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We recall from Section 1.2 that a pairing is a map e : G1 × G2 → GT between finite abelian
groups G1, G2 and GT , that satisfies the following conditions:

• e is bilinear, which means that e(P + Q,R) = e(P,R) × e(Q,R) and e(P,Q + R) =
e(P,Q)× e(P,R);

• e is non-degenerate, which means that for any P ∈ G1 there is a Q ∈ G2 such that
e(P,Q) 6= 1, and for any Q ∈ G2 there is a P ∈ G1 such that e(P,Q) 6= 1.

A pairing e is suitable for use in cryptography when furthermore it is easy to compute, but
difficult to invert. Inverting a pairing e means given z ∈ GT to find P ∈ G1 and Q ∈ G2 such
that e(P,Q) = z.

The most efficient cryptographic pairings currently known come from elliptic curves (or higher
dimensional algebraic varieties). Starting from an elliptic curve E defined over a finite field Fq,
we consider the Weil pairing and the Tate pairing associated to it. This allowed cryptographers
to construct a map such that:

• G1 and G2 are subgroups of the rational points of E defined over an extension Fqk of
Fq;

• GT is the group (F∗
qk
,×) where the group law is given by the field multiplication on

Fqk (or more precisely GT = µr ⊂ F∗
qk

is the subgroup of r-roots of unity);
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• The pairing e can be efficiently computed using Miller’s algorithm (see Algorithm 3.2);
• Currently the most efficient way to invert e is to solve the Diffie-Helman problem on

G1, G2 or GT .

In this chapter we introduce pairings associated to an elliptic curve E over a finite field Fq
and explain how to compute them efficiently, via an algorithm which evaluates functions on
points of the curve. We first explain in Section 3.1 how to represent functions efficiently by
looking at their associated divisors, and then give Miller’s algorithm which allows to evaluate
them.

In Section 3.2 we present the general theory of the Weil and Tate pairing and we review main
recent optimizations for their computation: the Ate, twisted Ate and optimal pairings, which
are preferred in implementations nowadays. Finally, we give concrete formulae to compute them
in practice in Section 3.3. Since the group GT is a subgroup of the multiplicative group of
Fqk , security requirements involve choosing a base field Fq with large characteristic (see [2] or
Chapter 9).

For simplicity, in Section 3.1 and 3.2 points on the elliptic curve are represented in affine
coordinates. Using this representation, formulae for pairing computation are easy to write down.
However, note that affine coordinates involve divisions and are not efficient for a practical im-
plementation. We study more efficient representations of points in Section 3.3.

For the cryptographic usage of pairings, only a specific version of Miller’s algorithm and the
Weil and Tate pairing need to be presented. This is the version we give in Section 3.1 and 3.2,
where we omit most proofs. For the sake of completness, we give the general version of the
pairings along with complete proofs in Section 3.4.

Notation.
We recall that an elliptic curve defined over a field with characteristic greater than 5 can

always be given in short Weierstrass form, as explained in Chapter 2. In the remainder of this
chapter, all elliptic curves are defined over a field K with characteristic greater than 5 and
will be given by a short Weierstrass equation. We denote this equation by y2 = H(x), with
H(x) = x3 + ax+ b and a, b ∈ K.

3.1 Functions, Divisors and Miller’s algorithm

3.1.1 Functions and divisors on curves

Pairing computations will rely crucially on evaluating functions on points of elliptic curves. A
convenient way to represent functions is by their divisor. We first give a gentle introduction to
the theory of divisors by looking at examples of functions on the line before considering elliptic
curves.

Let A1 be the affine line over an algebraically closed field K. Adding the point at infinity
means that we work on the projective line P1 = A1 ∪ {∞}. Rational functions K(P1) on A1

are simply the rational functions K(t). Let f = P/Q =
∏

(t−xi)ni∏
(t−yi)mi

∈ K(t) be such a rational
function, where the numerator P and the denominator Q are assumed to be prime with each
other. Then the points xi are zeroes of f with multiplicity mi and the points yi are poles of f
with multiplicity ni. This allows us to define a multiplicity ordx(f) for every point x ∈ P1(K)

ordx(f) =

 n if x is a zero of f with multiplicity n,
−n if x is a pole of f of multiplicity n,
0 if x is neither a zero or a pole.

For example, f has no pole in A1 if and only if it is a polynomial P (t).
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Given a rational function f = P/Q as above, we can also define the evaluation of f on the
point at infinity ∞. Here is how to compute the evaluation of f at ∞: the change of variables
u = 1/t sends ∞ to 0. Define g by g(u) = f(1/u). This gives the relation f(t) = g(u) when
t = 1/u. We can then define the order of f at ∞ as the order of g at 0, and when the order
is 0 we can define the value of f at ∞ as the value of g at 0. One can then easily check that
ord∞(f) = −deg f = degQ− degP .

We associate a formal sum to a function f :

div(f) =
∑

x∈P1(K)

ordx(f)[x],

where we use the notation [x] to represent the point x ∈ P1(K) in the formal sum. This formal
sum is called the divisor of f . Since there is only a finite number of poles or zeroes, it is in fact
finite. Moreover f is characterized by div(f) up to the multiplication by a constant: if f1 and
f2 are two rational functions such that div(f1) = div(f2), then f1 and f2 have the same poles
and zeroes so they differ by a multiplicative constant.

More generally, a divisor D is defined to be a formal sum of a finite number of points:

D =
∑

x∈P1(K)

ni[xi].

To a divisor D one can associate its degree deg(D) =
∑
ni. By the remark above concerning

the multiplicity of f at ∞, we get that deg div(f) = 0. Conversely, given a divisor D of degree 0
it is easy to construct a rational function f such that div f = D.

The whole theory extends when we replace the line P1 by a (geometrically connected smooth)
curve C. If P ∈ C(K) is a point of C, then there is always a uniformiser tP , that is a rational
function on C with a simple zero at P . Thus if f ∈ K(C) is a rational function on C, then we
can always write f = tmP · g where g is a function having no poles nor zeroes at P . We then
define the multiplicity ordP (f) of f at P to be m. If the multiplicity ordP (f) is zero, that is if
P is neither a pole nor a zero of f , then one can define the value of f at P to be f(P ).

In the case of the projective line P1, a uniformiser at x is t − x and a uniformiser at ∞ is
u = 1

t . Hence this new notion of multiplicity coincides with the one introduced above.
For an elliptic curve E we have the following uniformisers

• tP = x− xP , except when H(xP ) = 0;
• tP = y − yP , except when H ′(xP ) = 0;
• t0E = x/y.

We denote by DiscP the discriminant of a polynomial P , we recall that the discriminant is
non zero if and only if P does not admit a double root. Since E is an elliptic curve, DiscH 6= 0
and we cannot have H(xP ) = 0 and H ′(xP ) = 0 at the same time. Hence there is indeed a
uniformiser for every point P ∈ E(K).

One can also define a divisor on E as a formal finite sum of geometric points D =
∑
ni[Pi]

of E, and associate to a rational function f ∈ K(E) a divisor div(f) =
∑

P∈E(K) ordP (f)[P ].
One can check that ordP (f) = 0 for all but a finite number of P so we get a well defined divisor.
The degree degD of a divisor D =

∑
ni[Pi] is

∑
ni. A divisor D is said to be principal when

there exists a function f such that D = div(f). Two divisors D1 and D2 are said to be linearly
equivalent when there exists a function f such that D1 = D2 + div(f). It is easy to check that a
divisor D is principal if and only if it is equivalent to the zero divisor, and that two divisors D1
and D2 are linearly equivalent if and only if D1 −D2 is linearly equivalent to the zero divisor.

PROPOSITION 3.1 Let E be an elliptic curve over an algebraically closed field K.
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1. Given f, g ∈ K(E) two rational functions, then div(f) = div(g) if and only g differs
from f by a multiplicative constant;

2. If f ∈ K(E) is a rational function, then div(f) is a divisor of degree 0;
3. Conversely if D =

∑
ni[Pi] is a divisor on E of degree 0, then D is the divisor of a

function f ∈ K(E) (ie D is a principal divisor) if and only if
∑
niPi = 0E ∈ E(K)

(where the last sum is not formal but comes from the addition on the elliptic curve).

Proof. See [22, Proposition 3.4]. In fact, for the last item, given a divisor D =
∑
ni[Pi] of

degree 0, we give in Section 3.4.2 an explicit algorithm which constructs a rational function f such
that D = [P ]− [0E ]+div(f) and P =

∑
niPi ∈ E(K). If P = 0E then D = div(f) is a principal

divisor. It remains to show that if P 6= 0E then the divisor [P ] − [0E ] is not principal. But if
we had a function f such that div(f) = [P ]− [0E ], then the morphism E → P1

K
: x 7→ (1 : f(x))

associated to f would be birational. (Indeed since f has one simple zero and one simple pole,
one could get every degree zero divisors as the divisor of a suitable rational function of f . So
the function field of k(E) would be k(f).) But this is absurd: E is an elliptic curve so it has
genus 1, it cannot have genus 0.

An elliptic curve E defined over Fq can also be seen as an elliptic curve EFq over the algebraic
closure Fq. We say that a divisor D =

∑
ni[Pi] of EFq is rational when it is invariant under the

action of the Frobenius automorphism π. If f ∈ Fq(E) is a rational function defined over Fq,
then div(f) is rational. Conversely if f ∈ Fq(E) has a rational divisor div(f), then there exists
a nonzero constant λ such that λf ∈ Fq(E) [22, Chapter II §2].

3.1.2 Miller’s algorithm

Let F be a principal divisor. Then by definition there is a rational function f on E such that
F = div f . Then f is uniquely determined up to a constant. If 0E is neither a pole or a zero
of f , then one can uniquely define f by requiring that f(0E) = 1. More generally, we can
define the normalized function associated to a principal divisor as follow: since ord0E (x/y) = 1,
(x/y)ord0E (f) has the same order at 0E as f . In particular the function

(
f

(x/y)ord0E (F )

)
is defined

at 0E , and we can normalize f uniquely by requiring that the above function has value 1 at 0E .
This gives the following definition.

DEFINITION 3.1 Let F be a principal divisor. We define fF to be the unique function
such that F = div fF and

(
fF

(x/y)ord0E (F )

)
(0E) = 1. Such a function is called normalized at 0E

(or simply normalized). If F is rational, then fF is rational too.

If P and Q are points in E, then [P ] + [Q]− [P +Q]− [0E ] is principal. Indeed it has degree
0 and P +Q− 20E − (P +Q) + 0E = 0E so by Proposition 3.1 there exists a function µP,Q such
that div(µP,Q) = [P ] + [Q]− [P +Q]− [0E ].

DEFINITION 3.2 We denote by µP,Q the normalized function with principal divisor [P ] +
[Q]− [P +Q]− [0E ].

