
Efficient algorithms for abelian varieties
and their moduli spaces

Algorithmes efficaces pour les variétés abéliennes et leurs espaces de module

Habilitation à Diriger des Recherches

(spécialité mathématiques pures)

Université de Bordeaux

présentée et soutenue publiquement le 15 Juin 2021 par

Damien Robert

Composition du jury:

Andreas Enge DR Inria Bordeaux
Bas Edixhoven Prof. University of Leiden (rapporteur)
Pierrick Gaudry DR CNRS, Loria (rapporteur)
David Kohel Prof. Aix-Marseille Université (président)
Christophe Ritzenthaler Prof. Université Rennes 1
John Voight Prof. Dartmouth College (rapporteur)

Ecole Doctorale n°39 Mathématiques et informatique,
Institut Mathématiques de Bordeaux, Inria Bordeaux Sud-Ouest.

i

Damien Robert: Efficient algorithms for abelian varieties and their moduli spaces, HDR ©15 June 2021
Last modification: 22 September 2022 [Current version: March 8, 2023]

Efficient algorithms for abelian varieties
and their moduli spaces
Habilitation à Diriger des Recherches

Damien Robert

15 June 2021

To my wife Blandine

To my children: Ange†, Olympe, Alphonse

†04 September 2016

CONTENTS

1 introduction 1
1.1 Secret sharing and cryptography 1
1.2 Purpose of this document and a brief description of my research 3

1.2.1 Overview 3
1.2.2 Algorithms for abelian varieties 4
1.2.3 Algorithms for moduli spaces 5
1.2.4 The yin and yang of arithmetic, pairings, and isogenies 6
1.2.5 An ode to algebraic geometry 6

1.3 A chronology 7
1.4 Some useless trivia 11
1.5 Outline 11
1.6 Perspectives 12
1.7 Updates 13

i Algorithms for abelian varieties 15
2 arithmetic of abelian varieties 17

2.1 Introduction 17
2.2 Abelian varieties over ℂ 19
2.3 Coordinates and polarisations 20
2.4 Algebraic theta functions 21
2.5 Descent theory and Mumford’s isogeny formula 22

2.5.1 Descent theory 22
2.5.2 The isogeny formula for 𝜃-functions 24

2.6 Symmetry and symmetric theta structures 25
2.6.1 Descending symmetric line bundles 26
2.6.2 Symmetric theta structures 27
2.6.3 Symmetry and isogenies 28

2.7 Addition formula and equations for abelian varieties 30
2.8 Riemann relations and the differential addition 33

2.8.1 Unicity of the differential addition 33
2.8.2 Using the differential addition 35
2.8.3 Analytic interpretation of the differential addition 36
2.8.4 Applications of the differential addition 37

2.9 Affine lifts and differential addition law in other models 39
2.9.1 Functions constructed from an explicit version of the theorem of the square 39
2.9.2 Computing a theta structure 40
2.9.3 Trivialisations of the line bundle 41

2.10 Changing level and application to isogenies 42
2.10.1 Raising level via an isogeny 42
2.10.2 Raising level on the same variety 44
2.10.3 Descending level 47

2.11 Rationality 47
2.12 Arithmetic on Kummer varieties 49

2.12.1 Arithmetic of Kummer groups 49
2.12.2 Riemann relations in the theta model of level 2 50
2.12.3 From level 2 to level 4 52

2.13 Conclusion and perspectives 53
3 computing pairings in abelian varieties 57

3.1 Introduction 57
3.2 Pairings 57

3.2.1 The Weil and Tate pairings 57
3.2.2 Variants of the Tate pairing and twists 58

v

Contents

3.3 Miller’s algorithm 59
3.3.1 Overview of Miller’s algorithm in abelian varieties 59
3.3.2 Miller’s algorithm in the theta model 59

3.4 Pairings on the Kummer variety 62
3.5 The Weil and Tate pairings for elliptic curves 63
3.6 Conclusion and perspectives 66

4 isogenies 67
4.1 Introduction 67
4.2 A generic framework for isogenies 67
4.3 Descending line bundles on 𝐴 to line bundles on 𝐵 69

4.3.1 Constructing other line bundles 69
4.3.2 The algorithm 71

4.4 Descending line bundles on 𝐵 via the descent formula 73
4.4.1 The contragredient isogeny 73
4.4.2 Finding sections on the pullback 73
4.4.3 Descent formula 74
4.4.4 Isogenies from equations of the kernel 76
4.4.5 Summary 76

4.5 Extending the isogeny computation to isogenies induced by real multiplication 77
4.6 Modular interpretation of the isogeny formula 78
4.7 Isogenies from differential equations 79

4.7.1 Elliptic curves 79
4.7.2 Hyperelliptic curves of genus 2 80
4.7.3 Compressing isogenies 82

4.8 Conclusion and perspectives 83

i i Algorithms for modular spaces 85
5 modular correspondances 87

5.1 Introduction 87
5.2 A general modular correspondance in the theta model 88

5.2.1 Defining the modular correspondance 88
5.2.2 Fibers of the modular correspondance 90
5.2.3 Automorphisms of the modular correspondance 92

5.3 Modular polynomials 93
5.3.1 Definition of the modular polynomials 93
5.3.2 Computing Siegel modular polynomials in dimension 2 94
5.3.3 Computing Hilbert modular polynomials in dimension 2 95
5.3.4 Evaluating modular functions and period matrices 96
5.3.5 An evaluation-interpolation approach for covers and modular polynomials 98
5.3.6 Denominators of the modular polynomials 99
5.3.7 Size of the modular polynomials 102
5.3.8 Evaluating modular polynomials 103

5.4 Applications of modular polynomials to isogenies between abelian varieties 110
5.4.1 Elkies’ method for elliptic curves 110
5.4.2 Adapting Elkies’ method in higher dimension 112
5.4.3 Lifting isogenies 114
5.4.4 Elkie’s method for abelian surfaces 114

5.5 Applications to point counting for abelian surfaces 116
5.5.1 Complexity of Schoof ’s algorithm for abelian surfaces in the Siegel case 116
5.5.2 Complexity of a SEA algorithm for abelian surfaces in the Siegel case 117
5.5.3 Complexity of Schoof ’s algorithm for abelian surfaces in the Hilbert case 118
5.5.4 Complexity of a SEA algorithm for abelian surfaces in the Hilbert case 118
5.5.5 Complexity of a Schoof-Pila and SEA like algorithm in higher dimension 119

5.6 Applications to exploring isogeny graphs 121
5.6.1 Isogeny graphs over a finite field via modular polynomials 121
5.6.2 Isogeny graphs over a finite field via explicit isogeny computations 122

vi

Contents

5.6.3 Type of ℓ-isogenies for abelian surfaces 123
5.6.4 The structure of the ℓ-isogeny graph of ordinary abelian surfaces 124
5.6.5 The structure of isogeny graphs of products of elliptic curves 125

5.7 Conclusion and perspectives 128
6 canonical lifts 131

6.1 Introduction 131
6.2 Canonical lifts and point counting 131

6.2.1 Canonical lifts 131
6.2.2 Using lifts for point counting 132
6.2.3 Computing a canonical lift of an elliptic curve 133
6.2.4 Lifting the kernel of the Verschiebung 134
6.2.5 Computing the isogeny 136
6.2.6 Taking the norm 136

6.3 Canonical lifts for abelian varieties 136
6.4 Computing the action on tangent space without lifting isogenies (Revenge of the Sith) 139
6.5 Computing the action on tangent space via lifting the isogeny (A New Hope) 140

6.5.1 Isogeny induced by the modular correspondance 140
6.5.2 Recovering the matrix on tangent space over the Kummer varieties 141
6.5.3 Lifting the kernel 141

6.6 Computing the action on tangent space without lifting isogeny (The Empire Strikes Back) 142
6.7 Conclusion and perspectives 144

7 class polynomials 145
7.1 Introduction 145
7.2 An overview of class polynomial computations 145

7.2.1 The main theorem of complex multiplication 145
7.2.2 Strategies to compute the Shimura class polynomial 146

7.3 Enumerating abelian varieties with CM over a finite field 146
7.4 Using 𝑝-adic lifts to compute the class polynomials 148
7.5 Conclusion and perspectives 149

bibliography 151

vii

THANKS

I would like to thank the reviewers: Bas Edixhoven, Pierrick Gaudry and John Voight who did an amazing job in
reviewing this hdr. I apologize for the font size, apparently the text can be a bit hard to read! I would also like to
thank the rest of the jury: Andreas Enge, David Kohel and Christophe Ritzenthaler for accepting to participate.

On the professional side, I think Andreas Enge and all the LFANT team deserve special thanks for the welcoming
atmosphere created in Bordeaux. I enjoy our coffee/tea break very much. I would like to thank my coauthors, and
especially David Lubicz whose influence on my scientific career has been considerable. I would also like to thank my
students who taught me a lot (hopefully as much as I was able to teach them!) A particular thought for Guillaume
Hanrot, supervising students made me appreciate even more his supervision for my PhD thesis. Last but not least, I
would like to thank my colleagues, many of whom are friends, for the nice atmosphere in the conferences or our
scientific discussions. There are too many to list them all, lest I forget some! This includes my colleagues from the
agregation juries, this was a wonderful experience, even though I don’t have time anymore to participate for now.

On the personal side, I would also like to thankmy esteemed colleague and friendGaetan Bisson for his invitations
and for initiating me to the wonders of scuba diving!

Finally my wife Blandine deserves special thanks. I promised her this hdr would not take long to write, but I was
very very wrong. I planned to finish way in advance the birth of our son Alphonse, alas I underestimated the task
ahead and did not manage it. This is my excuse for the many typographical errors still remaining, after the birth of
Alphonse my corrections were not as thorough as I would have liked. For her patience she deserves a lot of praise.

Finally this hdr is dedicated to my children, whom I love very much.

ix

1 I N TRODUCT ION

contents
1.1 Secret sharing and cryptography 1
1.2 Purpose of this document and a brief description of my research 3

1.2.1 Overview 3
1.2.2 Algorithms for abelian varieties 4
1.2.3 Algorithms for moduli spaces 5
1.2.4 The yin and yang of arithmetic, pairings, and isogenies 6
1.2.5 An ode to algebraic geometry 6

1.3 A chronology 7
1.4 Some useless trivia 11
1.5 Outline 11
1.6 Perspectives 12
1.7 Updates 13

1.1 secret sharing and cryptography

When giving expository introductions to cryptography, I found that one of the best way to illustrate public key
cryptography is to give the example of secret sharing between Alice and Bob across a public channel. Unsurprisingly,
this was the first example of public key cryptography by Diffie and Hellman [DH76]. In my expositions, I use
examples coming from paths in “commutative graphs” rather than group exponentiation, this is more visual.

Formalising this a bit, Alice has a secret 𝑠𝐴 and publishes some information 𝑝𝐴, Bob has a secret 𝑠𝐵 and publishes
𝑝𝐵, and there exists a function 𝐷𝐻 such that 𝐷𝐻(𝑠𝐴, 𝑝𝐵) = 𝐷𝐻(𝑠𝐵, 𝑝𝐴) (and DH can be computed quickly) but
Eve cannot recover this common secret (in reasonable time) knowing only 𝑝𝐴, 𝑝𝐵. Of course this is a bit too abstract,
so to give concrete instances we can consider a category ℭ with pushouts. Alice’s secret is an arrow: 𝑎 ∶ 𝑂 → 𝐴,
Bob’s secret is an arrow 𝑏 ∶ 𝑂 → 𝐵, and the common secret is the pushout 𝐶:

𝑂 𝐴

𝐵 𝐶.

𝑎

𝑏

The question is whether Alice and Bob can publish enough informations so that the other can compute the pushout
without Eve being able to.

Example 1.1.1. • If 𝐺 is a commutative group acting on a set 𝑋1, we can construct the action groupoid where
maps are of the form 𝑥 → 𝑔 ⋅ 𝑥. Alice’s secret is 𝑔1 and she publishes only the codomain 𝑔1 ⋅ 𝑥. Likewise Bob’s
secret is 𝑔2, and the shared secret is 𝑔2𝑔1 ⋅ 𝑥, which Bob can compute from his secret 𝑔2 and Alice’s public
𝑔1 ⋅ 𝑥. (The pushout of 𝑥 → 𝑔1𝑥 and 𝑥 → 𝑔2𝑥 is indeed 𝑥 → 𝑔1𝑔2𝑥 if Stab(𝑥) is trivial.)
Typically in this sort of situation, the action 𝑔 ⋅ 𝑥 is computed for a “large” 𝑔, via a decomposition 𝑔 = ∏ 𝑠𝑖
where 𝑠𝑖 are “small” elements whose action can be computed quickly.
From the categorical point of view, this amount to constructing the pushout via the diagram:

1Since a group action is an algebra for the action monad 𝑋 → 𝐺 × 𝑋, where the monad 𝐺 × 𝐺 × 𝑋 → 𝐺 × 𝑋 is given by the group
law, we could try more generally to work with a monoidal monad on a (symmetric) monoidal category, and use the tensor product on its
Eilenberg–Moore algebras. This tensor product exists under wide conditions [Sea13]. But I do not know of any cryptographic application yet!

1

1 Introduction

𝑂 𝐴

𝐵 𝐶

𝑠1

𝑡1

𝑠2 𝑠𝑘

𝑡2

If 𝐺 acts freely on 𝑋, the resulting groupoid is a graph, and the key exchange simply amount to following
paths in the graph labelled by the “small” arrows 𝑠𝑖.

Since Eve can construct 𝑔3𝑔1 ⋅𝑥 from her own 𝑔3, she can easily construct instances of the hidden congruence
problem where the hidden congruence subgroup is given by 𝑔1 Stab(𝑥).

If the action is free, this becomes an instance of the hidden shift problem. If 𝑋 = 𝐺/𝐻, this becomes an
instance of the hidden subgroup problem (for Stab(1𝐺)). We refer to [VHI06] for more details on these
problems.

We recall that the hidden subgroup problem can be solved in polynomial time with a quantum computer
for a commutative finite group, and the hidden shift problem also if the group 𝐺 is cyclic (finite). This is an
instance of Shor’s period finding algorithm [Sho94]. However the hidden shift problem for a commutative
(non cyclic) abelian group is only subexponential, by reducing to the hidden subgroup problem on the
Dihedral group [Kup05].

• Diffie-Helmman’s original secret sharing involves the discrete logarithmproblemon a cyclic group𝐺 (typically
of prime order 𝑝). This can be solved via the hidden subgroup problem on (ℤ/#𝐺ℤ)2, so [Sho94] gives a
polynomial time quantum algorithm which breaks the discrete logarithm problem.

We may also reformulate Diffie-Hellman’s as an instance of a group action where (ℤ/𝑝ℤ)∗ acts via 𝑛 ⋅ 𝑔 = 𝑔𝑛

[De 17, § 14.1].

• Another example is given by the elliptic curves with complex multiplication by 𝒪𝐾, a maximal order in an
imaginary quadratic field 𝐾. By the theorems of complex multiplication, this set is a torsor (ie a principal
homogeneous space) under Cl(𝒪𝐾). This example was introduced by Couveignes in [Cou06] and developed
by Rostovtsev and Stolbunov in [RS06; Sto10].

There has been a lot of renewed interest in this protocol following practical improvements in [DKS18;
CLM+18].

• In the category of abelian varieties and isogenies, the pushout of 𝑓 ∶ 𝐴 → 𝐴/𝐾𝐴 and 𝑔 ∶ 𝐴 → 𝐴/𝐾𝐵 is given
by ℎ ∶ 𝐴 → 𝐴/(𝐾𝐴 + 𝐾𝐵). Indeed, if 𝑢 ∶ 𝐴 → 𝐶 factors through 𝐴/𝐾𝐴 and 𝐴/𝐾𝐵, then Ker𝑢 contains
both 𝐾𝐴 and 𝐾𝐵. If we restrict to principally polarised abelian varieties and ℓ-isogenies, we may localize the
endomorphisms [ℓ] to get a groupoid.

Modern cryptographic proposals use isogeny graphs (ie the skeleton of the isogeny category above) of
supersingular elliptic curves. It is well known that this graph is an expander graph, so uniform mixing occurs
rapidly after a small amount of random walking.

This illustrates a case where Bob needs more information than just the codomain of 𝐴 → 𝐴/𝐾𝐴 to complete
the push-out square. Namely, Alice also publishes the image by the isogeny of some points. It seems (for
now) that this extra information is not enough for Eve to break the key exchange. Update @2022-08: This
extra information did break SIDH: [CD22; MM22; Rob22].

After improvements to the cryptosystem (called SIDH: supersingular isogenies Diffie-Hellman) [JD11; DJP14;
CLN16], SIKE (supersingular isogenies key exchange) is now a Round 3 alternate candidate for the NIST
PQC.

Isogeny based cryptography is now a very active topic of research, in particular to adopt protocols from
the DLP to this new setting. For instance a lot of progress has been made for an efficient signature scheme
[DKL+20]. Other applications of isogeny based schemes are hash functions [CLG09], and more recently
Verifiable Delay Functions [BBB+18; DMP+19].

2

1.2 Purpose of this document and a brief description of my research

1.2 purpose of this document and a brief description of my research

1.2.1 Overview

This document is the occasion to give a summary of my research on the algorithmic aspects of abelian varieties and
theirmoduli space [LR10; FLR11; LR12; LR13; CR15; LR15a; LR15b; LR16;MR22a; DJR+22; KPR20; KNR+21].This
is also the occasion to describe results not published or not yet in public preprint form [BCR11; SR11; BLR11;
IMR+14; MR19; LR20; MR20a; LR23], along with some brand new results.

The intended audience is cryptographers and algorithmicians. All algorithms developed here are related to
cryptographic aspects of abelian varieties (both classical and post quantum): efficient arithmetic, pairings, isogenies
and modular correspondances, point counting, liftings, and the Complex Multiplication method. While the
cryptographic applications are essential, I will focus in this document only in the algorithmic aspects. But this
explain why abelian varieties over finite fields will play a major role. A remark on the “efficient” part of the title:
ideally we would like algorithms that are quasi-linear in the size of their inputs and outputs (I will also call them
quasi-optimal). If this is not achievable, we want at least a polynomial time algorithm with the smallest exponent
possible. Remarkably, with the tools we can use on abelian varieties, quite a lot of the algorithms presented here
will be quasi-optimal.

Likewise, I only give very brief introductions and theoretical background to the different topics in each Chapters.
One exception is Chapter 2 were I develop a bit Mumford’s theory of algebraic theta functions. There are several
reasons for this: first the algorithmic aspect of the arithmetic of theta functions was developed as we needed it
in several articles [LR12; LR10; CR15; LR15a; LR16], so this was a nice occasion to summarize them. Secondly,
for reasons explained in Section 2.1, I wanted to extract the exact properties which we used in the theta model
in order to adapt them to other models. Finally this allows to give a general recipe to construct theta functions
(Recipe 2.5.4), in order to get Thomae like formula (see Section 2.9).

My goal in this document is to give a general overview and philosophy of the algorithms, skipping over details
if possible (somewhat sacrificing a bit of rigour, but the technical details can be found in the articles). Still, since
there are several new results along with a description of some results which are not yet in preprint form, I had to be
quite a bit longer than I originally intended. I apologize for the length.

Every paper I wrote is algorithmic, and has been implemented (either by me or my coauthors, in particular my
wonderful PhD students). Not all the implementations are mature enough to be published, some are just proof of
concepts, but this is a general philosophy: always have at least a fully implemented example by paper. This is the
difference between the “brand new results” mentioned above (I did not have time to implement them yet2), and
the results not published or not yet in public preprint form (the articles may not quite yet be done3, but we have
working implementations). The main public software I maintain is [BCR10] which contains tools for computing
isogenies and pairings with theta functions, and conversion back and from hyperelliptic curves (with admittedly a
less than perfect API). Some not yet public branches contain code for computing cyclic isogenies. There is also the
more recent library [KNR+20] (well it was published recently, but the development started in 2011). This adds
support for the description of the isogeny class of a power of an elliptic curve, tools for genus 3 quartic curves to
theta conversion, and the evaluation of algebraic modular forms (derived from theta constants) to evaluate Serre’s
obstruction when 𝑔 = 3 and Schottky’s obstruction when 𝑔 = 4.

A specificity of my research is that I try to develop algorithms that work for any abelian varieties, not only
Jacobians. This is less motivated by cryptography: because of faster index calculus attack [Gau09; EGT09; DT08]
when 𝑔 > 2, classical DLP based cryptosystems are more efficient for elliptic curves and Jacobians of hyperelliptic
curves of genus 2 than in higher dimension; while SIDH based cryptography are more efficient when restricting
to the supersingular elliptic curves rather than to supersingular/superspecial abelian varieties (see [CS20] which
reduces the problem to lower dimensional varieties).

In practice, this means that I use models given by algebraic theta functions, which form a universal model over
any (algebraically closed) field (with an exception in the case of characteristic 2, but see [GL09]). Technically, by
[Mum66; Mum67a; Mum67b], we have equations for the universal abelian scheme 𝒳𝑔,𝑛 → 𝒜𝑔,𝑛 with a totally
symmetric (normalised) ample line bundle ℒ and a symmetric theta structure of level 𝑛 ≥ 4, and furthermore
𝒜𝑔,𝑛 is a quasi-projective scheme smooth over ℤ[1/𝑛] with coordinates (ie modular invariants) on 𝒜𝑔,𝑛 given by
the theta constants.

Even when working with abelian varieties of small dimension (𝑔 ≤ 3), where every principally polarised (with
indecomposable polarisation) (𝐴, ℒ) is a Jacobian, having a universal model is convenient because this means we

2A notable exception is the improvement of Satoh’s algorithm described in Section 6.6 which is already implemented for elliptic curves
in the development branch of Pari [21].

3I can provide a preliminary version if requested.

3

1 Introduction

don’t need to treat specially the case where 𝐴 splits into smaller dimensional Jacobians. This allows us to not treat
specially isogenies 𝐴 → 𝐵 where 𝐴 is a Jacobian but 𝐵 is a product of Jacobians. In genus 3, when working with
Jacobians, the situation is even more annoying because different invariants are used when dealing with Jacobians
of hyperelliptic curves (Shioda invariants), compared to plane quartics (Dixmier-Ohno). This complicates the
definition of class polynomials (if the CM locus has both hyperelliptic and quartic curves), and also their reduction
(eg if a quartic reduces to an hyperelliptic curve [LLG+20]).

Still there are drawback to theta functions (most notably we need to take a field extension so that the level
structure becomes rational, this is especially annoying for algorithmic applications over number fields). So a very
recent shift in my work was to extract the exact underlying algorithmic hypotheses of a model under which we can
build the arithmetic (ie pairings, isogenies, …) of abelian varieties given by this model. Two keys examples of such
models are given by the theta model of course, and Jacobians of curves. I refer to Chapter 2 for more details.

By contrast, I am less interested in, for example, gaining one multiplication in the arithmetic of a specific model of
an elliptic curve (even though it is obviously important). As part of the SIMPATIC ANR project, I have worked on
improving pairing computations on a phone’s SIM card. And although I have worked on improving the arithmetic
of abelian varieties (see for instance [LR16]), in that paper we do give a description of the arithmetic of any Kummer
variety (in any dimension), before applying it to the theta model.

Likewise, rather than developing a custom isogeny algorithm for every model of elliptic curves, I find more
interesting to develop an isogeny algorithm from “first principles”. Namely let 𝑓 ∶ 𝐴 → 𝐵 be the isogeny we want to
compute, 𝑠𝑖 our current coordinates on 𝐴, 𝑡𝑖 the coordinates we want to use on 𝐵. Representing the isogeny then
becomes a question of interpreting the 𝑡𝑖 ∘ 𝑓 as rational fractions in the 𝑠𝑖. We can decompose this in three steps:

• If the 𝑡𝑖 are sections of a line bundle ℳ on 𝐵 and 𝑠𝑖 of ℒ on 𝐴, we first try to construct 𝑓 ∗ℳ from ℒ;

• Then we try to find the sections of 𝑓 ∗ℳ that descend to 𝐵;

• Then we identify the 𝑡𝑖 among these sections.

This approach is developed in Chapter 4. For instance, on every model of elliptic curve on which we have explicit
formula to compute the Miller functions (eg to compute pairings), we can use this framework to derive an isogeny
formula. (Still the case of elliptic curves is easier, because hidden in the approach outlined above is the action of the
theta group, but for elliptic curves this action can remain implicit, see Example 4.2.1 as to why.)

1.2.2 Algorithms for abelian varieties

Now let us go back to the subject of this hdr. For efficient algorithms of abelian varieties 𝐴, we would like:

• The arithmetic of course;

• Pairings;

• Isogenies computations (from the kernel);

• Being able to change models;

• Sampling points or finding points in the variety;

• Computing associated data: if 𝐴 is defined over a finite field its number of points and endomorphism ring; if
𝐴 is defined over ℂ a period matrix…

Not all of these problems are solved in this document: endomorphisms rings and (fast) period matrix computations
are for now just research projects (see Sections 5.7 and 6.7), and I don’t treat finding points at all. This last topic is a
hard problem, especially over a number field, and numerous tools have been developed by number theoricians (eg
Heegner points, Chabauty-Coleman and its extensions). Even for elliptic curves over a finite field this is an interesting
problem: while finding points is easy, sampling points uniformly is not too difficult, hashing deterministically
(and uniformly) into a curve is much harder, see eg [CK12]. Likewise, sampling (somewhat uniformly) points in a
Jacobian over a finite field is not too hard (simply sum 𝑔 + 1 points on the curve if it is of genus 𝑔 and the base field
is not too small), but finding points in the theta model is harder (except in very small dimension).

We treat arithmetic in Chapter 2 along with an outline on how to transform any model where we have an explicit
version of the theorem of the square and of the action of the theta group into a theta model. This applies in particular
to Jacobians. The converse (from theta to Jacobians) is not treated in this document; it is well known for Jacobians of

4

1.2 Purpose of this document and a brief description of my research

hyperelliptic curve, but the general case is probably much harder, given its relationship with the Schottky problem.
Pairings are handled in Chapter 3 and isogenies in Chapter 4. We give an overview of point counting via the SEA
method in Chapter 5 and via 𝑝-adic lifting in Chapter 6 (missing point counting algorithms in this document are
Kedlaya’s algorithm and deformation based methods).

There is a gap between algorithms for elliptic curves and higher dimensional abelian varieties. In the case of
elliptic curves, we have efficient algorithms for most of the topics above: isogenies [Vél71; Koh96; Elk92; BMS+08],
point counting [Sch85; Sch95; Elk92; Mor95; Elk97; Sat00; Ked01] endomorphism rings [Koh96; FM02; BS09;
Bis11], modular polynomials [Eng09a; BLS12], class polynomials [Sut11; ES10]…Often, adapting one algorithm
from dimension 1 to dimension 2 is enough that the adaptation to higher dimensions is relatively straightforward
(especially if the adaptation was done via a theta model). Still, there are of course specificities to the dimension 2
case:

• All indecomposable abelian surfaces are Jacobians of hyperelliptic curves of genus 2;

• In the case of real multiplication, for abelian surfaces the real orders are quadratic, hence Gorenstein (ie their
trace dual is inversible). This simplify quite a bit the study of their modules;

• We have fast (quasi-linear) evaluation of theta functions (hence modular invariants) and period matrices
when 𝑔 ≤ 2;

• Sometimes the objects are simply too big to be computed in higher dimensions. For instance the Siegel
ℓ-modular polynomials with 𝑔 = 1 are of size 𝑂(ℓ3), and of size 𝑂(ℓ15) when 𝑔 = 2. When 𝑔 = 3, their size
is 𝑂(ℓ48). As an example, the modular polynomials with 𝑔 = 2 and ℓ = 7 using the smaller theta invariants
already take 29GB. It is safe to say that nobody will ever compute it4 for 𝑔 = 3 and ℓ = 7.

Most importantly, there is no hope to extend some algorithms from elliptic curves (with the same complexity)
without assuming (explicit) real multiplication. Indeed, in higher dimensions, we can only have cyclic isogenies
between principally polarised abelian varieties if the Néron-Severi group 𝑁𝑆(𝐴) is different from ℤ. For elliptic
curves, then endomorphism ring always contains ℤ, which can be thought of as the real multiplication order.
So for abelian surfaces over a finite field 𝔽𝑞, while we can obtain an 𝑂(𝑞4) (heuristic) SEA like algorithm (see
Section 5.5) like in the elliptic curves case, the algorithm is not uniform; the constants in the 𝑂 depend on the real
multiplication order. From this point of view, one should consider the moduli of abelian surfaces over 𝔽𝑞 with the
strata given by the real quadratic orders.

1.2.3 Algorithms for moduli spaces

Likewise, some algorithms we would like for moduli spaces of abelian varieties are:

• Explicit equations formoduli or even just birational models. Eg construct models of integral Shimura varieties
of PEL type.

• Description of the tangent spaces.

• Fast evaluation of modular functions (ie of coordinates on the moduli).

• Explicit modular/Hecke correspondances.

• Explicit maps between the moduli: forgetting structure/level, or conversely lifting level, ie computing preim-
ages.

• Sampling points.

• Lifting and reduction5.

4What can be done however is to compute evaluated modular polynomials, see Section 5.3.8. Also Hilbert modular polynomials are
much smaller: their size is 𝑂(ℓ4) when 𝑔 = 2, and 𝑂(ℓ5) when 𝑔 = 3. As an example, the modular polynomial for ℚ(√2) with ℓ = 41 is
only of size 7.2MB.

5Of course this also belon to “algorithms on abelian varieties”, the distinction between the two aspects is somewhat arbitrary.

5

1 Introduction

Some of these topics reach the limit of our current theoretical knowledge on automorphic forms. In fact even
when 𝑔 = 1, not quite all modular curves of genus ≤ 1 have been computed yet (see [SZ17; BS19] for recent
progress). As for moduli of abelian surfaces, I don’t know how to compute efficiently (apart from evaluation and
linear algebra or linear algebra on the Fourier coefficients) interesting moduli lying in the Siegel moduli like
Humbert surfaces, Shimura curves and generalised Humbert varieties. Broadly: once we have a Shimura variety of
PEL type (eg the Siegel or Hilbert varieties), it is easier to change the level structure and polarisation type (eg to
build the modular polynomials) than the endomorphism type. Indeed in one case this corresponds to changing the
compact open subgroup of 𝐺(𝔸𝑓) while in the other case this corresponds to changing the reductive group 𝐺 itself.

In this document, we will mainly focus on modular correspondances and modular polynomials (on Siegel and
Hilbert moduli spaces), and their applications to isogeny computations and point counting. We will also describe
tangent spaces (ie the explicit Kodaira-Spencer isomorphism) when 𝑔 = 2. We will then use modular polynomials
to compute canonical lifts and class polynomials. The CM locus, being a Shimura variety of dimension 0, is easier to
compute efficiently than the higher dimensional Shimura varieties. And thanks to the Taniyama-Shimura formula
the reduction of CM points is well known.

We will also use the forgetting map from Hilbert to Siegel, and the Torelli map. We have fast evaluation of theta
functions and period matrix only up to dimension 𝑔 ≤ 2 [Dup06; Lab16], so we will give alternative methods to
compute modular polynomials for higher dimensional abelian varieties (ie 𝑝-adic lifting and CRT).

Like for abelian varieties, sampling points in moduli can be a hard problem. Of course when the moduli is
unirational this is easier (we recall that 𝒜𝑔 is unirational when 𝑔 ≤ 5, and is in fact rational when 𝑔 ≤ 3). On the
other hand, sampling uniformly and efficiently supersingular elliptic curves (without starting with a well known one
and taking random isogenies) is a hard problem that would be very useful for supersingular based cryptosystems.

