z & B_mask ) - ((qh * p) & B_mask )
2 #Input : a \in Z
3 # Output : a \in F_p
4 def Fp_BarretRed (z):
5 qh = ((z >> (B_W * (B_k - 1))) * B_mu) >> (B_W * (B_k + 1))
6 t0 = Fp_mod ( Fp_mulNR (qh , p), B_expo )
7 rs = Fp_subNR ( Fp_mod (z, B_expo ), t0)
8
9 if rs < 0:
10 rs = Fp_addNR (rs , B_expo )
11 while (rs >= p):
12 rs = Fp_subNR (rs , p)
13
14
15 return rs

Listing 5 File params.sage. Montgomery reduction parameters for Algorithm 5.6, p-prime for
Fp.

1 # Montgomery space
2 M_r = 1 << 256
3 M_pp = -( Fp_inv (p, M_r ))
4 M_rp = Fp_inv (M_r , p)

Listing 6 File fp.sage. Montgomery product for Algorithm 5.6, see parameters in Listing 5.
1 #Input: a,b \in Mont(F_p)
2 # Output : a.b \in Mont(F_p)
3 def MontPr (a, b):
4 t = Fp_mulNR (a,b)
5 q = Fp_mod ( Fp_mulNR (t, M_pp), M_r)
6 u = Fp_addNR (t, Fp_mulNR (q, p)) >> 256
7 if u >= p:
8 return Fp_subNR (u, p)
9 else:
10 return u
11
12 return u
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Listing 7 File fp.sage. Montgomery multiplication in Fp for Algorithm 5.7, see parameters in
Listing 5.

1 #Input: a,b \in F_p
2 # Output : a.b \in F_p
3 def Fp_mulM (a,b):
4 ap = Fp_mod (a<<256, p)
5 bp = Fp_mod (b<<256, p)
6 cp = MontPr (ap , bp)
7 c = MontPr (cp , Fp_one ())
8
9 return c

Listing 8 File fp.sage. Improved Montgomery multiplication in Fp for Algorithm 5.8, see
parameters in Listing 5.

1 #Input: a,b \in F_p
2 # Output : a.b \in F_p
3 def Fp_mulMI (a,b):
4 ap = Fp_mod (a<<256, p)
5 c = MontPr (ap , b)
6
7 return c

Listing 9 File fp.sage. Montgomery exponentiation in Fp for Algorithm 5.11, see parameters
in Listing 5.

1 #Input: a,e \in F_p
2 # Output : a^e \in F_p
3 def Fp_expM (a,e):
4 ap = Fp_mod (a<<256, p)
5 aa = Fp_mod (M_r , p)
6
7 lbin = e.nbits ()
8 bin_e= e.bits ()
9 for i in range(lbin -1,-1,-1):
10 aa = MontPr (aa , aa)
11 if bin_e[i]==1:
12 aa = MontPr (aa , ap)
13
14 return MontPr (aa , Fp_one ())
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Listing 10 File fp.sage. Inversion in Fp for Algorithm 5.12.

1 #Input : a \in F_p
2 # Output : a^-1 \in F_p
3 def Fp_invBin (a, q=None ):
4 if q== None:
5 n = p
6 else:
7 n = q
8
9 u = a
10 v = n
11 x1 = 1
12 x2 = 0
13 while (u != 1) and (v != 1):
14 while (u&1) == 0:
15 u = Fp_divBy2 (u)
16 if (x1 &1)==0:
17 x1 = Fp_divBy2 (x1)
18 else:
19 x1 = Fp_divBy2 ( Fp_addNR (x1 , n))
20 while (v &1)==0:
21 v = Fp_divBy2 (v)
22 if (x2 &1)==0:
23 x2 = Fp_divBy2 (x2)
24 else:
25 x2 = Fp_divBy2 ( Fp_addNR (x2 , n))
26 if u >= v:
27 u = Fp_subNR (u, v)
28 x1 = Fp_subNR (x1 , x2)
29 else:
30 v = Fp_subNR (v, u)
31 x2 = Fp_subNR (x2 , x1)
32
33 if u == 1:
34 return Fp_BarretRed (x1)
35 else:
36 return Fp_BarretRed (x2)

Listing 11 File fp.sage. Square root in Fp for p ≡ 3 mod 4, Algorithm 5.13.

1 #Input : a \in F_p , for p=3%4
2 # Output : a ^(1/2) \in F_p
3 def Fp_SQRTshanks (f):
4 global pm3o4
5 g = Fp_exp (f,pm3o4)
6 a = Fp_mulC ( Fp_square (g), f)
7 g = Fp_mulC (g, f)
8 if a == (p -1):
9 return -1
10
11 return g

5.5.2 Arithmetic in Fp2

In this section we present the SAGE code for the algorithms performing multi-precision addition,
multiplication, squaring, square root, and inversion over the field Fp2 .
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Listing 12 File fp2.sage. Addition in Fp2 . Algorithm 5.15.

1 #Input : a, b \in F_{p^2} -> a = (a0 + a1u), b = (b0 + b1u)
2 # Output : c = a + b \in F_{p^2}
3 def Fp2_addC (a,b):
4 c0 = Fp_addC (a[0], b[0])
5 c1 = Fp_addC (a[1], b[1])
6
7 return [c0 , c1]

Listing 13 File fp2.sage. Multiplication in Fp2 . Algorithm 5.16.

1 #Input : a, b \in F_{p^2} -> a = (a0 + a1u), b = (b0 + b1u)
2 # Output : a.b \in F_{p^2}
3 def Fp2_mul (a, b):
4 v0 = Fp_mulC (a[0], b[0])
5 v1 = Fp_mulC (a[1], b[1])
6 c0 = beta_mul (v1)
7 c0 = Fp_addC (v0 , c0)
8 c1 = Fp_addC (a[0], a[1])
9 t0 = Fp_addC (b[0], b[1])
10 c1 = Fp_mulC (c1 , t0)
11 c1 = Fp_subC (c1 , v0)
12 c1 = Fp_subC (c1 , v1)
13
14 return [c0 , c1]

Listing 14 File fp2.sage. Squaring in Fp2 . Algorithm 5.17.

1 #Input : a \in F_{p^2} -> a = (a0 + a1u)
2 # Output : a^2 \in F_{p^2}
3 def Fp2_square (a):
4 v0 = Fp_subC (a[0], a[1])
5 v3 = beta_mul (a[1])
6 v3 = Fp_subC (a[0], v3)
7 v2 = Fp_mulC (a[0], a[1])
8 v0 = Fp_mulC (v0 , v3)
9 v0 = Fp_addC (v0 , v2)
10 v1 = Fp_addC (v2 , v2)
11 v3 = beta_mul (v2)
12 v0 = Fp_addC (v0 , v3)
13
14 return [v0 , v1]
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Listing 15 File fp2.sage. Square root in Fp2 , with β = −1, p ≡ 3 mod 4. Algorithm 5.18.

1 #Input : a \in F_{p^2} -> a = (a0 + a1u)
2 # Output : a ^(1/2) \in F_{p^2}
3 def Fp2_SQRT (v):
4 u = Fp2_copy (v)
5 if u[1] == Fp_zero ():
6 u[0] = Fp_SQRTshanks (u[0])
7 return u
8
9 t0 = Fp_square (u[0])
10 t1 = Fp_square (u[1])
11 t0 = Fp_subC (t0 , beta_mul (t1))
12
13 L = Legendre (t0 , p)
14 if L == -1:
15 return [-1, 0]
16 t0 = Fp_SQRTshanks (t0)
17
18 t1 = Fp_addC (u[0], t0)
19 t1 = Fp_mulC (t1 , Half)
20 L = Legendre (t1 , p)
21 if L == -1:
22 t1 = Fp_subC (u[0], t0)
23 t1 = Fp_mulC (t1 , Half)
24
25 u[0] = Fp_SQRTshanks (t1)
26 t1 = Fp_addC (u[0], u[0])
27 t1 = Fp_inv (t1)
28 u[1] = Fp_mulC (u[1], t1)
29
30 return u

Listing 16 File fp2.sage. Inversion in Fp2 for Algorithm 5.19.

1 #Input : a \in F_{p^2} -> a = (a0 + a1u)
2 # Output : a^-1 \in F_{p^2}
3 def Fp2_inv (a):
4 t0 = Fp_square (a[0])
5 t1 = Fp_square (a[1])
6 t1 = beta_mul (t1)
7 t0 = Fp_subC (t0 , t1)
8 t1 = Fp_inv (t0)
9 c0 = Fp_mulC (a[0], t1)
10 c1 = Fp_mulC ( Fp_negC (a[1]) , t1)
11
12 return [c0 , c1]
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5.5.3 Arithmetic in Fp3

In this section we present the SAGE code for the algorithms performing multi-precision addition,
multiplication, squaring, and inversion over the field Fp3 .

Listing 17 File fp3.sage. Addition in Fp3 . Algorithm 5.20.

1 #Input : a, b \in F_{p^3} -> a = (a0 + a1w + a2w ^2),
2 # b = (b0 + b1w + b2w ^2)
3 # Output : c = a + b \in F_{p^3}
4 def Fp3_addC (a,b):
5 c0 = Fp_addC (a[0], b[0])
6 c1 = Fp_addC (a[1], b[1])
7 c2 = Fp_addC (a[2], b[2])

Listing 18 File fp3.sage. Multiplication in Fp3 . Algorithm 5.21.

1 #Input : a, b \in F_{p^3} -> a = (a0 + a1w + a2w ^2),
2 # b = (b0 + b1w + b2w ^2)
3 # Output : c = a.b \in F_{p^3}
4 def Fp3_mul (a, b):
5 v0 = Fp_mulC (a[0], b[0])
6 v1 = Fp_mulC (a[1], b[1])
7 v2 = Fp_mulC (a[2], b[2])
8 c0 = Fp_mulC ( Fp_addC (a[1], a[2]) , Fp_addC (b[1], b[2]))
9 c0 = Fp_subC ( Fp_subC (c0 , v1), v2)
10 c0 = Fp_addC ( beta3_mul (c0), v0)
11 c1 = Fp_mulC ( Fp_addC (a[0], a[1]) , Fp_addC (b[0], b[1]))
12 c1 = Fp_subC ( Fp_subC (c1 , v0), v1)
13 c1 = Fp_addC (c1 , beta3_mul (v2))
14 c2 = Fp_mulC ( Fp_addC (a[0], a[2]) , Fp_addC (b[0], b[2]))
15 c2 = Fp_subC ( Fp_subC (c2 , v0), v2)
16 c2 = Fp_addC (c2 , v1)
17
18 return [c0 , c1 , c2]
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Listing 19 File fp3.sage. Squaring in Fp3 . Algorithm 5.22.

1 #Input : a \in F_{p^3} -> a = (a0 + a1w + a2w ^2)
2 # Output : a^2 \in F_{p^3}
3 def Fp3_square (a):
4 v4 = Fp_mulC (a[0], a[1])
5 v4 = Fp_addC (v4 , v4)
6 v5 = Fp_square (a[2])
7 c1 = Fp_addC ( beta3_mul (v5), v4)
8 v2 = Fp_subC (v4 , v5)
9 v3 = Fp_square (a[0])
10 v4 = Fp_addC ( Fp_subC (a[0], a[1]) , a[2])
11 v5 = Fp_mulC (a[1], a[2])
12 v5 = Fp_addC (v5 , v5)
13 v4 = Fp_square (v4)
14 c0 = Fp_addC ( beta3_mul (v5), v3)
15 c2 = Fp_subC ( Fp_addC ( Fp_addC (v2 , v4), v5),v3)
16
17 return [c0 , c1 , c2]

Listing 20 File fp3.sage. Inversion in Fp3 for Algorithm 5.23.

1 #Input : a\in F_{p^3} -> a = (a0 + a1w + a2w ^2)
2 # Output : a^-1 \in F_{p^3}
3 def Fp3_inv (a):
4 v0 = Fp_square (a[0])
5 v1 = Fp_square (a[1])
6 v2 = Fp_square (a[2])
7 v3 = Fp_mulC (a[0], a[1])
8 v4 = Fp_mulC (a[0], a[2])
9 v5 = Fp_mulC (a[1], a[2])
10 A = Fp_subC (v0 , beta3_mul (v5))
11 B = Fp_subC ( beta3_mul (v2), v3)
12 C = Fp_subC (v1 , v4)
13 v6 = Fp_mulC (a[0], A)
14 v6 = Fp_addC (v6 , Fp_mulC ( beta3_mul (a[2]) , B))
15 v6 = Fp_addC (v6 , Fp_mulC ( beta3_mul (a[1]) , C))
16 F = Fp_invBin (v6)
17 c0 = Fp_mulC (A, F)
18 c1 = Fp_mulC (B, F)
19 c2 = Fp_mulC (C, F)
20
21 return [c0 , c1 , c2]
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5.5.4 Arithmetic in Cyclotomic Subgroups

In this section we present the SAGE code for the special Granger–Scott, and Karabina’s squaring
in GPhi6 .

Listing 21 File ep.sage. Granger-Scott squaring in GΦ6 .
1 # Granger -Scott special squaring
2 def Fp12_sqru (a):
3 z0 = Fp2_copy (a [0][0])
4 z4 = Fp2_copy (a [0][1])
5 z3 = Fp2_copy (a [0][2])
6 z2 = Fp2_copy (a [1][0])
7 z1 = Fp2_copy (a [1][1])
8 z5 = Fp2_copy (a [1][2])
9
10 [t0 , t1] = Fp4_square ([z0 , z1])
11
12 #For A
13 z0 = Fp2_subC (t0 , z0)
14 z0 = Fp2_addC (z0 , z0)
15 z0 = Fp2_addC (z0 , t0)
16
17 z1 = Fp2_addC (t1 , z1)
18 z1 = Fp2_addC (z1 , z1)
19 z1 = Fp2_addC (z1 , t1)
20
21 [t0 , t1] = Fp4_square ([z2 , z3])
22 [t2 , t3] = Fp4_square ([z4 , z5])
23
24 #For C
25 z4 = Fp2_subC (t0 , z4)
26 z4 = Fp2_addC (z4 , z4)
27 z4 = Fp2_addC (z4 , t0)
28
29 z5 = Fp2_addC (t1 , z5)
30 z5 = Fp2_addC (z5 , z5)
31 z5 = Fp2_addC (z5 , t1)
32
33 #For B
34 t0 = chi_mul (t3)
35 z2 = Fp2_addC (t0 , z2)
36 z2 = Fp2_addC (z2 , z2)
37 z2 = Fp2_addC (z2 , t0)
38
39 z3 = Fp2_subC (t2 , z3)
40 z3 = Fp2_addC (z3 , z3)
41 z3 = Fp2_addC (z3 , t2)
42
43
44 return [[z0 , z4 , z3], [z2 , z1 , z5]]
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Listing 22 File ep.sage. Karabina’s compressed squaring in GΦ6 .
1 # Karabina ’s compressed squaring
2 # Input: g \in \G_{\ varpsi (6)} , g = [0, 0, g2 , g3 , g4 , g5]
3 # Output : g^2 = [0, 0, g2 , g3 , g4 , g5 ]^2
4 def Fp12_sqrKc (g):
5 T0 = Fp2_square (g[4])
6 T1 = Fp2_square (g[5])
7 #7
8 T2 = chi_mul (T1)
9 #8
10 T2 = Fp2_addC (T2 , T0)
11 #9
12 t2 = Fp2_copy (T2)
13 #1
14 t0 = Fp2_addC (g[4], g[5])
15 T2 = Fp2_square (t0)
16 #2
17 T0 = Fp2_addC (T0 , T1)
18 T2 = Fp2_subC (T2 , T0)
19 #3
20 t0 = Fp2_copy (T2)
21 t1 = Fp2_addC (g[2], g[3])
22 T3 = Fp2_square (t1)
23 T2 = Fp2_square (g[2])
24 #4
25 t1 = chi_mul (t0)
26 #5
27 g[2] = Fp2_addC (g[2], t1)
28 g[2] = Fp2_addC (g[2], g[2])
29 #6
30 g[2] = Fp2_addC (g[2], t1)
31 t1 = Fp2_subC (t2 , g[3])
32 t1 = Fp2_addC (t1 , t1)
33 #11
34 T1 = Fp2_square (g[3])
35 #10
36 g[3] = Fp2_addC (t1 , t2)
37 #12
38 T0 = chi_mul (T1)
39 #13
40 T0 = Fp2_addC (T0 , T2)
41 #14
42 t0 = Fp2_copy (T0)
43 g[4] = Fp2_subC (t0 , g[4])
44 g[4] = Fp2_addC (g[4], g[4])
45 #15
46 g[4] = Fp2_addC (g[4], t0)
47 #16
48 T2 = Fp2_addC (T2 , T1)
49 T3 = Fp2_subC (T3 , T2)
50 #17
51 t0 = Fp2_copy (T3)
52 g[5] = Fp2_addC (g[5], t0)
53 g[5] = Fp2_addC (g[5], g[5])
54 #18
55 g[5] = Fp2_addC (g[5], t0)
56
57 f = [ Fp2_zero (), Fp2_zero (), g[2], g[3], g[4], g[5]]
58
59 return f
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Listing 23 File ep.sage. Karabina’s compressed squaring in GΦ6 , reordering functions.
1 # Karabina ’s compressed squaring reordering
2 # Input: [a0 + a1.w] + [b0 + b1.w]v + [c0 + c1.w]v^2
3 # Output : [g0 , g1 , g2 , g3 , g4 , g5]
4 def fptogs (fp):
5 gs = [ Fp2_zero () for i in range (0 ,6)]
6 gs [0] = Fp2_copy (fp [0][0])
7 gs [1] = Fp2_copy (fp [1][1])
8 gs [2] = Fp2_copy (fp [1][0])
9 gs [3] = Fp2_copy (fp [0][2])
10 gs [4] = Fp2_copy (fp [0][1])
11 gs [5] = Fp2_copy (fp [1][2])
12
13 return gs
14
15
16
17 # Karabina ’s compressed squaring format change
18 # Input: [g0 , g1 , g2 , g3 , g4 , g5]
19 # Output : [g0 + g1.w] + [g2 + g3.w]v + [g4 + g5.w]v^2
20 def gstofp (gs):
21 f = Fp12_zero ()
22 f [0][0] = Fp2_copy (gs [0])
23 f [0][1] = Fp2_copy (gs [1])
24 f [0][2] = Fp2_copy (gs [2])
25 f [1][0] = Fp2_copy (gs [3])
26 f [1][1] = Fp2_copy (gs [4])
27 f [1][2] = Fp2_copy (gs [5])
28
29 return f
30
31
32
33 # Karabina ’s compressed squaring reordering function
34 # Input: [g0 , g1 , g2 , g3 , g4 , g5]
35 # Output : [a0 + a1.w] + [b0 + b1.w]v + [c0 + c1.w]v^2
36 def reorderfpK (fp):
37 f = Fp12_zero ()
38 f [0][0] = Fp2_copy (fp [0][0])
39 f [0][1] = Fp2_copy (fp [1][1])
40 f [0][2] = Fp2_copy (fp [1][0])
41 f [1][0] = Fp2_copy (fp [0][2])
42 f [1][1] = Fp2_copy (fp [0][1])
43 f [1][2] = Fp2_copy (fp [1][2])
44
45 return f
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Listing 24 File ep.sage. Karabina’s compressed squaring in GΦ6 , recover g1 component.
1 # Karabina ’s Sqr recover g_1 from g2 ,g3 ,g4 ,g5
2 # Input: [0, 0, g2 , g3 , g4 , g5]
3 # Output : [g1_num , g1_den ]
4 def Fp12_sqrKrecg1 (fp):
5 t = [ Fp2_zero (), Fp2_zero ()]
6 if fp [0][2] != Fp2_zero ():
7 C12 = chi_mul ( Fp2_square (fp [1][2]))
8 C02 = Fp2_square (fp [1][1])
9 t[0] = Fp2_copy (C02)
10 C02 = Fp2_addC (C02 , C02)
11 C02 = Fp2_addC (C02 , t[0])
12 t[0] = Fp2_addC (C12 , C02)
13 t[0] = Fp2_subC (t[0], fp [1][0])
14 t[0] = Fp2_subC (t[0], fp [1][0])
15 t[1] = Fp2_addC (fp [0][2] , fp [0][2])
16 t[1] = Fp2_addC (t[1], t[1])
17 else:
18 t[0] = Fp2_mul (fp [1][1] , fp [1][2])
19 t[0] = Fp2_addC (t[0], t[0])
20 t[1] = Fp2_copy (fp [1][0])
21
22 return t
23
24
25
26 # Karabina ’s Sqr inversion of g1 denominator
27 #Input: t = [[ g1_num , g1_den ]_1 , [g1_num , g1_den ]_2 , ...]
28 # Output : t0 = [[g1]_1 , [g_1]_2 , ...]
29 def Fp12_sqrKinvg1 (t):
30 n = len(t)
31 t0 = [ Fp2_zero () for i in range (0, n)]
32
33 f = t [0][1]
34 for i in range (1, n):
35 f = Fp2_mul (f, t[i][1])
36 f = Fp2_inv (f)
37
38 if n==1:
39 t0 [0] = f
40 return t0
41
42 if n==2:
43 t0 [0] = Fp2_mul (t[0][0] , Fp2_mul (f, t [1][1]))
44 t0 [1] = Fp2_mul (t[1][0] , Fp2_mul (f, t [0][1]))
45 return t0
46
47 #for n >=3 use Simultaneous Montgomery Inversion
48 d = [ Fp2_one () for i in range (0, 2*n)]
49 d[1] = t [0][1]
50 d[n+1] = t[n -1][1]
51 for i in range (2,n):
52 d[i] = Fp2_mul (d[i-1], t[i -1][1])
53 d[n+i] = Fp2_mul (d[n+i-1], t[n-i][1])
54
55 for i in range (1, n -1):
56 d[i] = Fp2_mul (d[i], d[2*n-i -1])
57
58 d[0] = d[2*n -1]
59 for i in range (0,n):
60 d[i] = Fp2_mul (d[i], f)
61 t0[i] = Fp2_mul (t[i][0] , d[i])
62
63 return t0
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Listing 25 File ep.sage. Karabina’s compressed squaring in GΦ6 , recover g0 component.
1 # Karabina ’s Sqr recover g_0 from g1 ,g2 ,g3 ,g4 ,g5
2 # Input: [0, g1 , g2 , g3 , g4 , g5]
3 # Output : [g0 , g1 , g2 , g3 , g4 , g5]
4 def Fp12_sqrKrecg0 (fp):
5 t0 = Fp2_square (fp [0][1])
6 t1 = Fp2_mul (fp [1][0] , fp [1][1])
7 t0 = Fp2_subC (t0 , t1)
8 t0 = Fp2_addC (t0 , t0)
9 t0 = Fp2_subC (t0 , t1)
10 t1 = Fp2_mul (fp [0][2] , fp [1][2])
11 t0 = Fp2_addC (t0 , t1)
12 g = chi_mul (t0)
13 g = Fp2_addC (g, Fp2_one ())
14
15 return g

Listing 26 File ep.sage. Karabina’s compressed squaring in GΦ6 , decompression function.
1 def Fp12_sqrKd (gs , poles ):
2 n = len(gs)
3 t = [[ Fp2_one () for i in range (0 ,2)] for j in range (0, n)]
4
5 fp = [ gstofp (gs[i]) for i in range (0, n)]
6 # recover g1
7 for i in range (0, n):
8 t[i] = Fp12_sqrKrecg1 (fp[i])
9 t = Fp12_sqrKinvg1 (t)
10
11 # recover g0
12 for i in range (0,n):
13 fp[i ][0][1] = Fp2_copy (t[i])
14 t[i] = Fp12_sqrKrecg0 (fp[i])
15 fp[i ][0][0] = Fp2_copy (t[i])
16 fp[i] = reorderfpK (fp[i])
17
18 # multiply
19 if poles [0] > 0:
20 f = Fp12_copy (fp [0])
21 else:
22 f = Fp12_conj (fp [0])
23 for i in range (1, n):
24 if poles[i] > 0:
25 f = Fp12_mul (f, Fp12_copy (fp[i]))
26 else:
27 f = Fp12_mul (f, Fp12_conj (fp[i]))
28
29 return f
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Listing 27 File ep.sage. Exponentiation in GΦ6 using Karabina’s compressed squaring.
1 #Input: f \in \G_{\ varpsi_6 }, z \in N w/very low - Hammming weight ,
2 # or the parameter of the curve
3 # Output : f^z
4 # g0 = EasyExpo ( rand12 ())
5 # Fp12_conj ( Fp12_exp (g0 ,abs(z))) == Fp12_expK (g0)
6 def Fp12_expK (f, z0=None ):
7 global z
8 if z0!= None:
9 z = z0
10
11 #get exponent ( binary ) poles
12 zbits = z.bits ()
13 znbits = z.nbits ()
14 poles = []
15 for i in range (0, znbits ):
16 if zbits[i] != 0:
17 poles. append (i*zbits[i])
18
19 # special exponent case: 2^0
20 if poles [0] == 0:
21 poles. remove (0)
22
23 n = len(poles)
24 g = [ Fp2_zero () for i in range (0 ,6)]
25 g = fptogs (f)
26
27 # Karabina ’s compressed squaring
28 gs = []
29 a = [ Fp2_copy (g[i]) for i in range (0 ,6)]
30 pi = 0
31 for i in range (0, n):
32 for j in range (0, abs(poles[i])-pi):
33 a = Fp12_sqrKc (a)
34 gs. append ([ Fp2_copy (a[j]) for j in range (0 ,6)])
35 pi = abs(poles[i])
36 g = Fp12_sqrKd (gs , poles)
37
38 # special exponent case: 2^0
39 if zbits [0] > 0:
40 g = Fp12_mul (g, Fp12_copy (f))
41 elif zbits [0] < 0:
42 g = Fp12_mul (g, Fp12_conj (f))
43
44 return g
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6.1 Introduction

Algorithms to compute cryptographic pairings involve computations on elements in all three
pairing groups, G1, G2, and GT . However, protocols often compute only a single pairing opera-
tion but need to compute many operations in any or all of the groups G1, G2, and GT [14, 31, 52].
In this chapter, we discuss ways to enhance the performance of group operations that are not
the pairing computation.

This chapter is an extension of the work done by the authors in [16] and contains excerpts from
this paper. Like [16], it uses specific pairing-friendly curve families that target the 128-, 192-, and
256-bit security levels as case studies (see Chapter 4 for more information related to pairing-
friendly curves). These families are popular choices and have common properties that make
pairing implementations particularly efficient. Specifically, we discuss scalar multiplications in
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G1 and G2, and group exponentiations in GT for BN curves [6], which have embedding degree
k = 12, KSS curves [42] (k = 18), and BLS curves [5] (for both k = 12 and k = 24). We note that
most of the discussion that focuses on these families can be easily translated to curves from other
families, and that the main algorithm for multi-scalar multiplications using endomorphisms (see
Algorithm 6.2) has been presented in a general form so that it can be used as a basis for any
endomorphism-accelerated scalar multiplication (or group exponentiation in its multiplicative
form).

These curve families allow us to use Gallant-Lambert-Vanstone (GLV) [28] and Galbraith-
Lin-Scott (GLS) [26] decompositions of dimensions 2, 4, 6 us and 8 to speed up scalar mul-
tiplications and exponentiations in all three pairing groups. Extending the work in [16], this
chapter contains optimal lattice bases for GLV and GLS decompositions, as well as a discussion
on trace-based methods for compressed exponentiations in the group GT .

Using non-Weierstrass models for elliptic curve group operations can give rise to significant
speedups (cf. [17, 50, 10, 11, 36]) and aid in realizing certain types of side-channel countermea-
sures (see Chapter 12 for more details). Such alternative models have not found the same success
within pairing computations, since Miller’s algorithm [49] not only requires group operations,
but also relies on the computation of functions with divisors corresponding to these group op-
erations. These functions are somewhat inherent in the Weierstrass group law, which is why
Weierstrass curves remain faster for the pairings themselves [18]. Nevertheless, this does not
mean that alternative curve models cannot be used to give speedups in the standalone group
operations in pairing-based protocols. Here, we revisit the findings of [16] about which curve
models are applicable in the most popular pairing scenarios and which of them achieve speedups
when employed in place of the Weierstrass model.

This chapter contains descriptions and pseudo-code of algorithms for scalar multiplications
and exponentiations in the three pairing groups. Most of them are presented in a constant-time
fashion, showing how to implement the algorithm such that its execution time is independent of
secret input data, such as the scalar or exponent.

6.2 Preliminaries

A cryptographic pairing e : G1 × G2 → GT is a bilinear map that relates the three groups G1,
G2, and GT , each of prime order r. In this chapter we define these groups as follows. For distinct
primes p and r, let k be the smallest positive integer such that r | pk − 1. Assume that k > 1.
For an elliptic curve E/Fp such that r | #E(Fp), we can choose G1 = E(Fp)[r] to be the order-r
subgroup of E(Fp). We have E[r] ⊂ E(Fpk), and G2 can be taken as the (order-r) subgroup of
E(Fpk) of p-eigenvectors of the p-power Frobenius endomorphism on E. Let GT be the group
of r-th roots of unity in F∗

pk
. The embedding degree k is very large (i.e., k ≈ r) for general

curves, but must be kept small (i.e., k < 50) if computations in Fpk are to be feasible in practice
—this means that so-called pairing-friendly curves must be constructed in a special way. In
Section 6.2.1 we recall the best-known techniques for constructing such curves with embedding
degrees that target the 128-, 192-, and 256-bit security levels.

6.2.1 Parameterized Families of Pairing-Friendly Curves with Sextic
Twists

The most suitable pairing-friendly curves for our purposes come from parameterized families,
such that the parameters to find a suitable curve E(Fp) can be written as univariate polynomials.
For the four families we consider, we give below the polynomials p(x), r(x), and t(x), where t(x)
is such that N(x) = p(x) + 1 − t(x) is the cardinality of the desired curve, which has r(x) as a
factor. All of the curves found from these constructions have j-invariant zero, which means they
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can be written in Weierstrass form as y2 = x3 + b. Instances of these pairing-friendly families
can be found by searching through integer values x of an appropriate size until we find x = x0
such that p = p(x0) and r = r(x0) are simultaneously prime, at which point we can simply test
different values for b until the curve E : y2 = x3 + b has an N -torsion point.

To target the 128-bit security level, we use the BN family [6] (k = 12) for which

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1, t(x) = 6x2 + 1, r(x) = p(x) + 1− t(x). (6.1)

At the 192-bit security level, we consider BLS curves [5] with k = 12 for which

p(x) = (x− 1)2(x4 − x2 + 1)/3 + x, t(x) = x+ 1, r(x) = x4 − x2 + 1, (6.2)

where x ≡ 1 (mod 3), and KSS curves [42] with k = 18, which are given by

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21,
t(x) = (x4 + 16x+ 7)/7, r(x) = (x6 + 37x3 + 343)/73,

(6.3)

with x ≡ 14 (mod 42). At the 256-bit security level, we use curves from the BLS family [5] with
embedding degree k = 24, which have the parametrization

p(x) = (x− 1)2(x8 − x4 + 1)/3 + x, t(x) = x+ 1, r(x) = x8 − x4 + 1, (6.4)

with x ≡ 1 (mod 3).
For the above families, which all have k = 2i 3j , the best practice to construct the full

extension field Fpk is to use a tower of (intermediate) quadratic and cubic extensions [45, 7], see
also Chapter 5 of this book. Since any curve from these families has j-invariant j = 0 and 6 | k,
we can always use a sextic twist E′(Fpk/6 ) to represent elements of G2 ⊂ E(Fpk)[r] as elements
of an isomorphic group G′2 = E′(Fpk/6 )[r]. The isomorphism Ψ : E → E′ that maps points
on the curve to the twist is called the twisting isomorphism. Its inverse Ψ−1 is the so-called
untwisting isomorphism. This shows that group operations in G2 can be performed on points
with coordinates in an extension field with degree one sixth the size, which is the best we can
do for elliptic curves [56, Proposition X.5.4]. For further details, see Chapter 2 of this book.

In all cases considered in this work, the most preferable sextic extension from Fpk/6 to Fpk
is constructed by choosing ξ ∈ Fpk/6 such that Fpk/6 = Fp(ξ) and the polynomial x6 − ξ is
irreducible in Fpk/6 [x], and then taking z ∈ Fpk as a root of x6 − ξ to construct Fpk = Fpk/6 (z).
We describe the individual towers in the four cases as follows: The BN and BLS cases with
k = 12 preferably take p ≡ 3 (mod 4), so that Fp2 can be constructed as Fp2 = Fp[u]/(u2 + 1).
For k = 18 KSS curves, we prefer that 2 is not a cube in Fp, so that Fp3 can be constructed as
Fp2 = Fp[u]/(u3 − 2), before taking ξ = u to extend to Fp18 . For k = 24 BLS curves, we again
prefer to construct Fp2 as Fp2 = Fp[u]/(u2+1), on top of which we take Fp4 = Fp2 [v]/(v2−(u+1))
(it is shown that v2 − u cannot be irreducible [19, Proposition 1]), and use ξ = v for the sextic
extension. All of these constructions agree with the towers used in the software implementation
“speed-record” literature [2, 53, 19, 1].

6.2.2 The GLV and GLS Algorithms

The GLV [28] and GLS [26] methods both use an efficient endomorphism to speed up elliptic
curve scalar multiplications. Such a map provides a shortcut to a certain multiple of a given
curve point at almost no computational cost. In the GLV setting, this multiple can be used for
a two-dimensional scalar decomposition. A given scalar (or exponent) is decomposed into two
scalars of roughly half the size of the original one. This means that the problem of computing
a scalar multiple is transformed into computing two more efficient scalar multiples. To actually
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make the overall computation more efficient, one uses a double-scalar multiplication that shares
a significant amount of computation between the two easier scalar multiplications. Depend-
ing on the nature of the endomorphism, higher-dimensional decompositions are possible. This
means that the scalar is decomposed into more than two smaller scalars and the scalar multipli-
cation is reduced to several short scalar multiplications. The way to then actually decrease the
computational cost is to use a multi-scalar multiplication.

The GLV method relies on endomorphisms that arise from E having complex multiplication
(CM) by an order of small discriminant, i.e., endomorphisms that are specific to the special
shape of the curve E and that are unrelated to the Frobenius endomorphism. On the other
hand, the GLS method works over extension fields where the p-power Frobenius becomes non-
trivial, so it does not rely on E having a special shape. However, if E is both defined over an
extension field and has a small CM discriminant, then the two can be combined [26, § 3] to give
higher-dimensional decompositions, which can further enhance performance.

Since in this chapter we have E/Fp : y2 = x3 + b and p ≡ 1 (mod 3) (the latter being
imposed by the parameterizations of p coming from the pairing-friendly curve families), we
can use the GLV endomorphism φ : (x, y) 7→ (ζx, y) in G1 where ζ3 = 1 and ζ ∈ Fp \ {1}.
In this case φ satisfies φ2 + φ + 1 = 0 in the endomorphism ring End(E) of E, so on G1 it
corresponds to scalar multiplication by λφ, where λ2

φ + λφ + 1 ≡ 0 (mod r), meaning we get a
2-dimensional decomposition in G1. Since G′2 is always defined over an extension field herein, we
can combine the GLV endomorphism above with the Frobenius map to get higher-dimensional
GLS decompositions. The standard way to do this in the pairing context [27] is to use the
untwisting isomorphism Ψ−1 to move points from G′2 to G2, where the p-power Frobenius πp
can be applied (since E is defined over Fp, while E′ is not), before using the twisting isomorphism
Ψ to move this result back to G′2. We define ψ as ψ = Ψ ◦ πp ◦Ψ−1, which (even though Ψ and
Ψ−1 are defined over Fpk) can be explicitly described over Fpk/6 . The GLS endomorphism ψ

satisfies Φk(ψ) = 0 in End(E′) [27, Lemma 1], where Φk(·) is the k-th cyclotomic polynomial, so
it corresponds to scalar multiplication by λψ, where Φk(λψ) ≡ 0 (mod r). For the curves with
k = 12, we thus obtain a 4-dimensional decomposition in G′2 ⊂ E′(Fp2 ); for k = 18 curves, we get
a 6-dimensional decomposition in G′2 ⊂ E′(Fp3 ); and for k = 24 curves, we get an 8-dimensional
decomposition in G′2 ⊂ E′(Fp4 ).

To compute the scalar multiple [m]P of P , an n-dimensional decomposition starts by com-
puting the n− 1 additional points

ψi(P ) = [λi]P,

for 1 ≤ i ≤ n − 1. The simplest way to compute these points is via repeated application of
ψ, although optimized explicit formulas for higher powers of ψ can sometimes be slightly more
efficient than those for ψ itself. Next, one seeks to find a short multi-scalar (a1, a2, . . . , an) (we
show how to do this optimally in the next subsection) such that

[a1]P + [a2]ψ(P ) + · · ·+ [an]ψn−1(P ) = [m]P, (6.5)

so that [m]P can be computed by the much smaller multi-scalar multiplication.
The typical way to do this is to start by making all of the ai positive: We simultaneously

negate any (ai, ψi−1(P )) pair for which ai < 0; this can be done in a timing-attack resistant
way using bitmasks (using bitmasks to select values in constant time is an often-used approach,
see for instance [44]). We then precompute all possible sums P +

∑n−1
i=1 [bi]ψi(P ), for the 2n−1

combinations of bi ∈ {0, 1}, and store them in a lookup table. When simultaneously processing
the j-th bits of the n mini-scalars, this allows us to update the running value with only one
point addition, before performing a single point doubling. In each case, however, this standard
approach requires individual attention for further optimization (see Section 6.4).

We aim to create constant-time programs: implementations that have an execution time
independent of any secret material (e.g., the scalar). See for additional information about this
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concept Chapter 11.6, and how to load elements in a secure manner from the look-up tables.
This means that we always execute exactly the same amount of point additions and duplications
independent of the input. In order to achieve this in the setting of multi-scalar multiplications
or multi-exponentiations, we use the recoding techniques from [24, 23]. This recoding technique
not only guarantees that the program performs a constant number of point operations, but that
the recoding itself is done in constant time as well. Furthermore, an advantage of this method
is that the lookup table size is reduced by a factor of two, since we only store lookup elements
for which the multiple of the first point P is odd. Besides reducing the memory, this reduces
the time to create the lookup table.

Fixed-base scenarios

We note that this chapter focuses on the dynamic scenario where precomputations are unable to
be exploited, e.g., when the group element P (that is to be multiplied) is not known in advance.
In scenarios where P is a fixed system parameter or long-term public key, endomorphisms are
essentially redundant for GLV- and GLS-style multi-scalar multiplications, since the fixed point
multiples [λ]P that are quickly computed on-the-fly as ψ(P ) can now be computed offline us-
ing a regular scalar multiplication without endomorphisms. If storage permits large tables of
precomputed values, then optimized algorithms for this fixed-base scenario perform much faster
than those exploiting endomorphisms without any precomputation. For more discussion of the
fixed-base case, we refer to the original paper by Lim and Lee [47] and the more recent works
that also consider constant-time implementations [33, 24, 32, 23].

6.3 Lattice Bases and Optimal Scalar Decompositions

In this section we show, for a given endomorphism-eigenvalue pair (ψ, λ) in an order r subgroup
generated by P , how to decompose an integer scalar m ∈ Z into a corresponding multi-scalar
(a1, a2, . . . , an) that satisfies Equation (6.5). The textbook way to find such a multi-scalar is
via the Babai rounding technique [3], which we recall by following the exposition in [58, § 1].
We start by defining the lattice of decompositions of 0 (also known as the “GLV lattice” [25, p.
229]) as

L = 〈 (z1, z2, . . . , zn) ∈ Zn | z1 + z2λ+ · · ·+ znλ
n−1 ≡ 0 (mod r)〉,

so that the set of decompositions for m ∈ Z/rZ is the lattice coset (m, 0, . . . , 0) +L. For a given
basis (b1,b2, . . . ,bn) of L, and on input of any m ∈ Z, we compute (α̃1, α̃2, . . . , α̃n) ∈ Qn as
the unique solution to (m, 0, . . . , 0) =

∑n
i=1 α̃ibi, and subsequently compute the multi-scalar

(a1, a2, . . . , an) = (m, 0, . . . , 0)−
n∑
i=1

bα̃ie · bi. (6.6)

It follows that (a1, a2, . . . , an)−(m, 0, . . . , 0) ∈ L, so m ≡ a1 +a2λ+ · · ·+anλn−1 (mod r). Since
−1/2 ≤ x − bxe ≤ 1/2, we have that ‖(a1, a2, . . . , an)‖∞ ≤ 1

2‖
∑n

i=1 bi‖∞. Since the lattice L
is dependent on the curve parameters (and is therefore fixed), the task is then to find a basis of
the lattice that facilitates short scalar decompositions.

In [20] it is shown how to generate bases that are optimal with respect to Babai rounding,
i.e., bases that minimize the (maximum possible) infinity norm ‖(a1, a2, . . . , an)‖∞ across all
integer inputs m ∈ Z. We follow the same recipe to derive parameterized bases for the four
popular families considered in this chapter (see § 6.2.1). In each family, Lφ and Lψ are used to
denote the lattice of decompositions of 0 corresponding to the endomorphisms φ on G1 and ψ
on G2, respectively.

The first step, then, is to write down parameterized bases that generate Lφ and Lψ. Since
Lφ = 〈(r, 0), (−λφ, 1)〉 and Lψ =

〈
(r, 0, . . . , 0), (−λψ, 1, 0, . . . , 0), . . . (−λn−1

ψ , 0, . . . , 0, 1)
〉
, writing
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down parameterized bases amounts to finding parameterizations for λφ = λφ(x) and λψ = λψ(x)
that coincide with the parameterizations in § 6.2.1. From here we can find “reduced” bases (in
the sense of minimizing the infinity norm of the multi-scalars resulting from Babai rounding [20]).
In what follows we do this for each of the four families under consideration, in order to derive
explicit formulas for the multi-scalar (a1, a2, . . . , an) in terms of the input scalar m ∈ Z. In all
of these families we find λφ(x) and λψ(x) through solving Φ3(λφ(x)) ≡ 0 and Φk(λψ(x)) ≡ 0
in Z[x]/〈r(x)〉, where in the latter case we can instantly write λψ(x) := t(x) − 1 due to the
embedding degree condition, which guarantees that r | Φk(t− 1).

We note that, in G2, this technique was originally proposed by Galbraith and Scott, and that
short parameterized bases for λψ(x) in the BN and BLS families can already be found in [27].

6.3.1 Decompositions for the k = 12 BN Family

For the BN family we have λφ = −(36x3 + 18x2 + 6x + 2) and λψ = 6x2. The lattice Lφ for
2-dimensional decompositions in G1 is generated by the optimal basis Lφ = 〈b1,b2〉, where

b1 = (2x+ 1, 6x2 + 4x+ 1) and b2 = (6x2 + 2x,−2x− 1).

Babai rounding decomposes a scalar m ∈ Z into (a1, a2) = (m, 0) − α1 · b1 − α2 · b2, where
αi = bα̃ie for α̃i = α̂i ·m/r, and

α̂1 = 2x+ 1 and α̂2 = 6x2 + 4x+ 1.

It follows that, for any m ∈ Z, we have ‖(a1, a2)‖∞ ≤ |6x2 + 6x+ 2|.
The lattice Lψ for 4-dimensional decompositions in G2 is generated by the optimal basis

Lψ = 〈b1,b2,b3,b4〉, where

b1 = (−x, 2x, 2x+ 1,−x), b2 = (−2x− 1, x, x+ 1, x),
b3 = (2x+ 1, 0, 2x, 1), b4 = (−1, 2x+ 1, 1, 2x).

Under this basis, scalars m ∈ Z decompose into (a1, a2, a3, a4) = (m, 0, 0, 0)−
∑4

i=1 αibi, where
αi = bα̃ie for α̃i = α̂i ·m/r, and

α̂1 = 2x+ 1, α̂2 = −(12x3 + 6x2 + 2x+ 1), α̂3 = 2x(3x2 + 3x+ 1), and α̂4 = 6x2 − 1.

For any m ∈ Z, it follows that ‖(a1, a2, a3, a4)‖∞ ≤ |5x+ 3|.

6.3.2 Decompositions for the k = 12 BLS Family

For the BLS family with k = 12 we have λφ = x2−1 and λψ = x. The lattice Lφ for 2-dimensional
decompositions in G1 is generated by the optimal basis Lφ = 〈b1,b2〉, where

b1 = (x2 − 1,−1) and b2 = (1, x2).

Babai rounding decomposes a scalar m ∈ Z into (a1, a2) = (m, 0) − α1 · b1 − α2 · b2, where
αi = bα̃ie for α̃i = α̂i ·m/r, and

α̂1 = x2 and α̂2 = 1.

It follows that ‖(a1, a2)‖∞ ≤ |x2 + 1| for all m ∈ Z.
The lattice Lψ for 4-dimensional decompositions in G2 is generated by the optimal basis

Lψ = 〈b1,b2,b3,b4〉, where

b1 = (x, 1, 0, 0), b2 = (0, x, 1, 0), b3 = (0, 0, x, 1), b4 = (1, 0,−1,−x).
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Under this basis, scalars m ∈ Z decompose into (a1, a2, a3, a4) = (m, 0, 0, 0)−
∑4

i=1 αibi, where
αi = bα̃ie for α̃i = α̂i ·m/r, and

α̂1 = x(x2 + 1), α̂2 = −(x2 + 1), α̂3 = x, and α̂4 = −1.

It follows that, for any m ∈ Z, we have ‖(a1, a2, a3, a4)‖∞ ≤ |x+ 2|.

6.3.3 Decompositions for the k = 18 KSS Family

For the KSS family with k = 18 we have λφ = x3 + 18 and λψ = (x4 + 16x)/7. The lattice Lφ
for 2-dimensional decompositions in G1 is generated by the optimal basis Lφ = 〈b1,b2〉, where

b1 =
(
−x

3

73 ,
18x3 + 343

73

)
and b2 =

(
19x3 + 343

73 ,
x3

73

)
.

Under this basis, Babai rounding decomposes a scalar m ∈ Z into (a1, a2) = (m, 0) − α1 · b1 −
α2 · b2, where αi = bα̃ie for α̃i = α̂i ·m/r, and

α̂1 = −x3 and α̂2 = 18x3 + 343.

For any m ∈ Z, it follows that ‖(a1, a2)‖∞ ≤ |(20x3 + 343)/73|.
The lattice Lψ for 6-dimensional decompositions in G2 is generated by the optimal basis

Lψ = 〈b1, . . . ,b6〉, where

b1 =
(

0, 0, 2x
7 , 1, 0, x7

)
, b2 =

(
0, 2x

7 , 1, 0, x7 , 0
)
, b3 =

(
2x
7 , 1, 0, x7 , 0, 0

)
,

b4 =
(
−x7 , 0, 0,

3x
7 , 1, 0

)
, b5 =

(
0,−x7 , 0, 0,

3x
7 , 1

)
, b6 =

(
−1, 0,−x7 , 1, 0,

3x
7

)
.

Under this basis, scalars m ∈ Z decompose into (a1, . . . , a6) = (m, 0, 0, 0, 0, 0) −
∑6

i=1 αibi,
where αi = bα̃ie for α̃i = α̂i ·m/r, and

α̂1 = 19x3 + 343, α̂2 = −x(8x3 + 147), α̂3 = x2(3x3 + 56),
α̂4 = −(x3 + 21)x2, α̂5 = (5x3 + 98), α̂6 = −(18x3 + 343).

For any m ∈ Z, we have ‖(a1, a2, a3, a4, a5, a6)‖∞ ≤ |4x/7 + 2|.

6.3.4 Decompositions for the k = 24 BLS Family

For the BLS family with k = 24 we have λφ = x4−1 and λψ = x. The lattice Lφ for 2-dimensional
decompositions in G1 is generated by the optimal basis Lφ = 〈b1,b2〉, where

b1 = (x4 − 1,−1) and b2 = (1, x4).

Under this basis, Babai rounding decomposes a scalar m ∈ Z into (a1, a2) = (m, 0) − α1 · b1 −
α2 · b2, where αi = bα̃ie for α̃i = α̂i ·m/r, and

α̂1 = x4 and α̂2 = 1.

For any m ∈ Z, it follows that ‖(a1, a2)‖∞ ≤ |x4 + 1|.
The lattice Lψ for 8-dimensional decompositions in G2 is generated by the optimal basis

Lψ = 〈b1, . . . ,b8〉, where

b1 = (x,−1, 0, 0, 0, 0, 0, 0), b2 = (0, x,−1, 0, 0, 0, 0, 0), b3 = (0, 0, x,−1, 0, 0, 0, 0),
b4 = (0, 0, 0, x,−1, 0, 0, 0), b5 = (0, 0, 0, 0, x,−1, 0, 0), b6 = (0, 0, 0, 0, 0, x,−1, 0),
b7 = (0, 0, 0, 0, 0, 0, x,−1), b8 = (1, 0, 0, 0,−1, 0, 0, x).
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Under this basis, scalars m ∈ Z decompose into (a1, . . . , a8) = (m, 0, 0, 0, 0, 0, 0, 0)−
∑8

i=1 αibi,
where αi = bα̃ie for α̃i = α̂i ·m/r, and

α̂1 = x3(x4 + 1), α̂2 = −x2(x4 + 1), α̂3 = x(x4 + 1), α̂4 = −(x4 + 1),
α̂5 = x3, α̂6 = −x2, α̂7 = x, α̂8 = −1.

For any m ∈ Z, we have ‖(a1, a2, a3, a4, a5, a6, a7, a8)‖∞ ≤ |x+ 2|.

6.3.5 Handling Round-Off Errors

In all of the above cases, the bounds given on the length of the multi-scalars assume that
the roundings αi = bα̂i · m/re are computed perfectly. In practice however, it is difficult to
efficiently compute all such roundings exactly, particularly in a constant-time routine (cf. [20]).
Thus, implementations of scalar decompositions usually use a fast method of approximating the
round-offs, which (for our purposes) means that the derived bounds on the multi-scalars may no
longer apply.

To fully account for this, we present the following solution. The roundings αi = bα̂i ·m/re
can instead be approximated by

α̃i =
⌊
`i ·

m

ν

⌋
, with `i =

⌊
α̂i · ν
r

⌉
,

so that, for a fixed constant ν, the `i are precomputed integer constants that are independent
of the scalar m. In [20, Lemma 1] it is shown that, so long as ν > r, the approximation satisfies
α̃i = αi − ε for ε ∈ {0, 1}. A good choice of ν is a power of 2 that is greater than r, which
allows the runtime division of m by ν to be efficiently computable as a shift. For example, the
implementations in [15, 20] choose ν = (2w)v, where w is the word-size of the target architecture
and v is minimal such that ν > r.

To give guaranteed upper bounds on the multi-scalars subject to this approximation, we
assume that there exists an integer scalar m where the approximation is off-by-one for all of
the roundings, i.e., α̃i = αi − 1 for all 1 ≤ i ≤ n. It then follows from Equation (6.6) that
we can simply double each of the bounds derived in §§ 6.3.1–6.3.4. Put another way, using
the above method to approximate the Babai roundoffs adds one bit to the maximum possible
size of our multi-scalars, or one iteration to the main loop of the multi-scalar multiplication or
multi-exponentiation.

6.4 Multi-Scalar Multiplication in G1 and G2

We now turn to describing the full algorithm for elliptic curve scalar multiplications in G1 and
G2 using endomorphisms—see Algorithm 6.2. Although much of this chapter focuses on specific
families of pairing-friendly curves, Algorithm 6.2 is presented in as much generality as is needed
to perform endomorphism-accelerated group exponentiations in any suitable cryptographic sub-
group (i.e., scalar multiplications in the elliptic curve groups G1 and G2, or exponentiations in
the multiplicative group GT otherwise). As such, it assumes as input an element P belonging to
a cyclic group G of order r, equipped with an endomorphism ψ such that ψ|G = [λ]G for λ ∈ Z.

We start by presenting Algorithm 6.1, which is a simple multi-scalar recoding algorithm
that is called as a subroutine of Algorithm 6.2. Let µ denote the maximum bitlength of the
decomposed multi-scalars, i.e., µ = dlog2 ‖(a1, . . . , an)‖∞e. We denote with ai[j] the (j + 1)th
least significant (signed) bit of the ith scalar. The main purpose of recoding the multi-scalars is
to facilitate a constant-time implementation. In particular, Algorithm 6.1 essentially rewrites a
multi-scalar (a1, . . . , an) derived in the previous section, where the ai[j] are bit-values (ai[j] ∈
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{0, 1} for 1 ≤ j < µ), as the multi-scalar (b1, . . . , bn), where the bi ∈ {−1, 0, 1}µ+1 are signed bit
sequences of length µ+ 1 such that

(i) ai =
µ∑
j=0

bi[j]2j , for 1 ≤ i ≤ n,

(ii) b1[j] ∈ {−1, 1}, for 0 ≤ j ≤ µ, and
(iii) bi[j] ∈ {0, b1[j]}, for 0 ≤ j ≤ µ and 2 ≤ i ≤ n.

Note that the scalars bi are one signed bit longer (µ+ 1 bits) compared to the maximal bit-size
of ai. Property (i) above ensures that the multi-scalar multiplication gives the correct result
since the scalars represent the same values; Property (ii) ensures that every addition in Step 2
of Algorithm 6.2 performs an addition with a non-zero element of G in the lookup table; and,
together with Property (iii), is what allows the lookup table to be of size 2n−1 (in contrast to a
naive multi-scalar multiplication, which requires a lookup table of size 2n). This scalar recoding
algorithm was adapted to the setting of endomorphism-accelerated multi-scalar multiplications
by Faz-Hernandez, Longa, and Sanchez [23], based on the algorithm of Feng, Zhu, Xu, and
Li [24].

For ease of exposition we have presented Algorithm 6.2 assuming that the decomposition
m 7→ (a1, . . . , an) gives rise to an odd a1; this is because of the nature of the recoding in
Algorithm 6.1, which demands an odd a1 as input. We present two ways to achieve this in
practice. Firstly, we can find a short vector v in the lattice L of decompositions of 0 that has an
odd first element; e.g., any of the short basis vectors bi (where bi[1] is odd) from Section 6.3.
At the end of the decomposition producing (a1, . . . , an), we then compute (a1, . . . , an) + v and
select (using bitmasks) whichever of the two multi-scalars has an odd first element. This was
the method used in [20]; it does not necessitate any changes to Algorithm 6.2 but, depending on
the size of v, may require new analysis on the upper bounds of the multi-scalars (i.e., it may add
one bit to the main loop). The second option is to select, from (a1, . . . , an) and (a1 + 1, . . . , an),
the multi-scalar whose first component is odd and, if necessary, subtract the input point P after
the main loop (of course, in a constant-time routine this subtraction will always be performed).
This is the method presented in [23].

In Steps 2 and 10 of Algorithm 6.2, where point additions are required, an optimized imple-
mentation will take advantage of different styles of point additions. Namely, if we assume that
the input point P is in affine space, then (in the context of pairing-specific endomorphisms at
least) it is often the case that ψi(P ) will also be in affine space. Thus, several of the additions
used to build the lookup table in Step 2 will be “affine” additions, which take two affine points
as input and output a projective point. The other additions will have one or both of the input
points as a projective point and output a projective point, which are often called “mixed” and
“full” additions, respectively. Given that affine additions are usually cheaper than mixed ad-
ditions, and that full additions are the most costly, an optimized route to building the lookup
table is a straightforward exercise for a given dimension (see [16] for the fine-grained details). A
related optimization that is often applied to elliptic curve scalar multiplications is to ensure that
each of the additions in the main loop are mixed additions; this is done by normalizing every
point in the lookup table before entering the main loop. This can be computed efficiently using
Montgomery’s simultaneous inversion technique [50], which allows us to compute n independent
modular inversions using 3(n− 1) modular multiplications and a single inversion. In our exper-
iments of 2-, 4-, 6−, and 8-dimensional decompositions, it always proved to be advantageous to
perform this conversion (after Step 2 in Algorithm 6.2).

In an implementation dedicated to a particular cryptographic group or decomposition of
dimension n, it is likely that dedicated changes to Algorithm 6.2 will optimize performance
further. In particular, Algorithm 6.2 uses repeated double-and-always-add iterations, but de-
pending on n, this may be suboptimal. In particular, our experiments in [16] showed that a
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ALGORITHM 6.1 n-dimensional multi-scalar recoding.
Input: n non-negative integers aj =

∑µ−1
i=0 aj [i] · 2i where 1 ≤ j ≤ n, aj [i] ∈ {0, 1} for

0 ≤ i < µ, aj [µ] = 0, a1 is odd, and µ = dlog2 ‖(a1, . . . , an)‖∞e.
Output: n non-negative integers bj =

∑µ
i=0 bj [i] · 2i, where 1 ≤ j ≤ n, b1[i] ∈ {−1, 1},

bk[i] ∈ {0, b1[i]} for 0 ≤ i ≤ µ and 2 ≤ k ≤ n such that bj = aj .
1 b1[µ]← 1
2 for i = 0 to µ− 1 do
3 b1[i]← 2a1[i+ 1]− 1
4 for j = 2 to n do
5 bj [i]← b1[i] · aj [0]
6 aj ← baj/2c − bbj [i]/2c
7 end
8 end
9 for j = 2 to n do

10 bj [µ]← aj [0]
11 end
12 return (bj [µ], . . . , bj [0]) for 1 ≤ j ≤ n

ALGORITHM 6.2 Scalar multiplication using a degree-n (n > 1) endomorphism ψ.
Input: Point P and integer scalar m ∈ [0, r).
Output: [m]P .
/* Compute endomorphisms: */

1 Compute ψi(P ) for 1 ≤ i ≤ n− 1.
/* Precompute lookup table: */

2 T [u]← P +
∑n−1

i=1 [ui]ψi(P ), for all 0 ≤ u < 2n−1 where u =
∑n−1

i=1 ui · 2i−1 and
ui ∈ {0, 1}.
/* Scalar decomposition: */

3 Decompose m into the multi-scalar (a1, . . . , an)—see Section 6.3.
/* Make subscalars positive: */

4 For any ai < 0, simultaneously take (ai, ψi−1(P )) = (−ai,−ψi−1(P )).
/* Scalar recoding: */

5 Recode (a1, . . . , an) into (b1, . . . , bn) via Algorithm 6.1.
6 Let di =

∑n
j=2 |bj [i]| · 2j−2, 0 ≤ i ≤ µ.

/* Main loop: */
7 Q← b1[µ] · T [dµ]
8 for i = µ− 1 to 0 do
9 Q← [2]Q

10 Q← Q+ b1[i] · T [di]
11 end
12 return Q
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window size of w = 1 (which corresponds to repeated double-and-always-add iterations) was
preferable for 4-and 6-dimensional decompositions, but for the 2-dimensional decompositions in
G1, larger windows of size w = 2 or w = 3 gave rise to faster scalar multiplications. On the
other hand, the lookup table computed in Step 2 of Algorithm 6.2 is of size 2n−1, so the n = 8
decompositions in G2 for the k = 24 BLS family would give rise to a single lookup table of size
128. Rather than computing and storing such a large table, works optimizing 8-dimensional
decompositions [15, 16] have instead computed two lookup tables and processed the main loop
via a repeated sequence of double-add-add operations; here the two add operations correspond
to additions between the running value and an element from the first and second lookup tables,
respectively. The lookup tables both contain 8 elements: the first contains P +

∑3
i=1[ui]ψi(P )

and the second? contains ψ4(P ) +
∑3

i=1[ui]ψi+4(P ), where (in both cases) u = (u3, u2, u1)2 for
0 ≤ u ≤ 7. Thus, when the endomorphism ψ is less expensive than a point addition, each of the
8 elements in the second table can be obtained via application of ψ to the corresponding element
in the first table—see [15, 16]. In both the n = 2 and n = 8 cases, the precomputation and main
loop execution in Algorithm 6.2 must be updated according to the above discussion—see [16].

6.4.1 Three Non-Weierstrass Elliptic Curve Models

Unlike the general Weierstrass model, which covers all isomorphism classes of elliptic curves
over a particular field, the non-Weierstrass elliptic curves usually only cover a subset of all such
classes. Whether or not an elliptic curve E falls into the classes covered by a particular model
is commonly determined by the existence of a rational point with a certain order on E. In the
most popular scenarios for ECC, these orders are either 2, 3, or 4. In this section we consider
the fastest model that is applicable in the pairing context in each of these cases. Since we focus
on the fastest curve model for a particular setting we exclude the analysis of other (slower) curve
models such as, for instance, Huff curves [41].

• W -Weierstrass: All curves in this paper have j-invariant zero and Weierstrass form
y2 = x3 + b. The fastest formulas on such curves use Jacobian coordinates [10].

• J - Extended Jacobi quartic: If an elliptic curve has a point of order 2, then it can
be written in (extended) Jacobi quartic form as J : y2 = dx4 +ax2 +1 [12, § 3]—these
curves were first considered for cryptographic use in [12, § 3]. The fastest formulas
work on the corresponding projective curve given by J : Y 2Z2 = dX4 + aX2Z2 +Z4

and use the 4 extended coordinates (X : Y : Z : T ) to represent a point, where x =
X/Z, y = Y/Z and T = X2/Z [39].

• H - Generalized Hessian: If an elliptic curve (over a finite field) has a point of
order 3, then it can be written in generalized Hessian form as H : x3 + y3 + c =
dxy [22, Theorem 2]. The authors of [40, 57] studied Hessian curves [35] of the form
x3 + y3 + 1 = dxy for use in cryptography, and this was later generalized to include
the parameter c [9, 22]. The fastest formulas for ADD/MIX/AFF are from [9] while the
fastest DBL formulas are from [37]—they work on the homogeneous projective curve
given by H : X3 + Y 3 + cZ3 = dXY Z, where x = X/Z, y = Y/Z. We note that the
j-invariant zero version of H has d = 0 (see Section 6.4.3), so in Table 6.1 we give
updated costs that include this speedup.

• E - Twisted Edwards: If an elliptic curve has a point of order 4, then it can be

?The signed recoding adopted from [23] ensures that the coefficient of P (resp. ψ4(P )) is always in
{−1, 1}, and that the sign of the other three coefficients (if they are non-zero) is the same as that of P
(resp. ψ4(P )). This is why only 8 elements (rather than 16) are needed in each lookup table.
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TABLE 6.1 The costs of necessary operations for computing scalar multiplications on four models
of elliptic curves.

model / requires DBL ADD MIX AFF
coords cost cost cost cost
W / Jac. − 72,5,0,14 1611,5,0,13 117,4,0,14 64,2,0,12
J / ext. pt. of order 2 91,7,1,12 137,3,3,19 126,3,3,18 115,3,3,18
H / proj. pt. of order 3 76,1,0,11 1212,0,0,3 1010,0,0,3 88,0,0,3
E / ext. pt. of order 4, or 94,4,1,7 109,0,1,7 98,1,0,7 87,0,1,7

4 | #E and #K ≡ 1 (mod 4)

Note: Costs are reported as TM,S,d,a where M is the cost of a field multiplication, S is the
cost of a field squaring, d is the cost of multiplication by a curve constant, a is the cost of a
field addition (we have counted multiplications by 2 as additions), and T is the total number of
multiplications, squarings, and multiplications by curve constants.

written in twisted Edwards form as E : ax2+y2 = 1+dx2y2 [8, Theorem 3.3]. However,
if the field of definition, K, has #K ≡ 1 (mod 4), then 4 | #E is enough to write
E in twisted Edwards form [8, § 3] (i.e. we do not necessarily need a point of order
4). Twisted Edwards curves [8] are a generalization of the so-called Edwards curves
model [21], which were introduced to cryptography in [11], and the most efficient
formulas to compute the group law are from [38].

For each model, the cost of the required group operations are summarized in Table 6.1. The
total number of field multiplications are reported in bold for each group operation—this includes
multiplications, squarings, and multiplications by constants. We note that in the context of plain
ECC these models have been studied with small curve constants; in pairing-based cryptography,
however, we must put up with whatever constants we get under the transformation to the non-
Weierstrass model. The only exception we found in this work is for the k = 12 BLS curves,
where G1 can be transformed to a Jacobi quartic curve with a = −1/2, which gives a worthwhile
speedup [38].