If E is given by a short Weierstrass equation, we can construct µP,Q explicitly: if P = −Q
then P +Q = 0E and we can choose

µP,Q = x− xP . (3.1)
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Otherwise let lP,Q be the line going through P and Q (if P = Q then we take lP,Q to be
the tangent to the elliptic curve at P ). Then by definition of the addition law on E, we have
that div(lP,Q) = [P ] + [Q] + [−P − Q] − 3[0E ]. Now let vP,Q = x − xP+Q be the vertical line
going through P + Q and −P − Q. Then div(vP,Q) = [P + Q] + [−P − Q] − 2[0E ], so that
div( lP,QvP,Q

) = [P ] + [Q]− [P +Q]− [0E ] and one can take µP,Q = lP,Q
vP,Q

.
To compute xP+Q, we know that −P − Q is the third intersection point between the line

lP,Q : y = αx+β and the elliptic curve E : y2 = x3 +ax+b. So x−P−Q, xP , xQ are all roots of the
degree three equation x3+ax+b−(αx+β)2 = 0, and we get that xP+Q = x−P−Q = α2−xP−xQ.
Putting everything together we finally obtain

µP,Q = y − α(x− xP )− yP
x+ (xP + xQ)− α2 (3.2)

with α = yP−yQ
xP−xQ when P 6= Q and α = H′(xP )

2yP when P = Q.
One can check that the functions µP,Q defined above are normalized (see Section 3.4). Let

R ∈ E. The following lemma explains how to evaluate µP,Q on R (in the usual cases encountered
in cryptographic applications, we refer to Lemma 3.4 for the remaining cases).

LEMMA 3.1 (Evaluating µP,Q) Let P = (xP , yP ), Q = (xQ, yQ), and R = (xR, yR) be
points on E.

• Suppose that P , Q and P +Q all different from 0E. Then µP,Q = lP,Q
vP,Q

where lP,Q =
y − αx − β with α = yP−yQ

xP−xQ when P 6= Q and α = H′(xP )
2yP when P = Q, β =

yP − αxP = yQ − αxQ and vP,Q = x− xP+Q with xP+Q = α2 − xP − xQ.
Assume that R is not equal to P , Q, P +Q, −P −Q or 0E then we have

µP,Q(R) = yR − αxR − β
xR − xP+Q

. (3.3)

(If R = −P −Q and −P −Q 6= P,Q, P +Q, 0E then µP,Q is well defined on R, but
computing the exact value requires more work, see Lemma 3.4 for the formula.)

• If P = −Q (but P 6= 0E) so that P +Q = 0E, then µP,Q = x− xP .
Assume that R is different from 0E, then µP,Q(R) = xR − xP .

• If P = 0E or Q = 0E then µP,Q = 1.

Let P 6= 0E a point of r-torsion on E. Then r[P ]− r[0E ] is a principal divisor (by cite[Corollary
III.3.5]Silverman09). As a consequence, we have the following definition.

DEFINITION 3.3 We denote by fr,P the normalized function with principal divisor r[P ]−
r[0E ].

All pairing computations will involve the following key computation: given P 6= 0E a point
of r-torsion on E, and Q 6= P, 0E a point of the elliptic curve, evaluate fr,P (Q). To explain how
to compute fr,P we need first to extend its definition.

DEFINITION 3.4 Let λ ∈ N and P ∈ E(K); we define fλ,P ∈ K(E) to be the function
normalized at 0E such that

div(fλ,P ) = λ[P ]− [λP ]− (λ− 1)[0E ].
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Note that if r ∈ N and P ∈ E[r], then fr,P is indeed the normalized function with divisor
r[P ]− r[0E ].

PROPOSITION 3.2 Let P be as above, and λ, ν ∈ N. We have

fλ+ν,P = fλ,P fν,P fλ,ν,P ,

where fλ,ν,P = µλP,νP is the function associated to the divisor [(λ + ν)P ] − [λP ] − [νP ] + [0E ]
and normalized at 0E.

Proof. We have seen in Lemma 3.1 that the function µλX,νX defined in Equations (3.1) and (3.2)
is normalized and has for associated divisor [(λ+ ν)X]− [(λ)X]− [(ν)X] + [0E ]. By definition of
fλ,X , we have that div fλ+ν,X = (λ+ ν)[X]− [(λ+ ν)X]− (λ+ ν − 1)[0E ] = λ[X]− [λX]− (λ−
1)[0E ] + ν[X]− [νX]− (ν− 1)[0E ] + [(λ+ ν)X]− [(λ)X]− [(ν)X] + [0E ] = div fλ,Xfν,X fλ,ν,X . So
fλ+ν,X = fλ,Xfν,X fλ,ν,X since they have the same associated divisor and are both normalized
at 0E .

Proposition 3.2 is the main ingredient that we need to compute fr,P , using a double-and-add
algorithm, whose pseudocode is described in Algorithm 3.2. Here is how this algorithms works:
given P ∈ E[r], we compute rP as we would with a standard double-and-add algorithm. If the
current point is T = λP , then at each step in the loop we perform a doubling T 7→ 2T , and
whenever the current bit of r is a 1, we also do an extra addition T 7→ T +P . The only difference
between Miller’s algorithm and scalar multiplication is that, at each step in the Miller loop, we
also keep track of the function fλ,P (corresponding to the principal divisor λ[P ]−[T ]−(λ−1)[0E ]).
During the doubling and addition step we increment this function using Proposition 3.2, until in
the end we obtain fr,P , which we can evaluate on Q. Note that in practice we do the evaluations
directly at each step because representing the full function fr,P would be too expensive.

ALGORITHM 3.1 Miller’s algorithm (general version).

Input: r ∈ N, I = [log r], P = (xP , yP ) ∈ E[r](K), Q = (xQ, yQ) ∈ E(K).

Output: fr,P (Q).

1. Compute the binary decomposition: r :=
∑I

i=0 bi2
i. Let T = P, f = 1.

2. For i in [I − 1..0] compute

(a) f = f2µT,T (Q);
(b) T = 2T ;
(c) If bi = 1, then compute

i. f = fµT,P (Q);
ii. T = T + P .

Return f .

Remark 3.1

• One should be careful that at the last step, the sum (whether it is a doubling or an
addition) gives 0E , so the corresponding Miller function is simply x− xT .
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• There is one drawback in evaluating directly the intermediate Miller functions µλP,νP
directly on Q: if Q /∈ {0E , P}, then fr,P (Q) is well defined. But if Q is a zero or
pole of µλP,νP , then Algorithm 3.1 fails to give the correct result. A solution to
compute fr,P (Q) anyway is to change the addition chain used to try to get other
Miller functions µλP,νP that do not have a pole or zero on Q. Another solution is
given in Section 3.4. We note that this situation can happen only when Q is a multiple
of P .

Using Lemma 3.1 we get an explicit version of Algorithm 3.1, for an elliptic curve y2 =
x3 + ax+ b. For efficiency reasons, we only do one division at the end.

ALGORITHM 3.2 Miller’s algorithm for affine short Weierstrass coordinates

Input: r ∈ N, I = [log r], P = (xP , yP ) ∈ E[r](K), Q = (xQ, yQ) ∈ E(K).

Output: fr,P (Q).

1. Compute the binary decomposition: r :=
∑I

i=0 bi2
i. Let T = P, f1 = 1, f2 = 1.

2. For i in [I − 1..0] compute (except at the last step)

(a) α = 3x2
T+a

2yT , the slope of the tangent of E at T ;

(b) x2T = α2 − 2xT , y2T = −yT − α(x2T − xT );
(c) f1 = f2

1 (yQ − yT − α(xQ − xT )), f2 = f2
2 (xQ + 2xT − α2);

(d) T = 2T .
(e) If bi = 1, then compute

i. α = yT−yP
xT−xP , the slope of the line going through P and T ;

ii. xT+P = α2 − xT − xP , yT+P = −yT − α(xT+P − xT );
iii. f1 = f1(yQ − yT − α(xQ − xT )), f2 = f2(xQ + (xP + xT )− α2);
iv. T = T + P .

3. At the last step: f1 = f1(xQ − xT ).

Return
f1

f2
.

3.2 Pairings on elliptic curves

3.2.1 The Weil pairing

The first pairing on elliptic curves has been defined by Weil. Although it is usually not used
in practice for cryptography (rather the Tate pairing, or variants of the Tate pairing is), it is
important for historical reasons, and also because the original construction of the Tate pairing
uses the Weil pairing.

THEOREM 3.1 Let E be an elliptic curve defined over a finite field K, r ≥ 2 an integer
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prime to the characteristic of K and P and Q two points of r-torsion on E. Then

eW,r = (−1)r fr,P (Q)
fr,Q(P ) (3.4)

is well defined when P 6= Q and P,Q 6= 0E. One can extend the application to the domain
E[r] × E[r] by requiring that eW,r(P, 0E) = eW,r(0E , P ) = eW,r(P, P ) = 1. Furthermore, the
application eW,r : E[r] × E[r] → µr obtained in this way is a pairing, called the Weil pairing.
The pairing eW,r is alternate, which means that eW,r(P,Q) = eW,r(Q,P )−1.

Proof. See [22, Section III.8] or Section 3.4.3.

Note that the Weil pairing is defined over any field K of characteristic prime to r, and
takes its values in µr ⊂ K. For cryptographic applications, we consider K = Fq, with q a prime
number, and we define the embedding degree k to be such that Fqk is the smallest field containing
µr. In other words, Fqk = Fq(µr) or alternatively, k is the smallest integer such that r | qk − 1.

Computing the Weil pairing
To compute the Weil pairing in practice we use Algorithm 3.2 twice to compute fr,P (Q)

and fr,Q(P ). Note that in this case, by Remark 3.1, whenever Miller’s algorithm fails because
we have an intermediate zero or pole, then Q is a multiple of P so eW,r(P,Q) = 1. Indeed, if
Q = λP then eW,r(P,Q) = eW,r(P, P )λ = 1 because eW,r(P, P ) = 1 (eW,r is alternate).

3.2.2 The Tate pairing

The Tate pairing was defined by Tate for number fields in [24, 18] and used by Frey and Rück
in the case of finite fields [7]. For simplicity, we assume that K = Fq, with q prime, and that
k is the embedding degree corresponding to r (although the construction is valid for any finite
field).

THEOREM 3.2 Let E be an elliptic curve, r a prime number dividing #E(Fq), P ∈
E[r](Fqk) a point of r-torsion defined over Fqk and Q ∈ E(Fqk) a point of the elliptic curve
defined over Fqk . Let R be any point in E(Fqk) such that {R,Q+R} ∩ {P, 0E} = ∅.
Then

eT,r(P,Q) =
(
fr,P (Q+R)
fr,P (R)

) qk−1
r

(3.5)

is well defined and does not depend on R.
Furthermore, the application

E[r](Fqk)× E(Fqk)/rE(Fqk) → µr

(P,Q) 7→ eT,r(P,Q)

is a pairing, called the Tate pairing.

Proof. See [7]. We give an elementary proof in Section 3.4.4 when all the r-torsion is rational
over Fqk .

When E(Fqk) does not contain a point of r2-torsion (which is always the case in the crypto-
graphic setting because r is a large prime), then the Tate pairing restricted to the r-torsion is
also non-degenerate.
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PROPOSITION 3.3 Assume that E[r] ⊂ E(Fqk) and that there are no points of r2-torsion
in E(Fqk). Then the inclusion E[r](Fqk) ⊂ E(Fqk) induces an isomorphism E[r] ' E(Fqk)/rE(Fqk)
so the Tate pairing eT,r is a non-degenerate pairing

E[r]× E[r]→ µr.

Proof. Suppose that P ∈ E[r](Fqk) is equivalent to 0 in E(Fqk)/rE(Fqk). Then by definition
there exists a point P0 ∈ E(Fqk) such that P = rP0. This means that P0 is a point of r2-torsion.
By hypothesis there are no non-trivial points of r2-torsion in E(Fqk), hence we deduce that
E[r]→ E(Fqk)/rE(Fqk) is injective. Since both groups have cardinality r2 (this is shown in the
proof of Theorem 3.11), the injection is an isomorphism.