1.2.4 The yin and yang of arithmetic, pairings, and isogenies

As we have seen, isogenies will play a key role for algorithms not only for abelian varieties but also for moduli spaces.
There is a strong relationship between the three aspects of arithmetic, pairings, and isogenies. The multiplication
by [𝑛] map is a special isogeny. In [Mum66], Mumford even recovers the arithmetic on theta functions using
the isogeny (𝑥, 𝑦) ↦ (𝑥 + 𝑦, 𝑥 − 𝑦). We can also use isogenies to speed up duplication and triplication formulae
[Gau07; DIK06]. Pairings can be seen as a refinement of the arithmetic: for instance on an elliptic curve, if we
know not only to compute 𝑃 + 𝑄 but also the function 𝜇𝑃,𝑄 whose divisor is (𝑃) + (𝑄) − (𝑃 + 𝑄) − (0𝐸) then
we know how to compute the Weil and Tate pairing. The same holds for an abelian variety provided we have an
explicit version of the theorem of the square, see Chapter 3. Also, to compute isogenies we need their kernel to be
isotropic, see Chapter 4. But conversely, given an isogeny 𝑓, we have the Weil-Cartier pairing on the kernel of 𝑓 and
the kernel of its dual ̂𝑓.

In fact, all three aspects are somewhat unified in the notion of the theta group 𝐺(ℒ) of a line bundle ℒ: 𝐺(ℒ)
encodes descent, hence isogenies, the Weil pairing 𝑒ℒ is recovered as the commutator pairing on 𝐺(ℒ), and the
action of 𝐺(ℒ) on 𝛤(ℒ) is irreducible, hence gives information on the arithmetic, see Chapter 2.

We have seen that isogenies allows to build cryptosystems [Cou06; Tes06; RS06; Sto10; CLG09; JD11; DJP14;
CLN16; DKS18; CLM+18; DMP+19] (and many more), but they have also been used in the classical DLP to extend
attacks [GHS02; Smi08] or prove random self-reducibility [JW15], to reduce the impact of side channel attacks
[Sma03]. Further applications include (via elliptic periods) constructing irreducible polynomials or a normal basis
over a finite field [CL13; CL09], computing isomorphisms or embeddings between finite fields [Nar18; BDD+19],
finding smoothness basis invariant by automorphisms [CL08b], and probably many more!

1.2.5 An ode to algebraic geometry

I thought this hdr was a nice occasion to write a bit about some of the theory of abelian varieties (ie fun topics
I learned a bit about because they have applications to algorithms on abelian varieties), but this was way too
ambitious a project. However since this will allow me to skip over developing too much theory on this (already too
long) document, a draft (currently of around 120 pages) is available as [Rob21]. See [Rob21, Chapter 1]6 for more
motivations.

For those who wonder why on earth the theory of algebraic stacks and abelian schemes can be useful for
algorithms on an abelian variety over a finite field, let me give an example. First an abelian scheme 𝐴 over 𝑆 is
simply a family of abelian varieties of the same dimension for all geometric points of 𝑆, at least if 𝑆 is reduced and

6The hyperlinks should work if both documents are in the same folder

6

1.3 A chronology

connected (and the neutral points should vary continuously along the fibers, ie come from a section 𝜖 ∶ 𝑆 → 𝐴.)
Secondly using algebraic stacks allows to construct fine moduli spaces rather than coarse moduli spaces (since they
keep track of the automorphisms). In particular the moduli stack 𝒜𝑔 of principally polarised abelian varieties is
smooth over ℤ, and we have a universal abelian stack 𝑋𝑔 → 𝒜𝑔 over it. (The stack 𝒜𝑔 is a Deligne-Mumford stack,
so has an étale cover by a scheme, so all étale-local properties of abelian schemes make sense over 𝒜𝑔.)

Smoothness of 𝒜𝑔 allows to lift abelian varieties to characteristic zero (we can also lift étale isogenies, and of
course for ordinary abelian varieties we can take the canonical lift which lift all endomorphisms, see Chapter 6).
But smoothness is not the only trick we can use: to prove results on the universal scheme, we can also use rigidity
or simple flatness arguments, see [Rob21, Section 2.3.6].

For instance, to give an algebraic meaning of a complex modular form 𝔤 on an ordinary abelian variety 𝐴/𝔽𝑞,
one can take its canonical lift to ℚ𝑞, and embed it into ℂ. Since the lift 𝐴 is CM, by CM theory its period matrix 𝜏
is defined over a number field and so is 𝔤(𝜏) (over a larger number field) if 𝔤 is a suitable integral modular form
(which can be checked from its Fourier coefficients). Then we need to carefully check if 𝔤(𝜏) reduces well. This was
the original proof in [KNR+21] to show that our computation of Serre’s algebraic obstruction made sense over 𝔽𝑞.

An alternative and simpler method, which also works for non ordinary abelian varieties, is to use the definition
of a weight scalar 𝑘 modular form as a section of the 𝑘-th tensor power of the Hodge line bundle 𝔥⊗𝑘, defined over a
suitable compactification7 of 𝒜𝑔, ie as a functorial application 𝔤 ∶ (𝐴, 𝑤𝐴) ↦ 𝔤(𝐴, 𝑤𝐴) satisfying 𝔤(𝐴, 𝛾 ⋅ 𝑤𝐴) =
det−𝑘 𝛾 ⋅𝔤(𝐴, 𝑤𝐴). Once we have defined algebraically a candidate 𝔤0, we can check directly over ℂ that it coincides
with 𝔤. Indeed, since 𝒜𝑔 is smooth over ℤ, 𝔥⊗𝑘 is flat over ℤ, so we may check equality of sections over their
pullback to ℂ. Alternatively, we may invoke the 𝑞-expansion principle.

1.3 a chronology

This Section is mainly for myself, I recommend the reader to skip directly to Section 1.5.

Research

It is an interesting exercice (for me!) to give a (very partial and probably somewhat biased) chronology of my
research. Indeed publication date does not always corresponds to the date an idea was first worked out, and it is
interesting to look back in retrospect at how we explored things.

I started my PhD in 2007 under the direction of Guillaume Hanrot, and defended it in 2010. The goal was to
compute isogenies between hyperelliptic curves of genus 2. At the time, I naively tried to adapt Vélu’s formula
by computing traces under the kernel of the projective coordinates given by Cassel and Flynn in [CF+96] (these
are given by sections of 4𝛩 where 𝛩 is the theta divisor). But experiments showed that we did not get correct
coordinates on the isogenous Jacobian 𝐵 = Jac(𝐶′). Now I know that while the traces of course descend to 𝐵, the
problem is that they are sections of (a divisor algebraically equivalent to) 4ℓ𝛩 rather than 4𝛩. See Example 4.2.1
for more details8.

The solution was proposed by David Lubicz, to whom I owe a lot, whose wonderful insight was that Mumford’s
algebraic theory of theta functions was perfectly adapted to construct isogenies (if only because of Mumford’s
isogeny formula). He had constructed amodular correspondance 𝒜𝑔,ℓ𝑛 → 𝒜𝑔,𝑛×𝒜𝑔,𝑛 (where 𝒜𝑔,𝑛 is themoduli of
principally polarised abelian varieties with a symmetric theta structure of level 𝑛), where each projection correspond
to an isogeny, as a more convenient way to compute canonical lifts for point counting than the multiplication
formula used in [CL08a]. We first studied fibers of this theta modular correspondance in [FLR11]. A more detailed
analysis on how to compute these fibers in practice (without a Grobner basis), ie how to raise the level, led to our
first isogeny algorithm in [LR12]. At the time we first raised the level via an isogeny, before applying Mumford’s
isogeny formula to descend back in level, ie we could only compute ℓ2-isogenies. But Koizumi’s formula quickly
gave us a formula to descend the level on the same abelian variety, which led to the algorithm for ℓ-isogenies in
[CR15], and the start of AVIsogenies [BCR10] developed with my co-PhDs Gaetan Bisson and Romain Cosset.

During the implementation for dimension 𝑔 = 2, I realised that our formula when using differential additions to
compute the multiples ̃𝑛𝑃 + 𝑚𝑄 of two points generating the kernel did not depend on the order of 𝑃 and 𝑄. I had
the intuition that it was because of the commutativity of the elements of the theta group above the kernel (since the

7Analytically this corresponds to the condition of holomorphy at the cusps, and this is automatic by Koecher’s principle when 𝑔 > 1.
When 𝑔 = 1, holomorphy at the boundary can tested at the Tate curve.

8By the way I should probably integrate the code I wrote at the time to convert from Mumford coordinates to these rational projective
coordinates in [BCR10].

7

1 Introduction

kernel is assumed isotropic), and realised that when applied to 𝑃 and 𝑄 non isotropic, this gave us a new formula to
compute the Weil pairing via its avatar as the commutator pairing of the theta group. We proved this in [LR10], and
also gave a formula for the Tate pairing. We later made the link with the standard construction of these pairings via
Miller’s algorithm in [LR15a], so that we could give an algorithm to compute the different variants (ate, optimal ate,
…) introduced in cryptography. The PhD [Tra14] also explains the link between our algorithms and elliptic nets.

After my PhD I did an internship at Microsoft, and then a postdoc at Inria Bordeaux and then another one
at Microsoft, between 2010–2012. At Microsoft, I worked with Kristin Lauter to compute class polynomials for
𝑔 = 2 via the CRT method using isogenies [LR13]. As a postdoc there, I also implemented an homomorphic
scheme based on RLWE usingMicrosoft’s internal library, using negacyclic convolutions to speed up multiplications.
Unfortunately I don’t quite remember the timings we obtained to compute an homomorphic multiplication. When
Gaetan Bisson was also an intern there, we developed another method to compute a maximal genus 2 curve (ie a
curve whose endomorphism ring of its Jacobian is the maximal order), using “horizontal isogenies” rather than
“vertical isogenies” to determine how to go up. This approach was never published because to go up in practice
we still needed to compute the kernel, hence the ℓ-torsion, so this did not gain much. Now that we have modular
polynomials we should revisit this. I also worked with Shamir to use comparative side channels attacks against
Edward curves. This was presented at the Crypto 2011 rump session. I did not publish the paper because I felt
the attack was not strong enough, but retrospectively this was a completely stupid idea: one should not pass the
occasion to collaborate with a world class cryptographer.

According to git, we also started the paper [BCR11] explaining some tips and tricks in our computations with
AVIsogenies (how to find the kernels, how to adjust the formula in characteristic two) in February 2011. It is still
not published (even in preprint form), and this time I don’t have any good excuse for that except that we have been
too lazy to polish the few remaining details (and Romain Cosset left research for academia). I also started around
this time (November 2011) with Christophe Ritzenthaler the project to compute Serre’s obstruction algebraically.
This obstruction allows to determine whether the Jacobian of a quartic curve descend to the base field as a Jacobian
(the curve 𝐶 and the abelian variety 𝐴 = Jac(𝐶) both descend over a finite field, but the Jacobian of the descent of
𝐶 over the base field may only be a quadratic twist of the descent of 𝐴). The idea was to find genus 3 curves with
many points by computing Jacobians isogenous to the threefold power of an elliptic curve with many points. A
blocking point was how to ensure we were computing the full isogeny class to get all the curves, this was finally
resolved recently and published in [KNR+21].

I was recruited as an Inria CR in 2011 and took the position in Mars 2012. This is an important shift because
I started to take M2 students and then PhD students. I have had three PhD students: Enea Milio, Abdoulaye
Maiga and Jean Kieffer. I have been very lucky to find excellent PhD students that were a joy to work with (both
academically and socially). I cosupervised Milio with Andreas Enge, and he defended in 2015 [Mil15b]. Maiga’s
supervision is unofficial, because we did not receive the Marie-Curie fellowship that would have allowed a joint
supervision between Dakkar and Bordeaux. I cosupervise Kieffer with Aurel Page (prior to this HDR I obtained
an ADT which allows me to be the main supervisor). Maiga and Kieffer will defend this year. Update @2021-06,
2022-06: Kieffer defended in 2021 [Kie21] and Maiga in 2022 [Mai22].

Looking back at the masters or other internship projects I proposed, they reflect pretty well the research subjects
I was interested in at the time.

My first master subject in 2012 was done by Ilaria Lovato, on “Computing Modular Polynomials with Theta
Functions”. She did not pursue a PhD (she went to be a a scientific journalist in Italia), but the subject was picked
up by Enea Milio: “Calcul de polynômes modulaires en dimension 2”. In [Mil15a], he gave a quasi-linear algorithm
to compute Siegel modular polynomials (using Igusa invariants or theta constants) via evaluation/interpolation. As
expected, theta constants gave much smaller modular polynomials (3000 times smaller for ℓ = 3), so he could
push the computations up to ℓ = 3 with Igusa invariants, and ℓ = 7 with theta constants. We later extended
this algorithm in [MR20b] to handle Hilbert modular polynomials. (The paper was published recently, and the
first preprint version was in 2017, but he had already computed Hilbert modular polynomials in July 2014. Since
the paper was too long we had to cut out an appendix on the denominator of these polynomials [MR19], which
we should probably publish separately.) Milio computed Hilbert modular polynomials for ℚ(√2), ℚ(√3) and
ℚ(√5), they are much smaller than Siegel polynomials and he went up to norm 97 for ℚ(√2) and 59 for ℚ(√5).
He then did a postdoc in Nancy, and then at EPFL.

At roughly the same time Chloe Martindale, supervised by Marco Streng and cosupervised by Andreas Enge was
also working on Hilbert modular polynomials using a different strategy. When she went to visit us in Bordeaux
in 2014–2015, I worked with her, Sorina Ionica who was a postdoc at the time, and Marco Streng about isogeny
graphs of abelian surfaces (from the CM point of view) [IMR+14]. This work was not published because meanwhile
[BJW17] had very similar results to us using Tate modules.

8

1.3 A chronology

In 2013, Giulio Di Piazza worked on “Arithmetic on Jacobians of algebraic curves”. The goal was to look in
more details at the arithmetic of curves of small genus, and then study the general purpose algorithms (based on
computing Riemann-Roch spaces). Piazza looked at Hess’ algorithm [Hes02] but did not have time to look at Khuri
Makdisi’s algorithms [Khu04; Khu07]. He now works at the European Food Safety Authority.

In 2014, Illaria Chillotti worked on “Pairings over elliptic curves using isogenies”. The goal was to study the
relationship between pairings and isogenies, and see if we could get fast formula to compute the Weil-Cartier
pairing. With the advent of isogeny based cryptography I think this is even more important, but unfortunately
I still do not know fast formulae. Chillotti then did a Phd at Versailles on “Towards efficient and secure Fully
Homomorphic Encryption and cloud computing”.

In 2016, Liu Zhengying (this time as an internship for the third year of Polytechnique) worked on “Height of
class polynomials”. The goal was to study in more detail the height of class polynomials of imaginary quartic fields
(especially when using other class invariants). I was also interested in the height of modular polynomials, but
Zhengying did not have the time to pursue this. This was later picked up by Kieffer. Zhengying then did a PhD on
“Automation du design des réseaux de neurones profonds”.

In 2016, I also worked with Andreas Enge’s master student Gregor Seiler on a CRT approach for the computation
of ray class fields of quadratic imaginary fields [ERS16].

In 2016 I started to unofficially supervise Abdoulaye Maiga on “Computing canonical lift of abelian surfaces”.
There were some difficulties along the way for funding (we did not receive the Marie-Curie Eiffel fellowship), but
Maiga persevered admirably. In [MR20a] we explain how to compute canonical lift for abelian surfaces using
either Siegel modular polynomials or Hilbert modular polynomials (and then lifting the Verschiebung for point
counting) in the case of odd characteristic. Then in [MR22a] we adapt these algorithms to the special case of
characteristic 2, the Siegel modular invariants classically used for the modular polynomials or class polynomials
having bad reduction in characteristic 2. This last paper has been accepted first, but our computations where first
done in odd characteristic.

Kieffer started his PhD on “Computing isogenies between abelian surfaces and applications” in 2018. He had an
impressive array of results since he started: deriving isogenies between abelian surfaces using modular polynomials
[KPR20], evaluating the height and degree of modular polynomials on any Shimura variety of PEL type [Kie20a],
with more precise bounds for Hilbert and Shimura modular polynomials of abelian surfaces (along with an
interesting bound on the height of a rational function when many of its evaluation points are small), fast evaluation
of modular polynomials for abelian surfaces [Kie20b], and a positive answer to a conjecture by Dupont on the
“topological” sign choices of the Borchardt mean when 𝑔 = 2 [Kie20c]. Kieffer is currently implementing a SEA
like algorithm for abelian surfaces, which will give an (heuristic) complexity of 𝑂𝐾(log 𝑞4) for counting the points
of an abelian surface 𝐴/𝔽𝑞 with real multiplication by 𝐾 (the constants depending on 𝐾). Following his work, a lot
of topics in the algorithmic of abelian surfaces have reached maturity with their elliptic curve counterparts.

In parallel, I continued working on isogenies. After a talk on computing cyclic isogenies using real multiplication
[Rob13] in 2013, Dimitar Jetchev contacted me to work this out practically and implement the algorithm with his
PhD students Alina Dudeanu and Marius Vuille in [DJR+22].

Of course, I also continued my collaboration with David Lubicz. In 2014 we wrote [LR15b] which explain how
to compute isogenies given only equations of the kernel (due to the way the algorithm of [LR12; CR15] works
when having a basis of the kernel, the adaptation was more complicated than a simple resultant computation in
order to apply it to when only the kernel equations are given). In 2014 we also wrote [LR16], where we develop the
arithmetic of Kummer varieties given by a symmetric theta structure of level 2. In [LR20] (started in 2019 with a
working example when 𝑔 = 2) we revisit how to get the full conjugacy class of the Frobenius when computing
canonical lifts, rather than just the product of its inversible eigenvalues. We are currently writing [LR23] (also
started in 2019 with some working examples) about how to go up in level with theta functions, and also a faster
way (than Koizumi’s formula) to descend level, which gives us quasi-optimal isogeny computations in all cases
(and not just when ℓ is a sum of two squares as in [CR15]).

We also have some partial results on the algebraic choice of sign in the agm and in Thomae’s formulas, getting
equations for the image of the theta modular correspondances, and algorithms to get equations of Kummer varieties
in the theta model. We also have a project with Xavier Caruso on computing 𝑝-adic Hecke correspondances.

The Industrial ANR Project Simpatic, “SIM et théorie des couplages pour la sécurité de l’information et des
communications” was a motivation to write a book on pairings, I contributed to some chapters in 2017 [Rob17].

9

1 Introduction

Responsabilities

When growing older a double sentence is that we often have more academic responsibilities. I was a joint leader
(with Tony Ezome) of the Lirimia international team Macisa and then Fast from 2014 to 2019. I was a member of
the Jury Agregation de Mathématiques from 2014 to 2020, and in charge since 2016 with Alain Couvreur of the
Option C “Algèbre et Calcul Formel”. Recently I have been coopted by the Lfant Inria team to present the new team
project (Lfant being 12 years old has to stop).

We also need to find funding (participating to ANR projects and ERC is nice, as long as you are not the
coordinator!). I have candidated three times as a coordinator to an AAP ANR project (involving Bordeaux,
Marseille, Nancy, Rennes, Versailles), it was preselectionned twice but never selectionned. So I candidated to a
JCJC ANR project instead, this was accepted (this is ANR Project Ciao) in 2019.

Other results and failures

Working in the Inria Lfant team at Institut de Mathématiques de Bordeaux and its strong software culture, is always
a nice opportunity to solve fun questions arising from implementations (especially in Pari/GP), not research level
but interesting, namely:

• Identify needed functions for elliptic curve in Pari/GP. The list I gave to Bill Allombert and Karim Belabas in
2011 has been implemented over the years, the new challenge are genus 2 curves.

• When implementing Miller’s algorithm for the Tate pairing, the intermediate computations give intermediate
zeroes and poles, so the computation can fail. This is not a problem in the cryptographic setting because there
is a wealth of points we can use for translation, but this can become a problem when computing the Tate
pairing on curves without many points. A solution is to simply work out the Laurent series expansion (along
uniformisers) of the functions involved in the pairing computations, see Lemma 3.5.3 for the formulae.

• If we have an elliptic curve 𝐸 over 𝔽𝑞 whose 𝑗-invariant is defined over a smaller field (say 𝔽𝑝), then to do
point counting on 𝐸 we really want to work over 𝔽𝑝 rather than over 𝔽𝑞. This is not hard: let 𝐸′/𝔽𝑝 be the
elliptic curve such that 𝑗(𝐸) = 𝑗(𝐸′), we can count the number of points of 𝐸′ over 𝔽𝑝, this easily gives us its
number of points over 𝔽𝑞. Now 𝐸 is a twist of 𝐸′ over 𝔽𝑞, so we just need to identify this twist as an element
of 𝐻1(𝔽𝑞,Aut(𝐸′)) and use it to get the correct twist of the Frobenius.

As an easy example: if 𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥 over 𝔽𝑞, the 𝑗-invariant is 1728. So 𝐸′ is given b 𝑦2 = 𝑥3 + 𝑥,
and we know its Frobenius 𝜋′ over 𝔽𝑞. If 𝐴 = 𝐵4, then our element of 𝐻1(𝔽𝑞, 𝜇4 = Aut(𝐸′)) is given by
𝜎 ↦ 𝜎(𝐵)/𝐵, and 𝜋 = 𝜋′𝜁 where 𝜎(𝜋𝑞) = 𝜁 ∈ 𝔽𝑞. As always, the most annoying case to treat explicitely
are supersingular curve of characteristic two (the automorphism group can be of size 24 and isomorphisms
are slightly less convenients to describe).

Not every research project is a success. I have tried, but failed, to break SIDH9. One ofmy ideawas to use the formal
group law to somehow identify the correct direction to follow. Another idea was as follow: suppose that Alice or Bob
leaks the action on tangent space of its isogeny. For instance in the Montgomery model 𝐵𝑦2 = 𝐶𝑥3 + 𝐴𝑥2 + 𝐶𝑥,
the Kummer line is represented by the projective point (𝐴 ∶ 𝐶) [CLN16]. The isogeny computations on (𝐴, 𝐶) are
normalised, so if Alice sends (𝐴, 𝐶) rather than 𝐴/𝐶, she leaks the action on tangent spaces. Then we can encode
the isogeny by a differential equation as in Section 4.7. This encodes the coefficients 𝑎𝑖 of the isogeny developed as
a power series in the uniformisers. The degree of the isogeny is then the smallest dimension in which a certain
linear system on the 𝑎𝑖 (the one encoding the rational reconstruction) becomes non inversible. The question is then
whether a quantum computer can tell if a linear algebra problem of dimension 𝑁 whose coefficients are encoded by
a quantum circuit of polynomial length in log𝑁 can determine whether a solution exists in time subexponential in
𝑁, possibly by adapting [HHL09] (a difficulty is that our system is not unitary). I have not pursued this further
because the hypothesis that there is a leak has no reason to happen in practice (it would increase the size of the
messages, in fact one of the first compression scheme on SIDH was to send 𝑗(𝐸) rather than its coefficients), and
there is an easy countermeasure anyway.

9I did not believe in its security at first: publishing the image of points leak informations, and the length of the isogeny path followed is
too short for uniform mixing

10

1.4 Some useless trivia

1.4 some useless trivia

As mentioned already, this hdr is way longer than originally envisaged, but I have a tendency to be too verbose
in my articles already. Some quick statistics, among my publications and preprints, using a similar class template:
[LR10] is 21p., [FLR11] 37p., [LR12] 42p., [LR13] 29p., [CR15] 24p., [LR15a] 33p., [LR15a] 19p., [LR16] 20p.,
[MR20b] 53p., [MR22a] 28p., [DJR+22] 37p., [KPR20] 64p., [KNR+21] 38p., [LR20] 29p., [MR20a] 27p. for a total
of 501p., ie 33p. by paper.

So this hdr only achieves a one third summary, which is not great not terrible. My excuse is that this does not
count the non published results, and I had to give more details to explain the new results mentioned above (see
Section 1.5 for more details): generalised Thomae formula from an explicit version of the theorem of the square,
change of level and faster descent for theta functions, applications to faster isogeny formula, efficient computation
of evaluated modular polynomial via an analytic or a CRT or a 𝑝-adic approach, applications to point counting via
a SEA like approach, improvements to the canonical lift approach to point counting, improvements to the 𝑝-adic
approach to compute class polynomials.

The real purpose of this Section is that I wanted to mention the following bragging rights: at the time of writing, I
am the only person in the world10 with accepted commits both in git, the stacks project [Stacks] and iproute211.!

1.5 outline

The outline of this document is as follow. The Chapters are written to be (mostly) independent from each other, at
the cost of some redundancy.

We warn that, while there are several new results, they are far less polished (and sometime only heuristic or
prospective) than the published results. But I was too excited to not include them in this document.

In Chapter 2, we first study the arithmetic of abelian varieties. This regroup several results that were used as we
needed them in [LR12; CR15; LR10; LR15a; LR16]. For reasons further explained in Section 2.1, we first begin by
a brief explanation of Mumford’s theory of algebraic theta functions. This allows us to develop a general recipe
(Recipe 2.5.4) on how to recover the theta coordinates of ℒ if we have a basis of sections and the explicit action of
the theta group 𝐺(ℒ) on them. As a new result, we give in Algorithmic Hypothesis 2.9.2 general hypotheses which
allow from a model induced by ℒ, to compute a basis of sections of ℒ𝑛 and the action of 𝐺(ℒ𝑛) on them (provided
we have the points of 𝐾(ℒ𝑛)). These hypotheses are satisfied by the model given by theta constants, or the model
given by Jacobians (using the work of [CE14]). As a corollary we obtain a very general algorithmic Thomae formula,
ie an algorithm to compute theta functions of level 𝑛 on a Jacobian or on an abelian variety given by theta functions
of lower level, provided we have the points of 𝑛-torsion. We also give faster formula for descending level (this will
appear in [LR23]), and as a corollary of changing level combined with Mumford’s isogeny formula we get (fast)
isogeny algorithms (this is a joint work with David Lubicz).

In Chapter 3, we summarize the results of [LR10; LR15a] on pairings for abelian variety. These articles dealt
with the theta models, but it is straightforward to extend the algorithm on a model which satisfy Algorithmic
Hypothesis 2.9.2. We also give formulas for elliptic curves from [Rob17]. The theoretical aspect of these pairings
is in [Rob21, Chapter 4]. It is customary in cryptography to consider Jacobians, because one can work only with
divisors on curves and use Weil’s reciprocity to prove the standard formulas for the pairing, but I explain in [Rob21,
Section 4.1.2] why we can use Lang’s reciprocity to get similar formulas for abelian varieties.

In Chapter 4, we give a general framework for isogeny computations from “first principles”, ie only assuming
Algorithmic Hypothesis 2.9.2. This provides a common generalisation of [LR12; CR15] and [CE14]. We also explain
how to adapt these algorithms for cyclic isogenies. Thus this Chapter extends the results of [LR12; CR15; LR15b;
LR23] and gives more efficient algorithms for cyclic isogenies than [DJR+22]. We also explain how to recover
isogenies from differential equations as in [KPR20].

Next we deal with moduli spaces. Our most important topic is modular correspondances and modular polyno-
mials in Chapter 5. We explain (an improved version of) the theta modular correspondance studied in [FLR11].
We then explain the work of Milio on the computation of Siegel and Hilbert modular polynomials for abelian
surfaces [Mil15a], [MR20b; MR19], and the work of Kieffer on bounds on their size [Kie20a] and how to evaluate
them [Kie20b; Kie20c]. These computations were done via an analytic method, and a drawback is that quasi-linear
computation via evaluation/interpolation requires being able to compute modular invariants and period matrices in
quasi-linear time in the precision, which we only have for 𝑔 ≤ 2. As a new result we describe here alternative strate-

10Now this is a lot less impressive if you look at the commits and see that they are completely trivials! In fact, I can reverse brag that one
of my patch series sent to git was such a disaster that it was talked about in Git Rev News…

11I had to add iproute2 because the intersection of the contributors to git and the stacks project is of cardinal two…

11

https://git.github.io/rev_news/2020/05/28/edition-63/

1 Introduction

gies using a CRT method or a 𝑝-adic method. We don’t quite get a quasi-linear algorithm, but we formulate some
strategies to obtain one. We then give applications of modular polynomials: determining isogenies as in [KPR20],
by reinterpreting Elkies method as a computation of a deformation map induced by the modular correspondance.
We then explain how to use this to speed up point counting. Kieffer is currently working on an implementation of
the SEA like algorithm for point counting for abelian surfaces, but I spoil his results in Section 5.5: in the Siegel
case he will have a complexity of 𝑂(log8 𝑝) for point counting of an abelian surface 𝐴/𝔽𝑝 (as in the complexity
of a Schoof approach [GS12], so one should look more closely at the logarithmic factors), but only 𝑂(log7 𝑝) if
the curve is given by small parameters. In the Hilbert case he will have a complexity of 𝑂(log4 𝑝) compared to
𝑂(log5 𝑝) from a Schoof approach [GKS11] (here the 𝑂() notations hide constants depending on the RM field).
In Section 5.5.5, I outline the work that remains for a strategy that could potentially give an 𝑂(log4 𝑝) for point
counting on hyperelliptic curves of genus 𝑔 with RM. Another application is given to exploring isogeny graphs;
this summarizes the results of [BCR11; IMR+14; KNR+21]. We also outline what a potential Atkin like algorithm
algorithm for abelian surfaces in the Siegel case could look like in Section 5.6.3.

In Chapter 6 we review the point counting algorithms based on canonical lifts. There are two slightly different
algorithms on whether we use the theta modular correspondance [FLR11] or modular polynomials [MR20a;
MR22a]. A “new result”12 is on how to use the change of level of Chapter 2 to speed up the initialisation phase of
[FLR11]. We also describe the results of [LR20] about how to get the full action on the tangent space rather than
just its determinant. An exciting new result is how to do the same using only modular polynomials using the results
from Section 5.4: this has the big advantage to not require to lift equations for the kernel of the Verschiebung, and
for elliptic curves already yields a large speedup, see Table 6.1. In both cases, we recover a quasi-quadratic 𝑂(𝑑2)
point counting algorithm over 𝔽𝑝𝑑 (with constants depending on 𝑝), where the dependency on 𝑝 can be controlled
explicitly (eg by the cost of evaluating the modular polynomial 𝛷𝑝; this cost is an explicit polynomial in 𝑝).

In Chapter 7 we give a summary of the results of [LR13; BLR11; ERS16] about the CRT method to compute class
polynomials. A new result is an improvement of the 𝑝-adic method to compute these polynomials, using isogenies
to lift all CM points, rather than just lifting one of them and then doing an LLL step. The cost is then dominated by
the initialisation step: finding one CM point over the residue field of a totally split prime.

Along the way, we answer some small questions or conjectures in the literature, and improve some results. Let me
give pointers here for references.We answer a conjecture on the degrees of Cantor polynomials [AGS19b, § 6; Abe20,
§ 2] in Remark 4.7.3. We answer [Mil15a, Conjecture 41] on the absence of “parasite” factors in the denominator of
modular polynomials when using theta functions in Section 5.3.2. We also answer [MR20b, Conjecture 5.2] (the
appendix was cut-out from the publication because the paper was too long but is still available on HAL) about
the irreducible components of the denominators of Hilbert modular polynomials of abelian surfaces at the end of
Section 5.3.6. We answer in Remark 5.3.5 a question by Labrande in [Lab16, p. 168] about the precision needed to
compute an isogenies between two elliptic curves defined over a number field via complex analytic method.

Since modular polynomials for abelian surfaces are too big to be used directly for application to point counting, I
suggested to Kieffer to look at evaluating them on a modular invariant over 𝔽𝑞 by lifting the invariant to a number
field, evaluate there, and then reducing the evaluation. This is done in [Kie20b], see also Section 5.3.8. But it
appears that this strategy is already interesting for ellliptic curves, see Remark 5.3.9. As applications, we explain in
Section 5.4.3 how this gives a more efficient way to lift isogenies between elliptic curves than in [LS08], and at the
end of Section 5.4.1, we give another approach to the determination of the isogeny between two given isogenous
elliptic curves over 𝔽𝑞 than in [DHP+16], which yields a better bound.

1.6 perspectives

It is interesting, 10 years after my PhD defense, to look at the perspectives of [Rob10]. Things that have been
realised are computing optimal pairings in the theta model, improved arithmetic on abelian varieties using the
Kummer theta model, computing modular polynomials, computing class polynomials for abelian surfaces by the
CRT method, and improving the initialisation step of point counting via canonical lifting over the theta modular
correspondance. Things still missing are efficient triplication formula in a theta model of level 𝑛 divisible by 3,
transferring the DLP from hyperelliptic curves to quartic curves using isogenies in the theta model (in [KNR+21]
we implemented the formula to go from the theta constants to the curves, and also to descend the curve over its
base field, but we have not yet implemented the formula which gives the divisor corresponding to a point given in

12This is an easy consequence of [LR12], but we forgot to state this application in that article.