6.4.2 Applicability of Alternative Curve Models for k ∈ {12, 18, 24}
Propositions 1–4 in [16] prove the existence or non-existence of points of orders 2, 3, and 4 in the
groups E(Fp) and E′(Fpk/6 ) for the pairing-friendly families considered here. These statements
are deduced from properties of the group orders #E(Fp) and #E′(Fpk/6 ) and the curve equation.
This section recalls some of the details and Table 6.2 summarizes the alternative curve models
that are available for G1 and G2 for these curve families.

One can study #E(Fp) directly from the polynomial parameterizations in Section 6.2.1,
while for #E′(Fpe) (where e = k/6) one argues as follows. With the explicit recursion in [13,
Corollary VI.2] one can determine the trace of Frobenius te of E over Fpe and the index fe. The
trace te determines the number of Fpe -rational points on E. These parameters are related by
the CM equation 4pe = t2e + 3f2

e (since all curve families considered here have CM discriminant
D = −3). This allows us to compute the order of the correct sextic twist, which by [34, Prop.
2] is one of n′e,1 = pe + 1− (3fe + te)/2 or n′e,2 = pe + 1− (−3fe + te)/2. For k = 12 and k = 24
BLS curves, it is assumed that p ≡ 3 (mod 4) so that Fp2 can be constructed (optimally) as
Fp2 = Fp[u]/(u2 + 1). Finally, since p ≡ 3 (mod 4), E(Fp) must contain a point of order 4 if
E is to be written in twisted Edwards form; however, since E′ is defined over Fpe , if e is even
then 4 | E′ is enough to write E′ in twisted Edwards form (see Section 6.4.1). Using the group
orders deduced that way and the curve equation, [16] concludes on the following (non-)existence
statements.

If E/Fp is a BN curve with sextic twist E′/Fp2 , the groups E(Fp) and E′(Fp2 ) do not contain
points of order 2, 3, or 4. This only leaves the Weierstrass modelW for the scalar multiplications
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TABLE 6.2 Optional curve models for G1 and G2 in popular pairing-friendly curve families.

family-k G1 G2
algorithm models avail. algorithm models avail.

BN-12 2-GLV W 4-GLS W
BLS-12 2-GLV H,J ,W 4-GLS W
KSS-18 2-GLV W 6-GLS H,W
BLS-24 2-GLV H,J ,W 8-GLS E,J ,W

in G1 and G2. Next, if p ≡ 3 (mod 4) and E/Fp is a BLS curve with k = 12 and sextic twist
E′/Fp2 , the group E(Fp) contains a point of order 3 and can contain a point of order 2, but not
4, while the group E′(Fp2 ) does not contain a point of order 2, 3, or 4. Thus, one can only use
W in G2, but the group G1 can be represented using the Hessian model H, the Jacobi quartic
model J , or W. Furthermore, if E/Fp is a KSS curve with k = 18 and sextic twist E′/Fp3 , the
group E(Fp) does not contain a point of order 2, 3, or 4, while the group E′(Fp3 ) contains a
point of order 3 but does not contain a point of order 2 or 4. This leaves the models W for G1
and H, W for G2. Lastly, if p ≡ 3 (mod 4) and E/Fp is a BLS curve with k = 24 and sextic
twist E′/Fp4 , the group E(Fp) can contain points of order 2 or 3 (although not simultaneously),
but not 4, while the group E′(Fp4 ) can contain a point of order 2, but does not contain a point
of order 3 or 4, leaving all possible models for G1 and J , W and the twisted Edwards model E
for G2.

6.4.3 Translating Endomorphisms to the Non-Weierstrass Models

This section investigates whether the GLV and GLS endomorphisms from Section 6.2.2 translate
to the Jacobi quartic and Hessian models. Whether the endomorphisms translate desirably
depends on how efficiently they can be computed on the non-Weierstrass model. It is not
imperative that the endomorphisms do translate desirably, but it can aid efficiency: If the
endomorphisms are not efficient on the alternative model, then our scalar multiplication routine
also incurs the cost of passing points back and forth between the two models—this cost is
small but could be non-negligible for high-dimensional decompositions. On the other hand,
if the endomorphisms are efficient on the non-Weierstrass model, then the groups G1 and/or
G2 can be defined so that all scalar multiplications take place directly on this model, and the
computation of the pairing can be modified to include an initial conversion back to Weierstrass
form.

We essentially show that the only scenario in which the endomorphisms are efficiently com-
putable on the alternative model is the case of the GLV endomorphism φ on Hessian curves.

Endomorphisms on the Hessian model

We modify the maps given in [22, § 2.2] to the special case of j-invariant zero curves, where
we have d = 0 on the Hessian model. Assume that (0 : ± α : 1) are points of order 3 on
W : Y 2Z = X3 + α2Z3, which is birationally equivalent to H : U3 + V 3 + 2αZ3 = 0. We define
the constants h0 = ζ − 1, h1 = ζ + 2, h2 = −2(2ζ + 1)α, where ζ3 = 1 and ζ 6= 1. The map
τ :W → H, (X : Y : Z) 7→ (U : V : W ) is given as

U ← h0 · (Y + αZ) + h2 · Z, V ← −U − 3(Y + αZ), W ← 3X, (6.7)

where τ(0 : ± α : 1) = O ∈ H. The inverse map τ−1 : H →W, (U : V : W ) 7→ (X : Y : Z) is

X ← h2 ·W, Z ← h0 · V + h1 · U, Y ← −h2 · (U + V )− α · Z. (6.8)

It follows that the GLV endomorphism φW ∈ End(W) translates into φH ∈ End(H), where
φW : (X : Y : Z) 7→ (ζX : Y : Z) becomes φH : (U : V : W ) 7→ (U : V : ζW ). However, we
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note that when computing φH on an affine point, it can be advantageous to compute φH as
φH : (u : v : 1) 7→ (ζ2u : ζ2v : 1), where ζ2 is the (precomputed) other cube root of unity, which
produces an affine result.

For GLS on Hessian curves, there is no obvious or simple way to perform the analogous
untwisting or twisting isomorphisms directly between H′(Fpk/6 ) and H(Fpk), which suggests
that we must pass back and forth to the Weierstrass curve/s to determine the explicit formulas
for the GLS endomorphism on H′. The composition of these maps ψH′ = τ ◦ΨW ◦πp ◦Ψ−1

W ◦τ−1

does not appear to simplify to a form anywhere near as efficient as the GLS endomorphism is
on the Weierstrass curve. Consequently, our GLS routine will start with a Weierstrass point in
W ′(Fpk/6 ), where we compute d−1 applications of ψ ∈ End(W ′), before using (6.7) to convert the
d points to H′(Fpk/6 ), where the remainder of the routine takes place (save the final conversion
back to W ′). Note that since we are converting affine Weierstrass points to H′ via (6.7), this
only incurs two multiplications each time. However, the results are now projective points on H′,
meaning that the more expensive full addition formulas must be used to generate the remainder
of the lookup table.

Endomorphisms on the Jacobi quartic model

Unlike the Hessian model where the GLV endomorphism was efficient, for the Jacobi quartic
model it appears that neither the GLV nor GLS endomorphisms translate to be of a similar
efficiency as they are on the Weierstrass model. Thus, in all cases where Jacobi quartic curves
are a possibility, we start and finish onW, and only map to J after computing all applications of
φ or ψ on the Weierstrass model. We adapt maps given in [12] to our special case as follows. Let
(−θ : 0 : 1) be a point of order 2 on W : Y 2Z = X3 + θ3Z3 and let a = 3θ/4 and d = −3θ2/16.
The curve W is birationally equivalent to the (extended) Jacobi quartic curve J : V 2W 2 =
dU4 + 2aU2W 2 +W 4, with the map τ :W → J , τ : (X : Y : Z) 7→ (U : V : W ) given as

U ← 2Y Z, W ← X2 −XθZ + θ2Z2, V ← 6XZθ +W − 4aZ(θZ +X), (6.9)

where τ((−θ : 0 : 1)) = (0: − 1: 1) ∈ J . The inverse map τ−1 : J → W, τ−1 : (U : V : W ) 7→
(X : Y : Z) is given by

X ← (2V + 2)U + 2aU3 − θU3, Y ← (4V + 4) + 4aU2, Z ← U3, (6.10)

where τ−1((0 : − 1: 1)) = (−θ : 0 : 1) ∈ W and the neutral point on J is OJ = (0: 1 : 1).

Endomorphisms on the twisted Edwards model

Similarly to the Jacobi-quartic model, endomorphisms on E are not nearly as efficiently com-
putable as they are on W, so we only pass across to E after the endomorphisms are applied on
W. Here we give the back-and-forth maps that are specific to our case(s) of interest. Namely,
since we are unable to use twisted Edwards curves over the ground field (see Table 6.2), let
W/Fpe : Y 2Z = X3 + b′Z3 for p ≡ 3 (mod 4) and e being even. Since we have a point of order 2
on W, i.e., (α : 0 : 1) with α = 3

√
−b′ ∈ Fpe , then take s = 1/(α

√
3) ∈ Fpe . The twisted Edwards

curve E : aU2W 2 +V 2W 2 = W 4 +dU2V 2 with a = (3αs+2)/s and d = (3αs−2)/s is isomorphic
to W, with the map τ : W → E , (X : Y : Z) 7→ (U : V : W ) given as

U ← s(X − αZ)(sX − sαZ + Z), V ← sY (sX − sαZ − Z), W ← sY (sX − sαZ + Z),

with inverse map τ : E → W, (U : V : W ) 7→ (X : Y : Z) given as

X ← −U(−W − V − αs(W − V )), Y ← (W + V )W, Z ← sU(W − V ).
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6.4.4 Curve Choices for Pairings at the 128-, 192- and 256-Bit Security
Levels

Next, we propose specific curves from the four parameterized families that can be used in practice
for implementing pairings, and the scalar multiplications as described in this chapter at the
three standard levels of 128, 192, and 256 bits of security. These curves differ from the original
examples discussed in [16]. The curves given here are those proposed in [4], and have the
additional benefits of being subgroup secure in the sense of the definition introduced in [4], and
thus have an additional security benefit.

For the specific parameterized families considered in this chapter, ensuring subgroup security
sacrifices slightly the efficiency of the pairing computation compared to previously chosen curves
in the literature due to the slightly larger Hamming weight for the defining parameter, but
otherwise the curves agree in terms of the field sizes and towering options (as analyzed in [4]).
For the BN and both BLS families, subgroup security enforces the cofactor #E′(Fk/dp )/r for G2

in E′(Fk/dp ) to be prime. Thus, there are no small cofactors in the group order #E′(Fk/dp ) and
hence no points of small order, which in turn means that alternate curve models cannot be used
for scalar multiplications in G2 and we are restricted to the Weierstrass model. For the KSS
family, there is a cofactor of 3 enforced by the polynomial parameterization, and therefore the
KSS curve presented below allows for a Hessian curve model for G2.

It seems that the additional benefits of subgroup security come at the price of restricting the
possible improvements for the scalar multiplications through alternate curve models. However,
this is actually not the case. The results of the implementation experiments conducted for [16]
and presented there have shown that Jacobi quartic curves were unable to outperform the Weier-
strass or Hessian curves in any of the scenarios considered there. The reason is that the small
number of operations saved in a Jacobi quartic group addition are not enough to outweigh the
slower Jacobi quartic doublings (see Table 6.1), and because of the extra computation incurred
by the need to pass back and forth between J and W to compute the endomorphisms (see
Section 6.4.3). On the other hand, while employing the Hessian form also requires us to pass
back and forth to compute the endomorphisms, the Hessian group law operations are signifi-
cantly faster than Weierstrass operations across the board, so Hessian curves reigned supreme
whenever they were able to be employed. Table 6.3 summarizes the optimal curve model choices
in each scenario based on the experiments from [16]. It shows that the use of the Hessian curve
model in G2 is only advantageous for the KSS family.

In Table 6.3 we also summarize the bounds on the lengths of the multi-scalars computed via
Babai rounding with the bases given in Section 6.3. We note that these are the theoretical bounds
that assume that the Babai roundoff is computed exactly; if the Babai rounding is computed
using the fast approximation discussed in § 6.3.5, then the exact bound becomes one bit larger,
i.e., |z| becomes |2z|. We also present the optimal window size that was found experimentally
for the example curves presented below. We note that these window sizes may change for curves
within the same family but with different parameter sizes.

TABLE 6.3 Optimal scenarios for group exponentiations.

sec. family-k exp. in G1 exp. in G2
level n ‖ai‖∞ w curve n ‖ai‖∞ w curve

128-bit BN-12 2 |6x2 + 6x+ 2| 2 Weierstrass 4 |5x+ 3| 1 Weierstrass

192-bit BLS-12 2 |x2 + 1| 3 Hessian 4 |x+ 2| 1 Weierstrass
KSS-18 2 |(20x3 + 373)/7| 3 Weierstrass 6 |4x/7 + 2| 1 Hessian

256-bit BLS-24 2 |x4 + 1| 3 Hessian 8 |x+ 2| 1 Weierstrass

Note: For both GLV on G1 and GLS on G2 in all four families, we give the decomposition
dimension n, the upper bounds on the multi-scalars ‖ai‖∞, the optimal window size w for the
example curves, and the optimal curve model.
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The k = 12 BN curve

The value x0 = 262 +259 +255 +215 +210−1 in Equation (6.1) results in 254-bit primes p = p(x0)
and n = n(x0). The curve E/Fp : y2 = x3 + 5 over Fp has n = #E(Fp), the sextic twist can be
represented by E′/Fp2 : y2 = x3 + 5(u+ 1), where Fp2 = Fp[u]/(u2 + 1).

The k = 12 BLS curve

Setting x0 = −2106− 292− 260− 234 + 212− 29 in Equation (6.2) gives a 635-bit prime p = p(x0)
and a 425-bit prime r = r(x0). Let Fp2 = Fp[u]/(u2 +1) and let ξ = u+1. The Weierstrass forms
corresponding to G1 and G2 are W/Fp : y2 = x3 − 2 and W ′/Fp2 : y2 = x3 − 2/ξ. Only G1 has
options for alternative models (see Table 6.2): let α ∈ Fp with α2 = −2, then the Hessian curve
H/Fp : x3 + y3 + 2α = 0 is isomorphic to W over Fp. The example curve originally proposed
in [16] also had an isomorphic Jacobi quartic model. The new subgroup-secure example does
not have a Jacobi quartic model over Fp because the cofactor #E′(Fpk/d)/r for G2 is prime.

The k = 18 KSS curve

Setting x0 = 264 + 247 + 243 + 237 + 226 + 225 + 219 − 213 − 27 in Equation (6.3) gives a 508-bit
prime p = p(x0) and a 376-bit prime r = r(x0). Let Fp3 = Fp[u]/(u3 − 2). The Weierstrass
forms for G1 and G2 are W/Fp : y2 = x3 + 2 and W ′/Fp3 : y2 = x3 + 2/u. Let α ∈ Fp with
α2 = 2/u, then the Hessian curve H′/Fp3 : x3 + y3 + 2α = 0 is isomorphic to W ′ over Fp3 .

The k = 24 BLS curve

Setting x0 = −(263− 247− 231− 226− 224 + 28− 25 + 1) in Equation (6.4) gives a 629-bit prime
p = p(x0) and a 504-bit prime r = r(x0). Let Fp2 = Fp[u]/(u2+1) and Fp4 = Fp2 [v]/(v2−(u+1)).
The Weierstrass forms corresponding to G1 and G2 are W/Fp : y2 = x3 + 1 and W ′/Fp4 : y2 =
x3 + 1/v. This gives us the option of a Hessian model in G1: the curve H/Fp : x3 + y3 + 2 = 0
is isomorphic to W over Fp. Since this curve is subgroup secure, the cofactor of G2 in E′(Fpk/d)
is prime, the curve does not have an alternate curve model over Fpk/d , and we are left with the
Weierstrass model. Note that this is different than for the example curve presented in [16].

6.5 Exponentiations in GT

The group GT is the group of r-th roots of unity in the multiplicative group of the k-th degree
extension Fpk . Since r | Φk(p) due to the embedding degree condition, it is contained in the
cyclotomic subgroup of F∗

pk
of order Φk(p). This fact can be used for various efficiency im-

provements and compression techniques. For example, there exist squaring algorithms [30, 43]
that are much faster than the general squaring in F∗

pk
. Furthermore, trace-based or norm-based

compression methods exist (see [55, 29, 51]). All these techniques make use of the fact that the
computation of the p-power Frobenius endomorphism and any of its powers in Fpk is very cheap.

6.5.1 Multi-Exponentiation via the Frobenius Endomorphism

One way to carry out exponentiations inGT is to use the fact that for the sake of an endomorphism-
aided arithmetic, its structure is analogous to that of G2. Galbraith and Scott [27] remark that
exponentiations in GT ⊂ Fpk can be implemented with the same ϕ(k)-dimensional decomposi-
tion that is used for GLS in G2. This means that the same techniques for multi-exponentiation
can be applied directly, simply translated to the multiplicative setting of GT .

Algorithm 6.2 carries over directly to GT . The endomorphism ψ on the curve group is
replaced by the p-power Frobenius endomorphism πp, which provides a ϕ(k)-dimensional scalar
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decomposition with a relation analogous to the minimal polynomial for ψ in the case of G2. For
example, while the GLS map ψ on curves with k = 12 gives ψ4(Q′) − ψ2(Q′) + Q′ = O for
all Q′ ∈ G′2, in GT , the p-power Frobenius map πp gives f · π4

p(f)/π2
p(f) = 1 for all f ∈ GT .

The scalar decompositions for each family are the same as those for G2 given in Section 6.3.
The scalar recoding technique also carries across analogously, since inversions of GT -elements
(which are conjugations over Fpk/2) are almost for free [27, § 7], just as in the elliptic curve
groups. It is again done using Algorithm 6.1. For precomputing the lookup table and the
group operations in the main loop, one simply replaces the elliptic curve operations with the
corresponding multiplicative operations in GT , using special algorithms for the squarings such
as the cyclotomic squarings from [30]. This method is a way of obtaining an implementation
protected against timing attacks in a straightforward manner, just as in the case for the group G2.

6.5.2 Compressed Single Exponentiation via the Trace Map

It was pointed out to us by Michael Scott that compressing pairing values using the finite
field trace as described in [55] and applying the implicit exponentiation method for the XTR
cryptosystem [46] as presented in [59] might be significantly faster than a multi-exponentiation
via the GLS scalar decomposition. Scott provides a few further details in [54, Section 8.1]. The
group GT is a relatively small subgroup (namely of order r) in a quite large multiplicative group
F∗
pk
, and the standard representation of elements as Fqk -elements is quite wasteful with respect

to the small number of group elements. Therefore, it is useful to compress group elements
to a smaller representation. In addition to the smaller storage requirements, an exponentiation
approach like XTR is more efficient than general arithmetic using the full element representation.

The idea is to use the XTR techniques in the relative field extension Fpk of degree 6 over
Fpk/6 (see for example [48]). This can be done for all the examples of pairing-friendly curve
families considered in this chapter because they all satisfy 6 | k. One works with the relative
trace map

Tr : Fpk → Fpk/3 , a 7→ a+ ap
k/3

+ ap
2k/3

,

to compress an element a ∈ GT to c = Tr(a), which only requires one third of the memory that
is required for storing a as a full Fpk element. The trace evaluates to the same value for all
three conjugates of a, namely c = Tr(a) = Tr(apk/3 ) = Tr(ap2k/3 ) and therefore, one works with
equivalence classes of three elements from this point on. Note that this might require special
attention for some protocols.

The XTR algorithm now provides an algorithm to implicitly exponentiate an element in GT .
Namely, given c = Tr(a) and a scalar m ∈ Z, one can efficiently compute cm = Tr(am). To see
how this works, we briefly revisit Sections 2.3 and 2.4 of [59]. The former collects several facts
that can be used to compute with trace values cu, u ∈ Z.

For example, c−u = cp
k/3

u , which means that implicit negations are almost for free. The main
facts for XTR single exponentiation are formulas for computing c2u−1, c2u, and c2u+1 given the
values cu−1, cu, cu+1, and c1. They are

c2u = c2u − 2cpk/3

u

c2u−1 = cu−1cu − cp
k/3

1 cp
k/3

u + cp
k/3

u+1

c2u+1 = cu+1cu − c1cp
k/3

u + cp
k/3

u−1

.

Working with triples Su = (cu−1, cu, cu+1), one can compute cm via computing the triple S2v+1
where v = bm−1

2 c and then returning c2v+1 or c2v+2 depending on whether m was odd or even.
The single exponentiation in [59, Section 2.4] is a simple left-to-right binary ladder that starts
with the triple S1 = (3, c1, c2 = c21 − 2cp

k/3

1 ) and updates to S2u−1 = (c2u−2, c2u−1, c2u) or
S2u+1 = (c2u, c2u+1, c2u+2) using the above formulas, depending on whether the current bit in
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v is 0 or 1. The regular structure of the updates makes it easy to implement this algorithm in
constant time, provided that memory reads and writes are implemented in constant time.

Algorithm 6.3 describes the single exponentiation in a constant-time manner. The algorithm
assumes that it is asserted that the scalar m is chosen or modified such that the bit length l of
v is constant for all allowed choices of m. This might be achieved, for example, by allowing only
scalars with certain bits set, by recoding the scalar, or by adding a suitable small multiple of
the group order r.

ALGORITHM 6.3 XTR single exponentiation in GT .
Input: Trace value c1 = Tr(a) ∈ Fpk/3 and integer scalar m ∈ [0, r).
Output: cm = Tr(am) ∈ Fpk/3 .

1 v ← bm−1
2 c

2 Write v =
∑l−1

i=0 vi2i, vi ∈ {0, 1}
3 ĉ1 ← cp

k/3

1
4 S ← (3, c1, c21 − 2ĉ1)

/* */
5 Main loop: for i = l − 1 to 0 do
6 d1 ← (1− vi)ĉ1 + vic1
7 t0 ← S[2vi]
8 t1 ← S[1]
9 t2 ← S[2(vi + 1) mod 4]

10 s0 ← t20 − 2tp
k/3

0

11 s1 ← t0t1 − d1t
pk/3

1 + tp
k/3

2

12 s2 ← t21 − 2tp
k/3

1
13 end
14 return S[2− (m mod 2)]

6.5.3 Compressed Double Exponentiation via the Trace Map

Section 3.1 in [59] describes a double exponentiation algorithm to compute ca1l+a2k for a1, a2, k, l ∈
Z given the precomputed values ck and cl and exponents a1 and a2. It uses the same formulas as
in the previous section to update the trace values, working with quadruples (cu, cv, cu−v, cu−2v).
This algorithm can be used via a two-dimensional scalar decomposition using the pk/3-power
Frobenius endomorphism πpk/3 .

For the four pairing-friendly families considered in this chapter, πpk/3 satisfies the equation
π2
pk/3 − πpk/3 + 1 = 0. Recall that the endomorphism used in the GLV method for the group

G1 satisfies φ2 + φ + 1 = 0. Therefore, one can use the two-dimensional GLV decomposition
algorithm for the group G1 (see Section 6.3) to obtain the mini-scalars (a1, a2) and then negate
the scalar a2 that is the coefficient of the endomorphism πpk/3 . Now, one uses the XTR double
exponentiation algorithm with the parameters l = 1 and k = pk/3 mod r. One can precompute
the required trace values as follows:

c1 = Tr(a), cpk/3 = Tr(ap
k/3

), cpk/3−1 = Tr(ap
k/3
/a), cpk/3−2 = Tr(ap

k/3
/a2).

Note that the inversions in the cyclotomic subgroup are conjugations over Fpk/2 and are there-
fore almost for free. All other operations required for the precomputation are cheap Frobenius
operations and additions to compute the traces.
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Due to its dependencies on intermediate values, it does not seem straightforward to make
this algorithm run in constant time, independent of its input data. However, it can be a possibly
more efficient alternative for exponentiations with public exponents.
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Let us define k, the embedding degree of the elliptic curve E(Fp), as the smallest integer such
that r|pk − 1, where r is a large prime divisor of #E(Fp). Then, as was already presented in
Chapter 1 and studied in more detail in Chapter 3, an asymmetric bilinear pairing is defined
as the mapping ê : G2 × G1 → GT , where the groups G1 and G2 are given as, G1 = E(Fp)[r],
G2 = Ẽ(Fpk/d [r]), and GT is the subgroup of F∗

pk
where each one of its elements is r-th roots of

the unity.
By far the most popular cryptographic instantiation of a bilinear pairing is the Tate pairing

or variants of it. The standard procedure to compute the Tate pairing and its variants is divided
into two major steps. First, the Miller function value f = fr,P (Q) ∈ F∗

pk
is calculated. This gives

an output value f that belongs to the quotient group F∗
pk
/(F∗

pk
)r. Second, in order to obtain a

unique representative in this quotient group, the value f is raised to the power e = (pk − 1)/r.
This last step is known as the final exponentiation step.

A naive way to compute the final exponentiation consists of representing the exponent e
mentioned above in base two, and then invoking the binary exponentiation procedure shown in
Algorithm 7.1 to compute the power fe.

Nevertheless, in most of the pairing-friendly elliptic curves studied in this book, the size
in bits of the field characteristic p and the order of the pairing groups r, are about the same,
which implies that the size in bits of the exponent e is very close to ` = (k − 1)|p| bits, where
|p| = dlog2(p)e represents the bit length of the prime p. Since the computational complexity
of Algorithm 7.1 is given as approximately ` − 1 and `

2 squarings and multiplications over the

7-1
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Fk
p

Gφn(n)
F∗

pk = {α ∈ Fpk :: αr = 1}

FIGURE 7.1 Final exponentiation of an arbitrary element in Fpk to the group of the r-th roots
of unity, µr.

ALGORITHM 7.1 Binary method for exponentiation.
Input : f, x = (xn−1, xn−2, . . . , x1, x0)
Output: fx

1 g ← f ;

2 for (i = n− 2) down to 0 do
3 g ← g2;
4 if xi = 0 then
5 g = g · f ;
6 end
7 end
8 return g;

field F∗
pk
, this would be a costly computation, considerably more expensive than the cost of

calculating the Miller function value f .
In this chapter we will review several techniques that will allow us to greatly reduce the

computational cost of the final exponentiation step. The main idea is illustrated in Figure 7.1,
where an arbitrary field element f ∈ F∗

pk
is first mapped to an element f ′ that belongs to the

cyclotomic subgroup GΦk(p) (see its definition in Section 5.3 of Chapter 5). Then, f ′ is raised to
the power Φk(p)/r to obtain a field element that belongs to µr, the subgroup of the r-th roots
of the unity. This finishes the final exponentiation step, as the resulting element belongs to the
pairing group GT .

The chapter is organized as follows. In §7.1, a general strategy for computing the final expo-
nentiation is outlined. The important cases of the Barreto–Naehrig and the Kachisa-Schaefer-
Scott pairing-friendly elliptic curves are carefully studied in §7.2 and §7.3. Then, in §7.4 the
final exponentiation computation for other families of pairing-friendly curves, relevant for imple-
menting pairings at higher security levels, are presented. In §7.5, we compare the computational
costs of the different approaches studied in this chapter, and make some concluding remarks.
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Finally, Appendix 7.6 presents our SAGE implementation of some of the algorithms discussed
in this chapter.

The interested reader can download our complete SAGE library for the final exponentiation
step, covering several families of pairing-friendly curves, from:
http://sandia.cs.cinvestav.mx/Site/GuidePBCcode.

7.1 General Approach for Computing the Final Exponentia-
tion

Let E/Fp, be a pairing-friendly elliptic curve such that r is a large prime divisor of #E(Fp).
The computation of the final exponentiation can be highly optimized by taking advantage of the
definition of the embedding degree k. Indeed, the fact that k is the smallest integer such that
r|pk − 1 implies that

pk ≡ 1 mod r and pi 6≡ 1 mod r, ∀i ∈ Z+ | i < k.

In other words, p is a primitive kth root of the unity modulo r. Let Φk(z) be the k-th cyclotomic
polynomial (see §5.3 of Chapter 5). Since the roots of Φk(z) are the kth primitive roots of the
unity, it holds that Φk(p) ≡ 0 mod r, i.e. r|Φk(p).

Moreover, since Φk divides the polynomial zk−1, and since the set of the primitive kth roots
of the unity in Φk(p) is a subset of the roots of the polynomial pk−1, it follows that Φk(p)|pk−1.
As pointed out in [18], this observation allows us to break the exponent e = (pk − 1)/r into two
parts, as

e = (pk − 1)/r = [(pk − 1)/Φk(p)] · [Φk(p)/r]. (7.1)

Computing the map f 7→ f (pk−1)/Φk(p) is called the easy part of the final exponentiation since
it is relatively inexpensive. On the other hand, raising to the power d = Φk(p)/r is considered
the hard part of the final exponentiation.

The main early efforts for improving the efficiency of the final exponentiation computation
were presented in [2, 18, 10], whereas the current state-of-the-art procedures for computing the
hard part of the final exponentiation can be found in [6, 8, 9, 15, 16, 17, 21, 22]. The remainder
of this section is devoted to presenting a general approach for the efficient computation of the
easy and hard part of the final exponentiation.

7.1.1 Easy Part of the Final Exponentiation

Although the first part of the final exponentiation is considered inexpensive, its computation
carries out important consequences to the rest of the computation.

From Definition 5.3 of Chapter 5, the exponent (pk − 1)/Φk(p) can be represented as

(pk − 1)/Φk(p) =
∏

j|k,j<k

Φj(p), (7.2)

where j ∈ Z+. Let f be a non-zero field element of the extension field Fpk . Then, since for a
small j, Φj(p) is a polynomial evaluated in p with coefficients in {−1, 0, 1}, the cost of computing
f
∏

Φj(p) is of only some few multiplications, inversions, and very cheap p-th powerings in Fpk ,
which are equivalent to applications of the Frobenius operator.

Moreover, whenever the embedding degree k is an even number, the exponent (pk−1)/Φk(p)
can be broken into two parts, as

pk − 1
Φk(p) = (pk/2 − 1) ·

[
pk/2 + 1
Φk(p)

]
. (7.3)
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Koblitz and Menezes introduced in [18] the concept of Pairing-Friendly Fields (PFFs). A PFF
is an extension field Fpk , with p ≡ 1 mod 12 and k = 2i3j with i ≥ 1, j ≥ 0. In the case that
6|k, the k-th cyclotomic polynomial Φk has the following structure [11],

Φ2i3j (z) = z2·2i−13j−1 − z2i−13j−1
+ 1,

which implies,

Φk(p) = pk/3 − pk/6 + 1. (7.4)

Substituting the value of Φk(p) from Eq. 7.4 into Eq. 7.2, and after performing some algebra,
one obtains,

(pk − 1)/Φk(p) = (pk/2 − 1) · (pk/6 + 1). (7.5)

The exponentiation g = f (pk/2−1)(pk/6+1) ∈ Fpk , is known as the easy part of the final exponen-
tiation.

Remark 7.1 The multiplicative inverse of the field element g = f (pk−1)/Φk(p) can be
computed by a simple conjugation. Recall that for an even embedding degree k, we have
that pk − 1 = (pk/2 − 1) · (pk/2 + 1). Let us define g̃ = fp

k/2−1. Then, using the fact that the
order of f ∈ Fpk does not divide pk/2 − 1, one has that

(g̃)p
k/2+1 = (f)(pk/2−1)·(pk/2+1) = 1.

From the above equation one concludes that (g̃)pk/2 = 1/g̃. Notice that by choosing a suitable
quadratic irreducible polynomial with a primitive root i, the field Fpk can be seen as a quadratic
extension of Fpk/2 . This field towering permits us to represent the element g̃ as g̃ = g̃0 + i · g̃1,

where g̃0, g̃1 ∈ Fpk/2 . By taking advantage of the Frobenius operator properties, the operation
(g̃)pk/2 can be performed by a simple conjugation of the element g̃, as

(g̃)p
k/2

= g̃0 − i · g̃1 = 1/g̃.

Remark 7.2 The field element g = f (pk−1)/Φk(p) is a member of the k-th cyclotomic
group GΦk(p). This follows directly from the definition of the cyclotomic group,

gΦk(p) = (f (pk−1)/Φk(p))Φk(p) = 1.

Remark 7.3 The field element g = f (pk−1)/Φk(p) is unitary. A direct inspection of
the norm definition as stated in Definition 2.27 of Chapter 2 along with the properties of the
Frobenius operator shows that the norm of the element g ∈ Fpk with respect to Fp is given as
|g| = 1

7.1.2 Hard Part of the Final Exponentiation

As we have seen in Chapter 4, the integer curve parameters p, t, and r of a family of pairing-
friendly elliptic curves are represented as polynomials in the ring Q[x], where x ∈ Z. In order to
instantiate a particular pairing-friendly elliptic curve, one needs to identify an integer value x0,

such that both polynomials p(x) and r(x), yield prime numbers when evaluated at x0 (see §4.5
of Chapter 4).

Let ϕ(·) denote the Euler Totient function and let deg p(x) denote the degree of the polyno-
mial p(x). Taking advantage of this polynomial representation of the parameters of the curve,
and using the fact that a p-th powering is considerably cheaper than a multiplication in Fpk ,
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the exponent d = Φk(p)(x)/r(x), corresponding to the hard part of the final exponentiation, is
usually represented as a polynomial in base p(x) of degree ϕ(k)− 1 as

d(x) =
ϕ(k)−1∑
i=0

λi(x)pi(x), (7.6)

where

λi(x) =
deg p(x)−1∑

j=0

λijx
j . (7.7)

Using the polynomial representation of the exponent d as given in Equation (7.6), the pow-
ering fd can be computed efficiently by once again exploiting the cheap cost of the Frobenius
operator combined with vectorial addition chain methods as briefly described next (see § 7.2 for
a full example).

In a precomputation phase, the exponentiations fx, . . . , fxdeg p(x)−1 are calculated at a cost
of deg p(x)−1

deg p(x) log p squarings plus about (deg p(x)− 1) · (Hw(x)− 1) field multiplications, where
Hw(x) stands for the Hamming weight of x. From these intermediate exponentiations, terms of
the form fx

ipj(x) for 0 ≤ i < deg p(x) and 0 ≤ j < ϕ(k) can be computed efficiently at a cost of
some few extra multiplications. In a second phase, a vectorial addition chain is obtained from a
valid addition-subtraction sequence that contains all the distinct coefficients λi,j ∈ Z.?

Assuming that there are a total of s non-zero coefficients λi,j , and that the length of the
corresponding addition–subtraction sequence is l, then the conversion of it to a vectorial addition
chain can be accomplished with l + s− 1 steps, by means of the Olivos algorithm [20]. Finally,
the powering fd(x) can be obtained by a simultaneous multi-exponentiation involving factors of
the form fx

ipj .

A lattice-based refinement

In [9], the authors refined the procedure outlined above by presenting a lattice-based method
that finds a multiple d′ of d, with r not dividing d′, such that fd′ can be computed at least as
efficiently as fd.

Let us consider f ∈ Fpk with order dividing Φk(p). Since r(x)d(x) = Φk(p), it follows that
fr(x)d(x) = 1. Hence, to find the multiple d′(x), it suffices to consider a matrix M that includes
linear combinations of the monomials, d(x), xd(x), . . . , xφ(k)−1d(x).

To this aim, consider a rational matrix M ′ with dimensions deg p× ϕ(k) deg p such that
d(x)
xd(x)

...
xdeg p−1d(x)

 = M ′




1
p(x)
...

p(x)ϕ(k)−1

⊗


1
x
...

xdeg p−1


 .

?A vectorial addition chain is a list of vectors where each vector is the addition of two previous vectors.
In the case of a group exponentiation, the last vector contains the final exponent e. Let V be a vector
chain, and m be the dimension of every vector. The vector addition chain starts with Vi,i = 1 for
i = 0, . . . ,m− 1: [1, 0, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1]; then the next vector is formed by adding
any two previous vectors in the chain, and this process is continued until Vj,1 = e, with j > m.
Olivos presented in [20] a procedure that converts a valid addition sequence {e1, . . . , es} of length l to a
vectorial addition chain of length l+s−1, for [e1, . . . , es] (See [4] for a historical recount of this algorithm).
Since in [20] a procedure that transforms a vectorial addition chain to an addition sequence was also
reported, these two structures can be seen as the dual of each other [5, Chapter 9]. The combination
of addition–subtraction sequences along with vectorial addition chains lead to efficient computations of
the product of simultaneous exponentiations.
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Here the symbol ‘⊗’ stands for the Kronecker product and the elements in the rational lat-
tice formed by the matrix M ′ correspond to Q-linear combinations d′(x) of d(x), xd(x), . . . ,
xdeg r−1d(x).

Thereafter, the Lenstra-Lenstra-Lovász algorithm [19] is applied to M in order to obtain an
integer basis for M with small entries. The hope is that short vectorial addition chains can be
extracted from linear combinations of these basis elements. By construction, it is guaranteed
that one of the solutions found by such a method will match the ones reported in Scott et al. [21]
using d(x) as the exponent.

Allowing multiples of d(x) is advantageous, because it provides more flexibility in the choices
of the coefficients λi,j , which in many instances (as in the case of the pairing-friendly curve
KSS-16 to be reviewed here) can yield modest but still noticeable savings in the computation of
the hard part of the final exponentiation.

In the next section, this method is explained in detail by applying it to the computation of
the final exponentiation step on several pairing-friendly families of curves.

7.2 The Barreto-Naehrig Family of Pairing Friendly Elliptic
Curves

In this section, the main methods for computing the hard part of the final exponentiation for the
Barreto-Naehrig family of curves with embedding degree k=12 will be analyzed in detail. Let us
recall that Barreto–Naehrig elliptic curves are defined by the equation E : y2 = x3 + b, with
b 6= 0. Their embedding degree is k = 12, hence, φ(k) = 4. They are parametrized by selecting
an arbitrary x ∈ Z such that

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1, (7.8)
r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1.

are both prime.
Furthermore, notice that the twelfth cyclotomic polynomial is given as Φk(z) = p4 − p2 + 1.

Hence the exponent d for the hard part of the final exponentiation is given as d = p4−p2+1
r .

The rest of this section is organized as follows. We start by discussing the Devegili et al.
method, which was proposed in 2007 [6]. Then, we discuss a more elaborated approach that was
later presented by Scott et al. in [21]. Finally, we present the Fuentes et al. lattice approach [9],
which is arguably the current state-of-the-art procedure for computing the hard part of the final
exponentiation.

7.2.1 Devegili et al. Method for Barreto-Naehrig Curves

Devegili et al. showed in [6] that the exponent d = p4−p2+1
r , corresponding to the hard part of

the final exponentiation on Barreto-Naehrig curves, can be expressed in base p as

d(x) =− 36x3 + 30x2 + 18x+ 2 + p(x)(−36x3 − 18x2 − 12x+ 1) (7.9)
+ p(x)2(6x2 + 1) + p(x)3.

Devegili et al. proposed in [6] to decompose Equation (7.9) as

d(x) =− 36x3 + 30x2 + 18x+ 2 + p(x)(−36x3 − 18x2 − 12x+ 1) + p(x)2(6x2 + 1) + p(x)3

= 4 + 9 + (−6x− 5) + (−6x− 5) + (−6x− 5) · (6x2 + 1)+
p(x)

[
(−6x− 5) · (6x2 + 1) + 2(6x2 + 1) + (−6x− 5) + 9

]
+

p(x)2(6x2 + 1) + p(x)3.
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The above expression can be computed efficiently as follows. First, the following series of
exponentiations is computed:

f 7→ fx 7→ f2x 7→ f2x+2 7→ f4x+4 7→ f6x+4 7→ f6x+5 7→ f−6x−5. (7.10)

The computation of Equation 7.10 requires 1 exponentiation by x, 3 squarings, and 3 multipli-
cations, plus one inexpensive conjugation, which is a consequence of Remark 7.1. One can then
define the terms a = f−6x−5 and b = a · ap, at the cost of one extra multiplication and one
Frobenius application. Finally, the result fd is obtained by computing

fp
3 ·
[
fp

2 · b · (fp)2
]6x2+1

· b · (fp · f)9 · a · f4,

which requires 2 exponentiations by x, 8 squarings, 11 multiplications, and 3 Frobenius applica-
tions.

In total, this method requires 3 exponentiations by x, 11 squarings, and 14 multiplications.
Algorithm 7.2 shows an explicit computation of this method.

ALGORITHM 7.2 Final exponentiation by Devegili et al. for BN curves [6].

Input : f ∈ Fpk , x ∈ Z
Output: f

φk(p)
r ∈ Fpk

1 a = fx; { a← fx}
2 b = a2; { b← f2x}
3 a = b · f2; { a← f2x+2}
4 a = a2; { a← f4x+4}
5 a = a · b; { a← f6x+4}
6 a = a · f ; { a← f6x+5}
7 a = ā; { a← f−6x−5}
8 b = ap; { b← ap}
9 b = a · b; { b← a · b}

10 a = a · b; { a← a · b}
11 t0 = fp;
12 t1 = t0 · f ;
13 t1 = t91;
14 a = t1 · a; { a← b · (fp · f)9 · a}
15 t1 = f4;
16 a = a · t1; { a← b · (fp · f)9 · a · f4}
17 t0 = t20; { t0 ← fp

2}
18 b = b · t0; { b← b · (fp)2}
19 t0 = fp

2 ;

20 b = b · t0; { b← b · (fp)2 · fp2}
21 t0 = bx;

{
t0 ←

[
b · (fp)2 · fp2

]x}
22 t1 = t20;

{
t0 ←

[
b · (fp)2 · fp2

]2x
}

23 t0 = t21;
{
t0 ←

[
b · (fp)2 · fp2

]4x
}

24 t0 = t0 · t1;
{
t0 ←

[
b · (fp)2 · fp2

]6x
}

25 t0 = tx0 ;
{
t0 ←

[
b · (fp)2 · fp2

]6x2}
26 t0 = t0 · b;

{
t0 ←

[
b · (fp)2 · fp2

]6x2+1
}

27 a = t0 · a;{[
b · (fp)2 · fp

2]6x2+1
· b · (fp · f)9 · a · f4

}
28 t0 = fp

3
;

29 f = t0 · a;{
fp

3
·
[
b · (fp)2 · fp

2]6x2+1
· b · (fp · f)9 · a · f4

}
30 return f ;

7.2.2 The Scott et al. Method for Barreto-Naehrig Curves

Notice that the exponent d = Φk(p)/r, corresponding to the hard part of the final exponentiation,
is a degree-twelve polynomial in the variable x, given as

d(x) = 46656x12 + 139968x11 + 241056x10 + 272160x9+ (7.11)
225504x8 + 138672x7 + 65448x6 + 23112x5 + 6264x4 + 1188x3 + 174x2 + 6x+ 1.
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At first glance, it would appear that in order to compute fd, with f ∈ Fpk , it is nec-
essary to exponentiate by multiples of powers of xi, for i = 1, . . . , 12. However, following
the method reported in Scott et al. [21], it becomes more efficient to write d in base p as
d(x) =

∑3
i=0 λi(x)p(x)i, where the coefficients λi for i = 0, . . . 3 are polynomials with degree

at most 3, given as

λ0 = −36x3 − 30x2 − 18x− 2, (7.12)
λ1 = −36x3 − 18x2 − 12x+ 1,
λ2 = 6x2 + 1,
λ3 = 1.

Using the above representation of the exponent d(x) in base p, the hard part of the final exponen-
tiation can be computed as follows. First, three exponentiations of the form fx

i , for i = 1, . . . , 3,
must be sequentially computed. Then, the Frobenius operator is applied to pre-compute the
following 7 factors

fp, fp
2
, fp

3
, (fx)p ,

(
fx

2
)p
,
(
fx

3
)p
,
(
fx

2
)p2

.

Notice that in Equation (7.12) the coefficient 1 appears three times, namely, in the equalities
for λ1, λ2 and λ3. Similarly, the coefficients 18 and 36 appear two times each. Those coefficients
can be grouped as products of the factors (fxi)pj previously mentioned. The variables yi, for
i = 0, . . . , 6 are used to group the coefficients 1, 2, 6, 12, 18, 30, and 36, respectively, as follows,

y0 = fp · fp2
· fp3

, y1 =
1
f
, y2 = (fx2

)p2
, (7.13)

y3 =
1

(fx)p
, y4 =

1
fx · (fx2 )p

, y5 =
1
fx2 ,

y6 =
1

fx3 · (fx3 )p
.

This leads us to the following multi-exponentiation problem,

fd = y0 · y2
1 · y6

2 · y12
3 · y18

4 · y30
5 · y36

6 . (7.14)

The cost of extracting all the coefficients yk from Equation (7.12), so that they can be multi-
powered as shown in Equation (7.14), is of 4 multiplications plus one negligible field inversion
that can be computed by performing a simpe conjugation.

The multi-exponentiation problem of Equation (7.14) can be solved using addition chains
along with vectorial addition chains. Let us recall that an addition chain of length l is given
as e0 = 1, e1 = 2, . . . el = n, with the property that ei = ej + ek, for some k ≤ j < i, for all
i = 1, 2, . . . , l. A vectorial addition chain can be constructed from an addition chain by means of
the Olivos algorithm [20] as explained next (for a more formal description the interested reader
is referred to [5, Chapter 9]).

To obtain a vectorial addition chain from a given addition chain, the Olivos procedure se-
quentially builds a two-dimensional array starting in the upper left corner with the two-by-two
array,

1 0
2 2

Then, the procedure processes each addition chain element ei, with i ≥ 2, by adding at each
step a new row in the bottom, as well as two columns in the right. If the element ei being
processed corresponds to the doubling of a previous element ej , then the line to be added in the
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bottom is the double of the line j and the two new columns in the right are the i-dimensional
canonical vectors 2vi + vj and 2vi. Otherwise, the element ei corresponds to the addition of two
previous elements ej , ek. Then, the new line on the bottom is the addition of lines j and k, and
the two new columns in the right are the i-dimensional canonical vectors vi + vj and vi + vk.

After having processed all the elements in the addition chain, the vectorial addition chain is
obtained by scanning the columns in the Olivos array from right to left. Moreover, the underlined
rows and all repeated columns are ignored. This guarantees that the dimension of the vectors so
obtained is the length s of the original protosequence. The vectorial addition chain is completed
by adding all the s-dimensional canonical vectors.

In the case of Equation (7.14), one first finds a valid addition chain for the so-called proto-
sequence of s = 7 elements,

{1, 2, 6, 12, 18, 30, 36}. (7.15)

A valid optimal addition chain of length l = 7 for the protosequence (7.15) is

{e0 = 1, e1 = 2, e2 = 3, e3 = 6, e4 = 12, e5 = 18, e6 = 30, e7 = 36}. (7.16)

Notice that the inserted element e2 = 3 is shown above underlined, whereas the other elements
in the chain correspond to the original elements in the protosequence. Since e2 = e0 + e1, when
processing this element, the Olivos array becomes

1 0 1 0
2 2 0 1
3 2 1 1

Similarly, when processing the element e3 = 2e2, the Olivos array becomes

1 0 1 0 0 0
2 2 0 1 0 0
3 2 1 1 1 0
6 4 2 2 2 2

After having processed all the elements in the addition chain, the Olivos algorithm generates
the array shown in Table 7.1. The vectorial addition chain is then obtained by processing
the columns from right to left. For instance, the columns c13 and c12 produce the vectors
[2, 0, 0, 0, 0, 0, 0], [2, 0, 1, 0, 0, 0, 0], respectively. Notice that the values corresponding to the row
e2 were ignored. The complete vectorial addition sequence produced by this procedure is shown
in Table 7.2.

TABLE 7.1 Vectorial addition chain construction from the addition chain [1, 2, 3, 6, 12, 18, 30, 36].

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

e0 = 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
e1 = 2 2 2 0 1 0 0 0 0 0 0 0 0 0 0
e2 = 3 3 2 1 1 1 0 0 0 0 0 0 0 0 0

e3 = 6 6 4 2 2 2 2 1 0 1 0 0 0 1 0
e4 = 12 12 8 4 4 4 4 2 2 0 1 1 0 0 0
e5 = 18 18 12 6 6 6 6 3 2 1 1 0 1 0 0
e6 = 30 30 20 10 10 10 10 5 4 1 2 1 1 0 1
e7 = 36 36 24 12 12 12 12 6 4 2 2 1 1 1 1
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TABLE 7.2 Vectorial addition sequence for the protosequence [1, 2, 6, 12, 18, 30, 36].

1. [1, 0, 0, 0, 0, 0, 0];

2. [0, 1, 0, 0, 0, 0, 0];

3. [0, 0, 1, 0, 0, 0, 0];

4. [0, 0, 0, 1, 0, 0, 0];

5. [0, 0, 0, 0, 1, 0, 0];

6. [0, 0, 0, 0, 0, 1, 0];

7. [0, 0, 0, 0, 0, 0, 1];

8. [2, 0, 0, 0, 0, 0, 0];

9. [2, 0, 1, 0, 0, 0, 0];

10. [2, 1, 1, 0, 0, 0, 0];

11. [0, 1, 0, 1, 0, 0, 0];

12. [2, 2, 1, 1, 0, 0, 0];

13. [2, 1, 1, 0, 1, 0, 0];

14. [4, 4, 2, 2, 0, 0, 0];

15. [6, 5, 3, 2, 1, 0, 0];

16. [12, 10, 6, 4, 2, 0, 0];

17. [12, 10, 6, 4, 2, 1, 0];

18. [12, 10, 6, 4, 2, 0, 1];

19. [24, 20, 12, 8, 4, 2, 0];

20. [36, 30, 18, 12, 6, 2, 1].

As shown in Algorithm 7.3, the vectorial addition sequence of Table 7.2 can be directly used
to compute the multi-exponentiation y0 · y2

1 · y6
2 · y12

3 · y18
4 · y30

5 · y36
6 . The cost of this calculation is

of nine multiplications plus four squarings, which exactly matches the expected computational
cost predicted by the Olivos theorem [20], namely, l + s− 1 = 7 + 7− 1 = 13 field operations.

ALGORITHM 7.3 Multi-exponentiation computation using addition-subtraction vec-
torial chains.

Input : 7 input elements yi, for 0 ≤ i ≤ 6
Output: t0 = y0 · y2

1 · y6
2 · y12

3 · y18
4 · y30

5 · y36
6

1 t0 = y2
6 ; {2,0,0,0,0,0,0}

2 t0 = t0 · y4; {2,0,1,0,0,0,0}
3 t0 = t0 · y5; {2,1,1,0,0,0,0}
4 t1 = y3 · y5; {0,1,0,1,0,0,0}
5 t1 = t1 · t0; {2,2,1,1,0,0,0}
6 t0 = t0 · y2; {2,1,1,0,1,0,0}

7 t1 = t21; {4,4,2,2,0,0,0}
8 t1 = t1 · t0; {6,5,3,2,1,0,0}
9 t1 = t21; {12,10,6,4,2,0,0}

10 t0 = t1 · y1; {12,10,6,4,2,1,0}
11 t1 = t1 · y0; {12,10,6,4,2,0,1}
12 t1 = t21; {24,20,12,8,4,2,0}
13 t0 = t0 · t1; {36,30,18,12,6,2,1}
14 return t0;

In total, the hard part of the final exponentiation for the Barreto-Naehrig curve requires
3 exponentiations by x, 13 multiplications, 4 squarings, and 7 Frobenius applications. The
complete procedure is shown in Algorithm 7.4.

7.2.3 The Fuentes-Castañeda et al. Method for Barreto-Naehrig Curves

Recall that the exponent d = p4−p2+1
r , corresponding to the hard part of the final exponentiation

on Barreto-Naehrig curves, can be expressed as (cf. with Equation (7.12)),

d(x) =− 36x3 − 30x2 − 18x− 2 + p(x)(−36x3 − 18x2 − 12x+ 1) (7.17)
+ p(x)2(6x2 + 1) + p(x)3.

The main algorithmic idea of the Fuentes-Castañeda et al. method as presented in [9] is
based on the following observation: Since a fixed power of a pairing is a pairing, instead of
raising f to the power d, we can always compute fd′ , where d′ = d ·m. The only restriction that
must be obeyed is to select m such that r - m.
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ALGORITHM 7.4 Final exponentiation by Scott et al. for BN curves [21].

Input : f ∈ Fpk , x ∈ Z
Output: f

φk(p)
r ∈ Fpk

1 a = fx;
2 b = ax; { fx2}
3 c = bx; { fx3}

4 T0 = c̄ · (c̄)p;
{
y6 ← 1/

(
fx

3 ·
(
fx

3
)p)}

5 T0 ← T 2
0 ;

{
[y6]2

}
6 B ← (b̄)p;

{
1/(fx2 )p

}
7 B ← B · ā;

{
y4 ← 1/

(
fx · (fx2 )p

)}
8 T0 ← T0 ·B;

{
[y6]2 · [y4]

}
9 B ← b̄;

{
y5 ← 1/fx2

}
10 T0 ← T0 ·B;

{
[y6]2 · [y5] · [y4]

}
11 T1 ← (ā)p; {y3 ← (1/fx)p}
12 T1 ← T1 ·B; {T1 ← y5 · y3}
13 T1 ← T1 · T0;

{
[y6]2 · [y5]2 · [y4] · [y3]

}

14 B ← (b)p2 ;
{
y2 ← (fx2 )p2

}
15 T0 ← T0 ·B;

{
[y6]2 · [y5] · [y4] · [y2]

}
16 T1 ← T 2

1 ;
{

[y6]4 · [y5]4 · [y4]2 · [y3]2
}

17 T1 ← T1 · T0;
{

[y6]6 · [y5]5 · [y4]3 · [y3]2 · [y2]
}

18 T1 ← T 2
1 ;{

[y6]12 · [y5]10 · [y4]6 · [y3]4 · [y2]2
}

19 T0 ← T1 · f̄ ;{
[y6]12 · [y5]10 · [y4]6 · [y3]4 · [y2]2 · [y1]

}
20 B ← (f)p · (f)p2 · (f)p3 ;

{
y0 ← fp · fp

2
· fp

3}
21 T1 ← T1 ·B;{

[y6]12 · [y5]10 · [y4]6 · [y3]4 · [y2]2 · [y0]
}

;
22 T0 ← T 2

0 ;{
[y6]24 · [y5]20 · [y4]12 · [y3]8 · [y2]4 · [y1]2

}
23 f ← T0 · T1;{

[y6]36 · [y5]30 · [y4]18 · [y3]12 · [y2]6 · [y1]2 · [y0]
}

24 return f ;

Notice that it is more convenient to interpret the selected valuem as a polynomial: m(x) mod
(r(x)). Furthermore, observe that,

fd
′(x) = fm(x)·d(x) ≡ fm(x)·d(x)+φk(p(x)) = f (m(x)+r(x))·d(x). (7.18)

As a consequence, in the case of the Barreto-Naehrig curves, one can write m(x) as m(x) = a0 +
a1x+a2x

2 +a3x
3. This implies that {d(x), xd(x), x2d(x), x3d(x)} forms a basis for representing

all possible products, m(x) · d(x). In particular, the polynomial xd(x), given as

xd(x) =46656x13 + 139968x12 + 241056x11 + 272160x10+
225504x9 + 138672x8 + 65448x7 + 23112x6+
6264x5 + 1188x4 + 174x3 + 6x2 + x,

can be rewritten in base p(x) as

xd(x) =6x3 + 6x2 + 4x+ 1 (7.19)
+ p(x)(18x3 + 12x2 + 7x)
+ p(x)2(6x3 + x− 1)
+ p(x)3x.

In the case of the term x2d(x), its representation in base p(x) leads to fractional coefficients.
Hence, it more convenient to consider 6x2d(x) instead, which can be written as

6x2d(x) =− 1 (7.20)
+ p(x)(−36x3 − 30x2 − 18x− 2)
+ p(x)2(−36x3 − 18x2 − 12x+ 2)
+ p(x)3(6x2 + 1).
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Similarly, we consider the term 6x3d(x), which can be written in base p(x) as

6x3d(x) =− x (7.21)
+ p(x)(6x3 + 6x2 + 4x+ 1)
+ p(x)2(18x3 + 12x2 + 8x)
+ p(x)3(6x3 + x− 1).

Summarizing, each polynomial, d(x), xd(x), 6x2d(x), and 6x3d(x) can be written as a degree-
three polynomial in p(x) with coefficients of degree at most three in x. This suggests that each
one of the four coefficients above can be mapped to a vector in Z16. For example,

d(x) =− 36x3 − 30x2 − 18x− 2
+ p(x)(−36x3 − 18x2 − 12x+ 1)
+ p(x)2(6x2 + 1)
+ p(x)3

can be mapped to Z16 as

d(x) 7→[−36,−30,−18,−2,−36,−18,−12, 1, 0, 6, 0, 1, 0, 0, 0, 1].

In order to represent the four-element basis {d(x), xd(x), 6x2d(x), and 6x3d(x)}, one can
define a 4× 16 integer matrix M given as

d(x)
xd(x)

6x2d(x)
6x3d(x)

 = M




1
p(x)
p(x)2

p(x)3

⊗


1
x

x2

x3


 , (7.22)

where, as mentioned in the previous section, the symbol ‘⊗’ stands for the Kronecker product.
Using Equation (7.12), along with Equations (7.19) and (7.21), one obtains the following

matrix defined in the integers:

M =


−36 −30 −18 −2 −36 −18 −12 1 0 6 0 1 0 0 0 1

6 6 4 1 18 12 7 0 6 0 1 −1 0 0 1 0
0 0 0 −1 −36 −30 −18 −2 −36 −18 −12 2 0 6 0 1
0 0 −1 0 6 6 4 1 18 12 8 0 6 0 1 −1

 .
Notice that the first row in M corresponds to the final exponentiation analized by Scott et

al. [21]. Any non-trivial integer linear combination of the rows corresponds to an exponent that
produces an element f of the desired order r.

For computational efficiency, a linear combination with coefficients as small as possible is
desired. This can be attained by means of the LLL algorithm [19], which can find the shorter
vector in theM lattice. After running the LLL algorithm on the matrixM , the following solution
was found:[
x0
x1
x2
x3

]
=

[
x0 = −12 −6 −3 1 6 6 2 0 6 0 0 −1 6 6 5 1
x1 = 6 6 4 1 18 12 7 0 6 0 1 −1 0 0 1 0
x2 = −12 −6 −2 1 0 0 −2 −1 −12 −12 −8 −1 0 6 4 2
x3 = −12 −12 −7 −1 −6 0 0 1 6 6 2 0 −6 −6 −3 0

]
.

A visual inspection reveals that the linear combination with smallest coefficients corresponds
to the first row of the above solution matrix, namely,[

−12 −6 −3 1 6 6 2 0 6 0 0 −1 6 6 5 1
]
.
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The above linear combination can be translated to polynomials in the base x as

λ0 = −12x3 − 6x2 − 3x+ 1,
λ1 = 6x3 + 6x2 + 2x,
λ2 = 6x3 − 1,
λ3 = 6x3 + 6x2 + 5x+ 1

where

d′(x) = λ0 + λ1p+ λ2p
2 + λ3p

3.

Applying the method studied in the previous subsection, we now need to compute the simul-
taneous exponentiation:

fd
′(x) = y1

0 · y2
1 · y3

2 · y5
3 · y6

4 · y12
5 .

In total, we require 9 Frobenius, 3 exponentiations by x, 14 multiplications, and 3 squarings.
However, in the Scott et al. method [21], the cost reported was of just 9 Frobenius, 3 exponen-
tiations by x, 13 multiplications, and 4 squarings.

Unfortunately, none of the basis vectors returned by the LLL algorithm has an advantage
over [21]. However, if small integer linear combinations of the short vectors returned by the
LLL algorithm are considered, a multiple of d that corresponds to a shorter addition chain could
potentially be found. A brute force search of linear combinations of the LLL basis reveals that
there exist 18 non-zero vectors with maximal entry 12. Among these vectors the authors of [9, 17]
found that the combination, x0 − x2 − x3 is equal to:

x0 − x2 − x3 = [12, 12, 6, 1, 12, 6, 4, 0, 12, 6, 6, 0, 12, 6, 4,−1] ,

which corresponds to the multiple d′(x) = λ0 +λ1p+λ2p
2 +λ3p

3 = 2x(6x2 +3x+1)d(x), where,

λ0(x) = 1 + 6x+ 12x2 + 12x3,

λ1(x) = 4x+ 6x2 + 12x3,

λ2(x) = 6x+ 6x2 + 12x3,

λ3(x) = −1 + 4x+ 6x2 + 12x3.

The resulting multi-exponentiation can be computed more efficiently without using addition
chains by applying the following strategy. First, the following exponentiations are computed:

f 7→ fx 7→ f2x 7→ f4x 7→ f6x 7→ f6x2 7→ f12x2 7→ f12x3
.

The above computation requires 3 exponentiations by x, 3 squarings, and 1 multiplication. The
terms a = f12x3 · f6x2 · f6x and b = a · (f2x)−1 can be computed using 3 multiplications. Finally,
the result fd′ is obtained by computing,

[a · f6x2 · f ] · [b]p · [a]p
2 · [b · f−1]p

3
,

which costs six extra multiplications. In total, this method requires 3 exponentiations by x,
3 squarings, 10 multiplications, and 3 Frobenius applications. The complete procedure just
described is shown in Algorithm 7.5.
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ALGORITHM 7.5 Final exponentiation by Fuentes-Castañeda et al. for BN curves
[9].

Input : f ∈ Fpk , x ∈ Z
Output: f

φk(p)
r ∈ Fpk

1 a = fx; { fx}
2 a = a2; { f2x}
3 b = a2; { f4x}
4 b = a · b; { f6x}
5 t = bx; { f6x2}
6 f = f · [f̄ ]p3 ; { f · [ 1

f ]p3}
7 f = f · t; { f · [ 1

f ]p3 · f6x2}
8 b = b · t; { f6x2 · f6x}
9 t = t2; { f12x2}

10 t = tx; { f12x3}
11 b = b · t; { f12x3 · f6x2 · f6x = A}
12 t = b · ā; { A · 1

f2x = B}
13 f = f · tp3 ; { [f · f6x2 ] · [B · 1

f ]p3}
14 f = f · tp; { f · f6x2 · [B]p · [B · 1

f ]p3}
15 f = f · b; { [A · f · f6x2 ] · [B]p · [B · 1

f ]p3}
16 f = f · bp2 ; { [A · f · f6x2 ] · [B]p · [A]p2 · [B · 1

f ]p3}

17 return f ;

7.3 The Kachisa-Schaefer-Scott Family of Pairing Friendly
Elliptic Curves

Kachisa, Schaefer, and Scott proposed in [13] families of pairing-friendly elliptic curves of embed-
ding degrees k = 16, 18, 32, 36, and 40. In this section, the hard part of the final exponentiation
for the KSS-18 family of curves with embedding degree k = 18 will be analyzed in detail. A
similar discussion for the KSS-16 and KSS-36 families of curves can be found in [12]. At the end
of this section the computational costs of the hard part of the final exponentiation reported in
related works are compared.

7.3.1 KSS-18 Curves

KSS-18 curves have embedding degree k = 18, which implies φ(k) = 6. They are parametrized
by x such that

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21, (7.23)
r(x) = (x6 + 37x3 + 343)/343

are both prime, with x ≡ 14 mod 42. The exponent d = Φk(p)/r is a degree-42 polynomial in
the variable x.

Following the lattice techniques reported in Fuentes-Castañeda et al. [9], d can be written in
base p as d(x) =

∑5
i=0 λi(x)p(x)i, where the coefficients λi for i = 0, . . . ,5 are polynomials with
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degree at most 7 given as

λ0 = 147x+ 108x2 + 21x3 + 7x4 + 5x5 + x6, (7.24)
λ1 = −686− 505x− 98x2 − 35x3 − 25x4 − 5x5,

λ2 = 6− 133x2 − 98x3 − 19x4 − 7x5 − 5x6 − x7,

λ3 = 245x+ 181x2 + 35x3 + 14x4 + 10x5 + 2x6,

λ4 = −343− 254x− 49x2 − 21x3 − 15x4 − 3x5,

λ5 = 3 + 7x2 + 5x3 + x4.