Computing the Tate pairing
In practice to compute the Tate pairing, when Q is not a multiple of P (for instance when

P ∈ G1 and Q ∈ G2) one can take R = 0E so that

eT,r(P,Q) = fr,P (Q)
qk−1
r . (3.6)

(We can’t apply Theorem 3.2 directly with R = 0E , but Theorem 3.11 will show that for-
mula (3.6) is correct). We use Algorithm 3.2 to compute fr,P (Q) and then we do the final
exponentiation by a fast exponentiation algorithm. By Remark 3.1 there are no problems dur-
ing the execution of Miller’s algorithm.

Unlike for the Weil pairing, eT,r(P, P ) may not be trivial, so if we want to compute eT,r(P, P ),
or eT,r(P,Q) with Q a multiple of P , then we need to use Equation 3.18 with R a random point
in E(Fqk). If we are unlucky and get an intermediate zero or pole, we restart the computation
with another random R. An alternative method is to use the general Miller’s algorithm described
in Section 3.4.2 to compute the Tate pairing.

3.2.3 Using the Weil and the Tate pairing in cryptography

For the applications of the Weil and Tate pairing to cryptography, we will always consider an
elliptic curve E defined over Fq and a large prime number r such that r | #E(Fq). When the
embedding degree k is greater than one, then E[r] is defined over Fqk , and we can define two
subgroups G1 and G2 of interest for pairing computations.

LEMMA 3.2 (The central setting for cryptography) Let E be an elliptic curve defined
over Fq, r a large prime number such that r | #E(Fq), and πq the Frobenius endomorphism. Let
k be the embedding degree relative to r, and assume that k > 1. Then E[r] = G1 ×G2 ⊂ E(Fqk)
where

G1 = E[r](Fq) = {P ∈ E[r] | πqP = P} (3.7)
G2 = {P ∈ E[r] | πqP = [q]P}. (3.8)

G1 is called the rational subgroup of E[r], while G2 is called the trace zero subgroup.

Proof. The characteristic polynomial of the Frobenius modulo r is the degree two polynomial
X2 − tX + q modulo r where t is the trace. Let λ1 and λ2 be the two eigenvalues. Since
r | #E(Fq), there is a rational point of r-torsion in E(Fq) so that λ1 = 1. This implies that
λ2 = q. Furthermore since k > 1, then q 6= 1 (mod r). The two eigenvalues are then distinct, so
the action of πq on E[r] is diagonalisable, and we have

E[r] = Ker(πq − Id)⊕Ker(πq − q Id) = G1 ⊕G2.
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Furthermore, let φ be the endomorphism given by the trace of the Frobenius (i.e. φ =
1 + πq + · · · + πk−1

q ). Then φ acts on G1 by multiplication by k (which in the cryptographic
setting will be prime to r), and on G2 the trace acts by multiplication by qk−1

q−1 . Since the
embedding degree k is greater than 1 by hypothesis, then r | qk−1 and r - q−1. Hence r | q

k−1
q−1 .

We conclude that the trace restricted to E[r] has G2 as kernel and G1 as image [3, 4]. This
explains the name trace zero subgroup for G2.

In practice, when using pairing friendly elliptic curves to compute pairings for cryptographic
applications, we will always be in the situation of Lemma 3.2. It will be convenient to restrict
the Tate pairing to the subgroups G1 and G2 rather than to deal with the full r-torsion. Under
some additional hypotheses (which always hold in the cryptographic setting), the Tate pairing
restricted to G1 ×G2 or to G2 ×G1 is non-degenerate.

PROPOSITION 3.4 Assume that we are in the situation of Lemma 3.2. Then the restriction
of eW,r to G1 × G2 or to G2 × G1 is non-degenerate. If furthermore there are no points of r2-
torsion in E(Fqk), then the restriction of eT,r to G1 ×G2 or to G2 ×G1 is also non-degenerate.
More generally, if G3 is any cyclic subgroup of E[r] different from G1 and G2, then the Weil
and Tate pairing restricted to G1 ×G3, G3 ×G1, G2 ×G3 and G3 ×G2 is non-degenerate.

Proof. Note that the Weil pairing is non-degenerate on E[r], but is trivial on G1×G1 and G2×G2
(because these groups are cyclic and the Weil pairing is alternate). Then since E[r] = G1 ×G2,
the Weil pairing has to be non degenerate on G1 × G2 and G2 × G1. Given P ∈ G1 there
exists Q ∈ G2 such that eW,r(P,Q) 6= 1. There exists T ∈ G1 such that Q + T ∈ G3, and
eW,r(P,Q + T ) = eW,r(P,Q) 6= 1. Hence the Weil pairing on G1 × G3 is non degenerate. The
same reasoning holds for the other groups. We refer to Section 3.4.4 for the proof for the Tate
pairing.

In the remainder of this chapter, we will always assume that we are in the setting of Proposi-
tion 3.4. Moreover, we focus on the optimization of the computation of the Tate pairing, since
it is now preferred to the Weil pairing in cryptographic settings. This choice is explained by the
fact that the Miller loop only needs to compute the evaluation of a single fr,P function.

Denominator elimination
The final exponentiation of the Tate pairing kills any element γ which lives in a strict subfield

of Fqk . In particular we see that replacing fr,P by γfr,P in Equation (3.5) does not change the
result. In the execution of Algorithm 3.2, we can then modify the Miller functions fλ,ν,P by a
factor γ in a strict subfield of Fqk without affecting the final result.

Suppose that P and Q are in G1 or G2 and the embedding degree k is even. Remember
that by Lemma 3.1, the Miller function fλ,ν,P = µλP,νP = lλP,νP

vλP,νP
. Then by Lemma 3.3 below,

vλP,νP (Q) = xQ−x(λ+ν)P lives in a strict subfield of Fqk so this factor will be killed by the final
exponentiation. Hence in this situation we don’t need to compute the division by vλP,νP (Q) in
Miller’s algorithm for the Tate pairing, this is called denominator elimination.

LEMMA 3.3 Let E be an elliptic curve defined over Fq, be such that E[r] ⊂ E(Fqk) with k
even. Let Q ∈ G1 or Q ∈ G2. Then xQ ∈ Fqk/2 .

Proof. If Q ∈ G1 then Q ∈ E(Fq) so both xQ and yQ are in Fq ⊂ Fqk/2 . Now if Q ∈ G2, then by
definition of G2 we know that πk/2

q (Q) = qk/2Q. By definition of the embedding degree k, qk = 1
mod r, so qk/2 = ±1 mod r. But since k is the smallest integer such that qk = 1 mod r, we
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then have qk/2 = −1 mod r. So πk/2
q (Q) = −Q, and in particular πk/2

q (xQ) = x−Q = xQ. So
xQ is fixed by πk/2

q , which means that xQ ∈ Fqk/2 .

To sum up, denominator elimination yields Algorithm 3.3 to compute the Tate pairing over
G1 ×G2 or G2 ×G1.

ALGORITHM 3.3 Tate’s pairing over G1 ×G2 or G2 ×G1.

Input: r ∈ N an odd prime dividing #E(Fq) s.t. k > 1 is the corresponding embedding
degree, k is even and there are no points of r2-torsion in E(Fqk), P ∈ G1, Q ∈ G2 (or
P ∈ G2, Q ∈ G1).

Output: The reduced Tate pairing eT,r(P,Q) = fr,P (Q)
qk−1
r .

1. Compute the binary decomposition: r :=
∑I

i=0 bi2
i. Let T = P, f = 1.

2. For i in [I − 1..0] compute (except at the last step)

(a) α = 3x2
T+a

2yT , the slope of the tangent of E at T .

(b) x2T = α2 − 2xT , y2T = −yT − α(x2T − xT );
(c) f = f2lT,T (Q) = f2(yQ − yT − α(xQ − xT )),
(d) T = 2T ,
(e) If bi = 1, then compute

i. α = yT−yP
xT−xP , the slope of the line going through P and T ;

ii. xT+P = α2 − xT − xP , yT+P = −yT − α(xT+P − xT );
iii. f = flT,P (Q) = f(yQ − yT − α(xQ − xT ))
iv. T = T + P ,

3. At the last step: f = f(xQ − xT ).

Return
f
qk−1
r .

Finding a non trivial pairing
For all cryptographic applications of pairings, one needs to find two points P and Q on the

elliptic curve such that e(P,Q) 6= 1. For instance the original use of the Weil pairing was used
in [19] as an attack method by reducing the DLP from elliptic curves to finite fields: the MOV
attack (see Chapter 9). For the reduction to work, given P ∈ E[r](Fq) one need to find a point Q
such that eW,r(P,Q) 6= 1. Then the DLP between (P, nP ) over E(Fq) reduces to a DLP between
(eW,r(P,Q), eW,r(P,Q)n) over a finite field.

When the embedding degree k is greater than 1 as in Lemma 3.2, then taking any Q ∈
G2 \ 0E gives a non degenerate pairing eW,r(P,Q). The same is true for the Tate pairing by
Proposition 3.4. However when the embedding degree k is 1, and E[r](Fq) =< P > is cyclic,
then eW,r(P, P ) = 1. To get a non-degenerate Weil pairing one need to find a Q ∈ E[r]\E[r](Fq),
and such a point lives over an extension of degree r. But if we replace the Weil pairing by the
Tate pairing, then in this case eT,r(P, P ) 6= 1 by Section 3.4.4. This property was the original
reason for the use of the Tate pairing in the article [7].
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Pairings of type I,II,III
We conclude the discussion in this section by explaining how to instantiate pairings used in

cryptographic protocols, following the classification into three types introduced in Section 1.2.2.

• Type III: The Tate pairing restricted to G1 × G2 (indeed it is non degenerate by
Proposition 3.4).

• Type II: Let P ∈ E[r] be a point neither in G1 nor in G2 and define G3 =< P >

to be the cyclic subgroup generated by P . Then by Proposition 3.4 the Tate pairing
restricted to G1×G3 is non-degenerate. Furthermore, since the trace of the Frobenius
has image G1 and kernel G2, the restriction of the trace to G3 is an isomorphism
between G3 and G1, so the the Tate pairing on G1 ×G3 is of Type II.

• Type I: An instantiation of Type I pairings is given by the Tate pairing on G × G,
where G = E[r](Fq), when the embedding degree k = 1 and E[r](Fq) is cyclic as
discussed in the paragraph above and in Section 3.4.4.
Another example is given by supersingular elliptic curves, in the situation of Lemma 3.2.
Indeed for a supersingular elliptic curve E there exists a distorsion map ψ : G1 =
E[r](Fq) → E[r](Fqk) such that ψ(G1) 6= G1. In particular eW,r(P,ψ(P )) 6= 1 and
eT,r(P,ψ(P )) 6= 1, so composing the Weil or Tate pairing with the distorsion map
gives a pairing on G1×G1. We refer to [26, 8] for more details on the construction of
ψ.

3.2.4 Ate and optimal Ate pairings

Miller’s basic algorithm described in the previous section is an extension of the double-and-
add method for finding a point multiple. With the inception of pairing-based protocols in the
early 2000s, the cryptographic community put in a lot of effort in simplifying and optimizing
this algorithm. The complexity of Miller’s algorithm heavily depends on the length of the Miller
loop. Major progress in pairing computation was made in 2006, with the introduction of the loop
shortening technique. This construction, called the eta pairing, was first proposed by Barreto
et al. on supersingular curves and further simplified and extended to ordinary curves by Hess
et al. In this section, we detail this construction (the ate pairing) and give explicit formulae for
its implementation.