12

1.7 Updates

theta coordinates; [BCR10] has only implemented the formulae for hyperelliptic curves). But see [Tia20] which is
based on [CE14; Mil20] instead.

What is more interesting are the results I had not anticipated: the importance of real multiplication for the
algorithms (smaller modular polynomials, cyclic isogenies), and most importantly the rise of isogeny based
cryptography.

We give detailed perspectives at the conclusion of each Chapter. Not unsurprisingly, I would like to extend and
generalize our current algorithms, so a research program includes: computing integral model of Shimura varieties,
efficient evaluation of modular forms, models of curves and abelian varieties (especially in higher dimension),
algorithmic aspects of isogeny based cryptosystems (optimize isogenies, endomorphism rings, VDF, …).

In this Section, I will instead focus on more prospective perspectives:

• I would like to do more computations over number field, eg testing the BSD conjecture for abelian surfaces
(as given by Tate, Beilinson, Bloch and Kato), or maybe even the paramodular conjecture.

• I would also like to learn more about formal proof software like Coq and Lean, eg to prove that the SIKE key
exchange do give the same shared secret.

• While key exchange based on graphs are different from the DLP, a lot of protocols have been adapted to
this new setting. A missing tool is pairings: it would be nice to have an analogue (and even define what an
analogue should look like) for isogenies. Somewhat related: I would like to explore in more details Huang’s
proposal for trilinear maps [Hua18; Hua19].

• While we are on fancy things: the algorithmic theory of modular form is well developed (see eg modular
symbols). What about the algorithmic aspects of topological modular forms (eg from the context of HoTT)?
Could they ever have cryptographic applications?

• One of the biggest societal impact of cryptography in recent years has been the rise of Bitcoin and other
cryptocurrencies. These have led to new cryptographic challenge (eg constructing VDF for proof of stake, or
the challenge of constructing distributed or threshold EC-DSA since this is the signature used for Bitcoin
rather than Schnorr signatures). Could isogeny based cryptosystems have other novel applications? The
existence of VDF constructed from isogenies and pairings already show that not all applications are for
post-quantum cryptography.

1.7 updates

Since my hdr defense, the science has advanced and some results have been improved. I have tried to update this
document to mention these new results. In order to emphasize these are new results since my defense, they are
marked with Update @date.

13

Part I

ALGOR I THMS FOR ABEL I AN VAR I E T I E S

15

2 AR I THMET I C OF ABEL I AN VAR I E T I E S

contents
2.1 Introduction 17
2.2 Abelian varieties over ℂ 19
2.3 Coordinates and polarisations 20
2.4 Algebraic theta functions 21
2.5 Descent theory and Mumford’s isogeny formula 22

2.5.1 Descent theory 22
2.5.2 The isogeny formula for 𝜃-functions 24

2.6 Symmetry and symmetric theta structures 25
2.6.1 Descending symmetric line bundles 26
2.6.2 Symmetric theta structures 27
2.6.3 Symmetry and isogenies 28

2.7 Addition formula and equations for abelian varieties 30
2.8 Riemann relations and the differential addition 33

2.8.1 Unicity of the differential addition 33
2.8.2 Using the differential addition 35
2.8.3 Analytic interpretation of the differential addition 36
2.8.4 Applications of the differential addition 37

2.9 Affine lifts and differential addition law in other models 39
2.9.1 Functions constructed from an explicit version of the theorem of the square 39
2.9.2 Computing a theta structure 40
2.9.3 Trivialisations of the line bundle 41

2.10 Changing level and application to isogenies 42
2.10.1 Raising level via an isogeny 42
2.10.2 Raising level on the same variety 44
2.10.3 Descending level 47

2.11 Rationality 47
2.12 Arithmetic on Kummer varieties 49

2.12.1 Arithmetic of Kummer groups 49
2.12.2 Riemann relations in the theta model of level 2 50
2.12.3 From level 2 to level 4 52

2.13 Conclusion and perspectives 53

2.1 introduction

In this Chapter, we study the arithmetic of abelian varieties, given a particular model. Complex abelian varieties are
particularly convenient for two reasons: first they are completely determined by a lattice 𝛬. Secondly, if we represent
𝛬 as ℤ𝑔 ⊕ 𝛺ℤ𝑔 where 𝛺 is in the Siegel space (this is essentially the same as choosing a principal symplectic form
𝐸 on 𝛬), then we can use the analytic theta functions 𝜃 [𝑎

𝑏] (𝑧, 𝛺), which give both analytic coordinates on 𝐴, but
also coordinates on the moduli space of abelian varieties via the theta constants 𝜃 [𝑎

𝑏] (0, 𝛺).
A remarkable fact of the theory of abelian varieties is that most of the results on complex abelian varieties hold

for a general abelian variety 𝐴/𝑘, possibly making adjustments when dealing with level 𝑝 in characteristic 𝑝. For
instance 𝐴[ℓ](𝑘) is of cardinal ℓ2𝑔 in characteristic 𝑝 ≠ ℓ, but 𝐴[𝑝](𝑘) has at most 𝑝𝑔 points. However 𝐴[𝑝] is
always a finite flat commutative group scheme over 𝑘 of rank 𝑝2𝑔.

One way to “recover” the lattice 𝛬 algebraically is to instead use the Tate modules 𝑇ℓ𝐴 and D𝑝𝐴 (here D𝑝𝐴 is
the Dieudonné module associated to 𝐴(𝑝) rather than the “physical” Tate module 𝑇𝑝(𝐴)). Like 𝛬, which is dual

17

2 Arithmetic of abelian varieties

of the singular homology 𝐻1(𝐴, ℤ) in the complex case, the Tate module 𝑇ℓ𝐴 is the dual of the étale cohomol-
ogy 𝐻1

𝑒𝑡(𝐴, ℤℓ) and 𝑇𝑝(𝐴) (which is already defined contragradiently) is given by the crystalline cohomology
𝐻1

𝑐𝑟𝑦𝑠(𝐴𝑘/𝑊(𝑘), ℤ𝑝). We refer to [Rob21, Section 2.2.5] for more details.
In this Chapter we will explain how Mumford’s theory [Mum66; Mum67a; Mum67b] gives an algebraic theory

of theta functions. Since they are keys to a lot of the algorithmic result developed in this document, I give a quick
summary of Mumford’s result in Sections 2.2 to 2.7. Ideally I would have just referred to [Rob10], but in my thesis I
only develop the theory of theta functions given by a symmetric theta structure on a totally symmetric line bundle.
This conflates three different algorithmic tools:

1. the theta group 𝐺(ℒ) and its action on the section 𝛤(𝐴, ℒ), which encode descent (and will be extremely
useful for isogenies). We stress that the theta group exists for any model.

2. the notion of a (symmetric) theta structure, which gives an explicit isomorphism of 𝐺(ℒ) with anHeisenberg
group 𝐻(𝛿). This is what allows to pick up theta functions as the unique (up to a constant) basis of 𝛤(𝐴, ℒ)
induced by an explicit description of the unique irreducible representation of 𝐻(𝛿). A drawback is that the
isomorphism may only be defined over a field extension.

3. A symmetric theta structure when ℒ is furthermore assumed to be totally symmetric (ie the square of a
symmetric line bundle), hence of level 𝑛 even. This notion is extremely useful because Mumford (and Kempf)
give the equations of (a compactification of) the universal abelian scheme 𝒳𝑔,𝑛 → 𝒜𝑔,𝑛, where 𝒜𝑔,𝑛 is the
moduli of abelian varieties with a symmetric level 𝑛 theta structure. In particular the theta constants 𝜃𝐴

𝑖 (0)
are coordinates on 𝒜𝑔,𝑛, and Mumford gives both the equations that the theta constants need to satisfy, but
also all the equations of 𝐴, given only the theta constants.

Having explicit equations is of course key for algorithmic applications. Moreover, since the theta structure allows
to control the action of the theta group explicitly, we have very nice isogeny formula, see Theorem 2.5.7.

There are some drawbacks in working only with symmetric theta structure of even level. First, if we have a
principal polarisation ℒ on 𝐴 and we want to compute an ℓ-isogeny with ℓ odd, we only need to know the action
of the theta group 𝐺(ℒℓ) to compute the isogeny, so we would like to work in level ℓ odd. Likewise, level 𝑛 = 3
is sufficient to get a very ample line bundle by Lefschetz theorem, but if we want 𝑛 even we need to work with
𝑛 = 4. Finally for reasons that will become apparent in Section 2.6, the notion of symmetry is easier to handle (in
particular it is canonical, hence invariant by the Galois action) when the level is odd. Apart from dealing with odd
level theta structure, we may want to be able to compute the arithmetic of an abelian variety (addition, pairings,
isogenies) on models not coming from theta structures (if only for rationality consideration). For instance we may
want to work with Jacobians by using the curve directly and not imposing a theta structure. The arithmetic on
Jacobians reduces to explicit Riemann-Roch on the curves, we refer to [Hes02; Khu04; Khu07; ACL20; ACL21] for
efficient algorithms.

So I needed to extract what exactly was used in our algorithms for isogenies and pairings in [LR12; CR15; LR10;
LR15a] using the theta models and see how to extend them to other models. Of course the drawback is that for
other models it is harder to get a full set of equations; we cannot just compute a theta null point as in the theta
model!

This allows to distinguish between the algorithmic applications of the theta group from that of the theta structures.
For instance:

1. If we have an explicit way to compute the action of 𝐺(ℒ) on 𝛤(𝐴, ℒ) and a section 𝑠 ∈ 𝛤(𝐴, ℒ), we can
deduce a basis of 𝛤(𝐴, ℒ). (This is simply because the action is irreducible).

2. If furthermore we fix a symplectic basis of 𝐾(ℒ) with respect to the commutator pairing 𝑒ℒ, the explicit
action of 𝐺(ℒ) allows us to construct explicitly the theta basis of 𝛤(𝐴, ℒ) induced by a (symmetric) theta
structure compatible with the basis, see Recipe 2.5.4

3. The explicit action of 𝐺(ℒ) also allows us to compute the isogeny by any kernel 𝐾 ⊂ 𝐾(ℒ) isotropic for 𝑒ℒ
(almost by definition of the theta group).

4. In Section 2.9, I explain how given the explicit action of 𝐺(ℒ) and an explicit version of the theorem of the
square, we can compute both sections of 𝐺(ℒℓ) and the explicit action of 𝐺(ℒℓ) on these sections.

5. There are two models where I know how to compute Item 4. The theta model (of even level 𝑛) of course,
where the explicit action of 𝐺(ℒ) is part of the definition and the theorem of the square is given by Riemann
relations (in the form of differential additions). And the Jacobian model, where ℒ is the polarisation induced

18

2.2 Abelian varieties over ℂ

by the theta divisor 𝛩. Here the action of 𝐺(ℒ) is trivial since ℒ is principal, and the theorem of the square
is (implicitly) given by the wonderful article [CE14].

6. In particular, for both these models we can compute a theta structure for 𝐺(ℒℓ) using Item 2 or compute
the isogeny for 𝐾 isotropic in 𝐾(ℒℓ) using Item 3, eventually combining both to compute a theta model of
the isogenous abelian variety.
So we have a very general framework for isogeny computations, unifying the approach of [CE14] using
Jacobian models and the approach of [LR12; CR15] using the theta model, which we will develop further in
Chapter 4. We also have a general framework for generalised Thomae formula, in particular for Jacobians. In
fact this gives not only the theta constant, but the theta coordinates of any point on the Jacobian. This last
application is a new result.

The outline is as follow: we briefly describe complex abelian varieties in Section 2.2, polarisations and the theta
group in Section 2.3, and algebraic theta functions in Section 2.4. Using the theta group for descent is in Section 2.5,
as a special case we give Mumford’s isogeny theorem for the theta model. Symmetric theta structures are described
in Section 2.6, and Mumford’s explicit equations (as a generalisation of Riemann’s relations) in Section 2.7.

This (finally) allow us to do some algorithmic work: we explain how to compute additions (and generalisations)
in Section 2.8. In Section 2.9 we explain how to apply the tools of Section 2.8 in other models. We describe how to
apply Item 6 in practice in the theta model in Section 2.10, namely we give formula to change the level (both up
and down) and to compute isogenies. In Section 2.11 we give a rationality criteria for a symmetric theta structure
over a finite field, this refines [Rob10, § 3.7]. In Section 2.12 we describe what kind of arithmetic we can compute
on Kummer varieties. Finally we give some perspectives in Section 2.13.

2.2 abelian varieties over ℂ

We very briefly summarizes the core structure of complex abelian varieties. Longer summaries can be found in
[Rob21, Section 2.1] and [Rob10, § 2], and good references are [Mum70a, Chapter 1], [BL04].

A complex abelian variety is a torus 𝐴 = ℂ𝑔/𝛬, where 𝛬 is a ℤ-lattice, that is algebraisable (which means that
there is an embedding of 𝐴 into projective space). By Appell-Humbert’s theorem, this last condition is equivalent to
the existence of a positive Hermitian form 𝐻 on ℂ𝑔 such that if we let 𝐸 = ℑ𝐻 be the symplectic form associated
to 𝐻, 𝐸(𝛬, 𝛬) ⊂ ℤ.

In summary, a complex abelian variety 𝐴/ℂ is given by three datum (we refer to [Rob21, Section 2.1] for more
details):

• Linear data: A complex vector space 𝑉 of dimension 𝑔;

• Arithmetic data: A ℤ-lattice 𝛬 of rank 2𝑔 in 𝑉;

• Quadratic data: A positive Hermitian form 𝐻 such that 𝐸(𝛬, 𝛬) ⊂ ℤ.

The hermitian form is not intrinsic to the abelian variety, but it allows:

• To define projective coordinates on 𝐴 (ie functions on 𝑉 = ℂ𝑔 which satisfy an automorphic equation with
respect to 𝛬, see [Rob10, § 2.3]1);

• A morphism 𝛷𝐻 (a polarisation) from 𝐴 to its dual abelian variety 𝐴: 𝑥 ↦ 𝐻(𝑥, ⋅) [Rob10, § 2.4].

So 𝐻 is intrinsic to the notion of polarized abelian variety. The kernel of the polarisation 𝛷𝐻 is given by 𝛬⋆/𝛬
where 𝛬∗ = {𝑥 ∈ ℂ𝑔 ∣ 𝐸(𝑥, 𝛬) ⊂ ℤ} is the ℤ-orthogonal of 𝛬.

We can describe principally polarised abelian varieties very concretely as given by a period matrices 𝛺 ∈ ℌ𝑔,
the Siegel space of symmetric matrices 𝛺 such that ℑ𝛺 > 0. The lattice is then 𝛬 = ℤ𝑔 ⊕ 𝛺ℤ𝑔, and the principal
polarisation is 𝐻 = (ℑ𝛺)−1 (see [Rob10, §2.5] for the description of the moduli space of polarisations of type
(𝛿1, … , 𝛿𝑔)).

Using the period matrices, we can then construct theta functions, which give the projective coordinates corre-
sponding to 𝐻. For 𝛺 ∈ ℌ𝑔 and 𝑎, 𝑏 ∈ ℚ𝑔, analytic theta functions are defined as

𝜃 [𝑎
𝑏] (𝑧, 𝛺) = ∑

𝑛∈ℤ𝑔
𝑒𝜋𝑖 𝑡(𝑛+𝑎)𝛺(𝑛+𝑎)+2𝜋𝑖 𝑡(𝑛+𝑎)(𝑧+𝑏). (2.1)

1Technically the polarisation 𝐻 only induces an ample line bundle when we fix a semi-character for it. In other words 𝐻 only determines
the algebraic equivalence class of the line bundle. But for an ample line bundle, all algebraically equivalent line bundles are translate of it
since the polarisation is an isogeny, so we gloss over this detail.

19

2 Arithmetic of abelian varieties

A basis of sections for the polarisation 𝑛𝐻 is then given by (𝜃 [0
𝑏] (⋅, 𝛺/𝑛))𝑏∈𝑍(𝑛) where 𝑍(𝑛) = (ℤ/𝑛ℤ)𝑔. By

Lefschetz theorem, they give a projective embedding whenever 𝑛 ≥ 3. It is often convenient to consider other
basis given for 𝑛 = 𝑛1𝑛2 by (𝜃 [𝑎/𝑛1

𝑏/𝑛2
] (𝑛1⋅, 𝑛1𝛺/𝑛2))𝑎∈𝑍(𝑛1),𝑏∈𝑍(𝑛2) (see [Rob10, Exemple 4.4.9], for instance if

𝑛 = 4 it is customary to take 𝑛1 = 𝑛2 = 2).
The lattice 𝛬 and the theta functions play a key role in making the theory of complex abelian varieties over ℂ

explicit and algorithmic [BL04; Mum83; Mum84]. Luckily they can be (mostly) extended over an arbitrary field 𝑘
(by relying on much deeper results from algebraic geometry). When 𝐴/𝑘 be an abelian variety over a field 𝑘, The
lattice 𝛬 is replaced by the Tate modules 𝑇ℓ(𝐴) and D𝑝(𝐴) (when 𝑘 is of characteristic 𝑝). If ℒ is an ample line
bundle on 𝐴, the polarisation 𝐻 corresponding to it is instead represented by the induced isogeny 𝛷ℒ𝐴 → 𝐴 and
the induced Weil pairing on the Tate modules 𝑇ℓ(𝐴). Finally Mumford constructed an algebraic theory of theta
functions in [Mum66; Mum67a; Mum67b]. We now explain this.

2.3 coordinates and polarisations

We will denote by 𝑘 a field, which will be assumed perfect for simplicity2, and 𝑘 its algebraic closure. We denote by
𝑝 the characteristic of 𝑘. By abuse of notation, we say that a number 𝑛 is prime to 𝑝 whenever 𝑝 = 0 or when 𝑝 > 0
and 𝑛 ∧ 𝑝 = 1.

Let 𝐴/𝑘 be an abelian variety. To represent points 𝐴(𝑘) of 𝐴 we need coordinates. Since 𝐴 is proper, there is no
nonconstant morphism from 𝐴 to an affine variety, hence in particular there is no global affine coordinates (ie
no affine embedding 𝐴 → 𝔸𝑁

𝑘). So we either need to work with local affine coordinates (for instance Mumford
coordinates on the Jacobian of an hyperelliptic curves), or with projective coordinates.

Projective coordinates can be characterized as follow: assume that we have a map (defined everywhere), 𝜙 ∶
𝐴 → ℙ𝑁

𝑘 . Then the coordinates 𝑋0, … , 𝑋𝑁 on ℙ𝑁
𝑘 induces coordinates 𝑋𝑖 ∘ 𝜙 on 𝐴. More precisely: 𝑋𝑖 are global

sections of the line bundle 𝑂ℙ𝑁
𝑘

(1), and 𝑋𝑖 ∘ 𝜙 are global sections of its pullback ℒ = 𝜙∗𝑂ℙ𝑁
𝑘

(1).
Conversely, if ℒ is a line bundle on 𝐴, we may use its global sections (assuming it has some) to construct a

birational map from 𝐴 to ℙ𝑁 = ℙ(𝛤(ℒ)).

Proposition 2.3.1 (Lefschetz). Let ℒ be an ample line bundle on 𝐴. Then

• ℒ2 is always base point free. This means that 𝐴 → ℙ(𝛤(ℒ2)) is defined everywhere on 𝐴. If ℒ is indecompos-
able, this map is an embedding if ℒ is not principal, and an embedding of the Kummer variety 𝐴/ ± 1 if ℒ is
principal.

• ℒ3 is always very ample. This means that 𝐴 → ℙ(𝛤(ℒ3)) is an embedding.

Proof. This is [Mum70a, §17] and [BL04, §4.4, §4.5, §4.8]. See also [Rob21, Theorems 2.1.2 and 2.2.11 and Re-
mark 2.1.3].

For a complex abelian variety, (the algebraic equivalence class of) a line bundle is represented by its associated
Hermitian form 𝐻, which induces a polarisation 𝐴 → 𝐴. Algebraically we can construct the polarisation associated
to a line bundle ℒ as follow. The dual abelian variety is defined as 𝐴 = Pic0(𝐴), and the polarisation is given by
𝛷ℒ(𝑃) = 𝑡∗

𝑃ℒ ⊗ℒ−1. If ℒ is ample, 𝛷ℒ is an isogeny, which means that every line bundle algebraically equivalent
to ℒ (ie of the form ℒ ′ = ℒ ⊗ ℳ where ℳ ∈ Pic0(𝐴)) is a translate 𝑡∗

𝑃ℒ of ℒ.
If 𝒫 is the Poincare bundle on 𝐴 × 𝐴, and 𝑦 ∈ 𝐴, we denote by 𝒫𝑦 its restriction to the fiber 𝒫 ∣𝐴×{𝑦}; this is

the line bundle algebraically equivalent to 0 on 𝐴 represented by 𝑦. If 𝛷ℒ(𝑥) = 𝑦, then 𝑡∗
𝑥ℒ ≃ ℒ ⊗ 𝒫𝑦.

Furthermore, if 𝛷ℒ is a separable isogeny, the kernel 𝐾(ℒ)(𝑘) of the polarisation is of the form (ℤ𝑔/𝛿ℤ𝑔)2

where 𝛿 = (𝛿1, … , 𝛿𝑔), with 𝛿1 ∣ … , 𝛿𝑔 defines the type (or level) of the polarisation.
For simplicity we will mainly deal with principally polarised abelian varieties3, ie with an ample line bundle ℒ0

such that 𝛷ℒ0
is an isomorphism, and consider line bundles of the form ℒ = ℒ𝑛

0 , with 𝑛 prime to 𝑝. Then ℒ is of
level 𝑛, ie 𝐾(ℒ)(𝑘) ≃ (ℤ𝑔/𝑛ℤ𝑔)2. By [Mum66], a line bundle ℒ is of the form ℒ0

𝑚 if and only if 𝐴[𝑚] ⊂ 𝐾(ℒ).
So conversely if we have a line bundle ℒ of level 𝑛, it is the 𝑛-th power of a principal polarisation ℒ0.

There is a canonical pairing 𝑒ℒ on 𝐾(ℒ), see Chapter 3. Gluing together the pairings 𝑒ℒ𝑛 along the 𝐾(ℒ𝑛) yield
a pairing on the Tate modules 𝑇ℓ(𝐴). This is the algebraic interpretation of the hermitian form 𝐻.

2In practice 𝑘 will be a finite field, a number field, or the complex numbers.
3Of course Mumford’s theory of algebraic theta function holds for a general separable polarisation, see [Rob10, § 3] for a summary.

20

2.4 Algebraic theta functions

By definition, if 𝑃 ∈ 𝐾(ℒ), 𝑡∗
𝑃ℒ ≃ ℒ. Of great importance in the theory of descent (which will be used to

construct isogenies in Chapter 4) and the theory of algebraic theta function is Mumford’s theta group which encode
these isomorphisms:

Definition 2.3.2. The group 𝐺(ℒ)(𝑘) is the set {(𝑃, 𝜓𝑃) ∣ 𝑃 ∈ 𝐾(ℒ) and 𝜓𝑃 ∶ ℒ → 𝑡∗
𝑃ℒ is an isomorphism},

with the natural composition law (𝑃, 𝜓𝑃) ⋅ (𝑄, 𝜓𝑄) = (𝑃 + 𝑄, 𝑡∗
𝑃𝜓𝑄 ∘ 𝜓𝑃). (The definition is functorial, hence

does define a finite flat group 𝐺(ℒ) over 𝑘).
The theta group acts on the global sections 𝑠 ∈ 𝛤(𝐴, ℒ) of ℒ via (𝑃, 𝜓𝑃) ⋅ 𝑠 = 𝑡∗

−𝑃𝜓𝑃(𝑠).

Some terminology: if ℒ is separable, a subgroup 𝐾 ⊂ 𝐾(ℒ) is isotropic if 𝑒ℒ(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝐾(𝑘). It is
maximal isotropic if it is not included in a larger isotropic subgroup. A symplectic decomposition is a decomposition
𝐾(ℒ) = 𝐾1(ℒ) ⊕ 𝐾2(ℒ) where 𝐾𝑖(ℒ) are isotropic (they are then necessarily maximal isotropic). We need to
be careful that a maximal isotropic group 𝐾′ needs not come from a symplectic decomposition, for instance if
ℒ = ℒ𝑛

0 is a power of a principal polarisation of level 𝑛 and 𝑛 = 𝑚2 is a square, 𝐴[𝑚] is maximal isotropic in
𝐾(ℒ) = 𝐴[𝑛]. Since the distinction is important, we say that 𝐾 is maximal totally isotropic if there is a symplectic
decomposition 𝐾(ℒ) = 𝐾 ⊕ 𝐾′ (we call 𝐾′ a symplectic supplement of 𝐾), and 𝐾 is totally isotropic if it is included
in a maximal totally isotropic group.

2.4 algebraic theta functions

We explain Mumford’s theory of algebraic theta functions, developed in [Mum66; Mum67a; Mum67b; Mum69;
Mum91]. The articles by Kempf [Kem88; Kem89a; Kem89b; Kem90; Kem92] also provide useful refinements. We
fix an 𝑛 prime to 𝑝, and an ample line bundle ℒ of level 𝑛.

Let𝑍(𝑛) = ℤ𝑔/𝑛ℤ𝑔, and �̂�(𝑛) = 𝜇𝑔
𝑛 be its Cartier dual (�̂�(𝑛)(𝑘) is simply the group of characters on𝑍(𝑛)), and

𝐾(𝑛) = 𝑍(𝑛) × �̂�(𝑛). The canonical duality ⟨𝑥1, 𝑥2⟩ = 𝑥2(𝑥1) on 𝑍(𝑛) × �̂�(𝑛), induces a canonical symplectic
pairing 𝑒𝑛 on 𝐾(𝑛) via 𝑒𝑛((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = ⟨𝑥1, 𝑦2⟩⟨𝑦1, 𝑥2⟩−1. We may conveniently recover ⟨𝑥1, 𝑥2⟩ as
𝑒𝑛((𝑥1, 0), (0, 𝑥2)).

Since 𝑒ℒ is non degenerate, there is a symplectic isomorphism (𝐾(ℒ), 𝑒ℒ) ≃ (𝐾(𝑛), 𝑒𝑛). We will often denote
𝐾(𝑛)1 = 𝑍(𝑛) and 𝐾(𝑛)2 = �̂�(𝑛) so that 𝐾(𝑛) = 𝐾(𝑛)1 ⊕ 𝐾(𝑛)2 is the canonical symplectic decomposition of
𝐾(𝑛). The symplectic isomorphism above then induces a symplectic decomposition 𝐾(ℒ) = 𝐾(ℒ)1 ⊕ 𝐾(ℒ)2.

We have a canonical exact sequence

1 → 𝑘
∗

→ 𝐺(ℒ)(𝑘) → 𝐾(ℒ)(𝑘) → 0 (2.2)

where 𝑘
∗

= 𝑍(𝐺(ℒ)(𝑘)) is the centralizer of 𝐺(ℒ). Since 𝐺(ℒ) is a central extension of 𝐾(ℒ), it is represented
by a 2-cocycle 𝜓 ∶ 𝐾(ℒ)2 → 𝑘.

But on 𝐾(𝑛) there is a canonical 2-cocycle given by 𝜓((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = ⟨𝑥1, 𝑦2⟩, which corresponds to
the Heisenberg group ℋ(𝑛) = 𝔾𝑚 × 𝑍(𝑛) × �̂�(𝑛), with group law on ℋ(𝑛)(𝑘) given by (𝛼, 𝑥) ⋅ (𝛽, 𝑦) =
(𝛼𝛽𝜓(𝑥, 𝑦), 𝑥 + 𝑦) = (𝛼𝛽⟨𝑥1, 𝑦2⟩, 𝑥1 + 𝑦1, 𝑥2 + 𝑦2). Since 𝑒𝑛(𝑥, 𝑦) = 𝜓(𝑥,𝑦)

𝜓(𝑦,𝑥) , we may recover this pairing as the

commutator pairing 𝑒𝑛(𝑥, 𝑦) = ̃𝑥 ̃𝑦 ̃𝑥−1 ̃𝑦−1 for any lifts ̃𝑥, ̃𝑦 ∈ ℋ(𝑛)(𝑘) of 𝑥, 𝑦 ∈ 𝐾(𝑛)(𝑘).

Theorem 2.4.1 ([Mum66]). Any isomorphism 𝛩ℒ ∶ (𝐾(𝑛), 𝑒𝑛) → (𝐾(ℒ), 𝑒ℒ) (over 𝑘) extends to an isomorphism
𝛩ℒ ∶ ℋ(𝑛) → 𝐺(ℒ). The isomorphism 𝛩ℒ is said to be a theta structure (of level 𝑛) for 𝐺(ℒ) (or (𝐴, ℒ)).

Furthermore the action of 𝐺(ℒ) on 𝑉 = 𝛤(𝐴, ℒ) is irreducible, hence is isomorphic (unique up to the action of
𝔾𝑚) to the unique irreducible action of ℋ(𝑛) on 𝑊 (a vector space of dimension 𝑛𝑔) such that 𝔾𝑚 acts naturally on
𝑊.

This Theorem has two consequences. The first is that the pairing 𝑒ℒ may be recovered as the commutator pairing
on 𝐺(ℒ). The second is that once we have chosen a theta structure 𝛩ℒ, there is a canonical way to fix a basis of
sections (𝜃𝑖)𝑖∈𝑍(𝑛) of ℒ (over 𝑘). For instance, if we choose for 𝑊, 𝑊 = Hom(𝑍(𝑛), 𝔾𝑚) with the representation
of ℋ(𝑛) on 𝑘-points given by (𝛼, 𝑥1, 𝑥2) ⋅ 𝑓 (𝑦) = 𝛼⟨𝑦, −𝑥2⟩𝑓 (𝑦 − 𝑥1), then 𝜃𝑖 is the unique basis (up to the action
of 𝔾𝑚) such that 𝛩ℒ(𝛼, 𝑥1, 𝑥2)𝜃𝑖 = 𝛼⟨𝑖 + 𝑥1, −𝑥2⟩𝜃𝑖+𝑥1

. These are Mumford’s algebraic theta functions.
In particular, the action by translation by the points of 𝐾(ℒ), ie of 𝑛-torsion, is completely specifiedwhenworking

with these theta coordinates. It is convenient to rewrite the action above using 𝑒ℒ rather than as ⟨𝑥1 + 𝑖, −𝑥2⟩ =
𝑒𝑛((𝑥1 + 𝑖, 0), (0, −𝑥2)). So via the isomorphism 𝛩ℒ, we may reindex our theta function by (𝜃𝑖)𝑖∈𝐾1(ℒ) and then
we have if 𝑢 ∈ 𝐾(ℒ)(𝑘), (𝜃𝑖(𝑥 − 𝑢))𝑖∈𝐾1(ℒ) = (𝑒ℒ(𝑖 + 𝑢1, −𝑢2)𝜃𝑖+𝑢1

(𝑥))𝑖∈𝐾1(ℒ) ∈ ℙ(𝑉).

21

2 Arithmetic of abelian varieties

One very important point is that the theta structure induces more: the projective action of 𝐾(ℒ) on ℙ(𝑉) lift to
an affine action of 𝐺(ℒ) on 𝑉, and the theta structure fix a canonical basis (up to a constant) for this affine action,
not only for the projective action.

We note that the theta structure 𝛩ℒ induces via 𝛩ℒ a symplectic basis on 𝐾(ℒ). But if we index the theta
functions by 𝐾1(ℒ) the only really important data for the characterisation of the theta functions is [Rob10, § 3.3]:

• The symplectic decomposition 𝐾(ℒ) = 𝐾1(ℒ) ⊕ 𝐾2(ℒ);

• The choice of lifts 𝐾𝑖(ℒ) of 𝐾𝑖(ℒ) in 𝐺(ℒ) for 𝑖 = 1, 2.

We call this data an level structure. A further choice of symplectic basis (ie a choice of theta structure) then just
corresponds to the level structure and an isomorphism 𝑍(𝑛) ≃ 𝐾1(ℒ), ie a numbering of theta functions.