The representation of the exponent d given in Equation (7.24) has the smallest integer coefficients
reported in the literature for this curve. The final exponentiation using the representation of
the exponent d′(x) in base p can be computed as follows. First, seven exponentiations of the
form fx

i , for i = 1, . . . , 7, must be sequentially computed. Thereafter, the Frobenius operator
is applied to compute some of the 40 possible factors of the form (fxi)pj , for i = 0, . . . , 7 and
j = 1, . . . , 5. In the case of Equation (7.24), only 35 such factors are required, including for
example,

fp, fp
4
, fp

5
, (fx)p, (fx

2
)p

2
, (fx)p

4
, (fx

2
)p

5
,

and so on.
Considering only absolute values, notice that in Equation (7.24), the coefficient 1 appears

three times, namely, in the equalities for λ0, λ2, and λ5. Similarly, the coefficients 2, 3, and 5
appear one, two, and three times, respectively. Those coefficients can be grouped as products of
the factors (fxi)pj previously mentioned. The variables y0, y1, y2, and y3 are used to group the
coefficients 1, 2, 3, and 5, respectively, as follows:

y0 = (fx6 ) · (fx4 )p5

(fx7 )p2 , y1 = (fx
6
)p

3
, y2 = fp

5

(fx5 )p4 , y3 = fx
5 · (fx3 )p5

(fx5 )p · (fx6 )p2 .

Proceeding in this manner, one can define a total of 24 coefficients yk for k = 0, . . . , 23. This
leads us to the following multi-exponentiation problem,

y1
0 · y2

1 · y3
2 · y5

3 · y6
4 · y7

5 · y10
6 · y14

7 · y15
8 · y19

9 · y21
10 · y25

11 · y35
12 · y49

13 · y98
14 · y108

15 · y133
16 · y147

17 · (7.25)
y181

18 · y245
19 · y254

20 · y343
21 · y505

22 · y686
23 .

It can be readily verified that the cost of extracting all of the coefficients yk from Equation (7.24),
so that they can be multi-powered as shown in Equation (7.25), is of 10 multiplications plus
several negligible field inversions that can be computed by simple conjugations.

Considering all the distinct coefficients that appear in Equation (7.24), the multi-exponentiation
problem associated to this curve can be solved by finding a valid addition–subtraction chain for
the protosequence of s = 24 elements:
{1, 2, 3, 5, 6, 7, 10, 14, 15, 19, 21, 25, 35, 49, 98, 108, 133, 147, 181, 245, 254, 343, 505, 686}.

After applying a specialized algorithm for finding optimal addition–subtraction sequences,
the authors of [12] found the following solution:
{ 1, 2, 3, 5, 6, 7, 10, 14, 15, 19, 21, 25, 35, 49, 98, 108, 133, 147, 162, 181, 245, 248, 254, 343,
505, 686 }

The above 25-step sequence can be computed at a cost of 19 and 6 field multiplications and
squarings, respectively. The corresponding vectorial addition–subtraction chain can be found at
the extra cost of s−1 = 23 field multiplications. In total, the hard part of the final exponentiation
for the curve KSS-18 requires 7 exponentiations by x, 53 multiplications, 6 squarings, and 35
Frobenius applications. The complete procedure just described is shown in Algorithm 7.6.
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ALGORITHM 7.6 Final exponentiation for KSS curves with k = 18 [1].
Input : f ∈ GΦ18(p), x ∈ Z
Output: f

φk(p)
r ∈ Fpk

1 A = f̄p; { y23}
2 t0 = A2;
3 B = f̄p

4 ; { y21}
4 t0 = t0 ·B;
5 C = (fx)p; { y22}
6 t1 = t0 · C;
7 B = (fx)p3 ; { y19}
8 t0 = t1 ·B;
9 B = (fx2 )p · (fx3 )p2 ; { y14}

10 t1 = t1 ·B;
11 A = (f)p2 ; { y4}
12 B = (fx)p4 ; { y20}
13 t6 = A ·B;
14 t0 = t0 ·B;
15 A = (fx5 )p4 · (f)p5 ; { y2}
16 t4 = A ·B;
17 B = fx; { y17}
18 t2 = t0 ·B;
19 t0 = t0 · t1;
20 A = (fx2 )p3 ; { y18}
21 t1 = A · C;
22 B = (fx4 )p2 ; { y9}
23 t3 = A ·B;
24 t2 = t1 · t2;
25 B = (fx4 )p4 ; { y8}
26 t5 = t1 ·B;
27 B = (fx2 )p2 ; { y16}
28 t1 = t2 ·B;
29 B = (fx4 )p3 ; { y7}
30 t8 = t2 ·B;
31 B = fx

2 ; { y15}
32 t2 = t1 ·B;
33 B = (fx4 )p; { y11}
34 t1 = t1 ·B;
35 t0 = t2 · t0;

36 B = (fx5 )p3 ; { y6}
37 t7 = t2 ·B;
38 t0 = t20;
39 B = (fx2 )p4 ; { y13}
40 t2 = t0 ·B;
41 B = (fx3 )p · (fx3 )p3 ; { y12}
42 t0 = t2 ·B;
43 t2 = t2 · t8;
44 t1 = t0 · t1;
45 t0 = t0 · t7;
46 t3 = t1 · t3;
47 t1 = t1 · t6;
48 B = fx

3 · (fx3 )p4 ; { y10}
49 t6 = t3 ·B;
50 A = (fx6 )p3 ; { y1}
51 t3 = A ·B;
52 t2 = t6 · t2;
53 B = fx

5 · (fx5 )p · (fx6 )p2 · (fx3 )p5 ; { y3}
54 t6 = t6 ·B;
55 t2 = t2 · t5;
56 B = fx

6 · (fx7 )p2 · (fx4 )p5 ; { y0}
57 t5 = t5 ·B;
58 t2 = t22;
59 B = fx

4 · (fx5 )p2 · (fx2 )p5 ; { y5}
60 t2 = t2 ·B;
61 t0 = t20;
62 t0 = t0 · t6;
63 t1 = t2 · t1;
64 t2 = t2 · t5;
65 t1 = t21;
66 t1 = t1 · t4;
67 t1 = t1 · t0;
68 t0 = t0 · t3;
69 t0 = t0 · t1;
70 t1 = t1 · t2;
71 t0 = t20;
72 t0 = t0 · t1;

73 return t0;
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7.4 Other Families

Curves BW-12

In the particular case of the cyclotomic families, given that r(x) = Φk(x), there exists no
multiple d′(x) of d(x) = Φk(p)/r(x), such that g 7→ gd

′(z) can be computed at a cheaper cost
than g 7→ gd(z). However, it is possible to save some few multiplications in the field Fp12 by
using temporary variables. Let d(z) = λ0 + λ1p+ λ2p

2 + λ3p
3, where

λ0 = x5 − 2x4 + 2x2 − x+ 3,
λ1 = x4 − 2x3 + 2x− 1,
λ2 = x3 − 2x2 + x,

λ3 = x2 − 2x+ 1.

Then, the following elements are pre-computed

g → g−2 → gx → g2x → gx−2 → gx
2−2x → gx

3−2x2 → gx
4−2x3 → gx

4−2x3+2x → gx
5−2x4+2x2

.

Thereafter, the powering gd(z) can be computed as

gx
5−2x4+2x2 · (gx−2)−1 · g · (gx4−2x3+2x · g−1)p · (gx3−2x2 · gx)p

2 · (gx2−2x · g)p
3
,

at a computational cost of 5 exponentiations by x, 3 Frobenius operator applications, 10 multipli-
cations over the field Fp12 , and 2 squarings in the cyclotomic group GΦ12(p). The corresponding
procedure is shown in Algorithm 7.7.

ALGORITHM 7.7 Final exponentiation for BW curves with k = 12 [1].
Input : f ∈ GΦ12(p), x ∈ Z
Output: f

φk(p)
r ∈ Fpk

1 a = f̄2; { f−2}
2 b = fx; { fx}
3 c = b2; { f2x}
4 a = b · a; { fx−2}
5 d = ax; { fx2−2x}
6 e = dx; { fx3−2x2}
7 g = ex; { fx4−2x3}
8 g = g · c; { fx4−2x3+2x}
9 c = gx; { fx5−2x4+2x2}

10 c = c · ā; { [fx5−2x4+2x2 · fx−2]}
11 c = c · f ; { [fx5−2x4+2x2 · fx−2 · f ]}
12 g = g · f̄ ; { [fx4−2x3+2x · f̄ ]}
13 e = e · b; { [fx3−2x2 · fx]}
14 d = d · f ; { [fx2−2x · f ]}

15 f = c · gp; { [fx5−2x4+2x2 · fx−2 · f ] · [fx4−2x3+2x · f̄ ]p}
16 f = f · ep2 ; { [fx5−2x4+2x2 · fx−2 · f ] · [fx4−2x3+2x · f̄ ]p · [fx3−2x2 · fx]p2}
17 f = f · dp3 ; { [fx5−2x4+2x2 · fx−2 · f ] · [fx4−2x3+2x · f̄ ]p · [fx3−2x2 · fx]p2 · [fx2−2x · f ]p3}
18 return f ;
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Curves BLS-24

As in the case of the BW-12 curves, there does not exist a multiple d′(x) of d(x) such that
the computational cost of the powering g 7→ gd

′(x) is cheaper than the original exponentiation
g 7→ gd(x). Let d(x) = λ0 + λ1p+ λ2p

2 + λ3p
3 + λ4p

4 + λ5p
5 + λ6p

6 + λ7p
7, such that,

λ7 = x2 − 2x+ 1,
λ6 = x3 − 2x2 + x = xλ7,

λ5 = x4 − 2x3 + x2 = xλ6,

λ4 = x5 − 2x4 + x3 = xλ5,

λ3 = x6 − 2x5 + x4 − x2 + 2x− 1 = xλ4 − λ7,

λ2 = x7 − 2x6 + x5 − x3 + 2x2 − x = xλ3,

λ1 = x8 − 2x7 + x6 − x4 + 2x3 − x3 = xλ2,

λ0 = x9 − 2x8 + x7 − x5 + 2x4 − x3 + 3 = xλ1 + 3.

Then, one can proceed to compute the temporary values,

gx →g−2x → g−2x+1 → gx
2 → gλ7gxλ7 → gxλ6 → gxλ5 → gxλ4 → gxλ4−λ7 → gxλ3 → gxλ2

→gxλ1 → gxλ1+3.

The total cost of the hard part of the final exponentiations is of 9 exponentiations to the
power x, 7 Frobenius operator applications, 12 multiplications over the extension field Fp24 ,

and 2 squarings in the cyclotomic group GΦ24(p). The corresponding procedure is shown in
Algorithm 7.8, where

λ7 = x2 − 2x+ 1, λ6 = xλ7, λ5 = xλ6,

λ4 = xλ5, λ3 = xλ4− λ7, λ2 = xλ3,

λ1 = xλ2, λ0 = xλ1 + 3.

␣

7.5 Comparison and Conclusions

Table 7.3 summarizes the computational cost of the hard part of the final exponentiation, as
they were reported in [21, 3, 9, 1, 12]. Note that the operation counts are given for only the
hard part of the exponentiation, and considering field multiplication and squaring operations
only, since the number of exponentiations by x is fixed for each curve and computing p-powers
maps is considered negligible.

For a concrete example, let us consider the case of KSS-18 curves, with embedding degree
k = 18, parametrized with the integer

x = −0x1500000150000B7CE,

which yields a 192-bit security level as reported in [7]. Using standard towering field techniques
as reported in [6], the cost of one multiplication and one cyclotomic squaring (using Karabina’s
technique as presented in [14]), over the extension field Fp18 , is approximately equivalent to about
108 and 36 field multiplications in the base field Fp. This implies a ratio of M ≈ 3S. Then,
the total cost to perform the exponentiations fxi for i = 1, . . . , 7 is around 7 · blog2 xc = 448
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ALGORITHM 7.8 Final exponentiation for BLS curves with k = 24 [1].
Input : f ∈ GΦ24(p), x ∈ Z
Output: f

φk(p)
r ∈ Fpk

1 a = fx; { fx}
2 b = ā2; { f−2x}
3 b = b · f ; { f−2x+1}
4 a = ax; { fx2}
5 c = a · b; { fλ7 = fx

2−2x+1}
6 b = cx; { fλ6 = fxλ7}
7 a = cp

7 · bp6 ; { fλp
7

7 · fλp
6

6 }
8 b = bx; { fλ5 = fxλ6}
9 a = a · bp5 ; { fλp

7
7 · fλp

6
6 · fλp

5
5 }

10 b = bx; { fλ4 = fxλ5}
11 a = a · bp4 ; { fλp

7
7 · fλp

6
6 · fλp

5
5 · fλp

4
4 }

12 b = bx; { fxλ4}
13 b = b · c̄; { fλ3 = fxλ4−λ7}
14 a = a · bp3 ; { fλp

7
7 · fλp

6
6 · fλp

5
5 · fλp

4
4 · fλp

3
3 }

15 b = bx; { fλ2 = fxλ3}
16 a = a · bp2 ; { fλp

7
7 · fλp

6
6 · fλp

5
5 · fλp

4
4 · fλp

3
3 · fλp

2
2 }

17 b = bx; { fλ1 = fxλ2}
18 a = a · bp; { fλp

7
7 · fλp

6
6 · fλp

5
5 · fλp

4
4 · fλp

3
3 · fλp

2
2 · fλp1}

19 b = bx; { fxλ1}
20 b = b · f3; { fλ0 = fxλ1+3}
21 f = a · b; { fλp

7
7 · fλp

6
6 · fλp

5
5 · fλp

4
4 · fλp

3
3 · fλp

2
2 · fλp1 · fλ0}

22 return f ;

TABLE 7.3 A comparison of the final exponentiation method cost for several KSS curves.

Curve Scott et al. Benger Fuentes-Castañeda Guzmán-Trampe Aranha et al.
[21] [3] et al.[9] et al.[12] [1]

BN 13M 4S 13M 4S 10M 3S — –
BW-12 — — 10M 3S — 10M 2S
BLS-24 — — 10M 3S — 12M 2S
KSS-8 31M 6S 27M 6S 26M 7S — —
KSS-16 — 83M 20S — 69M 15S —
KSS-18 62M 14S 62M 14S 52M 8S 53M 6S —
KSS-36 — — — 177M 69S —

Note: ‘M’ denotes a multiplication, and ‘S’ denotes a squaring in the extension field Fpk . All
methods require the same number of exponentiations by x, determined by the curve.
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cyclotomic squarings plus 7 · (H(x) − 1) = 112 multiplications. Using the results reported
in Table 7.3, this gives an approximate cost for the hard part of the final exponentiation of
462S + 174M ≈ 984S for the Scott et al. method, 456S + 164M ≈ 948S for the Fuentes-
Castaneda et al. method, and 454S + 164M ≈ 949S for the cost presented in Guzmán-Trampe
et al. [12].

7.6 SAGE Appendix

7.6.1 BN Curves

This section presents the implementation in SAGE of the final exponentiation, in the family of
BN curves to the GT group used in the calculation of the Tate family of bilinear pairing functions.
The family of BN curves is parametrized in Listing 28, together with the basic functions. Listing
29 shows the Devegili et al. implementation, Listing 30 shows the Scott et al. method, whereas
Listing 31 shows the Fuentes-Castañeda et al. method.

7.6.2 BW Curves

This section presents the implementation in SAGE of the final exponentiation in the BW family
of curves. The parameters are shown in Listing 32, and the code for the exponentiation is shown
in Listing 33.
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Listing 28 File parametersbn.sage. Definition of parameters and computation of derived
parameters for the optimal ate pairing using the Barreto-Naehrig curve E : Y 2 = X3 + B over
Fp, where p = 36x4 + 36x3 + 24x2 + 6x+ 1, and r = 36x4 + 36x3 + 18x2 + 6x+ 1.

1 z = -(2^62+2^55+1) # requires beta = -1. chi = [1, 1]
2
3 print (z)
4 print (ceil(log(abs (6*z + 2) ,2)))
5 print (ceil(log(abs(z) ,2)))
6
7 # Parameters of the curve
8 Zx.<x> = PolynomialRing (QQ)
9 k = 12
10
11 px = 36*x^4 + 36*x^3 + 24*x^2 + 6*x + 1
12 rx = 36*x^4 + 36*x^3 + 18*x^2 + 6*x + 1
13 tx = 6*x^2 + 1
14 p = Integer (px(z))
15 r = Integer (rx(z))
16 t = Integer (tx(z))
17
18 beta = -1
19 chi = [1, 1]
20 #gamma = 1
21
22 Fp = GF(p)
23 K2.<U> = Fp[]
24 Fp2.<u> = Fp. extension (U^2 - (beta ))
25 K6.<V> = Fp2 []
26 Fp6.<v> = Fp2. extension (V^3 -(chi [1]*u+chi [0]*1))
27 K12.<W> = Fp6 []
28 Fp12.<w> = Fp6. extension (W^2 - (v))
29 Fp12. is_field = lambda :True
30
31 e = Fp12. random_element ()
32
33 Debug = True
34
35
36
37 # ##########################################
38 # Final exponentations
39 # ##########################################
40
41 def conj(f):
42 (a0 ,a1) = vector (f)
43 return a0 -w*a1
44
45
46
47 # Map -to - Cyclotomic
48 def EasyExpo (f):
49 f = conj(f) * f^( -1)
50 f = f^(p^2)*f
51 return f
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Listing 29 File devegilietal.sage. Final exponentiation for BN curves using Devegili et al.
method.

1 def FExp_Devegilietal (f):
2 f = EasyExpo (f)
3
4 a = f^abs(z)
5 if z < 0:
6 a = conj(a)
7 b = a^2
8 a = b * f^2
9 a = a^2
10 a = a * b
11 a = a * f
12 a = conj(a)
13
14 b = a^p
15 b = a * b
16 a = a * b
17 t0 = f^p
18 t1 = t0 * f
19 t1 = t1^9
20 a = t1 * a
21 t1 = f^4
22 a = a * t1
23 t0 = t0^2
24 b = b * t0
25 t0 = (f^(p))^p
26 b = b * t0
27 t0 = b^abs(z)
28 if z < 0:
29 t0 = conj(t0)
30 t1 = t0^2
31 t0 = t1^2
32 t0 = t0 * t1
33 t0 = t0^abs(z)
34 if z < 0:
35 t0 = conj(t0)
36 t0 = t0 * b
37 a = t0 * a
38 t0 = ((f^p)^p)^p
39 f = t0 * a
40
41 return f
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Listing 30 File scottetal.sage. Final exponentiation for BN curves using Scott et al. method.
1 def FExp_Scottetal (f):
2 f = EasyExpo (f)
3
4 fx1 = f^abs(z)
5 if z < 0:
6 fx1 = conj(fx1)
7 fx2 = fx1^abs(z)
8 if z < 0:
9 fx2 = conj(fx2)
10 fx3 = fx2^abs(z)
11 if z < 0:
12 fx3 = conj(fx3)
13
14 A = conj(fx3) * (conj(fx3 ))^p
15 t0 = A^2
16 B = conj(fx1) * (conj(fx2 ))^p
17 t0 = t0 * B
18 B = conj(fx2)
19 t1 = t0 * B
20 A = conj(fx1 )^p
21 #B = conj(fx2)
22 t0 = A * B
23 t0 = t0 * t1
24 B = (fx2^p)^p
25 t1 = t1 * B
26 t0 = t0^2
27 t0 = t0 * t1
28 t1 = t0^2
29 B = conj(f)
30 t0 = t1 * B
31 B = f^p * (f^p)^p * ((f^p)^p)^p
32 t1 = t1 * B
33 t0 = t0^2
34 t0 = t0 * t1
35
36
37 return t0
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Listing 31 File fuentescastanedaetal.sage. Final exponentiation for BN curves using
Fuentes-Castañeda et al. method.

1 def FExp_FuentesCastanedaetal (f):
2 f = EasyExpo (f)
3
4 a = f^abs(z)
5 if z < 0:
6 a = conj(a)
7 a = a^2
8 b = a^2
9 b = a * b
10 t = b^abs(z)
11 if z < 0:
12 t = conj(t)
13
14 f = f * (( conj(f)^p)^p)^p
15 f = f * t
16
17 b = b * t
18 t = t^2
19 t = t^abs(z)
20 if z < 0:
21 t = conj(t)
22 b = b * t
23 t = b * conj(a)
24 f = f * ((t^p)^p)^p
25 f = f * t^p
26 f = f * b
27 f = f * (b^p)^p
28
29
30 return f
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Listing 32 File parametersbw12.sage. Definition of parameters and computation of derived
parameters for the optimal ate pairing using the Brezing-Weng curve with k = 12 E : Y 2 =
X3 +B over Fp, where p = 1

3 (x+ 1)(x k3 − x k6 + 1) + x, and r = Φk(x).

1 z = int("0 x10008010000804000 " ,16)
2 print (z)
3
4 # Parameters of the curve
5 Zx.<x> = PolynomialRing (QQ)
6 k = 12
7
8 px = (x^6 - 2*x^5 + 2*x^3 -2*x +1)//3 + x
9 rx = x^4 - x^2 + 1
10 tx = x + 1
11 p = Integer (px(z))
12 r = Integer (rx(z))
13 t = Integer (tx(z))
14
15 beta = 2
16 chi = [4, 1]
17 gamma = 5
18
19 Fp = GF(p)
20 K2.<U> = Fp[]
21 Fp2.<u> = Fp. extension (U^2 - (beta ))
22 K6.<V> = Fp2 []
23 Fp6.<v> = Fp2. extension (V^3 -(chi [1]*u+chi [0]*1))
24 K12.<W> = Fp6 []
25 Fp12.<w> = Fp6. extension (W^2 - (gamma*v))
26 Fp12. is_field = lambda :True
27
28 e = Fp12. random_element ()
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Listing 33 File finalexpobw12.sage. Final exponentiation for BW:k = 12 curves using
Fuentes-Castaneda et al. method.

1 # Fuentes - Castaneda et al. BW:K=12
2 def FExp_BW12 (f):
3 f = EasyExpo (f)
4
5 a = conj(f^2)
6 b = f^abs(z)
7 if z < 0:
8 b = conj(b)
9 c = b^2
10 a = b * a
11 d = a^abs(z)
12 if z < 0:
13 d = conj(d)
14 e = d^abs(z)
15 if z < 0:
16 e = conj(e)
17 g = e^abs(z)
18 if z < 0:
19 g = conj(g)
20 g = g * c
21 c = g^abs(z)
22 if z < 0:
23 c = conj(c)
24
25 c = c * conj(a)
26 c = c * f
27 g = g * conj(f)
28 e = e * b
29 d = d * f
30 f = c * g^p
31 f = f * (e^p)^p
32 f = f * ((d^p)^p)^p
33
34 return f
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This chapter discusses the general problem of hashing into elliptic curves, particularly in the
context of pairing-based cryptography. Our goal is to obtain practical, efficient, and secure
algorithms for hashing values to elliptic curve subgroups G1 and G2.

Indeed, numerous pairing-based protocols involve hashing to either of these groups. For ex-
ample, in the Boneh–Franklin identity-based encryption scheme [10] already discussed in Chap-
ter 1, the public key for identity ID ∈ {0, 1}∗ is an element PID in the group G1 (effectively
an elliptic curve point) obtained as the image of ID under a hash function H : {0, 1}∗ → G1.
A G1- or G2-valued hash function is also needed in many other pairing-based cryptosystems
including IBE and HIBE schemes [4, 29, 32], signature and identity-based signature schemes
[9, 11, 12, 17, 53], and identity-based signcryption schemes [14, 39].

In all of those cases, the hash functions are modeled as random oracles [8] in security proofs.
However, it is not immediately clear how such a hash function can be instantiated in practice.
Indeed, random oracles to groups like (Z/pZ)∗ can be easily constructed from random oracles
to fixed-length bit strings, for which conventional cryptographic hash functions usually provide
acceptable substitutes. On the other hand, constructing random oracles to a elliptic curves,
even from random oracles to bit strings, appears difficult in general, and some of the more

8-1
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h
(m

)

Strings m ∈ {0, 1}∗ E(Fq)

Q̃ = H(m) = f(h(m)) Q′ = c · Q̃

S = Fq

E(Fq)[r]

FIGURE 8.1 Hashing into pairing-friendly elliptic curve subgroups.

obvious instantiations actually break security completely. We therefore discuss how it can be
done correctly, both from a theoretical and a very concrete standpoint.

The general approach taken in this chapter to construct secure hash functions to the sub-
groups G1 and G2 of a pairing-friendly elliptic curve E is illustrated in Figure 8.1, and consists of
three main steps. The first step takes an arbitry message m to some element h(m) of a set S that
is “easy to hash to”, in the sense that the function h : {0, 1}∗ → S can be easily obtained from a
traditional cryptographic hash function like SHA-2 or SHA-3. In the main case of interest, the
set S is the base field Fq, although we may have S = Fq ×Fq, S = Fq ×Z/rZ and so on in some
other settings. The second step maps the resulting value h(m) to a point Q̃ = H(m) = f

(
h(m)

)
in the elliptic curve group E(Fq) using a map f : S → E(Fq) called an encoding function. For
the overall construction to be secure, the map f should satisfy a number of statistical properties
related to the so-called indifferentiability of the hash function H from a random oracle, and we
will also see that it should preferably be implemented in constant time. Finally, the last step
takes the point Q̃ (which can lie anywhere on the curve) and maps it to a point Q′ in the group
G1 or G2. This is typically achieved by carrying out the scalar multiplication by the cofactor c
of the elliptic curve (which is normally relatively small for the group G1, but much larger in the
case of G2).

The chapter is organized as follows. In §8.1, we show that naive approaches for constructing
hash functions to elliptic curves can be totally insecure. In §8.2, we discuss a classical algorithm
called try-and-increment, which has good security properties from a theoretical standpoint, but
can cause difficulties in practical implementations due to timing side-channel attacks. Arguably
more robust, state-of-the-art approaches are then presented in in §8.3 and §8.4. They make
it possible to construct constant-time hash functions to pairing-friendly elliptic curves, such as
Barreto–Naehrig curves (a case which we discuss in more detail). Due to large cofactors, hashing
to G2 requires particular care to be efficiently implemented; We discuss this point in §8.5, where
we describe how the rich endomorphism structure associated to pairing-friendly elliptic curves
lets us speed up the relevant scalar multiplication. At that point, the algorithmic description of
hash functions to pairing groups will be complete, and we will turn to concrete implementation
results in §8.6, on both Intel and ARM platforms. Finally, in Appendix 8.7, we include some
SAGE source code implementing the main algorithms presented in this chapter, which can be
downloaded from http://sandia.cs.cinvestav.mx/Site/GuidePBCcode.
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8.1 The Trivial Encoding: Totally Insecure

To gain a sense of why the construction of hash functions to elliptic curves requires some care,
we first show how a naive construction can completely break the security of a protocol that uses
it.

A naive construction

We would like to construct a hash function H : {0, 1}∗ → G to an elliptic curve group G, which
we can assume is cyclic of order r and generated by a given point G. The simplest, most naive
way to do so is probably to start from an integer-valued hash function h : {0, 1}∗ → Z/rZ (for
which reasonable instantiations are easy to come by) and to define H as:

H(m) = [h(m)]G. (8.1)

This is, however, a bad idea on multiple levels.
On the one hand, it is easy to see why this will typically break security proofs in the random

oracle model. Indeed, at some point in a random oracle model security reduction, the simulator
will typically want to “program” the random oracle by setting some of its outputs to specific
values. In this case, it will want to set the value H(m) for some input m to a certain elliptic
curve point P . However, if H is defined as in (8.1), the simulator should actually program the
integer-valued random oracle h to satisfy [h(m)]G = P . In other words, it should set h(m) to
the discrete logarithm of P with respect to G. But this discrete logarithm isn’t usually known
to the simulator, and it cannot be computed efficiently, therefore, the security reduction breaks
down.

On the other hand, it is often not clear how this problem translates into an actual security
weakness for a protocol using the hash function H: one could think that it is mostly an artifact
of the security proof. Nevertheless, a construction like (8.1) leaks the discrete logarithm of
H(m) whenever m is known, which certainly feels uncomfortable from a security standpoint. We
demonstrate below that this discomfort is entirely warranted, by showing that the Boneh–Lynn–
Shacham signature scheme [12], already presented in Chapter 1, becomes completely insecure if
the hash function involved is instantiated as in (8.1).

BLS signatures

Proposed by Boneh, Lynn, and Shacham in 2001 [12], the BLS signature scheme remains the
efficient scheme that achieves the shortest signature length to this day: about 160 bits at the 80-
bit security level. Recall from Chapter 1 that public parameters are a bilinear pairing e : G1 ×
G2 → GT between groups of order r, generators G1, G2 of G1 and G2, and a hash function
H : {0, 1}∗ modeled as a random oracle. The secret key is a random element x ∈ Z/rZ, the
public key is P = [x]G2, and a signature on a message m ∈ {0, 1}∗ is obtained as S = [x]H(m).
To check that S is correct, a verifier then simply tests whether e(H(m), P ) = e(S,G2).

Boneh, Lynn, and Shacham proved that this scheme is secure (in the usual sense of exis-
tential unforgeability under chosen message attacks) under the Computational Diffie–Hellman
assumption when H is modeled as a random oracle.

Now consider the case when H is instantiated as in (8.1). Then, the signature on a message
m can be written as:

S = [x]H(m) =
[
xh(m)

]
G2 = [h(m)]P

and hence, one can forge a signature on any message using only publicly available data! There
is no security left at all when using the trivial hash function construction.

A slightly less naive variant of the trivial construction consists in defining H as:

H(m) = [h(m)]Q (8.2)



8-4 Guide to Pairing-Based Cryptography

where Q ∈ G2 is an auxiliary public point distinct from the generator G2 and whose discrete
logarithm α with respect to G2 is not published. Using this alternate construction for H thwarts
the key-only attack described above against BLS signatures. However, the scheme remains far
from secure. Indeed, the signature on a message m can be written as:

S =
[
xh(m)

]
Q =

[
αxh(m)

]
G = [h(m)]αP.

Now suppose an attacker knows a valid signature S0 on some message m0. Then the signature
S on an arbitrary m is simply:

S =
[
h(m)
h(m0)

]
[h(m0)][α]P =

[
h(m)
h(m0)

]
S0,

where the division is computed in Z/rZ. Thus, even with this slightly less naive construction,
knowing a single valid signature is enough to produce forgeries on arbitrary messages: again, a
complete security breakdown.

8.2 Hashing by Random Trial

A classical construction of a hash function to elliptic curves that does work (and one variant of
which is suggested by Boneh, Lynn, and Shacham in the original short signatures paper [12]) is
the so-called “try-and-increment” algorithm. We present this algorithm here, as well as some of
the limitations that explain why different constructions may be preferable.

8.2.1 The Try-and-Increment Algorithm

Consider an elliptic curve E over a finite field Fq of odd characteristic, defined by the Weierstrass
equation:

E : y2 = x3 + ax2 + bx+ c (8.3)

for some a, b, c ∈ Fq. A probabilistic way to find a point on E(Fq) is to pick a random x ∈ Fq,
check whether t = x3 + ax2 + bx+ c is a square in Fq, and if so, set y = ±

√
t and return (x, y).

If t is not a square, then x is not the abscissa of a point on the curve: then one can pick another
x and try again.

It is an easy consequence of the Hasse bound [30] on the number of points on E(Fq) (namely,
|#E(Fq)−q−1| ≤ 2√q) that the success probability of a single trial is very close to 1/2. Indeed,
if we denote by χq the non-trivial quadratic character of F∗q (see Remark 2.14), extended by 0
to Fq, we have:

#E(Fq) = 1 +
∑
x∈Fq

(
1 + χq(x3 + ax2 + bx+ c)

)
= q + 1 +

∑
x∈Fq

χq(x3 + ax2 + bx+ c).

On the other hand, the success probability $ of a single iteration of this point construction
algorithm is the proportion of x ∈ Fq such that χq(x3 + ax2 + bx+ c) = 1 or 0, namely:

$ = α

2q + 1
q

∑
x∈Fq

1 + χq(x3 + ax2 + bx+ c)
2

where α ∈ {0, 1, 2, 3} is the number of roots of the polynomial x3 + ax2 + bx + c in Fq. This
gives:

$ = 1
2 + #E(Fq)− q − 1 + α

2q = 1
2 +O

(
1√
q

)
.
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Now this point construction algorithm can be turned into a hash function based on an Fq-
valued random oracle h : {0, 1}∗ → Fq. To hash a message m, the idea is to pick the x-coordinate
as, essentially, h(m) (which amounts to picking it at random once) and carry out the point
construction above. However, since one should also be able to retry in case the first x-coordinate
that is tried out is not the abscissa of an actual curve point, we rather let x← h(c‖m), where c
is a fixed-length counter initially set to 0 and incremented in case of a failure. Since there is a
choice of sign to make when taking the square root of t = x3 + ax2 + bx + c, we also modify h

to output an extra bit for that purpose: h : {0, 1}∗ → Fq ×{0, 1}. This is the try-and-increment
algorithm, described more precisely in Algorithm 8.1 (and called MapToGroup in [12]?). The
failure probability after up to ` iterations is about 2−` by the previous computations, so choosing
the length of the counter c to be large enough for up to ` ≈ 128 iterations, say, is enough to
ensure that the algorithm succeeds except with negligible probability.

Boneh, Lynn, and Shacham proved that this construction can replace the random oracle
H : {0, 1}∗ → E(Fq) in BLS signatures without compromising security. In fact, it is not hard
to see that it is indifferentiable from such a random oracle, in the sense of Maurer, Renner,
and Holenstein [40]: This ensures that this construction can be plugged into almost all protocols
(with some caveats [45]) requiring a random oracle H : {0, 1}∗ → E(Fq) while preserving random
oracle security proofs.

Nevertheless, there are various reasons why Algorithm 8.1 is not a completely satisfactory
construction for hash functions to elliptic curves. There is arguably a certain lack of mathe-
matical elegance in the underlying idea of picking x-coordinates at random until a correct one
is found, especially as the length of the counter, and hence the maximum number of trials, has
to be fixed (to prevent collisions). More importantly, this may have adverse consequences for
the security of physical devices implementing a protocol using this construction: for example,
since the number of iterations in the algorithm depends on the input m, an adversary can ob-
tain information on m by measuring the running time or the power consumption of a physical
implementation.

ALGORITHM 8.1 The try-and-increment algorithm.
Input : the message m ∈ {0, 1}∗ to be hashed
Output: the resulting point (x, y) on the curve E : y2 = x3 + ax2 + bx+ c

1 c← 0 // c is represented as a dlog2 `e-bit bit string
2 (x, b)← h(c‖m) // h is a random oracle to Fq × {0, 1}
3 t← x3 + ax2 + bx+ c

4 if t is a square in Fq then
5 y ← (−1)b ·

√
t // define

√· as the smaller square root wrt some ordering
6 return (x, y)
7 else
8 c← c+ 1
9 if c < ` then goto step 2

10 end
11 return ⊥

?Boneh et al. were in fact concerned with hashing to a supersingular curve of characteristic 3 of the form
y2 = x3 +2x±1. In this case, it was later observed by Barreto and Kim [5] that picking y at random and
solving the resulting Artin–Schreier equation for x was actually much more efficient, as that equation
can be seen as a linear system over F3. But the basic principle of trying a value and incrementing a
counter in case of failure remains the same. Moreover, pairing-friendly curves of small characteristic
should not be used anymore: see the discussion in Chapter 9!
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Alice (Passport) Bob (Reader)

s←−−−−−−− s
$← {0, 1}k

G← H(s‖π) G← H(s‖π)
rA

$← Zp rB
$← Zp

A← [rA]G A−−−−−−−→
B←−−−−−−− B ← [rB ]G

K ← [rA]B K ← [rB ]A

FIGURE 8.2 A randomized variant of the SPEKE protocol.

8.2.2 The Issue of Timing Attacks

A concrete situation in which this varying running time can be a serious issue is the case
of embedded devices (especially e-passports) implementing an elliptic curve-based Password-
Authenticated Key Exchange (PAKE) protocol.

PAKE is a method for two parties sharing a common low-entropy secret (such as a four-
digit PIN, or a self-picked alphabetic password) to derive a high-entropy session key for secure
communication in an authenticated way. One of the main security requirements is, informally,
that an attacker should not be able to gain any information about the password, except through
a brute force online dictionary attack (i.e., impersonating one of the parties in the protocol and
attempting to authenticate with each password, one password at a time), which can be prevented
in practice by latency, smart card blocking, and other operational measures. In particular, a
PAKE protocol should be considered broken if a passive adversary can learn any information
about the password.

Now consider the PAKE protocol described in Figure 8.2, which is essentially Jablon’s Simple
Password-base Exponential Key Exchange (SPEKE) [34] implemented over an elliptic curve,
except with a random salt as suggested in [35]. The public parameters are an elliptic curve
group G of prime order p and a hash function H : {0, 1}∗ → G. The two parties share a common
password π, and derive a high-entropy K ∈ G using Diffie–Hellman key agreement in G but with
a variable generator G ∈ G computed by hashing the password.

But if the hash function H is instantiated by the try-and-increment construction and an
eavesdropper is able to measure the running time of one of the parties, he will find different
running times or different power traces depending on how many trials it takes to find a suitable
x-coordinate in the computation of H(s‖π). Since it takes a single iteration with probability
close to 1/2, an execution of the protocol provides at least one bit of information about π to the
adversary (and about −

∑
k≥1 2−k log2(2−k) = 2 bits on average).

This leads to a so-called “partition attack”, conceptually similar to those described by Boyd et
al. in [13]: The adversary can count the number of iterations needed to compute H(s‖π0) for
each password π0 in the password dictionary, keeping only the π0’s for which this number of
iterations matches the side-channel measurement. This reduces the search space by a factor of
at least 2 (and more typically 4) for each execution of the protocol, as the running times for
different values of s are independent. As a result, the eavesdropper can typically reduce his
search space to a single password after at most a few dozen executions of the protocol!

A rather inefficient countermeasure that can be considered is to run all ` iterations of the
try-and-increment algorithm every time. However, even that is probably insufficient to thwart
the attack: indeed, the usual algorithm (using quadratic reciprocity) for testing whether an
element of Fq is a square, as is done in Step 4 of Algorithm 8.1, also has different running times
depending on its input. This can provide information to the adversary as well, unless this part
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is somehow tweaked to run in constant time,? which seems difficult to do short of computing the
quadratic character with an exponentiation and making the algorithm prohibitively slow with `
exponentiations every time. In principle, padding the quadratic reciprocity-based algorithm with
dummy operations might provide a less computationally expensive solution, but implementing
such a countermeasure securely seems quite daunting. A construction that naturally runs in
constant time would certainly be preferable.

8.3 Encoding Functions to Elliptic Curves

8.3.1 Main Idea

A natural way to construct a constant-time hash function to an elliptic curve E would be to
use, as a building block, a suitable function f : Fq → E(Fq) that can be efficiently computed in
constant time. Then, combining f with a hash function h : {0, 1}∗ → Fq, we can hope to obtain
a well-behaved hash function to E(Fq).

Of course, not all such functions f are appropriate: for example, when q = p is prime, the
trivial encoding described in §8.1 is essentially of that form, with f : u 7→ [û]G (and u 7→ û any
lifting of Fp to Z).

On the other hand, if f is a bijection between Fq and E(Fq) whose inverse is also efficiently
computable, then the following construction:

H(m) = f
(
h(m)

)
(8.4)

is well-behaved, in the sense that if h is modeled as a random oracle to Fq, then H can replace a
random oracle to E(Fq) in any protocol while preserving proofs of security in the random oracle
model. Indeed, contrary to what happens in the case of the trivial encoding (where programming
the random oracle would require computing discrete logarithm), a simulator can easily choose
a value H(m0) = P0 by setting h(m0) = f−1(P0). More generally, such a construction is, again,
indifferentiable from a random oracle to E(Fq) (and even reset indifferentiable in the sense of
Ristenpart et al. [45]).

The same holds if f induces a bijection from Fq \T to E(Fq)\W for some finite or negligibly
small sets of points T , W .

More generally, we will be considering cases where f is not necessarily an efficiently invertible
bijection but only a so-called samplable mapping, in the sense that for each P ∈ E(Fq), one can
compute a random element of f−1(P ) in probabilistic polynomial time.

8.3.2 The Boneh–Franklin Encoding

It was actually one of the first papers requiring hashing to elliptic curves, namely Boneh and
Franklin’s construction [10] of identity-based encryption from the Weil pairing, that introduced
the first practical example of a hash function of the form (8.4). Boneh and Franklin used elliptic
curves of a very special form:

E : y2 = x3 + b (8.5)

over a field Fq such that q ≡ 2 (mod 3). In Fq, u 7→ u3 is clearly a bijection, and thus each
element has a unique cube root. This makes it possible, following Boneh and Franklin, to define

?By constant time, we mean “whose running time does not depend on the input” (once the choice of
parameters like E and Fq is fixed), and not O(1) time in the sense of complexity theory.
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a function f as:

f : Fq → E(Fq) (8.6)

u 7→
((
u2 − b

)1/3
, u
)
. (8.7)

In other words, instead of picking the x-coordinate and trying to deduce the y-coordinate by
taking a square root (which may not exist) as before, we first choose the y-coordinate and deduce
the x-coordinate by taking a cube root (which always exists).

Obviously, the function f is a bijection from Fq to all the finite points of E(Fq). In particular,
this implies that #E(Fq) = 1 + #Fq = q + 1; thus, E is supersingular (and hence comes with
an efficient symmetric pairing). This also means that f satisfies the conditions mentioned in the
previous section; therefore, construction (8.4) can replace the random oracle H required by the
Boneh–Franklin IBE scheme, or any other protocol proved secure in the random oracle model.
And it can also easily be computed in constant time: It suffices to compute the cube root as an
exponentiation to a fixed power α such that 3α ≡ 1 (mod q − 1).

Note that in fact, the group G considered by Boneh and Franklin isn’t E(Fq) itself, but a
subgroup G ⊂ E(Fq) of prime order. More precisely, the cardinality q of the base field is chosen
of the form 6r− 1 for some prime r 6= 2, 3. Then E(Fq) has a unique subgroup G of order r (the
curve has cofactor 6), which is the group actually used in the scheme. Hashing to G rather than
E(Fq) is then easy:

H(m) = f ′
(
h(m)

)
where f ′(u) = [6]f(u). (8.8)

The encoding f ′ defined in that way isn’t injective but it is samplable: indeed, to compute a
random preimage of some point P ∈ G, we can simply compute the six points Qi such that
[6]Qi = P , and return f−1(Qi) for a random index i. Using that observation, Boneh and
Franklin prove that construction (8.8) can replace the random oracle to G in their IBE scheme.
More generally, it is easy to see that it is indifferentiable from a random oracle in the sense of
Maurer et al. [40].

8.3.3 Beyond Supersingular Curves

The previous example suggests that a sensible first step towards constructing well-behaved
constant-time hash functions to elliptic curves is to first obtain mappings f : Fq → E(Fq) that
are computable in deterministic polynomial time and samplable, and admit constant-time imple-
mentations. We will refer to such mappings as encoding functions or simply encodings. Note that
despite what the name might suggest, there is no assumption of injectivity for those mappings.

It turns out that constructing encodings to elliptic curves beyond special cases such as
Eq. (8.6) is far from an easy task. In fact, Schoof mentioned the presumably easier problem
of constructing a single non-identity point on a general elliptic curve over a finite field as open in
his 1985 paper on point counting [46], and little progress was made on this problem before the
2000s. Nevertheless, we now know how to construct encodings to essentially all elliptic curves
thanks to the work of numerous researchers.

We now present the two most important constructions, due to Shallue and van de Woestijne
on the one hand, and Icart on the other.

8.3.4 The Shallue–van de Woestijne Approach

In a paper presented at ANTS in 2006, Shallue and van de Woestijne [50] proposed a general
construction of an encoding function that applies to all elliptic curves over finite fields of odd
characterstic.
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Consider the general Weierstrass equation for an elliptic curve in odd characteristic (possibly
including 3):

E : y2 = x3 + ax2 + bx+ c.

Let further g(x) = x3 + ax2 + bx+ c ∈ Fq[x]. It is possible to construct an encoding function to
E(Fq) from a rational curve on the three-dimensional variety:

V : y2 = g(x1)g(x2)g(x3)

(which, geometrically, is the quotient of E ×E ×E by (Z/2Z)2, where each non-trivial element
acts by [−1] on two components and by the identity on the third one). Indeed, if φ : A1 → V ,
t 7→

(
x1(t), x2(t), x3(t), y(t)

)
is such a rational curve (i.e., a rational map of the affine line A1,

parametrized by t, to the variety V ), then for any u ∈ Fq that is not a pole of φ, at least
one of g

(
xi(u)

)
for i = 1, 2, 3 is a quadratic residue (because the product of three quadratic

nonresidues is not a square, and hence cannot be equal to y(u)2). This yields a well-defined
point

(
xj(u),

√
g
(
xj(u)

))
∈ E(Fq) where j is the first index such that g

(
xj(u)

)
is a square, and

thus we obtain the required encoding function.
Then, Shallue and van de Woestijne show how to construct such a rational curve φ (and in

fact a large number of them). They first obtain an explicit rational map ψ : S → V , where S is
the surface of equation:

S : y2 ·
(
u2 + uv + v2 + a(u+ v) + b

)
= −g(u),

which can also be written, by completing the square with respect to v, as:[
y(v + 1

2u+ 1
2a)
]2 +

[3
4u

2 + 1
2au+ b− 1

4a
2]y2 = −g(u).

Now observe that for any fixed u ∈ Fq, the previous equation defines a curve of genus 0 in the
(v, y)-plane. More precisely, it can be written as:

z2 + αy2 = −g(u) (8.9)

with z = y(v+ 1
2u+ 1

2a) and α = 3
4u

2 + 1
2au+ b− 1

4a
2. This is a non-degenerate conic as soon as

α and g(u) are both non-zero (which happens for all u ∈ Fq except at most 5), and then admits
a rational parametrization, yielding a rational curve A1 → S. Composing with ψ, we get the
required rational curve on V , and hence an encoding, provided that q > 5.

8.3.5 Icart’s Approach

In [33], Icart introduced an encoding function based on a very different idea, namely, trying to
adapt the Boneh–Franklin encoding discussed in §8.3.2 to the case of an ordinary elliptic curve.
More precisely, consider again an elliptic curve E given by a short Weierstrass equation:

E : y2 = x3 + ax+ b

over a field Fq of odd characteristic with q ≡ 2 (mod 3). The idea is again to reduce the equation
to a binomial cubic, which can be solved directly in Fq (where u 7→ u3 is a bijection).

Unlike the simple case considered by Boneh and Franklin, this cannot be done by picking y
as a constant: doing so results in a trinomial cubic which does not always have a root in Fq.
Icart’s idea is to set y = ux+ v for two parameters u, v to be chosen later. This gives:

x3 − u2x2 + (a− 2uv)x+ b− v2 = 0
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f : Fq −→ E(Fq)

u 7−→
((

v2 − b− u6

27

)1/3

+ u2

3 ; ux+ v

)

where v = (a− 3u4)/(6u). By convention, f(0) = O, the identity element.

FIGURE 8.3 Icart’s encoding to E : y2 = x3 + ax+ b over Fq with q ≡ 2 (mod 3).

and after completing the cube:(
x− u2

3

)3

+
(
a− 2uv − u4

3

)
x = v2 − b− u6

27 ,

Thus, by setting v = (a − 3u4)/(6u), it is possible to cancel the term of degree 1 and obtain a
binomial cubic equation: (

x− u2

3

)3

= v2 − b− u6

27
which is easy to solve for x in Fq. This gives Icart’s encoding, described in Figure 8.3.

This encoding applies to a more restricted setting than the Shallue–van de Woestijne encod-
ings, due to the requirement that q ≡ 2 (mod 3), but it has the advantage of being very easy to
describe and implement in constant time.

8.4 Constant-Time Hashing to Pairing-Friendly Curves

8.4.1 From Encodings to Hash Functions

In the previous section, we have described several constructions of encoding functions to elliptic
curves. It is not clear, however, that they solve our initial problem of hashing to elliptic curve
groups. There are two issues at play: the first is the lack of indifferentiability, and the second is
the fact that we want to map to the subgroup G1 or G2 rather than the whole curve.

The issue of indifferentiability

The basic construction of a hash function H : {0, 1}∗ → E(Fq) from an Fq-valued random oracle
h : {0, 1}∗ → Fq and an encoding f : Fq → E(Fq), as suggested in §8.3, is simply:

H(m) = f
(
h(m)

)
. (8.10)

However, unlike what happens for the Boneh–Franklin encoding, the resulting hash function H
does not necessarily have strong security properties.

Consider the case when f is Icart’s encoding, for example (most other encodings are similar).
One can then prove some limited security properties on H, such as that H is one-way if h is [33,
Lemma 5]. However, unlike the Boneh–Franklin encoding, f is not a surjective or “almost”
surjective function to the target group E(Fq). Indeed, in his original paper [33], Icart could only
show that the image f(Fq) satisfies #f(Fq) & (1/4) · #E(Fq), and conjectured that, in fact,
#f(Fq) ≈ (5/8) · #E(Fq) (a conjecture which was later proved in [23, 24]). As a result, the
hash function H constructed from f using formula (8.10) is easily distinguished from a random
oracle!
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To see this, note that since f is an algebraic function, we can efficiently compute f−1(P )
for any P ∈ E(Fq) by solving a polynomial equation over Fq. In particular, it is possible
to decide efficiently whether P is in the image of f or not. Therefore, we can construct a
distinguisher D between H0 = H and a random oracle H1 to E(Fq) as follows. D is given as
input P = Hb(m) ∈ E(Fq) for some message m and a random bit b ∈ {0, 1}. It answers with a
guess of the bit b, as b = 0 if P is in f(Fq) and b = 1 otherwise. Then D has a constant positive
advantage. Indeed, it answers correctly with probability 1 if P /∈ f(Fq), and with probability
1/2 otherwise, hence it has a non-negligible advantage in the distinguishing game. Thus, clearly,
construction (8.10) does not behave like a random oracle when f is Icart’s encoding (or most
other encodings), and cannot replace a random oracle in a generic way.

In many protocols requiring a hash function to an elliptic curve group, this is actually not
much of a problem, and an encoding with an image size that is a constant fraction of #E(Fq)
is often good enough. The reason is that, in a random oracle proof of security, the simulator
programs the random oracle by setting the hash of some message m to a value P , but that
point P itself can usually be anything depending on some randomness. So the simulator might
typically want to set H(m) to P = [r]G for some random r, say. Now if H is defined in the
protocol using a construction like (8.10), the simulator would pick a random r and set h(m) to
one of the preimages u ∈ f−1(P ) if P ∈ f(Fq). If, however, P is not in the image of f , the
simulator would pick another random r and try again.

Nevertheless, it seems difficult to give formal sufficient conditions on a protocol for it to re-
main secure when the elliptic curve-valued random oracle is replaced by a construction like (8.10).
One can actually find protocols that are secure in the random oracle model, but in which using
that construction instead breaks security completely [16].

Therefore, it would be desirable to obtain from the encodings discussed thus far a construction
that does satisfy the indifferentiability property mentioned in §8.2, and can thus be used as a
plug-in replacement for elliptic curve-valued random oracles in a very large class of protocols.
The problem was solved by Brier et al. [16] in the case of Icart’s function, and by Farashahi et
al. [22] in general. They prove that the following construction achieves indifferentiability from
a random oracle:

H(m) = f
(
h1(m)

)
+ f
(
h2(m)

)
(8.11)

where h1 and h2 are modeled as random oracles {0, 1}∗ → Fq (and the addition is the usual
group operation in E(Fq)). As a result, to obtain an efficient indifferentiable hash function
construction, it suffices to know how to compute a function of the form (8.10) efficiently: do
it twice, add the results together, and you get indifferentiability. Therefore, and since in many
cases it is sufficient by itself, the form (8.10) is what the rest of this chapter will focus on.

Hashing to subgroups

Most of the discussion so far has focused on the problem of hashing to the whole group E(Fq)
of points on the elliptic curve E. But this is not in fact what we need for pairing-based cryptog-
raphy: The groups we would like to hash to are pairing groups G1 and G2, which are subgroups
of an elliptic curve group. Let us review how hashing to those subgroups works.

Hashing to G1

This case is simpler. Consider a pairing-friendly curve E/Fp over a prime field. The group
G1 is just the group E(Fp)[r] of r-torsion points in E(Fp), for some large prime divisor r of
#E(Fp). If we denote by c the cofactor of E, i.e., the integer such that #E(Fp) = c · r, then c
is always coprime to r, and G1 can thus be obtained as the image of the homomorphism [c] of
multiplication by c in E(Fp).

Now suppose we are given some well-behaved hash function H : {0, 1}∗ → #E(Fp). Then
we can construct a map H1 : {0, 1}∗ → G1 by defining H1(m) = [c]H(m), and it turns out
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that H1 is still a well-behaved hash function. For example, Brier et al. [16] show that if H
is indifferentiable from a random oracle, then so is H1. This results from the fact that the
muliplication-by-c homomorphism is efficiently computable, regular (all elements of G1 have the
same number of preimages, namely c), and efficiently samplable (we can sample a uniformly
distributed preimage of an element in G1 by adding to it a random element of order c in E(Fp),
which we can, for example, generate as [r]P for P , a uniformly sampled random point).

As a result, to hash to G1 efficiently, we simply need an efficient way of computing some
curve-valued hash function H, and an efficient way of evaluating the multiplication-by-c map.
The latter is typically quite cheap.

Hashing to G2

This case is more complicated in general. Indeed, generally speaking, G2 is one specific subgroup
of order r in the group E(Fpk)[r] of r-torsion points of E over the embedding field Fpk . But
since E(Fpk)[r] is isomorphic to (Z/rZ)2, there are many subgroups of order r, and one cannot
just multiply by some cofactor to map into G2. The approach used to hash to G2 will differ
according to which of the three pairing types, in the sense of Galbraith, Paterson, and Smart [28],
we are working with (we also refer Chapter 3 for a discussion of Type I, Type II, and Type III
pairings).

For Type I pairings, the distortion map provides an efficiently computable isomorphism from
G1 to G2. Therefore, we can simply hash to G1 as above and compose with the distortion map
to obtain a hash function to G2.

For Type II pairings, G2 is not the image of any efficiently computable homomorphism, and
as a result, there is in fact no way of efficiently hashing to that group. One cannot instantiate
protocols that require hashing to G2 in the Type II setting. In rare cases where one really needs
both the ability to hash to G2 and the existence of a one-way isomorphism G2 → G1, a possible
workaround is to replace G2 with the entire group E(Fpk)[r] of order r2, which we can hash to
as above using the multiplication by #E(Fpk)/r2 in E(Fpk). This is usually called the Type IV
pairing setting [20, 18]. The cofactor multiplication in that case is quite costly, so it may
be interesting to optimize it. However, it is usually possible to convert such protocols to the
significantly more efficient Type III setting [19], so we will not consider that case further in the
rest of this chapter.

For Type III pairings, as was seen in Chapter 3, G2 ⊂ E(Fpk)[r] is the eigenspace of the
Frobenius endomorphism π associated with the eigenvalue q, and the complementary subspace
of G1 (which is the eigenspace for the eigenvalue 1). As a result, G2 is the image of the efficient
endomorphism π−Id

q−1 of E(Fpk)[r]. Therefore, we can hash to G2 by cofactor multiplication to
get into E(Fpk)[r], composed with that endomorphism. In practice, however, it is much more
preferable to represent G2 as a subgroup in the degree-d twist E′ of E over a lower degree
extension Fpk/d . Doing so, G2 simply appears as the subgroup E′(Fpk/d)[r] of r-torsion points
on that curve, and hashing can be done exactly as in the case of G1. Contrary to the case of
G1, however, the cofactor in this case is usually quite large, and it is thus a major concern to
make it as fast as possible. This is one of the main issues discussed in the coming sections.

8.4.2 Case Study: The Barreto–Naehrig Elliptic Curves

In this subsection we discuss how to apply the the Shallue and van de Woestijne encoding
described in §8.3.4 along with the hashing techniques discussed in §8.4, in order to construct
points that belong to the groups of a popular instantiation of type III pairings, namely, bilinear
pairings implemented over the Barreto–Naehrig elliptic curves.

As already studied in Chapter 7, Barreto–Naehrig elliptic curves are defined by the equation
E : y2 = x3 + b, with b 6= 0. Their embedding degree is k = 12, hence, φ(k) = 4. They are
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ALGORITHM 8.2 Constant-time hash function to G1 on Barreto–Naehrig curves [25].
Input : t ∈ F∗p, parameter b ∈ Fp of E/Fp : y2 = x3 + b

Output: A point Point P = (x, y) ∈ G1

1 Precomputation:
2 sqrt3 ←

√
−3;

3 j ← (−1 + sqrt3)/2;
4 Main Computation:
5 w ← sqrt3 · t

1+b+t2 ;
6 x1 ← j − t · w;
7 x2 ← −1− x1;
8 x3 ← 1 + 1/w2;

9 α← χq(x3
1 + b); // Using Euler’s Criterion:

(
x3

1 + b
) p−1

2 .

10 β ← χq(x3
2 + b); // Using Euler’s Criterion:

(
x3

2 + b
) p−1

2 .

11 i← [(α− 1) · β mod 3] + 1;
12 return P ← (xi, χq(t) ·

√
x3
i + b); // Using Euler’s Criterion: t

p−1
2 .

parametrized by selecting an arbitrary x ∈ Z such that

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1; (8.12)
r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1;

are both prime.

Constant-time hashing to G1

In Latincrypt 2012, Fouque and Tibouchi [25] presented a specialization of the procedure pro-
posed by Shallue and van de Woestijne [50] applied to Barreto–Naehrig curves, which are defined
over the finite field Fp, with p ≡ 7 mod 12, or p ≡ 1 mod 12. The mapping covers a 9/16 fraction
of the prime group size r = #E(Fp). In a nutshell, the procedure proposed in [25] consists in
the following.

Let t be an arbitrary nonzero element in the base field F∗p such that x1, x2, x3 ∈ F∗p are
defined as

x1 = −1 +
√
−3

2 −
√
−3 · t2

1 + b+ t2
,

x2 = −1−
√
−3

2 +
√
−3 · t2

1 + b+ t2
,

x3 = 1− (1 + b+ t2)2

3t2 .

The Shallue–van de Woestijne encoding applied to the Barreto–Naehrig curves of the form
E : y2 = g(x) = x3 + b is given by the following projection:

f : F∗p → E(Fp)

t 7→
(
xi, χp(t) ·

√
g(xi)

)
,

where the index i ∈ {1, 2, 3} is the smallest integer such that g(xi) is a square in Fp and the
function χp : {−1, 0, 1}, computes the non-trivial quadratic character over the field F∗p, also
known as quadratic residuosity test (Definition 2.29). The procedure just outlined is presented
in Algorithm 8.2.
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ALGORITHM 8.3 Blind factor version of the Hash function to G1 on Barreto–Naehrig
curves [25].

Input : t ∈ F∗p, parameter b ∈ Fp of E/Fp : y2 = x3 + b

Output: A point Point P = (x, y) ∈ G1

1 Precomputation:
2 sqrt3 ←

√
−3;

3 j ← (−1 + sqrt3)/2;
4 Main Computation:
5 w ← sqrt3 · t

1+b+t2 ;
6 x1 ← j − t · w;
7 x2 ← −1− x1;
8 x3 ← 1 + 1/w2;
9 r1, r2, r3

$← F∗p;
10 α← χq(r2

1 · (x3
1 + b)); // Using Algorithm 2.3

11 β ← χq(r2
1 · (x3

2 + b)); // Using Algorithm 2.3
12 i← [(α− 1) · β mod 3] + 1;
13 return P ← (xi, χq(r2

3 · t) ·
√
x3
i + b); // Using Algorithm 2.3

Remark 8.1 The Barreto–Naehrig curve G1 subgroup. Notice that the Barreto–Naehrig
curves are exceptional in the sense that the subgroup G1 is exactly the same as E(Fp). In other
words, for this case, the cofactor c is equal to one, and therefore, the procedure presented in
Algorithm 8.2 effectively completes the hashing to G1 as illustrated in Figure 8.1.

Remark 8.2 Implementation aspects. All the computations of Algorithm 8.2 are per-
formed over the base field Fp at a cost of two field inversions, three quadratic character tests,
one square root, and few field multiplications. Notice that the values

√
−3 and −1+

√
−3

2 are
precomputed offline in Steps 2–3. Moreover, when p is chosen such that p ≡ 3 mod 4, the
square root

√
x3
i + b (line 13) can be computed by the power (x3

i + b) q+1
4 .

In order to ensure a constant-time behavior, the quadratic residuosity test of a field element
a can be computed by performing the exponentiation a

p−1
2 . Alternatively, one can invoke the

procedure discussed in Chapter 2 and shown in Algorithm 2.3.
Algorithm 2.3 performs the quadratic residuosity test by recursively applying Gauss’ law

of quadratic reciprocity at a computational cost similar to computing the greatest common
divisor of a and p. Unfortunately, it is difficult to implement Algorithm 2.3 in constant-time.
That is why the authors of [25] suggested using blinding techniques in order to thwart potential
timing attacks. This variant was adopted in several papers such as [21, 52] and implemented in
Algorithm 8.3.

Remark 8.3 On the security of Algorithm 8.3. Strictly speaking, the blinding factor
protection of Algorithm 8.3 is not provably secure against timing attacks. This is because even
if the blinding factors are uniformly distributed in the base field, and kept unknown to the
adversary, the input of the algorithm computing the quadratic characther χq, is not uniformly
distributed in all of F∗p, but only among its quadratic residues or quadratic nonresidues. Prac-
tically speaking, this is not very significant: Very little secret information can leak in that way.
Moreover, if the quadratic residuosity test is performed in constant-time, then no information
will be leaked at all. Nevertheless, it is always possible to achieve provable protection through
additional blinding. For example, one can randomly multiply by a blind factor that is a known
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ALGORITHM 8.4 Deterministic construction of points in E′(Fp2 ) for Barreto–Naehrig
curves.

Input : t ∈ F∗p, parameter B = b0 + b1u ∈ Fp2 of E′/Fp2 : Y 2 = X3 +B

Output: Point Q = (x, y) ∈ E′(Fp2 )
1 Precomputations:
2 sqrt3 ←

√
−3

3 j ← (−1 + sqrt3)/2
4 Calculations:
5 a0 ← 1 + b0 + t2

6 a1 ← b1
7 A← 1/A // with A = a0 + a1u ∈ Fp2

8 c← sqrt3 · t
9 W ← (c · a0) + (c · a1)u // with W = w0 + w1u ∈ Fp2

10 a0 ← w0 · t
11 a1 ← w1 · t
12 X1 ← (j − a0)− a1u // with X1 = x1,0 + x1,1u ∈ Fp2

13 X2 ← (−x1,0 − 1)− x1,1u

14 X3 ← 1/W 2 // with X3 = x3,0 + x3,1u ∈ Fp2

15 X3 ← (1 + x3,0) + x3,1u

16 α← χp2 (X3
1 +B)

17 β ← χp2 (X3
2 +B)

18 i← [(α− 1) · β mod 3] + 1
19 return Q← (Xi, χp(t) ·

√
X3
i +B)

square/non-square with probability 1/2, and then adjust the output accordingly.

Deterministic construction of points in E′(Fq2 ) for Barreto–Naehrig curves

The Barreto–Naehrig family of elliptic curves has an embedding degree of k = 12, and an
associated twist curve E′ with degree d = 6. This defines the group G2 as

G2 = E′(Fpk/d)[r] = E′(Fp2 )[r].