By definition when Q ∈ G2, πq(Q) = qQ. So one can use the Frobenius endomorphism πq
to speed up the scalar multiplication Q 7→ rQ. Since Miller’s algorithm is an extended version
of the scalar multiplication, one can try to use this property of the Frobenius to speed up the
computation of the Miller function fr,Q. The first idea was to replace r by qk − 1 (which is a
multiple of r), and use the Frobenius to speed up the computation of fqk,Q. This leads to the
following result given by Hess et al. [10].

THEOREM 3.3 Let E be an elliptic curve defined over Fq and r a large prime with r|#E(Fq).
Let k > 1 be the embedding degree and let G1 = E[r]∩Ker(πq−Id) and G2 = E[r]∩Ker(πq−q Id).
Let λ ≡ q (mod r) and m = (λk − 1)/r. For Q ∈ G2 and P ∈ G1 we have

(i) (Q,P ) 7→ (fλ,Q(P ))(qk−1)/r defines a bilinear map on G2 ×G1.
(ii) Then eT,r(Q,P )m = fλ,Q(P )c(qk−1)/r where c =

∑k−1
i=0 λ

k−1−iqi ≡ kqk−1 (mod r),
so this map is non degenerate if r - m.

In particular, let t be the trace of the Frobenius, T = t − 1 and L = (T k − 1)/r. Then T ≡ q

(mod r) so

aT : G2 ×G1 7→ µr

(Q,P ) 7→ (fT,Q(P ))(qk−1)/r
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defines a pairing on G2 ×G1 when r - L, which we call the Ate pairing.

By Hasse’s theorem 2.9, the trace of the Frobenius t is such that |t| ≤ 2√q. If t is suitably
small with respect to r, then the Ate pairing can be computed using a Miller loop of shorter size
and are thus faster than the Tate pairing. The exact same algorithm as Algorithm 3.3 allows to
compute the Ate pairing by replacing r with T (since denominator elimination holds too).

Other pairings may be obtained from Theorem 3.3, by setting λ ≡ qi (mod r) [27]. Pushing
the idea further, one may look at a multiple of cr of r so that we can write cr =

∑
ciq

i with ci
small coefficients. When Q ∈ G2, computing the scalar multiplication by cr requires computing
the points ciQ, using the Frobenius to compute the ciqiQ and then summing everything. The
same idea applied to pairings shows that one can then use a suitable combination of Miller
functions fci,Q to construct a bilinear pairing which is a power m of the Tate pairing. Once
again when r - m we get a new pairing.

THEOREM 3.4 Let λ =
∑φ(k)−1

i=0 ciq
i such that λ = mr, for some integer m. Then

a[c0,...,cl] : G2 ×G1 → µr defined as

(Q,P )→

φ(k)−1∏
i=0

fq
i

ci,Q
(P ) ·

φ(k)−1∏
i=0

lsi+1Q,ciqiQ(P )
vsiQ(P )

(qk−1)/r

, (3.9)

with si =
∑φ(k)−1

j=i cjq
j defines a bilinear map. This pairing is non-degenerate if and only if

mkqk−1 6= ((qk − 1)/r)
∑φ(k)−1

i=0 iciq
i−1 (mod r) and we call it the optimal Ate pairing.

Proof. The optimal Ate pairing was proposed by Vercauteren [25]. See Section 3.4.5 where we
follow the lines of his proof.

3.2.5 Using twists to speed up pairing computations

The group G1 is defined over the base field Fq so it admits an efficient representation. In
particular when computing the Tate pairing over G1 ×G2, the Miller functions are defined over
Fq, so most of the operations during the computation are performed in Fq.

We explain here why G2 also admits an efficient representation: it is isomorphic to a subgroup
of order r on a twist defined over a subfield of Fqk . We prove this result here and we will show
in the next section that this allows to do part of the pairing computations in a subfield Fqe , with
e | k, rather than in Fqk .

THEOREM 3.5 Let E be an ordinary elliptic curve over Fq admitting a twist of degree
d. Assume that r is an integer such that r||#E(Fq) and let k > 2 be the embedding degree.
Then there is a unique twist E′ such that r||#E′(Fqe), where e = k/ gcd(k, d). Furthermore,
if we denote by G′2 the unique subgroup of order r of E′(Fq) and by Ψ : E′ → E the twisting
isomorphism, the subgroup G2 is given by G2 = φ(G′2) and verifies the equation

G2 = E[r] ∩Ker([ξd]πqe − Id),

where [ξd] is an automorphism of order dividing d.

Proof. Replacing d by gcd(k, d) we can assume that d | k and that e = k/d. Take Q ∈ G2. By
the definition of G2 we know that πe(Q) = qeQ. But since k is the smallest integer such that
qk = 1 (mod r), we have that qe = ξd (mod r), where ξd is d-th primitive root of unity in Fqk .
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Note that we have an isomorphism [] : µd → Aut(E) ( [22, Corollary III.10.2]). Points in G2 are
eigenvectors for any endomorphism on the curve and we denote by [ξd] the automorphism such
that [ξd]Q = ξ−1

d Q (mod r).
Let E′ be a twist of degree d of E, defined over Fqe , such that Ψ◦ (Ψ−1)σ (with ·σ the action

of the Frobenius on the coefficients of the automorphism) is the automorphism [ξd] on E. If we
denote by πqe the Frobenius morphism on E′, we observe that Ψ ◦πqe ◦Ψ−1 = Ψ ◦ (Ψ−1)σ ◦πqe .
Therefore we have

G2 = Ker([ξd]πqe − Id).

Let G′2 = Ψ−1(G2). Then Ψ ◦ πqe ◦ Ψ−1(G2) = G2. It follows that G′2 is invariant under πqe ,
hence it is defined over Fqe .

Using the result one can compute the Miller loop for the Ate (or optimal Ate) pairing
aT (Q,P ) by working over G′2 to compute the multiples of Ψ−1(Q), and going back to G2 only to
evaluate the Miller functions on P . Alternatively one can do the full computation on the twist
E′, as shown in [6].

THEOREM 3.6 Let E be an elliptic curve defined over Fq Assume that r is an integer such
that r||#E(Fq) and let k > 2 be the embedding degree. Let E′ be the twist of degree d and
Ψ : E′ → E the associated twist isomorphism, as in Theorem 3.5. Consider Q ∈ G2, P ∈ G1,
and let Q′ = Ψ−1(Q) and P ′ = Ψ−1(P ). Let aT (Q,P ) be the Ate pairing of Q and P . Then

aT (Q,P )gcd(d,6) = aT (Q′, P ′)gcd(d,6)

where aT (Q′, P ′) = fT,Q′(P ′)(qk−1)/r uses the same parameter loop.

This shows that the pairing onG2×G1 may be seen as aG1×G2 pairing on a twist defined over
Fqe . Indeed since G2 = E[r]∩Ker([ξd]πqe− Id) by Theorem 3.5, G1 = E[r]∩Ker([ξd]πqe−qe Id),
so Ψ−1(G2) = G1(E′) and Ψ−1(G1) = G2(E′), with G1(E′) and G2(E′) are the subgroups giving
the eigenvectors of the Frobenius on E′

The twist improves the Ate pairing on G2 × G1 by giving an efficient representation of G2.
Alternatively, it can be used to give a shorter Miller loop for pairings on G1 ×G2 [13].

THEOREM 3.7 Let λ ≡ q (mod r) and m = (λk − 1)/r. Assume that E has a twist of
degree d and set and set n = gcd(k, d), e = k/n.

(i) (P,Q) 7→ (fλe,P (Q))(qk−1)/r defines a bilinear map on G1 ×G2.
(ii) eT,r(P,Q)L = fλe,P (Q)c(qk−1)/N where c =

∑n−1
i=0 λ

e(n−1−i)qei ≡ nqe(n−1) (mod r),
so this map is non-degenerate if r - m.

In particular, if t is the trace of the Frobenius, T = t − 1, and L = (T k − 1)/r, then
(P,Q) 7→ (fT e,P (Q))(qk−1)/r defines a pairing if r - L, which we call the twisted Ate pairing.

One can also define a twisted optimal Ate pairing on G1 ×G2. This was given by Hess [12],
using a general formula for the pairing function. We present it here in a simplified way, better
suited for implementations.
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THEOREM 3.8 Assume that E has a twist of degree d and set n = gcd(k, d), e = k/n. Let
λ =

∑φ(k)/e−1
i=0 ciq

ie such that λ = mr, for some integer m. Then

a[c0,...,cl] : G1 ×G2 → µr (3.10)

(P,Q) →

φ(k)/e−1∏
i=0

fq
ie

ci,P
(Q) ·

φ(k)/e−1∏
i=0

lsi+1P,ciqieP (Q)
vsiP (Q)

(qk−1)/r

,

where si =
∑φ(k)/e−1

j=i cjq
je, defines a bilinear map on G1 ×G2. This pairing is non-degenerate

if and only if mkqk−1 6= ((qk − 1)/r)
∑φ(k)/e−1

i=0 iciq
e(i−1) (mod r).

Proof. See Section 3.4.5.

3.2.6 The optimal Ate and twisted optimal Ate in practice

In order for the optimal Ate and twisted optimal Ate pairings to give a short Miller loop, we
would like the coefficients ci to be as small as possible. The idea is to search for the coefficients
ci in Equations 3.9 and 3.10 by computing short vectors in the following lattice

r 0 0 . . . 0
−q 1 0 . . . 0
−q2 0 1 . . . 0
...

...
...

...
−ql 0 0 . . . 1

 , (3.11)

where l is either φ(k) − 1 in the optimal Ate pairing case, and φ(k)/e − 1, in the twisted Ate
case. The volume of this lattice is r, hence by Minkowski’s theorem there is a short vector v in
the lattice such that ||v||∞ ≤ r1/l+1.

Starting from this bound and Theorem 3.4, Vercauteren discusses the existence of pairings
that may be computed with a Miller loop of size (log r)/φ(k). Note that Theorem 3.4 does not
guarantee that the pairing defined in Equation 3.9 can be computed in (log r)/φ(k) operations.
If the procedure described above produces a short vector with several ci coefficients different
from zero, then computing each fci,Q(P ) separately costs O((log r)/φ(k)) operations. Possible
optimizations would be to use multi-exponentiation techniques or a parallel version of Miller’s
algorithm to compute all the fci,Q(P ) functions at once. However, in the case of parametric
families introduced in Chapter 4, the entire computation can be carried with a single basic
Miller loop and the pairing given in Theorem 3.4 is indeed optimal, thanks to the special form of
the short vectors we obtain. To explain this idea, we give explicit formulae for this computation
in the case of several Brezing-Weng type constructions of pairing-friendly curves. Since k is
small, these formulae can be obtained by computing short vectors for the lattice given by the
matrix 3.11, by using an available implementation of the LLL algorithm. We recommend using
for instance the functions LLL() or BKZ() in Sage [23].

Example 3.1 [25, Vercauteren] We consider the Barreto-Naehrig family of curves, that was
introduced in ??. We briefly remind here that these families have embedding degree 12 are given
by the following parametrizations:

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,
t(x) = 6x2 + 1,
q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1.
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By Theorem 3.3, the length of Miller’s loop for the Ate pairing is log2r
2 . We will show that the

complexity of the computation of the optimal Ate pairing for this family is O( log2 r
4 ). Indeed, in

order to apply Theorem 3.4, we compute the following short vector:

[6x+ 2, 1,−1, 1].