Remark 2.4.2. It is interesting to describe the automorphisms of the theta group. First we note that the translation
by 𝑐 ∈ 𝐴(𝑘) yields an isomorphism between 𝐺(ℒ) and 𝐺(𝑡∗

𝑐ℒ). If 𝜓 ∶ ℒ → ℒ ′ is an isomorphism of line bundles,
it induces an isomorphism between 𝐺(ℒ) and 𝐺(ℒ ′). When 𝑐 ∈ 𝐾(ℒ)(𝑘), we can combine the two isomorphisms
to get an automorphism conj𝑐 of 𝐺(ℒ). This is simply the action by conjugation of any lift ̃𝑐 ∈ 𝐺(ℒ)(𝑘) of 𝑐
[Rob10, p. 45]. Concretely, conj𝑐 ⋅(𝑥, 𝜓) = (𝑥, 𝑒ℒ(𝑐, 𝑥)𝜓) (hence does not depends on ̃𝑐). Every automorphism
of 𝐺(ℒ) inducing the identity on 𝐾(ℒ) is of this type [Rob10, Proposition 3.5.1]. More generally we have the
following exact sequence for the Heisenberg group of level 𝛿:

0 𝐾(𝛿) Aut(𝐻(𝛿)) Sp(𝐾(𝛿)) 0.

And the action of conj𝑐 on the theta functions is given by [Rob10, § 3.5]

𝜃′
𝑖 = ⟨−𝑖, 𝑐2⟩𝜃𝑐1+𝑖. (2.3)

Next every symplectic automorphism of 𝐾(ℒ) lift to an automorphism of the theta group (since we can always
find level subgroups when 𝑘 = 𝑘), a precise description of these lifts is in [Rob10, Remarque 3.5.2].

One important automorphism is the automorphism 𝑆 which transposes the level subgroups 𝐾1(ℒ) and 𝐾2(ℒ),
and which acts on the theta functions by:

𝜃′
𝑖 = ∑

𝑗∈𝑍(𝑛)
⟨−𝑗, 𝜎(𝑖)⟩𝜃𝑗. (2.4)

The Segre embedding will be algorithmically very useful Chapter 4. This comes in part from the fact that it is
induced by a product theta structure:

Lemma2.4.3. Let (𝐴, ℒ) and (𝐵, ℳ) be two polarised abelian varieties. Let ℒ⋆ℳ denote the line bundle 𝑝∗
1ℒ⊗𝑝∗

2ℳ
on 𝐴 × 𝐵, where 𝑝𝑖 are the projections. Then 𝐺(ℒ ⋆ ℳ) ≃ 𝐺(ℒ) × 𝐺(ℳ)/𝔾𝑚 (where 𝔾𝑚 acts via 𝛼 ↦ (𝛼, 𝛼−1)),
and if we fix a theta structure 𝛩ℒ and 𝛩ℳ respectively, the induced product theta structure 𝛩ℒ⋆ℳ satisfy

(𝜃ℒ⋆ℳ
𝑖)𝑖∈𝐾1(ℒ)×𝐾1(ℳ) = 𝜃ℒ

𝑝1(𝑖)𝜃ℳ
𝑝2(𝑖).

Proof. This is [Mum66, Lemma 3 p. 323].

2.5 descent theory and mumford’s isogeny formula

2.5.1 Descent theory

Descent theory will mainly be useful to construct isogeny algorithms, but we also need it here because the arithmetic
relations on the theta functions are derived by Mumford in [Mum66] from the isogeny theorem.

Let 𝑓 ∶ 𝐴 → 𝐵 be an étale isogeny, and let 𝐾 = Ker 𝑓 be its kernel (which is separable since 𝑓 is étale). Descent
theory tells us when the line bundle ℒ on 𝐴 is the pullback of a line bundle ℳ on 𝐵, and also how their sections
relate. This is a special case of Grothendieck’s fpqc descent of quasi-coherent sheaves.

If we fix an isomorphism 𝜓 ∶ 𝑓 ∗ℳ ≃ ℒ, then clearly if 𝑃 ∈ 𝐾(𝑘), not only 𝑡∗
𝑃ℒ ≃ ℒ, so 𝑃 ∈ 𝐾(ℒ), but 𝜓

induces a canonical lift 𝑔𝑃 ∈ 𝐺(ℒ) of 𝑃 (which does not depend on the choice of 𝜓). Moreover, if 𝑠 ∈ 𝛤(𝐵, ℳ) is
a section, then 𝑓 ∗𝑠 is clearly a section of ℒ invariant by 𝐾. Descent theory tells us that both converse are true.

22

2.5 Descent theory and Mumford’s isogeny formula

Theorem 2.5.1. Let 𝑓 ∶ 𝐴 → 𝐵 be an isogeny, and ℒ a line bundle on 𝐴. Then the line bundle ℒ descends to a line
bundle ℳ on 𝐵 if and only if 𝐾 = Ker 𝑓 is a subgroup of 𝐾(ℒ) which lift (as a group) into 𝐺(ℒ).

Let 𝜌 ∶ 𝐺(ℒ) → 𝐾(ℒ) denote the projection. Then the following conditions are equivalent:

• 𝐾 admits a lift 𝐾;

• 𝐾 is isotropic for 𝑒ℒ;

• 𝜌−1(𝐾) is a commutative group.

If these conditions are satisfied, then the following data are equivalent:

• the choice of a lift 𝐾 of 𝐾 (over 𝑘);

• a choice of descent ℳ of ℒ on 𝐵;

• a character 𝜒′ on 𝜌−1(𝐾), which is the identity on 𝔾𝑚 (via 𝐾 = ker𝜒′).

Then the choice of lifts form a torsor under the action of the characters 𝜒 ∈ 𝐾∨ on 𝜒′ (hence on the equivalent data
𝐾 and ℳ). Since 𝑒ℒ is non degenerate, 𝜒 is of the form 𝜒𝑃 ≔ 𝑒ℒ(𝑃, ⋅), for a 𝑃 ∈ 𝐾(ℒ) well defined modulo 𝐾⟂, ie
𝐾∨ ≃ 𝐾(ℒ)/𝐾⟂. The corresponding descent of ℒ is then ℳ𝜒𝑃

≔ 𝑡𝑓 (𝑃)ℳ.
Assume now that 𝑓 if of degree prime to 𝑝, and fix a lift 𝐾 corresponding to ℳ. Then the action of 𝐾 on 𝛤(𝐴, ℒ) is

semi-simple, so we have a decomposition of the global sections in terms of the eigenvalues:

𝛤(𝐴, ℒ) = ⊕𝜒∈𝐾∨𝛤(𝐴, ℒ)𝜒.

In particular, for 𝜒 = Id , we get 𝛤(𝐴, ℒ)𝐾 = 𝛤(𝐵, ℳ), via 𝑠 ∈ 𝛤(𝐵, ℳ) ↦ 𝑓 ∗𝑠 = 𝑠 ∘ 𝑓. More generally, if
𝜒 = 𝜒𝑃 = 𝑒ℒ(𝑃, ⋅), we have 𝛤(𝐴, ℒ)𝜒𝑃 = 𝛤(𝐵, ℳ𝜒𝑃

).
Fixing lifts 𝑔𝑃 ∈ 𝐺(ℒ)(𝑘) of a set of representative of 𝐾(ℒ)(𝑘)/𝐾⟂, then each 𝑔𝑃 induces an isomorphism

𝛤(𝐴, ℒ)𝐾 → 𝛤(𝐴, ℒ)𝜒𝑃. Hence a section 𝑠 ∈ 𝛤(𝐴, ℒ) decomposes uniquely as 𝑠 = ∑𝑃∈𝐾(ℒ)/𝐾⟂ 𝑔𝑃𝑓 ∗(𝑠𝑃), for
sections 𝑠𝑃 ∈ 𝛤(𝐵, ℳ).
Proof. This is proved in [Mum66] and summarized in [Rob10, § 3.3, § 3.4]. The last part is [Kem89a, §5].

Here, to prove that if 𝐾 is isotropic there is always a lift 𝐾, it is important that the polarisation is separable. Indeed,
if 𝐾 is isotropic for 𝑒ℒ, then lifting 𝐾 amount to finding a section of the projection 𝜋−1(𝐾) ⊂ 𝐺(ℒ) → 𝐾 where
𝜋 ∶ 𝐺(ℒ) → 𝐾(ℒ) is surjective with kernel 𝔾𝑚 and 𝜋−1(𝐾) is abelian by isotropy of 𝐾. Since the polarisation is
separable, the degree of 𝐾 is prime to 𝑝, hence a lift exists by general theory. A word of caution: even if 𝐾 is rational
its lift may not be. We will come back to this in Section 2.11.

More Details 2.5.2. Let 𝐾 be a commutative level subgroup of 𝐺(ℒ) as above. Then 𝛤(ℒ) is 𝐾-isomorphic to 𝛤(ℒ)𝐾 ⊗ ℂ[𝐾],
where the action on the right is the regular action.

We recover that in the irreducible decomposition 𝛤(ℒ) = ⊕𝜒∈𝐾∨𝛤(ℒ)𝜒, and using that 𝐾∨ ≃ 𝐺(ℒ)/𝑍(𝐾), any non
trivial representative 𝑔𝜒 induces an isomorphism 𝛤(ℒ)𝐾 with 𝛤(ℒ)𝜒. We also have that 𝛤(ℒ)𝐾 is of dimension 𝑚 where
𝑚2 = #𝑍(𝐾)/𝐾.

Remark 2.5.3. More generally, for an isogeny 𝑓 ∶ 𝐴 → 𝐵, descent theory gives an equivalence of category between
descent line bundles of 𝐵 and descent data of line bundles on 𝐴. In particular, if ℒ descends to ℳ, an isomorphism
𝜓 ∶ ℒ → 𝑡∗

𝑥ℒ descends to an isomorphism ℳ → 𝑡∗
𝑓 (𝑥)ℳ if and only if it commutes with the level subgroup 𝐾. We

deduce that 𝐺(ℳ) ≃ 𝒵(𝐾)/𝐾.

Recipe 2.5.4. If a theta structure is fixed on 𝐺(ℒ), with the corresponding lifts 𝐾(ℒ)1, 𝐾(ℒ)2 of the symplectic
decomposition, we recover the theta basis as follow: 𝜃0 is a section 𝜃0 ∈ 𝛤(𝐴, ℒ)𝐾(ℒ)2 (which is of dimension 1),
and 𝜃𝑖 for 𝑖 ∈ 𝐾(ℒ)1 is 𝑔𝑖 ⋅ 𝜃0 where 𝑔𝑖 ∈ 𝐾(ℒ)1 is the unique lift above 𝑖.

This gives the following recipe to construct the theta basis on a general model, provided we can compute sections
of 𝛤(ℒ) and know how to evaluate the action of G(ℒ). First take a section 𝑠 ∈ 𝛤(ℒ), and take its trace under
𝐾(ℒ)2. If this trace is non zero, this is our 𝜃0. Then the action of 𝐾(ℒ)1 gives the 𝜃𝑖.

As a corollary of Theorem 2.10.12, if 𝑠 ∈ 𝛤(ℒ) is any non zero section, then the 𝑔𝑃 ⋅ 𝑠 for 𝑃 ∈ 𝐾(ℒ) (any
choice of 𝑔𝑃 above 𝑃) generates 𝛤(ℒ). And the 𝑔𝑃 ⋅ 𝑠, for 𝑃 ∈ 𝐾1(ℒ) form a basis for a generic 𝑠; this is also the
case when 𝑠 is invariant by ̃𝐾2(ℒ).

More generally Theorem 2.5.1 gives the following recipe to construct a basis of sections, given a level subgroup
𝐾. Take a basis of sections of 𝛤(𝐴, ℒ)𝐾, either taking under 𝐾 traces of sections in 𝛤(𝐴, ℒ), or by computing a
basis of 𝛤(𝐵, ℳ), where ℳ is the descent of ℒ to 𝐵 = 𝐴/𝐾 via 𝐾 and then taking their pullback via 𝐴 → 𝐵. Then
a basis is given by taking the action of lifts of a set of representatives of 𝐾(ℒ)/𝐾⟂.

23

2 Arithmetic of abelian varieties

2.5.2 The isogeny formula for 𝜃-functions

From the description of theta functions in Recipe 2.5.4, it is easy to derive an isogeny formula for an isogeny
𝑓 ∶ (𝐴, ℒ) → (𝐵, ℳ) provided we have two compatible theta structures for ℳ and ℒ. Since compatibility of theta
structure is a key concept, it is worthwhile to decompose it in several steps, this will allow us to simplify checking
compatibility (see Section 2.6).

Definition 2.5.5 (Compatibility definitions). If 𝑓 ∶ 𝐴 → 𝐵 is an isogeny such that ℒ = 𝑓 ∗ℳ, and we have a theta
structure 𝛩ℒ on 𝐴, there are several natural compatibility conditions [Rob10, § 3.6].

• The kernel 𝐾 = Ker 𝑓 is compatible with 𝛩ℒ (or simply with the symplectic decomposition) if 𝐾 = 𝐾1 ⊕ 𝐾2
with 𝐾𝑖 ⊂ 𝐾(ℒ)𝑖, 𝑖 = 1, 2.

• In this case 𝐾⟂ also decomposes along the 𝐾(ℒ)𝑖. Since 𝐾(ℳ) ≃ 𝐾⟂/𝐾, the symplectic decomposition
𝐾(ℒ) = 𝐾(ℒ)1 ⊕ 𝐾(ℒ)2 induces a unique compatible symplectic decomposition 𝐾(ℳ) = 𝐾(ℳ)1 ⊕
𝐾(ℳ)2 (equivalently we may define it as 𝐾(ℳ)𝑖 = 𝑓 (𝐾(ℒ)𝑖) ∩ 𝐾(ℳ)). We say that the symplectic
decomposition of 𝐾(ℳ) is compatible with the symplectic decomposition of 𝐾(ℒ).

• The decomposition of 𝐾 above along with the lifts 𝐾(ℒ)𝑖 induce a canonical lift 𝐾 = 𝐾1 ⊕ 𝐾2 of 𝐾 (since 𝐾
is isotropic this is indeed a group). Then ℳ is compatible with 𝛩ℒ if it is the descent of ℒ with respect to
this 𝐾. In this case we say that ℳ (or 𝐾) is compatible with 𝛩ℒ.
We may assume this is the case up to changing ℳ in its algebraic equivalence class. Or if we want to keep 𝐾,
then we can always change the theta structure and extend 𝐾𝑖 to lifts of 𝐾(ℒ)𝑖 for 𝑖 = 1, 2 by Lemma 2.5.6.

• Likewise, the decomposition of 𝐾⟂ above induces a canonical lift of 𝐾⟂
1 and of 𝐾⟂

2 . (Alternatively, we have
𝑍(𝐾), the centralizer of any lift of 𝐾 in 𝐺(ℒ) is equal to 𝜋−1(𝐾⟂), and we take the lift 𝐾⟂

𝑖 as 𝑍(𝐾)∩𝐾(ℒ)𝑖.)
We have 𝐺(ℳ) ≃ 𝑍(𝐾)/𝐾, hence there is a unique level structure on 𝐺(ℳ) compatible with the one on
𝐺(ℒ). In this case we say that the level structure of ℳ is compatible with the level structure of ℒ.

• Once this compatible level structure is fixed, the theta structures on 𝐺(ℳ) is then simply given by a
numerotation of 𝐾⟂

1 /𝐾1.

It is easy to check that if 𝛩ℒ is compatible with 𝛩ℳ, then conj𝑐 𝛩ℒ is compatible with conj𝑓 (𝑐) 𝛩ℳ.

Lemma 2.5.6. With the notations above, if 𝛩ℳ is a theta structure on ℳ, there is always a compatible theta structure
on ℒ.

Proof. It is obvious that there is a symplectic decomposition of 𝐾(ℒ) compatible with 𝐾 and the symplectic
decomposition of 𝐾(ℳ). The key point is to show that we can always find a 𝛩ℒ compatible with 𝐾 and the level
structure of ℳ.

This result from the following fact: if 𝐾𝑎 ⊂ 𝐾𝑏 are isotropic subgroups of 𝐾(ℒ), then a lift 𝐾𝑎 extends to a lift
𝐾𝑏, which follow easily from the proof of Theorem 2.5.1

This was a bit long to define, but once we have compatible theta structures we are rewarded by the fact that the
theta functions are compatible.

Theorem 2.5.7 (Mumford’s isogeny formula). Let 𝑓 ∶ 𝐴 → 𝐵 be an isogeny, ℳ a line bundle on 𝐵, ℒ = 𝑓 ∗ℳ,
and fix compatible theta structures on 𝐺(ℳ) and 𝐺(ℒ). Then, with the notations above, writing (𝜃ℳ

𝑖)𝑖∈𝐾1ℳ and
(𝜃ℒ

𝑗)𝑗∈𝐾1(ℒ) the corresponding theta basis, we have up to a constant 𝜆 ∈ 𝑘
∗
:

𝑓 ∗𝜃ℳ
𝑖 = ∑

𝑗∈𝐾1(ℒ)∣𝑓 (𝑗)=𝑖
𝜃ℒ

𝑗 = ∑
𝑗∈𝐾1

𝜃ℒ
𝑖0+𝑗,

where 𝑖0 is any preimage of 𝑖 by 𝑓.

Proof. This is an elementary computation, proved in [Mum66]. See [Rob10, Théorème 3.6.4] for an overview of
the proof.

We may recover this Theorem by applying our recipe from Recipe 2.5.4. The function 𝜃ℳ
0 is a section invariant

by 𝐾2(ℳ). Its pullback 𝑓 ∗𝜃ℳ
0 is also invariant by 𝐾. So it suffice to find a non zero trace under 𝐾 + 𝑍(𝐾)2. But if

apply the trace to 𝜃ℒ
0 we get ∑𝑗∈𝐾1

𝜃ℒ
𝑗 since it is invariant by 𝐾(ℒ)2. To get 𝑓 ∗𝜃ℳ

𝑖 for 𝑖 in 𝐾1(ℳ), by compatibility

24

2.6 Symmetry and symmetric theta structures

of the theta structure we need to apply 𝑔𝑖0 , the canonical lift above 𝑖0, to ∑𝑗∈𝐾1
𝜃ℒ

𝑗 , for any 𝑖0 ∈ 𝐾1(ℒ) such that

𝑓 (𝑖0) = 𝑖. We get 𝑓 ∗𝜃ℳ
𝑖 = ∑𝑗∈𝐾1

𝜃ℒ
𝑖0+𝑗.

Of course if 𝐾 ⊂ 𝐾2(ℒ), it is immediately obvious that 𝜃ℒ
0 descends to 𝐵 and is invariant by 𝐾2(ℳ), and that if

𝑖0 ∈ 𝐾1(ℒ) is the unique point above 𝑖 ∈ 𝐾1(ℳ), 𝜃ℒ
𝑖0 descends to 𝜃ℳ

𝑖 (alternatively, that the action of the lift of 𝑖
on 𝜃ℳ

0 is the same as the action of the lift of 𝑖0 on 𝜃ℒ
0 , by definition of compatible theta structures). By applying the

transposition matrix 𝑆 we also get the formula for 𝐾 ⊂ 𝐾1(ℒ), and the general case 𝐾 = 𝐾1 × 𝐾2 follows from
these two cases.

A key point is that 𝜆 does not depend on the points of 𝐴 and 𝐵 where the theta functions are evaluated. In
other words Theorem 2.5.7 can be interpreted (up to this constant, that we will usually normalize to 1) as an affine
isogeny formula, where we see the 𝜃𝑖 not only as projective coordinates on ℙ(𝑉) (where 𝑉 = 𝛤(𝐴, ℒ)), but as
affine coordinates on the affine cone 𝔸(𝑉) ∖ 0 above it. We can reformulate this as follow: if 𝑓 ∶ (𝐴, ℒ) → (𝐵, ℳ)
is an isogeny, ℳ is induced by the choice of 𝐾, and we have an isomorphism between ℒ and 𝑓 ∗ℳ. The group 𝔾𝑚
act on these isomorphisms, and we may rigidify things by choosing a rigidificiation of ℒ at 0𝐴 and ℳ at 0𝐵 and
taking ̃𝑓 to be compatible with these rigidifications, via ̃𝑓 (𝜃𝑖(̃0𝐴)) = 𝜃𝑖(̃0𝐵).

Example 2.5.8. Let (𝐴, ℒ) be an abelian variety, ℒ a polarisation of level 𝑛, and assume we have a symmetric
theta structure on ℒℓ. Let 𝐴[ℓ] = 𝐴1[ℓ] ⊕ 𝐴2[ℓ] be the symplectic decomposition induced by this theta structure,
and let 𝐵 = 𝐴/𝐴2[ℓ], 𝐶 = 𝐴/𝐴1[ℓ], 𝜋1 ∶ 𝐴 → 𝐵, 𝜋2 ∶ 𝐴 → 𝐶. Then if we let ℒ descend to ℳ and 𝒩 on 𝐵 and 𝐶
respectively as induced by the theta structure on ℒℓ, and fix a compatible theta structure on ℳ and 𝒩, we get that
(fixing constants equal to one) 𝜃ℳ

𝑖 = 𝜃ℒ
𝑖 for 𝑖 ∈ 𝑍(𝑛) ⊂ 𝑍(ℓ𝑛) and 𝜃𝒩

𝑖 = ∑𝑗∈𝑍(ℓ𝑛)∣𝜎(𝑗)=𝑖∈𝑍(𝑛) 𝜃ℒ
𝑗 for 𝑖 ∈ 𝑍(𝑛)

and 𝜎 ∶ 𝑍(ℓ𝑛) → 𝑍(𝑛) the natural quotient map.
We say that the first isogeny is of the first type, and the second isogeny of the second type. We have seen in the

proof of Theorem 2.5.7 that the formula for isogenies of the second type follow from the formula for the first type
combined with the action of 𝑆, and that we can combine both types to treat the general case of this Theorem.

Recipe 2.5.9. We may combine our recipe from Recipe 2.5.4 and Theorem 2.5.7 as follow. Suppose that we have
a model (𝐴, ℒ) (not necessary a theta model), where we know how to compute sections of ℒ, how to compute
the action of 𝐺(ℒ) on these sections, and know 𝐾. We want to compute a theta model of (𝐵, ℳ), where ℳ is the
descent of ℒ by 𝐾, and 𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾 is the isogeny.

We let 𝐾′
2 be an extension of 𝐾 above a maximal isotropic subgroup 𝐾′

2 ⊃ 𝐾 in 𝑓 −1𝐾(ℳ) = 𝐾⟂ for the
commutator pairing 𝑒ℒ. Fix a symplectic decomposition 𝑓 −1𝐾(ℳ) = 𝐾′

1 ⊕ 𝐾′
2 and let 𝐾′

1 be any lift in 𝐺(ℒ).
Then 𝐾′

1, 𝐾′
2 induce a theta structure on (𝐵, ℳ), and for this theta structure 𝑓 ∗𝜃ℳ

0 is any non zero trace of a
section 𝑠 ∈ 𝛤(𝐴, ℒ) under 𝐾′

2. The isogeny 𝑓 induces a bijection between 𝐾′
1 and 𝐾1(ℳ), and for 𝑖 ∈ 𝐾1(ℳ),

if 𝑖0 ∈ 𝐾′
1 is its unique preimage, 𝜃ℳ

𝑖 is given by the action of 𝑔𝑖0 the lift of 𝑖0 in 𝐾′
1 on 𝑓 ∗𝜃ℳ

0 (seen in 𝛤(𝐴, ℒ)).
Since 𝑖0 ∈ 𝐾⟂, 𝑔𝑖0 commutes with 𝐾, so 𝑔𝑖0𝑓 ∗𝜃ℳ

0 is invariant under 𝐾, so descends to (𝐵, ℳ).
Anticipating Section 2.6, if we want a symmetric theta structure on (𝐵, ℳ), and 𝐾 is of odd order, then there is a

unique symmetric lift of 𝐾. Furthermore if ℒ = ℒℓ
0, ℒ0 of level 𝑛 even, ℓ prime to 𝑛 and we have a symmetric

theta structure on ℒ0, there is an unique extension to a symmetric theta structure on ℒ, hence a unique symmetric
theta structure on (𝐵, ℳ) compatible with the symmetric theta structure on ℒ0. The symmetric choices of 𝐾′

𝑖
(compatible with 𝐾𝑖(ℒ0)) are thus canonicals.

2.6 symmetry and symmetric theta structures

The descent theorem will be a key theorem for isogeny algorithms, but a drawback is that there are many possible
lifts for a kernel 𝐾, hence many possible ways to descend a line bundle ℒ to 𝐵.

Indeed we saw in Theorem 2.5.1 that the possible lifts form a torsor under 𝐾(ℒ)/𝐾⟂. So if we take for 𝑓 an
ℓ-isogeny, with ℒ = ℒℓ

0 (ℒ0 of level 𝑛 prime to ℓ) and 𝐾 maximal isotropic in 𝐴[ℓ], there are ℓ𝑔 possibilities.
Algorithmically, this means that the possible lifts will be described by equations of large degree, from which it will
be hard to find a point (let alone a rational point). So we want to rigidify the number of choices. Mumford’s key
idea in [Mum66] is that a good way to rigidify choices is to impose ℒ and ℳ to be symmetric.

Unfortunately, this is not always possible: a symmetric line bundle may not always descend to a symmetric
line bundle. So we need a bit of technicality in this section to describe the obstruction, and to carefully define
symmetric theta structures. We will be rewarded by precise conditions for rationality of a symmetric theta structure

25

2 Arithmetic of abelian varieties

in Section 2.6 and as mentioned this will be very useful for isogenies: in the situation of an ℓ-isogeny as above when
ℓ is odd there is only one possible symmetric lift!

So it will be worthwhile to analyze the situation in more detail, since symmetry will greatly simplify compatibility
conditions, see Section 2.6.3.

2.6.1 Descending symmetric line bundles

Let ℒ be a line bundle. There is always a symmetric line bundle in its equivalence class. Indee, since [−1]∗ℒ
is algebraically equivalent to ℒ (because Pic0(𝐴) are exactly the antisymmetric line bundles by [Rob10, p. 63]),
[−1]∗ℒ = ℒ ⊗ 𝒰 where 𝒰 ∈ 𝐴 = Pic0(𝐴), so ℒ ⊗ 𝒱 where 𝒱2 = 𝒰 is a symmetric line bundle algebraically
equivalent to ℒ. The other symmetric ones are given by ℒ ⊗ 𝒯 where 𝒯 ∈ 𝐴[2]. If ℒ is ample, these are the 𝑡∗

𝑐ℒ
where 𝑐 ∈ [2]−1𝐾(ℒ)/𝐾(ℒ).

The symmetry [−1]∗ℒ ≃ ℒ of ℒ then induces an external action 𝛾−1 on 𝐺(ℒ). An element 𝑔 ∈ 𝐺(ℒ)(𝑘) is
said to be symmetric if 𝛾−1 ⋅ 𝑔 = 𝑔−1, and a level subgroup 𝐾 of 𝐾 is said to be symmetric if all its element are.
Symmetry rigidifies the choices, because if 𝑔 is symmetric, then 𝛼𝑔 is symmetric for 𝛼 ∈ 𝑘

∗
if and only if 𝛼 = ±1.

So there are only two symmetric lifts above each 𝑔 (if we are not in characteristic two). Indeed if we take any 𝑔,
𝛾−1𝑔 = 𝛼𝑔−1 for an 𝛼 ∈ 𝑘

∗
, so 𝛽𝑔 is symmetric whenever 𝛽2 = 1/𝛼.

Remark 2.6.1. If 𝑔 is symmetric, the 𝑔𝑛 are symmetric for all 𝑛 ∈ ℤ. More generally if 𝑔1 and 𝑔2 are symmetric,
then 𝑔1𝑔2 is symmetric if and only if they commute. So the set of symmetric elements above an isotropic subgroup
𝐾 is a group.

If 𝑔 is symmetric above a point of order 𝑚, there are two cases: if 𝑚 is even then 𝑔 is of order 𝑚. If 𝑚 is odd, then
either 𝑔 or −𝑔 (the other symmetric element above the same point) is of order 𝑚, the other is of order 2𝑚 [Rob10,
Remarque 4.2.11]. In particular there is a unique symmetric lift of ⟨𝑥⟩ when 𝑥 is a point of odd order in 𝐾(ℒ).

There is an obstruction to lifting symmetrically an isotropic subgroup 𝐾 of 𝐾(ℒ). We assume from now on that
𝑝 ≠ 2. If 𝜙 ∶ ℒ ∼→ [−1]∗ℒ is an isomorphism, normalised by being the identity on 0𝐴, and 𝑥 ∈ 𝐴[2](𝑘) is a point
of 2-torsion, then 𝜙 induces an isomorphism 𝜙(𝑥) ∶ ℒ(𝑥) ∼→ [−1]∗ℒ(−𝑥) = ℒ(𝑥), and we define 𝑒ℒ

∗ (𝑥) ∈ 𝑘
∗
as

𝜙(𝑥) ∶ ℒ(𝑥) 𝑒ℒ
∗ (𝑥)−−−−→ ℒ(𝑥).

Proposition 2.6.2. The application 𝑒ℒ
∗ ∶ 𝐴[2] → 𝑘∗ has value in {±1}, and satisfy the following properties:

(i) 𝑒ℒ⊗ℳ
∗ = 𝑒ℒ

∗ × 𝑒ℳ
∗ if ℒ and ℳ are symmetric on 𝐴.

(ii) If 𝑓 ∶ 𝐴 → 𝐵 is a morphism, and ℳ a symmetric line bundle on 𝐵, then for all 𝑥 ∈ 𝐴[2] 𝑒𝑓 ∗ℳ
∗ (𝑥) = 𝑒ℳ

∗ (𝑓 (𝑥)).
(iii) If 𝑦 ∈ 𝐴[2](𝑘) correspond to a symmetric line bundle ℒ on 𝐴 (algebraically equivalent to zero), then 𝑒ℒ

∗ (𝑥) =
𝑒2(𝑥, 𝑦) where 𝑒2 is the Weil pairing on 𝐴[2] × 𝐴[2].

(iv) The form 𝑒ℒ
∗ is the quadratic from associated at the pairing 𝑒ℒ2 on 𝐴[2] × 𝐴[2]:

𝑒ℒ
∗ (𝑥 + 𝑦) = 𝑒ℒ

∗ (𝑥)𝑒ℒ
∗ (𝑦)𝑒ℒ2(𝑥, 𝑦).

Furthermore, if ℒ is represented by a symmetric divisor 𝐷, then 𝑒ℒ
∗ (𝑥) = (−1)𝑚(𝑥)−𝑚(0𝐴) where 𝑚(𝑥) is the

multiplicity of 𝐷 at 𝑥.

Proof. This is all proved by Mumford in [Mum66, §2], see [Rob10, Proposition 4.2.2].

By Propositions 2.6.2.(i) and 2.6.2.(iii), we have that 𝑒𝑡∗
𝑐ℒ

∗ (𝑥) = 𝑒ℒ
∗ (𝑥)𝑒ℒ2(𝑥, 𝑐), if 𝑐 ∈ [2]−1𝐾(ℒ) (so that 𝑡∗

𝑐ℒ
is symmetric). In particular 𝑒ℒ

∗ determines the class of the symmetric ℒ in its algebraic equivalence class.
This quadratic form measures the obstruction to finding a symmetric lift of 𝐾.

Proposition 2.6.3. Let ℒ be a symmetric line bundle on 𝐴 and 𝐾 an isotropic subgroup of 𝐾(ℒ). The following are
equivalent:

i) There exists a symmetric level subgroup 𝐾 above 𝐾.

ii) For all 𝑥 ∈ 𝐾[2], 𝑒ℒ
∗ (𝑥) = 1.

iii) If 𝐵 = 𝑋/𝐾 and 𝑓 ∶ 𝐴 → 𝐵 is the corresponding isogeny, there exists a symmetric line bundle ℳ on 𝐵 such that
𝑓 ∗ℳ ≃ ℒ.