As already mentioned, the encoding described by Fouque and Tibouchi in [25] applies over
finite fields Fp, where p ≡ 7 mod 12 or p ≡ 1 mod 12. In the case of the Barreto–Naehrig curves,
one observes that since p ≡ 7 mod 12, then p2 ≡ 1 mod 12. As a result, the encoding presented
in [25] can be applied as it is in order to find random points over E′/Fp2 , except that several
computations must be performed over the quadratic field extension Fp2 . The corresponding
procedure is shown in Algorithm 8.4.

Notice that all the operations of Algorithm 8.4 are performed over the base field Fp and its
quadratic extension Fp2 = Fp[u]/u2 − β, where β = −1 is not a square over Fp. In particular,
the steps 16 and 17 of Algorithm 8.4 must compute in constant-time the quadratic character
χp2 (·) over the extension field Fp2 (Definition 2.29). To this end, one can use the procedure
described in [1], which is an improvement over the work made by Bach and Huber [3]. The
authors of [1] proposed to compute the quadratic character over the quadratic field extension
Fp2 by descending the computation to the base field Fp, using the following identity:

χp2 (a) = a
p2−1

2 = (a · ap) p−1
2 (8.13)

= (a · ā)
p−1

2 = χp(a · ā) = χp(|a|)
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where ā = a0 − a1u and |a| is the conjugate and the norm of a, respectively (Definition 2.27).
The above computation can be carried out at a cost of two squarings, one addition, and the
computation of the quadractic character χp(|a|). As before, χp(|a|) can be computed either by
performing one exponentiation over the base field Fp, or alternatively, by applying Algorithm 2.3
along with blinding techniques.

Furthermore, in line 19 of Algorithm 8.4 one needs to extract a square root over the quadratic
field Fp2 . This operation can be efficiently computed using the complex method proposed by
Scott in [47], which was already reviewed in Algorithm 5.18 of Chapter 5.

Remark 8.4 Notice that in line 19 of Algorithm 8.4, the procedure proposed in [25] guarantees
that the term X3

i + B is always a quadratic residue over the field Fp2 . Hence, one can safely
omit the first quadratic residuosity test performed in Algorithm 5.18 of Chapter 5.

8.5 Efficient Hashing to G2

In this section we are interested in the efficient computation of the third mapping shown in
Figure 8.1, namely, the computation of the scalar multiplication, Q′ = [c]Q̃.

Let E′(Fpk/d) be an Abelian group of order #E′(Fpk/d) = c ·r, where c is a composite integer
known as the cofactor of the twist elliptic curve E′. As we have seen, hashing to G2 can be
done by deterministically selecting a random point Q̃ in E′(Fpk/d), and then by virtue of the
Lagrange’s theorem for groups already presented in Chapter 5, we have that

{[c]Q̃ | Q̃ ∈ E′(Fpk/d)} = {Q′ ∈ E′(Fpk/d) | [r]Q′ = O}. (8.14)

However, since in most pairing-friendly elliptic curves the cofactor c in the group G2 has a
considerably large size, which is certainly much larger than the prime order r, a direct compu-
tation of such scalar multiplication will be quite costly.

In the rest of this section, we describe a method which for several families of pairing-friendly
elliptic curves, allows us to compute the scalar multiplication Q′ = [c]Q̃ on a time-computational
complexity of O(1/ϕ(k) log c). The following material closely follows the discussion presented
in [49, 26, 37].

8.5.1 Problem Statement

Let us recall that an asymmetric pairing e : G2×G1 → GT is a mapping where the groups G1,G2
are defined as G1 = E(Fp)[r] and G2 = E′(Fpk/d)[r], where k is the embedding degree of the
elliptic curve E/Fp, r is a large prime divisor of #E(Fp), and Ẽ is the degree-d twist of E over
Fpk/d with r | #E′(Fpk/d). Given the isomorphism φ : E′(Fq)→ E(Fpk), let π : E(Fpk)→ E(Fpk)
denote the Frobenius endomorphism of E. Taking a random point Q̃ that belongs to the twist
curve, followed by a scalar multiplication by the cofactor c, gives us an r−torsion pointQ′ = [c]·Q̃
in E′(Fpk/d)[r]. Notice that the resulting Q′ ∈ G2 has the property that π(Q′) = [p]Q′, where π
is the Frobenius endomorphism.

8.5.2 Determining the Order of the Twist

Hess, Smart, and Vercauteren showed in [31] the existence of a unique non-trivial twist Ẽ of E
over Fq, with q = pk/d such that r divides #Ẽ(Fq). If d = 2, then #Ẽ(Fq) = q + 1 + t̂, where t̂
is the trace of the q-power Frobenius of E. Using the Weil theorem, the order of that twist can
be found by first determining the trace t̂ of the q-power Frobenius of E from the trace t of the
p-power Frobenius of E.
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TABLE 8.1 Possible values for the trace t̃ of the q-power Frobenius of a degree-d twist Ẽ of E.

d 2 3 4 6

t̃ −t̂ (±3f̂ − t̂)/2 ±f̂ (±3f̂ + t̂)/2

The interested reader can check out reference [41], where it is shown that the trace tm of
the pm-power Frobenius of E for an arbitrary m can be determined using the recursion t0 = 2,
t1 = t, and ti+1 = t · ti − p · ti−1 for all i > 1.

Having computed the trace t̂ of the q-power Frobenius of E, the possible values for the trace
t̃ of the q-power Frobenius of Ẽ over Fq are shown in Table 8.1 [31].

Recall that for any pairing-friendly elliptic curve E, given its discriminant D, there exists
f̂ ∈ Z such that t̂2 − 4q = Df̂2.

Once the order of the twist has been determined, the cofactor c can be computed as

c = q + 1− t̃
r

. (8.15)

8.5.3 The Scott et al. Method

Scott et al. observed in [49] that the endomorphism of ψ : E′(Fpk/d) → E′(Fpk/d), defined as
ψ = φ−1◦π◦φ, can be used to speed up the computation of Q̃ 7→ [c]Q̃, by opportunistically using
the fact that for all Q̃ ∈ E′(Fpk/d), the endomorphism ψ satisfies the following identity [27]:

ψ2(Q̃)− [t]ψ(Q̃) + [p]Q̃ = O. (8.16)

This way, Scott et al. represented the cofactor c as a polynomial in base p, and then, by means
of Equation (8.16), the cofactor c can be expressed as a polynomial in ψ with coefficients gi less
than p. For parameterized pairing-friendly elliptic curves, the acceleration in the computation
of Q 7→ [c]Q is often dramatic.

Example 8.1 The MNT pairing-friendly family of elliptic curves have embedding
degree k = 6 and are parameterized by x so that

p(x) = x2 + 1,
r(x) = x2 − x+ 1

are both prime. It was shown in [49] that

[c(x)]P = [x4 + x3 + 3x2]P = [p2 + (x+ 1)p− x− 2]P
= ψ([2x]P ) + ψ2([2x]P ).

Since the cost of computing the endomorphism ψ can usually be neglected, this ap-
proach has a computational cost of two scalar multiplications by the parameter x,
plus one point addition.

Example 8.2 For the Barreto–Naehrig curves, the cofactor of the twist is given as,

c(x) = 36x4 + 36x3 + 30x2 + 6x+ 1.
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Using the Scott et al. method presented in [49] the scalar multiplication [c]Q becomes

[c(x)]Q̃ = [36x4 + 36x3 + 30x2 + 6x+ 1]Q̃ = ψ([6x2]Q̃) + [6x2]Q̃+ ψ(Q̃)− ψ2(Q̃).

Since the cost of computing the endomorphism ψ can usually be neglected, this ap-
proach has a computational cost of two scalar multiplications by the parameter x,
plus three point additions.

8.5.4 The Fuentes et al. Method

Observe that a multiple c′ of the cofactor c such that c′ 6≡ 0 (mod r) will also hash correctly to
the group G2, since the point [c′]Q̃ is also in E(Fpk/d)[r]. The method presented in [26, 37] is
based in the following theorem.

THEOREM 8.1 Since p ≡ 1 mod d and Ẽ(Fq) is a cyclic group, then there exists a poly-
nomial h(z) = h0 + h1z + · · ·+ hϕ(k)−1z

ϕ(k)−1 ∈ Z[z] such that [h(ψ)]P is a multiple of [c]P for
all P ∈ Ẽ(Fq) and |hi|ϕ(k) ≤ #Ẽ(Fq)/r for all i.

Theorem 8.1 was proved in [26] by means of the following two auxiliary lemmas.

LEMMA 8.1 Let d be the degree of the twist curve E′, if p ≡ 1 mod d, then ψ(Q̃) ∈
E′(Fpk/d), for all Q̃ ∈ E′(Fpk/d).

The above lemma proves that the endomorphism ψ : Ẽ → Ẽ, defined over Fqd , fixes Ẽ(Fq)
as a set. The next lemma shows the effect of ψ on elements in Ẽ(Fq).

LEMMA 8.2 Let t2 − 4p = Df2 and t̃2 − 4q = Df̃2, for some value of f and f̃ , where
q = pk/d and D is the discriminant of the curve E. Also, let ñ = #E′(Fpk/d). If the following
conditions are satisfied,

• p ≡ 1 mod d,
• gcd(f̃ , ñ) = 1,
• E′(Fpk/d) is cyclic,

then ψ(Q̃) = [a]Q̃ for all Q̃ ∈ E′(Fpk/d), where,

a = (t± f(t̃− 2)/f̃)/2.

Once the value of a such that [a]Q̃ = ψ(Q̃) has been computed, it is necessary to find the
polynomial h ∈ Z[w], with the smallest coefficients, such that h(a) ≡ 0 mod c. To this end, one
needs to consider a matrixM, with rows representing the polynomials hi(w) = wi−ai, such that
hi(a) ≡ 0 mod c. Hence, any linear combination of the rows of the matrix M will correspond
with a polynomial h′(w) that satisfies the above condition.

Since the Frobenius endomorphism π acting over E(Fpk) has order k, and since ψ is an
endomorphism that acts on the cyclic group E′(Fpk/d), then ψ operating over E′(Fpk/d) also has
order k. Furthermore, since the integer number a satisfies the congruence Φk(a) ≡ 0 mod ñ,
where Φk is the k-th cyclotomic polynomial, then the polynomials h(w) = wi− ai with i ≥ ϕ(k)
can be written as linear combinations of w − a, . . . , wϕ(k)−1 − aϕ(k)−1 mod c, where ϕ(·) is the
Euler’s totient function. Because of the aforementioned argument, only the polynomials with
degree less than ϕ(k) are considered, as shown in Figure 8.4. As it can be seen in Figure 8.4



Hashing into Elliptic Curves 8-19

a0 a1 a2 · · · aϕ(k)−1

M =


c 0 0 · · · 0
−a 1 0 · · · 0
−a2 0 1 · · · 0
...

...
. . .

−aϕ(k)−1 0 0 · · · 1

 99K

c ≡ 0 mod c
−a+ a ≡ 0 mod c
−a2 + a2 ≡ 0 mod c

...
...

...
−aϕ(k)−1 + aϕ(k)−1 ≡ 0 mod c

FIGURE 8.4 Matrix M with rows representing polynomials hi(w) such that hi(a) ≡ 0 mod c.

the strategy proposed in [26, 37] is analogous to the one used for the final exponentiation in
Chapter 7, which was in turn inspired from the definition of optimal pairings as given in [51].

In this case, the rows of the matrix M can be seen as vectors, which form a lattice basis.
Now, the Lenstra–Lenstra–Lovász algorithm [38] can be applied to M in order to obtain an
integer basis for M with small entries. According to the Minkowski’s theorem [42], a vector v
that represents a linear combination of the basis of the lattice L, will be found. This solution
will correspond to the polynomial h with coefficients smaller than |c|1/ϕ(k).

In the rest of this Section, explicit equations for computing the hash to the group G2 on
several families of pairing-friendly curves will be described. We cover the following families: the
Barreto–Naehrig (BN) curves [7], the Brezing–Weng curves with embedding degree k = 12, (BW-
12) [15], the Kachisa–Schaefer–Scott curves with embedding degree k = 8 (KSS-8) and k = 18
(KSS-18) [36], and the Barreto–Lynn–Scott curves with embedding degree k = 24 (BLS-24) [6].

Barreto–Naehrig curves

For the Barreto–Naehrig elliptic curves, the group order ñ = #E′(Fp2 ) and the trace of the twist
E′ over Fp2 , are parametrized as follows:

ñ = (36x4 + 36x3 + 18x2 + 6x+ 1)(36x4 + 36x3 + 30x2 + 6x+ 1),
t̃ = 36x4 + 1

where ñ(x) = r(x)c(x). Using Lemma 8.2, we find that

a(x) = −1
5(3456x7 + 6696x6 + 7488x5 + 4932x4 + 2112x3 + 588x2 + 106x+ 6).

It is interesting to notice that a(x) ≡ p(x) mod r(x) and ψ(Q′) = [a(x)]Q′ = [p(x)]Q′ for all
Q′ ∈ Ẽ(Fp2 )[r]. Note that a(x) ≡ p(x) (mod r) and thus ψQ = [a(x)]Q = [p(x)]Q for all
Q ∈ Ẽ(Fq)[r].

Following the strategy mentioned above, the lattice L can be built, and then reducing −a(x)i
modulo c(x), one obtains

c(x) 0 0 0
−a(x) 1 0 0
−a(x)2 0 1 0
−a(x)3 0 0 1

→


36x4 + 36x3 + 30x2 + 6x+ 1 0 0 0
48/5x3 + 6x2 + 4x− 2/5 1 0 0
36/5x3 + 6x2 + 6x+ 1/5 0 1 0

12x3 + 12x2 + 8x+ 1 0 0 1

 .
From this lattice, one finds the polynomial h(x) = x+3xz+xz2 +z3. Working modulo ñ(x),

we have that
h(a) = −(18x3 + 12x2 + 3x+ 1)c(x),

and since gcd(18x3 + 12x2 + 3x+ 1, r(x)) = 1, the following map is a homomorphism of Ẽ(Fq)
with image Ẽ(Fq)[r]:

Q 7→ [x]Q+ ψ([3x]Q) + ψ2([x]Q) + ψ3(Q).
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We can computeQ 7→ [x]Q 7→ [2x]Q 7→ [3x]Q using one doubling, one addition, and one multiply-
by-x. Given Q, [x]Q, [3x]Q, we can compute [h(a)]Q using three ψ-maps, and three additions.
In total, we require one doubling, four additions, one multiply-by-x, and three ψ-maps.

8.5.5 KSS-8 Curves

KSS-8 curves [36] have embedding degree k = 8 and are parameterized by x such that

r = r(x) = 1
450(x4 − 8x2 + 25),

p = p(x) = 1
180(x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x+ 125)

are both prime. Define q as q = pk/d = p2. Then, there exists a twist Ẽ(Fq) of degree four and
order given as

ñ(x) = 1
72(x8 + 4x7 + 6x6 + 36x5 + 34x4 − 84x3 + 486x2 + 620x+ 193)r(x).

Define the cofactor c in polynomial form as c(x) = ñ(x)/r(x). After some work, it is found that
the endomorphism ψ is such that ψQ = [a]Q for all Q ∈ Ẽ(Fq), where

a = 1
184258800

(
− 52523x11 − 174115x10 + 267585x9 − 193271x8

− 325290x7 + 15093190x6 − 29000446x5 − 108207518x4

+ 235138881x3 + 284917001x2 − 811361295x− 362511175
)
.

At this point, one strives to find a short basis for the lattice generated by the matrix
c(x) 0 0 0
−a(x) 1 0 0
−a(x)2 0 1 0
−a(x)3 0 0 1

.


The solution discovered from this matrix corresponds to

h(a) = 1
75(x2 − 25)c(x) = λ0 + λ1a+ λ2a

2 + λ3a
3

of c such that λ = (λ0, λ1, λ2, λ3) = (−x2 − x, x− 3, 2x+ 6,−2x− 4).
For an element Q ∈ Ẽ(Fq). Then, one can compute [h(a)]Q at the following computational

cost. First, the computation Q 7→ [x]Q 7→ [x+ 1]Q 7→ [x2 + x]Q and Q 7→ [2]Q 7→ [4]Q requires
one point addition, two point doublings, and two scalar multiplications by x. Afterwards, one
can compute

λ0Q = −[x2 + x]Q,
λ1Q = [x+ 1]Q− [4]Q,
λ2Q = [2(x+ 1)]Q+ [4]Q and
λ3Q = −[2(x+ 1)]Q− [2]Q.

The above computation requires three more point additions and one more point doubling. Fi-
nally, the operation,

h(a)Q = [λ0]Q+ ψ([λ1]Q) + ψ2([λ2]Q) + ψ3([λ3]Q)

requires three more point additions and three ψ maps.
In total, hashing to G2 in this family of curves has a cost of for seven, three, two, and

three point additions, point doublings, scalar multiplications by the parameter x, and ψ maps,
respectively.
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8.5.6 KSS-18 Curves

KSS-18 curves [36] have embedding degree k = 18 and a twist of order d = 6. These curves are
parameterized by x such that

r = r(x) = 1
343(x6 + 37x3 + 343),

p = p(x) = 1
21(x8 + 5x7 + 7x6 + 37x5 + 188x4

+ 259x3 + 343x2 + 1763x+ 2401)

are both prime. We find that

c(x) = 1
27
(
x18 + 15x17 + 96x16 + 409x15 + 1791x14 + 7929x13 + 27539x12

+ 81660x11 + 256908x10 + 757927x9 + 1803684x8

+ 4055484x7 + 9658007x6 + 19465362x5 + 30860595x4

+ 50075833x3 + 82554234x2 + 88845918x+ 40301641
)
.

Constructing our lattice, one can obtain the vector corresponding to the multiple

h(a) = − 3
343x(8x3 + 147)c(x) = λ0 + λ1a+ λ2a

2 + λ3a
3 + λ2a

4 + λ3a
5

of c(x), where

λ0 = 5x+ 18,
λ1 = x3 + 3x2 + 1,
λ2 = −3x2 − 8x,
λ3 = 3x+ 1,
λ4 = −x2 − 2 and
λ5 = x2 + 5x.

With the help of the addition chain {1, 2, 3, 5, 8, 10, 18}, one can compute Q 7→ [h(a)]Q using
sixteen additions, two doublings, three scalar multiplications by the parameter x’s, and five ψ
maps.

BW-12 curves

For the BW-12 curves, the cofactor c can be parametrized as

c(x) = 1
9x

8 − 4
9x

7 + 5
9x

6 − 4
9x

4 + 2
3x

3 − 4
9x

2 − 4
9x+ 13

9 ,

and for this particular case, it is more efficient to compute the hashing to G2 operation using
the Scott et al. method, where

h(a) = (x3 − x2 − x+ 4) + (x3 − x2 − x+ 1)a+ (−x2 + 2x− 1)a2.

Hence,

Q̃ 7→ [x3 − x2 − x+ 4]Q̃+ ψ([x3 − x2 − x+ 1]Q̃) + ψ2([−x2 + 2x− 1]Q̃),

which can be computed at a cost of 6 point additions, 2 point doublings, 3 scalar multiplications
by the parameter x, and three applications of the endomorphism ψ.
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TABLE 8.2 Cost summary of hashing to G2 using the Scott et al. and the Fuentes et al. methods.

Curve Scott et al. [49] Fuentes et al. [26]
BN 4A 2D 2Z 3ψ 4A 1D 1Z 3ψ

KSS-8 22A 5D 5Z 2ψ 7A 3D 2Z 3ψ
KSS-18 59A 5D 7Z 4ψ 16A 2D 3Z 5ψ
BW-12 6A 3D 3Z 3ψ -
BLS-24 21A 4D 8Z 6ψ -

BLS-24 curves

As in the case of the previous family of curves, the most efficient method to compute the hashing
to G2 for the BLS-24 family of curves, is to follow the approach proposed by Scott et al. in [49].
For this family of curves, the cofactor is parametrized as follows:

c(z) = 1
81 · x

32 − 8x31 + 28x30 − 56x29 + 67x28 − 32x27 − 56x26+

160x25 − 203x24 + 44x23 + 4x22 − 44x21 + 170x20 − 124x19 + 44x18 − 4x17+
2x16 + 20x15 − 46x14 + 20x13 + 5x12 + 8x11 − 14x10 + 16x9 − 101x8 + 100x7+
70x6 − 128x5 + 70x4 − 56x3 − 44x2 + 40x+ 100,

and one can find that

h(a) = 3c(x) = λ0 + λ1a+ λ2a
2 + λ3a

3 + λ4a
4 + λ5a

5 + λ6a
6,

where

λ0 = −2x8 + 4x7 − 3x5 + 3x4 − 2x3 − 2x2 + x+ 4,
λ1 = x5 − x4 − 2x3 + 2x2 + x− 1,
λ2 = x5 − x4 − x+ 1,
λ3 = x5 − x4 − x+ 1,
λ4 = −3x4 + x3 + 4x2 + x− 3,
λ5 = 3x3 − 3x2 − 3x+ 3 and
λ6 = −x2 + 2x− 1.

Using the method described in [49], the associated computational cost is of 21 point additions,
4 point doublings, 8 scalar multiplications by the parameter x, and 6 applications of the endo-
morphism ψ.

8.5.7 Comparison

In Table 8.2, there is summary of the costs associated with the hashing to G2 operation by
using the Scott et al. and the Fuentes et al. strategies. “A”, “D” stand for point addition
and point doubling, respectively. Moreover, “X” and “ψ” denote a scalar multiplication by the
curve parameter x and the application of the mapping ψ(·), respectively. Notice that by far,
the most costly operation reported in Table 8.2 is the scalar multiplication by the scalar x. Let
us consider the case of the Barreto–Naehrig curves. In order to achieve a 128-bit security level,
the bit-size of the parameter x must be log2(x) ≈ 64. Assuming that x has a Hamming weight
of 3 and the the addition-and-double method for the scalar multiplication has been used, then
the cost of computing [x]Q for Q ∈ G2 is about 63D + 2A. Therefore, the method proposed by
Fuentes et al. in [26] is approximately twice as fast as the Scott et al. method of [49], as shown
in Table 8.3.
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TABLE 8.3 Cost summary of hashing to G2 on Barreto–Naehrig curves.

Scott et al. Fuentes et al.
≈ 126 D + 4 A ≈ 63 D + 2 A

8.6 Practical Algorithms and Implementation

8.6.1 Intel Processor

Tables 8.6 and 8.7 report the timings (in 103 clock cycles) achieved by our software implementa-
tion of all the required building blocks for computing the hash functions to the Barreto–Naehrig
curve subgroups G1 and G2. Our library was written in the C and C++ languages and compiled
with gcc 4.9.2. It was run on a Haswell Intel core i7-4700MQ processor running at 2.4 GHz,
with both the Turbo-Boost and Hyper-threading technologies disabled.

We used two values of the Barreto–Naehrig parameter x, namely, x = −(262 +255 +1), which
is a standard choice recommended in [44] and used in many pairing libraries, such as [2, 43, 52].
We also report the timings for the parameter choice: x = −(262 + 247 + 238 + 237 + 214 + 27 + 1),
which is the value recommended in [48] to avoid subgroup attacks in GT . It is noticed that in [52]
slightly faster timings were reported.

8.6.2 ARM Processor

Tables 8.4 and 8.5 report the timings (in 103 clock cycles) achieved by our software implementa-
tion of all the required building blocks for computing the hash functions to the Barreto–Naehrig
curve subgroups G1 and G2. Our library was written in the C language and compiled using
the android-ndk-r10b Native Development Kit, and executed on an ARM Exynos 5 Cortex-A15
platform running at 1.7GHz. Our library makes use of the NEON technology. Once again, we
used the two values for the x parameters chosen for the Intel processor in the preceding section.

TABLE 8.4 Cost of the hashing to G1 operation on Barreto–Naehrig curves at the 128-bit security
level.

x parameter used to define the BN curve

Operation x = −(262 + 255 + 1) x = −(262 + 247 + 238 + 237 + 214 + 27 + 1)
SHA256 8.67 8.67
Algorithm 8.2 1047.80 1357.71
Algorithm 8.3 655.32 709.40
Hash to G1 with Algorithm 8.2 1056.43 1366.23
Hash to G1 with Algorithm 8.3 664.02 718.12

Note: Timings are given in 103 clock cycles as measured on an ARM Exynos 5 Cortex-A15
1.7GHz.

TABLE 8.5 Cost of the hashing to G2 operation on Barreto–Naehrig curves at the 128-bit security
level.

x parameter used to define the BN curve

Operation x = −(262 + 255 + 1) x = −(262 + 247 + 238 + 237 + 214 + 27 + 1)
SHA256 8.67 8.67
[c]Q̃ 754.10 806.06
Algorithm 8.4 (constant-time) 1337.21 1717.81
Algorithm 8.4 (with blinding) 809.01 863.29
Hash to G2 (constant-time) 2099.95 2530.20
Hash to G2 (with blinding) 1570.75 1680.37

Note: Timings are given in 103 clock cycles as measured on an ARM Exynos 5 Cortex-A15
1.7GHz.
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TABLE 8.6 Cost of the hashing to G1 operation on Barreto–Naehrig curves at the 128-bit security
level.

x parameter used to define the BN curve

Operation x = −(262 + 255 + 1) x = −(262 + 247 + 238 + 237 + 214 + 27 + 1)
SHA256 1.81 1.81
Algorithm 8.2 122.81 156.48
Algorithm 8.3 95.83 104.83
Hash to G1 with Algorithm 8.2 124.62 158.29
Hash to G1 with Algorithm 8.3 97.64 106.64

Note: Timings are given in 103 clock cycles as measured on a Haswell Intel core I7-4700MQ
2.4GHz.

TABLE 8.7 Cost of the hashing to G2 operation on Barreto–Naehrig curves at the 128-bit security
level.

x parameter used to define the BN curve

Operation x = −(262 + 255 + 1) x = −(262 + 247 + 238 + 237 + 214 + 27 + 1)
SHA256 1.81 1.81
[c]Q̃ 161.63 175.02
Algorithm 8.4 (constant-time) 186.71 236.94
Algorithm 8.4 (with blinding) 134.03 153.12
Hash to G2 (constant-time) 344.82 408.24
Hash to G2 (with bliding) 293.29 322.21

Note: Timings are given in 103 clock cycles as measured on a Haswell Intel core I7-4700MQ
2.4GHz.

8.7 SAGE Appendix

8.7.1 Barreto–Naehrig Curves

This section presents a SAGE implementation of the hashing to the groupsG1 andG2 procedures,
as defined in the Barreto–Naehrig curves.

The family of Barreto–Naehrig curves are parameterized by the equations shown in Listing 34,
where the field characteristic p, the order r of the elliptic curve defined over Fp, and the trace of
Frobenius t are defined. Note that the parameter x is chosen in such a way that the values p(x)
and r(x) are prime numbers. In this example we decided to use x = −(262 + 255 + 1), mainly
because it is the preferred parameter for efficient implementations of bilinear pairings in many
pairing libraries, such as [2, 43, 52].

Once the parameters of the curve have been defined, we construct the finite field towering
required for the pairing computations. In Listing 35, the base field Fp, as well as its quadratic
extension Fp2 = Fp[i]/(i2 − β) with β = −1 are defined. The Barreto–Naehrig curve E and its
twist E′ are defined as E/Fp : y2 = x3 + b and E′/Fp2 : Y 2 = X3 +B, with B = b/ξ ∈ Fp2 .

Several precomputations will be useful in subsequent calculations, such as the Pre-Frobenius
function to be used for calculating the map ψi : φ ◦ πi ◦ φ−1, where π is the Frobenius endomor-
phism and φ : E′(Fp2 ) → E(Fp12 ). Some other constants used in the hash encodings are also
precomputed, as shown in Listing 36.

Now we have the necessary ingredients for computing the hash function to the group G1, by
applying the method proposed by Fouque and Tibouchi [25]. Furthermore, we also verify that
the point obtained has the right order, as shown in Listing 37.

As for the hash function calculation to G2, Listing 38 shows the auxiliary functions required
to compute square roots over Fp2 in a deterministic fashion, as well as functions that allow us
to compute the projection ψ.

At this point, one can build a random point in the twist curve E′ using the method proposed
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Listing 34 Definition of parameters for the Barreto-Naehrig curves.
1 reset
2 # ###############################################
3 # Elliptic curve parameters #
4 # ###############################################
5
6 x = -(2^62+2^55+1)
7 px = 36*x^4 + 36*x^3 + 24*x^2 + 6*x + 1
8 rx = 36*x^4 + 36*x^3 + 18*x^2 + 6*x + 1
9 tx = 6*x^2 + 1
10
11 p = Integer (px)
12 r = Integer (rx)
13 t = Integer (tx)
14
15 is_prime (p)
16 is_prime (r)

Listing 35 Definition of the base and quadratic fields and the Barreto-Naehrig curve E/Fp :
y2 = x3 + b and E′/Fp2 : Y 2 = X3 + b/ξ.

1 # ################################################
2 # Finite field and Elliptic curve definitions #
3 # ################################################
4 Fp = GF(p)
5 beta = Fp(-1)
6 K2.<U> = Fp[]
7 Fp2.<i> = Fp. extension (U^2 - (beta ))
8
9 b = Fp (2)
10 xi = Fp2 ([1 ,1])
11 b_xi = b/xi
12 # Elliptic curve E/Fp: y^2 = x^3 + b #
13 E = EllipticCurve (Fp , [0,0,0,0,b])
14 # Etwist E ’/Fp2: Y^2 = X^3 + b/xi #
15 Etwist = EllipticCurve (Fp2 , [0,0,0,0, b_xi ])

by Fouque and Tibouchi in [25]. Note that several computations of Listing 39 now take place in
the quadratic extension field Fp2 .

Once a random point has been built using the above function, the next step is to map it
to an r-torsion point that belongs to the subgroup G2. To this end, a scalar multiplication is
carried out by the cofactor c defined as c = #E′/r. As we have seen, this can be efficiently
computed using the method proposed by Fuentes et al. in [26], as shown in Listing 40.

One can now define the hashing to G2 function and perform the corresponding sobriety test
shown in the Sage code 41.

A more efficient way to perform the hashing computations on Barreto–Naehrig curves, which
was coded somewhat in a similar fashion as one would do it for a C implementation, can be
downloaded from http://sandia.cs.cinvestav.mx/Site/GuidePBCcode.
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Listing 36 Precomputations of the pre-Frobenius constants and some other values used in the
hashing to G1 and G2 functions.

1 # ################################################
2 # Prefrobenius computation #
3 # ################################################
4 def preFrobenius ():
5 gamp_2 = xi ^((p -1)/3)
6 gamp_3 = xi ^((p -1)/2)
7
8 gamp2_2 = gamp_2 * gamp_2 ^p
9 gamp2_3 = gamp_3 * gamp_3 ^p
10
11 gamp3_2 = gamp_2 * gamp2_2 ^p
12 gamp3_3 = gamp_3 * gamp2_3 ^p
13
14 return (gamp_2 , gamp_3 , gamp2_2 ,
15 gamp2_3 , gamp3_2 , gamp3_3 )
16
17 # ################################################
18 # Precomputations #
19 # ################################################
20 sqrt_3 = Fp ( -3)^((p +1)/4)
21 j = (-1 + sqrt_3 )/2
22 gp_2 , gp_3 , gp2_2 , gp2_3 , gp3_2 , gp3_3 = preFrobenius ()

Listing 37 Hash function to the group G1 and sobriety test.
1 # ################################################
2 # Hash function to G1 (map -to -point) #
3 # ################################################
4 def Hash_to_G1 (t):
5 w = sqrt_3 *t/(1 + b + t^2)
6 x = [0, 0, 0]
7 x[0] = j - t*w
8 x[1] = -1 - (j-t*w)
9 x[2] = 1 + 1/w^2
10 alpha = (x[0]^3 + b)^((p -1)/2)
11 beta = (x[1]^3 + b)^((p -1)/2)
12 i = ( Integer (3+( alpha -1)* beta )). mod (3);
13 y = (x[i]^3 + b)^((p +1)/4)
14 y = t^((p -1)/2)* y
15 return (E((x[i], y)))
16
17 # ################################################
18 # Hash to G1 Test #
19 # ################################################
20 l = 0
21 for i in range (0 ,10):
22 P = Hash_to_G1 (Fp. random_element ())
23 if r*P != E(0):
24 l = l+1
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Listing 38 Square root in Fp2 using the complex method and ψ(·) functions.

1 # ################################################
2 # Square root in Fp2 with Complex Method #
3 # ################################################
4 def Sqrt_CM (a):
5 b = vector (a)
6 x = (Fp(b [0])^2 - beta*Fp(b [1])^2)^(( p +1)/4)
7 aux = (b[0] + x)/2
8 if aux. is_square ()== false:
9 aux = (b[0] - x)/2
10 x = aux ^((p +1)/4)
11 y = b [1]/(2* x)
12 return (Fp2 ([x,y]))
13
14 # ################################################
15 # \psi and \psi ^2 function #
16 # ################################################
17 def conj(a):
18 b = vector (a)
19 return Fp2 ([b[0],-b[1]])
20 ##psi and psi3
21 def psi(P, gp_2 , gp_3 ):
22 x = conj(P[0])* gp_2
23 y = conj(P[1])* gp_3
24 return ( Etwist ([x, y]))
25
26 def psi2(P, gp2_2 , gp2_3 ):
27 x = P[0]* gp2_2
28 y = P[1]* gp2_3
29 return ( Etwist ([x, y]))

8.7.2 KSS-18 Curves

This section presents the implementation in SAGE of the hashing to the groups G1 and G2,
this time using the pairing-friendly family of the KSS-18 curves. This family of curves is also
parameterized, hence at the beginning of the implementation, it is necessary to define it the field
characteristic p, the prime group order r of the elliptic curve defined over Fp, and the Frobenius
trace t. In this example, the parameter choice x = 264 − 261 + 256 − 213 − 27 was picked. This
choice defines a 506-bit prime p. The SAGE Listing 42 shows the parameter definition for the
KSS-18 elliptic curves.

Once the curve parameters have been defined, the finite fields where the KSS-18 elliptic curve
lies must be defined. Hence, we define the base field Fp and its cubic extension Fp3 = Fp[i]/(i3−β)
with β = −6. The KSS-18 elliptic curve E and its twist E′ are then defined as E/Fp : y2 = x3 +b
and E′/Fp3 : Y 2 = X3 + B, with B = b/ξ ∈ Fp3 . The corresponding definitions are shown in
Listing 43.

In Listing 44, several precomputations that will be useful in the subsequent calculations
are performed. We precompute some necesary values for calculating square roots in the cubic
extension field when p ≡ 5 mod 8, and pre-Frobenius values used in the calculation of ψi :
φ ◦ πi ◦ φ−1, where π is the Frobenius endomorphism and φ : E′(Fp3 )→ E(Fp18 ).

Now we have the necessary elements for the calculation of the hash function to the group
G1 using the method proposed by Fouque and Tibouchi [25]. As a sobriety check, we also verify
that the point obtained has the correct order r, as shown in Listing 45.

For the remaining part, one still needs to code several auxiliary functions that are required
for computing square roots over the cubic extension Fp3 in a deterministic fashion. Moreover, the
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Listing 39 Residuosity quadratic test of an element in Fp2 and deterministic point construction
in the curve E′/Fp2 : Y 2 = X3 + b/ξ.

1 # ################################################
2 # deterministic point construction in Etwist #
3 # ################################################
4 def RQT(a):
5 b = vector (a)
6 c = Fp(b[0]^2 + b [1]^2)^((p -1)/2)
7 if c == 1:
8 return 1
9 return -1
10
11 def deterministic_point_Etwist (t):
12 b = vector (b_xi)
13 a0 = Fp(1 + b[0] + t^2)
14 a1 = b[1]
15 A = 1/ Fp2 ([a0 ,a1])
16 (a0 ,a1) = vector (A)
17 c = sqrt_3 *t
18 w = [a0*c, a1*c]
19 x = [0 ,0 ,0]
20 x[0] = Fp2 ([j - t*w[0], -t*w[1]])
21 x[1] = -1 - x[0]
22 x[2] = 1 + 1/ Fp2(w)^2
23 alpha = RQT(x[0]^3 + b_xi)
24 beta = RQT(x[1]^3 + b_xi)
25 i = ( Integer (3+( alpha -1)* beta )). mod (3)
26 y = t^((p -1)/2)* Sqrt_CM (x[i]^3 + b_xi)
27 return ( Etwist (x[i], y))

projection ψ also requires several building blocks. The SAGE code 46 shows these calculations.
We note that the square root procedure was done following the Atkin algorithm described in [1],
which extracts square roots when the characteristic p satisfies, p ≡ 5 mod 8.

Next, the calculation of a random point that belongs to the twist elliptic curve group E′(Fp3 )
is carried out by means of the method proposed by Fouque and Tibouchi [25], as shown in the
SAGE code 47. Note that most computations now take place in the cubic extension field Fp3 .

Once a random point in the twist elliptic curve has been obtained, it is necessary to ensure
that this point has the correct order r. To this end, a scalar multiplication by the cofactor c,
defined as c = #E′/r, must be performed. As we have seen, this can be efficiently accomplished
using the method proposed by Fuentes et al. [26]. The corresponding procedure is shown in
Listing 48. Finally, the hash function to G2 and its corresponding sobriety test are shown in
Listing 49.

A more efficient way to perform the hashing computations on KSS-18 curves, which was
coded in a somewhat similar fashion to what one would do for a C implementation, can be
downloaded from: http://sandia.cs.cinvestav.mx/Site/GuidePBCcode.
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Listing 40 Scalar multiplication by the cofactor c that produces a point in E′ with order r.
1 # ################################################
2 # Scalar multiplicaction by the cofactor #
3 # ################################################
4 def Mult_cofactor (P):
5 Px = x*P
6 P2x = 2*Px
7 P3x = P2x + Px
8 psiP3x = psi(P3x , gp_2 , gp_3)
9 psi2Px = psi2(Px , gp2_2 , gp2_3)
10 psi3P = psi(P, gp3_2 , gp3_3)
11 Q = Px + psiP3x + psi2Px + psi3P
12 return (Q)

Listing 41 Definition of the hashing to G2 function and test.
1 # ################################################
2 # Hash function to G2 #
3 # ################################################
4 def Hash_to_G2 (t):
5 P = deterministic_point_Etwist (t)
6 Q = Mult_cofactor (P)
7 return (Q)
8
9 # ################################################
10 # Hash to G2 test #
11 # ################################################
12 l = 0
13 for i in range (1 ,10):
14 P = Hash_to_G2 (Fp. random_element ())
15 if r*P != Etwist (0):
16 l = l+1

Listing 42 Parameter definition for the KSS-18 elliptic curve.
1 reset
2 # ###############################################
3 # Elliptic curve parameters #
4 # ###############################################
5
6 x = 2^64 -2^61+2^56 -2^13 -2^7
7 px = (x^8+5*x^7+7*x ^6+37* x ^5+188* x^4
8 +259*x ^3+343* x ^2+1763* x +2401)/21
9 rx = (x ^6+37* x ^3+343)/343
10 tx = (x ^4+16* x+7)/7
11
12 p = Integer (px)
13 r = Integer (rx)
14 t = Integer (tx)
15
16 is_prime (p)
17 is_prime (r)
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Listing 43 Definitions of the base and cubic extension field and the KSS-18 curve E/Fp : y2 =
x3 + b and E′/Fp3 : Y 2 = X3 + b/ξ.

1 # ################################################
2 # Finite field and Elliptic curve definitions #
3 # ################################################
4 Fp = GF(p)
5 beta = Fp(-6)
6 K3.<U> = Fp[]
7 Fp3.<i> = Fp. extension (U^3 - (beta ))
8
9 b = Fp (13)
10 xi = Fp3 ([0 ,1 ,0])
11 b_xi = b/xi
12 # Elliptic curve E/Fp: y^2 = x^3 + b #
13 E = EllipticCurve (Fp , [0, 0,0,0,b])
14 # Etwist E ’/Fp3: Y^2 = X^3 + b/xi #
15 Etwist = EllipticCurve (Fp3 , [0, 0,0,0, b_xi ])

Listing 44 Precomputation of the Pre-Frobenius constants, and some values used in the hash
functions to G1 and G2, and the square root calculation in Fp3 .

1 # ################################################
2 # Prefrobenius used in psi^i computation #
3 # ################################################
4 landa_1 = beta ^((p -1)/3)
5 landa_2 = landa_1 ^2
6
7 def mul_landa (a, lan1 , lan2 ):
8 b = vector (a)
9 return Fp3 ([b[0], b[1]* lan1 , b[2]* lan2 ])
10
11 def preFrobenius ():
12 gamp_1 = xi ^((p -1)/6)
13 gamp_2 = gamp_1 ^2
14 gamp_3 = gamp_2 * gamp_1
15 gamp2_2 = gamp_2 * mul_landa (gamp_2 ,landa_1 , landa_2 )
16 gamp2_3 = gamp_3 * mul_landa (gamp_3 ,landa_1 , landa_2 )
17 gamp3_2 = gamp2_2 * mul_landa (gamp_2 ,landa_2 , landa_1 )
18 gamp3_3 = gamp2_3 * mul_landa (gamp_3 ,landa_2 , landa_1 )
19 gamp4_2 = gamp3_2 * gamp_2
20 gamp4_3 = gamp3_3 * gamp_3
21 gamp5_2 = gamp4_2 * mul_landa (gamp_2 ,landa_1 , landa_2 )
22 gamp5_3 = gamp4_3 * mul_landa (gamp_3 ,landa_1 , landa_2 )
23
24 return (gamp_2 ,gamp_3 ,gamp2_2 ,gamp2_3 ,gamp3_2 ,
25 gamp3_3 ,gamp4_2 ,gamp4_3 ,gamp5_2 , gamp5_3 )
26
27 # ################################################
28 # Precomputations #
29 # ################################################
30 sqrt_3 = Fp ( -3). sqrt ()
31 j = (-1 + sqrt_3 )/2
32 p_5 = (p -5) / 8;
33 e = p_5 + p*(p*p_5 + 5* p_5 +3)
34 t_A = Fp (2)^e
35
36 gp_2 ,gp_3 ,gp2_2 ,gp2_3 ,gp3_2 ,gp3_3 ,
37 gp4_2 ,gp4_3 ,gp5_2 ,gp5_3 = preFrobenius ()
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Listing 45 Hash to the group G1 function and sobriety test.
1 # ################################################
2 # Hash function to G1 (map -to -point) #
3 # ################################################
4 def Hash_to_G1 (t):
5 w = sqrt_3 *t/(1 + b + t^2)
6 x = [0 ,0 ,0]
7 x[0] = j - t*w
8 x[1] = -1 - (j-t*w)
9 x[2] = 1 + 1/w^2
10 alpha = (x[0]^3 + b)^((p -1)/2)
11 beta = (x[1]^3 + b)^((p -1)/2)
12 i = ( Integer (3+( alpha -1)* beta )). mod (3)
13 y = t^((p -1)/2)*( x[i]^3 + b). sqrt ()
14 return (E((x[i], y)))
15
16 # ################################################
17 # Hash to G1 Test #
18 # ################################################
19 l = 0
20 cof = int(E.order ()/r)
21 for i in range (1 ,10):
22 P = Hash_to_G1 (Fp. random_element ())
23 if (cof*r)*P != E(0):
24 l = l+1
25 l

Listing 46 Square root computation over Fp3 using the Atkin method for p ≡ 5 mod 8, and
ψ(·) function computations.

1 # ################################################
2 # Square root in Fp3 with p = 5 mod 8 #
3 # ################################################
4 def Sqrt_5_mod_8 (a):
5 a1 = a^e
6 b = t_A*a1
7 i = 2*(a*b)*b
8 x = (a*b)*(i -1)
9 return x
10
11 # ################################################
12 # \psi^i functions #
13 # ################################################
14 ## psi and psi4
15 def psi(P, g_2 , g_3 ):
16 x = mul_landa (P[0], landa_1 , landa_2 )
17 y = mul_landa (P[1], landa_1 , landa_2 )
18 return ( Etwist ([x*g_2 , y*g_3 ]))
19 ## psi2 and psi5
20 def psi2(P, g2_2 , g2_3 ):
21 x = mul_landa (P[0], landa_2 , landa_1 )
22 y = mul_landa (P[1], landa_2 , landa_1 )
23 return ( Etwist ([x*g2_2 , y*g2_3 ]))
24 def psi3(P, g3_2 , g3_3 ):
25 return ( Etwist ([P[0]* g3_2 , P[1]* g3_3 ]))
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Listing 47 Residuosity quadratic test over Fp3 and deterministic point construction in the twist
curve E′/Fp3 : Y 2 = X3 + b/ξ.

1 # ################################################
2 # deterministic point construction in Etwist #
3 # ################################################
4 def QRT(a):
5 v0 = a * mul_landa (a, landa_1 , landa_2 )
6 v0 = v0 * mul_landa (a, landa_2 , landa_1 )
7 v0 = vector (v0)
8 c = v0 [0]^((p -1)/2)
9 if c == 1:
10 return 1
11 return -1
12
13 def deterministic_point_Etwist (t):
14 b = vector (b_xi)
15 a0 = Fp(1 + b[0] + t^2)
16 a1 = b[1]
17 a2 = b[2]
18 A = 1/ Fp3 ([a0 ,a1 , a2])
19 (a0 ,a1 , a2) = vector (A)
20 c = sqrt_3 *t
21 w = [a0*c, a1*c, a2*c]
22 x = [0 ,0 ,0]
23 x[0] = Fp3 ([j - t*w[0], -t*w[1], -t*w[2]])
24 x[1] = -1 - x[0]
25 x[2] = 1 + 1/ Fp3(w)^2
26 alpha = QRT(x[0]^3 + b_xi)
27 beta = QRT(x[1]^3 + b_xi)
28 i = ( Integer (3+( alpha -1)* beta )). mod (3)
29 y = t^((p -1)/2)* Sqrt_5_mod_8 (x[i]^3 + b_xi)
30 return ( Etwist (x[i], y))
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Listing 48 Scalar multiplication by the cofactor c that produces a point in E′ with order r.
1 # ################################################
2 # Scalar multiplicaction by the cofactor #
3 # ################################################
4 def Mult_cofactor (P):
5 Qx0_= -P
6 Qx1 = x*P
7 Qx1_ = -Qx1
8 Qx2 = x*Qx1
9 Qx2_ = -Qx2
10 Qx3 = x*Qx2
11
12 t1 = P
13 t2 = psi2(Qx1_ ,gp2_2 ,gp2_3)
14 t3 = Qx1+psi2(Qx1 ,gp5_2 ,gp5_3)
15 t4 = psi3(Qx1 ,gp3_2 ,gp3_3 )+ psi(Qx2 ,gp_2 ,gp_3 )+
16 psi2(Qx2_ ,gp2_2 ,gp2_3)
17 t5 = psi(Qx0_ ,gp4_2 ,gp4_3)
18 t6 = psi(P,gp_2 ,gp_3 )+ psi3(P,gp3_2 ,gp3_3 )+
19 psi(Qx2_ ,gp4_2 ,gp4_3 )+ psi2(Qx2 ,gp5_2 ,gp5_3 )+
20 psi(Qx3 ,gp_2 ,gp_3)
21
22 t2 = t2 + t1
23 t1 = t1 + t1
24 t1 = t1 + t3
25 t1 = t1 + t2
26 t4 = t4 + t2
27 t5 = t5 + t1
28 t4 = t4 + t1
29 t5 = t5 + t4
30 t4 = t4 + t6
31 t5 = t5 + t5
32 t5 = t5 + t4
33 return (t5)

Listing 49 Definition of the hashing to G2 function and sobriety test.
1 # ################################################
2 # Hash function to G2 #
3 # ################################################
4 def Hash_to_G2 (t):
5 P = deterministic_point_Etwist (t)
6 Q = Mult_cofactor (P)
7 return (Q)
8
9 # ################################################
10 # Hash to G2 test #
11 # ################################################
12 l = 0
13 for i in range (1 ,100):
14 P = Hash_to_G2 (Fp. random_element ())
15 if r*P != Etwist (0):
16 l = l+1
17 l
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The Discrete Logarithm Problem (DLP) is one of the most used mathematical problems in
asymmetric cryptography design, the other one being the integer factorization. It is intrinsically
related to the Diffie-Hellman problem (DHP). DLP can be stated in various groups. It must be
hard in well-chosen groups, so that secure-enough cryptosystems can be built. In this chapter,
we present the DLP, the various cryptographic problems based on it, the commonly used groups,
and the major algorithms available at the moment to compute discrete logarithms in such groups.
We also list the groups that must be avoided for security reasons.

Our computational model will be that of classical computers. It is to be noted that in the
quantum model, DLP can be solved in polynomial time for cyclic groups [108].

9.1 Setting and First Properties

9.1.1 General Setting

Let G be a finite cyclic group of order N generated by g. The group law on G is defined
multiplicatively and noted ◦, the neutral element is noted 1G, and the inverse of an element a
will be noted 1/a = a−1. The discrete logarithm problem is the following:

DLP: given h ∈ G, find an integer n, 0 ≤ n < N such that h = gn.

Along the years, and motivated by precise algorithms or cryptographic implementations,
variants of this basic problem appeared. For instance:

Interval-DLP (IDLP): given h ∈ G, find an integer n, a ≤ n < b such that h = gn.

9-1
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We may also need to compute multiple instances of the DLP:
Batch-DLP (BDLP): given {h1, . . . , hk} ⊂ G, find integers ni’s, 0 ≤ ni < N such that

hi = gni .
A variant of this is Delayed target DLP where we can precompute many logs before

receiving the actual target. This was used in the logjam attack where logarithms could be
computed in real time during an SSL connection [9].

We may relate them to Diffie-Hellman problems, such as
Computational DH problem (DHPor CDH): given (g, ga, gb), compute gab.
Decisional DH problem (DDHP): given (g, ga, gb, gc), do we have c = ab mod N?

We use A ≤ B to indicate that A is easier than B (i.e., there is polynomial time reduction from
B to A). The first easy result is the following:

PROPOSITION 9.1 DDHP ≤ DHP ≤ DLP.

In some cases, partial or heuristic reciprocals have been given, most notably in [86, 87]. With
more and more applications and implementations available of different DH bases protocols, more
problems arose, notably related to static variants. We refer to [77] for a survey.

9.1.2 The Pohlig-Hellman Reduction

In this section, we reduce the cost of DLP in a group of size N to several DLPs whose overall
cost is dominated by that of the DLP for the largest p | N .

PROPOSITION 9.2 Let G be a finite cyclic group of order N whose factorization into
primes is known,

N =
r∏
i=1

pαii

where the pi’s are all distinct. Then DLP in G can be solved using the DLPs on all subgroups of
order pαii .

Proof. Solving gx = a is equivalent to finding x mod N , i.e., x mod pαii for all i, using the
Chinese remaindering theorem.

Suppose pα || N (which means pα | N but pα+1 - N) and m = N/pα. Then b = am is in
the cyclic group of order pα generated by h = gm. We can find the log of b in this group, which
yields x mod pα. From this, we have reduced DLP to r DLPs in smaller cyclic groups.

How do we proceed? First compute c1 = bp
α−1 and h1 = hp

α−1 . Both elements belong to
the cyclic subgroup of order p of G, generated by h1. Writing y = x mod pα = y0 + y1p+ · · ·+
yα−1p

α−1 with 0 ≤ yi < p, we see that y = logh(b) mod pα. We compute

hy1 = hy0
1

so that y0 is the discrete logarithm of c in base h1. Write

c2 = bp
α−2

= h
(y0+y1p)pα−2

1

or
c2h
−y0p

α−2

1 = hy1
1 .

In this way, we recover y1 by computing the discrete logarithm of the left hand side w.r.t. h1
again.
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We have shown that DLP in a cyclic group of order pα can be replaced by α solutions of
DLP in a cyclic group of order p and some group operations. If p is small, all these steps will be
easily solved by table lookup. Otherwise, the methods presented in the next section will apply
and give a good complexity.

A direct cryptographic consequence is that for cryptographic use, N must have at least one
large prime factor.

9.1.3 A Tour of Possible Groups

Easy groups

Let us say a group is easy for DL if DLP can be solved in polynomial time for this group. DLP
is easy in (Z/NZ,+), since h = ng mod N is solvable in polynomial time (Euclid). This list was
recently enlarged to cases where the discrete log can be computed in quasi-polynomial time [17].

As for algebraic curves, supersingular elliptic curves were shown to be somewhat weaker in
[89]; the same is true for hyperelliptic curves [49, 37]. Elliptic curves of trace 1 (also called
anomalous curves) were shown to be easy in [109, 104]; the result was extended to hyperelliptic
anomalous curves in [99].

Not-so-easy groups

Relatively easy groups are those for which subexponential methods exist: finite fields (of medium
or large characteristic), algebraic curves of very large genus, class groups of number fields.

Probably difficult groups, for which we know of nothing but exponential methods, include
elliptic curves (see [50] for a recent survey) and curves of genus 2.

9.2 Generic Algorithms

We start with algorithms solving DLP in a generic way, which amounts to saying that we use
group operations only. We concentrate on generic groups. For particular cases, as elliptic curves,
we refer to [53] for optimized algorithms. We emphasize that generic methods are the only known
methods for solving the DLP over ordinary elliptic curves.

The chosen setting is that of a group G = 〈g〉 of prime order N , following the use of the
Pohlig-Hellman reduction. Enumerating all possible powers of g is an O(N) process, and this
is enough when N is small. Other methods include Shanks’s and Pollard’s, each achieving a
O(
√
N) time complexity, but different properties as determinism or space. We summarize this

in Table 9.1. The baby-steps giant-steps (BSGS) method and its variants are deterministic,
whereas the other methods are probabilistic. It is interesting to note that Nechaev and Shoup
have proven that a lower bound on generic DLP (algorithms that use group operations only) is
precisely O(

√
N) (see for instance [111]).

Due to the large time complexity, it is desirable to design distributed versions with a gain of
p in time when p processors are used. This will be described method by method.

TABLE 9.1 Properties of generic DL algorithms.

Algorithm group interval time space
BSGS X X O(

√
N) O(

√
N)

RHO X – O(
√
N) O(logN)

Kangaroo X X O(
√
N) O(logN)



9-4 Guide to Pairing-Based Cryptography

TABLE 9.2 Table of constants C such that the complexity is C
√
N .

Algorithm Average-case time Worst-case time
BSGS 1.5 2.0
BSGS optimized for av. case 1.414 2.121
IBSGS 1.333 2.0
Grumpy giants 1.25? ≤ 3
RHO with dist. pts 1.253(1 + o(1)) ∞

9.2.1 Shanks’s Baby-Steps Giant-Steps Algorithm

Shanks’s idea, presented in the context of class groups [107], became a fundamental tool for
operating in generic groups, for order or discrete logarithm computations. All variants of it have
a time complexity O(

√
N) group operations for an O(

√
N) storage of group elements. They all

differ by the corresponding constants and scenarii in which they are used. From [53], we extract
Table 9.2.

The goal of this subsection is to present the original algorithm together with some of its more
recent variants. We refer to the literature for more material and analyses.

Original algorithm and analysis

The standard algorithm runs as follows. Write the unknown n in base u for some integer u that
will be precised later on:

n = cu+ d, 0 ≤ d < u, 0 ≤ c < N/u.

We rewrite our equation as
gn = h⇔ h ◦ (g−u)c = gd.

The algorithm is given in Figure 9.1. It consists of evaluating the right-hand side for all possible
d by increment of 1 (baby steps), and then computing all left-hand sides by increment of u (giant
steps), until a match is found.

The number of group operations is easily seen to be Co = u + N/u in the worst case,
minimized for u =

√
N , leading to a deterministic complexity of 2

√
N group operations. On

average, c will be of order N/(2u), so that the average cost is (1 + 1/2)u, which gives us the first
line in Table 9.2.

Step 1 requires u insertions in the set B and Step 2 requires N/u membership tests in the
worst case. This explains why we should find a convenient data structure for B that has the
smallest time for both operations. This calls for B to be represented by a hash table of some
sort. The cost of these set operations will be (u+N/u)O(1), again minimized by u =

√
N .

Remarks.
Variants exist when inversion has a small cost compared to multiplication, leading to writing

n = cu+ d where −c/2 ≤ d < c/2, thereby gaining in the constant in front of
√
N (see [53] for a

synthetic view). Cases where the distribution of parameters is non-uniform are studied in [26].
All kinds of trade-offs are possible if low memory is available. Moreover, different variants

of BSGS exist when one wants to run through the possible steps in various orders (see [110]). If
no bound is known on N , there are slower incremental algorithms that will find the answer; see
[113] and [110].

As a final comment, BSGS is easy to distribute among processors with a shared memory.

Solving IDLP
BSGS works if we have a bound on N only. It also works when x is known to belong to some

interval [a, b[⊂ [0, N [. The process amounts to a translation of x to [0, b− a[ of length b− a and
therefore BSGS will require time O(

√
b− a).
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ALGORITHM 9.1 Baby-steps giant-steps.
Function BSGS(G, g, N , h)

Input : G ⊃ 〈g〉, g of order N ; h ∈ 〈g〉
Output: 0 ≤ n < N , gn = h

u←
⌈√

N
⌉

// Step 1 (baby steps)
initialize a table B for storing u pairs (element of G, integer < N)
store(B, (1G, 0))
H ← g; store(B, (H, 1))
for d := 2 to u− 1 do

H ← H ◦ g
store(B, (H, d))

end
// Step 2 (giant steps)
H ← H ◦ g
f ← 1/H = g−u

H ← h

for c := 0 to N/u do
// H = h ◦ f c
if ∃(H ′, d) ∈ B such that H = H ′ then

// H = h ◦ f c = gd hence n = cu+ d

return cu+ d;
end
H ← H ◦ f

end

Optimizing BSGS on average

On average, we could anticipate c to be around N/2, so that we may want to optimize the mean
number of operations of BSGS, or Cm = u + (N/2)/u, leading to u =

√
N/2 and Cm =

√
2N ,

decreasing the memory used by the same quantity. The number of set operations also decreases.
This gives us the line for BSGS optimized for average-case. Algorithm 9.1 is usable mutatis
mutandis.

Interleaving baby steps and giant steps

Pollard [98] proposed a variant of the BSGS algorithm interleaving baby steps and giant steps,
in order to decrease the average cost of BSGS. The idea is the following: If x = cu+ d, we may
find c and d after max(c, d) steps using the following algorithm. The rationale for the choice of
u will be explained next.

First of all, remark that any integer n in [0, N [ may be written as cu+ d where 0 ≤ c, d < u.
Algorithm 9.2 performs 2 max(c, d) group operations. We need to evaluate the average value of
this quantity over the domain [0, u[×[0, u[, which is equivalent to computing∫ 1

x=0

∫ 1

y=0
max(x, y) dx d y.

Fixing x, we see that max(x, y) = x for y ≤ x and y otherwise. Therefore the double integral is∫ 1

x=0

(∫ x

y=0
xd y +

∫ 1

y=x
yd y

)
dx = 2

3 .
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ALGORITHM 9.2 Interleaved Baby steps-giant steps.
Function IBSGS(G, g, N , h)

Input : G ⊃ 〈g〉, g of order N ; h ∈ 〈g〉
Output: 0 ≤ n < N , gn = h

u←
⌈√

N
⌉

initialize two tables B and G for storing u pairs (element of G, integer < N)
H ← 1G; store(B, (1G, 0)); store(G, (1G, 0))
F ← h

f ← g−u = 1/gu
for i := 1 to u do

H ← H ◦ g
if ∃(H ′, c) ∈ G such that H = H ′ then

// H = gi = H ′ = h ◦ g−uc hence n = cu+ i

return cu+ i;
end
store(B, (H, i))
F ← F ◦ f
if ∃(H ′, d) ∈ B such that F = H ′ then

// F = h ◦ g−ui = H ′ = gd hence n = iu+ d

return iu+ d;
end
store(G, (F , i))

end

We have proven that the mean time for this algorithm is 4/3
√
N , hence a constant that is smaller

than
√

2 for the original algorithm.

Grumpy giants

In [23], the authors designed a new variant of BSGS to decrease the average case running time
again. They gave a heuristic analysis of it. This was precised and generalized to other variants
(such as using negation) in [53]. We follow the presentation therein. For u = d

√
N/2e, the

algorithm computes the three sets of cardinality L that will be found later:

B = {gi for 0 ≤ i < L},

G1 = {h ◦ (gju) for 0 ≤ j < L},
G2 = {: h2 ◦ g−k(u+1) for 0 ≤ k < L},

and waits for collisions between any of the two sets, in an interleaved manner. The algo-
rithm succeeds when one of the following sets contains the discrete logarithm we are looking
for:

LL = {i− ju (mod N), 0 ≤ i, j < L}
∪ {2−1(i+ k(u+ 1)) (mod N), 0 ≤ i, k < L}
∪ {ju+ k(u+ 1) (mod N), 0 ≤ j, k < L}.
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ALGORITHM 9.3 Two grumpy giants and a baby.
Function Grumpy(G, g, N , h)

Input : G ⊃ 〈g〉, g of order N ; h ∈ 〈g〉
Output: 0 ≤ n < N , gn = h

u←
⌈√

N
⌉

initialize three tables B, G1 and G2 for storing u pairs (element of G, integer < N)
H ← 1G; store(B, (H, 0))
F1 ← h; store(G1, (F1, 0))
F2 ← h2; store(G2, (F2, 0))
f1 ← gu

f2 ← 1/(f1 ◦ g) = 1/gu+1

for i := 1 to L do
H ← H ◦ g
for j := 1 to 2 do

if ∃(H ′, c) ∈ Gj such that H = H ′ then
// H = gi = H ′ = hj ◦ f cj
return (−Expo(u, j)c+ i)/j (mod N);

end
end
store(B, (H, i))
for j := 1 to 2 do

Fj ← Fj ◦ fj
if ∃(H ′, d) ∈ B such that Fj = H ′ then

// Fj = hj ◦ gui = H ′ = gd

return (−Expo(u, j)i+ d)/j (mod N)
end
j′ ← 3− j
if ∃(H ′, c) ∈ Gj′ such that Fj = H ′ then

// Fj = hj ◦ f ij = H ′ = hj
′ ◦ f cj′

return (Expo(u, j′)c− Expo(u, j)i) + d)/(j − j′) (mod N)
end
store(Gj , (Fj , i))

end
end

For ease of exposition of Algorithm 9.3, we define Expo(u, j) to be the exponent of g in case
of Gj for j = 1..2. Precisely, a member of Gj is

hj ◦ fj = hj ◦ gExpo(u,j),

with Expo(u, j) = (−1)j−1(u+ j − 1).
It is conjectured that u is optimal and that L can be taken as O(

√
N). Experiments were

carried out to support this claim in [23, 53]. Moreover [53] contains an analysis of the algorithm,
leading to 1.25

√
N as total group operations.

9.2.2 The RHO Method

The idea of Pollard was to design an algorithm solving DLP for which the memory requirement
would be smaller than that of BSGS. Extending his RHO method of factoring, he came up with



9-8 Guide to Pairing-Based Cryptography

the idea of RHO for computing discrete logarithms [97].

A basic model

Let E be a finite set of cardinality m and suppose we draw uniformly n elements from E with
replacement. The probability that all n elements are distinct is

THEOREM 9.1

Proba = 1
m

n−1∏
k=1

(
1− k

m

)
.

Taking logarithms, and assuming n� m, we get

log Proba ≈ log(n/m)− n(n− 1)
2m .

This means that taking n = O(
√
m) will give a somewhat large value for this probability.

We can derive from this a very simple algorithm for computing discrete logarithms, presented
as Algorithm 9.4. Its time complexity would be O(

√
m logm) on average, together with a space

O(
√
m), which is no better than BSGS.

ALGORITHM 9.4 Naive DLP algorithm.
Function NaiveDL(G, g, N , h)

Input : G ⊃ 〈g〉, g of order N ; h ∈ 〈g〉
Output: 0 ≤ n < N , gn = h

initialize a table L for storing u triplets (element of G, two integers < N)
repeat

draw u and v at random modulo N
H ← gu ◦ hv
if ∃(H ′, u′, v′) ∈ L such that H = H ′ then

// H = gu ◦ hv = gu
′ ◦ hv′ hence n(v − v′) = u′ − u

if v − v′ is invertible modulo N then
return (u′ − u)/(v − v′) mod N

end
end
else

store(L, (H, u, v))
end

until a collision is found

If we assume that N is prime, the only case where v − v′ is non-invertible is that of v = v′.
In that case, we hit a useless relation between g and h that is discarded.