Note that in this case, 3 out of the 4 coefficients in the short vector are trivial. We conclude
that the optimal twisted Ate pairing for this family of curves is given by the simple formula:

(f6x+2,Q(P ) · lQ3,−Q2 (P )l−Q2+Q3,Q1 (P )lQ1−Q2+Q3,[6x+2]Q(P ))
q12−1
r ,

where Qi = Qq
i , for i = 1, 2, 3. Note that the evaluation at Q of the vertical line v(x3−x2+1)tP

can actually be ignored because of the final exponentiation. The only costly computation is that
of f6x+2,Q(P ) and costs O(log r/2) operations. While the twisted Ate has loop length log r, a
search for a short vector giving the optimal twisted Ate pairing gives

[6x2 + 2x, 2x+ 1].

Hence we need to compute fx,P (Q), fx2,P (Q) and the complexity of computation is O(log r/2).

Example 3.2 We consider here the family of curves with k = 18 proposed by Kachisa et al.,
whose construction is given in Chapter 4. We briefly recall that this family is parametrized by
the following polynomials

r(x) = x6 + 37x3 + 343,

t(x) = 1
7(x4 + 16x+ 7),

q(x) = 1
21(x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401).

A similar search for the optimal pairing on curves with embedding degree 18 gives, for example,
the short vector

[1, x3 + 18].

Hence the complexity of Miller’s algorithm is log2r
2 . The optimal Ate pairing computation for

curves with k = 18 has complexity O( log r
6 ).

Building on these results, Vercauteren [25] introduces the concept of optimal pairing, i.e. a pair-
ing that is computed in log r/φ(k) Miller iterations. He puts forward the following conjecture:

Optimality conjecture: Any non-degenerate pairing on an elliptic curve without any effi-
ciently computable endomorphisms different from the powers of the Frobenius requires at least
O(log r/φ(k)) basic Miller iterations.

Hess [12] proved the optimality conjecture for all known pairing functions. The pairings
given by the formulae in Theorem 3.4 are the fastest known pairings at the time of this writing.
On curves endowed with efficiently computable endomorphisms other than the Frobenius (such
as automorphisms), it is currently not known how to use the action of these endomorphisms to
improve on pairing computation.
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Choosing the right pairing
Assume that we are in the situation of Proposition 3.4, and let P ∈ G1 and Q ∈ G2.

Then one may choose among the Tate pairing er,W (P,Q), the Ate (or Optimal Ate) pairing
ar,T (P,Q), the twisted Ate pairing . . . Furthermore, when k is even, we can apply denominator
elimination for the Tate pairing thanks to the final exponentiation. On the downside, one should
remember that the final exponentiation may be expensive too. Indeed, the loop length of the final
exponentiation is around k log q compared to log q for the Miller step. So the implementation
of the final exponentiation step should not be neglected and we will give in Chapter 7 efficient
algorithms for its computation.

We conclude that the choice of parameters for applications is a complex matter, with multiple
aspects to take into account. Therefore, we devote the whole Chapter 10 to discussing this
problem. In the remainder of this chapter, we give optimized formulae for computing one step
of a Miller loop.

3.3 Formulae for pairing computation

One of the most efficient ways of computing pairings on an elliptic curve given by a Weierstrass
equation is to use Jacobian coordinates [17] [9]. A point [X,Y, Z] in Jacobian coordinates
represents the affine point (X/Z2, Y/Z3) on the elliptic curve. A point in projective coordinates
[X,Y, Z] represents the point (X/Z, Y/Z) on the elliptic curve.

In this section we denote by s and m the costs of squaring and multiplication in Fq and
by S and M the costs of these operations in the extension field Fqk , if k > 1. We denote by
da the cost of the multiplication by a constant a. Sometimes, if q is a sparse prime (such as
a generalized Mersenne prime), we may assume that s/m = 0.8. However, when constructing
pairing friendly curves, it is difficult to obtain such primes. Hence, we generally have s/m ≈ 1.

3.3.1 Curves with twists of degree 2

In the remainder of this section, we suppose that the embedding degree is even and that E has
a twist of order 2 defined over Fqk/2 . From Theorem 3.5 and by using the equations of twists
given in Subsection 2.3.6, we derive an efficient representation of points in G2. It follows that
the subgroup G2 = 〈Q〉 ⊂ E(Fqk) can be chosen such that the x-coordinates of all its points
lie in Fqk/2 and the y-coordinates are products of elements of Fqk/2 with

√
β, where β is not a

square in Fqk/2 and
√
β is a fixed square root in Fqk .

For curves with twists of degree 2, the fastest known formulae for Miller’s algorithm dou-
bling [14] and addition steps [1] are in Jacobian coordinates. Therefore we represent the point
T as T = [X1, Y1, Z1,W1], where [X1, Y1, Z1] are the Jacobian coordinates of the point T on the
Weierstrass curve and W1 = Z2

1 .

The doubling step

We will look at the doubling step in the Miller loop. We represent the point T as T =
(X1, Y1, Z1,W1), where (X1, Y1, Z1) are the Jacobian coordinates of the point T on the Weier-
strass curve and W1 = Z2

1 . We compute 2T = (X3, Y3, Z3,W3) as:

X3 = (3X2
1 + aW 2

1 )2 − 8X1Y
2

1 ,

Y3 = (3X2
1 + aW 2

1 )(4X1Y
2

1 −X3)− 8Y 4
1 ,

Z3 = 2Y1Z1

W3 = Z2
3 .
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We write the normalized function lT,T that appears in Algorithm (3.3) as :

lT,T (xQ, yQ) = (Z3W1y − 2Y 2
1 − (3X2

1 + aW 2
1 )(W1x−X1))/(Z3W1)

Thanks to elimination in the final exponentiation, the term Z3W1 can be ignored. For k = 2,
we have that x ∈ Fq and we can compute the function lT,T as

lT,T (x, y) = Z3W1y − 2Y 2
1 − (3X2

1 + aW 2
1 )(W1x−X1).

For k > 2, we have that x is in Fqk/2 and the computation is slightly different

lT,T (x, y) = Z3W1y − 2Y 2
1 −W1(3X2

1 + aW 2
1 )x+X1(3X2

1 + aW 2
1 ).

The computations are done in the following order:

A = W 2
1 , B = X2

1 , C = Y 2
1 , D = C2, E = (X1 + C)2 −B −D,

F = 3B + aA, G = F 2, X3 = −4E +G, Y3 = −8D + F · (2E −X3),
Z3 = (Y1 + Z1)2 − C −W1,W3 = Z2

3 , H = (Z3 +W1)2 −W3 −A, I = H · y,
J = (F +W1)2 −G−A, K = J · x, L = (F +X1)2 −G−B

lT,T = I − 4C −K + L, f = f2 · lT,T .

The operation count gives 10s+3m+1a+1S+1M for k = 2 and 11s+(k+1)m+1da+1S+1M
if k > 2.

The mixed addition step
In implementations, it is often possible to choose the point P such that its Z-coordinate is 1,

in order to save some operations. The addition of two points T = [X1, Y1, Z1] and P = [X2, Y2, 1]
is called mixed addition.

The result of the addition of T = [X1, Y1, Z1,W1] and P = [X2, Y2, 1] is T+P = [X3, Y3, Z3,W3]
with

X3 = (X1 +X2Z
2
1 )(X1 −X2Z

2
1 )2 + (Y2Z

3
1 − Y1)2,

Y3 = (Y2Z
3
1 − Y1)(X1(X1 −X2Z

2
1 )2 −X3) + Y1(X1 −X2Z

2
1 )2,

Z3 = Z1(X2Z
2
1 −X1),

W3 = Z2
3 ,

T3 = W3xQ −X3.

The line lT,P is given by the equation:

lT,P = Z3yQ − Y2Z3 − (2Y2Z
3
1 − 2Y1)(xQ −X2).

The computations are done in the following order:

A = Y 2
2 , B = X2 ·W1, D = ((Y2 + Z1)2 −A−W1) ·W1, H = B −X1, I = H2

E = 4I, J = H · E,L1 = D − 2Y1, V = X1 · E,X3 = L2
1 − J − 2V, Y3 = (D − Y1) · (V −X3)− 2Y1 · I

Z3 = (Z1 +H)2 −W1 − I,W3 = Z2
3 , lT,P = 2Z3 · yQ − (Y2 + Z3)2 +A+W3 − 2L1 · (xQ −X2)

The operation count gives 6s + 6m + km + 1M [1].
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3.3.2 Curves with equation y2 = x3 + ax

These curves have twists of degree 4. Therefore, by using the equations for twists given in
Section 2.3.6 and Theorem 3.5, we derive that a point Q ∈ G2 may be written as

(xQ, yQ) = (x′Qν1/2, y′Qν
3/4)

where xQ′ , yQ′ , ν ∈ Fqk/4 and X4 − ν is an irreducible polynomial. Moreover, thanks to the
simple form of the Weierstrass equation, the doubling and addition formulae for these curves
are simpler and faster than in the case of curves allowing only twists of degree 2. The fastest
formulae for pairing computation on these curves [6] use Jacobian coordinates. In the doubling
step, we compute 2T as

X3 = (X2
1 − aZ2

1 )2

Y3 = 2Y1(X2
1 − aZ2

1 )((X2
1 + aZ2

1 )2 + 4aZ2
1X

2
1 )

Z3 = 4Y 2
1 .

The line function is

lT,T = −2(3X2
1Z1 + aZ3

1 )xQ + (4Y1Z1)yQ + 2(X3
1 − aZ2

1X1)

The computation is done using the following sequence of operations:

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = aC,X3 = (A−D)2,

E = 2(A+D)2 −X3, F = ((A−D + Y1)2 −B −X3), Y3 = E · F,Z3 = 4B
G = −2Z1(3 ·A+D), H = 2((Y1 + Z1)2 −B − C), II = (X1 +A−D)2 −X3 −A,

lT,T = G · xQ +H · yQ + II.

The total cost is (2k/d + 2)m + 8s + 1da. In the mixed addition step of T = (X1, Y1, Z1) and
P = (X2, Y2, 1) is T + P = (X3, Y3, Z3) with

X3 = (Y1 − Y2Z
2
1 )2 − (X1 +X2Z1)S,

Y3 = ((Y1 − Y2Z
2
1 )(X1S −X3)− Y1SU)UZ1,

Z3 = (UZ1)2,

where S = (X1−X2Z1)2Z1 and U = X1−X2Z1. This is computed with the following operations

A = Z2
1 , E = X2 · Z1, G = Y2 ·A,H = D − E, I = 2(Y1 −G), II = I2, J = 2Z1 ·H

K = 4J ·H,X3 = 2II − (X1 + E) ·K,Z3 = J2

Y3 = ((J + I)2 − Z3 − II) · (X1 ·K −X3)− Y1 ·K2, Z3 = 2Z3

lT,P = I ·X2 − I · xQ + J · yQ − J · Y2

The total cost of the computation is ((2k/d) + 9)m + 5s.

3.3.3 Curves with equation y2 = x3 + b

These curves have twists of degree 6. Therefore, by using the equations for twists given in
Section 2.3.6 and Theorem 2.12, we derive that a point Q ∈ G2 may be written as

(xQ, yQ) = (x′Qν1/3, y′Qν
1/2),
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TABLE 3.1 Cost of one step in Miller’s algorithm for even embedding degree

Doubling Mixed addition
k = 2 k ≥ 4

J [14],[1] 3m + 10s + 1a + 1M + 1S (1+k)m+11s+1a+1M+1S (6+k)m+6s+1M
J ,y2 = x3 + b (2k/e+2)m+7s+1a+1M+1S (2k/e+2)m+7s+1a+1M+1S (2k/e+9)m+2s+1M
e = 2, 6 [6]

J , y2 = x3 + ax (2k/e+2)m+8s+1a+ 1M+1S (2k/e+2)m+8s+1a+ 1M+1S (2k/e+12)m+4s+1M
e = 2, 4 [6]

where xQ′ , yQ′ , ν ∈ Fqk/6 and X6− ν is an irreducible polynomial. The fastest existing formulae
on these curves use projective coordinates. Following [6], we compute 2T as:

X3 = 2X1Y1(Y 2
1 − 9bZ2

1 )
Y3 = Y 4

1 + 18bY 2
1 Z

2
1 − 27b2Z4

1

Z3 = 8Y 3
1 Z1

The line equation is

lT,T = 3X2
1 · xQ − 2Y1Z1 · yQ + 3bZ2

1 − Y 2
1 .