26

2.6 Symmetry and symmetric theta structures

Proof. Once again this is proved by Mumford in [Mum66, §2], see [Rob10, Proposition 4.2.12]. The link between
𝑒ℒ
∗ and the obstruction to lifting comes from the fact that if 𝑥 ∈ 𝐾(ℒ)[2] and ̃𝑥 is any lift to 𝐺(ℒ), then

𝛾−1(̃𝑥) = 𝑒ℒ
∗ (𝑥) ̃𝑥.

If 𝑒ℒ
∗ (𝑥) = 1 for all 𝑥 ∈ 𝐴[2] we say that ℒ is totally symmetric. Mumford shows that ℒ is totally symmetric

if and only if it is the square of a symmetric line bundle (equivalently if it descends to 𝐴/ ± 1, [Mum66, § 2,
Proposition 1]). In this case the level is divisible by two, and ℒ is the unique totally symmetric line bundle in its
algebraic equivalence class (by Proposition 2.6.2 or because two symmetric line bundles differ by an element of
𝐴[2] which is killed when taking squares). By Proposition 2.6.2, the pullback of a totally symmetric line bundle is
totally symmetric.

More Details 2.6.4. We can refine Proposition 2.6.3 as follow: a level subgroup 𝐾 above 𝐾 is symmetric if and only if it is stable
by 𝛿−1, if and only if the corresponding descent ℳ is symmetric.

2.6.2 Symmetric theta structures

There is also a canonical action of 𝛾−1 on the Heisenberg group via 𝛾−1 ⋅ (𝛼, 𝑥) = (𝛼, −𝑥).

Definition 2.6.5. A symmetric theta structure is an isomorphism ℤ/2ℤ ⋊ ℋ(𝑛) ∼→ ℤ/2ℤ ⋊ 𝐺(ℒ), where
1 ∈ ℤ/2ℤ acts by 𝛾−1.

Equivalently, this is the same thing as a theta structure 𝛩 ∶ ℋ(𝑛) → 𝐺(ℒ) which commutes with the action of
𝛾−1, or to the fact that the level subgroups 𝐾(ℒ) are symmetric, or that 𝛩 is [−1]-compatible with itself [Rob10,
Proposition 4.2.9].

The theta functions induced by a symmetric line bundle have a symmetry:

𝛾−1𝜃𝑖 = 𝜖𝜃−𝑖, (2.5)

where 𝜖 = ±1 [Mum66].
By Proposition 2.6.3, if ℒ is totally symmetric there is no obstruction to lifting isotropic subgroups symmetrically.

In particular a symmetric theta structure always exist.
Conversely, for a general ℒ, a symmetric theta structure exists by Proposition 2.6.3 if and only if 𝑒ℒ

∗ is trivial on
𝐾(ℒ)1[2] and 𝐾(ℒ)2[2]. But since 𝑒ℒ2 is always trivial on 𝐴[2] ∩ 𝐾(ℒ), this is equivalent to 𝑒ℒ

∗ being trivial on
𝐾(ℒ)[2]. Hence if 𝑛 is even, a symmetric theta structure exists if and only if 𝑒ℒ

∗ (𝑥) = 1 for all 𝑥 ∈ 𝐴[2], ie if ℒ is
totally symmetric. By contrast if 𝑛 is odd, there is no obstruction, so a symmetric theta structure always exist.

Lets say that ℒ is symmetrisable if ℒ is symmetric and 𝑒ℒ
∗ is trivial on 𝐾(ℒ)[2]. It is instructive to look at what

happens when we use the conjugation by 𝑐 ∈ 𝐾(ℒ)(𝑘). First if ℒ is symmetrisable, the other symmetric line
bundles are given by the action of 𝑦 ∈ 𝐴[2](𝑘). If 𝑦 corresponds to 𝒫𝑦, then ℒ ⊗ 𝒫𝑦 ≃ 𝑡∗

𝑐ℒ where 𝛷ℒ(𝑐) = 𝑦 is
symmetrisable if and only if 𝑦 is orthogonal to 𝐾(ℒ)[2](𝑘) for the Weil pairing 𝑒2, so the set of symmetrisable line
bundles is in bijection with 𝐴[2](𝑘)/𝐾(ℒ)[2](𝑘). Conversely, once a symmetric theta structure is fixed, all other
ones (inducing the identity on 𝐾(ℒ)) are induced by the conjugation action of 𝐾(ℒ)[2](𝑘) [Rob10, p. 67].

We formulated the above paragraph in such a way that it is valid for a general type of polarisation. If we go back
to our usual setting of ℒ = ℒ𝑛

𝐴,1, we see that there are two cases: if 𝑛 is even, there is one symmetrisable line
bundle in its equivalence class, the totally symmetric one. But there are 22𝑔 symmetric theta structures possible
(once a symplectic decomposition of 𝐾(ℒ) is fixed). But if 𝑛 is odd, all symmetric line bundles are symmetrisable,
but each has only one symmetric theta structure on it.

Remark 2.6.6. By Remark 2.6.1, if we have a symmetric theta structure on 𝐺(ℒ) and ℓ is odd, then given a
symplectic decomposition of 𝐾(ℒℓ) compatible with the decomposition of 𝐾(ℒ), there is a unique extension to a
symmetric theta structure on 𝐺(ℒℓ). If ℓ is prime to the level 𝑛 of ℒ, it suffices to give a symplectic decomposition
of 𝐴[ℓ].

Remark 2.6.7 (Symmetric automorphisms). The symmetric automorphisms of the Heisenberg group (hence the
theta group) fit into the exact sequence

0 𝐾(𝛿)[2] Aut𝑠𝑦𝑚(𝐻(𝛿)) Sp(𝐾(𝛿)) 0.

27

2 Arithmetic of abelian varieties

If 𝛿 = (𝑛, … , 𝑛) and 2 ∣ 𝑛, analytically, the symmetric automorphisms correspond to the action of Sp2𝑔(ℤ)/𝛤(𝑛, 2𝑛)
where 𝛤(𝑛, 2𝑛) ⊂ Sp2𝑔(ℤ) is Igusa’s level subgroup of matrices 𝑀 = (𝑎 𝑏

𝑐 𝑑) such that 𝑀 ≡ Id (mod 𝑛) and
diag(𝑏) = diag(𝑐) = 0 (mod 2𝑛).

Using Remark 2.4.2 we may recover the projective action of Sp2𝑔(ℤ) on theta functions. Let us detail this since
this will be useful to study the fibers of the modular correspondance in Section 5.2.2. Since we know how to act
by 𝑐 for 𝑐 ∈ 𝐾(𝑛)[2], it remains to explain how to compute the action of any symmetric lift 𝜓 of a symplectic
automorphism 𝜓 of 𝐾(𝑛). These symplectic automorphisms are generated by:

• The matrix 𝑆, which transpose 𝐾1 and 𝐾2. We may lift the action by using the same level subgroups 𝐾𝑖(ℒ)
(just permuted), so we get that the action described in Remark 2.4.2 is symmetric.

• Matrices of the form (𝑎 0
0 𝑡𝑎−1), in other word a permutation of 𝐾1(𝑛). We may also keep the same level

subgroup, and we have the same theta functions, just numeroted under the new permutation.

• Matrices of the form (1 0
𝑐 1). In otherwords, 𝜓(𝑖, 𝑗) = (𝑖, 𝜓0(𝑗) + 𝑗) where 𝜓0 has for matrix 𝑐 in the

symplectic basis. In this case we let 𝜁 be a primitive 2𝑛-root of unity, so that we have an isomorphism
𝛼 ∶ 𝑍(ℓ𝑛) → �̂�(ℓ𝑛), in such a way that if 𝑥, 𝑦 ∈ 𝑍(ℓ𝑛), ⟨𝑥, 𝛼(𝑦)⟩ = 𝜁2 ∑𝑔

𝑖=1 𝑥𝑖𝑦𝑖 . We may define a symmetric
lift via 𝜓(𝛼, 𝑖, 𝑗) = (𝛼 ⟨𝑖,𝜓0(𝑖)⟩

2 , 𝑖, 𝜓0(𝑖) + 𝑗), where ⟨𝑥,𝑓 (𝑦)⟩
2 ≔ 𝜁∑𝑔

𝑖=1 𝑥𝑖𝑦𝑖. The action is given by [Rob10, p.
141] as 𝜓.𝜃𝑖 = ⟨𝑖,−𝜓0(𝑖)⟩

2 𝜃𝑖.

Of course this is only one part of the content of the full theta modular equations [Mum83; BL04], whose affine
constant determines the full behaviour of the theta constants as modular functions. We refer to [Can20] for an
exciting approach to the functional equation of theta functions from an algebraic point of view.

2.6.3 Symmetry and isogenies

By compatibility of 𝑒ℒ
∗ with isogenies, if 𝑓 ∶ 𝐴 → 𝐵 is an étale isogeny of degree prime to 2, then if ℒ is symmetrisable

and descends to a symmetric line bundle ℳ on 𝐵 = 𝐴/𝐾 (ie we have a symmetric lift 𝐾) then ℳ is symmetrisable.
Furthermore𝑍(𝐾) ⊂ 𝐺(ℒ) ↠ 𝐺(ℳ) sends symmetric elements into symmetric elements. So if𝛩ℒ is a symmetric
theta structure and 𝛩ℳ is compatible to it, it is symmetric (without conditions on the degree of 𝑓).

Lemma 2.6.8. In the case of symmetric theta structures, compatibility is easy to check:

• If 𝐾 is compatible with the symplectic decomposition of 𝐾(ℒ), ie 𝐾 = 𝐾1 ⊕ 𝐾2, and 𝐾 ⊂ 𝐾(ℒ)[2]⟂ (or
equivalently 𝐾(ℒ)[2] ⊂ 𝐾⟂; we also remark that we always have 2𝐾(ℒ) ⊂ 𝐾(ℒ)[2]⟂ ((In fact 2𝐾(ℒ) =
𝐾(ℒ)[2]⟂?))) then any symmetric theta structure on 𝐺(ℒ) induces the same symmetric 𝐾, hence the same ℳ.

• If furthermore 𝐾⟂ ⊂ 𝐾(ℒ)[2]⟂ (or equivalently 𝐾(ℒ)[2] ⊂ 𝐾), then every symmetric theta structure on
𝐺(ℒ) induce the same symmetric theta structure on 𝐺(ℳ).

Proof. Indeed, changing the symmetric theta structure correspond to acting by conjugation by 𝑐 ∈ 𝐾(ℒ)[2], so
leave 𝐾 invariant if 𝐾 ⊂ 𝐾(ℒ)[2]⟂. The same reasoning holds for 𝐾⟂.

Remark 2.6.9. One needs to be careful that even if 𝐾 is compatible with the symplectic decomposition of 𝐾(ℒ),
there may not be a choice of symmetric theta structure compatible with a given symmetric 𝐾 (ie extending 𝐾 to
𝐾(ℒ)𝑖 may involve non symmetric elements), as the above Lemma shows. In other words one may need to change
ℳ by an algebraically equivalent line bundle. However, if ℳ is totally symmetric, the corresponding 𝐾 can always be
extended to a symmetric theta structure. Indeed take any symmetric theta structure on ℒ, this gives an ℳ ′ which is
symmetrisable. But ℳ is the only symmetrisable line bundle in its equivalence class, so is equal to ℳ ′. Since a totally
symmetric line bundle ℳ is of the form ℳ2

0 with ℳ0 symmetric, we have that 𝐵[2] ⊂ 𝐾(ℳ), hence 𝐴[2] ⊂ 𝐾⟂,
so this is coherent with the fact that every symmetric theta structure induce the same 𝐾 by Lemma 2.6.8, which is
thus the only one corresponding to the totally symmetric ℳ. In other words: if 𝐵[2] ⊂ 𝐾(ℳ), the only possible
symmetric descent of ℒ induced by a symmetric theta structure is the only totally symmetric line bundle in the
equivalence class of ℳ.

More Details 2.6.10. From the above discussion, in many case we have a canonical symmetric lift above 𝐾, following the same
idea as in Remark 2.6.6.

28

2.6 Symmetry and symmetric theta structures

From Remark 2.6.1 an element 𝑥 ∈ 𝐾 of odd order ℓ has a unique symmetric lift of order ℓ (the other is of order 2ℓ), when ℓ
is even the two symmetric lifts of 𝑥 have order ℓ. Hence when 𝐾 is of odd order, there is a unique symmetric lift 𝐾, hence a
unique descent of ℒ into a symmetric ℳ.

When the level of ℳ is even, we may ask for ℳ to be the unique totally symmetric line bundle on its equivalence class (so we
assume ℒ totally symmetric too). There are several symmetric lift of 𝐾, but assuming 𝐾 ⊂ 𝐾1(ℒ), the assumption above gives
𝐾 ⊂ 2𝐾(ℒ). Hence any symmetric lift of 𝐾1(ℒ) induces the same symmetric lift of 𝐾. This is the canonical symmetric lift of 𝐾.

More generally, we can examine the various symmetric level subroups above 𝐾. If there exists a symmetric level subgroup 𝐾
above 𝐾, the other ones are given by �̂�[2], ie by the conjugation action for 𝑐 ∈ (𝐾(ℒ)/𝐾⟂) [2] ≃ �̂�[2], so there are #𝐾[2]
such symmetric level subgroups. If 𝐾 corresponds to ℳ, conjugating by 𝑐 corresponds to ℳ ⊗ 𝒫𝑦 with 𝑦 = 𝛷ℳ(𝑓 (𝑐)) ∈ �̂�[2].

The other symmetrics ℳ ′ are given by all 𝑦 ∈ �̂�[2]. They are descent of ℒ ′ where ℒ ′ = ℒ ⊗ 𝒫𝑥, 𝑥 ∈ 𝐴[2] such that 𝐾 still
admit a symmetric lift in 𝐺(ℒ ′). This requires that 𝑥 is in the orthogonal of 𝐾 for the Weil pairing 𝑒2 on 𝐴[2] × 𝐴[2]. By the
above remark, each such ℒ ′ has #𝐾[2] symmetric descents, hence we recover all 22𝑔 symmetric descents. These ℒ ′ are of the
form 𝑡∗

𝑐ℒ where 2𝑐 ∈ 𝐾⟂ and since 𝑡𝑐ℒ ≃ 𝑡𝑐′ℒ if 𝑐 − 𝑐′ ∈ 𝐾(ℒ), there are #[2]−1𝐾⟂/𝐾(ℒ) such ℒ ′.
We now look at the descents ℳ ′ which are symmetrisable, assuming ℳ is. If we act by 𝑐 on ℒ, this gives ℳ ′ = 𝑡𝑓 (𝑐)ℳ.

And ℳ ′ is symmetric if 𝑐 ∈ [2]−1𝐾⟂. We compute for 𝑡 ∈ 𝐾(ℳ)[2], 𝑒ℳ ′
∗ (𝑡) = 𝑒ℳ

∗ (𝑡)𝑒2(𝑡, 𝛷ℳ(𝑓 (𝑐)). And 𝑒2(𝑡, 𝛷ℳ(𝑓 (𝑐)) =
𝑒ℳ2(𝑡, 𝑓 (𝑐)) = 𝑒ℒ2(𝑡′, 𝑐) = 𝑒ℒ(𝑡′, 2𝑐) where 𝑓 (𝑡′) = 𝑡, 𝑡′ ∈ (𝐾⟂/𝐾)[2]. If 2𝑐 ∈ 𝐾, ℳ ′ is symmetrisable, so there are only
#[2]−1𝐾/𝐾(ℒ) The span of the 2𝑡′ is equal to 2𝐾⟂ ∩ 𝐾, so either this equals 𝐾 (if 𝐾(ℒ)[2] ⊂ 𝐾⟂), in this case there is a
unique symmetrisable descent, otherwise there can be several symmetrisable descent, given by the elements of 𝑐 such that 𝑐 is
orthogonal to 2𝐾⟂ ∩ 𝐾.

Likewise, the symmetric theta structures on ℳ are in bijection with ̂𝐾⟂/𝐾[2] ≃ (𝐾(ℒ)/𝐾) [2]. On the other hand, there
are only 𝐾(ℒ)[2]/𝐾⟂ (resp. 𝐾(ℒ)[2]/𝐾) symmetric lifts of 𝐾 (reps 𝐾⟂) that are induced by a symmetric theta structure on ℒ
(see also Lemma 2.6.8).

Example 2.6.11. • ℒ of type (4, 4), 𝐾 of type (2, 0), 𝐾⟂ is of type (4, 2). The element 𝑓1 change the class of 𝑒1.

• ℒ of type (6, 6), 𝐾 of type (3, 0), 𝐾⟂ is of type (6, 2). There is only one symmetric descent, which is symmetrisable.

• ℒ of type (6, 6), 𝐾 of type (6, 0), 𝐾⟂ is of type (6, 0). The element 3𝑓1 gives another symmetric descent, which is still
symmetrisable.

When ℒ is symmetric, Mumford introduces in [Mum66, § 2] maps 𝜂2 ∶ 𝐺(ℒ2) → 𝐺(ℒ) and 𝜖2 ∶ 𝐺(ℒ) →
𝐺(ℒ2), and correspondingmorphisms on theHeisenberg groups 𝐻𝑛 and 𝐻2𝑛 (see Remark 2.8.7.(vi)). A compatible
theta structures for (ℒ, ℒ2) [Mum66, p. 317] is a pair of theta structures that is compatible with 𝜂2 and 𝜖2; the
theta structure on ℒ2 is then automatically symmetric since 𝜖2 ∘ 𝜂2 = 𝛿2 where 𝛿2(𝑧) = 𝑧3𝛾−1(𝑧). The same
holds for the theta structure on ℒ. Furthermore if 𝑥 ∈ 𝐴[2], and 𝑧 ∈ 𝐺(ℒ2) is of order 2 above 𝑥, 𝜂2(𝑧) = 𝑒ℒ

∗ (𝑥)
[Mum66, Proposition 6]. Mumford then shows, if ℒ is totally symmetric:

• Every symmetric theta structure on ℒ extends to a compatible symmetric theta structure on (ℒ, ℒ2).

• There is a bijection between symmetric theta structures on ℒ2 and compatible (symmetric) theta structures
on (ℒ, ℒ2).

• A symmetric theta structure on ℒ is completely determined by a symplectic basis of 𝐾(ℒ) and a compatible
symplectic basis of 𝐾(ℒ2). And conversely any symplectic basis of 𝐾(ℒ2) corresponds to one symmetric
theta structure on 𝐾(ℒ).

But beware that two different symplectic basis of 𝐾(ℒ2) above the one of 𝐾(ℒ) may lead to the same
symmetric theta structure on 𝐾(ℒ), we will see below in Lemma 2.11.1 and Corollary 2.11.2 that the
symmetric theta structure on 𝐾(ℒ) only depends on the symplectic decomposition of 𝐾(ℒ2) (and even
less than that).

Mumford then shows how to derive the duplication formula from a pair of compatible theta structures for (ℒ, ℒ2)
(see Corollary 2.7.2).

With this we can complement Lemma 2.6.8 as follow:

Lemma 2.6.12. Let 𝑓 ∶ (𝐴, ℒ) → (𝐵, ℳ) be an isogeny with ℳ totally symmetric, 𝐾 = Ker 𝑓, ℒ = 𝑓 ∗ℳ. Fix a
symplectic decomposition of 𝐾(ℒ) compatible with 𝐾. Then ℒ is totally symmetric, and all symmetric theta structure
on (𝐴, ℒ) are compatible with ℳ. Let 𝐾(ℒ2) = 𝐾1(ℒ2) ⊕ 𝐾2(ℒ2) be a symplectic decomposition inducing a given
symmetric theta structure on ℒ. This induces a symplectic decomposition of the orthogonal of 𝐾 in 𝐾(ℒ2), hence
via the isogeny a symplectic decomposition of 𝐾(ℳ2). This induces the symmetric theta structure on ℳ given by the
descent of the one on ℒ.

29

2 Arithmetic of abelian varieties

This reduces checking compatibility to checking compatibility of symplectic decompositions.
Since we want a generalised addition formula and we do not want to always restrict to totally symmetric line

bundles ℒ, we now follow Kempf [Kem89a]. We want a compatibility for all multiplications by [𝑛]. Compatibility
with [−1] means we want a symmetric theta structure. For compatibility with [2] we need a [2]-compatible theta
structure on ℒ4 and ℒ. Fix a symplectic decomposition of 𝐾(ℒ4). Then by Lemma 2.6.8 all symmetric theta
structures (compatible with this decomposition) on ℒ4 induce the same [2]-descent ℒ ′ and the same symmetric
theta structure on ℒ ′. So up to changing ℒ in its equivalence class, there exists a (unique) symmetric theta structure
compatible with the decomposition of 𝐾(ℒ4). By Remark 2.6.9, if 𝐴[2] ⊂ 𝐾(ℒ), then ℒ ′ is the only totally
symmetric line bundle in the equivalence class of ℒ.

Once we have replaced ℒ by ℒ ′ so that we have [2]-compatibility, we automatically are [𝑛]-compatible for any
𝑛:

Lemma 2.6.13. Fix a compatible symplectic decompositions for all 𝐾(ℒ𝑛) (𝑛 prime to 𝑝). We will call this an
∞-decomposition, they can be constructed by choosing symplectic decompositions on all 𝑇ℓ𝐴, ℓ prime to 𝑝.

Let ℒ ′ be the unique symmetric line bundle [2]-compatible with the symplectic decomposition of 𝐾(ℒ4) (so
ℒ ′ = ℒ if ℒ is totally symmetric). Then the symplectic decompositions of all 𝐾(ℒ𝑛) induce a unique symmetric theta
structure on all ℒ ′𝑛. These symmetric theta structures are compatible with all multiplications by [𝑛].

Proof. This is [Kem89a]. Essentially once we have normalized the duplication [2] ∶ (𝐴, ℒ4) → (𝐴, ℒ) (changing
ℒ if needed), this normalizes the rest. Indeed, a symplectic decomposition of 𝐴[ℒ4] induces a symmetric theta
structure on ℒ2, and one on ℒ (again here we may have to change ℒ in its equivalence class if it is not totally sym-
metric). Since ℒ2 is totally symmetric, we have compatibility for all other [𝑛]-isogenies, 𝑛-even by Lemma 2.6.12.
And for 𝑛 odd there is no problem, since the obstructions come from the 2-torsion.

In the casewhereℒ is totally symmetric, any compatible theta structure on (ℒ, ℒ2) extends to an∞-decomposition
(since they are induced by a symplectic decomposition of 𝐾(ℒ4)), so Kempf ’s notion is a generalisation of Mum-
ford’s.

From now on when we fix an ∞-decomposition on ℒ, we implicitly change ℒ to ℒ ′ if necessary. If 𝑓 ∶ 𝐴 → 𝐵 is
an isogeny, whose kernel is compatible with the symplectic decompositions of 𝐾(ℒℓ) for some ℓ, the symplectic
decomposition of 𝐾(ℒℓ) induces a unique symmetric lift 𝐾, hence a unique descent ℳ to 𝐵, and descending the
symplectic decompositions of ℒ𝑛ℓ via 𝑓 induce a symplectic decomposition of all ℳ𝑛, hence symmetric theta
structures on all ℳ𝑛, which are compatible with the symmetric theta structures on ℒ𝑛ℓ.

The ∞-decomposition on 𝐴 also induces one on all 𝐴𝑟, and using Lemma 2.4.3 the product theta structures are
all compatible. Imposing the compatibility conditions also determines the sign of 𝜖 in Equation (2.5): 𝛾−1𝜃𝑖 = 𝜃−𝑖
[Kem89a, Theorem 11].

2.7 addition formula and equations for abelian varieties

Now that the technicalities are over, we can finally get concrete equations.
In this section, we let (𝐴, ℒ) be a polarised abelian variety, and we fix once and for all an ∞-decomposition on

ℒ. We recall that to do that we may need to replace ℒ by an equivalent, and symmetric, line bundle (which will be
the totally symmetric one if the level is divisible by two).

Theorem 2.7.1 (The Koizumi-Kemp addition formula). Let 𝑓 ∶ 𝐴𝑟 → 𝐴𝑟 be an isogeny given by an integral 𝑟 × 𝑟
matrix 𝐹 such that

𝑡𝐹 ⎛⎜⎜⎜
⎝

𝑚1 0
⋱

0 𝑚𝑟

⎞⎟⎟⎟
⎠

𝐹 = ⎛⎜⎜⎜
⎝

ℓ1 0
⋱

0 ℓ𝑟

⎞⎟⎟⎟
⎠

(2.6)

where the 𝑚𝑖 and ℓ𝑖 are integers prime to 𝑝.
If 𝜋𝑖 is the projection of 𝐴𝑟 to its 𝑖-th component, let ℒ ′ = ℒℓ1 ⋆ ⋯ ⋆ ℒℓ𝑟 ≔ 𝜋∗

1ℒℓ1 ⊗ … ⊗ 𝜋∗
𝑟 ℒℓ𝑟 and

ℒ" = ℒ𝑚1 ⋆ … ⊗ ℒ𝑚𝑟 = 𝜋∗
1ℒ𝑚1 ⊗ … ⊗ 𝜋∗

𝑟 ℒ𝑚𝑟. By Equation (2.6), 𝑓 ∗ℒ" ≃ ℒ ′.
Then there is a constant 𝜆 ∈ 𝑘∗ such that for all (𝑖1, … , 𝑖𝑟) ∈ 𝐾1(ℒ𝑚1) × ⋯ × 𝐾1(ℒ𝑚𝑟),

𝑓 ∗(𝜃ℒ𝑚1
𝑖1 ⋆ ⋯ ⋆ 𝜃ℒ𝑚𝑟

𝑖𝑟) = 𝜆 ∑
(𝑗1,…,𝑗𝑟)∈𝐾1(ℒ𝑚1)×⋯×𝐾1(ℒ𝑚𝑟)

𝑓 (𝑗1,…,𝑗𝑟)=(𝑖1,…,𝑖𝑟)

𝜃ℒℓ1
𝑗1 ⋆ ⋯ ⋆ 𝜃ℒℓ𝑟

𝑗𝑟 (2.7)

30

2.7 Addition formula and equations for abelian varieties

Proof. The ∞-decomposition induces symmetric theta structures which are automatically compatible for any such
𝐹 by the discussion at the end of Section 2.6.3. Then Equation (2.7) is just an application of the isogeny formula
along with the Segre embedding of Lemma 2.4.3.

As remarked in Theorem 2.5.7, Theorem 2.7.1 also makes sense when interpreting the 𝜃𝑖 as affine coordinates.
This will be crucial for a lot of our algorithms, and we will reinterpret this meaning in Sections 2.8.3 and 2.9. To
distinguish between projective points and affine points, I will typically denote by 𝑥 a projective point and ̃𝑥 an
affine point above it.

Corollary 2.7.2 (Duplication formula). Let 𝜉 ∶ 𝐴2 → 𝐴2, (𝑃, 𝑄) ↦ (𝑃 + 𝑄, 𝑃 − 𝑄). Then 𝜉∗ℒ ⋆ ℒ ≃ ℒ2 ⋆ ℒ2,
and if 𝑝 is prime to 2, there exists 𝜆 ∈ 𝑘∗ such that for all (𝑖1, 𝑖2) ∈ 𝐾1(ℒ)2,

𝜉∗(𝜃ℒ
𝑖1 ⋆ 𝜃ℒ

𝑖2) = 𝜆 ∑
(𝑗1,𝑗2)∈𝐾1(ℒ2)2

𝑗1+𝑗2=𝑖1
𝑗1−𝑗2=𝑖2

𝜃ℒ2
𝑗1 ⋆ 𝜃ℒ2

𝑗𝑟

Assume now that the level 𝑛 is divisible by 2. We fix an isomorphism 𝑍(2) ≃ 𝐾1(ℒ)[2], and define the change of
variable (a partial Fourier transform),

𝑈ℒ
𝜒,𝑖 = ∑

𝑡∈𝑍(2)
𝜒(𝑡)𝜃ℒ

𝑖+𝑡,

for 𝜒 ∈ �̂�(2) and 𝑖 ∈ 𝐾1(ℒ). Then there exists 𝜆1, 𝜆2 ∈ 𝑘∗ such that

𝜃ℒ
𝑖+𝑗(𝑥 + 𝑦)𝜃ℒ

𝑖−𝑗(𝑥 − 𝑦) = 𝜆1 ∑
𝑢,𝑣∈𝐾1(ℒ2)

𝑢+𝑣=𝑖
𝑢−𝑣=𝑗

𝜃ℒ2
𝑢 (̃𝑥)𝜃ℒ2

𝑣 (̃𝑦) =
𝜆1
2𝑔 ∑

𝜒∈�̂�(2)
𝑈ℒ2

𝜒,𝑖 (̃𝑥)𝑈ℒ2
𝜒,𝑗 (̃𝑦) (2.8)

𝑈ℒ2
𝜒,𝑖 (̃𝑥)𝑈ℒ2

𝜒,𝑗 (̃𝑦) = 𝜆2 ∑
𝑡∈�̂�(2)

𝜒(𝑡)𝜃ℒ
𝑖+𝑗+𝑡(𝑥 + 𝑦)𝜃ℒ

𝑖−𝑗+𝑡(𝑥 − 𝑦) (2.9)

Proof. The first equation comes from Theorem 2.7.1 applied to the matrix 𝐹 = (1 1
1 −1), 𝑚1 = 𝑚2 = 1 and

ℓ1 = ℓ2 = 2 and the second is just a change of variable. See [Mum66], [Rob10, Théorème 4.4.3].

Corollary 2.7.2 is the reason why working with totally symmetric line bundles (hence level divisible by two) is so
convenient. Starting from now we will essentially assume that we have a symmetric theta structure on a totally
symmetric line bundle (I will refer to this as a “theta model”). But see also Section 2.9 for an explanation on how
some of the tools we develop in the rest of this Chapter could be extended to other models.

Applying Corollary 2.7.2 twice yields

Theorem 2.7.3 (Riemann relations). Assume that the level is divisible by 2. Let 𝑥1, 𝑦1, 𝑢1 et 𝑣1 be geometric points
on 𝐴 and 𝑧 ∈ 𝐴(𝑘) such that 𝑥1 + 𝑦1 + 𝑢1 + 𝑣1 = 2𝑧. Let 𝑥2 = 𝑧 − 𝑥1, 𝑦2 = 𝑧 − 𝑦1, 𝑢2 = 𝑧 − 𝑢1 and 𝑣2 = 𝑧 − 𝑣1.
There exists affine lifts of these points, such that for all 𝜒 ∈ �̂�(2) and 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 ∈ 𝐾1(ℒ) with 𝑖 + 𝑗 + 𝑘 + 𝑙 = 2𝑚, if
𝑖′ = 𝑚 − 𝑖, 𝑗′ = 𝑚 − 𝑗, 𝑘′ = 𝑚 − 𝑘 and 𝑙′ = 𝑚 − 𝑙, then

(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑖+𝑡(̃𝑥1)𝜃𝑗+𝑡(̃𝑦1)).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑘+𝑡(̃𝑢1)𝜃𝑙+𝑡(̃𝑣1)) =

(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑖′+𝑡(̃𝑥2)𝜃𝑗′+𝑡(̃𝑦2)).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑘′+𝑡(̃𝑢2)𝜃𝑙′+𝑡(̃𝑣2)). (2.10)

These points are said to satisfy Riemann relations.
In particular, this yields the differential addition formula:

(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑖+𝑡(𝑥 + 𝑦)𝜃𝑗+𝑡(𝑥 − 𝑦)).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑘+𝑡(̃0𝐴)𝜃𝑙+𝑡(̃0𝐴)) =

(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃−𝑖′+𝑡(̃𝑦)𝜃𝑗′+𝑡(̃𝑦)).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑘′+𝑡(̃𝑥)𝜃𝑙′+𝑡(̃𝑥)). (2.11)

31

2 Arithmetic of abelian varieties

We denote this relation by4:
𝑥 + 𝑦 ≔ diff_add(̃𝑥, ̃𝑦, 𝑥 − 𝑦, ̃0𝐴).

This also yield the three way addition formula:

(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑖+𝑡(̃𝑥 + 𝑦 + 𝑧)𝜃𝑗+𝑡(̃𝑥)).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑘+𝑡(̃𝑦)𝜃𝑙+𝑡(̃𝑧)) =

(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑖′+𝑡(0̃𝐴)𝜃𝑗′+𝑡(𝑦 + 𝑧2)).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑘′+𝑡(𝑥 + 𝑧)𝜃𝑙′+𝑡(𝑥 + 𝑦)). (2.12)

We denote this relation by:

̃𝑥 + 𝑦 + 𝑧 ≔ threeway_add(̃𝑥, ̃𝑦, ̃𝑧, 𝑦 + 𝑧, 𝑥 + 𝑧, 𝑥 + 𝑦).