Our basic model is highly distributable. Unfortunately, the memory problem is still there.
It does not solve the space problem, so that we have to replace this by deterministic random
walks, as explained now.

Functional digraphs

Consider E of cardinality m as above and let f : E → E be a function on E. Consider the
sequence Xn+1 = f(Xn) for some starting point X0 ∈ E. The functional digraph of X is built
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FIGURE 9.1 Functional digraph.

with vertices Xi’s; an edge is put between Xi and Xj if f(Xi) = Xj . Since E is finite, the graph
has two parts, as indicated in Figure 9.1.

Since E is finite, the sequence X must end up looping. The first part of the sequence is the
set of Xi’s that are reached only once and there are µ of them; the second part forms a loop
containing λ distinct elements.

Examples. 1) E = G is a finite group, we use f(x) = ax, and x0 = a, (xn) purely is periodic,
i.e., µ = 0, and λ = ordG(a).
2) Take Em = Z/11Z and f : x 7→ x2 + 1 mod 11: We give the complete graph for all possible
starting points in Figure 9.2. The shape of it is quite typical: a cycle and trees plugged on the
structure.

By Theorem 9.1, λ and µ cannot be too large on average, since n = λ + µ. A convenient
source for all asymptotic complexities of various parameters of the graph can be found in [46].
In particular:

THEOREM 9.2 When m→∞

λ ∼ µ ∼
√
πm

8 ≈ 0.627
√
m.

Finding λ and µ is more easily done using the notion of epact.

PROPOSITION 9.3 There exists a unique e > 0 (epact) s.t. µ ≤ e < λ+µ and X2e = Xe.
It is the smallest non-zero multiple of λ that is ≥ µ: If µ = 0, e = λ and if µ > 0, e = dµλeλ.

Proof. The equation Xi = Xj with i < j only if i and j are larger than or equal to µ. Moreover,
λ must divide j − i. If we put i = e and j = 2e, then µ ≤ e and λ | e. There exists a single
multiple of λ in any interval of length λ, which gives unicity for e. When µ = 0, it is clear that
the smallest e > 0 must be λ. When µ > 0, the given candidate satisfies all the properties.

From [46], we extract

0 - 1 - 2 - 5 - 4 - 6
 	?6
7�

9

?

10
6

3 - 8�

FIGURE 9.2 The functional digraph of f : x 7→ x2 + 1 mod 11.
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THEOREM 9.3 e ∼
√

π5m
288 ≈ 1.03

√
m.

which means that finding the epact costs O(
√
m) with a constant not too large compared to the

actual values of µ and λ. Note that in most cryptographic applications, the collision x2e = xe
will be enough to solve our problem.

From a practical point of view, a nice and short algorithm by Floyd can be used to recover
the epact and is given as Algorithm 9.5. We need 3e evaluations of f and e comparisons. Ideas
for decreasing the number of evaluations are given in [31] (see also [91] when applied to integer
factorization).

ALGORITHM 9.5 Floyd’s algorithm.
Function epact(f , x0)

Input : A function f , a starting point x0
Output: The epact of (xn) defined by xn+1 = f(xn)
x← x0; y ← x0; e← 0
repeat

e← e+ 1
x← f(x)
y ← f(f(y))

until x = y

return e.

More parameters can be studied and their asymptotic values computed. Again, we refer to
[46], from which we extract the following complements.

THEOREM 9.4 The expected values of some of the parameters related to the functional
graph G are

• the number of components is 1
2 logm;

• the component size containing a node ν ∈ G is 2m/3;
• the tree size containing ν is m/3 (maximal tree rooted on a circle containing ν);
• the number of cyclic nodes is

√
πm/2 (a node is cyclic if it belongs to a cycle).

A way to understand these results is to imagine that there is a giant component that contains
almost all nodes.

Discrete logarithms

The idea of Pollard is to build a function f from G to G appearing to be random, in the sense
that the epact of f is c

√
N for some small constant c. This can be realized via multiplications

by random points and/or perhaps squarings in G.
Building on [105], Teske [114] has suggested the following: precompute r random elements

zi = gγi ◦ hδi for 1 ≤ i ≤ r for some random exponents. Then use some hash function H : G→
{1, . . . , r}. Finally, define f(y) = y ◦zH(y). The advantage of this choice is that we can represent
any iterate xi of f as

xi = gci ◦ hdi ,
where (ci) and (di) are two integer sequences. When e is found:

gc2e ◦ hd2e = gce ◦ hde ,
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or
gc2e−ce = hde−d2e

i.e.,
n(c2e − ce) ≡ (de − d2e) mod N.

With high probability, c2e − ce is invertible modulo N and we get the logarithm of h. When we
hit a collision and it is trivial, it is no use continuing the algorithm.

Experimentally, r = 20 is enough to have a large mixing of points. Under a plausible model,
this leads to a O(

√
N) method (see [114]). We give the algorithm in Algorithm 9.6. As an

example, if G contains integers, we may simply use H(x) = 1 + (x mod r).

ALGORITHM 9.6 RHO algorithm.
Function RHO(G, g, N , h, H, (zi, γi, δi))

Input : H : G→ {1, . . . , r}; (zi)1≤i≤r random powers zi = gγi ◦ hδi of G
Output: 0 ≤ n < N , gn = h

if h = 1G then
return 0

end
// invariant: x = gux ◦ hvx
x← h; ux ← 0; vx ← 1
y ← x; uy ← ux; vy ← vx
repeat

(x, ux, vx)← Iterate(G, N , H, (zi, γi, δi), x, ux, vx)
(y, uy, vy)← Iterate(G, N , H, (zi, γi, δi), y, uy, vy)
(y, uy, vy)← Iterate(G, N , H, (zi, γi, δi), y, uy, vy)

until x = y

// gux ◦ hvx = guy ◦ hvy
if vx − vy is invertible modulo N then

return (uy − ux)/(vx − vy) (mod N);
end
else

return Failure.
end

ALGORITHM 9.7 RHO iteration algorithm.
Function Iterate(G, N , H, (zi, γi, δi), x, ux, vx)

Input : H : G→ {1, . . . , r}; (zi)1≤i≤r random powers zi = gγi ◦ hδi of G;
x = gux ◦ hvx

Output: f(x, ux, vx) = (w, uw, vw) such that w = guw ◦ hvw
i← H(x)
return (x ◦ zi, ux + γi (mod N), vx + δi (mod N)).

Parallel RHO

How would one program a parallel version of RHO? We have to modify the algorithm. First of
all, we cannot use the notion of epact any more. If we start p processors on finding the epact of
their own sequence, we would not gain anything, since all epacts are of the same (asymptotic)
size. We need to share computations.
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FIGURE 9.3 Paths.

The idea is to launch p processors on the same graph with the same iteration function and
wait for a collision. Since we cannot store all points, we content ourselves with distinguished
elements, i.e., elements having a special form, uniformly with some probability θ over G. (For
integers, one can simply decide that a distinguished integer is 0 modulo a prescribed power of
2.) Each processor starts its own path from a random value in 〈g〉 and each time it encounters
a distinguished element, it compares it with shared distinguished elements already found and
when a useful collision is found, the program stops. The idea is that two paths colliding at some
point will eventually lead to the same distinguished element, that will be found a little while
later (see Figure 9.3). Typically, if θ < 1 is the proportion of distinguished elements, the time to
reach one of these will be 1/θ. Remembering properties of functional digraphs, this probability
should satisfy 1/θ < c

√
N for some constant c > 0.

In view of Theorem 9.4, the method succeeds since there is a giant component in which the
processors have a large probability to run in. At worst, we would need O(logm) of these to be
sure to have at least two processors in the same component.

There are many fine points that must be dealt with in an actual implementation. For ease of
reading, we first introduce a function that computes a distinguished path, starting from a point
and iterating until a distinguished element is reached, at which point is it returned.

ALGORITHM 9.8 Finding a distinguished path.
Function DistinguishedPath(f , x0)

Input : A function f , a starting point x0
Output: The first distinguished element found starting at x0,
x← x0; repeat

x← f(x)
until x is distinguished
return x.

At this point, the master can decide to continue from this distinguished element, or start
a new path. One of the main problems we can encounter is that a processor be trapped in a
(small) cycle. By the properties of random digraph, a typical path should be of length O(

√
N);

if θ is small enough, the probability to enter a cycle will be small. However, in some applications,
small cycles exist. Therefore, we need some cycle detection algorithm, best implemented using
a bound on the number of elements found. Modifying Algorithm 9.8 can be done easily, for
instance, giving up on paths with length > 20/θ as suggested in [118]. The expected running
time is

√
πN/2/p+ 1/θ group operations.

Note that in many circumstances, we can use an automorphism in G, and we take this into
account for speeding up the parallel RHO process, despite some technical problems that arise
(short cycles). See [44], and more recently [72, 24].

Other improvements are discussed in [36] for prime fields, with the aim of reducing the cost
of the evaluation of the iteration function.
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9.2.3 The Kangaroo Method

This method was designed to solve Interval-DLP with a space complexity as small as that of
RHO, assuming the discrete logarithm we are looking for belongs to [0, `] with ` ≤ N . We would
like to obtain an algorithm whose running time is O(

√
`) instead of O(

√
N).

The idea is to have two processes, traditionally called tame kangaroo and wild kangaroo. The
tame kangaroo follows a random path starting from g`/2 and adding random integers to the
exponent, while the wild kangaroo starts from h = gn and uses the same deterministic random
function. We use a sequence of integer increments (δi)1≤i≤r whose mean size is m. Then, we
iterate: f(x) = x ◦ gδH(x) . Both kangaroos can be written T = gdT and W = h ◦ gdW for two
integer sequences dT and dW that are updated when computing f .

When hitting a distinguished element, it is stored in a list depending on its character (tame
or wild). When a collision occurs, the discrete logarithm is found. The analysis is heuristic along
the following way. The original positions of KT and KW can be either

•
0

•
n

•
`/2

•
`

or •
0

•
n

•
`/2

•
`

In either case, we have a back kangaroo (B) and a front kangaroo (F ) heading right. They are
at mean mutual distance `/4 at the beginning. Since the average distance between two points
is m, B needs `/(4m) jumps to reach the initial position of F . After that, B needs m jumps
to reach a point already reached by F . The total number of jumps is therefore 2(`/(4m) +m),
which is minimized for m =

√
`/2, leading to a 2

√
` cost. A more precise analysis is given in

[118]. The reader can find details as Algorithm 9.9.

ALGORITHM 9.9 Sequential kangaroos.
Function Kangaroo(G, g, N , h, `)

Input : G ⊃ 〈g〉, g of order N ; h ∈ 〈g〉
Output: 0 ≤ n < `, gn = h

m←
⌈√

`/2
⌉

compute positive increments (δi)1≤i≤r of mean m
initialize two tables T and W for storing pairs (element of G, integer < N)
T ← g`/2; dT ← `/2
W ← h; dW ← 0
while true do

(T, dT )← f((δi), T, dT )
if ∃(W ′, d′) ∈ W such that W ′ = T then

// T = gdT , W ′ = h ◦ gd′
return (dT − d′) (mod N)

end
(W,dW )← f((δi),W, dW )
if ∃(T ′, d′) ∈ T such that T ′ = W then

// T ′ = gd
′
, W = h ◦ gdW

return (d′ − dW ) (mod N)
end

end

A close algorithm that uses another model of analysis (though still heuristic) is that of
Gaudry-Schost [54], improving on work by Gaudry and Harley. This algorithm is generalized to
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any dimension (e.g., solving gx = ga1n1+a2n2+···+adnd for given (ai)’s) and improved in [51] (see
also [52] for the use of equivalence classes).

Parallel kangaroos

The idea, as for parallel RHO, is to start p kangaroos that will discover and store distinguished
elements. Following [98], we assume p = 4p′, and select u = 2p′ + 1, v = 2p′ − 1, so that
p = u+ v. Increments of the jumps will be (uvs1, . . . , uvsk) for small si’s, insisting on the mean
to be ≈

√
`/(uv). The i-th tame kangaroo will start at g`/2+iv for 0 ≤ i < u; wild kangaroo Wi

will start from h◦ giu, 0 ≤ i < v. A collision will be `/2 + iv = n+ ju mod (uv) and the solution
is unique. This prevents kangaroos of the same herd from colliding. The final running time is
effectively divided by p.

9.2.4 Solving Batch-DLP

Using BSGS

If we know in advance that we have to solve the DLP for k instances, then Step 1 of BSGS is
unchanged (but with another u) and Step 2 is performed at most kN/u times. This implies that
we can minimize the total cost u + kN/u using u =

√
kN , a gain of

√
k compared to applying

the algorithm k times. Mixing this with other tricks already mentioned is easy.

Parallel methods

The work of [45] was analyzed in [80]: A batch of k discrete logarithms in a group of order N
reduces to an average Θ(k−1/2N1/2) group operations for k � N1/4; each DL costs Θ(N3/8).
[80] also defines some problems related to DLP. The method was further studied in [60].

A more systematic way to consider the problem is the following; see [23] and its follow-up
[22], where interval-batch-DLP is also considered and solved with the same ideas. We consider
again a table of random steps not involving any target in its definition. The idea is to build a
table T of distinguished elements found by random walks starting at random elements gx. If T
is the table size and W the length of the walk, then TW elements will be encountered. When
given a target h, a random walk of length W will encounter one of the elements in T , solving
DLP for h. The probability that none of the points in the new walk encounters any of the first is(

1− 1
N

)TW 2

.

Taking logarithms, this is close to TW 2/N , so that a reasonable chance of success is for W ≈
α
√
N/T for some constant α. Using this, the probability can be written exp(−α2), favoring

rather large αs, therefore enabling (and favoring) parallel work too.
Extending this algorithm to the finding of k targets leads to a total cost of

O(TW ) + kO(W ) = O((T + k)W ) = O(
√
TN + k

√
N/T ),

and this is dominated by kW for k > T . If we want to optimize the cost as a function of k, we
see that T = k is minimal. For T = N1/3, we get W = N1/3 for each walk and TW = N2/3 for
the precomputation phase.

For a real implementation, we can choose t = dlog2N/3e. If G contains integers, define x to
be distinguished if x ≡ 0 mod 2t. With this choice, we need to store 2t elements 22t operations
are needed for the precomputation phase, and 2t for each of the 2t target.
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9.3 Finite Fields and Such

9.3.1 Introduction

There exist dedicated algorithms to compute DL in finite fields that exploit the structure of
the finite field. These algorithms are sub-exponential in the size of the field (but not in the
involved subgroup order). Moreover, in 2014 two variants of a quasi-polynomial-time algorithm
were proposed, for a class of finite fields such as F2n and F3n , where n is composite. As a
consequence, any pairing-friendly curve defined over a finite field of small characteristic should
definitely be avoided. We explain in the following the main idea of these algorithms known as
index calculus methods. Three main variants apply to three different types of finite fields (small,
medium, and large characteristic, as explained below). We give the specializations of each variant
and the range of finite fields to which they apply. Moreover when the prime defining the finite
field is of special form (e.g., given by a polynomial), special variants provide an even lower
complexity to compute DL.

Interest for pairing-based cryptography

Studying the complexity of DL computations in finite fields is essential for pairing-based cryp-
tosystem designers. The pairing target group for any algebraic curve defined over a finite field
is a subgroup in an extension of that finite field. Here are the most common finite fields that
arise with pairing-friendly curves, in increasing order of hardness of DL computation:

1. F24n and F36m for supersingular curves defined over F2n , F3m , resp.
2. Small extension Fpn of prime field with p of special form, given by a polynomial. This

is the case for curves in families such as MNT [90], BLS [20], BN [21] curves, and any
family obtained with the Brezing-Weng method [32].

3. Small extension of prime field Fp with p, without any special form, e.g., Fp2 ,Fp6

for supersingular curves in large characteristic, and any curves generated with the
Cocks-Pinch or Dupont-Enge-Morain methods.

The first class: Supersingular curves defined over a small characteristic finite field also corre-
spond to a variant of the index calculus method where computing a DL is much easier. The two
other classes are each parted in medium and large characteristic. This is explained in the next
section.

Small, medium, and large characteristic

The finite fields are commonly divided into three cases, depending on the size of the prime p
(the finite field characteristic) compared to the extension degree n, with Q = pn. Each case
has its own index calculus variant, and the most appropriate variant that applies qualifies the
characteristic (as small, large, or medium):

• Small characteristic: One uses the function field sieve algorithm, and the quasi-
polynomial-time algorithm when the extension degree is suitable for that (i.e., smooth
enough);

• Medium characteristic: one uses the NFS-HD algorithm. This is the High Degree
variant of the Number Field Sieve (NFS) algorithm. The elements involved in the
relation collection are of higher degree compared to the regular NFS algorithm.

• Large characteristic: one uses the Number Field Sieve algorithm.

Each variant (QPA, FFS, NFS-HD and NFS) has a different asymptotic complexity. The asymp-
totic complexities are stated with the L-notation. This comes from the smoothness probability
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of integers. The explanation will be provided in Section 9.3.2. The L-notation is defined as
follows.

DEFINITION 9.1 Let Q be a positive integer. The L-notation is defined by

LQ[α, c] = exp
((
c+ o(1)

)
(logQ)α(log logQ)1−α

)
with α ∈ [0, 1] and c > 0 .

The α parameter measures the gap between polynomial time: LQ[α = 0, c] = (logQ)c, and
exponential time: LQ[α = 1, c] = Qc. When c is implicit, or obvious from the context, one
simply writes LQ[α]. When the complexity relates to an algorithm for a prime field Fp, one
writes Lp[α, c].

Main historical steps

Here is a brief history of DL computations in finite fields. The DLP for cryptographic use was
first stated in prime fields, without pairing context [43]. Binary fields were used for efficiency
reasons (they provide a better arithmetic). Finite fields are not generic groups and there exist
subexponential time algorithms to compute discrete logarithms in finite fields. A long time ago
Kraitchik [78, pp. 119–123], [79, pp. 69–70, 216–267] introduced the index calculus method
(from the French calcul d’indice) to compute discrete logarithms. His work was rediscovered in
the cryptographic community in the 1970s. The first algorithms to compute discrete logarithms
in prime fields are attributed to Adleman and Western–Miller [6, 119]. These algorithms had a
complexity of Lp[1/2, c]. However Coppersmith showed as early as 1984 [40] that the DLP is much
easier in binary fields than in prime fields of the same size. He obtained an LQ[1/3, c] running-
time complexity for his algorithm. He also showed how fast his algorithm can compute discrete
logarithms in F2127 (his algorithm was better for fields whose extension degree is very close to a
power of 2, in his record 127 = 27−1). Later, Adleman and Huang generalized the Coppersmith’s
method to other small characteristic finite fields and named it the Function Field Sieve (FFS)
algorithm [7, 8]. The asymptotic complexity was LQ[1/3, ( 32

9 )1/3 ≈ 1.526]. In 1986, the state-
of-the-art for computing DL in prime fields was the Coppersmith, Odlyzko, and Schroeppel
(COS) algorithm [42], in time Lp[1/2, 1]. Then in 1993, Gordon designed the Number Field
Sieve algorithm for prime fields [55] and reached the same class of sub-exponential asymptotic
complexity as the FFS algorithm: L[1/3, c] but with a larger constant c = 91/3 ≈ 2.080. Between
the two extremes (F2n and Fp) is the medium characteristic case. In 2006, a huge work was done
by Joux, Lercier, Smart, and Vercauteren [67] to propose algorithms to compute the DLP in
LQ[1/3, c] for any finite field. Until 2013, the complexity formulas were frozen at this point:

• a complexity of LQ[1/3, ( 32
9 )1/3 ≈ 1.526] for small characteristic finite fields with the

Function Field Sieve algorithm [8];
• a complexity of LQ[1/3, ( 128

9 )1/3 ≈ 2.423] for medium characteristic finite fields with
the Number Field Sieve–High Degree algorithm [67];

• a complexity of LQ[1/3, ( 64
9 )1/3 ≈ 1.923] for large characteristic finite fields with the

Number Field Sieve algorithm [106, 67, 85].

It was not known until recently whether small characteristic fields could be a gap weaker
than prime fields. However, computing power was regularly increasing and in 2012, Hayashi,
Shimoyama, Shinohara, and Takagi were able to compute a discrete logarithm record in F36·97 ,
corresponding to a 923-bit field [58], with the Function Field Sieve. Then in December 2012
and January 2013, Joux released two preprints later published in [63] with a LQ[1/4] algorithm,
together with record-breaking discrete logarithms in F24080 and F26168 . This was improved by
various researchers. In 2014, Barbulescu, Gaudry, Joux, and Thomé [17] on one side and Granger,
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Kleinjung, and Zumbrägel [56] on the other side proposed two versions of a quasi polynomial-
time algorithm (QPA) to solve the DLP in small characteristic finite fields. All the techniques
that allowed this breakdown are not applicable to medium and large characteristic so far.

9.3.2 Index-Calculus Methods

We saw in Section 9.2 that the best complexity is obtained by balancing parameters in the
algorithms. Over finite fields, FFS and NFS algorithms also reach sub-exponential complexity
through balancing parameters.

Throughout this section, we follow the clear presentation of index-calculus methods made
in [88]. We present in Algorithm 9.10 the basic index-calculus method for computing DL in a
prime field.

ALGORITHM 9.10 Index calculus in (Z/pZ)∗ .
Function IndexCalculus(F∗p, g, h)

Input : F∗p ⊃ 〈g〉, g of order dividing p− 1
Output: 0 ≤ x < p− 1, gx = h

Phase 1: fix #B and find the logarithms modulo p− 1 of small primes in
B = {p1, p2, . . . , p#B ≤ B}:
Choose integers ti ∈ [1, . . . , p− 1] s.t. gti as an integer splits completely in small
primes of B:

gti mod p =
#B∏
b=1

p
αb,i
b

so that taking the logarithm to the base g gives a relation:

ti =
#B∑
b=1

αb,i logg pb mod (p− 1)

Phase 2: When enough relations are collected, solve the system to get
{logg pb}1≤b≤#B.
Phase 3: Compute the individual discrete logarithm of h in base g.
Look for t s.t. hgt mod p as an integer factors into small primes of B:

hgt mod p =
#B∏
b=1

pαbb ⇔ x+ t ≡
#B∑
b=1

αb logg pb mod (p− 1)

return x.

Example for a tiny prime p

Let p = 1019 and g = 2. We need to find the logarithms modulo 2 and 509, since p− 1 = 2 · 509.
We first locate some smooth values of gb mod p:

2909 = 2 · 32 · 5, 210 = 5, 2848 = 33 · 5, 2960 = 22 · 3.
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The system to be solved is
1 2 1
10 0 0
0 3 1
2 1 0

 ·X =


909
10
848
960

 mod 1018.

Solving modulo 2 and 509 separately and recombining by the Chinese remainder theorem, we
find

log2 2 = 1, log2 3 = 958, log2 5 = 10.

Note that solving modulo 2 can be replaced by computations of Legendre symbols.
Consider computing log2 314. We find that

h · g372 ≡ 24 · 52 mod p

from which logg h = 4 + 2 · 10 − 372 mod 1018 or log2(314) = 670. Had we used rational
reconstruction (a classical trick for DL target solution), we would have found

h · g409 ≡ 2/3 mod p

from which the log of t follows from

logg h+ 409 ≡ 1− log2 3 mod 1018.

A first complexity analysis

We will prove that:

THEOREM 9.5 The asymptotic heuristic running-time of Algorithm 9.10 is Lp[1/2, 2] with
#B ≈ B = Lp[1/2, 1/2].

The running-time of algorithm 9.10 (pp. 9–17) is related to smoothness probabilities of
integers in Phase 1 and 3, and linear algebra in phase 2. We will use the L-notation formula
given in 9.1. To estimate the smoothness probability, we need the result of Corollary 9.1 from
Theorem 9.6.

THEOREM 9.6 (Canfield–Erdős–Pomerance [34]) Let ψ(x, y) be the number of natural
numbers smaller or equal to x which are y-smooth. If x ≥ 10 and y ≥ log x, then it holds that

ψ(x, y) = xu−u(1+o(1)) with u = log x
log y , (9.1)

where the limit implicit in the o(1) is for x→∞.

The Canfield–Erdős–Pomerance [34] theorem provides a useful result to measure smoothness
probability:

COROLLARY 9.1 (B-smoothness probability) For an integer S bounded by LQ[αS , σ]
and a smoothness bound B = LQ[αB , β] with αB < αS, the probability that S is B-smooth is

Pr[S is B-smooth] = LQ

[
αS − αB ,−(αS − αB)σ

β

]
. (9.2)
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We will also need these formulas:

LQ[α, c1]LQ[α, c2] = LQ[α, c1 + c2] and LQ[α, c1]c2 = LQ[α, c1c2] . (9.3)

Proof. (of Theorem 9.5.)
In our context, we want to find a smooth decomposition of the least integer r (|r| < p)

s.t. r = gbi (mod p). We need to estimate the probability of an integer smaller than p to be
B-smooth. We write the formula, then balance parameters to ensure the optimal cost of this
algorithm. Let us write the smoothness-bound B in sub-exponential form: B = Lp[αB , β]. Any
prime in B is smaller than B. The probability of r bounded by p = Lp[1, 1] to be B-smooth is

Pr[r is B-smooth] = Lp

[
1− αB , (1− αB) 1

β

]1+o(1)

.

To complete Phase 2, we need enough relations to get a square matrix and solve the system,
in other words, more than #B. Since the number of prime numbers ≤ B is B/ logB for B →∞,
we approximate #B ≈ B. The number of iterations over gti and smoothness tests to be made
to get enough relations is

number of tests = number of relations
B-smoothness probability = B

Pr = Lp[αB , β]Lp[1− αB , (1− αB)/β] .

The dominating α-parameter will be max(αB , 1−αB) and is minimal for αB = 1/2. The number
of tests is then Lp[1/2, β + 1

2β ] (thanks to Equation (9.3)).
Now we compute the running time to gather the relations: This is the above quantity times

the cost of a smoothing step. At the beginning of index calculus methods, a trial division was
used, so one B-smooth test costs at most #B = B = Lp[1/2, β] divisions. The total relation
collection running time is then

Lp[1/2, 2β + 1/(2β)] .

The linear algebra phase finds the kernel of a matrix of dimension B. It has running-time of
Bω ≈ Lp[1/2, ωβ] (ω is a constant, equal to 3 for classical Gauss, and nowadays we use iterative
methods, of complexity B2+o(1); see Section 9.3.3). The total running time of the first two steps
is

Lp[1/2, 2β + 1/(2β)] + Lp[1/2, 3β] .

The minimum of β 7→ 2β+ 1
2β is 2, for β = 1/2 (take the derivative of the function x 7→ 2x+ 1

2x
to obtain its minimum, for x > 0). We conclude that the total cost of the first two phases is
dominated by Lp[1/2, 2]: the relation collection phase.

The last phase uses the same process as finding one relation in Phase 1. It needs 1/Pr[r = gt

(mod p) is B-smooth] tries of cost B each, hence B/Pr = Lp[1/2, β + 1
2β ] = Lp[1/2, 3/2].

COS algorithm, Gaussian integer variant

Coppersmith, Odlyzko, and Schroeppel proposed in [42] a better algorithm by modifying the
relation collection phase. They proposed to sieve over elements of well-chosen form, of size
∼ √p instead of p. They also proposed to use sparse matrix linear algebra, to improve the
second phase of the algorithm. Computing the kernel of a sparse square matrix of size B has
a running-time of O(B2+o(1)) with their modified Lanczos algorithm. We present now their
Gaussian Integer variant, so that the Gordon Number Field Sieve will be clearer in Section
9.3.4. We consider a generator g of F∗p and want to compute the discrete logarithm x of h in
base g, in the subgroup of F∗p of prime order `, with ` | p− 1.

The idea of [42] is to change the relation collection: In the former case, iterating over gti
and taking the smallest integer r ≡ gti (mod p) always produces r of the same size as p. In
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this version, another iteration is made. The idea is to produce elements r much smaller than
p, to improve their smoothness probability. In the previous index calculus, we made relations
between integers (we lifted gti mod p to r ∈ Z). Here one side will consider integers, the sec-
ond side will treat algebraic integers. Let A be a small negative integer which is a quadratic
residue modulo p. Preferably, A ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163} so that Q[

√
A] is

a unique factorization domain. For ease of presentation, we assume that p ≡ 1 mod 4 and take
A = −1. Our algebraic side will be the Gaussian integer ring Z[i]. Now let 0 < U, V <

√
p such

that p = U2 +V 2 (computed via the rational reconstruction method, for example). The element
U/V is a root of x2 + 1 modulo p. For an analogy with the number field sieve, one can define
f = x2 + 1 for the first (algebraic) side and g = U − xV for the second (rational) side. The two
polynomials have a common root U/V modulo p. We define a map from Z[i] to Fp:

ρ : Z[i] → Fp
i 7→ UV −1 mod p

hence a− bi 7→ V −1(aV − bU) mod p .
(9.4)

Now we sieve over pairs (a, b) on the rational side, looking for a B-smooth decomposition of the
integer aV − bU , as in Algorithm 9.10. What will be the second member of a relation? Here
comes the algebraic side. We consider the elements a− bi ∈ Z[i] (with the same pairs (a, b)) and
iterate over them such that a− bi, as an ideal of Z[i], factors into prime ideals p of Z[i] of norm
NZ[i]/Z(p) smaller than B. (For example: 1 + 3i = (1 + i)(2 + i) with N (1 + 3i) = 12 + 32 = 10 =
2 · 5 = N (1 + i)N (2 + i)). Here is the magic: Since NZ[i]/Z(a− bi) = a2 + b2 and we sieve over
small 0 < a < E, − E < b < E, the norm of a− bi will be bounded by E2 and the product of
the norms of the prime ideals p in the factorization, which is equal to a2 + b2, will be bounded
by E2 as well. At this point, we end up with pairs (a, b) such that

aV − bU =
∏
pb≤B

p
sj
b , and a− bi =

∏
N (pb′ )≤B

p
tj
b′ .

Then we use the map ρ to show up an equality, then get a relation. We have ρ(a − bi) =
a − bUV −1 = V −1(aV − bU) so up to a factor V (which is constant along the pairs (a, b)), we
have:

aV − bU =
∏
pb≤B

p
sj
b = V

∏
N (pb′ )≤B

ρ(pb′)tj . (9.5)

We don’t need to know explicitly the value of ρ(pb′) in Fp. We simply consider it as an element
of the basis B of small elements: B = {V }∪ {pb ≤ B}∪ {ρ(pb′) : NZ[i]/Z(pb′) ≤ B}. In the COS
algorithm, the matrix is indeed two times larger than in the basic version of Algorithm 9.10
(2B instead of B), but with norms a2 + b2 and V a − bU much smaller; we can decrease the
smoothness bound B. Taking the logarithm of Equation (9.5), we obtain an equation between
logarithms of elements in B:∑

pb≤B

sj log pb = log V +
∑

NZ[i]/Z(pb′ )≤B

tj log ρ(pb′). (9.6)

The optimal choice of parameters is E = B = Lp[1/2, 1/2], so that both sieving and linear
algebra cost Lp[1/2, 1], better than the previous Lp[1/2, 2] thanks to the much better smoothness
probabilities of the elements considered. Phase 2 of the algorithm computes the kernel of a large
sparse matrix of more than 2B rows. Its expected running time is (2B)2, hence again Lp[1/2, 1].
The expected running time of the individual logarithm computation (Phase 3) is Lp[1/2, 1/2]
([42, §7]).
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9.3.3 Linear Algebra

Before diving into the explanation of the most powerful algorithms for computing DLs, we make
a pause and give some ideas on a technical but crucial problem: linear algebra and how we solve
the systems arising in DL computations.

At the beginning of index calculus methods, the only available method was the ordinary
Gauss algorithm, whose complexity is cubic in the number of rows (or columns) N of the matrix
M . For small matrices, this is enough, but remember that entries in the matrix are elements of
some finite field F` for some large `, in contrast with matrices we encounter in integer factoriza-
tion, which are boolean. Fill-in in DL matrices is therefore extremely costly and we should be
careful in doing this.

DL-matrices are very sparse, as factorization matrices. The coefficients are small integers
(in absolute value). Special methods have been designed for all these matrices. Generally, some
form of sparse Gaussian elimination is done in order to reduce the size of the matrix prior to the
use of more sophisticated methods to be described below. The idea is to perform elimination
using a sparse structure and minimize fill-in as long as possible. The general term for these is
filtering, and it was optimized and made necessary due to the use of many large primes in recent
years (see [30] for recent progress in the field).

Adaptation of numerical methods was done: The Lanczos iterative algorithm could be gen-
eralized to the finite field case. A new class of iterative methods was invented by Wiedemann
[120]. Both classes have a complexity of O(N2+ε) where we assume that our matrix has size
N1+ε. The core of the computation is the determination of the so-called Krylov subspaces,
namely V ect〈M i · b〉 for some fixed vector b. Applying M to b costs O(N1+ε), and N iterations
are needed. The advantage of such methods is also to be able to handle sparse structures for M .

Variants operating on blocks of vectors were designed by Coppersmith [39], for integer fac-
torization as for DLP. Despite the use of such methods, space and time become quite a problem
in recent records. The natural idea is to try to distribute the computations over clusters or larger
networks. The only method that can be partly distributed is the block Wiedemann algorithm.
A good reference for this part is Thomé’s thesis [117]. All his work is incorporated and available
in the CADO-NFS package [112], including the many refinements to distribute the computations
over the world and some special tricks related to Schirokauer maps (see [70] for an independent
work on the same topic). Record DL computations now handle (sparse) matrices with several
millions of rows and columns.

9.3.4 The Number Field Sieve (NFS)

Many improvements for computing discrete logarithms first concerned prime fields and were
adapted from improvements on integer factorization methods. Until 1993, the state-of-the-art
algorithm for computing discrete logarithms in prime fields was the Coppersmith, Odlyzko, and
Schroeppel (COS) algorithm [42] in Lp[1/2, 1]. In some cases, integer factorization was easier
because the modulus had a special form. The equivalent for DL computation in prime fields is
when p has a special form, given by a polynomial P of very small coefficients, p = 2127 − 1 for
example. In that case, one can define an algebraic side with this polynomial P . By construction,
P will have a root m modulo p of size ∼ p1/ degP , hence the polynomial of the rational side
(g = U − V x in the COS algorithm) will have coefficients of size m ∼ p1/ degP . However, a
generic method was found to reduce the coefficient size of the polynomials when one of the degrees
increases. In 1993, Gordon [55] proposed the first version the of NFS–DL algorithm for prime
fields Fp with asymptotic complexity Lp[1/3, 91/3]. Gordon’s Lp[1/3] algorithm is interesting for
very large values of p that were not yet targets for discrete logarithm computations in the 1990s.
Buhler, H. Lenstra, and Pomerance [33] estimated the crossover point at between 100 and 150
decimal digits, i.e., between 330 and 500 bits.
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In Gordon’s algorithm, Phase 1 and Phase 3 are modified. The Phase 2 is still a large
sparse matrix kernel computation. We explain the polynomial selection method and the sieving
phase. We also explain why the Phase 3 (individual logarithm computation) needs important
modifications. The hurried reader can skip the proof of Theorem 9.7.

Polynomial selection with the base-m method

The polynomial selection of [55] is an analogy for prime fields of the method [33] for integer
factorization. We will build a polynomial f of degree d > 1 and a polynomial g of degree 1 such
that they have a common root m modulo p, and have coefficients of size ∼ p1/d. Set m = [p1/d]
and write p to the base-m:

p = cdm
d + cd−1m

d−1 + . . .+ c0,

where 0 ≤ ci < m. Then set

f = cdx
d + cd−1x

d−1 + . . .+ c0 and g = x−m .

Under the condition p > 2d2 , f will be monic [33, Prop. 3.2]. These two polynomials have a
common root m modulo p, hence a similar map than in Equation (9.4) is available:

ρ : Z[x]/(f(x)) = Z[αf ] → Fp
αf 7→ m mod p

hence a− bαf 7→ a− bm mod p .
(9.7)

Relation collection

The new technicalities concern factorization of ideals a − bαf into prime ideals of Z[αf ]. This
is not as simple as for Z[i]: Z[αf ] may not be a unique factorization domain, moreover what is
called bad ideals can appear in the factorization. To end up with good relations, one stores only
pairs (a, b) such that a − bαf factors into good factors into good prime ideals of degree are of
norm bounded by B. The sieve on the rational side is as in the COS algorithm.

Individual discrete logarithm computation

The other new issue is the individual logarithm computation. Since the sieving space and the
factor basis B are much smaller (Lp[1/3, β] instead of Lp[1/2, β]), there are much fewer known
logarithms. It is hopeless to compute gth with t at random until a smooth factorization is found,
because now the smoothness bound is too small. A strategy in two phases was proposed by Joux
and Lercier: Fix a larger smoothness bound B1 = Lp[2/3, β1]. First find a B1-smoothness
decomposition of gth. Secondly, treat separately each prime factor less than B1 but larger than
B to obtain a B-smooth decomposition. Finally retrieve the individual logarithm of h in base
g. Each step has a cost LQ[1/3, c′] with c′ smaller than the constant c = 1.923 of the two
dominating steps (relation collection and linear algebra).

Asymptotic complexity

We present how to obtain the expected heuristic running-time of Lp[1/3, ( 64
9 )1/3] to compute

DL in Fp with the base-m method and a few improvements to the original Gordon algorithm.
The impatient reader can admit the result of Theorem 9.7 and skip this section.

THEOREM 9.7 The running-time of the NFS-DL algorithm with base-m method is

Lp

[
1/3,

(
64
9

)1/3

≈ 1.923

]
,
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TABLE 9.3 Optimal value δ( log p
log log p )1/3 with δ = 1.44 for p of 100 to 300 decimal digits. One

takes d = [x] or d = bxc in practice.

log10 p 40 60 80 100 120 140 160 180 200 220 240 260 280 300
dlog2 Be (bits) 18b 21b 24b 27b 29b 31b 33b 35b 36b 38b 39b 41b 42b 43b
δ
(

log p
log log p

)1/3
3.93 4.37 4.72 5.02 5.27 5.50 5.71 5.90 6.08 6.24 6.39 6.54 6.68 6.81

obtained for a smoothness bound B = Lp[1/3, β] with β = (8/9)1/3 ≈ 0.96, a sieving bound
E = B (s.t. |a|, |b| < E), and a degree of f to be d = dδ( log p

log log p )1/3c with δ = 31/3 = 1.44.

We present in Table 9.3 the optimal values of B (in bits) and d with β ≈ 0.96 and δ ≈ 1.44
for p from 100 to 300 decimal digits (dd).

Proof. (of Theorem 9.7.) One of the key-ingredients is to set an optimal degree d for f . So let

d = δ

(
log p

log log p

)1/3

so that m = p1/d = Lp

[
2/3, 1

δ

]
. (9.8)

(Compute logm = 1
d log p = 1

δ

(
log log p

log p

)1/3
log p = 1

δ log2/3 p log1/3 log p). We will compute the
optimal value of δ under the given constraints later. The aim is to get a bound on the norms of
the elements a − bαf and a − bm of size Lp[2/3, ·] and a smoothness bound Lp[1/3, ·], so that
the smoothness probability will be Lp[1/3, ·]. A smoothness test is done with the Elliptic Curve
Method (ECM). The cost of the test depends on the smoothness bound B and the total size of the
integer tested. We first show that the cost of an ECM B-smoothness test with B = Lp[1/3, β],
of an integer of size Lp[2/3, η] is Lp[1/6,

√
2β/3], hence is negligible compared to any Lp[1/3, ·].

The cost of this ECM test depends on the size of the smoothness bound:

cost of an ECM test = LB [1/2,
√

2] .

Writing logB = β log1/3 p log2/3 log p, we compute logLB [1/2,
√

2] =
√

2(logB log logB)1/2,
cancel the negligible terms, and get the result.

We denote the infinity norm of a polynomial to be the largest coefficient in absolute value:

‖f‖∞ = max
0≤i≤deg f

|fi| . (9.9)

We have
‖f‖∞, ‖g‖∞ ≤ m = Lp

[
2
3 ,

1
δ

]
.

In Phase 1, we sieve over pairs (a, b) satisfying 0 < a < E,−E < b < E and gcd(a, b) = 1, so
the sieving space is of order E2. We know that we can sieve over no more than Lp[1/3, ·] pairs
to be able to balance the three phases of the algorithm. So let E = Lp[1/3, ε] pairs, with ε to
be optimized later. The sieving space is E2 = Lp[1/3, 2ε]. Since the cost of a B-smoothness test
with ECM is negligible compared to Lp[1/3, ε], we conclude that the running time of the sieving
phase is E2 = Lp[1/3, 2ε].

We need at least B relations to get a square matrix, and the linear algebra cost will be
B2 = Lp[1/3, 2β]. To balance the cost of the sieving phase and the linear algebra phase, we set

E2 = B2, hence ε = β

and we replace ε by β in the following computations.
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What is the norm bound for a−bαf ? We need it to estimate its probability to be B-smooth.
The norm is computed as the resultant (denoted Res) of the element a − bαf as a polynomial
a− bx in x, and the polynomial f . Then we bound the norm. The norm is

N (a− bαf ) = Res(f(x), a− bx)
= ad + fd−1a

d−1b+ . . .+ abd−1f1 + bdf0 =
∑d

i=0 a
ibd−ifi

≤ (deg f + 1)‖f‖∞Edeg f = (d+ 1)p1/dEd

with d+1 negligible, p1/d = m = Lp[2/3, 1/δ], and Ed = Bd = Lp[2/3, βδ] (first compute d logB
to get the result).

N (a− bαf ) ≤ Lp[2/3, 1/δ + δβ] .

Then for the g-side we compute

a− bm ≤ Ep1/d = Lp[1/3, β]Lp[2/3, 1
δ ]

≤ Lp[2/3, 1
δ ]

since the Lp[1/3, β] term is negligible.
We make the usual heuristic assumption that the norm of a−bαf follows the same smoothness

probability as a random integer of the same size. Moreover, we assume that the probability of
the norm of a− bαf and a− bm to be B-smooth at the same time is the same as the probability
of their product (bounded by Lp[2/3, 2/δ + δβ]) to be B-smooth.

Finally we apply Corollary 9.1 and get

Pr[N (a− bαf ) and a− bm are B-smooth] = 1/Lp
[

1
3 ,

1
3

(
2
δβ

+ δ

)]
.

How many relations do we have ? We multiply this smoothness probability Pr by the sieving
space E2 and obtain

number of pairs (a, b) tested = number of relations
B-smoothness probability = B

Pr = Lp

[
1/3, β + 1

3

(
2
δβ

+ δ

)]
.

Since B2 pairs were tested, we obtain the equation

2β = β + 1
3

(
2
δβ

+ δ

)
⇔ β = 1

3

(
2
δβ

+ δ

)
. (9.10)

We want to minimize the linear algebra and sieving phases, hence we minimize β > 0 through
finding the minimum of the function x 7→ 1

3 ( 2
βx + x) (by computing its derivative): This

is 2/3
√

2/β, obtained with δ = x =
√

2/β. We end up by solving Equation (9.10): β =
2/3
√

2/β ⇔ β = (8/9)1/3. Since the running time of Phase 1 and Phase 2 is Lp[1/3, 2β], we
obtain 2β = (64/9)1/3 as expected. The optimal degree of the polynomial f is d = δ( log p

log log p )1/3

with δ = 31/3 ≈ 1.44.

9.3.5 Number Field Sieve: Refinements

Norm approximation

We can approximate the norm of an element b in a number field Kf = Q[x]/(f(x)) by the two
following bounds.

The Kalkbrener bound [71, Corollary 2] is the following:

|Res(f, b)| ≤ κ(deg f, deg b) · ‖f‖deg b
∞ ‖b‖deg f

∞ , (9.11)
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where κ(n,m) =
(
n+m
n

)(
n+m−1

n

)
, and ‖f‖∞ = max0≤i≤deg f |fi| is the absolute value of the

greatest coefficient. An upper bound for κ(n,m) is (n+m)!.
Bistritz and Lifshitz proved the other following bound [25, Theorem 7]:

|Res(f, φ)| ≤ ‖f‖n2‖φ‖m2 ≤ (m+ 1)n/2(n+ 1)m/2‖f‖n∞‖φ‖m∞ . (9.12)

When the degree of the involved polynomials is negligible, we can approximate |Res(f, φ)| by
O(‖f‖n∞‖φ‖m∞). This simpler bound will be used to bound the norm of elements φ = a− bx and
φ =

∑t−1
i=0 aix

i in a number field defined by a polynomial f .

Rational reconstruction and LLL

Throughout the polynomial selections, two algorithms are extensively used: the Rational Recon-
struction algorithm and the Lenstra/Lenstra/Lovasz (LLL) algorithm. Given an integer y and
a prime p, the Rational Reconstruction algorithm computes a quotient u/v such that u/v ≡ y

mod p and |u|, |v| < p.
The Lenstra–Lenstra–Lovász algorithm (LLL) [83] computes a short vector in a lattice. Given

a lattice L of Zn defined by a basis given in an n × n matrix L, and parameters 1
4 < δ < 1,

1
2 < η <

√
δ, the LLL algorithm outputs a (η, δ)-reduced basis of the lattice. The coefficients of

the first (shortest) vector are bounded by

(δ − η2)
n−1

4 det(L)1/n .

With (η, δ) close to (0.5, 0.999) (as in NTL or Magma), the approximation factor C = (δ−η2)n−1
4

is bounded by 1.075n−1 (see [35, §2.4.2])). A very fast software implementation of the LLL
algorithm is available with the fplll library [10].

Improvements of the polynomials

Joux and Lercier proposed in [65] another polynomial selection method that is an improvement
of the base-m method. In this case, the polynomials are no longer monic but have smaller
coefficients, bounded by p

1
d+1 instead of p 1

d . The size of the coefficients is spread over one
more coefficient (the leading coefficient). Comeine and Semaev analyzed the complexity of their
algorithm in [38]. The asymptotic complexity does not change because the gain is hidden in the
o(1) term. Their improvement is very important in practice, however.

For a given pair of polynomials (f, g) obtained with the Joux-Lercier method, one can improve
their quality. We want the polynomials to have as many roots as possible modulo small primes,
in order to get many relations in the relation collection step. The quality of the polynomials
was studied my B. A. Murphy [93, 92]. The α value and the Murphy’s E value measure the root
properties of a pair of polynomials. The aim is to improve the root properties while keeping
the coefficients of reasonable size. A recent work on this subject can be found in Shi Bai’s PhD
thesis [11] and in [12]. The sieving can be speeded up in practice by choosing coefficients of
the polynomial f whose size increases while the monomial degree decreases, and redefining the
sieving space as −E√s < a < E

√
s, 0 < b < E/

√
s [74, 75].

9.3.6 Large Characteristic Non-Prime Fields

In 2006, Joux, Lercier, Smart, and Vercauteren [67] provided a polynomial construction that
permitted us to conclude that for any finite field Fq, there exists a Lq[1/3, c] algorithm to
compute DL: They proposed a method for medium-characteristic finite fields (known as the
JLSV1 method) and for large-characteristic finite fields. Another method (gJL: generalization
of Joux-Lercier for prime fields) was independently proposed by Matyukhin [85] and Barbulescu
[13, §8.3] and achieved the same asymptotic complexity as for prime fields: LQ[1/3, ( 64

9 )1/3],
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with Q = pn. The two polynomials are of degree d + 1 and d ≥ n, for a parameter d that
depends on logQ as for the prime case. Note that the optimal choice of d for the gJL method

is d = δ
(

log p
log log p

)1/3
with δ = 31/3/2 ≈ 0.72 instead of δ = 31/3 for the NFS-DL algorithm in

prime fields. This is not surprising: In this case the sum of polynomial degrees deg f + deg g is
2d+ 1 instead of d+ 1.

Recent results (2015) on DL record computation in non-prime finite fields with
the NFS algorithm

In 2015, Barbulescu, Gaudry, Guillevic, and Morain published a DL record computation in a
595-bit quadratic extension Fp2 , where p is a generic 298-bit prime [16]. They designed a new
polynomial selection method called the Conjugation. The polynomials allowed a factor-two
speed-up in the relation collection step, thanks to an order-two Galois automorphism.

The area is moving and later in 2015, Sarkar and Singh in [377] proposed a variant that
combines the gJL and the Conjugation method. The asymptotic complexity is the same:
LQ[1/3, ( 64

9 )1/3] and the polynomials might provide slightly smaller norm values in practice.
We lack one last piece of information to be able to recommend parameter sizes for a given

level of security in large characteristic fields FQ: record computations with one of these methods.

9.3.7 Medium Characteristic Fields

This range of finite fields is where the discrete logarithm is more difficult to compute at the
moment. Moreover, the records published are for quite small sizes of finite fields only: Fp3 of
120dd (400 bits) in [67], and in [121].

There was a big issue in obtaining an L[1/3] algorithm as for the FFS algorithm in small
characteristic and the NFS algorithm in large characteristic. The solution proposed in [67]
introduces a modification in the relation collection. The small elements are of higher degree

t− 1 ≥ 2, where t is of the form n
t = 1

ct

(
logQ

log logQ

)1/3
. To obtain similar asymptotic formulas in

LQ[1/3, ·] as for prime fields (see Section 9.3.4), one sets the total number of elements considered
in the relation collection to be E2. With these settings,

• the total number of elements φ =
∑t−1

i=0 aix
i considered in the relation collection is

‖φ‖t∞ = E2, so that ‖φ‖∞ = E2/t;
• the norm of the elements φ on the f side is

|Nf (φ)| ≤ Res(φ, f) ≤ κ(t− 1,deg f)‖φ‖deg f
∞ ‖f‖t−1

∞ = κ(t− 1,deg f)E2 deg f/t‖f‖t−1
∞ .

The two polynomials defined for the 120dd record computation in [67] were f = x3 + x2 −
2x − 1 and g = f + p. This method is not designed for scaling well and the authors propose a
variant where the two polynomials have a balanced coefficient size of p1/2 each. This polynomial
selection method, combined with the relation collection over elements of degree t − 1, provides
an asymptotic complexity of LQ[1/3, ( 128

9 )1/3 ' 2.42]. This asymptotic complexity went down
in 2015 in [16] to LQ[1/3, ( 96

9 )1/3 ' 2.201]. These two asymptotic complexities were improved in
[19, 96] to LQ[1/3, 2.39] and LQ[1/3, 2.156], respectively, by using a multiple number field sieve
variant that we explain in the next paragraph. This variant has not been implemented for any
finite field yet.

Multiple number field sieve

This paragraph is about refinements in the algorithm that slightly improve the asymptotic
complexity but whose practical gain is not known, and not certain yet.
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The idea is to use additional number fields and hope to generate more relations per polyno-
mial (the a − bx elements in Gordon’s algorithm, for example). There are again two versions:
one asymmetric where one number field is preferred, say f0, and additional number fields fi are
considered. For each element a− bx, one tests the smoothness of the image of a− bx first in the
number field defined by f0, and if successful, then in all of the number fields defined by the fi,
to generate relations. This is used with a polynomial selection that produces the first polyno-
mial much better than the second. This is the case for the base-m method and was studied by
Coppersmith [41]. The same machinery applies to the generalized Joux-Lercier method [85, 96].
In these two cases, the asymptotic complexity is LQ[1/3, 1.90] instead of LQ[1/3, 1.923] (where
Q = pn). This MNFS version also applies to the conjugation method [96] and the complexity is
LQ[1/3, 2.156] instead of LQ[1/3, 2.201].

The second symmetric version tests the smoothness of the image of a− bx in all the pairs of
possible number fields defined by fi, fj (for i < j). It applies to the NFS algorithm used with the
JLSV1 polynomial selection method, in medium characteristic. The complexity is LQ[1/3, 2.39]
instead of LQ[1/3, 2.42].

Unfortunately, none of these methods were implemented (yet), even for a reasonable finite
field size, hence we cannot realize how much in practice the smaller c constant improves the
running-time. There was a similar unknown in 1993. The cross-over point between the COS
algorithm in Lp[1/3] and Gordon’s algorithm Lp[1/3] was estimated 1995 at about 150 decimal
digits. In the MNFS algorithm, the constant is slightly reduced but no one knows the size of Q
for which, “in practice,” an MNFS variant will be faster than a regular NFS algorithm.

Special-NFS, Tower-NFS, and pairing-friendly families of curves

This paragraph lists the improvements to the NFS algorithm dedicated to fields Fpn where the
prime p is of special form, i.e., given by a polynomial evaluated at a given value. This is the case
for embedding fields of pairing-friendly curves in families, such as the Barreto-Naehrig curves.

When the prime p defining the finite field is of a special form, there exist better algorithms,
such as the Special NFS (SNFS) for prime fields. Joux and Pierrot [69] proved a complexity of

LQ

[
1
3 ,
(

degP + 1
degP

64
9

)1/3
]

with P the polynomial defining the prime p. We have degP = 4, for example, for a BN curve
[21]. Note that when degP = 2 as for MNT curves, the complexity LQ[1/3, ( 96

9 )1/3] is the same
as the conjugation method complexity. This promising method has not yet been implemented.

Very recently, [18] proposed another construction named the Tower-NFS that would be the
best choice for finite field target groups, where degP ≥ 4. One of the numerous difficult technical-
ities of this variant is the degree of the polynomials: a multiple of n. Handling such polynomials
and elements of high degree throughout the algorithm, in particular in the relation collection
phase, is a very difficult task, and is not implemented at the moment.

A clear rigorous recommendation of parameter sizes is not possible at the moment for pairing
target groups, since the area is not fixed. Theoretical algorithms are published but real-life
implementations and records over reasonable-size finite fields (more than 512 bits) to estimate
their running-time are not available.

We can clearly say that all these theoretical propositions shall be seriously taken into con-
sideration. The constant c in the LQ[1/3, c] asymptotic formula is decreasing, and might reach
the ( 64

9 )1/3 value of prime fields one day. A generic recommendation in the large characteristic
case, based on a LQ[1/3, (64/9)1/3] asymptotic complexity, seems reasonable.
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9.3.8 Small Characteristic: From the Function Field Sieve (FFS) to the
Quasi-Polynomial-Time Algorithm (QPA)

The main difference between a small-characteristic and a large-characteristic field is the Frobe-
nius map π : x 7→ xp, where p is the characteristic of the field. This map is intensively used to
obtain multiple relations from an initial one, at a negligible cost. For prime fields, the Frobe-
nius map is the identity, so we cannot gain anything with it. In small-characteristic fields, the
use of the Frobenius map is one of the key ingredients that provides a much better asymptotic
complexity. This should be combined with a specific field representation that allows a very fast
evaluation of the Frobenius map.

For large-characteristic finite fields Fpn , the Frobenius map of order n can provide a speed-up
of a factor up to n if the polynomial selection provides a compatible representation, i.e., if a is
B-smooth, then we want πp(a) to be B-smooth as well.

Example 9.1 (Systematic equations in F2127) Blake, Fuji-Hara, Mullin and Vanstone in [27]
targeted the finite field F2127 . They used the representation F2127 = F2[x]/(x127 + x + 1) to
implement Adleman’s algorithm. The polynomial f(x) = x127 + x+ 1 is primitive so that they
have chosen x as a generator of F∗2127 . They observed that x27−1 = x127 = x + 1 mod f(x),
x27 ≡ x2 + x mod f(x) and x2i ≡ x2i−6 + x2i−7 = x2i−7 (1 + x2i−7 ) mod f(x) for any i ≥ 7.
Moreover, (1 + x2i) = (1 + x)2i ≡ (x127)2i so that logx(1 + x2i) = 127 · 2i. Combining these
equations, they obtain logarithms for free.

A second notable difference between small-characteristic fields and prime fields is the cost
of factorization. In Algorithm 9.10, a preimage in N of elements in Fp is factorized. In small
characteristic, elements of F2n are lifted to polynomials of F2[x], then factorized. Over finite
fields, there exists polynomial time algorithms to factor polynomials, hence the time needed per
smooth test is much lower.

Brief history

Figure 9.4 shows the records in small-characteristic finite fields with the Function Field Sieve
(FFS) and its various improvements, especially from 2012. Most of the records were announced
on the number theory list. ? Finite fields of characteristic 2 and 3 and composite extension degree
such as target groups of pairing-friendly (hyper-)elliptic curves must definitively be avoided, since
fields of even more than 3072 bits were already reached in 2014.

The Waterloo algorithm
In 1984, Blake, Fuji-Hara, Mullin, and Vanstone proposed a dedicated implementation of

Adleman’s algorithm to F2127 [27, 28]. They introduced the idea of systematic equations (using
the Frobenius map) and initial splitting (this name was introduced later). Their idea works
for finite fields of characteristic two and extension degree close to a power of 2 (e.g., 127).
The asymptotic complexity of their method was LQ[1/2]. In the same year, Blake, Mullin,
and Vanstone [28] proposed an improved algorithm known as the Waterloo algorithm. Odlyzko
computed the asymptotic complexity of this algorithm in [94]. The asymptotic complexity needs
the estimation of the probability that a random polynomial over Fq of degree m factors entirely
into polynomials of degree at most b, i.e., is b-smooth. Odlyzko in [94, Equation (4.5), p. 14]

?https://listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY
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FIGURE 9.4 Records of DL computation in fields F2n ,F3n ,Frn of small characteristic, with n

prime or composite. All the fields F2n ,F3n with n composite are target fields of supersingular pairing-
friendly (hyper-)elliptic curves.

gave the following estimation.

p(m,n) = exp
(

(1 + o(1)) n
m

loge
m

n

)
for n1/100 ≤ m ≤ n99/100. (9.13)

The initial splitting idea is still used nowadays, combined with the QPA algorithm. Given a
random element a(x) of GF(2n) represented by a degree n−1 polynomial over GF(2) modulo an
irreducible degree n polynomial f(x), the algorithm computes the extended Euclidean algorithm
to compute the GCD of f(x) and a(x). At each iteration, the following equation holds [27, §2]:

si(x)a(x) + ti(x)f(x) = ri(x). (9.14)

Reducing this equation modulo f(x), one obtains a(x) ≡ ri(x)/si(x) mod f(x). The degree of
ri(x) decreases while the degree of si(x) increases. By stopping the extended Euclidean algorithm
at the state i where deg ri(x), deg si(x) ≤ bn/2c, one obtains the initial splitting of a(x) of degree
n− 1 into two polynomials ri(x), si(x) of degree at most bn/2c.

Odlyzko computed the asymptotic complexity of the Waterloo algorithm to be [94, Equa-
tion (4.17), p. 19] LQ[1/2, (2 loge(2))1/2 ≈ 1.1774].

Coppersmith’s LQ[1/3] algorithm and FFS algorithm
Building on the idea of systematic equations, Coppersmith [40] gave the first LQ[1/3, c]

algorithm for DL computations over F2n (with Q = 2n). He found (32/9)1/3 ≤ c ≤ 41/3 and
did a record computation for F∗2127 . In 1994, Adleman [7] generalized this work to the case
of any small characteristic, and this is now called the Function Field Sieve (FFS). This gave a
LQ[1/3, ( 64

9 ) 1
3 ] for Q of small characteristic, with function field (in place of number field for prime

fields). Later, Adleman-Huang improved that to LQ[1/3, ( 32
9 ) 1

3 ] for Q of small characteristic [8],
however, this was slower than Coppersmith for F2n .

Outside of the pairing-based cryptography context, the research and the records are focused
on prime extensions degrees. In 2002 Thomé increased the Coppersmith record up to GF(2607)
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[115, 116]. During the same time, Joux and Lercier implemented FFS for GF(2521) in [64].
Continuing the record series, in 2005, Joux and Lercier recomputed a record in GF(2607) and
went slightly further with a record in GF(2613). They also investigated the use of FFS for larger
characteristic finite fields in [66]. In 2013, a record of the CARAMEL group in GF(2089) with
FFS was announced by Bouvier on the NMBRTHRY list [14] and published in [15]. The actual
record is held by Kleinjung, in GF(21279) [76].

Since 2000, examples of supersingular pairing-friendly elliptic curves of cryptographic size
arise. Two curves are well studied in characteristic 2 and 3 for the various speed-up they provide,
in particular, in hardware. Supersingular curves of almost prime order in small characteristic
are very rare. No ordinary pairing-friendly curves were ever known in small characteristic. The
embedding degree for supersingular curves is at most 4 in characteristic 2 and at most 6 in
characteristic 3. The first cryptanalists exploited this composite degree extension to improve
the FFS algorithm. In 2010, the record in characteristic three was in GF(36·71) of 676 bits [59].
In 2012, due to increasing computer power and the prequel of the use of the additional structure
provided by the composite extension degree of the finite field, a DL record-breaking in GF(36·97)
(a 923-bit finite field) was made possible [47]. This announcement had a quite important effect
over the community at that time, probably because the broken curve was the one used in the
initial paper on short signatures from pairings [29]. The targeted finite field F3582 was the target
field of a pairing-friendly elliptic curve in characteristic 3, considered safe for 80-bit security
implementations.

The real start of mathematical improvements occurred at Christmas 2012: Joux proposed
a conjectured heuristic LQ[1/4] algorithm [63] and announced two records [62] of much larger
size. In finite fields that can be represented as Kummer extensions, using the Frobenius gives
many relations at one time, hence speeding-up the relation-collection phase. As we can see
in Figure 9.4, records in prime extensions n of F2 do not grow as extraordinary as composite
extensions coming from pairing-friendly curves.

The Quasi-Polynomial-time Algorithm (QPA)
In 2013 [48] an improved descent phase was proposed, one that provided a quasi-polynomial-

time algorithm (QPA). Two variants of the algorithm were published [17, 56]. The polynomial
selection differs and induces differences in the algorithm. We are at the “beginning of the end”—
much work is still needed for a complete implementation of this algorithm. In particular, the
descent phase is still costly in memory requirements.

The two versions of the QPA algorithm intensively exploit the Frobenius map, to obtain
many relations for free. It works when the extension degree n is composite and satisfies some
properties.

As a conclusion, we list the last records published. In 2014 Adj, Menezes, Oliveira, and
Rodrígues-Henríquez published a discrete logarithm record in GF(36·137) and GF(36·163), cor-
responding to a 1303-bit and a 1551-bit finite field [5]. In 2014, Joux and Pierrot published a
record in GF(35·479) corresponding to a 3796-bit field [68]. In 2014, Granger, Kleinjung, and
Zumbragel announced a record in GF(29234) [57].

Recent improvements in finite fields of composite extension degree (Spring 2016)
There were major theoretical improvements in finite fields Fpn where n is composite, in 2015

and 2016. This paragraph tries to summarize the news. Two preprints by Kim on one side and
Barbulescu on the other side evolved to a common paper at CRYPTO’16 [73]. In parallel, Sarkar
and Singh combined Kim–Barbulescu’s work with their own techniques [103, 101, 102]. We need
to mention Jeong and Kim’s work [61] to complete the list or recent preprints on the subject.
This one paper and four preprints exploit the extension degree that should be composite. They
each propose an improved polynomial selection step that allows us to reduce the size of the norms
of the elements involved in the relation collection. Since the improvement is notable, it reduces
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TABLE 9.4 Estimate of security levels according to NFS variants.

log2 p
n Conj

Lpn [ 1
3 , 2.20]

Joux–Pierrot
d = 4, Lpn [ 1

3 , 2.07]
–

Lpn [ 1
3 , 1.923]

Conj Ext.
TNFS

Lpn [ 1
3 , 1.747]

Special Ext.
TNFS

Lpn [ 1
3 , 1.526]

3072 2159−δ1 2149−δ2 2139−δ3 2126−δ4 2110−δ5

3584 2169−δ1 2159−δ2 2148−δ3 2134−δ4 2117−δ5

4096 2179−δ1 2169−δ2 2156−δ3 2142−δ4 2124−δ5

4608 2188−δ1 2177−δ2 2164−δ3 2149−δ4 2130−δ5

5120 2197−δ1 2185−δ2 2172−δ3 2156−δ4 2136−δ5

5632 2204−δ1 2192−δ2 2179−δ3 2162−δ4 2142−δ5

6144 2212−δ1 2199−δ2 2185−δ3 2168−δ4 2147−δ5

Note: The numbers should be read as follows: a 3072-bit finite field, which is the embedding
field of a BN curve whose p is of special form and n is composite will provide approximately a
security level of 2110−δBN , where δBN depends on the curve and on the implementation of the

special extended NFS variant.

the asymptotic complexity of the NFS algorithm. These papers exploit the finite field structure
and contruct a degree-n extension as a tower of three levels: a base field Fp as first level, a second
level Fpη , and a third level Fpηκ = Fpn . The extension degree n should be composite and the
divisor η of quite small size. The two (or multiple) number fields will exploit this structure as
well. This setting provides the following new asymptotic complexities for medium-characteristic
fields:

1. Lpn [1/3, (48/9)1/3 ≈ 1.747] when n is composite, n = ηκ, κ =
( 1

121/3 + o(1)
) ( logQ

log logQ

)1/3
,

and p is generic;
2. Lpn [1/3, (32/9)1/3 ≈ 1.526] when n is composite and p has a special form.