The computation is performed in the following order:

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = 3bC,E = (X1 + Y1)2 −A−B,

F = (Y1 + Z1)2 −B − C,G = 3D,X3 = E · (B −G),
Y3 = (B +G)2 − 12D2, Z3 = 4B · F,H = 3A, I = −F, J = D −B.

lT,T = H · xQ + I · yQ + J.

The total count for the above sequence of operations is (2k/d)m + 5s + 1db. In the mixed
addition step of T = (X1, Y1, Z1) and P = (X2, Y2, 1) is T + P = (X3, Y3, Z3) with

X3 = (X1 − Z1X2)(Z1(Y1 − Z1Y2)2 − c(X1 + Z1X2)(X − Z1X2)2),
Y3 = (Y1 − Z1Y2)(c(2X1 + Z1X2)(X1Z2 − Z1X2)2 − Z1(Y1 − Z1Y2)2)− cY1(X1Z2 − Z1X2)3,

Z3 = cZ1(X1 − Z1X2)3,

where c = 1/b. The line formula is given by

lT,P = (Y1 − Z1Y2) · (X2 − xQ)− (X1 − Z1X2) · Y2 + (X1 − Z1X2) · Z2yQ

The computation is performed using the following sequence of operations :

t1 = Z1 ·X2, t1 = X1 − t1, t2 = Z1 · Y2, t2 = Y2 − t2, g = c1 · t2 − t1 · Y2 + t1 · yQ
t3 = t21, t3 = c · t3, X3 = t3 ·X1, t3 = t1 · t3, t4 = t22

t4 = t4 · Z1, t4 = t3 + t4, t4 = t4 −X3, X3 = X3 − t4, t2 = t2 ·X3, Y3 = t3 · Y1

Y3 = t2 − Y3, X3 = t1 · t4, Z3 = Z1 · t3,

where c1 = X2 − xQ. The total cost is (2k/d + 9)m + 2s. In Table 3.1 we summarize all these
results.
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3.4 Appendix: the general form of the Weil and Tate pairing

The versions of the Tate and Weil pairing we gave required to evaluate a function on a point.
In this section we will give a generalised definition which requires to evaluate a function on a
divisor.

Furthermore, we have seen that during the execution of Miller’s algorithm, some intermediate
poles and zeroes are introduced. As we pointed out, this is not really a problem in practice, since
this situation only happens when computing a pairing between P and Q with Q a multiple of
P . As explained in Section 3.2.2, for the Tate pairing we can circumvent the problem by using
a random point R.

Another way to circumvent the problem is to define the (extended) evaluation of a function
on a point or a divisor even in the case when the supports are non disjoint. This allow us to
generalize Miller’s algorithm so that it always works and to give a more general definition of
the Weil and Tate pairing. From this more general definition, we can prove their bilinearity and
that they are non degenerate.

3.4.1 Evaluating functions on a divisor

If D =
∑
ni[Pi] is a divisor on E, we define the support supp(D) as the set {Pi | ni 6= 0}. By

abuse of langage we define the support of f as the support of div f , so the support of f is simply
the union of the zeroes and poles of f .

If the support of f and the support of D are disjoint, then one can define the evaluation of
f on D =

∑
niPi as

f(D) =
∏
i

f(Pi)ni . (3.12)

It is easy to check that we have (fg)(D) = f(D).g(D) and f(D1 +D2) = f(D1).f(D2).
One can extend this definition even when the supports are non disjoint by fixing once and for

all uniformisers tP for every points P ∈ E(K). Then one can define the extended evaluation of
f at P as ( f

t
ordP (f)
P

(P ), ordP (f)). We will often simply refer to f

t
ordP (f)
P

(P ) as the value of f at P

and to ordP (f) as the valuation (or the order) of this value. If P is not in the support of f then
the extended evaluation of f at P is simply (f(P ), 0). One can define a product on the extended
values by taking the product of the values and adding the valuations: (α, n).(β,m) = (αβ, n+m).
This definition of the product allows us to have the standard property:

(fg)(P ) = f(P ).g(P ).

By using Equation (3.12) one can define the extended evaluation of f at a divisor D =
∑
niPi

as f(D) =
∏
i f(P )ni where this time the product is on extended values. By the definition of

f(D) and the product on extended values we have (fg)(D) = f(D).g(D) and f(D1 + D2) =
f(D1).f(D2).

When D and f do not have disjoint supports, one needs to be careful that the extended
value f(D) depends on choice of uniformisers and is not intrinsic to the curve. For example if P
is a point in the support of f with order n, then changing the uniformiser tP at P by t′P = αtP
change the value by α−n (but the order stays the same). So in the following we fix once and for
all the following uniformisers for the elliptic curve:

• t0E = x/y;
• tP = x− xP , except when H(xP ) = 0;
• tP = y, when H(xP ) = 0 (so yP = 0).

A powerful tool used in computing evaluation of divisors is Weil’s reciprocity theorem.
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THEOREM 3.9 (Weil’s reciprocity theorem) Let f, g ∈ K(E). Then

f(div(g)) = (−1)
∑

P
ordP (f) ordP (g)

g(div(f)).

Expressing the above equation in terms of divisors (see Definition 3.1, we get the following refor-
mulation: Let D1 and D2 be two degree 0 divisors and define ε(D1, D2) = (−1)

∑
P

ordP (D1) ordP (D2).
If D1 and D2 are principal, then

fD1 (D2) = ε(D1, D2)fD2 (D1).

Proof. See [21, p. 44–46].

3.4.2 Miller’s algorithm for pairing computation

Let f ∈ k(E) be a rational function on E and D a divisor of degree 0. Then f(D) depends only
on div(f), not on f . Indeed, if g has the same divisor as f , there exists λ ∈ K∗ such that g = λf

so that g(D) = λdegDf(D) = f(D). One can see the divisor F = div f as an efficient way to
encode the rational function f . Recall that we note fF the normalised function with divisor F .

As we have seen in Section 3.2, all pairing computations involve the following computation:
given P 6= 0E a point of r-torsion on E, and Q 6= P, 0E a point of the elliptic curve, evaluate
fr,P (Q). We recall that fr,P is the normalised function with divisor r([P ]− [0E ]).

This computation is a particular case of the following more general framework: Let P 6= 0E
be a point of r-torsion on E, and Q 6= 0E a point of the elliptic curve. Let DP and DQ be two
divisors linearly equivalent to [P ]− [0E ] and [Q]− [0E ] respectively. Then evaluate the function
frDP on the divisor DQ.

The evaluation makes sense because r[P ] − r[0E ] is a principal divisor by Proposition 3.1,
so rDP is principal too. Taking DP = [P ]− [0E ] and DQ = [Q]− [0E ], we recover the previous
computation since by Definition 3.3, the evaluation of a function associated to r[P ] − r[0E ]
on [Q] − [0E ] is simply fr,P (Q). One has to take care here that the divisors r[P ] − r[0E ] and
[Q]−[0E ] do not have disjoint support, so the evaluations above are to be understood as extended
evaluations: if P 6= Q then the value fr,P (Q) has valuation −r, otherwise the value has valuation
r − r = 0.

We have seen in Section 3.1 how to use Miller’s algorithm to compute fr,P (Q). More generally,
given F and D two degree zero divisors, we give a general version of Miller’s algorithm which
allows to compute the value fF (D). The key principle behind this extended Miller’s algorithm
is to use the functions µP,Q introduced in Definition 3.2.

Whenever we have two points P and Q different from 0E in the support of F , we can
decompose F as F = [P ] + [Q] + F ′ and then use the function µP,Q to get F = [P ] + [Q] −
[P +Q]− [0E ] + [P +Q] + [0E ] + F ′ = div(µP,Q) + [P +Q] + [0E ] + F ′ = div(µP,Q) + F1 where
F1 = [P + Q] + [0E ] + F ′. This decomposition of F means that we just need to evaluate µP,Q
and F1 on D and then take the product. Since µP,Q is an explicit function, evaluating it on D
simply means evaluating it on each point in the support of D and then taking the product.

Now to evaluate F1 on D we proceed as we did for F and decompose F1 again. Each time
we decompose the divisor, we decrease the number of non zero points in the support (counted
with multiplicities). After a finite number of iterations, we find a divisor Fn of degree 0 which
has at most one non zero point in its support (counted with multiplicity). So Fn is of the form
[P ] − [0E ] and since F is principal, Fn is principal too and by Proposition 3.1 we have that
P + 0E = 0E , or in other words P = 0E and Fn = 0. Of course fFn = 1 and Fn(D) = 1.

So evaluating F on D decomposes to the evaluation of the functions µP,Q appearing in the
decomposition of F on the points in the support of D. We give explicit formulae in Lemma 3.4.
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LEMMA 3.4 (Evaluating µP,Q) Let P = (xP , yP ), Q = (xQ, yQ), and R = (xR, yR) be
points on E, with P , Q and P+Q all different from 0E. Then µP,Q = lP,Q

vP,Q
where lP,Q = y−αx−β

with α = yP−yQ
xP−xQ when P 6= Q and α = H′(xP )

2yP when P = Q, β = yP − αxP = yQ − αxQ and
vP,Q = x− xP+Q with xP+Q = α2 − xP − xQ.

The extended value of vP,Q(R) is given by the following cases (taking into account that
div(vP,Q) = [P +Q] + [−P −Q]− 2[0E ]):

• If R is different from P +Q, −P −Q or 0E, then R is not in the support of div vP,Q
and we have a value with valuation 0: vP,Q(R) = xR − xP+Q;

• If R = 0E then we have a value with valuation −2. By definition, since the uniformiser
at 0E is the function y/x:

vP,Q(0E) = x− xP+Q

(y/x)−2 (0E) = x2(x− xP+Q)
y2 (0E) = 1

because y2 = x3 + ax+ b;
• If R = P + Q or R = −P − Q but P + Q 6= −P − Q (or in other words P + Q is

not a point of two torsion), then we have a value with valuation 1. The uniformiser
is x− xR because H(xR) 6= 0 since R is not a point of 2-torsion, and the value is

vP,Q(R) = x− xP+Q

x− xR
(xR) = 1

because in this case xR = xP+Q;
• If R = P +Q and P +Q is a point of 2-torsion, then this time we have a value with

valuation 2. Since H(xR) = 0 the uniformiser is y, so we have

vP,Q(R) = x− xP+Q

y2 (xR) = 1
f ′(xP+Q) .

Indeed if we write H(x) = (x−xP+Q)g(x), then since y2 = H(x) we have x−xP+Q
y2 (xR) =

1
g(xP+Q) , and we compute H ′(x) = (x − xP+Q)g′(x) + g(x) so that H ′(xP+Q) =
g(xP+Q).