Proof. This is [Mum66], [Kem89a, §5], see also the summary in [Rob10, Théorème 4.4.6]: both members are equal
to 𝑈ℒ2

𝜒,𝑖 (̃𝑥)𝑈ℒ2

𝜒,𝑙 (̃𝑦)𝑈ℒ2

𝜒,𝑘(̃𝑢)𝑈ℒ2
𝜒,𝑗 (̃𝑣) for any 𝑥, 𝑦, 𝑢, 𝑣 such that 𝑥+𝑦 = 𝑥1, 𝑥−𝑦 = 𝑦1, 𝑢+𝑣 = 𝑢1, 𝑢−𝑣 = 𝑣1.

The Riemann relations are core equations for the algorithmic of abelian varieties. The reason is that they provide
equations both for the abelian variety but also for the moduli space (of abelian varieties with a symmetric level 𝑛
theta structure); in fact they provide the universal equation for the universal abelian scheme over this moduli space.
The following theorem is so important that I give it for a general polarisation type 𝛿 = (𝛿1, … , 𝛿𝑔), and we let
𝑑 = ∏ 𝛿𝑖.

Theorem 2.7.4 (Mumford). Let 𝑉𝛿 = Homℤ[𝑑−1](𝑍(𝛿), ℤ[𝑑−1]) be the free ℤ[𝑑−1]-module with basis the Dirac
functions (𝑄𝑖)𝑖∈𝑍(𝛿). Let 𝒜𝑔,𝛿 be the projective subvariety of ℙ(𝑉𝛿) given by Riemann relations:

(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝑄𝑖+𝑡𝑄𝑗+𝑡).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝑄𝑘+𝑡𝑄𝑙+𝑡) =

= (∑
𝑡∈𝑍(2)

𝜒(𝑡)𝑄𝑖′+𝑡𝑄𝑗′+𝑡).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝑄𝑘′+𝑡𝑄𝑙′+𝑡), (2.13)

(with 𝜒, 𝑖, 𝑗, 𝑘, 𝑙 like in Theorem 2.7.3) and the symmetry relations, for all 𝑖 ∈ 𝑍(𝛿):

𝑄𝑖 = 𝑄−𝑖.

Assume that 𝛿 is divisible by an even integer 𝑛 ≥ 4. Then the functor, who associates to a point (𝐴𝑅, ℒ, 𝛩ℒ) of
𝒜𝑔,𝛿(𝑅) its corresponding theta null point in ℙ(𝑉𝛿)(𝑅), is an open immersion of 𝒜𝑔,𝛿 in 𝒜𝑔,𝛿. In particular, 𝒜𝑔,𝛿 is
representable by a quasi-projective variety.

The universal abelian scheme over 𝒜𝑔,𝛿 is given by the equations

(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑖+𝑡𝜃𝑗+𝑡).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝑄𝑘+𝑡𝑄𝑙+𝑡) =

(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜗𝑖′+𝑡𝜗𝑗′+𝑡).(∑
𝑡∈𝑍(2)

𝜒(𝑡)𝑄𝑘′+𝑡𝑄𝑙′+𝑡), (2.14)

for all 𝜒 ∈ �̂�(2), 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 ∈ 𝑍(𝛿) such that 𝑖 + 𝑗 + 𝑘 + 𝑙 = 2𝑚, with 𝑖′ = 𝑚 − 𝑖, 𝑗′ = 𝑚 − 𝑗, 𝑘′ = 𝑚 − 𝑘 et 𝑙′ − 𝑙.

Proof. This is proved by Mumford in [Mum67a] when 4 ∣ 𝛿, and extended by Kempf in [Kem89a] when 𝑛 ∣ 𝛿 with
𝑛 even and 𝑛 > 4, and finally in [Kem89b]5 when 𝑛 = 4.

Note that by general theory themoduli stack 𝒜𝑔,𝑛 of principally polarised abelian varieties with a level 𝑛 structure
(ie an isomorphism (ℤ/𝑛ℤ)𝑔 × 𝜇𝑔

𝑛 → 𝐴[𝑛]) is smooth over ℤ[1/𝑛], because there is no obstruction to lifting
(Grothendieck-Mumford, [Oor71]).

4The unicity of 𝑥 + 𝑦 is not clear yet, we will come back to it in Section 2.8.1
5Unfortunately this article is almost impossible to find! I thank Sophie Morel for providing me a version.

32

2.8 Riemann relations and the differential addition

Remark 2.7.5. When 𝛿 = (𝑛, … , 𝑛), there is a conflict of notation between 𝒜𝑔,𝑛 between themoduli parametrizing
level 𝑛 structures and the one parametrizing symmetric level 𝑛 theta structures.

Since a symmetric theta structure is intermediate between a level structure for 𝐴[𝑛] and one for 𝐴[2𝑛], a better
notation for the latter moduli would have been 𝒜𝑔,𝑛,2𝑛 but this notation is a bit unwieldy. It should be clear from
the context to which moduli we refer to, and if needed we will use the notation 𝒜𝑔,𝑛,2𝑛 or 𝒜𝑔,𝛿,2𝛿 to refer to the
moduli of symmetric theta structures (of level 𝑛 or 𝛿).

The coarse moduli space A𝑔,𝑛 of 𝒜𝑔,𝑛, which is the initial map into algebraic spaces and whose functor of points
coincide for 𝑘-points ie 𝒜𝑔,𝑛(𝑘) ≃ A𝑔,𝑛(𝑘), and which always exist for a separated Deligne-Mumford stack by
[KM97], is a quasi-projective scheme by [MFK94]. Of course when 𝑛 ≥ 3, there is no non trivial automorphisms so
the inertia is trivial and 𝒜𝑔,𝑛 = A𝑔,𝑛. We have a natural map 𝒜𝑔,2𝛿𝑔

→ 𝒜(2𝛿)
𝑔 where the right hand side denote the

moduli of abelian schemes with a polarisations ℒ of type 2𝛿 and a symplectic isomorphism 𝐾(2𝛿) → 𝐾(ℒ), see
[Mum70b; Jon93]. Then the moduli space 𝒜𝑔,𝛿,2𝛿 above is a quotient stack of 𝒜(2𝛿)

𝑔 by the group 𝛤(𝛿, 2𝛿)/𝛤(2𝛿)
(and as remarked above, this is already a space when 𝛿1 ≥ 4). We refer to [Rob21, Chapter 5] for more details.

The important point of Theorem 2.7.4 is that when we have a symmetric theta structure, we get completely
explicit equations. In particular, Riemann relations encode everything about abelian varieties with such a structure
and their moduli, hence is of primordial importance for algorithmic applications. We note that furthermore the
equations from Theorem 2.7.4 are a very simple form of the addition relation. They say that a theta null point
0𝐴 = (𝑎𝑖)𝑖∈𝑍(𝛿) needs to satisfy 0𝐴 + 0𝐴 = 0𝐴 (or rather 0𝐴 = diff_add(0𝐴, 0𝐴, 0𝐴, 0𝐴)) and the symmetry is
−0𝐴 = 0𝐴, while a point 𝑥 ∈ 𝐴 needs to satisfy 𝑥 + 0𝐴 = 𝑥 (or rather 𝑥 = diff_add(𝑥, 0𝐴, 𝑥, 0𝐴)).

2.8 riemann relations and the differential addition

2.8.1 Unicity of the differential addition

Let 𝐴/𝑘 be an abelian variety with a symmetric theta structure of level 𝑛 ≥ 4 even. We now explain how the
Riemann relations of Theorem 2.7.3 allow not only to compute the standard (projective) addition on 𝐴, but also an
affine version of the addition law on the affine cone 𝐴. This is a trivial but crucial application of Riemann relations,
and has been at the core of many algorithmic applications: arithmetic of course [LR16], pairings [LR10; LR15a],
and isogenies [LR12; CR15; DJR+22].

First, given ̃𝑥, ̃𝑦, 𝑥 − 𝑦, we need to explain why 𝑥 + 𝑦 is uniquely determined. In Equation (2.11), we see that we
can determine ∑𝑡∈𝑍(2) 𝜒(𝑡)𝜃𝑖+𝑡(𝑥 + 𝑦)𝜃𝑗+𝑡(𝑥 − 𝑦) for all 𝑖, 𝑗 ∈ 𝑍(𝛿) and 𝜒 ∈ �̂�(2) whenever we can find 𝑘, 𝑙
such that 𝑖 + 𝑗 + 𝑙 + 𝑘 = 2𝑚, and ∑𝑡∈𝑍(2) 𝜒(𝑡)𝜃ℒ

𝑘+𝑡(̃0𝐴)𝜃ℒ
𝑙+𝑡(̃0𝐴) ≠ 0. Indeed, if this is the case, then from all

∑𝑡∈𝑍(2) 𝜒(𝑡)𝜃𝑖+𝑡(𝑥 + 𝑦)𝜃𝑗+𝑡(𝑥 − 𝑦) a simple linear change of variable gives us all 𝜃𝑖(𝑥 + 𝑦)𝜃𝑗(𝑥 − 𝑦), 𝑖, 𝑗 ∈ 𝑍(𝑛).
So, since there is always a 𝑗 such that 𝜃𝑗(𝑥 − 𝑦) ≠ 0 the relations from Equation (2.11) allows us both to recover
the affine addition law and the projective addition law (where in this case 𝜃𝑗(𝑥 − 𝑦) is interpreted as an unknown
but non zero projective factor).

But
∑

𝑡∈𝑍(2)
𝜒(𝑡)𝜃ℒ

𝑘+𝑡(̃0𝐴)𝜃ℒ
𝑙+𝑡(̃0𝐴) = 𝑈ℒ2

𝑢 (̃0𝐴)𝑈ℒ2
𝑣 (̃0𝐴)

where𝑢, 𝑣 ∈ 𝑍(2𝑛) satisfy𝑢+𝑣 = 𝑘, 𝑢−𝑣 = 𝑙. Soweneed to find𝑢′, 𝑣′ ∈ 𝑍(𝑛) such that𝑈ℒ2
𝑢+𝑢′(̃0𝐴)𝑈ℒ2

𝑣+𝑣′(̃0𝐴) ≠
0, so that 𝑘′ = 𝑘 + 𝑢′ + 𝑣′, 𝑙′ = 𝑙 + 𝑢′ − 𝑣′ answer the question.

Mumford shows in [Mum66] that the non annulation of theta constants is related to the surjectivity of the
multiplication map: let 𝜉 ∶ 𝐴 × 𝐴 → 𝐴 × 𝐴 be given on geometric points by (𝑥, 𝑦) ↦ (𝑥 + 𝑦, 𝑥 − 𝑦) (see
Corollary 2.7.2). If 𝛥 ∶ 𝐴 → 𝐴 × 𝐴 is the diagonal embedding, and 𝑆 ∶ 𝐴 → 𝐴 × 𝐴 is given by 𝑥 ↦ (𝑥, 0), we then
have a commutative diagram of polarized abelian varieties:

(𝐴, ℒ2)

(𝐴 × 𝐴, ℒ2 ⋆ ℒ2) (𝐴 × 𝐴, ℒ ⋆ ℒ).
𝜉

𝑆
𝛥

So the multiplication map 𝛥∗ ∶ 𝛤(𝑋, ℒ) ⊗ 𝛤(𝑋, ℒ) → 𝛤(𝑋, ℒ2), given in term of theta coordinates by
𝜃ℒ

𝑖 ⋆ 𝜃ℒ
𝑗 ↦ (𝜃ℒ

𝑖 ⊗ 𝜃ℒ
𝑗), is the compositium of 𝜉∗ ∶ 𝛤(𝑋, ℒ) ⊗ 𝛤(𝑋, ℒ) → 𝛤(𝑋, ℒ2) ⊗ 𝛤(𝑋, ℒ2) from

33

2 Arithmetic of abelian varieties

Corollary 2.7.2 and the evaluation map 𝑆∗(ℒ2 ⋆ ℒ2) → ℒ2 (via a trivialisation morphism 𝛾0 ∶ ℒ2(0) → 𝑘),
which is given by 𝑆∗ (𝛤(𝑋, ℒ2) ⊗ 𝛤(𝑋, ℒ2)) → 𝛤(𝑋, ℒ2), 𝜃ℒ2

𝑖 ⋆ 𝜃ℒ2
𝑗 ↦ 𝜃ℒ2

𝑖 𝜃ℒ2
𝑗 (0).

So the multiplication formula 𝛤(𝑋, ℒ) ⊗ 𝛤(𝑋, ℒ) → 𝛤(𝑋, ℒ2) is given by

𝜃ℒ
𝑖 ⋆ 𝜃ℒ

𝑗 ↦ ∑
𝑢,𝑣∈𝑍(2𝑛)

𝑢+𝑣=𝑖
𝑢−𝑣=𝑗

𝜃ℒ2
𝑢 𝜃ℒ2

𝑣 (0)

and via the usual change of variable:

∑
𝑡∈�̂�(2)

𝜒(𝑡)𝜃ℒ
𝑖+𝑡 ⋆ 𝜃ℒ

𝑗+𝑡 ↦ 𝑈ℒ2
𝜒,𝑢𝑈ℒ2

𝜒,𝑣(0). (2.15)

The assertion 𝛤(𝐴, ℒ) ⊗ 𝛤(𝐴, ℒ) → 𝛤(𝐴, ℒ2) is surjective is then equivalent to the assertion that for all
𝑢 ∈ 𝑍(2𝑛), 𝜒 ∈ �̂�(2), there exists 𝑣 ∈ 𝑍(2𝑛) congruent to 𝑢 modulo 𝑍(𝑛) such that 𝑈ℒ2

𝜒,𝑣(0) ≠ 0.
Mumford showed the last assertion directly when 4 ∣ 𝑛 in [Mum66, p. 339] and deduced the surjectivity

of the multiplication map. Koizumi extended this result in [Koi76, Theorem 4.6] by showing analytically that
𝛤(𝐴, ℒ𝑛

0) ⊗ 𝛤(ℒ𝑚
0) → 𝛤(𝐴, ℒ𝑛+𝑚

0) is surjective whenever 𝑛 ≥ 2 et 𝑚 ≥ 3, and an algebraic proof of this is given
by Kempf in [Kem88]. We deduce that 𝛤(𝐴, ℒ𝑛

0) ⊗ 𝛤(ℒ𝑛
0) → 𝛤(𝐴, ℒ2𝑛

0) is surjective whenever 𝑛 ≥ 4 is even,
which concludes our assertion. We refer to [Rob10, §4.4] for more details.

Remark 2.8.1. • When the level 𝑛 is divisible by 4, Mumford has a finer result: for all 𝜒 ∈ �̂�(2), 𝑖 ∈ 𝑍(2𝑛),
there exists a 𝑗 ∈ 𝑍(4) such that 𝑈ℒ2

𝜒,𝑖+𝑗(0𝐴) ≠ 0 [Mum66, p.340], [Rob10, Proposition 4.6.11].

• Rather than using 𝜉, we can play the same game with the matrix 𝐹 = (1 −𝑠
1 𝑡) with satisfy 𝑡𝐹(𝑚1 0

0 𝑚2
)𝐹 =

(𝑚1+𝑚2 0
0 𝑠2𝑚1+𝑡2𝑚2

)whenever 𝑠/𝑡 = 𝑚2/𝑚1.This relates themultiplicationmap𝛤(𝐴, ℒ𝑚1)⊗𝛤(𝐴, ℒ𝑚2) →
𝛤(𝐴, ℒ𝑚1+𝑚2) with the values of the theta constants of (𝐴, ℒ𝑠2𝑚1+𝑡2𝑚2) [Kem89a, §4]. The map 𝜉 above is
𝑠 = 𝑡 = 1.

• The same argument shows that under our running hypothesis that 𝑛 ≥ 4 is even, in the general Riemann
relations we can always determine the member (∑

𝑡∈𝑍(2)
𝜒(𝑡)𝜃𝑖+𝑡(̃𝑥1)𝜃𝑗+𝑡(̃𝑦1)). Indeed, using the notations

of the proof of Theorem 2.7.3, we need to show that we can find 𝑘, 𝑙 such that 𝑈ℒ2

𝜒,𝑘(̃𝑢)𝑈ℒ2
𝜒,𝑗 (̃𝑣) ≠ 0. This

follow by the same proof as above, using that the addition formula is compatible with the translation map
[Kem89a, Corollary 9] and that the multiplication map on the translated line bundles is still surjective
[Kem88, Theorem 2]. In particular this holds for the three way addition.6

Zooming back a bit, we see that a result by Kempf on the surjectivity of the multiplication map, proved by
cohomological tools (more precisely the fact that an ample line bundle on an abelian variety has no higher
cohomology), has for arithmetic consequences the non annulation of certain theta constants, and as a corollary
yields an explicit algorithm for the addition law! In practice, all coordinates are generically non zero (here it is
important that the level 𝑛 is not two, because in this case the odd theta null 𝑈ℒ2

𝜒,𝑖 (̃0𝐴) are always zero, we will go
back to this in Section 2.12), hence we use Algorithm 2.8.2 instead which is faster for computations.

Algorithm 2.8.2 (Differential addition). Precomputations For all 𝜒 ∈ �̂�(2):

𝑈ℒ2
𝜒,0(̃0𝐴)−2 = ⎛⎜⎜

⎝
∑

𝑡∈�̂�(2)
𝜒(𝑡)𝜃ℒ

𝑡 (̃0𝐴)𝜃ℒ
𝑡 (̃0𝐴)⎞⎟⎟

⎠

−1

.

Input Affine geometric lifts ̃𝑥, ̃𝑦, 𝑥 − 𝑦 of 𝐴.
Output 𝑥 + 𝑦 ≔ diff_add(̃𝑥, ̃𝑦, 𝑥 − 𝑦, ̃0𝐴).

: For all 𝑖 ∈ 𝑍(𝑛)

6Strangely I seem to have forgotten to put this statement in [Rob10]. A specific version for the three way addition under the assumption
that 4 ∣ 𝑛 is in [LR15a, Proposition 1].

34

2.8 Riemann relations and the differential addition

a. Compute for all 𝜒 ∈ �̂�(2):

𝑈ℒ2
𝜒,𝑖 (̃𝑥)𝑈ℒ2

𝜒,0(̃𝑦) =
1

𝑈ℒ2
𝜒,0(̃0𝐴)2

⎛⎜⎜
⎝

∑
𝑡∈�̂�(2)

𝜒(𝑡)𝜃ℒ
𝑖+𝑡(̃𝑥)2⎞⎟⎟

⎠

⎛⎜⎜
⎝

∑
𝑡∈�̂�(2)

𝜒(𝑡)𝜃ℒ
𝑡 (̃𝑦)2⎞⎟⎟

⎠
.

b. Output

𝜃ℒ
𝑖 (𝑥 + 𝑦) =

1
2𝑔𝜃ℒ

𝑖 (𝑥 − 𝑦)
∑

𝜒∈�̂�(2)
𝑈ℒ2

𝜒,𝑖 (̃𝑥)𝑈ℒ2
𝜒,0(̃𝑦).

We refer to [Rob10, Chapter 4] for more general algorithms for additions and multiplication, [LR15a, § 3] for a
specialisation to the case 𝑔 = 1, and [LR16] for the case 𝑛 = 2.

2.8.2 Using the differential addition

We now explain why the differential addition is so fundamental. First, this gives a pseudo group law on the affine
cone of the abelian variety, that is compatible with (affine lifts) of isogenies. We summarize the discussion of [Rob10,
§ 4.4, § 4.5]

Lemma 2.8.3. Assume that (𝐴, ℒ) is given a symmetric theta structure, and fix once and for all an affine lift ̃0𝐴 of
the theta null point of 𝐴. Let 𝑥1, … , 𝑥𝑛 ∈ 𝐴 and let ̃𝑥𝑖 denote arbitrary affine lifts. Assume that we are furthermore
given affine lifts ̃𝑥𝑖 + 𝑥𝑗 of each 𝑥𝑖 + 𝑥𝑗, 𝑖 ≠ 𝑗.

Then for any 𝑚1, … 𝑚𝑛 ∈ ℤ one can define a canonical affine lift

̃𝑚1𝑥1 + ⋯ + 𝑚𝑛𝑥𝑛 ≔ multi_add(𝑚1, … , 𝑚𝑛, ̃𝑥𝑖, ̃𝑥𝑖 + 𝑥𝑗, ̃0𝐴)

above 𝑚1𝑥1 + ⋯ + 𝑚𝑛𝑥𝑛 via Riemann relations from Theorem 2.7.3. This is called the multiway multiplication (or
multiway addition if 𝑚𝑖 ∈ {−1, 0, 1}). More precisely differential additions and three way additions combined with
opposite(̃𝑥𝑖) ≔ (̃𝑥−𝑖) are enough. This point ̃𝑚1𝑥1 + ⋯ + 𝑚𝑛𝑥𝑛 is unique, which means it does not depend on the
choice of Riemann relations used to compute it.

Furthermore affine Riemann relations are compatible with symmetric automorphisms of the theta group and
affine lifts of isogenies, so that multi_add is too. In particular this means that if ̃𝑓 ∶ 𝐴 → �̃� lift an isogeny 𝑓 ∶
𝐴 → 𝐵 given via the isogeny formula from Theorem 2.5.7, then ̃𝑓 (multi_add(𝑚1, … , 𝑚𝑛, ̃𝑥𝑖, ̃𝑥𝑖 + 𝑥𝑗, ̃0𝐴)) =
multi_add(𝑚1, … , 𝑚𝑛, ̃𝑓 (̃𝑥𝑖), ̃𝑓 (̃𝑥𝑖 + 𝑥𝑗), ̃𝑓 (̃0𝐴))).

Corollary 2.8.4. If we fix affine lifts ̃𝑥, ̃𝑦 and 𝑥 + 𝑦, then as a special case we can define canonical affine lifts
𝑛𝑥 = diff_mult(𝑛, ̃𝑥) and ̃𝑛𝑥 + 𝑦 = diff_multadd(𝑛, 𝑥 + 𝑦, ̃𝑥, ̃𝑦) above 𝑛𝑥 and 𝑛𝑥 + 𝑦 respectively (called
differential multiplication).

They can be computed via Luca sequences using the relations:

̃(𝑛1 + 𝑛2)𝑥 = diff_add(𝑛1𝑥, 𝑛2𝑥, ̃(𝑛1 − 𝑛2)𝑥), (2.16)

̃(𝑛1 + 𝑛2)𝑥 + 𝑦 = diff_add(̃𝑛1𝑥 + 𝑦, 𝑛2𝑥, ̃(𝑛1 − 𝑛2)𝑥 + 𝑦). (2.17)

hence in time 𝑂(log(𝑛)) arithmetic operations over 𝑘 (for instance via a standard double and add algorithm).

Proof. Since these operations are defined over the projective addition law on 𝐴, and since an isogeny is a group
morphism, all these statements hold up to projective factors 𝜆. To check directly on the equations that these
projective factors satisfy 𝜆 = 1 with our choice of normalisations is a bit painful. The strategy in [LR12; Rob10]
proceed as follow: first we check that Riemann relations are invariant under the action of 𝑆. (Although not proved
there it is in fact invariant under all symmetric automorphisms, but the other ones are easier to prove). Then we
check that the Riemann relations commute with isogenies of the first type, using the nomenclature of Example 2.5.8.
Via the invariance under the action of 𝑆 they also commute with isogenies of the second type, hence all isogenies
coming from the isogeny formula. We remark that if 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, the compatibility requires that

̃𝑓 (̃0𝐴) = ̃0𝐵, or equivalently that the normalisation factor 𝜆 = 1 in the isogeny formula.
Then we use the relation between the action of the theta group and differential additions [Rob10, Proposition 4.5]

to derive associativity of differential multiplication for 𝑥 ∈ 𝐾(ℒ). We use compatibility with the isogeny [ℓ] to go
from associativity in (𝐴, ℒℓ2) for 𝑥 ∈ 𝐾([ℓ]∗ℒ) = 𝐾(ℒℓ2) to associativity in (𝐴, ℒ) of points in [ℓ]𝐾(ℒℓ2) =
𝐾(ℒℓ). We give below an analytic proof, that proves the slightly stronger statement as given in the version of
Lemma 2.8.3.

35

2 Arithmetic of abelian varieties

Remark2.8.5. There are two strategies to compute ̃𝑚1𝑥1 + ⋯ + 𝑚𝑛𝑥𝑛. Eitherwe compute ̃𝑥1 + 𝑥2 + 𝑥3, ̃𝑥1 + 𝑥2 + 𝑥3 + 𝑥4
and so on using three way additions and then we do differential multiplications, for a cost of 𝑂(log𝑚1 + log𝑚2 +
… log𝑚𝑘). Or we compute all 𝜖𝑖𝑚𝑖 with 𝜖𝑖 ∈ {0, 1} and then compute ̃𝑚1𝑥1 + ⋯ + 𝑚𝑛𝑥𝑛 via amultivariate double
and add algorithm, for a total cost of 𝑂(2𝑛 + logmax𝑚𝑖).

The compatibility of differential additions and the action of the theta structure alluded in the proof above is as
follow: given ̃𝑥, ̃𝑦, 𝑥 − 𝑦 in 𝐴, and 𝑔1 = 𝛩ℒ(𝛼, 𝑖1, 𝑖2), 𝑔2 = 𝛩ℒ(𝛽, 𝑗1, 𝑗2) in 𝐺(ℒ), then

𝑔1𝑔2. diff_add(̃𝑥, ̃𝑦, 𝑥 − 𝑦) =
⟨𝑗1, 𝑗2⟩

𝛽2 diff_add(𝑔1. ̃𝑥, 𝑔2. ̃𝑦, 𝑔1𝑔−1
2 𝑥 − 𝑦). (2.18)

In particular:

(1, 𝑖1 + 𝑗1, 𝑖2 + 𝑗2). diff_add(̃𝑥, ̃𝑦, 𝑥 − 𝑦) =
diff_add((1, 𝑖1, 𝑖2). ̃𝑥, (1, 𝑗1, 𝑗2). ̃𝑦, (1, 𝑖1 − 𝑗1, 𝑖2 − 𝑗2).𝑥 − 𝑦). (2.19)

So the differential addition encode the action of 𝐺(ℒ) as follow: if 𝑔 is above a point in 𝐾1(ℒ) or 𝐾2(ℒ),
diff_add(𝑔. ̃𝑥, 𝑔. ̃0𝐴, ̃𝑥) = 𝑔2 ̃𝑥, and if 𝑔1, 𝑔2 are above points in𝐾1(ℒ) or𝐾2(ℒ),threeway_add(̃𝑥, 𝑔1. ̃0𝐴, 𝑔2. ̃0𝐴, 𝑔1𝑔2 ̃0𝐴, 𝑔2. ̃𝑥, 𝑔1. ̃𝑥) =
𝑔1𝑔2 ̃𝑥.

Key Idea 1. By Equation (2.18) and Lemma 2.8.3, the differential addition or more generally the multiway multipli-
cations allow to get a handle of the action of the theta group of level ℓ𝑛 (either on the same abelian variety or via an
ℓ-isogeny) by working only in level 𝑛.

We will give several illustration of this key idea:

• How to recover the theta null point of level ℓ𝑛 from the theta null point of level 𝑛 and the points of ℓ-torsion;

• How to recover the pairing on 𝐾(ℒℓ) by working with theta coordinates of level 𝑛;

• How to compute an ℓ-isogeny 𝑓 ∶ (𝐴, ℒℓ) → (𝐵, ℳ) using theta coordinates for ℒ.

2.8.3 Analytic interpretation of the differential addition

In fact, the differential addition can be seen as a way to encode the action of the theta group of all 𝐺(ℒ𝑛) at once.
To explain this we need to go back to complex abelian varieties. In this case the action of the theta groups is encoded
by the transcendantal addition law.

So let 𝐴 = ℂ𝑔/𝛬 be a complex abelian variety, 𝐻 a polarisation (which we assume is of the form 𝐻 = 𝑛𝐻0 where
𝐻0 is principal for simplicity, once again we refer to [Rob10] for the general case). Fixing an ∞-decomposition
amount to fixing a symplectic decomposition 𝛬 = 𝛬1 ⊕ 𝛬2. To this symplectic decomposition one can associate
a semi-character 𝜒0(𝜆1 + 𝜆2) = 𝑒𝜋𝑖𝐸(𝜆1,𝜆2) (we recall that 𝐸 = ℑ𝐻), hence a canonical symmetric line bundle
ℒ ′. This is the same line bundle as introduced algebraically above to be compatible with all the fixed symplectic
decompositions of 𝐾(ℒ𝑛). If ℒ ′

0 is the line bundle corresponding to 𝐻0 induced by the symplectic decomposition
𝛬, the analytic description above shows that ℒ ′ = (ℒ ′

0)𝑛. Since ℒ ′
0 is symmetric, we find again that ℒ ′ is totally

symmetric and does not depend on the decomposition whenever 𝑛 is even. Let us denote ℒ = ℒ ′.
The isotropic part 𝛬1 contains a ℂ-basis, so using this we can rewrite the decomposition as 𝛬 = ℤ𝑔 ⊕ 𝛺ℤ𝑔

(with 𝐻0 = ℑ𝛺−1). So the theta functions for the symmetric theta structure on ℒ associated to the symplectic
decomposition of 𝛬 are then given by the (𝜃 [0

𝑏] (⋅, 𝛺/𝑛))𝑏∈ 1
𝑛 ℤ𝑔/ℤ𝑔. Indeed if 𝐴[𝑛] = (1

𝑛ℤ𝑔 ⊕ 1
𝑛𝛺ℤ𝑔)/𝛬,

𝐴/𝐴2[𝑛] ≃ ℂ𝑔/(ℤ𝑔 ⊕ 1
𝑛𝛺ℤ𝑔) so 𝜃 [0

0] (⋅, 𝛺/𝑛) is indeed the unique (up to multiple) section of ℒ that descends
to 𝐴/𝐴2[𝑛], and the automorphic properties of the theta functions show that 𝜃 [0

𝑏] (⋅, 𝛺/𝑛) is indeed the action
of the lift of 𝑏 on 𝜃 [0

0] via the identification 1
𝑛ℤ𝑔/ℤ𝑔 ≃ 𝑍(𝑛). The duplication formula of Corollary 2.7.2 then

corresponds to the standard duplication formula on the analytic theta, since an immediate computation shows
that 𝑈ℒ

𝜒,𝑖 corresponds to 𝜃 [𝜒/2
2𝑖/𝑛] (2⋅, 4𝛺/𝑛). We refer to [Rob10, § 2.6 and Exemple 4.4.9] for more details. Of

course, since algebraic theta functions are only defined up to a constant, this identification is up to a constant, ie
as projective coordinates. We refer to [Mum67b; Mum91] for the determination of this constant under suitable
normalisations.

Now the important part is that on ℂ𝑔 there is an addition law above the addition law on 𝐴 = ℂ𝑔/𝛬. And
the analytic theta make sense of as affine coordinates on ℂ𝑔. We warn that since 𝜃 [0

𝑏] (𝑧 + 𝛺𝑚1 + 𝑚2, 𝛺/𝑛) =

36

2.8 Riemann relations and the differential addition

𝑒−𝑖𝜋𝑛 𝑡𝑚1𝛺𝑚1−2𝜋𝑖𝑛 𝑡𝑧𝑚1𝜃 [0
𝑏] (𝑧, 𝛺/𝑛), not all affine theta lift �̃� of a point 𝑃 ∈ 𝐴 comes from the affine theta

coordinates of a 𝑧 ∈ ℂ𝑔 above 𝑃 (ie such that 𝑃 = 𝑧 mod 𝛬). Still, there is always a countable number of such
good affine lifts.