The generic case where n is prime is not affected by these new improvements. We summarize in
Table 9.4 the new theoretical security of a pairing-friendly curve where (1) n is composite and
(2) n is composite and p of special form, for pn of 3072 bits.

9.3.9 How to Choose Real-Size Finite Field Parameters

At some point, to design a cryptosystem, we want to translate an asymptotic complexity to a
size recommendation for a given security level, usually equivalent to an AES level of security:
128, 192, or 256 bits. In other words, we would like that for a given finite field Fq of given size,
the running-time required to break an instance of DLP is equivalent to 2128, 2192, or 2256 group
operations. For the DLP in a generic group, we saw in Section 9.2 that the expected time is
in O(

√
N), with N the prime-order subgroup considered. A group of size 2n bits (where only

generic attacks apply) is enough to achieve an n-bit security level.
We present in Table 9.5 the usual key-length recommendations from http://www.keylength.

com. The NIST recommendations are the less-conservative ones. A modulus of length 3072 is
recommended to achieve a security level equivalent to a 128-bit symmetric key. The ECRYPT
II recommendations are slightly larger: 3248 bit modulus are suggested.

We explain here where these key sizes come from. The running-time complexity of the
most efficient attacks on discrete logarithm computation and factorization are considered and
balanced to fit the last records. In practice, we calibrate the asymptotic complexity (we set the
constant hidden in the O() notation) so that it matches the largest DL record computations.
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TABLE 9.5 Cryptographic key length recommendations, August 2015.

Method Date Sym- Asymmetric Discrete Log Elliptic Hash
metric Key Group curve function

Lenstra / Verheul [84] 2076 129 6790–5888 230 6790 245 257
Lenstra Updated [82] 2090 128 4440–6974 256 4440 256 256
ECRYPT II (EU) [1] 2031–2040 128 3248 256 3248 256 256

NIST (US) [4] > 2030 128 3072 256 3072 256 256
ANSSI (France) [3] 2021–2030 128 2048 200 2048 256 256

NSA (US) [2] – 128 – – – 256 256
RFC3766 [95] – 128 3253 256 3253 242 –

Note: All key sizes are provided in bits. These are the minimal sizes for security.

For prime fields Fp with no special form of the prime p, the asymptotic formula of NFS-DL is
Lp[1/3, ( 64

9 )1/3], and we consider its logarithm in base 2:

log2 L[α, c](n) =
(
c+ o(1)

)
nα log1−α

2 (n ln 2) (9.15)

with n = log2N . The last record was a DL computation in a prime field of 180dd or 596 bits,
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1406&L=NMBRTHRY&F=&S=&P=3161.

Figure 9.5 presents the records of DL computation in prime fields, the records of RSAmodulus
factorization, and an interpolation according to [81, §3] by a Moore law doubling every nine
months.

To estimate the required modulus size, we compute the logarithm in base 2 of the L-notation
(9.15) and translate it such that log2 L[c, α](598) ≈ 60 (with 180dd=598bits). We obtain
log2 L[c, α](598) = 68.5 so we set a = −8.5. We obtain log2 L[c, α](3072) − 8.5 = 130 so we
can safely deduce that a 3072-bit prime field with a generic safe prime is enough to provide a
128-bit security level.

Conservative recommendations.
To avoid dedicated attacks, and specific NFS variants, common-sense advice would be to

avoid the curves with too much structure in the parameters. Here is a list of points to take into
account.
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• Use a generic curve constructed with the Cocks-Pinch or Dupont-Enge Morain meth-
ods;

• Use a curve in a family with a non-special form seed, i.e., the prime p = P (x0) is such
that x0 has no special form (e.g., x0 6= 263 + 1);

• Use a curve with low-degree polynomials defining the parameters, e.g., degree 2 (MNT
and Galbraith-McKee-Valença curves) or degree 4 (Freeman curves);

• Use a curve whose discriminant D is large (e.g., constructed with the Cocks-Pinch or
Dupont-Enge-Morain method, or an MNT, a Galbraith-McKee-Valença, or a Freeman
curve);

• Use a prime embedding degree.

9.3.10 Discrete Logarithm Algorithms in Pairing Friendly Target Finite
Fields Fpn

Given a finite field Fpn which contains the target group of a cryptographic pairing, different NFS-
based algorithms can be applied to compute discrete logarithms, depending on the structure of
the finite field. Two criteria should be taken into account: whether n is prime, and whether the
characteristic p has a special form given by a polynomial of degree greater than two.

1. If n is prime:
(a) and p has no special form (e.g., supersingular curves where k = 2, MNT curves

where n = 3, and any curves constructed with the Cocks-Pinch or Dupont-Enge-
Morain methods), then only the generic NFS algorithms apply.
i. In a large characteristic, the generalized Joux–Lercier method of asymptotic

complexity LQ[1/3, 1.923] (and LQ[1/3, 1.90] in the multiple-NFS version)
applies.

ii. In a medium characteristic, the conjugation method of asymptotic complex-
ity LQ[1/3, 2.20] applies. The multiple-NFS version has an asymptotic com-
plexity of LQ[1/3, 2.15]. The finite field size does not need to be enlarged for
now.

In practice for large sizes of finite fields, the Sarkar-Singh method that interpo-
lates between the GJL and the conjugation methods provides smaller norms. In
this case, the key size should be enlarged by maybe 10% but not significantly
since the asymptotic complexity is not lower than the complexity of NFS in a
prime field: LQ[1/3, 1.923].

(b) If p is given by a polynomial degree of at least three, i.e., p = P (u) where
deg(P ) ≥ 3, then the Joux–Pierrot method applies. In a medium characteristic,
the asymptotic complexity tends to LQ[1/3, 1.923] for large deg(P ). In a large
characteristic, the pairing friendly curves (k = 2, 3, 4, 6 for instance) are such
that deg(P ) = 2 only.

2. If n is composite, then the extended tower-NFS technique, first introduced by Kim
then improved by Barbulescu, Kim, Sarkar and Singh, and Jeong, applies.
(a) If p has no special form or is given by a polynomial of degree at most 2 (MNT

curves of embedding degree 4 and 6, Cocks-Pinch and Dupont-Enge-Morain
methods), then the asymptotic complexity is LQ[1/3, 1.74] so asymptotically,
the finite field size should be enlarged by a factor 4/3.

(b) If p has a special form, then the asymptotic complexity is LQ[1/3, 1.56] and
asymptotically, the finite field size should be doubled.
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10.1 Which Parameters?

In this section, we explain how to construct or choose the parameters necessary to implement a
pairing. We recall that in order to define a pairing, we need

• a finite field Fp, where p is a prime number,
• an elliptic curve E defined over Fp,
• a prime number r dividing card(E(Fp)),
• the embedding degree k, i.e., the smallest integer such that r divides (pk − 1),
• the set of points of r-torsion E[r] = Z/rZ× Z/rZ subdivided as G1 and G2. For the

implementation of the Tate pairing, G1 and G2 are defined by G1 = E(Fp)[r] and
G2 = E(Fpk)[r] \ rE(Fp). For the (optimal) Ate, (optimal) twisted Ate we have that
G1 = E(Fp)[r] ∩ Ker(πp − [1]) and G2 = E(Fpk)[r] ∩ Ker(πp − [p]), where πp is the
Frobenius endomorphism on E.

• A rational function fδ,P (Q) or fδ,Q(P ), where δ is an integer defined by the pairing.
We denote by fδ,X the normalized function on the curve with divisor div(fδ,X) =
δ[Q]− [δQ]− (δ− 1) [0E ], with X = P or X = Q. This rational function evaluated in
the second point of E[r] is computed using the Miller algorithm [29]. Such functions
are the core of all known pairings. They are computed thanks to the Miller loop (de-
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TABLE 10.1 Sizes of curves parameters and corresponding embedding degrees to obtain commonly
desired levels of security.

Security level Subgroup size Extension field size Embedding degree k
in bits r in bits pk in bits ρ ≈ 1 ρ ≈ 2
80 160 960 – 1280 6 – 8 3 – 4
112 224 2200 – 3600 10 – 16 5 – 8
128 256 3000 – 5000 12 – 20 6 – 10
192 384 8000 – 10000 20 – 26 10 – 13
256 512 14000 – 18000 28 – 36 14 – 18

scribed in Section 10.7.4), which is an adaptation of the classical scalar multiplication
algorithm.

Remark 10.1 We choose here to describe the construction of a pairing over Fp. It is possible
to define a pairing over a finite field Fq, with q a power of a prime number. But, according to
the recent records of solving the discrete logarithm problems [5], pairings over finite fields of
characteristic 2 and 3 are no longer secure. Moreover, according to our knowledge, it is difficult
to construct a pairing defined over a finite field Fq for q, a power of a prime number different
from 2 and 3. There is no construction of such a pairing in the literature.

We will construct the corresponding parameters in the following order:

• First we fix the security level we want to achieve.
• Then, we first fix k, the embedding degree of the elliptic curve relative to r.
• Once k is chosen, we can use the stop-and-go shop from the article [17] to construct

a suitable elliptic curve; see Chapter 4. In this step, we will carefully choose the bit
size of r and p.

• We then have to construct the suitable subgroups of order r, G1 ⊆ E(Fp) and G2 ⊆
E(Fpk).

• The last step is the choice of the pairing algorithm: Tate, Ate, twisted Ate, or an
optimal version of those.

10.2 Security Level

The first choice corresponds to the security level. Let p be a prime number, E an elliptic curve
defined over Fp. Let r denote a large prime factor of Card(E(Fp)). Let k be the embedding
degree of E relatively to r. A pairing implementation involves computations in subgroups of
order r of E(Fp), E(Fpk), and F?

pk
. The mathematical problem that the security of pairing-based

cryptosystems relies on is the discrete logarithm problem. In Chapter 9, the discrete logarithm
problem is presented together with the existing algorithms to solve it. The size of the subgroups
involved in a pairing computation must be large enough to ensure that the discrete logarithm is
hard. This condition implies lower bounds on the bit size of r and pk, for a given security level.
Table 10.1, taken from [17], gives the minimal size of the parameters for a given security level.

According to this Table 10.1, the security level gives us the minimal size for r, and range for
the size of pk, and k relative to ρ. The value ρ is defined as ρ = log(p)

log(r) . In order to save bandwidth
during the calculation we are looking for ρ as small as possible (in the ideal case, ρ ≈ 1). Indeed,
if ρ is greater than 2, than Fp is if twice as large as necessary. As a consequence, the computations
over Fp and its extensions are more expensive for a given security level, compared to a curve
with ρ ≈ 1.



Choosing Parameters 10-3

TABLE 10.2 Comparison of security level estimates for BN curves, according to the available NFS
variants.

log2(p) n log2 p
n Joux–Pierrot

Lpn [1/3, 2.07]
–

Lpn [1/3, 1.92]
ExTNFS

Lpn [1/3, 1.74]
Special ExTNFS
Lpn [1/3, 1.53]

256 12 3072 ≈ 2149−δ1 ≈ 2139−δ2 ≈ 2126−δ3 ≈ 2110−δ4

384 12 4608 ≈ 2177−δ1 ≈ 2164−δ2 ≈ 2149−δ3 ≈ 2130−δ4

448 12 5376 ≈ 2189−δ1 ≈ 2175−δ2 ≈ 2159−δ3 ≈ 2139−δ4

512 12 6144 ≈ 2199−δ1 ≈ 2185−δ2 ≈ 2168−δ3 ≈ 2147−δ4

Note: There is no variant in that case whose complexity is Lpn [1/3, 1.92], the values are given
only for comparison.

Example 10.1 We assume that we want to implement a pairing for the AES 128-bit security
level. The divisor of Card(E(Fp)), r, must be composed by at least 256 bits. The size in bits of
pk must be in the range [3000; 5000].

Remark 10.2 Table 10.1 is extracted from the article [17] published in 2010. Currently,
several works are performed on the resolution of the discrete logarithm problem over pairing-
friendly elliptic curves. For instance, at the present day, a preprint presents new records on the
number field sieve algorithm in finite fields Fpn [24]. Those results would imply a revaluation of
the minimal bit size of r and pk. In the sequel, we use published results for determining the bit
size of r and pk. Obviously, our method can be applied for future bounds that can be achieved
by new records of the discrete logarithm problem. For instance, when published, the results
in [24] will give new bounds. An approximation of those new bounds is presented in Table 10.2.
Be careful, this is a rough and theoretical estimate. This only says that a new low bound on
the size of BN-like Fp12 to achieve a 128-bit security level would be at least 5376 bits (p of 448
bits). The website devoted to this book will keep updating the security recommendations.

Remark 10.3 To obtain a key size according to a security level, a value δi is required, which
is not known. The order of magnitude of this δi is usually of a dozen. A 4608-bit field (cor-
responding to Barreto-Naehrig curves to p of 384 bits) might not be large enough to achieve a
128-bit security level [20].

10.3 The Embedding Degree

After the security level, the next parameter we have to find is the embedding degree k. Table 10.1
provides us with potential values of k.

In practice, the value k is often chosen smooth. This property allows the extension field Fpk
to be constructed using tower field extensions. The interest in using tower field extensions is
based on an optimization of the arithmetic. In particular, the multiplication over Fpk can be
constructed using intermediate multiplications on the floor of the tower field extension. The
most efficient multiplication over Fpk is obtained with the use of Karatsuba multiplication.
This is possible when k is a power of 2. An alternative efficient arithmetic can be obtained
by using Karatsuba and Toom Cook multiplication, which can be done when k is a product
of powers of 2 and 3. An important trick when computing a pairing is the elimination of
denominators. The denominators are the equations of vertical lines during the computation of
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the Miller algorithm. As explained in Chapter 3, Section 3.2.3, when 2 divides k, the computation
during the Miller algorithm can be improved by the elimination of the denominators during the
final exponentiation of the pairing. Obviously, this trick is interesting for pairings including a
final exponentiation. Fortunately, the most efficient implementations are obtained for pairings
with a final exponentiation. The elimination of the denominator is possible for any degree of
twists, not only even ones. In practice, the computation of pairings admitting an odd degree of
twist are less efficient than computation of pairings with an even degree of twists [30]. Another
vector of optimization is the possibility to use a twisted elliptic curve to E(Fpk). As presented in
Chapter 2, Section 2.3.6, there exists a morphism between E(Fpk) and its twisted elliptic curve
E′(Fpk/d), where d is the degree of the twist and d ∈ {2, 3, 4, 6}. The bigger d is, the better it is.
Indeed, all the operations over E(Fpk) can be performed over E(Fpk/d) by using the map into
E(Fpk).

To sum up, the embedding degree should be

• even in order to allow the denominator elimination,
• smooth for an efficient arithmetic over finite fields,
• a product of powers of 2 and 3, admitting 6 as a divisor.

Example 10.2 At the AES 128-bits security level, it is recommended to take k between 12
and 20 for curves with ρ ≈ 1. The products of powers of 2 and 3 in this range are 12, 16, and 18.
For k = 12, it is possible to achieve ρ = 1 (by using the Barreto-Naehrig family). For k = 16 or
18, all the known constructions give ρ > 1. The elliptic curve with k = 12 should be chosen with
a twist of degree 6. The same holds for the curve with k = 18. For the curve with k = 16, the
degree of the twist should be 4. Since the arithmetic over Fp2 is more efficient for the same size
p than the arithmetic over Fp3 , the value k = 12 seems the most accurate for the AES 128-bits
security level.

10.4 Construction of the Elliptic Curve

The pairing-friendly elliptic curves that are the most interesting for implementation purposes
are obtained from families. The definition of a family of pairing-friendly elliptic curves was intro-
duced by Freeman, Scott, and Teske [17], and is recalled in Chapter 4. A family of pairing-friendly
elliptic curves with embedding degree k is given by a triple (p(x), r(x), t(x)) of polynomials with
coefficients in Q. In this representation, p(x) is the characteristic of the finite field, r(x) a prime
factor of Card(E(Fp)), and t(x) is the trace of the elliptic curve. If x0 is an integer such that
p(x0) and r(x0) are prime numbers, then there exists an elliptic curve with embedding degree
k and parameters (p(x0), r(x0), t(x0)). Such a curve can be efficiently constructed, provided by
the fact that the discriminant D of the family is not too large (D is the positive integer defined
by 4q(x)− t(x)2 = Dy(x)2, for some y(x) ∈ Q[x]).

An extensive survey about the known families of pairing-friendly elliptic curves and their
constructions is given in [17]. Chapter 4 recalls the most used families. The ρ-value ρ =
deg q(x)/ deg r(x) and the embedding degree of the chosen family should fulfill the conditions
described in Sections 10.2 and 10.3. Moreover, in order to ensure that the constructed curve has
twists of order greater than 2, the discriminant D of the family should be equal to 1 (for twists
of degree 4) or to 3 (for twists of degree 6).

Now, we consider a fixed family (p(x), r(x), t(x)) and search for an integer x0 that gives a
prime value for p(x) and r(x). The integer x0 is implied in the exponent in the Miller loop,
in the final exponentiation, and it can have a great impact on the Fpk arithmetic (see Section
10.7.7 for the example of BN curves). For this reason, x0 should be chosen as sparse as possible
in order to improve the efficiency of the pairing computation.
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TABLE 10.3 Cost of Miller’s algorithm for various models of elliptic curve.

Model Doubling Addition Mixed addition
Huff (k11)m6sSkSk (k15)mMk (k13)mMk

Jacobi quartic (k9)m8scMk − (k16)msMk

Edwards (k6)m5scMkSk (k14)mcMk (k12)mcMk

Weierstrass J. (k1)m11scMkSk − (k6)m6sMk

TABLE 10.4 Cost of one step in Miller’s algorithm for even embedding degree.

Degree of twist and coordinates Doubling Mixed addition
d = 2 and k = 2 Jacobian 10s3m1a1Sk1Mk 6s6mkm1Mk

d = 2 and k > 2 Jacobian 11s(k1)m1a1S1Mk 6s6mkm1Mk

d = 4 Jacobian (2k/d2)s8s1da1Sk1Mk ((2k/d)9)m5s1Mk

d = 6 Projective (2k/d)m5s1db1Sk1Mk (2k/d9)m2s1Mk

Once we have prime values for p(x) and r(x), we have to construct the equation of the elliptic
curve. This can be done thanks to the Complex Multiplication (CM for short) method. There
exist several models for elliptic curves, but the most efficient computation of pairings are obtained
using Weierstrass model: E : y = x3axb. Table 10.3 recalls the cost of pairing computations
for other elliptic curve models. We denote by m (resp. s) the cost of a multiplication (resp. a
square) over Fp and by Mλ (resp. Sλ) the cost of a multiplication (resp. a square) over Fpλ .
We denote by Weierstrasss J. the short Weiestrass model of an elliptic curve, given in Jacobian
coordinates. If D = 1 or 3, then it is not necessary to use the CM method. Indeed, any elliptic
curve with discriminant D = 1 (resp. D = 3) has an equation of the shape E : y = x3ax (resp.
E : y = x3b) and conversely, any curve having this shape of equation is either the desired curve,
or one of its twists.

We begin with a brief discussion on the parameters a and b. Two cases are possible for the
parameter a with implications on the pairing computation, either it is 0 or not. When a = 0, the
pairing computations are the most efficient in projective coordinates, as described in Chapter 3,
Section 3.3.3. When a 6= 0, the most accurate choice is a = −3. In this case, the equation during
the Miller computation admits a little optimization compared to a 6= {0,−3}. This optimization
is a factorization in the doubling formulas over E, and in the related line in the Miller loop. The
parameter b has occured in the doubling formulas over E. Therefore, it should be chosen such
that the multiplication by b is as cheap as possible.

The Jacobian coordinates often provide the most efficient formula for pairing computations.
The only exception is when the curve admits a twist of degree 6, in this case, the projective
coordinates provide the the most efficient implementation. In Table 10.4 we summarize the
algebraic complexity of Miller’s algorithm, considering the degree of the twist and the system of
coordinates.

When choosing the elliptic curve, one must take into consideration the subgroup security
problem [6]. Indeed, if the elliptic curve admit at least one subgroup with order smaller than r,
then the discrete logarithm problem is easier to solve in this subgroup. The attack path consists
then in providing to the pairing computation a point of the elliptic curve belonging to the wrong
subgroup. The countermeasure consists in constructing elliptic curves such that the subgroup
involved in the pairing computation has orders greater than r.

10.5 Construction of G1 and G2

In this section, we present an explicit method to construct the subgroups G1 and G2 involved
in the optimal Ate pairing computations, as it is one of the most efficient pairing. Furthermore,
the same construction is efficient for the computation of the Tate or twisted Ate pairing.
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10.5.1 The Subgroup G1

For the optimal Ate pairing, the elements of G1 are the points P of order r in E(Fpk), which
are eigenvectors with eigenvalues 1 of the Frobenius map (acting as an endomorphism on the
Fr-vector space E(Fpk)[r]). We can then describe G1 as G1 = E(Fpk)[r] ∩Ker(πp − [1]), which
can be written G1 = {P ∈ E(Fpk), [r]P = 0E and πp(P ) = P}.

Since πp(P ) = P if and only if P ∈ E(Fp), we are just searching for points of order r in
E(Fp). Such a point can be constructed in the following way:

• choose a random point P in E(Fp),
• compute P ′ = Card(E(Fp))

r × P ,
• if P ′ = 0E , choose another P ,
• if P ′ 6= 0E , then P ′ is a generator of G1. We denote P = P ′.

Remark 10.4 The construction of G1 is the same for every possible pairing.

10.5.2 The Subgroup G2 with Twist of Degree d over Fpk

For the optimal Ate pairing, the elements of G2 are the points Q of order r in E(Fpk) which are
eigenvectors with eigenvalues p of the Frobenius. We can then describe G2 as G2 = E(Fpk)[r] ∩
Ker(πp − [p]), which can be written G2 = {Q ∈ E(Fpk), [r]Q = 0E and πp(Q) = [p]Q}.

When E(Fpk) admit a twist of degree d, there is an efficient way of constructing G2 [23].
In Chapter 2, the definition of a twisted elliptic curve is given. Twists are useful as they

allow a simplified representation of G2 if d divides k.

DEFINITION 10.1 Let E and E′ be two elliptic curves defined over Fq, for q a power of a
prime number p. Then the curve E′ is a twist of degree d of E if there exists an isomorphism
Ψd defined over Fqd from E′ into E, and such that d is minimal.

The possible number of twists for a given elliptic curve is bounded. It depends on the group
of endomorphisms of the elliptic curve E. Theorem 2.12 gives the classification of the potential
twists. In Chapter 2, Section 2.3.6, they describe the possible equations and cardinality of
twisted elliptic curves. The possible twists are of degree d =2, 3, 4, or 6.

We can compute the cardinal of a twisted elliptic curve according to the degree of the twist
as described in Section 2.3.6.

We can then provide an efficient representation for G2. Let E be an elliptic curve admitting
a twist of degree d. Let z = gcd(k, d) and e = k/z. Since k > 1 is the embedding degree of E
relative to r, we have that r divides Card(E(Fpe)) but r2 does not. As r > 6, there is a unique
degree z twist E′ such that r divides Card(E′(Fpe)) [23]. The cardinality of a twisted elliptic
curve can be computed as illustrated in Property 2.5.

PROPOSITION 10.1 ([23]) Let G′2 be the unique subgroup of order r of E′(Fpe) and let
Φz : E′ → E be the twisting isomorphism, then

G2 = Φz(G′2).

As a consequence, in order to construct G2, we first construct a point of order r on the
twisted elliptic curve E′(Fpk/d). Then, we use the map between E′(Fpk/d) and E(Fpk) to find a
generator of G2. As who can do more can do less, the group G2 generated in this way is suitable
for the computation of the Weil or Tate pairing.
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10.5.3 The Subgroup G2 without Twist over Fpk

For the optimal Ate pairing, elements in G2 are elements of E(Fpk) of order r and eigenvec-
tors with eigenvalues p of the Frobenius. The subgroup G2 can be described as G2 = {Q ∈
E(Fpk), [r]Q = 0E and πp(Q) = [p]Q}.

The first step is to find a point of order r in E(Fpk) independent from the point P ∈ G1.

• Choose a random point Q in E(Fpk).

• Compute Q′ = Card(E(F
pk

))
r Q.

• If Q′ = 0E , choose another point Q,
• If Q′ 6= 0E and all the coordinates of Q′ are in Fp, choose another point Q,
• Else, Q′ is a valuable candidate.

Remark 10.5 The point Q′ constructed above is a suitable candidate for the computation of
the Tate pairing.

Now we have to construct a p-eigenvector of the Frobenius. We present below a general
construction that does not use a twist. We know that E[r] ∼= Z/rZ × Z/rZ, consequently we
can define a basis of E[r] to be (P,Q′).

By construction, P ∈ E(Fp) and Q′ ∈ E(Fpk). In order to construct the matrix of the
Frobenius on this basis we have to compute the Frobenius of P and Q′. First of all, πp(P ) = P by
construction. In the basis (P,Q′) of E[r], knowing that Q′ ∈ E[r] we have that πp(Q′) = αPβQ′,
for α and β integers. We have #E(Fp) = p1− t, where t is the trace of the Frobenius. Modulo
the cardinal of the elliptic curve, then we have that β = p. Indeed, the trace of the matrix should
be t = 1β and we have that t ≡ 1p mod (#E(Fp)). Consequently, the matrix of the Frobenius
in the basis (P,Q′) is the following: [

1 α

0 p

]
.

In order to obtain the value of α, we can use the fact that πp(Q′) = [α]P [p]Q′ to write
πp(Q′) − [p]Q′ = [α]P . With the knowledge of P and Q′, finding α is equivalent to solving
the discrete logarithm problem. But, we cannot, as we are working over a subgroup where the
discrete logarithm problem is hard. However, we can consider that P is in fact αP . By abuse of
notation, we will now consider that P is constructed as πp(Q′)− [p]Q′. The point P constructed
like that is of order r and we verify that πp(P ) = P . Furthermore, the couple (P,Q′) is still a
basis of E(Fpk). In this basis the matrix of the Frobenius is[

1 1
0 p

]
.

Now, we have to construct a p-eigenvector of the Frobenius. We are looking for Q = c1Pc2Q
′

such that πp(Q) = pQ. By simplification, we obtain the following equations:

Q = c1Pc2Q
′

πp(Q) = πp(c1Pc2Q′)
= c1πp(P )c2πpQ′ (because πp is a morphism of the group)
= c1Pc2(PpQ′)
= (c1c2)P (c2p)Q′.

Modulo r, we obtain the equality:
c1c2 = c1p.
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TABLE 10.5 Cost of the steps in Miller’s algorithm for elliptic curves admitting a twist of degree
d.

f−,P (Q)
Coordinates Doubling Addition

Affine 2s(1k/d)m1i1S1M (1k/d)m1s1i1Mk

Projective 7s(2k/d2)m1Sk1Mk (2k/d12)m3s1Sk1Mk

Jacobian 11s(2k/d1)m1a1Sk1Mk 6s(k/d6)m1Mk

f−,Q(P )
Coordinates Doubling Addition

Affine 2Sk/d2Mk/d1Ik/d1Sk1Mk 2Mk/d1Sk/d1Ik/d1Mk

Projective 2k/dm6Sk/d2Mk/d1Sk1Mk 2k/dm2Sk/d12Mk/d1Sk1Mk

Jacobian 2k/dm11Sk/d1Mk/d1SkMk k/dm6Sk/d1Sk6Mk/d1Mk

As we know the value of p, for a fixed c1 only one value is possible for c2. The easiest
possibility is c1 = 1 and c2 = p− 1.

Considering the explanations above, when constructing G2, we also construct G1.

• We construct a point Q′ of order r with coordinates in Fpk .
• We compute P = πp(Q′)− pQ′, the order of this point is r, and if P ∈ E(Fp), then P

is a generator of G1.
• We compute Q = pP (p− 1)pQ′, which is a point of order r in E(Fpk) and verify that
π(Q) = pQ.

Once we have generators of G1 and G2, all the possible points in G1 and G2 are multiples of
the generators.

10.6 Construction of the Pairing

Let us make a summary. We have the security level, the embedding degree, the elliptic curve. We
have now to choose which pairing should be implemented. In practice the most efficient pairing
belongs to the set of optimal Ate, optimal twisted Ate, and pairing lattices. As presented in
Chapter 3, the optimal pairing and pairing lattices are powers of the Tate pairing. It is possible
to calculate the algebraic complexity of the step of Miller’s algorithm according to the position
of P ∈ G1 and Q ∈ G2, for a given system of coordinates.

Table 10.5 recalls the algebraic cost of the doubling and addition step during Miller’s algo-
rithm for a computation of pairing, considering an even embedding degree and a twist of degree
d. Considering an even value for k allows us to use the denominator elimination. We do not
consider any other optimization as they are related to the equation of the elliptic curves.

The choice of the pairing optimal Ate or twisted Ate depends on the number of iterations
and the number of addition steps that must be executed. In Chapter 3, methods to compute the
number of iterations are more detailed. Theorem 10.1 presents the formulae for the construction
of the optimal Ate in Equation 10.1 and optimal twisted ate in Equation 10.2.

THEOREM 10.1 [36, 21] Let E be an elliptic curve defined over Fp, r a large prime with
r|#E(Fp), k the embedding degree, and t the trace of the Frobenius.

(a) Let λ =
∑φ(k)−1

i=0 cip
i such that λ = mr, for some integer m. Then a[c0,...,cl] : G2 ×

G1 → µr defined as

(Q,P )→

φ(k)−1∏
i=0

fci,Q(P ) ·
φ(k)−1∏
i=0

lsi1Q,cipiQ(P )
vsiQ(P )

(pk−1)/r

(10.1)
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TABLE 10.6 Existing pairings

Pairing Weil Tate Ate Twisted Ate

Definition
fr,P (Q)
fr,Q(P ) (fr,P (Q))(pk−1)/r (ft−1,Q(P ))(pk−1)/r

(
f(t−1)k/d,P (Q)

)(pk−1)/r

with si =
∑φ(k)−1

j=i cjp
j defines a bilinear pairing. This pairing is non-degenerate if

and only if mkpk−1 6= ((pk − 1)/r)
∑φ(k)−1

i=0 icip
i−1 (mod r).

(b) Assume that E has a twist of degree d and set n = gcd(k, d) and e = k/n. Let λ =∑φ(k)/e−1
i=0 cip

ie such that λ = mr, for some integer m. Then a[c0,...,cl] : G1×G2 → µr
defined as

(P,Q)→

φ(k)/e−1∏
i=0

fci,P (Q) ·
φ(k)/e−1∏
i=0

lsi1P,cipiP (Q)
vsiP (Q)

(pk−1)/r

(10.2)

with si =
∑φ(k)/e−1

j=i cjp
j defines a bilinear pairing. This pairing is non-degenerate if

and only if mkpk−1 6= ((qk − 1)/r)
∑φ(k)/e−1

i=0 icip
e(i−1) (mod r).

The number of iterations for the optimal Ate pairing over E(Fp) is computed through the
LLL reduction of the lattice Λ [36]. The reduction of this lattices provides a short vector from
which we can extract the polynomial si.

Λ =


r 0 . . . . . . 0
−p 1 0 . . . 0
−p2 0 1 0 0
... 0 0

. . . 0
−p(ϕ(k)−1) 0 . . . 0 1

 .

Choosing the right pairing

Assume that we have defined an elliptic curve E(Fp), with r a prime divisor of Card(E) and with
embedding degree k relative to r. Let P ∈ G1 and Q ∈ G2. Then one can compute the Weil
pairing er,W (P,Q), the Tate pairing er,T (P,Q), the Ate (or Optimal Ate) pairing as,T (P,Q),
the (optimal) twisted Ate pairing a′s,T (P,Q), for s a given integer. The Weil pairing requires
us to compute both fr,P (Q) and fr,Q(P ) so the Miller loop will be much more expensive than
for the Tate pairing, which only requires fr,P (Q) (especially since Q ∈ G2 constructing fr,Q is
expensive). Furthermore, when k is even we can apply denominator elimination for the Tate
pairing because of the final exponentiation, so even the computation of fr,P (Q) is faster than
the one for the Weil pairing. However, one should remember that for the Tate or Ate pairing on
elliptic curves, the final exponentiation may be expensive, too. Indeed, the loop length of the final
exponentiation is around k log q compared to log q for the Miller step. So the implementation
of the final exponentiation step should not be neglected, as describe in Chapter 7. We recall
the definition of the Weil, the Tate, Ate, twisted Ate pairing in Table 10.6. The integer t is the
trace of the elliptic curve E(Fp). The optimal Ate and twisted Ate are constructed on the same
scheme as the Ate and twisted Ate pairings. The difference is the number of iterations for the
Miller algorithm.

It is harder to choose between the Tate and Ate (or optimal Ate) pairing. Usually for the Ate
pairing, the cost of computing the Miller functions over Fqk does not compensate the shortened
Miller loop, but this can change when a high degree twist is available. For instance, Barreto-
Naehrig curves have a twist of degree 6, so the Optimal Ate pairing is well suited for these curves.
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For higher security than 128 bits, one will need curves with a higher embedding degree, so the
Tate or twisted Ate may be faster for these curves. In this book we will explore several families
and give optimized algorithms for each of them. See also [16], which compares the different
versions of the pairings.

Remark 10.6 The choice of k is expected to give the most efficient arithmetic. For the AES
128-bits security level, the implementations of pairings is indeed the most efficient using the BN
curves with k = 12. But, according to the work [3], the most efficient implementation is not
obtained for the expected value of k. In the work [3], the security level is AES 192. According
to Table 10.1, k should be chosen between 20 and 26 for ρ ≈ 1. Among the possible choices, the
value k = 24 seems to be the most suitable. Indeed, ρ ≈ 1, 6 divides 24 and the denominator
elimination is possible. However, experimentations surprisingly show that it would be more
efficient to consider a family of curves with k = 12 and ρ ≈ 2 than k = 24 with ρ ≈ 1. That is to
say that when considering pairing implementation, one should compare all the possible options
before concluding. It is not sufficient to choose what seems to be the most adapted value of k
minimizing ρ. All the pairing computation aspects must be taken into consideration.

10.7 Example of the BN-Curve

In the following, we made the choice for the security level AES 128 bits. For this security level,
the BN curves have been demonstrated to allow the most efficient implementation of pairings.
We describe step by step how we generate parameters for the computation of a pairing over BN
curves. The method we describe can easily be adapted for any other family of pairing-friendly
elliptic curves that can be constructed. See Chapter 4 for other families of curves.

10.7.1 BN Curves

A Barreto-Naehrig (BN) curve [8] is an elliptic curve E over a finite field Fp, p ≥ 5, with order
r = #E(Fp), such that p and r are prime numbers given by

p(x0) = 36x4
036x3

024x2
06x01,

r(x0) = 36x4
036x3

018x2
06x01,

for some x0 in Z. It has an equation of the form

y2 = x3b,

where b ∈ F∗p. Its neutral element is denoted by 0E .
BN curves have been designed to have an embedding degree equal to 12. This makes them

particularly appropriate for the 128-bit security level. Indeed, a prime p of size 256 bits leads to
a BN curve whose group order is roughly 256 bits together with pairings taking values in F∗p12 ,
which is a 3072-bit multiplicative group. According to the NIST recommendations [1], both
groups involved are matching the 128-bit security level. As a consequence, BN curves at this
security level have been the object of numerous recent publications ([13, 4, 9, 33, 31, 19, 35]).
They prove that the most efficient pairing in this case is the optimal Ate pairing.

10.7.2 Construction of the Twist

Finally, BN curves always have degree 6 twists. If ξ is an element that is neither a square nor a
cube in Fp2 , the twisted curve E′ of E is defined over Fp2 by the equation

E′ : y2 = x3b′,
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with b′ = b/ξ or b′ = bξ. The choice of b′ is related to the equation of the elliptic curve, as
described in [33, Theorem 1].

In order to simplify the computations, the element ξ should also be used to represent Fp12

as a degree 6 extension of Fp2 (Fp12 = Fp2 [γ] with γ6 = ξ) [13], [27]. In this paper, we deal only
with the case b′ = b/ξ as is usually done in the literature, but b′ = b/ξ5 can also be used with a
very small additional cost [19].

As BN curves have twists of order 6 the twisted version of the optimal Ate pairing allows
us to take Q in E′

(
Fp2
)
. Using the isomorphism between the curve and its twist, the point Q

in our definition can then be chosen in the form
(
xQγ

2, yQγ
3) ∈ E (Fp12

)
where xQ, yQ ∈ Fp2

((xQ, yQ) ∈ E′
(
Fp2
)
). This means that the elliptic curve operations lie in Fp2 instead of Fp12

(but the result remains in Fp12), during the computation of the Ate pairing or any optimisation
of the Ate pairing. This makes computations of course easier but this also allows denominator
elimination as in [7] because all the factors lying in a proper subfield of Fp12 (as Fp2) are wiped
out by the final exponentiation. See Chapter 3 for the details of the denominator elimination.

10.7.3 Optimal Ate Pairing

Considering the BN curves, it has been proven in [36] that the shortest possible loop has length
r/ϕ(12) = r/4 and that this length is reached by the so-called optimal Ate pairing.

Let π(x, y) = (xp, yp) be the Frobenius map on the curve. If P is a rational point on E and
Q is a point in E

(
Fp12

)
that is in the p-eigenspace of π, the optimal Ate pairing [31] can be

defined by

aopt(Q,P ) =
(
fv,Q(P ).`vQ,π(Q)(P ).`vQπ(Q),−π2(Q)(P )

) p12−1
r ,

where v = 6x02 and `A,B is the normalized line function arising in the sum of the points A and
B.

In this study, we are only considering this pairing because it leaves no doubt that it is
currently the most efficient for BN curves, but the same work can easily be done with other
pairings. The computation of the optimal Ate pairing is done in four steps:

1. A Miller loop to compute f|v|,Q(P ). The algorithmic choices for this step are discussed
in Section 10.7.4.

2. If v < 0, the result f of the Miller loop must be inverted to recover fv,Q(P ). Such an
inversion is potentially expensive, but thanks to the final exponentiation, f−1 can be
replaced by fp6 [4], which is nothing but the conjugation in Fp12/Fp6 ; thus it is done
for free.

3. Two line computations, `vQ,π(Q)(P ) and `vQπ(Q),−π2(Q)(P ), which are nothing but
extra addition steps of the Miller loop.

4. A final exponentiation to the power of p12−1
r . The algorithmic choices for this step

are discussed in Chapter 7.

10.7.4 Miller Algorithm

The first step of the pairing computation evaluates f|v|,Q(P ) thanks to the Miller algorithm
presented in Algorithm 3.3 which was presented in Chapter 3 and introduced in [29]. It is based
on the, double-and-add scheme used for the computation of |v|Q by evaluating at P the lines
occurring in the doubling and addition steps of this computation.

Several choices are possible for the system of coordinates in order to perform the operations
over the elliptic curve during the Miller loop. We discuss them in Section 10.7.9.

Since the Miller algorithm is based on the double-and-add algorithm, it is natural to try
to improve it by using advanced exponentiation techniques like the sliding window method [10,
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Algorithm 9.10] or the NAF representation [10, Algo 9.14]. However, the interest is limited in
practice for two reasons:

• In the context of pairing-based cryptography, the exponent is not a secret. Then it is
usually chosen sparse, so these advanced exponentiation methods are useless.

• Such methods involve operations like T ← T3Q. We need to compute f ← f ×f3,Q×
`T,3Q to obtain the corresponding function. Of course, f3,Q can be precomputed but
such a step requires an additional Fp12 multiplication, which is the most consuming
operation in Algorithm 3.3.

The only interesting case is a signed binary representation of the exponent (i.e., a 2-NAF)
because it can help to find a sparse exponent. In this case, the subtraction step of Algorithm 3.3
is involves an additional division by the vertical line passing through Q and −Q, which could
be expensive, but fortunately it is wiped out by the final exponentiation if Q comes from the
twisted curve.

10.7.5 Final Exponentiation

We refer to Chapter 7 for the explanation, of the simplification of the final exponentiation which
corresponds to raising the result of Miller’s algorithm at the power pk−1

r . When k = 12, the
final exponentiation can be decomposed by p12−1

r = (p6− 1)(p21) p
4−p21
r . The most popular way

to perform the hard part p4−p21
r uses the following addition chain [34]:

f
p4−p21

r = y0y
2
1y

6
2y

12
3 y18

4 y30
5 y36

6 ,

where y0 = fpfp
2
fp

3
, y1 = 1

f
, y2 =

(
fx

2
0

)p2

, y3 = (fu)p ,

y4 =

(
fu

2
)p

fu
, y5 = 1

fu2 , y6 =

(
fu

3
)p

fu3 .

The cost of this method is 13M12, 4S12 and 7 Frobenius maps, in addition to the cost of 3
exponentiations by x0. The method given in [18] is slightly more efficient but computes a power
of the optimal Ate pairing. The main drawback of these methods is that they are memory
consuming (up to 4Ko), which can be annoying in restricted environments. Some variants of
these methods optimized in terms of memory consumption are given in [14].

10.7.6 Arithmetic for Optimal Ate Pairing Over BN-Curve

The computation over BN-curves involves the arithmetic of finite fields Fp, Fp2 , Fp4 , Fp6 , and
Fp12 . The construction of the extension fields influences the algebraic complexity of arithmetical
operations. We consider that the arithmetical operations over Fp are natively implemented,
which is often the case in practice. In [15], the authors give advice on the construction of the
tower field extensions and on the finite fields arithmetic. We only recall their results in the
following Tables 10.7–1.12.

The following notations for Fpi arithmetic will be used:

• An addition is denoted by ai and a multiplication by 2 by A′i.
• A multiplication is denoted by Mi (and MM

i if the method M is used).
• A sparse multiplication is denoted by sMi.
• A multiplication by the constant c is denoted by mi,c.
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TABLE 10.7 Cost of the arithmetic of extension of degree 2.

Operation Cost
Addition a2i = 2ai
Doubling A′2i = 2A′i

Multiplication, schoolbook MSB
2i = 4Mimi,µ2ai

Multiplication, Karatsuba MK
2i = 3Mimi,µ5ai

Squaring, schoolbook SSB2i = Mi2Simi,µaiA′i
Squaring, Karatsuba SK2i = 3Simi,µ4ai

Inversion, norm I2i = Ii2Mi2Siaimi,µ

• A squaring is denoted by Si (and SMi if the method M is used).
• An inversion is denoted by Ii.

Extension of degree 2

In theory, any irreducible polynomial can be used to build Fp2i over Fpi but non-zero coefficients
of this polynomial imply extra operations for Fp2i arithmetic. So Fp2i is usually built with a
polynomial in the form X2 − µ where µ is not a square in Fpi .

Fp2i = Fpi [α] with α2 = µ.

Table 10.7 gives recommendations for the arithmetic of degree 2 extensions.

Remark 10.7
• The schoolbook method should be preferred to the Karatsuba one while 3ai > Mi.
• Determining which is the best method is not so easy as for the multiplication in the

general case because it depends on both the relative cost of Mi and ai and of Mi and
Si.

Extension of degree 3

As in Section 10.7.6, it is preferable to choose a sparse polynomial to minimize the cost of Fp3i

arithmetic. Thus, Fp3i is built as Fpi [α] where α3 = ξ for some ξ in Fpi , which is not a cube. Of
course Fp3i arithmetic will involve some multiplications by ξ so that ξ must be chosen carefully.

Table 10.8 resumes the cost of the arithmetic of an extension of degree 3.

Building Fp12

In this section, we discuss the ways to build the extension tower Fp12 for pairings on BN curves.
All the ways to build Fp12 are mathematically equivalent. However, we will use this extension
in the specific case of pairings on BN curves, which implies some constraints in order to be
compatible with other improvements of pairing computations.

• In order to use the sextic twist, Fp12 must be built as an extension of Fp2 .
• Fp12 must be built over Fp2 thanks to a polynomial X6 − ξ where ξ, which is neither

a square nor a cube, is the element used to defined the twisted curve. This allows the
line involved in the Miller algorithm to be a sparse element of Fp12 (see Section 10.7.9
for more details).

Then, Fp12 should be built:

• Case 2, 2, 3: as a cubic extension of a quadratic extension of Fp2 ,
• Case 2, 3, 2: as a quadratic extension of a cubic extension of Fp2 ,
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TABLE 10.8 Cost of the arithmetic of extension of degree 3.

Operation Cost

Addition a3i = 3ai

Doubling A′3i = 3A′i

Multiplication, schoolbook MSB
3i = 9Mi2mi,ξ6ai

Multiplication, Karatsuba MK
3i = 6Mi15ai2mi,ξ

Squaring, schoolbook SSB3i = 3Mi3Si3ai2A′i2mi,ξ

Squaring, Karatsuba SK3i = 6Si12ai2mi,ξ

Squaring, Chung-Hasan SCH3i = 2Mi3Si8aiA′i2mi,ξ

TABLE 10.9 Cost of the arithmetic of extension of degree 6.

Operation Addition Doubling Multiplication, Karatsuba Squaring, Chung-Hasan

Cost a6 = 6a1 A′6 = 6A′1 M6 = 6M215a22m2,ξ S6 = 2M23S28a2A′22m2,ξ

• Case 2, 6: as a sextic extension of Fp2 .

The latter case is proved to be less efficient in [12], so in [15], the authors only consider the first
two. In any case, we have

Fp12 = Fp2 [γ] with γ6 = ξ ∈ Fp2 .

In the case 2, 2, 3, we will use β = γ3 to define Fp4 , and in the case 2, 3, 2, we will use β = γ2 to
define Fp6 . Of course Fp12 arithmetic will involve some multiplications by ξ or β so that ξ must
be chosen carefully.

Case 2, 3, 2

We assume in this case that Fp12 is built over Fp2 via Fp6 , and thanks to some ξ that is neither
a square nor a cube in Fp2 .

Fp6 = Fp2 [β] where β3 = ξ and Fp12 = Fp6 [γ] with γ2 = β.

The different costs for the arithmetic over Fp6 are resumed in Table 10.9.
Table 10.10 resumes the cost of the arithmetic over Fp12 in the case of the tower field 2, 3, 2.

Case 2, 2, 3

We assume in this case that Fp12 is built over Fp2 via Fp4 , and thanks to some ξ that is neither
a square nor a cube in Fp2 .

Fp4 = Fp2 [β] where β2 = ξ and Fp12 = Fp4 [γ] with γ3 = β.

Table 10.11 gives the complexity of arithmetical operations over Fp4 .
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TABLE 10.10 Cost of the arithmetic of extension of degree 12, case 2, 3, 2.

Operation Cost
Addition a12 = 2a6 = 12a1
Doubling A′12 = 2A′6 = 12A′1

Multiplication, Karatsuba M12 = 18M260a27m2,ξ
Sparse multiplication (Miller line) sM12 = 13M225a23m2,ξ

Squaring, Karatsuba S12 = 6M29S236a23A′27m2,ξ
Squaring, complex method S12 = 12M242a23A′26m2,ξ

TABLE 10.11 Complexities of S4 depending on the context.

µ condition method complexity
assuming a1 ≤ 0.33M1

−1,−2 or −5 K 3S2m2,ξ4a2
any C 2M2m2,ξm2,ξ13a2A′2

assuming a1 > 0.33M1
−1 or −5 K 3S2m2,ξ4a2−2 S1 = 0.8M1any SB M22S2m2,ξa2A′2
−2 or any S1 = M1 C 2M2m2,ξm2,ξ13a2A′2

Fp12 arithmetic

Table 10.12 presents the cost of the arithmetic of Fp12 in the case of the tower field 2, 2, 3.

10.7.7 Choosing x0

The parameter x0 is involved at several levels of the pairing computation, so that the best choice
is not trivial to do. Let us summarize the constraints on x0 that we have to deal with in order
to make a good choice.

• The parameter x0 defines the security level. Indeed, it is both parametrizing the
size of the elliptic curve (whose prime order is 36x4

036x3
018x2

06x01) and the number of
elements of the target finite field (which is (36x4

036x3
024x2

06x01)12).
• It is involved as an exponent in the Miller loop. More precisely, in the case of an

optimal Ate pairing, the exponent of the Miller loop is 6x02. In order to optimize this
step, x0 should be chosen such that 6x02 is sparse.

• It is involved as an exponent in the final exponentiation; see Chapter 7. If the addition
chain given in Section 10.7.5 is used, x0 is directly used (three times) as an exponent,
so it should be sparse to ensure a fast final exponentiation. Other final exponentiation
methods may involve exponentiations by 6x05 and 6x2

01 [13, 14] or 6x04 [14], but these
quantities are usually sparse at the same time as x0.

• The sign of x0 has no consequence in terms of complexities of the algorithms involved.
Indeed, changing x0 in −x0 costs an Fp12 inversion, but this inversion can be replaced
by a conjugation in Fp12/Fp6 thanks to the final exponentiation.

• Choosing x0 with a signed binary representation (to facilitate the research of a sparse
x0) is possible if the exponentiation algorithms are adapted.

TABLE 10.12 Cost of the arithmetic of extension of degree 12, case 2, 3, 2.

Operation Cost
Addition a12 = 3a4 = 12a1
Doubling A′12 = 3A′4 = 12A′1

Multiplication, Karatsuba M12 = 18M260a28m2,ξ
Sparse multiplication (Miller line) sM12 = 13M226a24m2,ξ

Squaring, Chung-Hasan S12 = 3S46M226a22A′24m2,ξ
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• The choice of x0 has a great impact on Fp12 arithmetic. The best choice is x0 = 7 or
11 modulo 12, so that we can use µ = −1 and ξ = 1i. Depending on the situation,
it could be better to choose a sparser x0 6= 7, 11 modulo 12 or reciprocally a x0 of
higher Hamming weight, but congruent to 7 or 11 modulo 12.

Hence, according to Table 10.1, x0 should be chosen as sparse as possible and with the best
possible way to build Fp12 . Moreover, its size must ensure the right security level. For example,
at the 128-bit security level, x0 should be a 63-bit integer. A 95-bit integer provides a 192-bit
security level on the elliptic curve but not in Fp12 . To get this level of security, a 169- or 170-bit
integer x0 should be chosen.

With these constraints, finding an appropriate value of x0 can easily be done by an exhaustive
search with any software that is able to check integer’s primality. Unfortunately, only a few values
of x0 with very low Hamming weight can be found. The best choice at the 128-bit security level
is given by x0 = −261−255−1 [32], even if it is ensuring a slightly smaller security level than 128.
It has weight 3 and is congruent to 11 modulo 12, so that µ = −1 and ξ = 1i can be used to build
Fp12 (and to twist the curve). For these reasons, it is widely used in the literature. However,
relaxing the constraint on the weight of x0 allows us to generate many good values of x0 (of
weight 4, 5, or 6, for example) that can be used in a database of pairing-friendly parameters or
for higher (or smaller) security levels.

Remark 10.8 Since, for BN curves, E(Fp) has prime order, it is naturally protected against
subgroup attacks that exploit small prime divisors of the cofactor [28]. However, this is not the
case of E′(Fp2 ) whose order equals r(2p−r). For example, the value of x0 given in Section 10.7.7,
and usually used in the literature for the 128-bits security level, is not naturally protected against
subgroup attacks. This can be prevented by using (possibly expensive) membership tests. If we
want to avoid these tests, the parameter x0 should be chosen such that both r and 2p − r are
prime numbers [6].

10.7.8 Generation of the Group G1 and G2

In this section, we present an explicit method to construct the points P and Q potentially
involved in the optimal Ate pairing computations. Since E(Fp) has prime order r, it is trivial to
find a suitable candidate for P : any point P 6= 0E has order r.

However, generating a suitable point Q seems less easy because it must be of order r in
E
(
Fp12

)
, come from the twisted curve, and be an eigenvector for the eigenvalue p of the Frobenius

map. In fact, it is not so difficult because the last condition is a consequence of the other ones [22].
Finding a suitable point Q is then done in the following way:

1. Choose a random point Q′ in E′(Fp2 ).
2. If Q′ does not have order r (which is statistically always the case), replace it by

(p− 2r)Q′, which has order r since #E′(Fp2 ) = (p− 2r)r.
3. If Q′ = 0E , then repeat steps 1 and 2.
4. Map Q′ to E

(
Fp12

)
thanks to the twist isomorphism between E and E′ over Fp12 . If

b′ = b/ξ, this is nothing but

Q =
(
xQ′γ

2, yQ′γ
3) if γ6 = ξ.

Then Q is a valuable candidate, in particular, it lies in the p-eigenspace of π.

Example 10.3 For b = 15, the point P = (1, 4) is a generator of E(Fp). We also need a point
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Q of order r in the big field, independent of P . Since the order of E(Fp12 ) is about p12 and r
is close to p, there seems to be no reason for such a point to have simple coordinates. So the
simplest way seems to be to choose a random point Q0 in E(Fp12 ) and then calculate Q = sQ0,
where r2s = ]

(
E(Fp12 )

)
. In PariGP, for example, this can be done as follows.

We find by trial and error that X12X8 is irreducible over Fp. To initialize E : y2 = x315
over the field Fp12 , we can, for instance type

{p12 = Mod(1, p)*Y^12 Mod(1, p)*Y Mod(8,p); /* so Y is a generator of F_{p^12}
and satisfies Y^12 Y 8=0 */

F12 = ffgen(p12); /* creates the field F_{p^12} */
E12 = ellinit([0,0,0,0,15]*(F12^0)); /* creates E over F_{p^12}, since F12^0 is the

element 1 of F_{p^12} */
Q0 = random(E12);}

Now we need to know ]
(
E(Fp12 )

)
, which can be calculated from ]

(
E(Fp)

)
as follows: If π is

the Frobenius element over Fp, then ]
(
E(Fp)

)
= p1− π − π̄ and ππ̄ = p, so if t = ππ̄, then

]
(
E(Fp12 )

)
= p121− π12 − π̄12

= p121− (π6π̄6)22(ππ̄)6

= p122p61− ((π3π̄3)2 − 2(π3π̄3))2

= (p61)2 − ((π3π̄3)2 − 2p3)2

= (p61)2 − (((ππ̄)3 − 3(ππ̄)ππ̄)2 − 2p3)2

= (p61)2 − ((t3 − 3tp)2 − 2p3)2

= (p61(t3 − 3tp)2 − 2p3)(p61− (t3 − 3tp)22p3).

Thus we can define s to be ]
(
E(Fp12 )

)
/r2 (which should be an integer), and type

Q1=ellpow(E12,Q0,s);

We now have a point of order r that is independent of P . If we want a point belonging to the
q-eigenspace of Frobenius G2, we can finally type

Q = ellsub(E12,[Q1[1]^q,Q1[2]^q],Q1);

since π(Q1)−Q1 has trace 0, and so belongs to G2.

10.7.9 System of Coordinates over the BN-Curve

There exist several systems of coordinates over the elliptic curve. The affine, projective, and
Jacobian are the classical ones for Weiestrass elliptic curves.

In this section, we give the formulas for adding and doubling points on BN curves (with the
line computation) and their complexities in the affine and the projective cases (it is now well
known that Jacobian coordinates are always less efficient than projective coordinates for pairing
computations [11]). This allows us to determine which system of coordinates should be chosen,
depending on the context. Assuming the previous choices, the two operations involved in the
Miller loop are

The doubling step

In this step, we have to

- double a temporary point T =
(
xT γ

2, yT γ
3) ∈ E (Fp12

)
with xT , yT ∈ Fp2 ,

- compute the tangent line to E at T ,
- evaluate it at P = (xP , yP ) ∈ E (Fp).
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The addition step

In this step, we have to

- add Q =
(
xQγ

2, yQγ
3) and T =

(
xT γ

2, yT γ
3) in E (Fp12

)
with xQ, yQ, xT , yT ∈ Fp2 ,

- compute the line passing through T and Q,
- evaluate it at P = (xP , yP ) ∈ E (Fp).

10.7.10 Affine Coordinates

The slope of the line passing through T and Q (or the tangent line at T if T = Q) is λγ, with

λ = yT − yQ
xT − xQ

(
or λ = 3x2

T

2yT

)
.

Then TQ (or 2T ) can be written in the form
(
xTQγ

2, yTQγ
3) with

xTQ = λ2 − xT − xQ and yTQ = λ (xT − xTQ)− yT .

The equation of the line involved in the operation is y = λγ
(
x− xT γ2) − yT γ3, thus the Fp12

element involved in the update of f in Algorithm 3.3 is

` = yP − λxP γ (λxT − yT ) γ3.

Assuming that −xP is precomputed, the cost of the addition step (including the line computa-
tion) is then I23M2S22M17a2 and the cost of the doubling step is I23M22S22M15a22A′2.

Remark 10.9 Since λ is used three times in Fp2 operations (λ2, λ (xT − xTQ) and λxT ), 2a1
can be saved using our idea of precomputing its trace if the Karatsuba/complex methods are
used for Fp2 arithmetic. In the same way, xT is used twice in the doubling step so that an
additional a1 can be saved in this case.

10.7.11 Projective Coordinates

In order to avoid inversions in Fp2 , projective coordinates are used for the point T , so that
T =

(
XT γ

2, YT γ
3, ZT

)
with XT , YT and ZT ∈ Fp2 . However, the point Q is kept in affine

coordinates (mixed addition method). According to [11], 2T =
(
X2T γ

2, Y2T γ
3, Z2T

)
with

X2T = 2XTYT (Y 2
T − 9bZ2

T )
Y2T =

(
Y 2
T 9bZ2

T

)2 − 12(3bZ2
T )2

Z2T = 8Y 3
TZT

and the equation of the tangent to the curve at T is (up to some subfield multiple)

` = 2yPYTZT − 3xPX2
T γ
(
Y 2
T − 3bZ2

T

)
γ3.

Assuming that −3xP is precomputed, the doubling step (including the line computation) then
requires 2M27S24M113a25A′22m1,b. In order to obtain this complexity, the double products
like 2XTYT are computed by (XTYT )2 −X2

T − Y 2
T . This trick is not always interesting over Fp

(e.g. if M1 = S1) but it is always interesting over Fp2 because S2 is clearly cheaper than M2
according to Section 10.7.6.



Choosing Parameters 10-19

In the same way, if

N = YT − yQZT ,
D = XT − xQZT (so that λ = N

D ),
X = N2ZT −XTD

2 − xQD2ZT ,

we compute the addition step with

XTQ = DX

YTQ = N(xQD2ZT −X)− yQD3ZT

ZTQ = D3ZT

` = yPD −NxP γ (NxQ −DyQ) γ3.

Assuming that −xP is precomputed, this requires 12M22S24M17a2.

Remark 10.10 Again, many Fp2 operands are used several times during the computation,
so that precomputing the traces saves additions in Fp. We do not give details here because the
addition step is rarely used in the Miller loop, but it is not difficult to see that 16a1 can be saved
if Karatsuba/complex arithmetic is used for Fp2 arithmetic.

10.7.12 Consequences of Formulas

Several remarks can be made looking at these formulas.
The first one is that the influence of b is small since it is just involved in two multiplications

by Fp elements. Hence a sparse x0 or a value of x0 enabling a nice choice of µ (and ξ) should
be preferred, even if a very small value of b is not available.

The second one is that, as mentioned in Sections 10.7.6, the line ` is of the form b0b1γb3γ
3

with bi ∈ Fp2 , thus it is sparse in Fp12 and a multiplication by ` is faster than a full multiplication
in Fp12 .

The third one is that, as already mentioned in [25, 2, 26, 19], it can be better to use affine
coordinates than projective coordinates, depending on the context. Indeed, using the complexity
formula for I2 given in Section 10.7.6 and the complexities obtained for the doubling step in
affine and projective coordinates, it is easy to verify that affine coordinates become interesting
for this step (and then for the full Miller loop) as soon as

I1 < 5S2 −M2 − 2S115a16A′12m1,b −m1,µ.

For example, in the case µ = −1,a1 ≤ 0.33M1, it is shown in [15] that affine coordinates are
interesting as soon as

I1 < 7M1 − 2S120a111A′12m1,b. (10.3)

Depending on the way to implement Fp inversion, this inequality may hold in practice, especially
if Fp addition are not negligible. In Table 10.13, we give the maximum cost of I1 for which affine
coordinates should be chosen, depending on the context. To make the results more readable, we
assumed that S1 = M1,a1 = A′1 and b = 2 (which is the least advantageous value for affine
coordinates). In any case, the non-simplified result is very similar to Equation (10.3).
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TABLE 10.13 Affine coordinates versus projective ones.

µ Use affine coordinates if
−1 I1 < 5M133a1
−2 I1 < 5M141a1
−5 I1 < 5M142a1
any I1 < 13M128a1
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Since the introduction of cryptographic pairings as a constructive cryptographic primitive by
Sakai, Ohgishi, and Kasahara in [31, 33, 34], and by Joux in [22, 23], the efficient implementa-
tion of pairings has become an increasingly important research topic. Early works still mainly
considered the Weil pairing [43], whose computation essentially consists of two so-called Miller
loops, but soon it became clear that variants of the Tate pairing [40, 41, 27] are more efficient.
All those variants have in common that they consist of the computation of one Miller loop and
one final exponentiation. Both the computation of the Miller loop and the computation of the
final exponentiation ultimately break down into operations in large finite fields, further into
arithmetic on large integers (or polynomials), and finally into machine instructions. Optimizing
software for cryptographic pairings consists of

1. reducing the amount of finite-field operations, and
2. implementing finite-field and big-integer operations as efficiently as possible given the

machine instructions of a certain target architecture.

In particular the first direction of optimization is largely influenced by the choice of a suitable
pairing-friendly elliptic curve (see Chapter 10). As we will see, the two directions of optimizations
are not entirely orthogonal, yet throughout this chapter we will refer to the first direction as
high-level optimization and to the second one as low-level optimization.

11-1
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This chapter will start off by reviewing common curve choices for high-performance software
in Section 11.1. It will then present high-level optimization techniques for the Miller loop in
Section 11.2 and for the final exponentiation in Section 11.3. Section 11.4 explains high-level
optimizations for the computation of multiple pairings that are relevant in some cryptographic
protocols. Section 11.5 explains low-level optimization techniques to efficiently map finite-field
arithmetic to machine instructions. Section 11.6 gives a brief introduction to timing attacks and
implementation techniques to protect against them. Section 11.7 gives an overview of existing
software libraries and frameworks for pairings and related operations. Finally, Section 11.8
gives a full implementation of an optimal ate pairing on a Barreto-Naehrig curve in the open
computer-algebra system Sage [39].

11.1 Curves for Fast Pairing Software

Pairings can be instantiated over different elliptic curves, producing maps of form e : G2 ×
G1 → GT . We commonly distinguish Type-1 (symmetric) pairings with G1 = G2), and Type-3
(asymmetric) settings.