The extended value of lP,Q(R) is given by the following cases (taking into account that
div(lP,Q) = [P ] + [Q] + [−P −Q]− 3[0E ]):

• If R is different from P , Q, −P −Q or 0E, then R is not in the support of div lP,Q
and we have a simple value with valuation 0: lP,Q(R) = yR − αxR − β;

• If R = 0E then we have a value with valuation −3 and

lP,Q(0E) = y − αx− β
(x/y)−3 (0E) = (y − αx− β)x3

y3 (0E) = 1;

• If R = P or R = Q or R = −P −Q but lP,Q is not tangent to E at R, then we have
a value with valuation 1. If R is not a point of two torsion then the uniformiser is
tR = x− xR and the value is

lP,Q(R) = y − αx− β
x− xR

(R) = y − yR − α(x− xR)
x− xR

(R) = y − yR
x− xR

(R)−α = f ′(xR)
2yR

−α.

If R is a point of two torsion, then the uniformiser is tR = y and the value is

lP,Q(R) = y − αx− β
y

(R) = 1− αx− xR
y

(R) = 1.



3-24 Guide to Pairing-Based Cryptography

• If R = P , R = Q or R = −P − Q, and lP,Q is tangent to E at R but is not an
inflection point, then we have a value of valuation 2. In this case R cannot be a
point of two torsion so the uniformiser is tR = x − xR. To compute the value we
must compute the formal series corresponding to y in the completion of K[E] along
x − xR up to order 2: y = yR + α(x − xR) + α2(x − xR)2 + O(x − xR)3. We have
α2 = H′′(xR)/2−α2

2yR , so the value is

lP,Q(R) = y − yR − α(x− xR)
(x− xR)2 (R) = α2.

• Finally when R is an inflection point of H, so that R = P = Q = −P − Q (and in
particular is a point of 3-torsion), then we have a value with valuation 3. We compute
the formal series corresponding to y in in the completion of K[E] along x− xR up to
order 3: y = yR + α(x − xR) + 0(x − xR)2 + α3(x − xR)3 + O((x − xR)4). We have
α3 = 1

2yR and

lP,Q(R) = y − yR − α(x− xR)
(x− xR)3 (R) = α3.

Combining these values we can now compute the extended value of µP,Q(R) (taking into
account that div(µP,Q) = [P ] + [Q]− [P +Q]− [0E ]):

• When R is not equal to P , Q, P +Q, −P −Q or 0E then the valuation is 0 and we
have a simple value:

µP,Q(R) = yR − αxR − β
xR − xP+Q

. (3.13)

(If R = −P −Q and R is not in the support of div(µP,Q) then the valuation is also 0
but Equation (3.13) is not well defined so to compute the value we need to look at the
particular cases above);

• When R = 0E the valuation is −1 and we have

µP,Q(0E) = 1. (3.14)

Since the value is 1 we see that the function µP,Q is indeed normalised at 0E;
• For all the other cases we refer to the study of the special cases done for vP,Q and
lP,Q above.

Finally, when P = −Q (but P 6= 0E) so that P + Q = 0E, then µP,Q = x − xP and the
extended value of µP,Q at R is given by the same formulae as the study of vP,Q(R) above.

The second key insight into Miller’s algorithm is to speed up the decomposition algorithm
above by using a double-and-add algorithm. Indeed when P is a point on an elliptic curve, the
scalar multiplication P 7→ r.P is computed a lot faster when doing a double and add algorithm
than when doing a naive decomposition rP = P+P+· · ·+P : the complexity is O(log r) addition
rather than O(r). Proposition 3.2 and Algorithm 3.1 outline a similar strategy to evaluate the
function fF where F is the divisor r[P ]− r[0E ]. More generally, by decomposing a divisor F as
F = F1 + 2F2 + 4F3 + · · ·+ 2nFn, one can derive a general double and add algorithm for divisor
evaluation.

3.4.3 The general definition of the Weil pairing

THEOREM 3.10 Let E be an elliptic curve, r a prime number and P and Q two points of
r-torsion on E. Let DP be a divisor linearly equivalent to [P ]− [0E ] and DQ be a divisor linearly
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equivalent to [Q]− [0E ]. Then

eW,r(P,Q) = ε(DP , DQ)r frDP (DQ)
frDQ(DP ) (3.15)

is well defined, does not depend on the choice of uniformisers nor on the choice of DP and DQ

(ε(DP , DQ) = ±1 is defined in Theorem 3.9 and has value 1 if DP and DQ have disjoint support).
Furthermore the application E[r]×E[r]→ µr : (P,Q) 7→ eW,r(P,Q) is a pairing, called the Weil
pairing. The pairing eW,r is an alternate pairing, which means that eW,r(P,Q) = eW,r(Q,P )−1.

We recover Theorem 3.1 by taking DP = [P ] − [0E ] and DQ = [Q] − [0E ]. Indeed by
Proposition 3.2, we get

eW,r = (−1)r fr,P (Q)
fr,Q(P ) .

Proof. The fact that eW,r is alternate is immediate from Equation (3.15).
We have seen in Section 3.4.2 that the divisor r[P ] − r[0E ] is principal. We deduce that if

DP is linearly equivalent to [P ]− [0E ] then rDP is also principal hence Equation (3.15) is well
defined.

Let DP,1 and DP,2 be two divisors linearly equivalent to [P ] − [0E ]. Then there exists a
rational function g ∈ k(E) such that DP,1 = DP,2 + div g. Then

ε(DP1 , DQ)r
frDP,1 (DQ)
frDQ(DP,1) = ε(DP1 , DQ)r

frDP,2 (DQ) · g(Dq)r

frDQ(DP,2) · frDQ(div g) . (3.16)

But by Weil’s reciprocity theorem (Theorem 3.9), we have

frDQ(div g) = ε(div g, rDQ)g(rDQ) = ε(div g, rDQ)g(DQ)r.

Since ε(DP1 , DQ)rε(div g, rDQ) = ε(DP1 , DQ)r, the Equation (3.16) simplifies to

ε(DP1 , DQ)r
frDP,1 (DQ)
frDQ(DP,1) = ε(DP2 , DQ)r

frDP,2 (DQ)
frDQ(DP,2) ,

which shows that eW,r(P,Q) does not depend on the linear equivalence class of DP . Likewise
by (anti-)symmetry, it does not depend on the linear equivalence class of DQ.

To show that it does not depend on the choice of uniformisers, we can as well take DP =
[P ] − [0E ] and DQ = [Q] − [0E ] (so that ε(DP , DQ) = −1). Then a function associated to
rDP is the function frDP = fr,P defined in Definition 3.4. If R is a point on the elliptic curve,
the evaluation fr,P (R) does not depend on the choice of uniformisers, except when R is in the
support of div fr,P (i.e. if R = P or R = 0E).

Going back to the definition of eW,r(P,Q) as

eW,r(P,Q) = (−1)r fr,P ([Q]− [0E ])
fr,Q([P ]− [0E ]) = (−1)r

fr([P ]−[0E ])([Q]− [0E ])
fr([Q]−[0E ])([P ]− [0E ])

we see that the result does not depend on the uniformisers, except possibly when we change the
uniformiser for 0E , and (when P = Q) when we change the uniformiser for P . But if we replace
the uniformiser x/y for 0E by αx/y, then both the numerator and denominator are multiplied
by αr, hence the result stays the same. Likewise when P = Q and we change the uniformiser
at P (actually from the definition it is obvious that eW,r(P, P ) = 1 whatever the uniformiser at
P ).

We are left with showing bilinearity and non-degeneracy. For that it will be convenient to
give yet another form of the Weil pairing, which is not convenient for computations but gives
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easier proofs. If D = [R] is a divisor, we define r∗D as r∗D =
∑

S∈E(K),rS=R[S]. This extends
by linearity to define a divisor r∗D for a general divisor D. If D is of degree 0 then r∗D is also
of degree 0. Furthermore if D = div f , then r∗D = div f ◦ [r].

If DP = [P ]− [0E ], then using Proposition 3.1 one can check that r∗DP is a principal divisor.
Let gP be a function corresponding to r∗DP . By definition of gP , if P0 is a point in E such that
P = rP0, then div gP =

∑
T∈E[r][P0 +T ]− [T ]. Now the function x 7→ gP (x+Q) has for divisor

div gP (x+Q) =
∑

T∈E[r][P0 +T−Q]− [T−Q]. But since Q ∈ E[r], then div gP (x+Q) = div gP ,
hence both functions differ by a constant. We claim that this constant is eW,r(P,Q), hence:

eW,r(P,Q) = gP (x+Q)/gP (x) (3.17)

(whenever the right hand side is well defined).
Fix DQ = [Q] − [0E ], let Q0 be such that Q = rQ0, gQ be a function with divisor r∗DQ

(and normalised at 0E), and define hQ to be the function normalised at 0E with divisor (r −
1)[Q0] + [Q0−Q]− r[0E ], which exists by Proposition 3.1. Let HQ =

∏
T∈E[r] hQ(x+ T ). Then

HQ = grQ = fQ ◦ r. Indeed they all have associated divisor
∑

T∈E[r] r[Q0 + T ] − r[T ] and are
normalised. Now by Theorem 3.9, we have that hQ(div gP ) = (−1)rgP (div hQ), which gives the
equation ∏

T∈E[r] hQ(P0 + T )∏
T∈E[r] hQ(T ) = (−1)rgrP ([Q0]− [0E ])gP (Q0 −Q)

gP (Q0) .

Combining with grQ = HQ we find that

grQ([P0]− [0E ]) = HQ([P0]− [0E ]) = (−1)rgrP ([Q0]− [0E ])gP (Q0 −Q)
gP (Q0) .

Since grQ = fQ ◦r, we have that fr,Q(DP ) = grQ([P0]− [0E ]), and similarly fr,P (DQ) = grP ([Q0]−
[0E ]). Putting everything together, we compute

eW,r(P,Q) = (−1)r frDP (DQ)
frDQ(DP ) = (−1)r fr,P (DQ)

fr,Q(DP ) = (−1)r g
r
P ([Q0]− [0E ])
grQ([P0]− [0E ]) = gP (Q0)

gP (Q0 −Q) .

which proves Equation (3.17) (with x = Q0 −Q).
Using this reformulation, we compute

eW,r(P,Q1+Q2) = gP (x+Q1 +Q2)
gP (x) = gP (x+Q1 +Q2)

gP (x+Q2)
gP (x+Q2)
gP (x) = eW,r(P,Q1)eW,r(P,Q2)

so eW,r is bilinear on the right. Now by (anti-)symmetry, using Equation 3.15, eW,r is also
bilinear on the left: e(P1 +P2, Q) = e(P1, Q)e(P2, Q), so it is indeed bilinear. Furthermore using
bilinearity eW,r(P,Q)r = eW,r(P, 0E) = 1 so eW,r(P,Q) is a r-root of unity.

We now show non-degeneracy, following [22, Proposition 8.1]. Once more by symmetry we
just need non-degeneracy on the left, that is given P 6= 0E we need to show that there exits
a Q such that eW,r(P,Q) 6= 1. If this were not the case then by Equation 3.17 we would have
gP (x+Q) = gP (x) for all Q ∈ E[r]. So gP would be a function invariant by translation by a point
of r-torsion; this means that there would exists a rational function g on the curve E such that
gP = g ◦ [r] by [22, Theorem 4.10.b]. Then div gP = [r]∗ div g, but by definition div gP = [r]∗DP .
So div g = DP = [P ]− [0E ], but DP is not principal by Proposition 3.1, so this is absurd.