Now the standard analytic Riemann relations are valid for points on ℂ𝑔, ie are valid for affine theta coordinates,
not only projective theta coordinates [Mum83]. (The standard form of Riemann relations is different than the one
of Theorem 2.7.3, but Mumford shows in [Mum66, p. 334-335] how this is just a linear change of variable, see
[Rob10, Remarque 4.4.8].) Hence:

Key Idea 2. The differential addition is a way to recover this transcendantal addition law: given ̃𝑥, ̃𝑦, 𝑥 − 𝑦 ∈
ℂ𝑔 and letting ̃0𝐴 = 0 ∈ ℂ𝑔, and given the values of the affine theta coordinates at these points, 𝑥 + 𝑦 =
diff_add(̃𝑥, ̃𝑦, 𝑥 − 𝑦, ̃0𝐴) gives the affine theta coordinates of ̃𝑥 + ̃𝑦.

We remark that ℂ𝑔 can be analytically identified with 𝑇0(𝐴). Hence the transcendental addition law on ℂ𝑔

has an analytic interpretation as the algebraic addition law on 𝑇0(𝐴) which is derived from the addition law on
𝐴. If 𝜋 ∶ ℂ𝑔 → 𝐴 is the projection, and ℒ is a line bundle on 𝐴, then 𝜋∗ℒ is always trivial on ℂ𝑔 (since it is
simply connected). Hence we may choose a global rigidification. This essentially defines the affine values of the
theta functions on ℂ𝑔 (if we interpret the choice of period matrix as a choice of rigidification).

Let us illustrate this with the isogeny formula.The theta functions forℒℓ (with the same symplectic decomposition
of𝛬) are given by the 𝜃 [0

𝑏] (⋅, 𝛺/ℓ𝑛) for 𝑏 ∈ 1
ℓ𝑛ℤ𝑔/ℤ𝑔.The symplectic decomposition𝐴[ℓ] = (1

ℓ ℤ𝑔⊕ 1
ℓ 𝛺ℤ𝑔)/𝛬

shows that 𝐵 = 𝐴/𝐴2[ℓ] = ℂ𝑔/(ℤ𝑔 ⊕ 𝛺
ℓ ℤ𝑔). The descent of ℒℓ to 𝐵 has for Hermitian form ℓ𝐻 on ℂ𝑔. So it is

of level 𝑛 on 𝐵, and the corresponding theta functions are 𝜃 [0
𝑏] (⋅, 𝛺

ℓ /𝑛) for 𝑏 ∈ 1
𝑛ℤ𝑔/ℤ𝑔. We recover exactly the

isogeny formula from Example 2.5.8 when writing 𝑏 ∈ 1
𝑛ℤ𝑔/ℤ𝑔 = ℓ𝑏0, 𝑏0 ∈ 1

ℓ𝑛ℤ𝑔/ℤ𝑔. But this actually gives
more: for affine theta coordinates, the constant in the isogeny is 𝜆 = 1. In other words, with 𝜆 = 1 in the isogeny
formula (which we will henceforth call the affine isogeny formula), it becomes compatible with the differential
additions. Equivalently we take an affine lift ̃𝑓 of the isogeny 𝑓 such that ̃𝑓 (̃0𝐴) = ̃0𝐵. This is valid for isogenies of
the first type, but using the action of 𝑆 as in Example 2.5.8 shows that it is valid for all isogenies (see also [Kem91,
§5.3]).

Since there is an infinite number of good affine lifts, this shows that the differential addition law commutes with
the affine isogeny formula for arbitrary affine lifts (this is also easy to check directly by homogeneity once we know
it is valid for one affine lift). The case of ̃0𝐴 is special since it is fixed to being 0 ∈ ℂ𝑔 (ie ̃0𝐴 = 𝜃 [0

𝑏] (0, 𝛺/𝑛)),
but there are still an infinite number of possible affine lift when we acts on 𝛺 by 𝛤(𝑛, 2𝑛) ⊂ Sp2𝑛(ℤ). This does
not change the projective theta constants, but change their affine lifts due to the functional equation of the theta
functions.

By standard lifting arguments (see [Rob21, Section 2.3.6]), the differential addition law commutes with the affine
isogeny formula for arbitrary fields of characteristic 𝑝 prime to ℓ𝑛.

It is interesting to compare the anayltic proof with the purely algebraic one outlined in the proof of Lemma 2.8.3.
Algebraically, we do not have a lattice 𝛬 but we do have the Tate module 𝑇ℓ(𝐴), and the compatibility of the theta
structures on 𝐺(ℒℓ𝑚) fixed by an ∞-decomposition glue together to a theta structure on 𝑇ℓ(𝐴) (this theme is
explored in much more details in [Mum67a] where Mumford develops a theory of algebraic adic theta functions).
If we are interested in understanding the theta groups at finite levels only, there is no need to pass to the limit; we
may simply use the isogeny of multiplication by [ℓ] to relate 𝐺(ℒℓ2) and 𝐺(ℒ). Since [ℓ] 𝐾(ℒℓ2) = [ℓ]−1𝐾(ℒ),
the theta structure of 𝐺(ℒℓ2) reflects into the behaviour of points of ℓ-torsion in coordinates given by the base
polarisation ℒ. We thus get the following refinement of Key Idea 1:

Key Idea 3. The way the action of the theta group 𝐺(ℒℓ) is reflected into Riemann relations on points in [ℓ]−1𝐾(ℒ)
in (𝐴, ℒ) can be described using the theta structure on 𝐺(ℒℓ2) and the isogeny [ℓ].

2.8.4 Applications of the differential addition

Compressing coordinates

Example 2.8.6. A first application of the compatibility of differential additions (or more generally Riemann
relations) with isogenies is the following: let (𝐴, ℒ) be an abelian variety with a theta structure of level ℓ𝑛, let
𝜋 ∶ 𝐴 → 𝐵 = 𝐴/𝐾2(ℒ)[ℓ] be the isogeny of the first type from Example 2.5.8 and let 𝜋 be the canonical affine lift
of 𝜋 (given by the affine isogeny formula).

Then for 𝑖 ∈ 𝐾1(ℒ), we define 𝜋𝑖(𝑃) = 𝜋(𝑠(𝑖) ⋅ 𝑃) where 𝑠(𝑖) ∈ 𝐾2(ℒ) is the lift of 𝑖 given by the theta
structure. Let 𝑒1, … , 𝑒𝑔 be a basis of 𝐾1(ℒ) and for 𝑖 < 𝑗 ∈ {1, … , 𝑔}, define 𝜋𝑖 = 𝜋𝑒𝑖

, 𝜋𝑖𝑗 = 𝜋𝑒𝑖+𝑒𝑗
.

37

2 Arithmetic of abelian varieties

Then by [Rob10, § 4.6]:

• The theta null point ̃0𝐴 is completely determined by the 1+𝑔(𝑔+1)/2 affinepoints on �̃�:𝜋(̃0𝐴), 𝜋𝑖(̃0𝐴), 𝜋𝑖𝑗(̃0𝐴).

• An affine lift ̃𝑥 ∈ 𝐴 is completely determined by ̃0𝐴 and the 1 + 𝑔 affine points on �̃�: 𝜋(̃𝑥), 𝜋𝑖(̃𝑥).

Indeed, using the multiway additions from Lemma 2.8.3 and the compatibility with isogenies, we can recover all
𝜋𝑖(̃0𝐴) (resp. 𝜋𝑖(̃𝑥)) for 𝑖 ∈ 𝐾1(ℒ), and by Example 2.5.8 we have 𝜃𝑖(̃𝑥) = 𝜃0(𝜋𝑖(̃𝑥)). We will see in Section 2.10
why the number of points to reconstruct ̃0𝐴 is natural.

Of course, if ℓ is prime to 𝑛 we may take a basis of 𝐾1(ℒ)[ℓ] instead. All these points are needed, so we cannot
compress further: from the description of Remark 2.6.7 we can always find a symmetric automorphism that change
only one of 𝜋𝑖(̃0𝐴), or 𝜋𝑖𝑗(̃0𝐴). Likewise, we can always find a translation action by 𝑔 ∈ 𝐾2[ℓ] such that 𝜋(𝑔. ̃𝑥)
only change one of 𝜋𝑖(̃𝑥).

As a specific example, let 𝑔 = 1, ℓ = 3, 𝑛 = 4. If ̃𝑥 = (̃𝑥0, ̃𝑥1, ̃𝑥2, ̃𝑥3, ̃𝑥4, ̃𝑥5, ̃𝑥6, ̃𝑥7, ̃𝑥8, ̃𝑥9, ̃𝑥10, ̃𝑥11), then it is
completely determined by

𝜋0(̃𝑥) = (̃𝑥0, ̃𝑥3, ̃𝑥6, ̃𝑥9)
𝜋4(̃𝑥) = (̃𝑥4, ̃𝑥7, ̃𝑥10, ̃𝑥1)
𝜋8(̃𝑥) = (̃𝑥8, ̃𝑥11, ̃𝑥2, ̃𝑥5)

But 𝜋8(̃𝑥) = diff_add(𝜋4(̃𝑥), 𝜋4(̃𝑥), 𝜋0(̃𝑥), ̃0𝐵) so we only need two points.

We will also apply Example 2.8.6 to compute the fibers of the isogeny 𝑓 ∶ 𝐴 → 𝐵.

Compatibility of Riemann’s relations

It remains to explain the compatibility of differential addition and Riemann relations between 𝐺(ℒ) and 𝐺(ℒℓ)
(ie when changing level) once we have fixed an ∞-structure. This is best explained using the Segre embedding.

• Let (𝐴, ℒ) be an abelian variety with a theta structure of level 𝑛, and fix the product theta structure on
(𝐴ℓ, ℒ⋆ℓ). Then 𝜃𝑖1,…,𝑖ℓ(̃𝑥1, … , ̃𝑥ℓ) = ∏ℓ

𝑘=1 𝜃𝑖𝑘(̃𝑥𝑘). It is easy to see that Riemann relations are compati-
ble with the (affine) Segre embedding, in other words if ̃𝑥1, ̃𝑦1, ̃𝑢1, ̃𝑣1, ̃𝑥2, ̃𝑦2, ̃𝑢2, ̃𝑣2 are in Riemann rela-
tions on (𝐴1, ℒ1), and ̃𝑥′

1, ̃𝑦′
1, ̃𝑢′

1, ̃𝑣′
1, ̃𝑥′

2, ̃𝑦′
2, ̃𝑢′

2, ̃𝑣′
2 are in Riemann relations on (𝐴2, ℒ2), then the pairs

(̃𝑥1, ̃𝑥′
1), … (̃𝑣2, ̃𝑣′

2) are in Riemann relations on (𝐴1 × 𝐴2, ℒ1 ⋆ ℒ2). In particular diff_add(̃𝑥, ̃𝑦, 𝑥 − 𝑦)
is the Segree embedding of the ℓ points diff_add(̃𝑥𝑖, ̃𝑦𝑖, 𝑥 − 𝑦𝑖) of 𝐴. This is a consequence of the analytic
interpretation of the differential addition, but it is also easy to check directly.

• Now if 𝛥 ∶ 𝐴 → 𝐴ℓ is the diagonal embedding, 𝛥∗ℒ⋆ℓ = ℒℓ. Likewise, we can check analytically (hence
algebraically by the usual lifting arguments) that the (affine) diagonal embedding is compatible with Riemann
relations, since the diagonal embedding on 𝐴 lifts to a transcendantal diagonal embedding.

• Combining the two, we get that the differential addition on (𝐴, ℒℓ) is compatible with ℓ-fold products of
theta functions for the differential addition of (𝐴, ℒ). More precisely, by surjectivity of the multiplication,
there is a non inversible base change 𝐿 between the basis 𝜃ℒℓ

𝑖 and the generators ∏ℓ
𝑘=1 𝜃ℒ

𝑖𝑘 . In other words 𝐿
describe the map (𝐴, ℒℓ) → (𝐴ℓ, ℒ⋆ℓ), and explains how an affine lift for ℒ induces an affine lift for ℒℓ.
We also have the diagonal embedding (which does not respect polarisation), (𝐴, ℒ) → (𝐴ℓ, ℒ⋆ℓ). Then the
Riemann relations commute with these two (affine) mappings.
We note that if ̃𝑥 is an affine lift of 𝑥 for ℒ, then changing ̃𝑥 by 𝜁 ̃𝑥 where 𝜁 ℓ = 1 induce the same affine point
on (𝐴, ℒℓ). We may reinterpret this as follows: the choice of ̃𝑥 may be seen as a choice of trivialisation of ℒ
at 𝑥 (which we then use to evaluate the theta functions at 𝑥). This trivialisation induces a trivialisation of ℒℓ,
hence an affine lift ̃𝑥′ of 𝑥 for ℒℓ, which is exactly the same as the lift above induces by the ℓ-fold products of
𝜃ℒ

𝑖 (𝑥). But the induced trivialisation of ℒℓ does not change if we act on the trivialisation of ℒ by 𝜁.

In Section 2.10.2 we will explain how to use this compatibility to compute the action of the theta group of 𝐺(ℒℓ)
on the product basis ∏ℓ

𝑘=1 𝜃ℒ
𝑖𝑘 , and how to recover the theta null point of level ℓ𝑛 from the theta null point of

level 𝑛 and the coordinates of the points of ℓ-torsion.

Remark 2.8.7. At this point it is probably useful to relate all compatibility of differential additions and Riemann
relations we have (and add some others).

38

2.9 Affine lifts and differential addition law in other models

(i) Over ℂ, Riemann relations encode the transcendental addition law;
(ii) Differential additions are compatible with the action of the theta group. In particular, whenever we define a

group morphism of theta group we may ask if this further induces a compatibility of Riemann relations.
(iii) If 𝑓 ∶ (𝐴, ℒ) → (𝐵, ℳ) is an isogeny, 𝐾 the descent data associated to it, we have a morphism 𝑍(𝐾) →

𝐺(ℳ) = 𝑍(𝐾)/𝐾. This induces the isogeny formula on theta function, and the Riemann relations are
compatible with this formula.

(iv) The Segre embedding (𝐴, ℒ)×(𝐵, ℳ) → (𝐴×𝐵, ℒ ⋆ℳ) induces amorphism 𝐺(ℒ)×𝐺(ℳ) → 𝐺(ℒ ⋆ℳ).
The theta functions on 𝐴 × 𝐵 with the product theta structure are just the product theta functions, and
Riemann relations are compatible with the product theta structure.

(v) We may combine the Segre embedding and isogenies to get what we call a generalised Segre embedding
(or more precisely morphism, since it may no longer be an embedding): let ℓ = ∑𝑟

𝑖=1 𝑛2
𝑖 and let 𝐹 ∶ 𝐴 →

𝐴𝑟, 𝑥 ↦ (𝑛𝑖𝑥). Then 𝐹∗(ℒ ⋆ ⋯ ⋆ ℒ) = ℒℓ. We may generalise this to endomorphisms 𝑛𝑖 = 𝛼𝑖 provided
we have an affine lift 𝛼𝑖 compatible with Riemann’s relations.

(vi) Mumford defines in [Mum66] several morphisms between the 𝐺(ℒ𝑛): letting 𝛿−1 = 𝛾−1, we have 𝛿𝑛(𝑔) =
𝑔(𝑛2+𝑛)/2𝛿−1(𝑔)(𝑛2−𝑛)/2 ∶ 𝐺(ℒ) → 𝐺(ℒ). The reason we don’t use 𝑔𝑛 is that we want that the version of
𝛿𝑛 on the Heisenberg group to be given by (𝛼, 𝑥1, 𝑥2) ↦ (𝛼𝑛2, 𝑛𝑥1, 𝑛𝑥2). If 𝑔 is symmetric, 𝛿𝑛(𝑔) = 𝑔𝑛.
We also have a natural morphism 𝜖𝑛 ∶ 𝐺(ℒ) → 𝐺(ℒ𝑛) which sends (𝑥, 𝜙) to (𝑥, 𝜙⊗𝑛). The version on
the Heisenberg groups map 𝐻(𝑚) → 𝐻(𝑛𝑚) via (𝛼, 𝑥1, 𝑥2) ↦ (𝛼𝑛, 𝑥1, 𝑥2) where we use the natural
embeddings of 𝑍(𝑚) and �̂�(𝑚) into 𝑍(𝑛𝑚), �̂�(𝑛𝑚).
Finally we also have a morphism 𝜂𝑛 ∶ 𝐺(ℒ𝑛) → 𝐺(ℒ). Mumford’s description (using the symmetry of ℒ)
is a bit technical, but using a ∞-decomposition, we can describe 𝜂𝑛(𝑔) as the descent of 𝜖𝑛(𝑔) ∈ 𝐺(ℒ𝑛2)
via the isogeny [𝑛]. On the Heisenberg groups, this maps 𝐻(𝑛𝑚) → 𝐻(𝑚) via (𝛼, 𝑥1, 𝑥2) ↦ (𝛼𝑛, 𝑛𝑥1, 𝑛𝑥2)
and the natural embeddings above.
They satisfy the following relations: 𝜂𝑛 and 𝜖𝑛 commute with 𝛾−1, 𝜖𝑛 ∘ 𝜂𝑛 = 𝛿𝑛 and 𝜂𝑛 ∘ 𝜖𝑛 = 𝛿𝑛.
Then if we have a symmetric theta structure on (ℒ, ℒ2), the duplication formula is compatible with Riemann
relations. In fact we have seen in Theorem 2.7.3 that it is the essence of the proof of Riemann’s relations.

2.9 affine lifts and differential addition law in other models

2.9.1 Functions constructed from an explicit version of the theorem of the square

Given the central role of the Riemann relations in our algorithms, for reasons we outlined in Section 2.8.2, it may
seem that to extend them to other models require new ideas. But a recent insight is as follow:

Key Idea 4. The differential addition and the three way addition are just explicit versions of the theorem of the square.

We recall that if 𝑥, 𝑦 ∈ 𝐴, then the theorem of the square states that 𝑡∗
𝑥+𝑦ℒ ⊗ ℒ ≃ 𝑡∗

𝑥ℒ ⊗ 𝑡∗
𝑦ℒ, see [Rob21,

Corollary 2.2.6]. Switching to the vision of divisors, if 𝛩 is a divisor corresponding to ℒ, then an explicit version of
the theorem of the square means computing a section of 𝑡∗

𝑥+𝑦𝛩 + 𝛩 − 𝑡𝑥𝛩 − 𝑡𝑦𝛩.
To simplify notations, we can send a zero cycle 𝑍 = ∑ 𝑛𝑖(𝑃𝑖) to the divisor 𝑠𝛩(𝑍) ≔ 𝐷𝛩,𝑍 = ∑ 𝑛𝑖𝑡∗

𝑃𝑖
𝛩 (we

call this 𝐷𝑍 if 𝛩 is clear from the context). If 𝑍 is of degree zero, 𝑠𝛩(𝑍) correspond to a line bundle algebraically
equivalent to zero.

Lemma 2.9.1. With the notations above, if 𝑍 is of degree zero, 𝐷𝛩,𝑍 is linearly equivalent to zero (ie principal) if and
only if its realisation 𝑆(𝑍) = ∑ 𝑛𝑖𝑃𝑖 ∈ 𝐾(ℒ), the kernel of the polarisation 𝛷ℒ ∶ 𝐴 → 𝐴.

In this case we call 𝑓𝛩,𝑍 a function representing 𝐷𝛩,𝑍.

Proof. Using the theorem of the square repeatedly, we have that 𝑠𝛩(𝑍) is linearly equivalent to 𝑠𝛩((∑ 𝑛𝑖𝑃𝑖)−(0)).
But by definition of 𝛷ℒ, 𝑠𝛩((∑ 𝑛𝑖𝑃𝑖)−(0)) correspond to the line bundle 𝛷ℒ(∑ 𝑛𝑖𝑃𝑖), so this divisor is principal
if and only if ∑ 𝑛𝑖𝑃𝑖 ∈ 𝐾(ℒ).

These functions should be reminiscent to the ones used for pairings using Miller’s algorithm, and we will of
course see them again in Chapter 3.

As a first example, the differential addition which allows to compute products of the form 𝜃𝑖(𝑥 + 𝑦)𝜃𝑗(𝑥 − 𝑦)
in terms of products 𝜃𝑖(𝑥)𝜃𝑗(𝑥) (and constants depending on 𝑦 and 0𝐴), can be seen as making explicit the
isomorphism 𝑡∗

𝑦ℒ ⊗ 𝑡∗
−𝑦ℒ ≃ ℒ2. More precisely the products are well defined when we choose a trivialisation of

these line bundles at 𝑥, and the constants relate these two trivialisations.

39

2 Arithmetic of abelian varieties

Likewise, the three way addition, which relate products of the form 𝜃𝑖(𝑥 + 𝑦 + 𝑧)𝜃𝑗(𝑥) with products of the form
𝜃𝑖(𝑥 + 𝑦)𝜃𝑗(𝑥 + 𝑧) (and constants depending on 𝑦, 𝑧 and 0𝐴) can be seen as an explicit version of the isomorphism
𝑡∗
𝑦+𝑧ℒ ⊗ ℒ ≃ 𝑡∗

𝑦ℒ ⊗ 𝑡∗
𝑧ℒ via appropriate trivialisations at 𝑥.

Conversely, we may ask if it is possible to recover a theta structure given a model with an explicit version of the
theorem of the square. In fact, there are two related versions we may need. It is more convenient here to use the
language of divisors, we let 𝛩 be a divisor representing ℒ.

Algorithmic Hypothesis 2.9.2. (i) Given 𝑦, 𝑧 ∈ 𝐴, compute a function 𝑔𝑦,𝑧(𝑥) ≔ 𝑓𝛩,(𝑦)+(𝑧)−(𝑦+𝑧)−(0𝐴)(𝑥)
representing the principal divisor 𝑡∗

𝑦+𝑧𝛩 + 𝛩 − 𝑡∗
𝑦𝛩 − 𝑡∗

𝑧𝛩;
(ii) Given 𝑦 ∈ 𝐾(𝛩), compute a function 𝑔𝑦(𝑥) ≔ 𝑓𝛩,(𝑦)−(0𝐴) representing the principal divisor 𝑡∗

𝑦𝛩 − 𝛩.

Of course Algorithmic Hypotheses 2.9.2.(ii) is vacuous if ℒ is principal.

Example 2.9.3. If 𝐸/𝑘 is an elliptic curve and 𝛩 = (0𝐸), Algorithmic Hypothesis 2.9.2 is satisfied if we know how
to compute the (normalised) function 𝜇𝑃,𝑄 with divisor (𝑃) + (𝑄) − (𝑃 + 𝑄) − (0𝐸) on our model.

Algorithmic Hypotheses 2.9.2.(i) allows to compute the functions 𝑓𝛩,𝑍 for any 0-cycles of degree zero such
that its realisation 𝑆(𝑍) = 0𝐴 (by successive reduction, see also Section 3.3 for a double and add algorithm when
applicable), and adding Algorithmic Hypotheses 2.9.2.(ii) allows to handle the case 𝑆(𝑍) ∈ 𝐾(𝛩).

Note that the functions 𝑔 are only defined up to a constant. This won’t matter if they are used for evaluation on a
degree zero cycle as in Chapter 3. It is customary to normalize them at a point 𝑃, typically 𝑃 = 0𝐴 by requiring
that 𝑔(𝑃) = 1. This is only possible if 𝑔 is well defined at 𝑃, ie 𝑃 is neither a zero or pole. Otherwise a possibility is
to fix a constant in a Laurent series development along some uniformisers at 𝑃. This is classical for elliptic curves
for pairing evaluation, we refer to Section 3.5 for some examples.

Remark 2.9.4. An alternative strategy to fix the normalisation constant, when ℒ is base point free, is to look at
translations by points of 𝐾(𝛩) to normalize 𝑔. Assume for instance that 𝛩 is invariant by 𝐾2(ℒ) (eg 𝛩 is the
divisor associated to 𝜃0), and fix once and for all a function 𝑔𝑦 for any 𝑦 ∈ 𝐾1(ℒ). Then since the 𝑔𝑦 generate
the sections of ℒ, there is always one 𝑦 such that 𝑔(𝑃 + 𝑦) is well defined. Here we use 𝐾1(ℒ) to translate the
rigidification of 𝑃 to a rigidification of 𝑃 + 𝑦. We will go back to this in Remark 3.3.5.

2.9.2 Computing a theta structure

Now we may recover a theta structure from Algorithmic Hypotheses 2.9.2.(ii) as follow. The function 𝑔𝑦 of
Algorithmic Hypotheses 2.9.2.(ii) defines an element g𝑦 of 𝐺(ℒ) above 𝑦 via its action on the sections 𝑠 ∈ 𝛤(𝐴, ℒ)
by g𝑦 ⋅ 𝑠 = 𝑥 ↦ 𝑔𝑦(𝑥)𝑠(𝑥 − 𝑦).

Let 𝑠1, … , 𝑠𝑁 be a basis of sections of 𝛤(𝐴, ℒ). Evaluating at several points, we may recover the action of g𝑦
on the basis 𝑠𝑖 via linear algebra. We may then compute the commutator pairing explicitly (or via the tools of
Chapter 3), fix a symplectic decomposition of 𝐾(ℒ), and adjust the normalisations of the g𝑦 so that 𝑦 ↦ g𝑦 is
a group morphism over 𝐾1(ℒ) and 𝐾2(ℒ). Note that since the action of 𝐺(ℒ) on 𝛤(𝐴, ℒ) is irreducible, then
picking any section 𝑠 ∈ 𝛤(𝐴, ℒ), the set g𝑦 ⋅ 𝑠, 𝑦 ∈ 𝐾(ℒ) is a generator. In particular, the functions 𝑔𝑦 for
𝑦 ∈ 𝐾(ℒ) generate the sections.

Remark 2.9.5. We remark that g𝑦 is symmetric precisely when 𝑔𝑦(−𝑥) = 𝑔𝑦(𝑥 + 𝑦)−1. So if 𝑦 is of odd order 𝑚,
there is a unique 𝑔𝑦 such that g𝑦 is symmetric and of order 𝑚. If ℒ is of order 𝑛 even, a symmetric theta structure
exists if and only if ℒ is totally symmetric. Then we may choose any of the two symmetric element g𝑒𝑖

above a
symplectic basis 𝑒𝑖 of 𝐾(ℒ) to get a symmetric theta structure. Indeed we know that such a structure exists, and
acting on this by conjugation by points of two torsion we get all the 22𝑔 possible choices.

As an example, if we already have a (symmetric) theta structure on ℒ, we let 𝛩 be the divisor associated to 𝜃0.
A basis of sections of 𝛩 is given by the 𝜃𝑖/𝜃0, 𝑖 ∈ 𝐾1(ℒ), and 𝑔𝑦(𝑥) = gy ⋅ 𝜃0/𝜃0. For instance if 𝑖 ∈ 𝐾1(ℒ),
𝑔𝑦(𝑥) = 𝜃𝑖(𝑥)/𝜃0(𝑥).

Remark 2.9.6. Another very important example where we have an explicit version of the theorem of the square
(in the form where we may evaluate the functions 𝑔𝑦 on points) is in the case 𝐴 = Jac(𝐶) is a Jacobian. This is the
content of [CE14, § 2, § 3, § 4] to which this section owes a lot.

Assume that 𝐽 = Jac(𝐶) and that 𝐶 as a rational point 𝑂. We let 𝛩 be the theta divisor (in practice we translate
by a theta characteristic to get a symmetric divisor). If 𝑓 is a function on 𝐶 with divisor Div 𝑓 = ∑(𝑃𝑖) − ∑(𝑄𝑖),
it extends to a function 𝐹 on Jac(𝐶) via 𝐹(𝑥) = 𝑓 (𝐷𝑥) where, if 𝐷𝑥 = ∑(𝑇𝑖), 𝑓 (𝐷𝑥) = ∏ 𝑓 (𝑇𝑖), and 𝐷𝑥 is the

40

2.9 Affine lifts and differential addition law in other models

unique divisor of degree 𝑔 such that 𝐷𝑥 − 𝑔(𝑂) represents 𝑥. This gives a section 𝑓𝛩,𝑍 associated to a zero cycle
of the form 𝑍 = ∑ 𝑛𝑖(𝑃𝑖 − 𝑂) where all 𝑃𝑖 are on the curve [CE14, § 2.2]. But a general degree zero cycle 𝑍 is
always equivalent to a cycle 𝑍0 of the form above, and determinants can be used to compute the linear equivalence
between 𝑠𝛩(𝑍) and 𝑠𝛩(𝑍0) [CE14, § 2.5].

Recipe 2.9.7. Algorithmic Hypotheses 2.9.2.(i) can be used as follow:

• Generate sections of ℒℓ by constructing 𝑓𝛩,𝑍 for 𝑍 = ℓ(𝑃) − ℓ(0) with 𝑃 ∈ 𝐴[ℓ]. If ℓ is prime to the level 𝑛
of ℒ, these sections suffice to generate 𝛤(𝐴, ℒℓ) when we take their product with generators of 𝛤(𝐴, ℒ).

• If we also have Algorithmic Hypotheses 2.9.2.(ii), we can proceed as above to generate sections of ℒℓ by
using 𝑍 = ℓ(𝑃) − ℓ(0) with 𝑃 ∈ [ℓ]−1𝐾(ℒ) = 𝐴[ℓ𝑛] by Theorem 2.5.1. If ℓ is prime to 𝑛, it suffice to look
at 𝑍 = ℓ(𝑃) + (𝑄) − (ℓ + 1)(0), with 𝑃 ∈ 𝐴[ℓ] and 𝑄 ∈ 𝐴[𝑛]. We recover the method above as a special
case.

• If we don’t want to iterate through all points of ℓ-torsion, we may instead look at 𝑍 of the form 𝑍 =
𝑏(𝑎𝑃) + 𝑎(−𝑏𝑃) − ℓ(0) for fixed 𝑎, 𝑏 ∈ ℕ such that 𝑎 + 𝑏 = ℓ and 𝑃 a random point, as in [CE14, § 3].

• Once we have a system of generators, we may do linear algebra (by evaluating these generators on points) to
extract a basis of 𝛤(𝐴, ℒℓ).

• Since we have just seen that we can compute functions 𝑔𝑦 with divisor ℓ𝑡∗
𝑦𝛩 − ℓ𝛩 for 𝑦 ∈ 𝐴[ℓ], or even

𝑦 ∈ 𝐴[𝑛ℓ] if we also have Algorithmic Hypotheses 2.9.2.(ii), then we may compute the explicit action of the
theta group 𝐺(ℒℓ) on a basis. Via a choice of theta structure (using the Remark 2.9.5 if we want a symmetric
one) we can then apply Recipe 2.5.4 to get the corresponding theta functions for ℒℓ.

Note that once we have computed the 𝑔𝑦 for 𝑦 ∈ 𝐾𝑖(ℒ), this Recipe only requires one section 𝑠 whose trace
under 𝐾(ℒ)2 is non zero. The section 𝜃0 is the trace of 𝑠 under 𝐾(ℒ)1 and the 𝜃𝑖 are given by the action of
the g𝑖 on 𝜃0.

Note that if we only have Algorithmic Hypotheses 2.9.2.(i), wemay still compute lifts 𝐾 of isotropic subgroups
𝐾 of 𝐴[ℓ] and compute the action of 𝐾 on sections, this is sufficient for isogenies as we will see in Chapter 4.

• In particular, by Remark 2.9.6, we have an explicit algorithm to compute theta constants of any level 𝑛 (prime
to 𝑝) on a Jacobian, provided we have its points of 𝑛-torsion. This generalizes Thomae’s formula.

In [CE14] the authors use their explicit version of the theorem of the square to compute isogenies on Jacobians,
but as we just outlined it is straightforward using Recipe 2.5.4 to extend their construction to get a symmetric
theta structure of level ℓ𝑛. Then we may compute an ℓ-isogeny 𝑓 ∶ 𝐴 → 𝐵 directly using Theorem 2.5.7 to
get a theta structure of level 𝑛 on 𝐵, hence in particular equations for 𝐵 by Section 2.7 if 𝑛 > 2 is even. This
has the advantage of not requiring 𝐵 to be a Jacobian, as was needed in [CE14] to do computations (hence
restricting its usage to the generic case of genus 𝑔 ≤ 3).