11.1.1 Curves for Type-1 Pairings

In the symmetric setting, a distortion map is used to map elements from G2 to a linearly
independent subgroup. This is required for pairing computation to satisfy non-degeneracy, so
elements from G1 and G2 are mapped to non-trivial elements in GT . The most efficient proposals
for curves in this setting were supersingular binary and ternary curves, but recent advances in
the discrete logarithm computation in small characteristic derived a quasi-polynomial time that
makes these instantiations insecure [4]. As far as the research literature has discovered, the only
supersingular curves allowing secure instantiations of Type-1 pairings are supersingular curves
with embedding degree k = 2, 3 defined over prime fields [9, 45, 42] (also see Chapter 4 for
details).

11.1.2 Barreto-Naehrig Curves

The Barreto-Naehrig (BN) family of prime-order elliptic curves is ideal from an implementation
point of view, under several different aspects. These curves have embedding degree k = 12,
which makes them perfectly suited for 128 bits of security and a strong contender at the 192-
bit security level as well [2]. The family of curves is large enough to facilitate generation and
tweaking of curve parameters for optimal performance, allowing for customization of software
implementations to very different platforms in the computer architecture spectrum [32]. Concrete
efficient parameters for such curves can be found in [3], but parameters that attain higher security
for instantiating some protocols are proposed in [5]. A recent IEFT draft proposes additional
parameters. ? Refer to Chapter 10 for further details on parameters selection.

11.1.3 Curves at Higher Security Levels

At higher security levels, other parameterized families of curves become more efficient. Kachisa-
Schaefer-Scott (KSS) curves [24] with embedding degree k = 18 and Barreto-Lynn-Scott elliptic
curves [6], or BLS24 curves, are well suited for the task. Another family of curves of embedding

?https://datatracker.ietf.org/doc/draft-kasamatsu-bncurves/
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degree k = 12, called BLS12 [6] (also see [12]), have composite group order and provide com-
petitive performance. In real applications, the best choice of curve to implement may depend
on several factors, including protocol-level operaitons and number of required pairing computa-
tions [11]. Efficient parameters for the aforementioned families can be found in [2], while concrete
curves with additional security properties are proposed in [5].

In the following, we illustrate the concepts involved in pairing computation with Barreto-
Naehrig curves because of their implementation-friendliness.

11.2 The Miller Loop

The optimal ate pairing construction applied to general BN curves also provides a rather simple
formulation:

aopt : G2 ×G1 → GT

(Q,P ) 7→ (f`,Q(P ) · g[`]Q,ψ(Q)(P ) · g[`]Q+ψ(Q),−ψ2(Q)(P ))
p12−1
n ,

with ` = 6u+2, ψ the homomorphism on G2, line functions gT,Q passing through points T,Q; and
groups G2,G1,GT as previously defined. A specialization of Miller’s algorithm for computing
the optimal ate pairing can be found in Algorithm 11.1 below. In this version, both negative and
positive parameterizations are supported and the first iteration of the Miller loop is unrolled to
avoid trivial computations.

ALGORITHM 11.1 Optimized version of optimal ate pairing on general BN curves.
Input : P ∈ G1, Q ∈ G2, ` = |6u+ 2| =

∑log2(`)
i=0 `i2i

Output: aopt(Q,P )
d← gQ,Q(P ), e← 1, T ← 2Q
if `blog2(`)c−1 = 1 then

e← gT,Q(P ), T ← T +Q

end
f ← d · e
for i = blog2(`)c − 2 downto 0 do

f ← f2 · gT,T (P ), T ← [2]T
if `i = 1 then

f ← f · gT,Q(P ), T ← T +Q

end
end
Q1 ← ψ(Q), Q2 ← ψ2(Q)
if u < 0 then

T ← −T, f ← fp
6

end
d← gT,Q1 (P ), T ← T +Q1
e← gT,−Q2 (P ), T ← T −Q2
f ← f · (d · e)
f ← f (p6−1)(p2+1)(p4−p2+1)/n

return f

The main building block of pairing computation is extension-field arithmetic. Hence, its
efficient implementation is crucial. A popular choice consists of implementing the extension field
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through a tower of extensions, built with appropriate choices of irreducible polynomials:

Fp2 = Fp[i]/(i2 − β), with β a non-square, (11.1)
Fp4 = Fp2 [s]/(s2 − ξ), with ξ a non-square, (11.2)
Fp6 = Fp2 [v]/(v3 − ξ), with ξ a non-cube, (11.3)
Fp12 = Fp4 [t]/(t3 − s) (11.4)

or Fp6 [w]/(w2 − v) (11.5)
or Fp12 [w]/(w6 − ξ), with ξ a non-square and non-cube. (11.6)

Notice that converting from one towering scheme to another is possible by simply reordering
coefficients. As previously stated, a remarkably efficient set of parameters arising from the curve
choice E(Fp) : y2 = x3+2, with p ≡ 3 (mod 4), is β = −1, ξ = (1+i), simultaneously optimizing
finite field and curve arithmetic.

Line function evaluations computed inside the Miller loop (lines 7, 9, 16 and 17 of the algo-
rithm) generally have a rather sparse format, which motivates the implementation of dedicated
multiplication routines for accumulating the line evaluations into the Miller variable f (sparse
multiplication) or for multiplying line functions together (sparser multiplication). The choice of
tower representation can also change the number of multiplication and addition operations for
such routines, thus a careful performance analysis must be performed in the target architecture
to inform what is the best decision.

11.2.1 Point Representation

Pairings can be computed over elliptic curves represented in any coordinate system, but homo-
geneous projective and affine coordinates are the most common, depending on the ratio between
inversion and multiplication of a specific implementation. Due to the low Hamming weight of the
curve parameter and its effect on reducing the number of additions, the cost of the Miller loop
is usually dominated by point doubling and the corresponding line evaluations. Elements from
G2 can be defined over both divisive twists (D-type) or multiplicative twists (M -type). Below,
we review and slightly refine the formulas presented in previous chapters for the curve arith-
metic involved in pairing computation on affine and homogeneous projective coordinates. When
evaluating the costs of each formula, we use bold typeface for representing operation counts in
Fp2 and normal typeface for operations in the base field. These operations can be multiplication
(m), squaring (s), additions (a), and inverses (i). Complete and detailed operation counts can
be found in [1].

Affine coordinates
Affine coordinates have limited application in pairing computation, but they have proven

useful at higher security levels and embedding degrees due to simpler computation of inverses
at higher extensions. Another possible use case for affine coordinates is for evaluating protocols
requiring multiple pairing computations, when inversion can be batched together. The main
advantages of affine coordinates are the simplicity of implementation and format of the line
functions, allowing faster accumulation inside the Miller loop if the additional sparsity is ex-
ploited. If T = (x1, y1) is a point in E′(Fp2 ), one can compute the point 2T := T + T with the
following formula:

λ = 3x2
1

2y1
, x3 = λ2 − 2x1, y3 = (λx1 − y1)− λx3. (11.7)

When the twist curve E′ is of D-type and given by the twisting isomorphism ψ, the tangent
line evaluated at P = (xP , yP ) has the format g2ψ(T )(P ) = yP − λxPw + (λx1 − y1)w3, using



Software Implementation 11-5

the tower representation given by Equation (11.6). This function can be evaluated at a cost of
3m2 + 2s2 + 7a2 + ı2 + 2m with the precomputation cost of 1a to compute xP = −xP . By
performing more precomputation as y′P = 1/yP and x′P = xP /yP , we can simplify the tangent
line further:

y′P · g2ψ(T )(P ) = 1 + λx′Pw + y′P (λx1 − y1)w3.

Recall that the final exponentiation eliminates any subfield element multiplying the pairing
result. Hence, this modification does not change the pairing value and computing the simpler
line function now requires 3m2 + 2s2 + 7a2 + ı2 + 4m, with an additional precomputation cost
of (i+m+ a):

A = 1
2y1

, B = 3x2
1, C = AB, D = 2x1, x3 = C2 −D,

E = Cx1 − y1, y3 = E − Cx3, F = Cx′P , G = Ey′P ,

y′P · g2ψ(T )(P ) = 1 + Fw +Gw3.

This trick does not have any operations compared to the previous equation and increases
the cost by 2m. However, the simpler format allows the faster accumulation f2 · g2ψ(T )(P ) =
(f0 + f1w)(1 + g1w), where f0, f1, g1 ∈ Fp6 , by saving 6 base field multiplications required to
multiply yP by each subfield element of f0. The performance trade-off compared to the previous
formula is thus 4m per Miller doubling step.

When different points T = (x1, y1) and Q = (x2, y2) are considered, the point T +Q can be
computed with the following formula:

λ = y2 − y1

x2 − x1
, x3 = λ2 − x2 − x1, y3 = λ(x1 − x3)− y1. (11.8)

Applying the same trick described above gives the same performance trade-off, with a cost
of 3m + s + 6a + ı+ 4m:

A = 1
x2 − x1

, B = y2 − y1, C = AB, D = x1 + x2, x3 = C2 −D,
E = Cx1 − y1, y3 = E − Cx3, F = Cx′P , G = Ey′P ,

y′P · gψ(T ),ψ(Q)(P ) = 1 + Fw +Gw3.

The same technique can be further employed in M -type twists, conserving their equivalent
performance to D-type twists, with some slight changes in the formula format and accumulation
multiplier. A generalization for other pairing-friendly curves with degree-d twists and even
embedding degree k would provide a performance trade-off of (k/2 − k/d) multiplications per
step in Miller’s Algorithm.

Homogeneous projective coordinates
Projective coordinates improve performance in single pairing computation compared to

affine coordinates due to the typically large inversion/multiplication ratio in this setting. A
particular choice of projective coordinates that optimizes pairing computation is the homoge-
neous projective coordinate system. Below, we present optimizations proposed in [19, 3, 1] for
the formulas initially presented in [14]. If T = (X1, Y1, Z1) ∈ E′(Fp2 ) is a point in homoge-
neous coordinates, one can compute the point doubling 2T = (X3, Y3, Z3) with the following
formula [3]:

X3 = X1Y1

2 (Y 2
1 − 9b′Z2

1 ),

Y3 =
(

1
2(Y 2

1 + 9b′Z2
1 )
)2

− 27b′2Z4
1 ,

Z3 = 2Y 3
1 Z1.

(11.9)
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The twisting point P can be represented by (xPw, yP ). When E′ is a D-type twist given by
the twisting isomorphism ψ, the tangent line evaluated at P = (xP , yP ) can be computed with
the following formula:

g2ψ(T )(P ) = −2Y1Z1yP + 3X2
1xPw + (3b′Z2

1 − Y 2
1 )w3 (11.10)

This formula has additional optimization tricks, such as division by 4 to save additions and a
modification of the format to reduce the number of additions required for the accumulation in
the Miller variable.

The complete formula costs 2m2 + 7s2 + 23a2 + 4m+ db′ and can be optimized further by
saving additions, by precomputing yP = −yP and x′P = 3xP . Note that all these costs consider
the computation of X1 ·Y1 using the equivalence 2XY = (X+Y )2−X2−Y 2. In platforms where
it is more efficient to compute such terms with a direct multiplication because of m2−s2 < 3a2,
the cost would then be given by 3m2 + 6s2 + 15a2 + 4m + db′ . Finally, further improvements
are possible if b is cleverly selected. For instance, if b = 2 then b′ = 2/(1 + i) = 1− i using our
tower representation, which minimizes the number of additions and subtractions:

A = X1 · Y1/2, B = Y 2
1 , C = Z2

1 , D = 3C, E0 = D0 +D1,

E1 = D1 −D0, F = 3E, X3 = A · (B − F ), G = (B + F )/2,
Y3 = G2 − 3E2, H = (Y1 + Z1)2 − (B + C), Z3 = B ·H,

g2ψ(T )(P ) = HȳP +X2
1x
′
Pw + (E −B)w3.

(11.11)

Similarly, if T = (X1, Y1, Z1) and Q = (x2, y2) ∈ E′(Fp2 ) are points in homogeneous and
affine coordinates, respectively, one can compute the mixed point addition T +Q = (X3, Y3, Z3)
with the following formula:

X3 = λ(λ3 + Z1θ
2 − 2X1λ

2),
Y3 = θ(3X1λ

2 − λ3 − Z1θ
2)− Y1λ

3,

Z3 = Z1λ
3,

(11.12)

where θ = Y1 − y2Z1 and λ = X1 − x2Z1. In the case of a D-type twist, the line evaluated at
P = (xP , yP ) can be computed with the following formula:

gψ(T+Q)(P ) = −λyP − θxPw + (θX2 − λY2)w3. (11.13)

Analogously to point doubling, Equation (11.13) is basically the same line evaluation formula
presented in [14] with a repositioning of terms to obtain faster sparse multiplication. The
complete formula can be evaluated at a cost of 11m + 2s + 8a + 4m with the precomputation
cost of 2a to compute xP = −xP and yP = −yP :

A = Y2Z1, B = X2Z1, θ = Y1 −A, λ = X1 −B, C = θ2,

D = λ2, E = λ3, F = Z1C, G = X1D, H = E + F − 2G,
X3 = λH, I = Y1E, Y3 = θ(G−H)− I, Z3 = Z1E, J = θX2 − λY2,

g2ψ(T )(P ) = λȳP + θx̄Pw + Jw3.

In the case of an M -type twist, the line function evaluated at ψ(P ) = (xPw2, yPw
3) can be

computed with the same sequence of operations shown above.
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11.3 The Final Exponentiation

In the context of BN curves, the final exponentiation can be computed through the state-of-the-
art approach by [16]. As initially proposed in [37], the power p12−1

r can be factored into the
easy exponent (p6 − 1)(p2 + 1) and the hard exponent p4−p2+1

n . The easy power is computed
by a short sequence of multiplications, conjugations, fast applications of the Frobenius map [8],
and a single inversion in Fp12 . The hard power is computed in the cyclotomic subgroup, where
additional algebraic structure allows elements to be compressed and squared consecutively in
their compressed form, with decompression required only when performing multiplications [3].
Lattice reduction is able to obtain parameterized multiples of the hard exponent and significantly
reduce the length of the addition chain involved in that exponentiation. In total, the hard part of
the final exponentiation requires 3 exponentiations by parameter u, 3 squarings in the cyclotomic
subgroup, 10 full extension field multiplications, and 3 applications of the Frobenius maps with
increasing pth-powers. Chapter 7 discusses theses methods in finer detail.

11.4 Computing Multiple and Fixed-Argument Pairings

In some protocols, part of the parameters and variables can be known in advance. If the storage
area is not a constraint, one can precompute some of the operations beforehand. Not only the
pairing function could be precomputed, but also some of the ancillary functions around it. This
way, the pairing function could be speeded up by 15% in the case of the BN curves at 128-bit
level of security, and between 53 to 68% for the exponentiation in the pairing groups. [44]

11.4.1 Pairing computations in the Fixed Argument

One should note that the line functions of the pairing algorithm can be partially computed in
advance using the argument from the G2 group if it is fixed (indeed, almost all of the function).
One can store these partial values, and complete them at running time by evaluating the re-
mainder of the function on the argument from the G1 group. Hence, one can gain a sensitive
speed-up of the pairing computation in exchange for storage space if the parameter of the G2
group is fixed, as it was discussed in [36]. The optimized line functions from the Miller loop are
described in Equations 11.11, and 11.10.

For example, for the case of the BN curves at a security level of 128-bits, with the Aranha
et al. [3] parameter x = −(262 + 255 + 1), the Miller loop of the optimal ate pairing (Algorithm
11.1) requires 70 evaluations of line functions (64 correspond to point doubling, and 6 to point
additions). Recalling that these functions use values in Fp6 , then, one needs to store 70 elements
in Fp6 in order to gain a speed-up of around 15% [44].

To do the precomputation, we need the values of the line function for each stage in the Miller
loop, which requires a modified pairing function that saves each line function result without the
coordinates of the point P ; ? we need to storem line function states: blog2(6x+2)c line doublings,
and HammingWeight(6x+ 2) + 2 line additions for each fixed Q in the case of the BN curves;
we would need to change the Miller loop length (6x+ 2) in the case of other families of curves.
Taking Algorithm 11.1 as a base, instead of accumulating into f , d, or e the results from the line
functions (gT,T (P ), gT,Q(P ), gT,Q1 , or gT,−Q2 (P )), we can store the output values as g̃j,i with
0 ≤ j < number of fixed points, and 0 ≤ i < m-line function states.

?One can use the multiplicative identity to use the same, unmodified line functions
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11.4.2 Product of Pairings

When computing products of pairings in a pairing-based protocol, one has two lines of optimiza-
tion: reducing the number of pairings using the bilinearity property, and sharing operations.

For the first line of optimization, one can recall the bilinearity property of the pairing func-
tion: for P1, P2, Q ∈ E[n],

en(P1 + P2, Q) = en(P1, Q) · en(P2, Q)
en(Q,P1 + P2) = en(Q,P1) · en(Q,P2).

One can group pairings that share one of the input parameters. If all arguments of the
pairing function share the same element from the pairing group, then one can reduce the n
pairing products by n− 1 point additions with a single pairing function as:

n−1∏
i=0

e(Q,Pi) = e(Q,
n−1∑
i=0

Pi),

which saves a very significant amount of operations, namely, n − 1 pairings, and n − 1 multi-
plications in GT . It may be possible to apply this optimization several times, depending on the
protocol.

The second line of optimization is by sharing the computation between several pairing in-
stances.

For example, one can calculate the product of pairings by performing a simultaneous product
of pairings (or multipairing). Essentially, one can apply the same techniques used when dealing
with multiple point multiplications; i.e., Shamir’s trick.

The use of the Shamir’s trick has been discussed in [38], [35], and [18]. Essentially, in a
product of pairings one can share the pairing accumulator f from Algorithm 11.1. This way, one
is simultaneously performing the several pairing functions, and the multiplication. Additionally,
in the case of the Tate pairing, one must recall that the final exponentiation is, broadly speaking,
used to map the result of the pairing into the desired pairing subgroup; since this operation is
independent from the Miller loop, one can apply a single final exponentiation at the end of the
product of pairings, and get an element in the desired subgroup.

Algorithm 11.2 presents an explicit multi-pairing version of Algorithm 11.1 that computes
the product of n optimal BN pairings.

One should recall that optimized versions of the line functions will also compute the point
doubling, and point addition; however, Algorithm 11.2 is explicit in the point doubling, and
point addition after the line functions in the Miller loop; this was written for completeness.

As a final remark, a mixed environment can be presented where there are fixed arguments,
and unknown parameters; see Algorithm 11.3 for a version with both fixed and unknown pa-
rameters.

11.4.3 Simultaneous Normalization

An important implementation note on the pairing function is that both line functions (Equations
11.11 and 11.10) expect the parameters of the pairing to be in affine coordinates. Most pairing-
based protocols involve either the computation of point additions, or scalar-point multiplications
before a pairing — for example, when using the bilinearity of the pairing, or when needing a
product of pairings. In both cases, the result would probably be a point, or a set of points in
Jacobian coordinates; however, in the case of the scalar-point multiplication, it is customary
to normalize the point into affine coordinates, but this could be inefficient in the case where
multiple pairings are involved in a protocol. For implementation purposes, it is recommended
to use Montgomery’s trick, and do a simultaneous multi-normalization of the parameters; this
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ALGORITHM 11.2 Explicit multipairing version of Algorithm 11.1.
Input : P1, P2, . . . Pn ∈ G1,

Q1, Q2, . . . Qn ∈ G2

Output: f =
n∏
i=1

e`(Qi, Pi)

Write ` in binary form, ` =
∑m−1

i=0
f ← 1, `← abs(6x+ 2)
for j ← 1 to n do

Tj ← Qj
end
for i = m− 2 down to 0 do

f ← f2

for j ← 1 to n do
f ← f · gTj ,Tj (Pj), Tj ← [2]Tj
if `i = 1 then

f ← f · gTj ,Qj (Pj), Tj ← Tj +Qj
end

end

end
if (6x+ 2) < 0 then

f ← fp
6

end
for j ← 1 to n do

if (6x+ 2) < 0 then
T = −T

end
R← ψ(Qj); f ← f · gTj ,R(Pj);
Tj ← Tj +R

R← ψ2(Qj); f ← f · gTj ,−R(Pj);
Tj ← Tj −R

end

f (pk−1)/r

return f

has to be done for elements in both G1 and G2, and taking care that the Montgomery’s trick is
still worth the number of multiplications in the recovering part, if there are sufficient inversions
involved.

11.5 Low-Level Optimization

All pairing computations and computations in the related groups eventually break down to
operations in the underlying finite field. The task of low-level optimization is to map these
finite-field operations to machine instructions of a given target architecture as efficiently as
possible. The main challenge in this mapping is that the finite-field elements are typically much
larger than the size of machine words. For example, in the 128-bit security setup using BN curves
considered in this chapter, elements of the finite field have ≈ 256 bits, whereas the size of machine
words ranges somewhere between 8 bits (for example, on small microcontrollers) through 16 bits
and 32 bits up to 64 bits (for example, on recent Intel and AMD processors). One way to
accomplish this task is to use a software library for “big-integer arithmetic” or “multiprecision
arithmetic.” There are at least three potential downsides to this approach: First, various big-
integer libraries were not originally written for use in cryptography, and the arithmetic may leak
timing information (cf. Section 11.6). One of the most widely used free multiprecision libraries,
the GNU multiprecision library (GMP) has acknowledged this problem since Version 5 and
includes low-level mpn_sec_ functions for timing-attack-protected use in cryptography. Second,
general-purpose software libraries for finite-field arithmetic have to support arbitrary finite fields
and don’t include optimizations for reduction modulo a special-shape integer. This is not very
much of an issue in pairing-based cryptography (where moduli typically do not have a “nice”
shape), but it is a critical disadvantage for non-pairing elliptic-curve software. Finally, software
libraries typically optimize separate operations (like addition, subtraction, multiplication) and
not sequences of operations. This may make it harder to include lazy-reduction techniques such
as, for example, the ones extensively used in [3].
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ALGORITHM 11.3 Multipairing version of Algorithm 11.1 with mixed unknown and
fixed arguments.

Input : P1, . . . , Pn, Pn+1, . . . Pν ∈ G1, g̃1, . . . , g̃n (the m precomputed line functions for
each known Q1, . . . , Qn), Qn+1, . . . Qν ∈ G2

Output: f =
ν∏
i=1

e`(Qi, Pi)

Simultaneously normalize the n+ ν

parameters in G1, and the ν parameters in G2

Write ` in binary form, ` =
∑s−1

i=0
f ← 1, `← abs(6x+ 2)
for j ← 1 to ν do

Tj ← Qj
end
for i = s− 2 down to 0 do

f ← f2

for j ← 1 to n do
l← g̃j,m (The m-th precomputed value
of line function of the j-th fixed Q)
Include Pj in l (See Equations 11.11
and 11.10)
f ← f · l

end
m← m+ 1
for j ← 1 to ν do

f ← f · gTj ,Tj (Pn+j), Tj ← [2]Tj
end
if `i = 1 then

for j ← 1 to n do
l← g̃j,m
Include Pj in l (See Equations
11.11 and 11.10)
f ← f · l

end
m← m+ 1
for j ← 1 to ν do

f ← f · gTj ,Qj (Pn+j), Tj ← Tj +Qj
end

end

end
if (6x+ 2) < 0 then

f ← fp
6

end
for j ← 1 to n do

l← g̃j,m
l2 ← g̃j,m+1
Include Pj in l, and l2 (See Equations
11.11 and 11.10)
f ← f · l · l2

end
for j ← 1 to ν do

Tj ← −Tj
R← ψ(Qj); f ← f · gTj ,R(Pn+j);
Tj ← Tj +R

R← ψ2(Qj); f ← f · gTj ,−R(Pn+j);
Tj ← Tj −R

end
f (pk−1)/r

return f
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All speed-record setting software for pairing (and more generally elliptic-curve) software
therefore optimizes low-level arithmetic in hand-written assembly. There are three main choices
to make in this low-level optimization, which we will briefly describe in the following.

• Choice of radix. The typical approach to split an n-bit integer A into w-bit machine
words is to use m = dn/we unsigned w-bit integers (a0, . . . , am−1) such that A =∑m−1

i=0 ai2iw. This approach is called unsigned radix-2w representation. On many
architectures this approach turns out to be the most efficient not just in terms of space
but also in terms of speed of the arithmetic operations performed on big integers in
this representation. On many other architectures, it turns out that a “redundant”
(or “unsaturated”) approach yields better performance. Essentially, the idea is to
represent an integer A as

∑`
i=0 ai2ki, where k is smaller than the word length of the

target architecture and ` is larger than dn/we. The advantage is that the limbs ai do
not need all bits of a machine word and arithmetic can thus simplify carry handling.

• Choice of multiplication algorithm. Most of the computation time of pairings
and group arithmetic eventually boils down to modular multiplications and squarings
in the underlying prime field. These in turn break down into multiplications and
additions of saturated or unsaturated limbs, i.e., machine words. Many approaches
for multiprecision multiplication have quadratic complexity: Multiplying two n-limb
numbers takes n2 multiplications and (n− 1)2 additions of (two-limb) partial results.
Many of those operations are independent, which gives a large degree of freedom for
instruction scheduling. The most common approaches to instruction scheduling are
operand-scanning and product scanning, but more involved approaches like hybrid
multiplication [20] or operand caching [21] have been shown to yield better perfor-
mance on some architectures. As the number of limbs in the representation of bit
integers increases, algorithms with sub-quadratic complexity, in particular Karatsuba
multiplication [25] become faster than any of the quadratic-complexity algorithms.

• Choice of reduction algorithm. Non-pairing elliptic-curve cryptography typically
chooses curves over prime fields with particularly “nice” (i.e., sparse) primes that come
with very efficient modular-reduction algorithms. In pairing-based cryptography this
is not possible, because the field of definition of the pairing-friendly elliptic curves falls
out of the parameterized constructions for pairing-friendly curves. This is why the
standard approach for implementing modular reduction is to represent field elements
in the Montgomery domain and use the efficient Montgomery reduction algorithm [29].
Some implementations attempted to exploit the structure of the prime (which comes
from the parameterized construction) for efficient reduction [15, 30], but at least in
software, those approaches have been outperformed by Montgomery arithmetic.

Note that the above choices do not have independent influence on performance; there are
typically various subtle interactions. For example, the choice of a different radix may favor a
different multiplication algorithm or the choice of a specific reduction algorithm may require a
certain radix. Consequently, there is a large body of literature on multiprecision arithmetic on
a broad variety of computer architectures. A good starting point to get an idea of the general
algorithmic approaches is [26, Section 4.3] and [28, Section 14.2].

11.6 Constant-Time Software

Many modern cryptographic primitives, including suitably chosen cryptographic pairings, are
considered infeasible to break in the so-called black-box setting. This setting allows the attacker
to choose inputs and observe outputs of cryptographic primitives and protocols, but not to
make any observations about the computation. Unfortunately, this model is often too weak
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to describe the actual power of an attacker. Real-world attackers could focus on the ancillary
functions around the pairing function. With the help of the discrete logarithm problem, one is
able to hide a secret into an element of G1, G2, or GT , before or after the pairing function. The
exponentiation in these groups may include functions leaking information about the secret, the
so-called side-channel information that leaks during the computation; This is discussed in much
more detail in Chapter 12 since the pairing itself could be eventually protected against these
attacks.

In this section we will briefly discuss one specific class of side-channel attacks, namely timing
attacks, and describe how to inherently protect software against those attacks by implementa-
tions that follow the constant-time-software paradigm.

The basic idea of timing attacks is that the execution time of (cryptographic) software
depends on secret data. An attacker measures the execution time and deduces information
about the secret data. This basic idea also shows how to fully protect software against timing
attacks: The software needs to be written in such a way that it takes the same amount for
any values of secret data. This may sound like a very harsh statement, but luckily there are
essentially two sources for timing variability in software: secret branch conditions and secret
memory addresses.

11.6.1 Eliminating Secret Branch Conditions

The general structure of a secretly conditioned branch is “if (s = 1) do R ← A(); else do
R← B(),” where s is a secret bit of information, A() and B() are some computations, and R is
the data that is manipulated by A() or B(). This kind of code will obviously leak information
about s through timing if A() and B() take a different amount of time. Maybe less obvious
is that it typically also leaks information about s if A() and B() take the same amount of
time. One reason is that most modern CPUs try to predict whether a branch is taken or not to
avoid pipeline flushes. If this prediction is correct, the computation is going to be faster than
if the prediction is wrong. Another reason is instruction caches. If A() uses code from different
memory locations than B(), it can be the case that the code of only one of the two branches is in
cache and then this code runs faster. The generic approach to avoid this kind of timing leak is
to replace branches by arithmetic that replaces the above sequence of operations by something
like R ← s · A() + (1 − s) · B(). Note that this means that both branches, A() and B(), have
to be computed. Also note that it is not necessary to use multiplication and addition for this
arithmetic approach; It is very common to expand s to an all-one or all-zero mask and then use
a bit-logical AND instead of multiplication and a bit-logical XOR or OR instead of addition.
To illustrate this, consider the following function written in C that conditionally copies n bytes
from a to r if c is set to 1:

/* c has to be either 1 or 0 */
void cmov(unsigned char *r, const unsigned char *b, size_t n, int c) {

size_t i;
int nc;
c = -c; /* assume 2s-complement for negative ints */
nc = ~c;
for(i=0;i<n;i++) {

r[i] = (nc & r[i]) | (c & a[i]);
}

}

11.6.2 Eliminating Secret Memory Addresses

The second main sources of timing variability are secret memory addresses, i.e., loads of the
form “a← mem[s]” or stores of the form “mem[s]← a”, where the address s depends on secret
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data. The most obvious reason that a load from a secret address leaks information about the
address is caching: If the cache line containing the address is in cache, the load is going to
be fast (“cache hit”); if the cache line is not in cache, the load needs to retrieve data from
main memory and the load is much slower (“cache miss”). This explanation suggests that
loads can only leak information about cache lines; however, there are multiple other effects that
potentially leak information about the least-significant bits of the address. Examples are cache-
bank conflicts and store-to-load forwarding. Constant-time software needs to avoid all memory
access at addresses that depend on secret data. The general approach to eliminate loads from
secret positions is to load all possible values, e.g., from a lookup table, and then use conditional
copies (such as the one listed in the cmov function above) to copy data to the result. A general
approach to performing a constant-time lookup of the datastructure of type elem at position
pos from a table with TABLE_SIZE entries looks like this:

elem lookup(const elem *table, size_t pos) {
size_t i;
int d;
elem r = table[0];
for(i=0;i<TABLE_SIZE;i++) {

d = int_isequal(i, pos);
cmov{(unsigned char *)&r, (unsigned char *)table+i, sizeof(elem), d);

}
return r;

}

Note that this code does not use d = (i == pos), because this might cause a compiler to
re-introduce a timing leak. It instead relies on a safe implementation of the equality check
called int_isequal. This comparison can be implemented as follows (under the reasonable
assumptions that a sizeof(int) is strictly smaller than sizeof(long long), that a long long
has 64 bits, and that negative numbers are represented in the 2’s complement):

int int_isequal(int a, int b) {
long long t = a ^ b;
t = (-t) >> 63;
return 1 - (t & 1);

}

11.7 Software Libraries

There exist various libraries and software frameworks to compute cryptographic pairings and
related arithmetic operations in the groups. In this section, we briefly introduce two of them
and for each of them give example code that implements the BLS signature scheme [10] following
the eBACS API [7] for cryptographic signatures. Other well-known software implementations
are contained in the Pairing-Based Cryptography library? and MIRACL Cryptographic SDK.?
The former can be considered outdated and does not include modern instantiations of pairings,
while the latter can also be found in a flavor tailored to typical embedded devices.? We start by
reviewing the BLS signature scheme.

?https://crypto.stanford.edu/pbc/
?https://github.com/CertiVox/MIRACL
?https://github.com/CertiVox/MiotCL
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11.7.1 The BLS Signature Scheme

Signature schemes are an important cryptographic primitive. A signer possessing a secret signing
key can sign messages using a signing algorithm; for a matching public verification key, the
message-signature pair can be checked with a verification algorithm.

It is possible to construct a signature scheme from an Identity-Based Encryption (IBE)
scheme. Suppose there is an IBE scheme secure against adaptive-identity attacks; here, the
adversary submits identities, and receives the corresponding decryption keys. The analogy from
an IBE scheme could be the message submissions (identities): In order to get valid signatures, the
signatures would play the role of the decryption keys, if the adversary can generate valid message-
signature pairs, then the scheme has failed. Verification of the decryption key (signature) can be
done by encrypting a random string under the identity (message), and then using the decryption
algorithm with the decryption key to see if the string is recovered properly. [13]

Based on this construction, Boneh, Lynn, and Shacham in 2001 [10, 2004 version] introduced
a short signature scheme based on the computational Diffie-Hellman assumption on certain
elliptic and hyperelliptic curves. Their scheme is particularly interesting since it produces a
significantly smaller signature than traditional elliptic curve-based schemes.

DEFINITION 11.1 Let E(Fp) be an elliptic curve, and let P,Q ∈ E(Fp) have prime order
r. The co-DDH problem is: given (P, [a]P,Q, [b]Q) to determine if a ?≡ b mod r. [17]

The computational variant is: given (P,Q, [a]Q), compute [a]P .
The BLS short signature scheme makes use of a hash function H : {0, 1}∗ → G1, and an

asymmetric pairing e : G1 × G2 → GT . Let G1 =< P >, and G2 =< Q >, viewing H as a
random oracle. The scheme is as follows:

• Key Generation. Choose x ∈R Zr, set R← [x]Q. The public key is Q,R, whereas
the private key is x.

• Sign. Map-to-Point the message to sign as PM = H(M) ∈< P >, set SM ← [x]PM .
The signature is the x-coordinate of SM .

• Verify. Given the x-coordinate of SM , find ±SM . Decide: e(Q,SM ) ?= e(R,H(M)),
and (PM , SM , Q,R) is a valid Computational Diffie-Hellman tuple.

For implementation purposes, the sign of the y-coordinate of SM can also be included as part of
the signature.

11.7.2 RELIC is an Efficient LIbrary for Cryptography

RELIC is a modern cryptographic meta-toolkit with emphasis on efficiency and flexibility, and
can be used to build efficient and usable cryptographic toolkits tailored for specific security
levels and algorithmic choices. The focus is to provide portability, easy support to architecture-
dependent code, flexible configuration, and maximum efficiency. In terms of pairing-based cryp-
tographics, RELIC implements several types of pairings and pairing-based protocols, including
pairings over BN curves and other parameterized curves at different security levels; the Sakai-
Ohgishi-Kasahara ID-based authenticated key agreement, Boneh-Lynn-Schacham and Boneh-
Boyen short signatures, and a version of the Boneh-Go-Nissin homomorphic encryption system
adapted to asymmetric pairings. Algorithms 11.5, 11.5, and 11.6 present code portions im-
plementing the BLS signature scheme (as included in the library), and signature/verification
operations with an eBACS-compatible interface, together with illustrative test code.
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ALGORITHM 11.5 eBACs interface for BLS signatures in RELIC.
#include "relic.h"

#define CRYPTO_SECRETKEYBYTES PC_BYTES
#define CRYPTO_PUBLICKEYBYTES (2 * PC_BYTES + 1)
#define CRYPTO_BYTES (PC_BYTES + 1)
#define TEST_BYTES 20
#define COMPRESS 1

//eBats function to generate signing, and verification keys
//Input: memory space to store the signing, and verification keys
//Output: pk - verification key, sk - signing key
int crypto_sign_keypair(unsigned char *pk, unsigned char *sk) {

bn_t k;
g2_t pub;

if (cp_bls_gen(k, pub) == STS_OK) {
bn_write_bin(sk, CRYPTO_SECRETKEYBYTES, k);
g2_write_bin(pk, CRYPTO_PUBLICKEYBYTES, pub, COMPRESS);
return 0;

}
return 1;

}

//eBats function to sign a message
//Input: m - message to sign, mlen - length of message in bytes,
// sk - signing key
//Output: sm - signature of message m with signing key sk,
// smlen - length of signature
int crypto_sign(unsigned char *sm, unsigned long long *smlen, const unsigned

char *m, unsigned long long mlen, const unsigned char *sk) {
g1_t sig;
bn_t k;
int i, len = CRYPTO_BYTES;

if (*smlen < CRYPTO_BYTES + mlen)
return 1;

bn_init(k, BN_DIGS);
bn_read_bin(k, sk, CRYPTO_SECRETKEYBYTES);

if (cp_bls_sig(sig, m, mlen, k) == STS_OK) {
g1_write_bin(sm, &len, sig, COMPRESS);
for (i = 0; i < mlen; i++)

sm[i + CRYPTO_BYTES] = m[i];
*smlen = mlen + CRYPTO_BYTES;
return 0;

}
return 1;

}
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ALGORITHM 11.6 Verification and test code for BLS signatures in RELIC.
//eBats function to verify a message
//Input: m - message to verify, mlen - length of message m,
// sm - signature of message m, smlen - length of signature sm,
// and pk - verification key
//Output: 0 signature verifies, -1 - signature verification fails
int crypto_sign_open(unsigned char *m, unsigned long long *mlen, const

unsigned char *sm, unsigned long long smlen, const unsigned
char *pk) {

g1_t sig;
g2_t pub;

g2_read_bin(pub, pk, CRYPTO_PUBLICKEYBYTES);
g1_read_bin(sig, sm, CRYPTO_BYTES);
if (cp_bls_ver(sig, sm + CRYPTO_BYTES, smlen - CRYPTO_BYTES, pub) == 1) {

for (int i = 0; i < smlen - CRYPTO_BYTES; i++)
m[i] = sm[i + CRYPTO_BYTES];

*mlen = smlen - CRYPTO_BYTES;
return 0;

} else {
for (int i = 0; i < smlen - CRYPTO_BYTES; i++)

m[i] = 0;
*mlen = (unsigned long long)(-1);
return -1;

}
}

int main(int argc, char *arv[]) {
unsigned char m[TEST_BYTES], sig[CRYPTO_BYTES + TEST_BYTES];
unsigned char sk[CRYPTO_SECRETKEYBYTES], pk[CRYPTO_PUBLICKEYBYTES];
unsigned long long len = CRYPTO_BYTES + TEST_BYTES;

core_init();
rand_bytes(m, TEST_BYTES);
if (pc_param_set_any() == STS_OK) {

if (crypto_sign_keypair(pk, sk) != 0)
return 1;

if (crypto_sign(sig, &len, m, TEST_BYTES, sk) != 0)
return 1;

/* Check signature. */
len = TEST_BYTES;
if (crypto_sign_open(m, &len, sig, CRYPTO_BYTES + TEST_BYTES, pk) =

= -1) return 1;
len = TEST_BYTES;
/* Make signature invalid and check if it fails. */
sig[CRYPTO_BYTES] ^= 1;
if (crypto_sign_open(m, &len, sig, CRYPTO_BYTES + TEST_BYTES, pk) =

= 0) return 1;
}
core_clean();

}
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11.7.3 PandA – Pairings and Arithmetic

PandA is a framework for pairing computations and arithmetic in the related groups. The
main idea of PandA is to provide the definition of an API together with tests and benchmarks;
implementors of pairing software can implement this API and protocol implementors can simply
include a different header file and recompile their protocol to use a different implemention in
PandA.

A particular emphasis in the API design of PandA is to distinguish between computations
that operate on secret data and those that only involve public inputs. By default, all functions
assume to possibly receive secret input and the implementor of the pairing software must ensure
that the software does not leak (timing) information about those secret values (cf. Section 11.6).
If the protocol implementor knows that inputs to a certain function are always public, he can
choose to use a _publicinputs version of the respective function, and the library implementor
is free to provide a faster (but unprotected) implementation for that function.

Algorithms 11.7, 11.9, and 11.10 present code portions implementing the BLS signature
scheme following the eBACS API for cryptographic signatures.

Implementing BLS with PandA

ALGORITHM 11.7 The file api.h for the eBACS API.
#include "panda.h"

#define CRYPTO_SECRETKEYBYTES BGROUP_SCALAR_BYTES
#define CRYPTO_PUBLICKEYBYTES BGROUP_G2E_PACKEDBYTES
#define CRYPTO_BYTES BGROUP_G1E_PACKEDBYTES

ALGORITHM 11.8 BLS keypair generation with PandA.

//Function to generate signing, and verification keys
//Input: memory space to store the signing, and verification keys
//Output: pk - verification key, sk - signing key

int crypto_sign_keypair(
unsigned char *pk,
unsigned char *sk

)
{

// private key //
bgroup_scalar x;
bgroup_scalar_setrandom(&x);
bgroup_scalar_pack(sk, &x);

// public key //
bgroup_g2e r;
bgroup_g2_scalarmult_base(&r, &x);
bgroup_g2_pack(pk, &r);

return 0;
}
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ALGORITHM 11.9 BLS signing with PandA.

//Function to sign a message
//Input: m - message to sign, mlen - length of message in bytes,
// sk - signing key
//Output: sm - signature of message m with signing key sk,
// smlen - length of signature

int crypto_sign(
unsigned char *sm, unsigned long long *smlen,
const unsigned char *m, unsigned long long mlen,
const unsigned char *sk)

{

bgroup_g1e p, p1;
bgroup_scalar x;
int i,r;

bgroup_g1e_hashfromstr_publicinputs(&p, m, mlen);
r = bgroup_scalar_unpack(&x, sk);
bgroup_g1e_scalarmult(&p1, &p, &x);
bgroup_g1e_pack(sm, &p1);

for (i = 0; i < mlen; i++)
sm[i + CRYPTO_BYTES] = m[i];
*smlen = mlen + CRYPTO_BYTES;

return -r;
}
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ALGORITHM 11.10 BLS verification with PandA.
//Function to verify a message

//Input: m - message to verify, mlen - length of message m,
// sm - signature of message m, smlen - length of signature sm,
// and pk - verification key
//Output: 0 signature verifies, -1 - signature verification fails
int crypto_sign_open(

unsigned char *m, unsigned long long *mlen,
const unsigned char *sm, unsigned long long smlen,
const unsigned char *pk)

{

bgroup_g1e p[2];
bgroup_g2e q[2];
bgroup_g3e r;
unsigned long long i;
int ok;

ok = !bgroup_g1e_unpack(p, sm);
bgroup_g1e_negate_publicinputs(p, p);
q[0] = bgroup_g2e_base;
bgroup_g1e_hashfromstr_publicinputs(p+1, sm + CRYPTO_BYTES, smlen -
CRYPTO_BYTES); ok &= !bgroup_g2e_unpack(q+1, pk);

bgroup_pairing_product(&r, p, q, 2);

ok &= bgroup_g3e_equals(&r, &bgroup_g3e_neutral);

if (ok)
{

for (i = 0; i < smlen - CRYPTO_BYTES; i++)
m[i] = sm[i + CRYPTO_BYTES];

*mlen = smlen - CRYPTO_BYTES;
return 0;

}
else
{

for (i = 0; i < smlen - CRYPTO_BYTES; i++)
m[i] = 0;

*mlen = (unsigned long long) (-1);
return -1;

}
}
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ALGORITHM 11.4 BLS implementation with RELIC.
//Function to generate signing, and verification keys
//Input: memory space to store the signing, and verification keys
//Output: pub - verification key, priv - signing key
int cp_bls_gen(bn_t priv, g2_t pub) {

bn_t ord;
g2_get_ord(ord);
bn_rand_mod(priv, ord);
g2_mul_gen(pub, priv);
return STS_OK;

}

//Function to sign a message
//Input: msg - message to sign, len - length of message in bytes,
//priv - signing key
//Output: sig - signature of message msg with signing key priv
int cp_bls_sig(g1_t sig, uint8_t *msg, int len, bn_t priv) {

g1_t p;
g1_new(p);
g1_map(p, msg, len);
g1_mul(sig, p, priv);
return STS_OK;

}

//Function to verify a message
//Input: sig - signature of message msg, msg - message to verify,
//len - length of message msg, q - verification key
//Output: 1 - True, signature verifies,
// 0 - False, signature verification fails
int cp_bls_ver(g1_t sig, uint8_t *msg, int len, g2_t q) {

g1_t p;
g2_t g;
gt_t e1, e2;

g2_get_gen(g);

g1_map(p, msg, len);
pc_map(e1, p, q);
pc_map(e2, sig, g);

if (gt_cmp(e1, e2) == CMP_EQ) {
return 1;

}
return 0;

}
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11.8 A Pairing in SAGE

Listing 50 File parameters-negative.sage. Definition of parameters and computation of
derived parameters for the optimal ate pairing using the Barreto-Naehrig curve E : Y 2 = X3 +2
over Fp, where p = 36 ∗ t4 + 36 ∗ t3 + 24 ∗ t2 + 6 ∗ t + 1 and t = −(262 + 255 + 1). The group
order r = 36 ∗ t4 + 36 ∗ t3 + 18 ∗ t2 + 6 ∗ t+ 1 is a 254-bit prime.

1 t = -(2**62 + 2**55 + 1)
2 p = 36*t ^4+36* t ^3+24* t^2+6*t+1
3 r = 36*t ^4+36* t ^3+18* t^2+6*t+1
4 tr = 6*t^2+1
5
6 # MSB -first signed binary representation of abs (6*t+2)
7 L = [1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
8 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
9 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]
10
11 # Definition of finite fields
12 F = GF(p)
13 K2.<x> = PolynomialRing (F)
14 F2.<u> = F. extension (x^2+1)
15 K6.<y> = PolynomialRing (F2)
16 F6.<v> = F2. extension (y^3-(u+1))
17 K12.<z> = PolynomialRing (F6)
18 F12.<w> = F6. extension (z^2-v)
19 # Required to work around limitations of Sage
20 F12. is_field = lambda :True
21
22 # Constants required in Frobenius computation
23 c1 = v**(p -1)
24 c2 = (v*w)**(p -1)
25
26 # Definition of curve E and twist EE
27 b = 2
28 E = EllipticCurve (F,[0,b])
29 EE = EllipticCurve (F2 ,[0,b/(u+1)])
30 # cofactor of the twist
31 h = EE.order ()//r
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Listing 51 File parameters-positive.sage. Definition of parameters and computation of
derived parameters for the optimal ate pairing using the Barreto-Naehrig curve E : Y 2 = X3 +5
over Fp, where p = 36 ∗ t4 + 36 ∗ t3 + 24 ∗ t2 + 6 ∗ t+ 1 and t = 262 − 254 + 244. The group order
r = 36 ∗ t4 + 36 ∗ t3 + 18 ∗ t2 + 6 ∗ t+ 1 is a 254-bit prime.

1 t = 2^62 -2^54+2^44
2 p = 36*t ^4+36* t ^3+24* t^2+6*t+1
3 r = 36*t ^4+36* t ^3+18* t^2+6*t+1
4 tr = 6*t^2+1
5
6 # MSB -first signed binary representation of abs (6*t+2)
7 L = [1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,1,0,0,
8 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
9 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
10
11 # Definition of finite fields
12 F = GF(p)
13 K2.<x> = PolynomialRing (F)
14 F2.<u> = F. extension (x^2+5)
15 K6.<y> = PolynomialRing (F2)
16 F6.<v> = F2. extension (y^3-u)
17 K12.<z> = PolynomialRing (F6)
18 F12.<w> = F6. extension (z^2-v)
19 # Required to work around limitations of Sage
20 F12. is_field = lambda :True
21
22 # Constants required in Frobenius computation
23 c1 = v**(p -1)
24 c2 = (v*w)**(p -1)
25
26 # Definition of curve E and twist EE
27 b = 5
28 E = EllipticCurve (F,[0,b])
29 EE = EllipticCurve (F2 ,[0,b/u])
30 # cofactor of the twist
31 h = EE.order ()//r
32 OA
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Listing 52 File linefunctions.sage. Point addition and doubling and evaluation of the cor-
responding line functions using Jacobian Coordinates. See Algorithms 11.13 and 11.10.

1 load("parameters - negative .sage")
2 #load (" parameters - positive .sage ")
3
4 #Line function
5 #Input: P=(xp , yp) \in G1 , T=(XR , YR , ZR), Q=(XQ , YQ , ZQ) \in G2
6 # Output : T(XR , YR , ZR) \gets [2]T(XR , YR , ZR),
7 # f \gets \g2_ {\ pi_E(T+Q)}(P)
8 def add_eval (XR ,YR ,ZR ,XQ ,YQ ,ZQ ,xp ,yp):
9 ZR2 = ZR **2
10 t0 = XQ*ZR2
11 t1 = (YQ+ZR )**2 - YQ*YQ - ZR2
12 t1 = t1*ZR2
13 t2 = t0 - XR
14 t3 = t2 **2
15 t4 = 4*t3
16 t5 = t4*t2
17 t6 = t1 -2* YR
18 t9 = t6*XQ
19 t7 = XR*t4
20 XT = t6**2-t5 -2* t7
21 ZT = (ZR+t2 )**2 - ZR2 - t3
22 t10 = YQ + ZT
23 t8 = (t7 -XT)*t6
24 t0 = 2*( YR*t5)
25 YT = t8 -t0
26 t10 = t10 **2 - YQ **2 - ZT **2
27 t9 = 2*t9 -t10
28 t10 = 2*( ZT*yp)
29 t6 = -t6
30 t1 = 2*( t6*xp)
31 l00 = t10
32 l10 = t1
33 l11 = t9
34 f = l00 + l10*w + l11*v*w
35 return (XT ,YT ,ZT ,f)
36
37
38 #Line function
39 #Input: P=(xp , yp) \in G1 , T=(XR , YR , ZR) \in G2
40 # Output : T(XR , YR , ZR) \gets [2]T(XR , YR , ZR),
41 # f \gets \g2_ {\ pi_E(T)}(P)
42 def dbl_eval (XR ,YR ,ZR ,xp ,yp):
43 t0 = XR **2
44 t1 = YR **2
45 ZR2 = ZR **2
46 t2 = t1 **2
47 t3 = (t1+XR )**2 - t0 -t2
48 t3 = 2*t3
49 t4 = 3*t0
50 t6 = XR+t4
51 t5 = t4 **2
52 XT = t5 - 2*t3
53 ZT = (YR+ZR )**2 - t1 - ZR2
54 YT = (t3 - XT)*t4 - 8*t2
55 t3 = -2*(t4 *ZR2)
56 l10 = t3*xp
57 l11 = t6**2-t0 -t5 -4* t1
58 t0 = 2*( ZT*ZR2)
59 l00 = t0*yp
60 f = l00 + l10*w + l11*v*w
61 return (XT ,YT ,ZT ,f)
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Listing 53 File millerloop.sage. The Miller loop computation of the optimal ate pairing
using the signed binary representation of 6t+ 2 is defined in file parameters.sage and calls to
the line-function evaluations defined in file linefunctions.sage.

1 load(" linefunctions .sage")
2
3 # Miller loop e(. ,.)
4 #Input: P \in G1 , Q \in G2
5 # Output : f \in \F_{p^k}
6 def millerloop (P,Q):
7 def frob_point_prime (XP ,YP ,ZP):
8 XR = c1*(XP**p) #XXX: Frobenius operator
9 YR = c2*(YP**p) #XXX: Frobenius operator
10 ZR = ZP**p #XXX: Frobenius operator
11 return (XR , YR , ZR)
12
13 def conjugation (f):
14 (a0 ,a1) = vector (f)
15 return a0 -w*a1
16
17 xq ,yq ,zq = Q
18 xt ,yt ,zt = Q
19 f=1
20
21 for i in L:
22 xt ,yt ,zt ,d = dbl_eval (xt ,yt ,zt ,P[0],P[1])
23 f = f**2
24 f = f*d #XXX: sparse mul
25 if (i== -1):
26 xt ,yt ,zt ,d = add_eval (xt ,yt ,zt ,xq ,-yq ,zq ,P[0],P[1])
27 f = f*d #XXX: sparse mul
28 elif (i==1):
29 xt ,yt ,zt ,d = add_eval (xt ,yt ,zt ,xq ,yq ,zq ,P[0],P[1])
30 f = f*d #XXX: sparse mul
31
32 xq1 ,yq1 ,zq1 = frob_point_prime (xq ,yq ,zq)
33 xq2 ,yq2 ,zq2 = frob_point_prime (xq1 ,yq1 ,zq1)
34
35 if t < 0:
36 f = conjugation (f)
37 yt = -yt
38
39 xt ,yt ,zt ,d = add_eval (xt ,yt ,zt ,xq1 ,yq1 ,zq1 ,P[0],P[1])
40 f = f*d #XXX: sparse mul
41
42 yq_2 = -yq2
43 xt ,yt ,zt ,d = add_eval (xt ,yt ,zt ,xq2 ,yq_2 ,zq2 ,P[0],P[1])
44 f = f*d #XXX: sparse mul
45
46 return f
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Listing 54 File finalexponentiation.sage. Optimized final exponentiation with exponent
e = (p12 − 1)/r.

1 #load (" fp12.sage ")
2
3 # Function for the final exponentiation
4 #Input: f \in \F_{p^k}
5 # Output : f^{(p^{12} - 1)/r}
6 def final_expo (f):
7 def conjugation (f):
8 (a0 ,a1) = vector (f)
9 return a0 -w*a1
10 f = conjugation (f) * f^( -1)
11 f = f^(p^2)*f
12 if t < 0:
13 ft1 = conjugation (f)
14 ft1 = ft1^abs(t)
15 ft2 = conjugation (ft1)
16 ft2 = ft2^abs(t)
17 ft3 = conjugation (ft2)
18 ft3 = ft3^abs(t)
19 else:
20 ft1 = f^abs(t)
21 ft2 = ft1^abs(t)
22 ft3 = ft2^abs(t)
23 fp1 = f^p
24 fp2 = fp1^p
25 fp3 = fp2^p
26 y0 = fp1*fp2*fp3
27 y1 = conjugation (f)
28 y2 = ft2 ^(p^2)
29 y3 = ft1^p
30 y3 = conjugation (y3)
31 y4 = ft2^p
32 y4 = y4*ft1
33 y4 = conjugation (y4)
34 y5 = conjugation (ft2)
35 y6 = ft3^p
36 y6 = y6*ft3
37 y6 = conjugation (y6)
38 t0 = y6 ^2* y4*y5
39 t1 = y3*y5*t0
40 t0 = t0*y2
41 t1 = (t1 ^2* t0 )^2
42 t0 = t1*y1
43 t1 = t1*y0
44 t0 = t0^2
45 f = t1*t0
46 return f
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Listing 55 File optimal_ate.sage. Optimal ate pairing consisting of the Miller loop in file
millerloop.sage and the final exponentation in file finalexponentiation.sage.

1 load(" millerloop .sage")
2 load(" finalexponentiation .sage")
3
4 # Function to compute the ate pairing
5 #Input: P \in G1 , Q \in G2
6 # Output : f \in \mu_r
7 def Optimal_Ate (P,Q):
8 f = millerloop (P,Q)
9 f = final_expo (f)
10 return f

Listing 56 File test.sage. Minimal test of the optimal ate pairing defined in file
optimal_ate.sage.

1 load(" optimal_ate .sage")
2
3 ntests = 1
4
5 for n in range( ntests ):
6 D1=E. random_point ()
7 D2=h*EE. random_point ()
8 s = randint (0,r)
9 r1 = Optimal_Ate (D1 ,s*D2)
10 r2 = Optimal_Ate (s*D1 ,D2)
11 r3 = Optimal_Ate (D1 ,D2)^s
12 print r1 == r2 == r3
13 print r1 != 0 and r2 != 0 and r3 != 0
14 if r1 == 1:
15 print " Warning : pairing computes 1"
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The security of modern cryptography is based on the impossibility of breaking the implemented
algorithms in practice. In order to reach such a goal, the algorithms are built in such a way
that breaking them in theory is as expensive as doing an exhaustive search on the whole key.
The cryptosystems are made public to ensure a high knowledge of potential attacks and the key
length is selected according to the existing computation power available to prevent any brute
force of the key. The strength of a given algorithm grows exponentially with the length of the
key used.

However, if by any means someone can access some part of the key and test whether he
guessed the correct value of the key, independently from the rest of the key, he would be able to
brute force the key. Indeed, if the size of such parts is small enough, the exhaustive search for
each part will be practically feasible and by repeating the attack on the different parts, the cost
of finding the whole key will grow linearly with the length of the key.

The study of whether it is possible to access small parts of the key or not has been a new field
in cryptographic engineering since the middle of the nineties. This has been made possible thanks
to a class of attacks called Physical Attacks against the implementations of the cryptographic
algorithms.

Physical attacks exploit the underlying intrinsic weaknesses of the integrated circuits used
to run the cryptographic algorithms. In the context of cryptographic engineering, two types
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of physical attacks are of special interest. The first one, called Side-Channel Analysis, is that
based on the non-invasive measurement of side-channel information (power, electromagnetic,
timing, temperature. . . ) leaked during cryptographic computations. The second one, called
Fault Attacks, consists of semi-invasively stressing the integrated circuit running the crypto-
graphic algorithm (using lasers, clock or power glitches, or electromagnetic pulses, for example)
to corrupt the calculations.

In this chapter, we shall see to what extent physical attacks have been successful so far
in attacking implementations of pairing calculations: Both side-channel and fault attacks are
covered. We also look at the countermeasures that have to be added to pairing calculations to
increase their robustness against such attacks.

12.1 Side-Channel Attacks

The integrated circuits running the cryptographic algorithms are mostly made of transistors
whose switching is directly correlated to the data being manipulated by the circuit. The dif-
ference in the switching activities of transistors when manipulating, say, a ‘0’ or a ‘1’ gives rise
to measurable physical characteristics that provide the so-called side-channel information leak-
age. Those measurable physical characteristics can be, for example, timing information, power
consumption, or electromagnetic emissions.

In order to capture the power consumption during execution of algorithms, a small resistor
is placed in series with the power ground input. The measured power traces can have a shape,
like the time of duration, that depends on the program’s inputs (Figure 12.1).

Kocher, Jaffe, and Jun introduced the power analysis as a means of side-channel attacks
against cryptogtraphic algorithms [39]. The main assumption of a power analysis attack is based
on the fact that the power traces are correlated to the instructions performed by the device. Thus,
studying the power traces can allow us to recover information about the instructions and data
registers, and then about the involved operands.

FIGURE 12.1 Setup for power analysis.
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Physical side-channel leakages are not restricted to the power consumption. The electric
current also generates an electromagnetic (EM) field that can be captured with a small probe
placed close to the part of the targeted circuit. Such a technique has the advantage of allowing
an access restricted to some module (AES or big integer coprocessor, for instance) that limits
the noise induced by uncorrelated operations.

In order to mount such attacks, the device shall be mounted on a dedicated board that has to
be adapted to the form factor of the original target: bank chip card, sim card, secure element of a
smartphone, rfid tag, . . . Besides, especially for electromagnetic analysis, some chip preparation
may be required, such as removing the black epoxy and the glue.

12.1.1 Simple Side-Channel Analysis

Timing attacks

Timing attacks were introduced by P. Kocher in 1996 and are the first known example of side-
channel analysis. They are based on the fact that — in a given implementation — some pre-
dictable variation of the computational time may depend on the inputs (and in particular the
secret key).

All ‘basic’ or ‘straight-forward’ implementations of cryptosystems can potentially succumb
to such an attack. For instance, for a scalar ECC multiplication using the “double-and-add”
method, the “add” operation, implemented with the Montgomery technique, may have different
durations (according to the presence — or not — of a final subtraction). Therefore, by partition-
ing the inputs into two sets, the adversary can learn — thanks to the timing attack — whether
this “add” operation is executed or not, and thus deduce the value of a secret key bit.

Note that symmetric algorithms can also be threatened by timing attacks, as illustrated in
[10]. This type of attack is considered to be very powerful, mainly due to its low cost.

In the case of pairing-based cryptography, the Miller loop usually does not contain any condi-
tional operations that depend on the secret data. However, at a lower level, the implementation
may involve a basic operation (for instance, multiplication on a finite field) whose computational
time depends on a secret bit, as highlighted, for instance in [37]. Therefore, timing attacks have
also to be taken into account in the context of pairing-based cryptography. However, the re-
quired countermeasures appear to be the same as those developed to resist DPA-like attacks; we
therefore refer to the sections about DPA.

Simple power analysis

Following Kerckhoff’s principles, one may assume that the implemented cryptographic algorithms
are publicly known. This is a legitimate assumption if we take into account the following facts:
the publication of new algorithms within the cryptography community and the possibility of
analyzing side-channel emissions coming from the algorithms’ executions. Indeed, by looking
at the power or execution trace of an algorithm, one can quickly recognize some patterns, and
figure out which operations are being executed; it is especially true in public key cryptography
where expensive modular operations are usually needed.

But the study of traces of execution is more powerful than simply giving access to the imple-
mented algorithms. Such analyses, referred to as Simple Power Analysis (SPA) (since the first
acquisitions were power consumption traces), are also a threat against weak implementations
whose traces are dependant on the secret value. And this is an actual threat, since straightfor-
ward and fastest implementations won’t thwart this dependency. A classic example is the study
of a scalar multiplication [n]P based on the double-and-add algorithm; see Algorithm 12.1. In
this algorithm, we can see that an addition Q+ P is only performed if the secret bit ni is equal
to 1. So, if the trace of a doubling is different from the trace of the addition — and this is the
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case for the Short-Weierstrass formulæ — the attacker will have direct access to the secret scalar
n, which otherwise would have required them to solve the discrete logarithm problem.

ALGORITHM 12.1 Double-and-add algorithm.
Input : n = (nt−1, . . . , n0)2 and P ∈ E
Output : [n]P
Q← P

for i = t− 1 downto 0 do
Q← [2]Q // double
if ni == 1 then

Q← Q+ P // add
end

end
return R0

Several countermeasures have been proposed in the literature to thwart such attacks. For
the case of scalar multiplications, which is pretty similar to the exponentiation case, the flaw is
twofold: the branch conditionally selected from a secret and also a different implementation of
the doubling and addition operations. This last point also applies to exponentiations that use
optimized modular squaring. Existing countermeasures consist on either solving the flaw or in
changing the algorithm in order to perform a regular flow of operations, independent from the
secret. For the first solution we can cite the atomicity principle [14] and for the second one we
can cite the Montgomery ladder [35] (see Algorithm 12.2). Other solutions exist, but have larger
impacts on the performances (timing) of implemented algorithms.

ALGORITHM 12.2 Montgomery ladder.
Input : n = (nt−1, . . . , n0)2 and P ∈ E
Output : [n]P
R0 ← P

R1 ← [2]P
for i = t− 1 downto 0 do

b← ni
R1−b ← R0 +R1
Rb ← [2]Rb

end
return R0

Besides, the whole security does not rely only on software countermeasures. At the hardware
level, techniques such as the clocks jitters, additional power noise, dummy cycles, or power
filtering help to increase the resistance against (simple) side-channel analysis.

12.1.2 Advanced Side-Channel Analysis

Differential power analysis

Differential Power Analysis (DPA) was initially defined by Kocher, Jaffe, and Jun [39] to target
the Data Encryption Standard (DES). In the family of differential analysis attacks, we include,
for example, the differential power and electromagnetic attacks. Differential power analysis works
on several power/EM traces that are analyzed using statistical tools, which helps in getting rid
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of variations due to data manipulated, and some noise, which are embarrassing problems in the
case of a single trace.

The principle is to build, for the system under attack, a ‘function’ parameterized by a small
part of the algorithm that we want to attack. The aim is to recover the set ‘function’ correspond-
ing to the secret. For this we acquire a large number of images of the ‘function.’ Furthermore,
we construct a theoretical series of corresponding images for each set function. Then we choose
a distinguisher to compare theoretical series and series from the acquisition. There are many
such distinguishers, the main ones being difference of means, correlation coefficient and mutual
information.

In the case of public key cryptography, most classical DPA attacks tagret a scalar multipli-
cation operation with the aim of recovering the scalar bits one by one. The description of a DPA
attack against ECC is well introduced in [32].

Assume that the double-and-add method is implemented with one of the regular variants
given in Algorithm 12.1. Let n = (nt−1, . . . , n0)2 be the scalar multiplier. Suppose that an
attacker already knows the most significant bits, nt−1, . . . , nj+1. Then, the attacker has to make
a guess on the next bit nj , which is equal to 1. He randomly chooses several points P1, . . . , Pr

and computes Qs =
[∑t−1

i=j ni2i
]
Ps for 1 ≤ s ≤ r.