3.4.4 The general definition of the Tate pairing

THEOREM 3.11 Let E/Fq be an elliptic curve, r a prime number dividing #E(Fq), P ∈
E[r](Fqk) a point of r-torsion defined over Fqk and Q ∈ E(Fqk) a point of the elliptic curve
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defined over Fqk . Let DP be a divisor linearly equivalent to [P ] − [0E ] and DQ be a divisor
linearly equivalent to [Q]− [0E ]. Then

eT,r(P,Q) = (frDP (DQ))
qk−1
r (3.18)

is well defined, does not depend on the choice of uniformisers nor on the choice of DP and DQ.
Furthermore the application E[r](Fqk) × E(Fqk)/rE(Fqk) → µr : (P,Q) 7→ eT,r(P,Q) is a

pairing, called the Tate pairing.

Remark 3.2 There are two versions of the Tate pairing: the first one is to define the pairing
as simply frDP (DQ) and see the Tate pairing as a pairing with values in F∗

qk
/F∗,r

qk
, meaning

that we identify two values differing by a r-power. The second one, which we have used in
Equation 3.18 is to use the bijection F∗

qk
/F∗,r

qk
→ µr : γ 7→ γ

qk−1
r . Indeed if γ = γ′αr, then

(αr)
qk−1
r = αq

k−1 = 1 so γ
qk−1
r = (γ′)

qk−1
r . We call the exponentiation by qk−1

r the final

exponentiation, and the value eT,r(P,Q) = (frDP (DQ))
qk−1
r the reduced Tate pairing.

There is an important difference to keep in mind between the Weil pairing and the Tate
pairing. The Weil pairing is geometric: the value of eW,r(P,Q) does not depend on the field
of definition we are working on. Whereas the Tate pairing is arithmetic. For instance if P ∈
E[r](Fqk) andQ ∈ E(Fqk), but we look at the Tate pairing over Fqrk then the final exponentiation
is to the power of q

rk−1
r so that eT,r,F

qrk
(P,Q) = 1 (the Tate pairing stays non-degenerate over

Fqrk but one needs to take Q in E(Fqrk) to get a non trivial pairing with P for the Tate pairing
over Fqrk).

Proof. We first show that the value does not depend on the linear equivalence class of DP and
DQ. Unlike the Weil pairing where P and Q played symmetric roles, for the Tate pairing we
have to handle the left argument and the right argument separately.

Let DP,2 = DP,1+div g where g is a rational function. Let frDP,1 be a function corresponding
to the principal divisor rDP,1 , then a function corresponding to rDP,2 is frDP,1gr. We compute

frDP,2 (DQ)
qk−1
r = frDP,1 (DQ)

qk−1
r · g(DQ)r

qk−1
r = frDP,1 (DQ)

qk−1
r .

So we can as well take DP = r[P ]− r[0E ].
Likewise, if DQ,2 = DQ,1 + div h, then by Theorem 3.9, we have that frDP (div h) =

εh(div frDP ) = εh(r[P ] − r[0E ]) = εh([P ] − [0E ])r where ε = ε(div f, div h). Since ε = ±1,
ε
qk−1
r = 1 so that we compute

frDP (DQ,2)
qk−1
r = frDP (DQ,1)

qk−1
r · frDP (div h)

qk−1
r = frDP (DQ,1)

qk−1
r · h([P ]− [0E ])r

qk−1
r

= frDP (DQ,1)
qk−1
r .

To show that eT,r does not depend on the choice of uniformisers, we can take DP = [P ]−[0E ],
DQ = [Q] − [0E ], and by Proposition 3.2 choose frDP = fr,P . Since div fr,P = r[P ] − r[0E ]
changing uniformisers does not affect fr,P (DQ) except at 0E and P (when P = Q). But if we
replace the uniformiser x/y at 0E by γx/y, then the value fr,P (DQ) is multiplied by γr, which
is then killed by the final exponentiation. Likewise for the uniformiser at P .

It remains to show that eT,r is a pairing. For simplicity here we assume that E(Fqk) contains
all of E[r]. For the general case, we refer to [11, 20, 5].

For the bilinearity and the non-degeneracy, as for the Weil pairing it will be more convenient
to give an alternative definition of the Tate pairing. Let P and Q be as in the theorem. Let
Q0 ∈ E(Fq) be a point such that Q = rQ0. Let π be the Frobenius endomorphism of Fq, which
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acts on the points of E. Then πk is the Frobenius endomorphism of Fqk . LetQ1 = πkQ0−Q0. We
compute rQ1 = πkrQ0−rQ0 = πkQ−Q = 0E (where we used the fact that scalar multiplication
commutes with the Frobenius, and that Q is defined over Fqk , so that πkQ = Q). So Q1 is a
point of r-torsion. Furthermore, it does not depend on Q0: if we replace Q0 by Q0 + T where
T ∈ E[r], then we compute (πk − 1)(Q0 + T ) = Q1 + (πk − 1)(T ) = Q1 because T ∈ E(Fqk). So
the application πk−1

r : E(Fqk)→ E[r], Q 7→ Q1 is well defined, and it is easy to check that it is
an endomorphism of EF

qk
. We have

eT,r(P,Q) = eW,r(P,
πk − 1
r

Q). (3.19)

Equation (3.19) shows a strong link between the Weil and Tate pairing. To show Equa-
tion (3.19), we use Equation (3.17) to get eW,r(P, πkQ0 − Q0) = gP (πkQ0)

gP (Q0) . Now since P is
defined over Fqk , gP is in Fqk(E) so πk commutes with gP . We thus get

gP (πkQ0)
gP (Q0) = gP (Q0)q

k−1 = (grP (Q0))
qk−1
r = fr,P (Q)

qk−1
r ,

where in the last equation we have used that grP = fr,P ◦ [r]. This shows the equivalence between
the two definitions of the Tate pairing.

Using Equation (3.19) we see that the Tate pairing is bilinear. For the non-degeneracy, we
have to show that πk−1

r : E(Fqk)→ E[r] is surjective. Indeed, because the Weil pairing is non-
degenerate, Equation (3.19) will then show that the Tate pairing is non-degenerate too. The
kernel of π

k−1
r restricted to E(Fqk) is rE(Fqk), so the image is isomorphic to E(Fqk)/rE(Fqk).

Now E(Fqk) is a finite abelian group of the form Z/aZ⊕Z/bZ with a | b, and since E(Fqk) ⊃ E[r],
we know that r | a and r | b. We deduce that E(Fqk)/rE(Fqk) is isomorphic to Z/rZ⊕Z/rZ, in
particular it has cardinal r2 so the application is indeed surjective.

Taking DP = [P ]− [0E ] and DQ = [Q+R]− [R] where R is any point in E(Fqk) (this divisor
is equivalent to [Q]− [0E ] by Proposition 3.1), we recover the formula from Theorem 3.2:

eT,r(P,Q) =
(
fr,P (Q+R)
fr,P (R)

) qk−1
r

.

If we take R = 0E , we find
eT,r(P,Q) = fr,P (Q)

qk−1
r .

Here Q may be a pole or zero of fr,P , so we need to use the general Miller’s algorithm to compute
the extended evaluation.

Restriction of the Tate pairing to subgroups
We give a proof of Proposition 3.4 that the restriction of the Tate pairing to G1 ×G2 is non

degenerate:

Proof. Recall that since k > 1 and the assumptions in Lemma 3.2 hold, G1 is the subgroup of E[r]
of eigenvectors for the eigenvalue 1 while G2 corresponds to eigenvectors for the eigenvalue q 6= 1
mod r. We have already proved in Proposition 3.4 that the restriction of the Weil pairing to
G1 ×G2 or to G2 ×G1 is non-degenerate.

Since the endomorphism πk−1
r commutes with the Frobenius π, it stabilizes G1 and G2. The

alternative definition of the Tate pairing given by Equation (3.19) shows that the Tate pairing
restricted to G1 ×G2 or to G2 ×G1 is also non degenerate.

Likewise, the Tate pairing restricted to G1 × G1 or to G2 × G2 is degenerate, because the
Weil pairing is degenerate. The same reasoning as in the proof for the Weil pairing shows that
the Tate pairing on G1 ×G3 (and the other groups) is non degenerate.
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Remark 3.3 By the proof, eT,r(P, P ) = 1 when P ∈ G1 or P ∈ G2. However unlike the
Weil pairing, we can have eT,r(P, P ) 6= 1 when P ∈ E[r](Fqk) but P 6∈ G1 and P 6∈ G2. See for
instance [16] where the authors study the link between the Tate self pairing and the structure
of the isogeny graph.

The case of embedding degree 1
Let E be an elliptic curve defined over Fq such that r | #E(Fq). By Lemma 3.2 if the

embedding degree k is greater than 1, then E[r] ⊂ E(Fqk) and we can apply the proof of
Theorem 3.11.

If k = 1, then E(Fq) may not contain the full r-torsion so we can’t apply the elementary
proof we have given. But even in this case one can still show using Galois cohomology that
both Theorem 3.11 and the alternative definition of the Tate pairing given by Equation 3.19
stay true. In this case πk−1

r is not a well defined endomorphism, but represents a cocycle in a
Galois cohomology class such that Equation 3.19 stays well defined over Fq.

Moreover when E(Fq) does not contain points of r2-torsion, then by a similar argument as
in Proposition 3.4, we can show that eT,r : E[r](Fq)× E[r](Fq) → µr ⊂ F∗q is still a pairing. In
particular, when the rational r-torsion is cyclic, if P ∈ E[r](Fq) then eT,r(P, P ) 6= 1.

3.4.5 The optimal Ate and twisted optimal Ate pairing

In order to proof the formulae for the Ate and twisted Ate we need the following lemma.

LEMMA 3.5 Let E be an elliptic curve defined over a finite field Fq

• For any point P on the elliptic curve E

fab,P = f ba,P · fb,aP . (3.20)

• Let φ an endomorphism of E of degree d, with trivial kernel. Then for any integer λ

fλ,φ(P ) = fdλ,P .

Proof. The first equation may be proved easily by writing down the divisors for the functions
involved. For the second item, see [15].

We prove here Theorem 3.4.

Proof. Let l = φ(k). It is easy to see that:

fλ,Q(P ) =
l−1∏
i=0

fciqi,Q(P )
l−1∏
i=0

lsi+1Q,ciqiQ(P )
vsiQ(P ) .

By Equation 3.20 and Lemma 3.5, we compute fciqi,Q(P ) as

fciqi,Q(P ) = f ci
qi,Q

fci,qiQ(P ) = f ci
qi,Q

(P )fq
i

ci,Q
(P ). (3.21)

As a consequence, we obtain that

eT,r(Q,P )m =
l∏
i=0

(
f ci
qi,Q

(P )
)(qk−1)/r

· a[c0,...,cl](Q,P ).
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Since the lefthand side and the factor in brackets are pairings, we conclude that a[c0,...,cl] is a
bilinear map. By Theorem 3.3, we have that the left hand side is

eT,r(Q,P )m = fq,Q(P )mkq
k−1((qk−1)/r)−1

.

The product on the right hand side right writes as

l∏
i=0

(
f ci
qi,Q

(P )
)

= fq,Q(P )
∑l

i=0
iciq

i−1
.

We conclude that if mkqk−1((qk − 1)/r)−1 .
∑l

i=0 iciq
i−1, then a[c0,...,cl] is a non-degenerate

map. This concludes the proof for the optimal ate pairing.

For the twisted optimal Ate pairing, the proof of Theorem 3.8 is similar to the one above by
inverting the role of P and Q. We give it below.

Proof. Note that by Theorem 3.5, we have that

G2 = Ker(ξd ◦ πqe − Id).

It follows easily that

G1 = Ker(ξd ◦ πqe − qe Id).

As a consequence, in (3.21) we compute fciqie,P (Q) by applying Lemma 3.5 for the endomorphism
ξ ◦ πqe . The rest of the computation follows naturally.
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