Using a boolean selection function g, the attacker prepares two sets: The first set, Strue,
contains the points Ps such that g(Qs) = true and the second set, Sfalse, contains those such
that g(Qs) = false. Then, a candidate for the selection function may, for example, be the value
of a given bit in the representation of Qs.

Let C(s) denote the side-channel information associated to the computation of [n]Ps by the
cryptographic device (e.g., the power consumption). If the guess nj == 1 is incorrect then the
difference obtained in Equation 12.1 will be ' 0.〈

C(s)〉
1≤s≤r
Ps∈Strue

−
〈
C(s)〉

1≤s≤r
Ps∈Sfalse

. (12.1)

If the guess is wrong, both sets appear as two random sets, otherwise the guess is correct.
After revealing nj , the remaining bits nj−1, . . . , n0 are recovered recursively by the same method.

Correlation power analysis

In DPA, the classification of power traces is based on comparing the differences between the
measured traces. Brier, Clavier, and Olivier in 2004 at CHES proposed an improvement of DPA
based on the use of Pearson’s correlation for comparing the measured side-channel traces and a
leakage model based on the Hamming Weight (HW) of the manipulated data.

The side-channel information of the device is supposed to be linear inH(D⊕R), the Hamming
distance of the data manipulated D, with respect to a reference state R. The linear correlation
factor is used to correlate the side-channel curves with this value H(D ⊕ R). The maximum
correlation factor is obtained for the right guess of secret key bits.

Let C be the side-channel (power consumption for instance) of the chip; its consumption
model is:

W = µH(D ⊕R) + ν . (12.2)

The correlation factor ρC,H between the set of power curves C and values H(D⊕R) is defined
as: ρC,H = cov(C,H)

σCσH
.

The principle of the attack is then the following:

• Perform r executions on the chip with input data m1, . . . ,mr and collect the corre-
sponding power curves C(1), . . . , C(r).

• Predict some intermediate data Di as a function of mi and key hypothesis g.
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• Produce the set of the r predicted Hamming distances: {Hi,R = H(Di ⊕ R), i =
1, . . . , r}.

• Calculate the estimated correlation factor:

ρ̂C,H = r
∑
C(i)Hi,R −

∑
C(i)∑Hi,R√

r
∑

(C(i))2 − (
∑
C(i))2

√
r
∑
H2
i,R − (

∑
Hi,R)2

. (12.3)

When the attacker makes the right guesses for values of the reference state R and secret
leading to data D, the correlation factor ρ is maximum.

This attack is more powerful than DPA in the sense that the ‘leakage’ peaks are generally
more visible in CPA with the same conditions as in DPA.

12.1.3 Side-Channel Attacks against Pairings

In the case of pairings, side-channel attacks are relevant whenever pairings are used in schemes
involving some secret data, which is typically the case when pairings are used in identity-based
encryption schemes.

The fundamental idea of identity-based encryption is to allow the user’s public key to be a
public function of his identity. This requires a trusted authority (TA) that sends him his private
key. This trusted authority creates all the private keys related to an Identity-Based (IB) protocol.
The advantage of IB is to simplify the transmission of public keys while sending the encryption
of a message. Indeed, it is no longer necessary to use certificates or public-key infrastructure
(PKI), since the public key used for encryption can be deterministically (and publicly) deduced
from the identity of the receiver.

The important point during an IB protocol is that the decryption involves a pairing compu-
tation between the private key of the user and a public key. We call the public key the part of
the message used during the pairing calculation involving the secret key. A potential attacker
can know the algorithm used, the number of iterations, and the exponent. The secret is only
one of the arguments of the pairing. The secret key influences neither the time execution nor
the number of iterations of the algorithm, which is different from RSA or ECC protocols.

From here on, the secret will be denoted P and the public parameter (or the point used
by the attacker) Q. We are going to describe a DPA attack against the Miller algorithm. We
restrict this study to the case where the secret is used as the first argument of the pairing. If
the secret is used as the second argument, the same attack can be applied; this assumption is
shown theoretically and practically in [21] and also in [56]. We assume that the algorithm is
implemented on an electronic device such as a smart card and used in a protocol involving IB
cryptography. The attacker can send as many known entries Q for the decryption operation of
IBC as he wants, and he can collect the power consumption curves.

Most pairing computations are based on the use of the Miller’s algorithm. This is in particular
true for the Weil, Tate, and Ate pairings. We assume that the Miller algorithm is implemented in
software running on an electronic device: for example, a smart card. The attacks are performed
during the execution of a cryptographic protocol based on identity. Let Q be the public message.
The private key will be represented by the point P in the computation of the pairing e(P,Q). We
restrict the study to the case where the secret is the first argument of the pairing. Placing the
first secret of the coupling parameter is a first countermeasure against some side-channel attacks
as proposed in [60]. If the secret is the second argument of the pairing, the same attack patterns
may apply and allow us to recover the secret used. The attacker can compute as many times
as necessary pairings between the secret P (that will not change) and inputs Q (that changes
at will). He can record and store the power consumption curves for each of those computations,
together with the final result of the Miller algorithm.
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Description of the attack

When implementing pairings, different coordinate systems may be used. This is does not have
any significant impact on the feasibility of side-channel attacks. Indeed, in the Miller loop,
even if the choice of the coordinate system will give rise to different implementations of the
‘lines’ and ‘tangents’ computations, the underlying internal operations will be the same modular
multiplications and additions on long precision numbers.

As described in the general DPA/CPA approach, we try to identify some operations that
involve a secret and a known operand; such operations are in bold in the following equations.
As already explained, there are several ways of implementing the Miller loop. For example,
[60] takes the case of affine coordinates; in this case the line and the tangent equations are the
following.

The line equation is the formula to compute lT,P (Q), the line passing through T and P

evaluated in Q is
lT,P (Q) = yQ − yT −

yP − yT
xP − xT

(xQ − xT ).

The tangent equation is lT,T (Q), the tangent line through point T evaluated in Q. This
equation is

lT,T (Q) = yQ − yT −
3x2

T + a

2yT
(xQ − xT ).

The case for Jacobian coordinates is treated by [21] and [23] with the same aim of targeting
an operation in order to recover one coordinate of the secret input point. If the points are a
three-tuple, then it is necessary to recover a second component. Now we use the elliptic curve
equation to find the last coordinate. The secret point is recovered.

The line and tangent equation in Jacobian coordinates are the following :

lT,P (Q) =
2yQyT z

4
T − 2y2

TzT z
3
Q + (yP z3

T − yT z3
P )(xTzT z

3
Q − xQzQz

3
T )

2yTz4
T z

3
Q

and
lT,T (Q) =

2yT (yQz
3
T − yT z

3
Q)− zQ(3x2

T + az4
T )(xQz

2
T − xT z

2
Q)

2yTz3
T z

3
Q

.

The same approach works when in mixed coordinates as described in [21] and [11].For op-
timization reasons it is also possible to mix system coordinates. The equations are available in
[21]. Let T = (XT , YT , ZT ) be a point in Jacobian coordinates, P and Q in affine coordinates,
then the line and tangent equation in mixed coordinates are the following:

lT,T (Q) = 2yQYTZ
3
T − 2Y 2

T − (3X2
T + aZ4

T )(xQZ
2
T −XT )

and
lT,P (Q) = (yQ − yP )ZT (XT − Z2

TxP )− (YT − Z3
T yP )(xQ − xP ).

Multiplication in Fq

We describe the attacks as if we have the embedded degree k = 1, and then the coordinates of Q
being elements of Fq. This way, the targeted multiplication Z2

PxQ is a multiplication in Fq. The
DPA attack also works when k > 1. Even if the multiplication Z2

PxQ becomes a multiplication
between an element of Fq and an element of Fqk , we can consider a multiplication between two
Fq elements.

Indeed, xQ ∈ Fqk is written: xQ =
∑ k−1

i=0 xQiξ
i, with (1, ξ, ξ2, . . . , ξk−1) a basis of Fqk ,

and there exists a polynomial R such that deg(R) = k with ξ root of R, (R(ξ) = 0). Then
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Z2
PxQ =

∑ k−1
i=0

(
Z2
P × xQi

)
ξi, is composed of k products in Fq. So we can focus on one of these

k products in Fq to apply the DPA attack as described.
In the same way, to compute the difference (Z2

PxQ −X), we compute a difference between
elements of Fq as in the affine case.

Indeed, if Z2
PxQ =

∑ k−1
i=0 (Z2

PxQ)iξi then

Z2
PxQ −X =

(
(Z2

PxQ)0 −X
)

+
∑

k−1
i=1 (Z2

PxQ)iξi.

Targeting the first iteration in the Miller loop

We describe the attack for the first iteration. It is the simplest case, because we know that for
this iteration, T = P . We can provide the attack for the jth iteration. For this iteration we find
T = [j]P , where [j]P represents the scalar multiplication of point P by the integer j.

We know l, the order of the point Q (as P and Q have the same order). By counting the
number of clock cycles, we can find the number d of iterations we have made before the DPA
attack. Then, reading the binary decomposition of l directly gives us j. We consider that at the
beginning j = 1, if ln−1 = 0 then j ← 2j, else j ← 2j + 1, and we go on, until we arrive at the
(n− 1− d)th bit of l.

If the attack is done during the jth iteration of the Miller algorithm, we find the coordinates
of [j]P . In order to find P , we just have to compute j′ , the inverse of j modulo l, and then
P = [j′][j]P .

Furthermore, we present the attack against the basic Miller algorithm. The attack can be
straightforwardly generalized to the optimised Miller algorithm given in [38].

Description of the attack

In order to retrieve the secret key P = (XP , YP , ZP ), the circuit has to be used to perform some
calculations while the power consumption of the physical device is monitored. In particular, the
measurement of the consumed power must be done during a time slot when the circuit calculates
a result that depends on both the secret key and some controllable input data.

For example, we decided to observe the power consumption when the circuit performs the
multiplication between Z2

P (a part of the secret key) and xQ (the input data). This operation
is done during the second control step. To retrieve the second part of the key (XP ), we focused
on the subtraction between the previously performed multiplication and the key.

The DPA attack against the Miller algorithm was first proposed by Page and Vercauteren [44].
Over the years, the proposed schemes have been enhanced. Reference [60] extends the attack to
several other operations and proposes a scheme using CPA. Another remarkable improvement is
proposed by [11], where the authors attack the modular addition and multiplication of elements
in a finite field of large prime characteristics. In this chapter, we present those attacks against
pairings and provide simulation results.

To implement the attack, it is necessary to target an operation in the line or tangent equation.
Let ? be the general targeted operator between g ∈ Fq and U ∈ E(Fq). For instance, g ? U can
be g − Ux ∈ Fq.

The attack scheme proposed against Miller is Algorithm 12.3.

The last part of the key (YP ) can be mathematically inferred from XP and Z2
P . Indeed, the

elliptic curve equation E : Y 2 = X3 + aXZ4 + bZ6 is a quadratic equation in YP . The square
root of

√
X3
P + aXPZ4

P + bZ6
P gives us two possibilities for the value of YP ; testing them by an

execution of the Miller algorithm will give the correct coordinates for P .



Physical Attacks 12-9

ALGORITHM 12.3 A Messerges-style DPA attack to reveal P = (xP , yP ) by guessing
yP one bit at a time.

Input : n is the bitlength max of yP
Output : A candidate for the coordinate yP
Set g to 0
for i = 0 upto n− 1 do

Set Shi and Slo to empty
Guess the ith bit of g to one
for k = 0 upto r − 1 do

Select at random a point U of E
Calculate X = g ? U

Use device to execute e(P,U), collect power signal Sk
if the ith bit of X is 1 then

add Sk to Shi
else

add Sk to Slo
end

end
Average power signals to get DPA bias D = Shi − Slo
if DPA bias signal has a spike then

The guess was right: set ith bit of g to 1
else

The guess was wrong: set ith bit of g to 0
end

end
return g

The practical feasibility of such attacks is illustrated in [56]. The target is an Ate pairing over
BN curves e(P,Q) with P the secret input. The targeted operation is a modular multiplication.
To implement this over long integer (' 256 bits), they use the Montgomery method. The device
architecture imposes on the attacker to target 16 bits at time.

12.2 Fault Attacks

In 1984, A. Shamir challenged the cryptography community to find a protocol based on the user’s
identity [51]. This challenge was solved nearly twenty years later by D. Boneh and M. Franklin.
In 2003, D. Boneh and M. Franklin created an identity-based encryption (IBE) scheme based on
pairings [13]. The general scheme of an identity-based encryption is described in [13], and several
protocols based on pairings have been developed since [33]. A feature of identity-based protocols
is that a computation of a pairing involving the private key and the plaintext is performed in
order to decipher a message. A pairing is a bilinear map e taking as inputs two points P and
Q of an elliptic curve. The pairing computation gives the result e(P,Q). Several pairings have
been described in the literature. The Weil and the Tate pairing wes developed [54] without
any considerations for the efficiency of the computation. Once pairings were used to construct
protocols, cryptographer sought more efficient algorithms. In chronological order, the Duursma
and Lee algorithm [18], the Eta [8], Ate, twisted Ate [29], optimal pairings [57], and pairing
lattices [28] were discovered. Recently, a construction of pairing over a general abelian variety
was proposed in [42]. The latest implementations results [3, 26, 49] of pairing computations are
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fast enough to consider the use of pairing-based protocols in embedded devices. Consequently,
it seems fair to wonder if pairing-based protocols involving a secret are secure against physical
attacks in general, and fault attacks in particular. We focus here on the fault attacks against
pairing-based cryptography.

Since 2006, several fault attacks against pairings have been proposed. Here we will present
what are in our opinion the most significant ones. For each attack, we assume that the pairing is
used during an identity-based protocol. The secret point is stored into an embedded electronic
device that can be attacked with fault attacks. The location of the secret is in practice not
important. Indeed, the equations that leak information about the secret can provide information
as to whether the secret is the first or the second parameter. Often, the attack is easier when
the secret is the second parameter. That is why we consider the cases where the first parameter
is the secret argument.

The necessary background in order to understand pairings and IBE is presented in Chapter
1. The first fault attack against a pairing was proposed by Page and Vercauteren [45] and is
presented in Section 12.2.2. Then, we describe the adaptations of the previous attack against
the Miller algorithm in Section 12.2.2. Whelan and Scott [59] highlighted the fact that pairings
without a final exponentiation are more sensitive to a sign-change fault attack. After that, El
Mrabet [19] generalized the attack of Page and Vercauteren to the Miller algorithm used to
compute all the recent optimizations of pairings. Another method is adopted in [4], based on
instruction skips, and presented in Section 12.2.2. In [40], Lashermes et al. proposed a fault
attack against the final exponentiation during a Tate-like pairing. Their attack is described in
Section 12.2.3. Finally, we conclude the description of fault attack in Section 12.2.4.

12.2.1 What Are Fault Attacks?

The goal of a fault attack is to inject errors during the calculation of an algorithm in order
to reveal sensitive data. At first these attacks required a very precise positioning and expen-
sive equipment to be performed, but now even some cheap equipment allows us to perform
them [27]. The faults can be performed using a laser, an electromagnetic pulse, and power or
clock glitches [16, 17, 36].

The effect of a fault can be permanent, i.e., a modification of a value in memory, or transient,
i.e., a modification of data that is not stored into memory at one precise moment.

At the bit level, a fault can be a bit-flip if the value of a bit is complemented. Or it can be
stuck-at (0 or 1) if the bit modification depends on its value.

The fault cannot only modify the data manipulated but also modify a program’s execution.
As an example in a microcontroller, if a fault occurs on the opcode and modifies it, the executed
instruction will be modified. This method gives rise what is called an instruction skip fault model
where an instruction is skipped by modifying its opcode to a value representing an instruction
without effect (e.g., NOP).

12.2.2 Fault Attacks against the Miller Algorithm

In this section we present the existing attacks against the Miller algorithm. We describe in
Section 12.2.2 an attack against the Duursma and Lee algorithm, since it was the first attack
against a pairing and, more importantly, all the following attacks are constructed on this scheme.
Then, in Section 12.2.2 , we describe the attacks against the Miller algorithm.
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Attacks against the Dursma and Lee algorithm

The Duursma and Lee algorithm is not constructed using the Miller algorithm. But it was
the first implementation of a pairing to be attacked. The attack was developed by Page and
Vercauteren in [45].

Duursma and Lee [18] define a pairing over hyperelliptic curves, and in particular, over
super-singular elliptic curves over finite fields of characteristic 3. For Fq with q = 3m and k = 6,
suitable curves are defined by

E : y2 = x3 − x+ b

with b = ±1 ∈ F3. Let Fq3 = Fq[ρ]/(ρ3 − ρ− b) and Fq6 = Fq3 [σ]/(σ2 + 1). The distortion map
φ : E(Fq) → E(Fq6 ) is defined by φ(x, y) = (ρ − x, σy). Then, with G1 = G2 = E(F3m) and
GT = Fq6 , Algorithm 12.4 computes an admissible, symmetric pairing.

ALGORITHM 12.4 The Duursma-Lee pairing algorithm.
Input : P = (xP , yP ) ∈ G1 and Q = (xQ, yQ) ∈ G2.
Output: e(P,Q) ∈ G3.

f ← 1
for i = 1 upto m do

xP ← x3
P , yP ← y3

P

µ← xP + xQ + b

λ← −yP yQσ − µ2

g ← λ− µρ− ρ2

f ← f · g
xQ ← x

1/3
Q , yQ ← y

1/3
Q

end
return fq

3−1

The attack developed by Page and Vercauteren in [45] consists of modifying the number of
iterations during the Duursma and Lee algorithm. The hypotheses to perform the attack are
that

• the two inputs parameters (points P and Q) are fixed, one is secret and the other
public;

• the pairing implementation is public;
• two pairing computations are done, one valid and one faulty.

The analysis of the quotient of the two results gives information about the secret. Indeed, the
quotient of the two results cancel terms that are not influenced by the fault. Firstly, Page and
Vercauteren described how to recover the secret point if the final exponentiation is not performed
(i.e., Line 9 of Algorithm 12.4). Then they explained how to reverse the final exponentiation for
a complete attack.

Attack without the final exponentiation

Let P = (xP , yP ) be the secret input during the pairing computation and let Q = (xQ, yQ)
be selected by the attacker. We consider the Duursma and Lee algorithm without the final
exponentiation (Line 9).
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Let e[∆] be the execution of Algorithm 12.4 where the fault replaces the loop bound m

(in Line 2) with ∆. Then the result of the Duursma and Lee algorithm without the final
exponentiation, instead of being a product of polynomials of the form

m∏
i=1

[
(−y3i

P · y3m−i+1

2 σ − (x3i
P + x3m−i+1

2 + b)2)− (x3i
P + x3m−i+1

2 + b)ρ− ρ2
]
,

is a product of the form

∆∏
i=1

[
(−y3i

P · y3m−i+1

2 σ − (x3i
P + x3m−i+1

2 + b)2)− (x3i
P + x3m−i+1

2 + b)ρ− ρ2
]

for a random integer ∆.
If ∆ = m+ 1, then recovering the secret point P is easy. We have two results

R1 = e[m](P,Q)
R2 = e[m+ 1](P,Q)

where R1 is correct and R2 is faulty. Let g(i) be the i-th factor of a product produced by the
algorithm. The quotient of the two results produces a single factor,

g(m+1) = (−y3m+1

P · y2σ − (x3m+1

P + x2 + b)2)− (x3m+1

P + x2 + b)ρ− ρ2.

Given that ∀z ∈ Fq, z3m = z, the attacker can easily extract xP or yP based on the knowledge
of xQ and yQ.

In practice, the faulty result ∆ cannot be forced to m + 1. It is more realistic to assume
that the fault gives ∆ = m± τ for a random unknown integer τ . As a consequence, the attacker
computes two results

R1 = e[m± τ ](P,Q)
R2 = e[m± τ + 1](P,Q),

and once again, considering the quotient, the attacker obtains a single term g(m±τ+1).
In order to apply the same approach, the attacker should discover the exact value of τ .

Indeed, this value is needed to correct the powers of xP , yP , xQ, and yQ. As the implementation
of Duursma and Lee algorithm is supposed to be public, the number of operations performed
during the faulty execution leaks the value of τ . Then the attack consists of several faulty
executions of Algorithm 12.4, until we find two results R1 and R2 satisfying the requirements.
The probability to obtain two values R1 and R2 after a realistic number of tests was computed
in [19].

The probability to obtain two consecutive numbers after n picks among N integers is

P (n,N) = 1− B(n,N)
Cnn+N

,

where 
N ≤ 0, n > 0, B(n,N) = 0,
∀N,n = 0B(n,N) = 1

B(n,N) =
∑N

j=1
∑n

k=1B(n− k, j − 2).

For instance, for an 8-bit architecture only 15 tests are needed to obtain a probability larger
than one half, P (15, 28) = 0.56, and only 28 for a probability larger than 0.9.
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Reversing the final exponentiation

The attack described above is efficient without the final exponentiation. But since the final
exponentiation is a part of the Duursma and Lee algorithm, Page and Vercauteren present a
method to reverse it. The problem is that given the result R = e(P,Q) the attacker wants to
recover S, the value obtained in Line 7 of Algorithm 12.4, before the final exponentiation (i.e.,
R = Sq

3−1). Given R, the value of S is only determined up to a non-zero factor in Fq3 . Indeed,
the Fermat little theorem implies that ∀c ∈ Fq3 \ {0}, cq3−1 = 1. Furthermore, for one solution
S of the equation Xq3−1 − R = 0, all the other solutions are of the form cS, for c ∈ Fq3 \ {0}.
At first sight, the attacker would not be able to choose the correct value S among the q3 − 1
possibilities. However, given the description of the attack, the attacker does not need to reverse
the powering of a full factor, but only a single factor with a special form:

R = R2

R1
= e[m± τ + 1](P,Q)

e[m± τ ](P,Q) = gq
3−1

(m±τ+1).

We want to recover g(m±τ+1), in order to find the coordinates of the secret point xP and yP :
In order to solve this problem, Page and Vercauteren split it in two

1. a method to compute one valid root of R = gq
3−1 for some factor g, and

2. a method to derive the correct value of g from among all possible solutions.

The first problem is solved throughout the method of Lidl and Niederreiter [41] to compute
roots of the linear operator Xq3 − R · X on the vector space Fq6/Fq3 . They use a matrix
representation of the problem to find all the solutions of the equation Xq3−1 − R = 0. Then,
in order to find the correct root among the q3 − 1 possibilities, Page and Vercauteren use the
specific form of the factors in the product. Indeed, the terms ρσ and ρ2σ do not appear in the
correct value and this gives a linear system of equations providing the solution. As the method
to reverse the final exponentiation is specific to the Duursma and Lee algorithm, we do not give
the equations. They are presented with examples in [22, 45].

Attacks against the Miller algorithm

A specific sign-change attack

The first attack against the Miller algorithm was developed by Whelan and Scott [59]. They use
the same approach as the attack against Duursma and Lee. They compute two pairing values,
one correct and one faulty. However, the fault is no longer on the Miller loop bound but into the
Miller variable. Whelan and Scott analyze several pairings and study the success of the attack
whether the secret is the point P or Q. They consider the case of the Eta pairing [8]. This pairing
is defined over super-singular curves for small characteristics. Considering the recent result on
the discrete logarithm problem [31] and the fact that the attack is based on the scheme of the
Page and Vercauteren attack, we do not describe it. Whelan and Scott target the Weil pairing.
First they try to describe a general fault model: Any fault is injected during any iteration of the
Miller algorithm. The attacker needs to solve a non-linear system and they conclude that it - be
done. So they consider a more specific attack: a sign can not change fault attack (a single sign
bit is flipped [12]). They consider that the attacker modifies the sign of one of the coordinates
of the point P or Q. This attack is the most efficient when exactly the last iteration of the
Miller algorithm is corrupted. They consider the ratio between a valid and a faulty execution of
the Weil pairing, and, using the equations, they obtain a linear system in the coordinates of the
secret point. In this case, the attack is successful. If the fault is injected earlier in the Miller
algorithm, the analysis is more complex, as several square and cubic roots have to be computed,
but possible. Then they consider the Tate pairing. As the Tate pairing is also constructed using
the Miller algorithm, the attack described for the Weil pairing should be efficient. However, due
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to the complex final exponentiation, they conclude that the Tate pairing is efficiently protected
against the sign-change fault they propose.

A general fault attack

In [19], El Mrabet considers a fault attack based on the Page and Vercauteren attack [45].
The fault consists of modifying the number of iterations during the execution of the Miller
algorithm. As the Miller algorithm is the central step for the Weil, the Tate, Ate, twisted Ate,
optimal pairings, and pairing lattices, the fault model is valuable for a wide class of pairings.
However, the attack targets only the Miller algorithm, the final exponentiation is not reversed
cryptanalytically, and the author assumes that another attack could annihilate it. In Section
12.2.3 we describe a recent attack that reverses the final exponentiation. We describe here the
general attack against the Miller algorithm. The difficulty of the attack relates to the resolution
of a non-linear system.

El Mrabet considers that the number of iterations in the Miller algorithm is modified by a
fault attack and denotes τ the new number of iterations. The value of τ is random but can
be determined afterwards if the attacker knows the number of iterations, by monitoring the
timing of the computation, for example. The aim is to obtain two consecutive results of Miller’s
algorithm Fτ,P (Q) and Fτ+1,P (Q). As in the attack on the Duursma and Lee algorithm, we
consider the ratio Fτ+1,P (Q)

Fτ,P (Q)2 . Then an identification in the basis of Fpk leads to a system that
reveals the secret point.

Without loss of generality, we describe the attack when the embedding degree of the curve
is k = 4. This allows the description of the equation. As the important point of the method
is the identification of the decomposition in the basis of Fpk , it is easily applicable when k is
larger than 3. Indeed, k = 3 is the minimal value of the embedding degree for which the system
obtained can be solved. At the τ -th step, the Miller algorithm calculates [j]P . During the
(τ + 1)th iteration, it calculates [2j]P , and considering the value of the (τ + 1)th bit of log2(r),
it either stops at this moment, or it calculates [2j + 1]P .

Let B = {1, ξ,√ν, ξ√ν} be the basis of Fpk ; this basis is constructed using tower extensions.
The point P ∈ E(Fp) is given in Jacobian coordinates, P = (XP , YP , ZP ), and the point Q ∈
E(Fpk) is in affine coordinates. As k is even, we can use a classical optimization in pairing-based
cryptography, which consists of using the twisted elliptic curve to write Q = (x, y

√
ν), with x, y

and ν ∈ Fpk/2 and
√
ν ∈ Fpk [6]. We will consider here only the case where rτ+1 = 0. The case

where rτ+1 = 1 can be treated similarly is described in [19]. The non-linear system in the case
rτ+1 = 1 is a bit more complex and must be solved using the discriminant theory.

When rτ+1 = 0, we have that Fτ+1,P (Q) = (Fτ,P (Q))2 × h1(Q), [j]P = (Xj , Yj , Zj), where
j is obtained by reading the τ first bits of r and T = [2j]P = (X2j , Y2j , Z2j).

Using the equation of h1, we obtain the following equality:

Fτ+1,P (Q) = (Fτ,P (Q))2×(
Z2jZ

2
j y
√
ν − 2Y 2

j − 3(Xj − Z2
j )(Xj + Z2

j )(xZ2
j −Xj)

)
.

Considering that the secret is the point P , we know j, τ , the coordinates of Q. The Miller
algorithm gives us Fτ+1,P (Q) and Fτ,P (Q). We calculate the ratio R = Fτ+1,P (Q)

(Fτ,P (Q))2 . Using the
theoretical form of R and its decomposition in the base B, by identification we can obtain, after
simplification, the following system:

YjZ
3
j = λ2,

Z2
j (X2

j − Z4
j ) = λ1,

3Xj(X2
j − Z4

j ) + 2Y 2
j = λ0,
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where we know the three values λ0,1,2.
The resolution [19] of this non-linear system gives the following equation:

(λ2
0 − 9λ2

1)Z12 − (4λ0λ
2
2 + 9λ3

1)Z6 + 4λ4
1 = 0.

Solving the equation in Zj , we find at most 24 = 12× 2× 1 possible triplets (Xj , Yj , Zj) for
the coordinates of the point [j]P . Once we have the coordinates of [j]P , to find the possible
points P , we have to find j′ the inverse of j modulo r, and then calculate [j′][j]P = [j′j]P = P .
Using the elliptic curve equation, we eliminate triplets that do not lie on E. Then we just have to
perform the Miller algorithm with the remaining points and compare it with the result obtained
with the secret point P . So we recover the secret point P , in the case where rτ+1 = 0. The case
of rτ+1 = 1 also leads to a non-linear system that can be solved using a Grobner basis.

Remark 12.1 We present the attack in Jacobian coordinates. As the attack is not dependent
on the system of coordinates, it will be successful for other systems. In [19], the affine, projective,
and Edwards coordinates are also treated. In the paper [58], the authors consider Hessian
coordinates.

Remark 12.2 We describe the attack with the secret point being P . If the secret is the point
Q, the attack is also valid — we just obtain an easier system to solve.

The attack against the Miller algorithm is efficient. A model of the attack was implemented
in [46]. It is fair to wonder if this attack can be applied to a complete pairing. As the Weil pairing
consists of two applications of the Miller algorithm, the Weil pairing is sensitive to this attack.
For the Tate-like pairings (Ate, twisted Ate,...) the final exponentiation must be cancelled for
the attack to be efficient. As the result of the Miller algorithm has no particular form, it seems
difficult to cryptanalytically reverse the final exponentiation. As far as we know, it has not been
done yet. El Mrabet cites several works in microelectronics that would give the result of the
Miller algorithm during a Tate-like pairing computation: for example, the scan attack [61] or
the under-voltage technique [2]. We describe in Section 12.2.3 a recent fault attack against the
final exponentiation.

Attack against the if instruction

In [4], the authors propose a new fault model as well as an implementation of their fault attack.

The if skip fault model

In the Miller algorithm, the addition step is performed or not according to the bits of r. This
decision is usually implemented with an if instruction. If an attacker is able to skip an if
instruction, he can avoid the addition step if he wants to.

This fault model has several advantages. It can target the last iteration only of the Miller
algorithm, and as a consequence only one fault injection is required to find the value h2(Q). This
is better than when altering the counter value, where the attacker had to perform fault attacks
until he finds the faulty result for two consecutive iterations. Then it is not as easy to develop a
countermeasure against it as for an attack on the loop counter. In the latter case, it is enough
to check the number of iterations that the chip executed. In the if skip case, the number of
addition steps is highly dependant on the l value and can vary even if the security level of the
parameters do not.
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Recovery of h2(Q)

Let FP (Q) = f2 · h1(Q) · h2(Q) be the result of the (correct) Miller algorithm expressed with
the variables of the last iteration.

If an attacker skips the if instruction in the last iteration, he obtains the value FP (Q)∗ =
f2 · h1(Q).

With a faulty result and a correct one, he can then compute the ratio

FP (Q)
FP (Q)∗ = f2 · h1(Q) · h2(Q)

f2 · h1(Q) = h2(Q). (12.4)

Finding the secret with h2(Q). With the value h2(Q), the attacker still has to find the secret
(the point P in our case). The following computations are done for the Tate pairing in particular.
In this case the value r is the order of the groups used in the pairing. As a consequence, in the
last iteration, the equation T = −P holds.

In affine coordinates in the last iteration, with an embedding degree 2, h2(Q) = xQ−xP since
T = −P : the line is the vertical passing through P . So, knowing the value h2(Q), the attacker
can find xP with xQ known. Using the elliptic curve equation, two candidates are possible for
the yP value. By trying the two possible input points in the Miller algorithm, he can find yP
with the comparison of these two Miller results and the correct one.

The result in Jacobian coordinates is slightly different. The equations are computed with an
embedding degree 4 and the basis B = {1, ξ,√ν, ξ√ν}. The point P has Jacobian coordinates
(xP , yP , zP ) and Q has coordinates (xQ, yQ

√
ν).

In the last iteration, the simplified value h2(Q) is h2(Q) = z2
PxQ − xP . When the attacker

computes the ratio R = FP (Q)
FP (Q)∗ , he finds a value that can be decomposed on the basis B:

R = R0 +R1ξ +R2
√
ν +R3ξ

√
ν.

The decomposition of h2(Q) on the basis B yields the system

R1 = z2
PxQ1 (12.5)

R2 = z2
PxQ0 − xP , (12.6)

where xQ = xQ0 + xQ1ξ.
Since Q is known to the attacker, this system can be solved to provide the values z2

P and then
xP . There are four possible candidates for the point P , which have to be verified by comparing
them with the correct result of the Miller algorithm.

Remark 12.3 In the case of other pairings (Ate,...), the same attack can be applied. The
main difference is that we find a point multiple of P : λP for a public integer λ. Indeed, we
consider that except for the secret point, every detail of the implementation is public.

An implementation of the attack. The authors of this attack [4] implemented their attack
on a chip, an ATmega128L, with a laser fault injection. They demonstrated the feasibility of
the if instruction skip on a dummy algorithm mimicking the structure of the Miller algorithm.
After locating the right spot for the laser fault injection, they were able to successfully skip an
if instruction.

The if instruction skip has two big advantages. It easily targets a specific iteration in
the Miller algorithm. It is possible to combine it with another instruction skip in the final
exponentiation in order to realize a full attack on the pairing computation algorithm. But this
latter possibility is yet to be proven experimentally.
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Countermeasures

Several countermeasures can be implemented to prevent a fault attack. They are referenced
in [22], and we briefly recall them here. We can preventively use randomization of the inputs
in order to prevent any leakage of information or detect any alteration of the circuit and then
abort the pairing computation.

In order to detect any alteration of the computation we can

• duplicate the computation using bilinerarity: R1 = e(P,Q), R2 = e(aP, bQ) and check
if R2 = Rab1 [22];

• check intermediate results during the computation: verify that the points are still on
the elliptic curve, compare the last point T with (r − 1)P [22];

• use fault-resilient counters to avoid attacks focused on changing the Miller loop bound
[43, Section 5.3];

• implement the algorithm to perform a random number of iterations greater than the
correct one [24, Section 4].

The randomization and blinding methods are both based on the bilinearity of pairings:

• choose integers a and b such that ab = 1 mod (r) and compute e(P,Q) = e(aP, bQ) [45];
• choose a random point R such that S = e(P,R)−1 is defined and compute e(P,Q) =
e(P,Q+R)S;

• use the homogeneity property of Jacobian and projective coordinates to represent the
point P ;

• use the homogeneity property of Jacobian and projective coordinates to represent the
point Q (with a modification of the equations in the Miller algorithm);

• randomize the input points using a random field element and modify the pairing
algorithm in order to cancel out the effects [53].

12.2.3 A Fault Attack against the Final Exponentiation

The main difficulty faced by fault attacks on the pairing is the final exponentiation. Even if
efficient schemes are able to reverse the Miller algorithm, they still require the attacker to have
access to the result of the Miller algorithm, correct or faulty.

Several possibilities have been proposed to access these values. First, for some exponents
(e.g., q3 − 1), it is possible to reverse the final exponentiation by using the structure of the
Miller result as shown in [45]. A more implementation-dependent approach has been proposed
in [19], where the authors propose to realize a scan chain attack or to completely override the
final exponentiation, to directly read the result of the Miller algorithm.

Despite having been previously considered unrealistic, multiple fault injections during one
execution of an algorithm seem to be more and more feasible, with some new results in this
direction [55]. This new possibility opens the door to a new scheme, where two fault attacks are
combined: one to reverse the final exponentiation, one to reverse the Miller algorithm.

Until recently, the final exponentiation was thought to be an efficient countermeasure against
the fault attacks on the Miller algorithm, since it is mathematically impossible to find the unique
preimage of the exponentiation and thus the result of the Miller loop. However, in [40], the
authors propose a fault attack to reverse the final exponentiation.

Description of the attack

They chose the case where the embedding degree k = 2d is even, and they attack the final
exponentiation algorithm proposed in [50].
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The exponent is pk−1
r and can be decomposed as pk−1

r = (pd − 1) · pd+1
r . If the result of the

Miller algorithm is noted f , we choose the following notation: f2 = fp
d−1 and f3 = f

pd+1
r

2 (f3 is
the pairing result observed at the end of the computation). Since f ∈ F∗

pk
, f , f2, and f3 satisfy

the relations
fp

k−1 = 1 ; fp
d+1

2 = 1 ; fr3 = 1. (12.7)

These relations show that these intermediary values belong to the groups noted f2 ∈ µpd+1
and f3 ∈ µr.

Let Fpk = Fpd [w]/(w2−v) be the construction rule for the Fpk extension field. v is a quadratic
nonresidue in Fpd and is a public parameter.

Let f2 = g2 + h2 · w with g2, h2 ∈ Fpd . Then fp
d+1

2 = 1 implies g2
2 − v · h2

2 = 1.

First fault

But this equation holds because f2 ∈ µpd+1. If an attacker now injects a fault of value e ∈ Fpd
such that the faulty value f∗2 equals

f∗2 = f2 + e 6∈ µpd+1, (12.8)

it is possible to write the fault effect as

f∗2 = (g2 + e) + h2 · w, (12.9)

and the value (f∗2 )pd+1 can be computed by the attacker, since he can measure the value f∗3 and
r:

(f∗2 )p
d+1 = (f∗3 )∈Fpd . (12.10)

Moreover,

(f∗2 )p
d+1 = (g2 + e)2 − v · h2

2

= 1 + 2 · e · g2 + e2.

If the attacker knows the error value e, he can compute

g2 = (f∗3 )l − 1− e2

2 · e , (12.11)

and deduce the two candidates for h2

h+
2 =

√
g2

2 − 1
v

; h−2 = −
√
g2

2 − 1
v

. (12.12)

With one fault, the attacker found the intermediary value f2 by checking the two candidates
and comparing (f+

2 ) p
d+1
r and (f−2 ) p

d+1
r with f3.

Second fault

At this step, the attacker knows that f3 is the correct result of the pairing computation, and
that the intermediary value is f2. Let f = g + h · w, f−1 = g′ + h′ · w, and f2 = fp

d−1. Then
we note K, the ratio

K = g2 − 1
v · h2

= h′

g′
= −h

g
. (12.13)

In order to recover f , the attacker creates a new fault e2 ∈ Fpd during the inversion in the
exponentiation by exponent pd − 1.
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Then
f2 = fp

d−1 = f̄ · f−1 and f∗2 = f̄ · (f−1 + e2). (12.14)

Let ∆f2 be the difference ∆f2 = f∗2 − f2 = f̄ · e2. Since e2 ∈ Fpd , ∆f2 can be written
∆f2 = ∆g2 + ∆h2 · w with ∆g2 = e2 · g and ∆h2 = −e2 · h.

As f∗2 is not in µpd+1 with high probability, the attacker can compute (f∗2 )pd+1 = (f∗3 )r ∈ Fpd .
Here

(f∗3 )p
d+1 = (g2 + ∆g2 )2 − v · (h2 + ∆h2 )2

= (g2 + e2 · g)2 − v · (h2 − e2 · h)2.

Using the relation h = −g ·K, we obtain

g2 · e2
2 · (1− v ·K2) + g · 2 · e2 · (g2 − v ·K · h2) + 1− (f∗3 )r = 0. (12.15)

This quadratic equation provides two solutions for g, each one giving only one possibility
thanks to K. The attacker has two candidates for f if he knows e2.

If he does not exactly know the fault values but is able to have a limited number of guesses,
he can still find f2 easily. But in order to find f he will have to inject more faults similar to the
second one in order to uniquely determine f .

As a conclusion, with a minimum of two separate faults during two executions (plus one
correct execution) of the pairing computation, the attacker is able to reverse the final exponen-
tiation.

A notable fact about this fault attack is that it can be achieved with instruction skip faults.
As a consequence, it is possible to combine it with a fault on the Miller algorithm, if the attacker
can inject two faults in the same execution, in order to achieve a full-pairing fault attack.

A major disadvantage of this attack, making it easy to counter, is that the attacker must
be able to observe f∗3 = (f∗2 ) p

d+1
r . But often, since f2 ∈ µpd+1 is called a unitary element, it

is possible to speed up the final exponentiation computation by replacing the inversions in the
computation of f3 by conjugations (which is equivalent to an inversion for unitary elements).
As a consequence, the attacker cannot observe f∗3 in this case and he cannot realize the attack.

12.2.4 Conclusion

We presented the vulnerability to fault attacks of pairing algorithms when used in an identity
based protocol. The first attack against Duursma and Lee algorithm targets the number of
iterations. The final exponentiation in this case can be reversed using cryptanalytic equations.
The most efficient pairings are constructed on the Tate model: an execution of the Miller al-
gorithm followed by a final exponentiation. The Miller algorithm and the final exponentiation
were separately submitted to fault attacks. The Miller algorithm was attacked by a modification
of the number of iterations and by the corruption of the if condition during the last iteration.
The final exponentiation was attacked using two “independent” errors in the computation.

For once, it would be interesting to validate all those fault attack schemes on practical
implementations running on an embedded chip. Moreover, in order to attack a whole Tate-like
pairing, further work is necessary. It would be interesting to try to attack, at the same time, the
Miller algorithm and the final exponentiation. We also highlight the fact that a more general
pairing constructed over an algebraic variety is sensitive to a fault attack. As a conclusion, we
can say that the fault attack is a threat against an identity-based protocol, and consequently
any implementation of pairings should be protected against physical attacks.
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TABLE 12.1 Summary of the presented attacks.

Number of
faults required

Attack name Target Attack path Fault model (+ correct execution)
Page and Vercauteren [45] Duursma and Lee algorithm Loop counter Data modification n|P (n,N) > 0.5 (+1)
Whelan and Scott [59] Miller algorithm Sign change Bit-flip 1 (+1)

El Mrabet [19] Miller algorithm Loop counter Data modification n|P (n,N) > 0.5 (+1)
Bae et al. [4] Miller algorithm If skip Instruction skip 1 (+1)

Lashermes et al. [40] Final exponentiation Group change Data modification 2+ (+1)
El Mrabet [20] Pairing on Theta functions Loop counter Data modification 1

In table 12.1 P (n,N) is the probability to obtain two consecutive numbers after n picks among
N integers (cf Section 12.2.2).

12.3 Countermeasures against Fault Attacks on Pairing-Based
Cryptography

The protection scheme that we present here is based on the technique of modular extension,
which was introduced by Shamir along with the first software countermeasure against fault
injection attacks on CRT-RSA [52]. Joye, Paillier, and Yen noticed, two years later in [34], that
the same protection could extend to any modular function. Since then, many countermeasures
based on modular extension have been developed for CRT-RSA, and the method made its way
to elliptic curve cryptography (ECC). In particular, Blömer, Otto, and Seifert [12], and Baek
and Vasyltsov [5] applied this protection method to elliptic curve scalar multiplication (ECSM).
More recently, Rauzy, Moreau, Guilley, and Najm [48] have formally studied the protection of
ECSM computations with the modular extension method. We here extend it to pairing-based
cryptography.

12.3.1 Modular Extension

The general idea of modular extension is to lift the computation into an over-structure (e.g., an
overring) which allows us to quotient the result of the computation back to the original structure,
as well as quotienting a “checksum” of the computation to a smaller structure. What has just
been described is the direct product of the underlying algebraic structures. If an equivalent
computation is performed in parallel in the smaller structure, its result can be compared with
the checksum of the main computation. If they are the same, we have a high confidence in the
integrity of the main computation. This protection is sketched in Figure 12.2.

The confidence degree depends directly on the size of the smaller structure, which is thus a
security parameter: The larger it is, the less probable it is to have an unwanted collision, but
the more costly the redundancy will be. Indeed, the fault non-detection probability (Pn.d.) is
inversely proportional to the size of the small structure.

When the basic structure underlying the original computation is a field, as is the case in
pairing-based cryptography (contrary to, e.g., RSA, which only requires a ring), a problem arises
with inversions. Indeed, if we call Fp the original structure and Fr the smaller one, the nonzero
elements of their direct product Zpr do not all have an inverse. Nonetheless, this problem can

Fr

Fr

= error

output Fp

false

tr
ue

Fp

Zpr

Fp

FIGURE 12.2 Sketch of the principle of modular extension.



Physical Attacks 12-21

be circumvented.

PROPOSITION 12.1 To get the inverse of z in Fp while computing in Zpr, one has:

• z = 0 mod r =⇒ (zp−2 mod pr) ≡ z−1 mod p,
• otherwise (z−1 mod pr) ≡ z−1 mod p.

Remark 12.4 Golić and Tymen introduce in [25] a masking countermeasure of the Advanced
Encryption Standard (AES [1]), called the “embedded multiplicative masking,” which also re-
quires embedlding a finite field into a larger ring. In this context, the over-structure is a poly-
nomial extension of some extension of F2, but the idea is similar to modular extension. In
particular, the authors note in Section 5.1 of their paper [25] that inversion in the base field can
be obtained in the overring as an exponentiation to the base field order minus two.

But the inversion procedure we give in Proposition 12.1 is novel, in that we allow an op-
timization if the number is inversible in the overring. This requires a test, which we can do
safely without disclosing information in the context of fault-attacks detection. Nonetheless, such
optimization would be insecure in the context of the “embedded multiplicative masking” coun-
termeasure, since this would leak information about the value of the mask. This is a first-order
flaw that would undermine the security of the “embedded multiplicative masking” protection
against side-channel attacks.

In addition, it is possible to write pairing algorithms that use very few divisions (as little as
a single one in our mini-pairing implementation; see hereafter in Section 12.3.3).

12.3.2 Other Existing Countermeasures

We review the three known methods to apply and/or adapt the modular extension countermea-
sure to ECSM (which is central to pairing-based cryptography).

In [12], Blömer, Otto, and Seifert (BOS) suggest applying the modular extension counter-
measure by replacing finite fields and rings with elliptic curves over finite fields and rings. Let
us denote the nominal elliptic curve as E(Fp). Then the protection by BOS consists of achieving
the same computation, but on a larger elliptic curve E(Zpr), and on a small elliptic curve E(Fr).
According to the authors, the reduction of the result of the ECSM on E(Zpr) modulo r should
yield exactly the result of the ECSM on E(Fr). If not, then an error is suspected, otherwise the
result of the ECSM on E(Zpr) is reduced modulo p, which should be the correct result. The
rationale of BOS is illustrated in Figure 12.3. Apart the lacunar management of inversions in
Zpr, one other caveat is pinpointed in [48, § 3.1]. Due to the existence of unrelated tests (e.g.,
equality of intermediate points to the point at infinity) on E(Zpr) and E(Fr), the algorithm
proposed by BOS is incorrect, meaning that it can return an error when there has been none.
These false positives are harmful in that they leak information on the scalar.

In [5], Baek and Vasyltsov (BV) present an optimization of BOS. The idea is to avoid the
computation on E(Fr), but to trade it for a verification that the ECSM result on E(Zpr) modulo
r belongs to E(Fr), i.e., that it satisfies its Weierstrass equation taken modulo r. The rationale
of BV is illustrated in Figure 12.4: Notice that in this figure, the security parameter r is chosen
to be a prime. This was not mandated in the original BV publication, but shall definitely be
preferred for the countermeasure to have reasonable detection probability. The BV protection is
more efficient than BOS, since the verification of BV is, computationally speaking, easier than
an ECSM on E(Fr) (even if the scalar is reduced modulo the order of the small curve E(Fr)).
Besides, to avoid dealing with inversions in Zpr, BV is executed in projective coordinates, the
projective-to-affine conversion only being carried out after the integrity verification. Still, BV
runs into the problem of inconsistent tests before elliptic curves point addition and doubling.
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Qpr = [k]P

Qr = [k]P
in E(Fr)

in E(Zpr) Qpr mod r
= error

false

output Qpr mod p

tr
ue

FIGURE 12.3 Principle of protection of ECSM against fault attacks by BOS [12].

? error
false

output Qpr mod p

tr
ue

Qpr = [k]P
in E(Zpr) Qpr mod r

∈ E(Fr) ?

FIGURE 12.4 Principle of protection of ECSM against fault attacks by BV [5].

The consequence is that, depending on the scalar (and the fixed generator point), the “virtual”
computation on E(Fr) (the modulo r of computation on the embedding elliptic curve E(Zpr))
can be stuck at the point at infinity.

In [48], Rauzy, Moreau, Guilley, and Najm (RMGN) notice that the tests inconsistencies on
E(Fr) can also be security weaknesses. Indeed, when the mirror computation on E(Fr) is stuck
at the point at infinity, most faults (for instance, faults touching only one of three projective
coordinates) are undetected, because the computation naturally brings the intermediate point
at the point at infinity on E(Fr) (and to a point with coordinates that are null modulo r on
E(Zpr)). Thus, the probability of fault non-detection is increased with respect to the expected
O(1/r). Consequently, RMGN propose a straightforward application of the modular extension
method (as suggested by Joye, Paillier, and Yen [34]) to ECSM, where all tests on points are
simply removed. From a functional point of view, this does not raise an issue, as in practice
scalars are chosen to be smaller than the base point order, so that tests can be safely skipped.
The pro is that this method is correct (it has no false positives), but the con is that some faults
are undetected (the behavior is identical to that of BV). Indeed, even though in RMGN there is
no notion of elliptic curve E(Fr), the values in Fr can be stuck at 0 (though we can still detect
those faulty cases beforehand by comparing the order of Fr with the scalar). However, as in
the case of BV, the increase of fault non-detection probability is limited, and can be tolerated
with large enough values of r (e.g., 32-bit values). Indeed, as detailed in [48, Proposition 7 in
Sec. 6.3], the probability of fault non-detection remains O(1/r).

12.3.3 Walk through Mini-Pairing

As an example of the modular extension protection scheme that we present here, we provide
both an unprotected and a protected implementations of the optimal Ate pairing that we call
“mini-pairing”. ? The provided code has been implemented in C using the GMP big number
library, more precisely mini-gmp, a portable version of GMP with a reduced number of functions.
The parameters of the optimal Ate pairing we used are presented in Figure 12.5.

The protected version of the optimal Ate pairing is given in Alg. 12.5.
Here we discuss the differences between the unprotected and the protected mini-pairing im-

plementations. Indeed, for the sake of simplicity, we emphasize our comments on the necessary
code modifications to implement the modular extension protection scheme, rather than focus-
ing on the underlying algorithm, namely an optimal Ate pairing. For the same reasons, the

?The code is available here: http://pablo.rauzy.name/files/hopbc_mini-pairing.tgz.
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Field characteristic p = 0x2523648240000001ba344d80000000086121000000000013a700000000000013
Curve equation a = 0x0
coefficients b = 0x2

Points coordinates

Qx = 0x1c2141648fed8ba0f2a3febe8b98509bf86398d1fd1050c88fc3d88be3d15db1
+ 0x93772aa06ea4acf488ce113f4a56aeb6c23264001c1501c1c59cd47faac6d0f·u

Qy = 0x1eb672f0d5335990c9b12f9839b1a8804393211b198237c5acfc4d69d51186a0
+ 0x118c5d037558e51efdd3cf3530d8c5cb65c52f9cf639ed6d81ddc6c16b76eec0·u

Px = 0x2523648240000001ba344d80000000086121000000000013a700000000000012
Py = 0x1

FIGURE 12.5 Parameters of mini-pairing.

ALGORITHM 12.5 Optimal Ate pairing capable of detecting faults (using entangle-
ment strategy).

let p,r be two primes, and Fp, Fr two fields with p and r elements
let Zpr be the direct product ofq Fp and Fr
let G1,G2 be two additive cyclic groups of prime order p
let e be the pairing mapping G1 and G2
let P ∈ G1 and Q ∈ G2
compute eZpr = e(P,Q) in Zpr
compute eFr = e(P,Q) in Fr
if eFr = eZpr mod r then

return e(P,Q) = eZpr mod p
else

return error
end

implementation has not been optimized.
The first modification is obviously the addition of variables that store newly needed values,

such as the security parameter r (lines 1314 and 1315 at the beginning of the main function
in mini-pairing_protected.c). Then, the main change induced by the protection is that the
pairing algorithm is now called twice: once in Zpr, and once in Fr. Following these computations,
we need to check whether the redundancy invariant held, i.e., to test whether both outputs are
equal modulo r. Two additional functions are defined for this purpose: one to compare two
elements of Fr12 (p12_is_eq, lines 1241 to 1308 of mini-pairing_protected.c), and another to
cast an element from Z(pr)12 to Fr12 (p12in, lines 1180 to 1239 of mini-pairing_protected.c).
The redundancy check and error display (if need be) are then performed at line 1365.

Another difference is in the inversion (lines 316 to 324 of mini-pairing_protected.c).
Inversions seldom occur in this pairing algorithm; however, it will fail if the input number is a
multiple of r in Zpr. In such a case, we simulate an inversion in Fp (which is what we actually
need) by exponentiating to p−2, as explained in Proposition 12.1. Computing an exponentiation
is more costly than computing an inversion with an extended Euclidean algorithm. But there are
few enough occurrences of this case in practice that this workaround does not have a significant
impact on the execution time.

12.3.4 Overhead

Here we present the cost of the countermeasure as deployed in our mini-pairing implementation.
Note that for the sake of simplicity and clarity, the implementation is not optimized and is thus
quite slow. However, the overhead factor is still relevant, since optimizations of the pairing
algorithm would directly benefit the protected version as we constructed it (see Section 12.3.3).
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TABLE 12.2 Performance for mini-pairing on an ARM Cortex-M4 µc.

Fp time (ms)
Miller’s loop intermediate computations final exponentiation sum

4160 621 6519 11343

TABLE 12.3 Modular extension performance for mini-pairing on an ARM Cortex-M4 µc.

r size Zpr time (ms) Fr time (ms) total over-
(bit) ML IC FE sum ML IC FE sum (ms) head

8 4576 703 7201 12443 1186 142 1781 3105 15587 ×1.37
16 4617 706 7263 12546 1185 141 1777 3097 15685 ×1.38
32 4706 725 7407 12864 1042 126 1565 2726 15590 ×1.37
64 5260 834 8302 14334 1370 171 2071 3618 17984 ×1.59

ML = Miller’s loop, IC = intermediate computations, FE = final exponentiation.

Speed
Times are measured on an ARM Cortex-M4 microcontroller. Table 12.2 gives the timing

of the unprotected implementation that serves as reference to compute the overheads given in
Table 12.3. Table 12.3 presents the cost of the countermeasure for different sizes of the security
parameter r, using the largest prime number of each size.

Table 12.3 shows the good performance results of the modular extension protection scheme.
We can see that when r is on 32 bits, the alignment with int makes mini-gmp faster, incurring
a factor of only ≈ 1.37 in the total run time compared to the unprotected algorithm, similar to
the cost with r on 8 bits but with a much higher resistance.

Space
Table 12.4 shows the cost of the countermeasure in terms of code size, both for the program-

mer (in number of lines of C code), and for the hardware (in kilobytes of executable code and
in bytes of occupied memory). Note that the executable code size also accounts for embedded
libraries such as mini-gmp.

In order to measure the RAM usage, the maximal value of the heap pointer address is
monitored. This is achieved by equipping the _sbrk() function, located in syscall.c, which is
called by malloc() and free(). Notice that most of the RAM is indeed used by the heap (and
not the stack), because in the ECSM code, all parameters are passed by address, and there are
neither recursive functions nor pre-initialized tables (but for the elliptic curve parameters).

As expected, we can see in Table 12.4 that the implementation of the modular extension
countermeasure is cheap in terms of engineering: less than 150 additional lines of code (for a
total of almost 1400 lines); as well as in terms of resources: the executable code is only marginally
larger, and memory usage is essentially the same (probably due to the way mini-gmp’s and libC
memory allocation works).

TABLE 12.4 Modular extension cost in terms of space for mini-pairing on an ARM Cortex-M4
µc.

implementation code size (LoC) executable size (B) occupied RAM (kB)
unprotected 1404 95032 ≈ 20

protected 1545 (+141) 96832 (+1800) ≈ 20
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12.3.5 Security Evaluation

DEFINITION 12.1 (Fault model) We consider an attacker who is able to fault data by
randomizing or zeroing any intermediate variable, and fault code by skipping any number of
consecutive instructions.

DEFINITION 12.2 (Attack order) We call order of the attack the number of faults (in the
sense of Definition 12.1) injected during the target execution.

Remark 12.5 In the rest of this section, we focus on the resistance to first-order attacks on
data. Indeed, Rauzy and Guilley have shown in [47] that it is possible to adapt the modular
extension protection scheme to resist attacks of order D for any D by chaining D repetitions of
the final check in a way that forces each repetition of the modular extension invariant verification
to be faulted independently, and faults on the code can be formally captured (simulated) by faults
on intermediate variables.

The security provided by the modular extension protection scheme has been formally studied
in [48, § 5]. Although the practical study was carried out on an ECSM algorithm, the theoretical
results are still valid in the context of pairing algorithms (or actually any other modular arith-
metic computations): The probability of not detecting a fault Pn.d. is inversely proportional to
the security parameter r, i.e., Pn.d. = O( 1

r ).
Indeed, we consider that a fault might be exploitable as soon as the algorithm outputs a value

that is different from the expected result in absence of faults. In the modular extension setting,
this can happen if and only if the result of the computation in Z(pr)12 is equal to the result of
the computation in Fr12 modulo r, while being different from the expected result modulo p. The
probability of this happening is 1

r if we consider that values in Fr are uniformly distributed, which
is quite reasonable given that r � p. As a matter of fact, we can quantify this distribution.
Let U uniformly distributed in {0, . . . , p − 1}, then V = U mod r has a piecewise constant
distribution. Let v in {0, . . . , r − 1}, we have:

P(V = v) =

{
1
p (b pr c+ 1) if v < (p mod r)
1
p (b pr c) otherwise.

There are other vulnerabilities, but they do not alter Pn.d.. For instance, the final exponentiation
always returns 0 in Fr12 for some (small) values of r. In addition, Miller’s algorithm manipulates
an element from an elliptic curve on Fp2 , and if a fault manages to set the Y coordinate of that
element to 0 mod r, its other coordinates will also become multiples of r after few iterations of
the Miller’s loop, thereby “infecting” the computation by being completely equal to 0 modulo
r. Therefore, the exponentiation will also output 0 modulo r in Z(pr)12 , and the final test won’t
detect the fault. However, such faults are highly unlikely in practice, the probability being
roughly 1

r2 , which is why Pn.d. stays O( 1
r ). Anyway, it is advised to use large enough values

for the security parameter r. In practice, 32-bits values are recommended as they are large
enough to offer a good security while not being big enough for the overhead induced by the
countermeasure to be prohibitive (see Table 12.3). It is also advised to use prime numbers for r
as it will diminish the probability of occurrence of the inversion problem mentioned above.

Remark 12.6 One must also be careful with the choice of parameters. For instance, manip-
ulating a P whose coordinates are multiples of r might lead to singularities in the computation
in Fr, singularities such as the Fr12 -output being equal to 1, therefore making the pairing com-
putation more vulnerable to fault injections.
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Remark 12.7 Taking the BV fault detection as an example (recall Figure 12.4), one might be
tempted to lift the computation from Fr to Zpr, and do a sanity check of the pairing computation
instead of redoing a redundant pairing computation in Fr. One property that could be checked is
the bilinearity. Unfortunately, the elliptic curve changes modulo r, as the Weierstrass coefficients
are reduced modulo r. Therefore, the bilinearity remarkable identity is not preserved in Fr after
reducing the pairing computation from Zpr modulo r.

The presented countermeasure can also bring a reasonable security against simple side-
channel attacks. Indeed, the 32-bits r parameter can be chosen randomly, and there are 98182657
prime numbers between 231 and 232, hence providing many different possible execution traces
against power analysis.

12.4 Countermeasures against Side-Channel Attacks on
Pairing-Based Cryptography

In order to protect pairing implementations against the side-channel attacks described in this
chapter, several countermeasures have been proposed. The aim of most of those countermeasures
is to avoid any predictable link between the manipulated data and the known input.

In practice, in the pairing computation context, there are different randomization levels. One
category of countermeasures consists of randomizing the inputs before the pairing computation.
Another one consists of adding a random mask directly into the Miller algorithm. Moreover, a
method based on arithmetic randomization can be adapted for the pairing.

12.4.1 Randomization of the Inputs

Page and Vercauteren [44] proposed two countermeasures for their passive attack. The first one
is based on the pairing bilinearity. Let a and b be two random values, then e([a]P, [b]Q) 1

ab =
e(P,Q). For each pairing computation, one can thus take different a and b and compute
e([a]P, [b]Q) 1

ab . This method is clearly very costly in terms of computation time. Then, the
random choice for a and b can be adapted to have a = b−1 mod q, so the exponent 1

ab is equal
to 1.

The same authors propose another method, for instance in the case where P is secret, con-
sisting of adding the mask to the point Q in the following way: select a random point R ∈ G2
and compute e(P,Q+R)e(P,R)−1 instead of e(P,Q), with different values of R at every call to
e.

Widely inspired by the previous protection, Blömer et al. in [11] proposed an improvement
applied for the Tate pairing. In the reduced Tate pairing, they note that the set of the second
argument input is the equivalence class E(F

pk
)

rE(F
pk

) . They hence choose a random point R ∈ E(Fpk)
with order l and coprime to r. Then Q + R ∼ Q. Hence e(P,Q + R) = e(P,Q). This method
avoids the second pairing computation that is used to find the same result without mask.

12.4.2 Randomization of Intermediate Variables

Kim et al. [37] use the third countermeasure proposed by Coron in [15], using random projective
coordinates to protect the Eta pairing in characteristic 2. But it can be adapted to pairing
algorithms based over a large prime characteristic field. At the beginning of the algorithm, they
proceed with this randomization based on the homogeneity of projective or Jacobian coordinates.
For non-zero integer λ, the point P = (XP , YP , ZP ) in projective coordinates is also the point
P = (λXP , λYP , λZP ). The point P = (XP , YP , ZP ) in Jacobian coordinates is also the point
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P = (λ2XP , λ
3YP , λZP ).

12.4.3 Arithmetic Randomization

However, all previous attacks against pairings targeted an arithmetic operation. Securing multi-
plications was originally studied in [30] in order to protect ECDSA against side-channel attacks.
The aim is to avoid all possible predictions during a modular multiplication. A mask is randomly
chosen before processing a multiplication. Then it is impossible to make any hypothesis on the
output of internal modular multiplication. We find another masking technique in the paper [9],
the aim being the same: avoiding any predictable link between known and secret data directly
in the arithmetic.

Protected arithmetic can also be obtained with the well-known Residue Number System
method [7].

Arithmetic protection seems to be a robust method against side-channel. However, it is nec-
essary to evaluate the overhead cost. Indeed, changing permutation in randomized multiplication
or refreshing RNS basis in case of RNS implementation have a significant overhead.

12.4.4 Countermeasures against Loop Reduction

The fault attacks against the Miller algorithm rely on the modification of the number of iterations
performed by the algorithm. We can add a counter to the Miller algorithm.

12.4.5 Pseudo Code of Unified Existing Countermeasures

Aet of these protections is relatively easy to implement. Algorithm 12.6 shows a possible com-
bination of existing countermeasures. The arithmetic randomization is directly implemented in
the arithmetic. For example, the multiplication of two long integers in Fq can be realized by
Algorithm 2 of [9] instead of classic long integer multiplication.

ALGORITHM 12.6 Computation of pairing using Miller’s loop.
Input : P ∈ G1, Q ∈ G2 with Q secret, r = (rw−1 . . . r0)2 radix 2 representation
Output : e(P,Q)
Randomly pick a and b in {1, . . . , q − 1} such that a = b−1 mod q

Set P ′ ← [a]P and Q′ ← [b]Q // Randomization of the inputs
Randomly pick λ ∈ F′q
Set T ← (λxP ′ , λyP ′ , λ) // Randomized projective coordinates
f ← 1
for i = w − 2 downto 0 do

f ← f2 · lT,T (Q′)
T ← [2]T
if ri == 1 then

f ← f · lT,P ′(Q′)
T ← T + P ′

end
end

return f
qk−1
r
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