Note that the above considerations apply in particular to construct a theta structure of level ℓ𝑛 given the theta
functions of level 𝑛. Indeed, in this case Algorithmic Hypotheses 2.9.2.(ii) is built in into the definition of the theta
functions, while Algorithmic Hypotheses 2.9.2.(i) is given by the differential addition as we saw. In practice, it
will be easier to apply a slightly different strategy to construct sections of 𝛤(𝐴, ℒℓ) by using the surjectivity of the
multiplication map instead, ie to look at ℓ-fold products of theta functions of level 𝑛. Indeed in this case the action
of 𝐺(ℒℓ) on such products is easier to describe (see Section 2.10.2), so we do not need to use the general strategy.
We note that these products essentially correspond to functions 𝑓𝛩,𝑍 for 𝑍 of the form 𝑍 = ∑(𝑃𝑖) − ℓ(0) where
𝑃𝑖 ∈ 𝐾1(ℒ) (if we choose 𝛩 given by 𝜃0), so can be seen as a special case of the general strategy.

2.9.3 Trivialisations of the line bundle

We have seen that differential additions and three way additions relate suitable trivialisations of the line bundle ℒ
at points 𝑥 ∈ 𝐴(𝑘) (or alternatively trivialisation of 𝑡∗

−𝑥ℒ at 0𝐴). We note that Key Idea 4 is selling the differential
addition a bit short: the point is that furthermore the normalisations used in making the theorem of the square
explicit are uniform. One way to look at this is that the theorem of the square is a special form of the theorem of
the cube. For instance, 𝑝∗

𝑥+𝑦+𝑧ℒ ⊗ 𝑝∗
𝑥+𝑦ℒ−1 ⊗ 𝑝∗

𝑥+𝑦ℒ−1 ⊗ 𝑝∗
𝑦+𝑧ℒ−1 ⊗ 𝑝∗

𝑥+𝑧ℒ−1 ⊗ 𝑝∗
𝑧 ⊗ 𝑝∗

𝑥 ⊗ 𝑝∗
𝑦 is trivial on

𝐴 × 𝐴 × 𝐴, where I denote by 𝑝𝑥+𝑦 the morphism 𝐴 × 𝐴 × 𝐴 → 𝐴, (𝑥, 𝑦, 𝑧) ↦ 𝑥 + 𝑦. So fixing a trivialisation of

41

2 Arithmetic of abelian varieties

this line bundle allows to fix (uniformly) a trivialisation of 𝑡𝑥+𝑦+𝑧ℒ from trivialisations of 𝑡𝑥ℒ, 𝑡𝑦ℒ, 𝑡𝑧ℒ, 𝑡𝑦+𝑧ℒ,
𝑡𝑥+𝑧ℒ, 𝑡𝑥+𝑦ℒ. We won’t need this strengthening of Algorithmic Hypothesis 2.9.2 in the following.

Finally, there is a very important modular interpretation of fixing a trivialisation of ℒ at 0. If we have a symmetric
theta structure of level 𝑛 even on (𝐴, ℒ) with 𝑛 ≥ 4, a trivialisation of ℒ at 0𝐴, ie of the choice of an affine lift ̃0𝐴
of the theta null point, is determined, up to a sign, by the choice of a differential basis on 𝐴.

Indeed, let 𝒳𝑔,𝑛 → 𝒜𝑔,𝑛 be the universal abelian variety, 𝑠 ∶ 𝒜𝑔,𝑛 → 𝒳𝑔,𝑛 be the zero section, and ℋ = 𝑠∗𝛺𝒳𝑔,𝑛

be the Hodge vector bundle. A trivialisation of ℋ over an abelian variety 𝐴 then corresponds to a choice of basis of
the cotangent sheaf of 𝐴 at 0𝐴. Alternatively, since on an abelian scheme all global differentials are invariant by
translation (since there are no global sections of the structure sheaf), one can also see the Hodge vector bundle as
𝜋∗(𝛺𝒳𝑔,𝑛

), and a trivialisation of ℋ as a basis of global differentials of 𝐴. We denote by 𝔥 = 𝛬𝑔𝑠∗𝛺𝒳𝑔,𝑛
the Hodge

line bundle. Let ℒ𝒜𝑔,𝑛
be the ample line bundle given by the pullback of the 𝑂(1) sheaf via the quasi projective

embedding of 𝒜𝑔,𝑛 of Theorem 2.7.4 given by the theta null coordinates.

Lemma 2.9.8. Over 𝒜𝑔,𝑛, we have 𝔥 = ℒ2
𝒜𝑔,𝑛

.

So the trivialisation we chose on ℒ induces a trivialisation of 𝔥𝐴. On the other hand a choice of a differential
basis 𝑤𝐴 also fixes a trivialisation on ℋ𝐴 so on 𝔥𝐴 over 𝐴 (which depends only on 𝛬𝑔𝑤𝐴), hence of ℒ2.

Proof. The dual of ℒ𝒜𝑔,𝑛
, which is then the pullback of the 𝑂(−1) sheaf is called 𝒦 in Mumford [Mum67a, p. 82].

In [Can16, Th. 4.2.1], it is proved that 𝒦 is the pullback of the inverse of a square root of the Hodge line bundle
defined over 𝒜𝑔: 𝐾 = Des∗ 𝑤−1/2

𝛩 , see [Can16, Rem. 4.2.2]. There, 𝑤𝛩 is the Hodge line bundle twisted by the
theta multiplier bundle ℳ𝛩, but the pullback of this multiplier bundle is trivial on 𝒜𝑔,𝑛, hence Des

∗ 𝑤𝛩 = 𝔥 on
𝒜𝑔,𝑛. Indeed, the symmetric theta structure of level 𝑛 trivialises the theta multiplier bundle (Candelori, private
communication). See also [Can20]. In particular this shows that ℒ2

𝒜𝑔,𝑛
is the Hodge bundle on 𝒜𝑔,𝑛, as expected

from the fact that analytically products of theta constants 𝜃𝑖(0)𝜃𝑗(0) are modular forms of weight 1 for 𝛤(𝑛, 2𝑛),
as shown by the functional equation of theta constants. We could also have deduced the Lemma 2.9.8 from this
functional equation, as in [Mor90].

Note that more generally, if 𝜋 ∶ 𝑋𝑔 → 𝒜𝑔 is the universal principally polarised abelian stack, and ℒ𝑋𝑔
the

principal polarisation, then 𝜋⋆ℒ𝑋𝑔
is isomorphic to 𝔥𝒜𝑔

up to a 𝜇4-torsor [Can20, Theorem 5.0.1]. See also [Mor85,
Appendice 2; FC90, Theorem 5.1], and improved bounds for the determinant bundle (when ℒ is not supposed
principal) in [Kou00; Pol00; MR08].

2.10 changing level and application to isogenies

If (𝐴, ℒ) has a symmetric theta structure (of level 𝑛 even), an important question is how to obtain a symmetric
theta structure on ℒℓ. For simplicity, we assume here that ℓ is prime to 𝑛 (we will explain how to handle the general
cases in Remarks 2.10.3, 2.10.7 and 2.10.14). The converse, going from a theta structure for ℒℓ to a theta structure
for ℒ will be treated in Section 2.10.3. We will revisit these algorithms in Chapter 4 from a more general point of
view, where we focus on the explicit action of the theta group (see Remark 4.2.3).

2.10.1 Raising level via an isogeny

We first digress by looking back at Example 2.8.6. Assuming we have a theta structure of level ℓ𝑛 on (𝐴, ℒℓ), its
theta null point ̃0𝐴 is completely determined by the affine points 𝜋(�̃�) where 𝜋 is the affine lift of the isogeny
𝜋 ∶ 𝐴 → 𝐵 = 𝐴/𝐾2(ℒℓ)[ℓ] and �̃� are the canonical lifts of the points 𝑃 ∈ 𝐾1(ℒℓ)[ℓ].

Suppose that we forget about the affine lifts, and that we only have the projective coordinates 𝜋(𝑃) in 𝐵, for
𝑃 ∈ 𝐾1(ℒℓ)[ℓ]. Fix arbitrary lifts of 𝜋(𝑃) and introduce projective factors 𝜆𝑃 such that 𝜋(�̃�) = 𝜆𝑃𝜋(𝑃). To
reconstruct ̃0𝐴 we need to recover the values of 𝜆𝑃.

Fix a basis 𝑒1, … , 𝑒𝑔 of 𝐾1(ℒℓ)[ℓ].

• Using the addition law, from 𝜋(𝑒𝑖) we may recover all 𝜋(𝑃), 𝑃 ∈ 𝐾1(ℒℓ)[ℓ].

• Via the compatibility of Riemann relations with isogenies, we have the following relations on the projective
factors: 𝜆𝑃+𝑄𝜆𝑃−𝑄 = 𝑐𝜆𝑃𝜆𝑄 where 𝑐 is a constant that is obtained by plugging the differential addition, and

42

2.10 Changing level and application to isogenies

𝜆𝑃+𝑄+𝑅𝜆𝑃𝜆𝑄𝜆𝑅 = 𝑐′𝜆0𝜆𝑄+𝑅𝜆𝑃+𝑅𝜆𝑃+𝑄 where 𝑐′ is a constant that is obtained by plugging in the three
way addition.

• Normalizing things such that 𝜆0 = 1, ie ̃0𝐵 = 𝜋(̃0𝐴), we get the projective factors are completely determined
by 𝜆𝑖 ≔ 𝜆𝑒𝑖

, 𝜆𝑖𝑗 ≔ 𝜆𝑒𝑖+𝑒𝑗
. (Compare with Example 2.8.6).

But using symmetry, we can say more. Let 𝑃′ = 𝜋(𝑃) and 𝑃′ = 𝜋(𝑃). If 𝐾′ = 𝜋(𝐾1(ℒℓ))[ℓ], 𝐾′ is a maximal
isotropic subgroup of 𝐵[ℓ]. We say that 𝐾′ = {𝑃′} is an excellent lift of 𝐾′ if the points in 𝐾′ satisfy all Riemann
relations from Theorem 2.7.3 that involve only points in 𝐾′. In particular, due to the compatibility of Riemann
relations with the isogeny 𝜋, if 𝐾′ is given by the {𝜋�̃�}, it is an excellent lift of 𝐾′. We will soon see that all excellent
lifts are of this form. But first we specialize what this definition means for a point and its multiples.

Definition 2.10.1. Let (𝐵, ℒ) be a theta structure of level 𝑛, 𝑃′ a point of ℓ-torsion with ℓ odd and prime to
𝑛. Write ℓ = 2ℓ′ + 1. We say that an affine lift 𝑃′ is an excellent point of ℓ-torsion if diff_mult(ℓ′ + 1, 𝑃′) =
− diff_mult(ℓ′, 𝑃′).

We remark that if we replace 𝑃′ by 𝜆𝑃′, the left hand term is multiplied by 𝜆(ℓ′+1)2 while the right hand term by
𝜆(ℓ′)2 . So if 𝑃′ is an excellent point of ℓ-torsion, then the other ones are exactly given by 𝜁𝑃′, 𝜁 a ℓ-root of unity.

We apply this to our setup above, the 𝜋(�̃�) are all excellent points of ℓ-torsion. So if we want to recover the 𝜆𝑖,
𝜆𝑖𝑗, plugging in the fact that the affine lift should be excellent lift yields equations of the form 𝜆ℓ

𝑖 = 𝑐𝑖, 𝜆ℓ
𝑖𝑗 = 𝑐𝑖𝑗.

Proposition 2.10.2. Let 𝑒′
1, … , 𝑒′

𝑔 be a basis of 𝐾′. Choose affine lifts of 𝑒′
𝑖 , 𝑒′

𝑖+𝑗 that are excellent points of ℓ-torsion.
Use multiaddition to construct affine lifts 𝑃′ for all 𝑃′ ∈ 𝐾′. Then 𝐾′ is an excellent lift of 𝐾′, which comes from ̃0′

𝐴, a
theta null point of level ℓ𝑛 on (𝐴, ℒℓ).

Proof. We know that if 𝐾′ comes from ̃0𝐴, it is an excellent lift. Since 𝑒′
𝑖 is an excellent point of ℓ-torsion, it differs

from 𝜋(𝑒𝑖) by a projective factor 𝜆𝑖 with 𝜆ℓ
𝑖 = 1. Same for ̃𝑒′

𝑖 + 𝑒′
𝑗 and 𝜆𝑖𝑗. But by Remark 2.6.7 there is a symmetric

automorphism of 𝐺(ℒℓ) that acts exactly by the 𝜆𝑖 and 𝜆𝑖𝑗 on 𝜋(𝑒𝑖) and on 𝜋(̃𝑒𝑖 + 𝑒𝑗). Letting ̃0′
𝐴 be the image of

̃0𝐴 by this automorphism, our 𝐾′ comes from ̃0′
𝐴. In particular it is an excellent lift.

The proof given here is the same proof as in [LR12], [Rob10, §7.2], slightly reformulated to be more general so
that it extends readily to abelian schemes (see Section 5.2.2).

Remark 2.10.3. (i) We may reinterpret Proposition 2.10.2 as follow: the isogeny 𝑓 ∶ 𝐵 → 𝐵/𝐾′ = 𝐴 is the
ℓ-contragredient isogeny of 𝐴 → 𝐵. So we have a recipe, starting from (𝐵, ℳ) of level 𝑛 and a totally isotropic
subgroup 𝐾′ of 𝐵[ℓ], to construct the theta null point of level ℓ𝑛 on 𝐴 = 𝐵/𝐾′ with polarisation given by
𝜋∗(ℳ) where 𝜋 is the ℓ-contragredient isogeny 𝐴 → 𝐵. We will of course use this construction in Chapter 4.

(ii) In our previous example, we implicitly fixed a basis of 𝐾′ on 𝐵.This fixes a basis of any symplectic complement
of 𝐾′ in 𝐵[ℓ], hence abasis of 𝐾 = 𝑓 (𝐵[ℓ]) in 𝐴[ℓ]. The ℓ𝑔(𝑔+1)/2 choices of ̃0𝐴 then all correspond to a
choice of symplectic complement of 𝐾 in 𝐴[ℓ].

(iii) The same ideas hold to compute the preimage by 𝜋 in (𝐴, ℒℓ) of a point 𝑦 ∈ (𝐵, ℳ): choose an affine lift
̃𝑦 + 𝑒′

𝑖 such that the ̃𝑦 + ℓ𝑒′
𝑖 computed with diff_multadd is equal to ̃𝑦. This determines ̃𝑦 + 𝑒′

𝑖 up to a
factor 𝜆𝑖 with 𝜆ℓ

𝑖 = 𝑐𝑖. Using multi_add we can compute all ̃𝑦 + 𝑃′, 𝑃′ ∈ 𝐾′, from which we can recover
the preimage 𝑥 ∈ (𝐴, ℒℓ) of 𝑦. We have ℓ𝑔 choices, as expected from the degree of the isogeny.

(iv) If ℓ is not prime to 𝑛, but still odd, we need to start with a basis of a totally isotropic subgroup 𝐾′
0 of 𝐵[𝑛ℓ]

compatible with 𝐵1[𝑛] (and such that 𝐾′ = 𝐾0[ℓ]). It is easy to extend the notion of excellent lift [Rob10,
Lemme 6.3.4]: we have that (ℓ′ +1)𝑃 and −ℓ′𝑃 differ by a point of 𝑛-torsion, and we can use the explicit affine
translation by points of 𝑛-torsion induced by the theta structure of level 𝑛 on 𝐵. So we still have equations of
the form 𝜆ℓ

𝑖 = 𝑐𝑖.
(v) If ℓ is even, we have to write ℓ = 2ℓ′, so the equations are of the form 𝜆2ℓ

𝑖 = 𝑐𝑖. These extra solutions also
comes from automorphisms of the theta structure from Remark 2.6.7, via the symmetric automorphisms
that leave the symplectic basis unchanged [Rob10, Théorème 6.3.6]. An equivalent point of view is that we
may conjugate the theta structure on ℒℓ by a point 𝑐 ∈ 𝐾[2]; since 𝑐 is killed by the isogeny 𝑓, the conjugate
symmetric theta structure is still compatible with the one on (𝐵, ℳ). This gives us the extra 2𝑔 sign choices.
From the point of view of isogenies, a difficulty is that the subgroup 𝐾′

0 of 𝐵[𝑛ℓ] then needs to be compatible
not only with 𝐵1[𝑛] but with the symmetric theta structure on (𝐵, ℳ), hence a symplectic decomposition
of 𝐵[2𝑛] which induces this symmetric theta structure.

43

2 Arithmetic of abelian varieties

Let us explain how to recover equations giving ℓ-roots of unity. Let 𝐾"0 be a totally isotropic subgroup of
𝐵[2𝑛ℓ] such that 2𝐾"0 = 𝐾′

0. If the symmetric theta structure on (𝐴, ℒℓ) is induced by the decomposition
𝐴[2𝑛ℓ] = 𝐴1[2𝑛ℓ] ⊕ 𝐴2[2𝑛ℓ], we may take 𝐾"0 = 𝑓 (𝐴1[2𝑛ℓ]). The if 𝑃"𝑖 ∈ 𝐾"0 is of order 2𝑛ℓ, we may
compute an excellent lift 𝑃"𝑖 via an equation of the form 𝜆"𝑖

4ℓ = 𝑐"𝑖. Then using a differential addition to get
an affine lift above 𝑃𝑖 = 2𝑃"𝑖, the normalisation factor 𝜆𝑖 for 𝑃𝑖 is 𝜆𝑖 = 𝜆"𝑖

4, hence satisfy 𝜆ℓ
𝑖 = 𝑐𝑖.

(vi) For the computation of preimages, once we have fixed a basis 𝑃1, … , 𝑃𝑔 of 𝐾′
0, we can define an excellent lift

̃𝑦 + 𝑃𝑖 as satisfying ̃𝑦 + ℓ𝑃𝑖 = 𝑔𝑖 ̃𝑥 where 𝑔𝑖 is the element of the theta group above ℓ𝑃𝑖 (which is of 𝑛-torsion).
This gives equations of the form 𝜆ℓ

𝑖 = 𝑐𝑖 (even if ℓ is even), hence these equations encode all preimages.

We will need the concept of Remark 2.10.3.(iii) again so we make it into a definition:

Definition 2.10.4. With the notations of Definition 2.10.1, let �̃� be an excellent lift of a ℓ-torsion point 𝑃 ∈ 𝐴[ℓ].
Let 𝑥 ∈ 𝐴. We say that 𝑥 + 𝑃 is an excellent lift of 𝑥 + 𝑃 with respect to �̃� if the affine point ̃𝑥 + ℓ𝑃 computed via
diff_multadd is equal to ̃𝑥.

If 𝐾 is an isotropic subgroup of 𝐴[ℓ] and we fix an excellent lift 𝐾 of 𝐾, we may extend the definition by saying
that ̃𝑥 + 𝐾 = {𝑥 + 𝑃 ∣ 𝑃 ∈ 𝐾} is an excellent of 𝑥 with respect to 𝐾 if these points respect all Riemann relations
only involving points of 𝐾 and the point 𝑥 + 𝑃 once in the left hand term. We may construct an excellent lift ̃𝑥 + 𝐾
of 𝑥 with respect to 𝐾 by first constructing excellent lifts ̃𝑥 + 𝑒𝑖 for 𝑒𝑖 a basis of 𝐾, and then obtaining all other
points by multi way additions.

2.10.2 Raising level on the same variety

So we know how to change the level structure via an isogeny. We now explain how to change the level by staying
on the same abelian variety. Let (𝐴, ℒ) be a symmetric theta structure of level 𝑛 even, and let assume that ℓ is
prime to 𝑛 as above. Then since ℓ is odd, a symplectic basis of 𝐴[ℓ] (along with the theta structure on (𝐴, ℒ))
completely determines the symmetric theta structure of (𝐴, ℒℓ). Write 𝐴[ℓ] = 𝐾1 ⊕ 𝐾2 the induced symplectic
decomposition.

By surjectivity of the multiplication map (see Section 2.8.1), generators of 𝛤(𝐴, ℒℓ) are given by the ℓ-fold
product of the 𝜃ℒ

𝑖 , 𝑖 ∈ 𝐾1(ℒ). Our Recipe 2.5.4 explains how we may reconstruct 𝜃ℒℓ
𝑖 from these generators

provided we can explicit the action of 𝐺(ℒℓ) on it. By the compatibility of differential addition with the change of
level explained in Section 2.8.2 the answer is once again given by excellent affine lifts.

Proposition 2.10.5. Let 𝐴[ℓ] = 𝐾1 ⊕ 𝐾2 be a symplectic decomposition, 𝑥 ∈ 𝐴. Fix an excellent affine lift 𝐾𝑖 = {�̃�}
of 𝐾1 and 𝐾2, and an excellent affine lift ̃𝑥 + 𝐾𝑖 of 𝑥 with respect to 𝐾𝑖. Then if 𝑔 ∈ 𝐺(ℒℓ) is in the image of
𝑔′ ∈ 𝐺(ℒ) via the embedding 𝜖ℓ ∶ 𝐺(ℒ) → 𝐺(ℒℓ) described in [Mum66], 𝑔(∏ 𝜃ℒ

𝑖𝑗) = ∏ 𝑔′ ⋅ 𝜃ℒ
𝑖𝑗 .

If 𝑔 is the unique symmetric lift above 𝑃 ∈ 𝐾1, or 𝑃 ∈ 𝐾2 then 𝑔(∏ 𝜃ℒ
𝑖𝑗 (̃𝑥)) = ∏ 𝜃ℒ

𝑖𝑗 (𝑥 + 𝑃).
More generally, if 𝑔 = 𝑔1𝑔2 where 𝑔1 symmetric above𝑃 ∈ 𝐾1 and 𝑔2 symmetric above𝑄 ∈ 𝐾2, 𝑔1𝑔2(∏ 𝜃ℒ

𝑖𝑗)(̃𝑥) =
∏(𝜃ℒ

𝑖𝑗)(̃𝑥 + 𝑄 + 𝑃) where ̃𝑥 + 𝑄 + 𝑃 is computed by first normalizing ̃𝑥 + 𝑄 from ̃𝑥 with respect to 𝑄 and then

normalizing ̃𝑥 + 𝑄 + 𝑃 with respect to 𝑃.
Since any 𝑔 ∈ 𝐺(ℒ) can be written as 𝑔 = 𝑔0𝑔1𝑔2 with each 𝑔𝑖 as above (and 𝑔0 commuting with 𝑔1, 𝑔2 since ℓ is

prime to 𝑛), this suffices to describe the action of 𝐺(ℒℓ) on the generators given by the ℓ-fold product.

Proof. This is immediate from Section 2.8.2. If 𝑔 is above 𝑃 ∈ 𝐾𝑖, 𝑔 is symmetric and 𝑔ℓ = 1. This induces relation
on the 𝑔𝑛. ̃𝑥. But by Equation (2.18) the 𝑔𝑛. ̃𝑥 can be computed via differential additions from ̃𝑥 and 𝑔. ̃𝑥. We then
use the compatibility of differential addition with the change of level (described via the Segre embedding).

We remark that since an excellent lift 𝑥 + 𝑃 is defined up to a ℓ-root of unity, the choice is killed in the ℓ-fold
product and hence the action does not depend on these choices, as it should.

From the point of view of Section 2.9, we can view the choice of an excellent lift as follow: if 𝑃 ∈ 𝐴[ℓ], a
choice of lift ̃0𝐴 and �̃� correspond to trivialisations of ℒ at 0𝐴 and 𝑃 respectively. Taking ℓ-th power, we have
that ℒℓ ≃ 𝑡∗

𝑃ℒℓ, and there is a unique isomorphism 𝑔𝑃 ∈ 𝐺(ℒℓ) compatible with the chosen trivialisations (and
changing the trivialisations of ℒ by a ℓ-root of unity does not change 𝑔𝑃). If 𝑃 ∈ 𝐾𝑖(ℒℓ), we see that �̃� is an
excellent lift whenever 𝑔𝑃 is induced by a symmetric theta structure compatible with our symplectic decomposition
of 𝐴[ℓ]. The same reasoning hold to interpret excellent lifts 𝐾𝑖 and 𝑥 + 𝐾𝑖 in terms of trivialisation of ℒℓ at 𝑥 and
translates by 𝐾𝑖 which are induced by trivialisations of ℒ and a symmetric theta structure on ℒℓ respectively.

44

2.10 Changing level and application to isogenies

Remark 2.10.6. We remark that if 𝑔1 is above 𝑃 ∈ 𝐾1 and 𝑔2 above 𝑄 in 𝐾2, then 𝑔1 and 𝑔2 does not commute.
This means that first computing an excellent lift 𝑥 + 𝑃 and then an excellent lift ̃𝑥 + 𝑃 + 𝑄 or computing an
excellent lift ̃𝑥 + 𝑄 and then an excellent lift ̃𝑥 + 𝑃 + 𝑄 does not give the same value. In fact by Proposition 2.10.5
they differ by a factor 𝜆 such that 𝜆ℓ = 𝑒ℒℓ(𝑃, 𝑄). Applying this to 𝑥 = 0𝐴 shows that fixing arbitrary lifts �̃�,
𝑄 and ̃𝑃 + 𝑄 of 𝑃, 𝑄 and 𝑃 + 𝑄 in (𝐴, ℒ), then if ℓ̃𝑄 = 𝜆′

𝑄
̃0𝐴, ̃𝑃 + ℓ𝑄 = 𝜆𝑄�̃�, ℓ̃𝑃 = 𝜆′

𝑃 ̃0𝐴, ̃ℓ𝑃 + 𝑄 = 𝜆𝑃�̃�,

𝑒ℒℓ(𝑃, 𝑄) =
𝜆𝑃𝜆′

𝑄

𝜆′
𝑃𝜆𝑄

.
In other words we recover the pairing 𝑒ℒℓ by working with coordinates in (𝐴, ℒ)! We will recover this idea

in Chapter 3. The normalisation factors 𝜆′
𝑄 and 𝜆′

𝑃 are just there so that the formula work even if we take non
excellent affine lifts �̃�, 𝑄.

Remark 2.10.7. As in Remark 2.10.3, we may extend this to ℓ not prime to 𝑛. First a symmetric theta structure on
ℒℓ is induced by a symplectic decomposition of 𝐴[2𝑛ℓ], and we want one which is compatible with a symplectic
decomposition of 𝐴[2𝑛] giving the symmetric theta structure we have on (𝐴, ℒ). If ℓ is prime to 2𝑛, it suffices to
choose a symplectic decomposition of 𝐴[ℓ]. Then we have seen how excellent lifts of 𝑃 ∈ 𝐴𝑖[ℓ] allows to compute
the action of 𝑔𝑃.

If ℓ is odd but not prime to 𝑛, we need a symplectic decomposition of 𝐴[𝑛ℓ] compatible with the one on 𝐴[𝑛].
Then as in Remark 2.10.3, if eg 𝑃 ∈ 𝐴1[𝑛ℓ] we may extend the notion of excellent lifts �̃�, 𝑥 + 𝑃 by requiring that
ℓ�̃� and ̃𝑥 + ℓ𝑃 are given by the corresponding action of the element of 𝐺(ℒ) induced by our theta structure above
ℓ𝑃 ∈ 𝐾(ℒ).

Finally, if ℓ is even, we need a full symplectic decomposition of 𝐴[2𝑛ℓ] compatible with one on 𝐴[2𝑛] inducing
the symmetric theta structure. Then as in Remark 2.10.3, taking an excellent lift of 𝑃′ ∈ 𝐴1[2𝑛ℓ] such that 2𝑃′ = 𝑃,
allows to compute an excellent lift �̃� = 2𝑃′ above 𝑃 defined up to a projective factor 𝜆 which satisfy 𝜆ℓ = 𝐶𝑃
(rather than 𝜆2ℓ = 𝐶𝑃 if we had normalised 𝑃 directly), hence do give the explicit action of 𝑔𝑃 on ℓ-fold products.

When looking at this Remark and Remark 2.10.3, the general slogan here is that if ℓ is prime to 𝑛 we can focus on
points of ℓ-torsion, if ℓ is not prime to 𝑛 we need points of 𝑛ℓ-torsion, and if ℓ is even we have equations of the form
𝜆2ℓ

𝑖 = 𝐶𝑖 and we need to fix some information on the 2ℓ𝑛 torsion to get back to equations of the form 𝜆ℓ
𝑖 = 𝐶𝑖.

Update @2022-07 : The remaining question was: taking a symplectic basis 𝑃′
𝑖, 𝑄′

𝑖 of the 2𝑛-torsion, how can we
check simply that it is compatible with our symmetric theta structure of level 𝑛? Of course this theta structure
defines a canonical symplectic basis 𝑃𝑖, 𝑄𝑖, so the first condition was 2𝑃′

𝑖 = 𝑃𝑖, 2𝑄′
𝑖 = 𝑄𝑖. But counting the

number of possible symmetric theta structures inducing the symplectic basis 𝑃𝑖, 𝑄𝑖, we know that only half of the
antecedents are compatible.

So we need to find equations satisfied by compatible choices which are not satisfied by non compatible choices.
The solution, due to David Lubicz, is to use the symmetry relations. Its better to illustrate it with an exemple:
take 𝑔 = 1, 𝑛 = 2. First lets look at the ℓ = 3 case: we have a point of 6-torsion 𝑃′ = (𝑎1 ∶ 𝑎4), and we write
2𝑃′ = (𝑎2 ∶ 𝑎5), 3𝑃′ = (𝑎3 ∶ 𝑎0) where 0𝐴 = (𝑎0 ∶ 𝑎3) is the theta null point. We know from Section 2.10.1 that
taking appropriate projective normalisations, the point (𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) is a theta null point of level 6 on a
3-isogenous abelian variety. It is symmetric, hence 𝑎1 = 𝑎5, 𝑎2 = 𝑎4. But this symmetry is automatically satisfied,
because 4𝑃′ = (𝑎4 ∶ 𝑎1) = −2𝑃′ = −(𝑎2 ∶ 𝑎5) = (𝑎5 ∶ 𝑎2).

Things are different when ℓ = 2: we have a point of 4-torsion 𝑃 = (𝑎1 ∶ 𝑎3), and 2𝑃 = (𝑎2 ∶ 𝑎3) where
0𝐴 = (𝑎0 ∶ 𝑎2). And, after suitable normalisation, the point (𝑎0, 𝑎1, 𝑎2, 𝑎3), is a theta null point of level 4 on a
2-isogenous 𝐵. This time the symmetry tells us that 𝑎1 = 𝑎3, this is a new constraint on the possible 𝑃!

This constraint is sufficient to characterise compatibility. Indeed, we have just seen that a compatible 𝑃′ has
to satisfy this symmetry relation. Conversely, if 𝑃′ satisfy this symmetry, we can look at the explicit action of
translation by the points of 2-torsion, and we see that exactly half of them still satisfy this symmetry relation. Since
half the preimages are compatibly, by a cardinality argument, this shows that the symmetry relation is sufficient.

Alternatively, as in Remark 2.10.3, if we are given a symplectic basis of 𝐴[ℓ𝑛] and we simply want a symmetric
theta structure compatible with this basis (without fixing a prior decomposition of 𝐴[2ℓ𝑛]), then the equations
𝜆2ℓ

𝑖 = 𝐶𝑖 are enough. Indeed, it suffices to make a choice of 𝜆𝑖 for each element of the symplectic basis 𝑒𝑖 of 𝐴[𝑛ℓ];
since we act on ℓ-fold products the action only depend on 𝜆ℓ

𝑖 , ie a different choice only changes the action by a sign.
This amount to changing the symmetric element 𝑔𝑒𝑖

above 𝑒𝑖 to −𝑔𝑒𝑖
. But these signs all come from a conjugation

of the symmetric theta structure, see Remark 2.6.7. The 22𝑔 points of 2-torsion gives all 22𝑔 choice of signs for the
𝑔𝑒𝑖

. The important point here is to fix these signs once and for all for a basis, we cannot fix them independently
for each point 𝑃 ∈ 𝐴[𝑛ℓ], as was the case when ℓ was odd. Since we had the exact same kind of consideration in
Remark 2.10.3, we may extend the slogan as: when ℓ is even, using the equations 𝜆2ℓ

𝑖 = 𝐶𝑖 in the determination
of the excellent affine lifts for each point of a basis is enough to implicitly fix the extra information of 𝐴[2𝑛ℓ] we
needed.

45

2 Arithmetic of abelian varieties

Via our Recipe 2.5.4, we can recover 𝜃ℒℓ
0 as the trace under 𝐾2 of (𝜃ℒ

0)ℓ (since this function is already invariant
under 𝐾2(ℒℓ)[𝑛]): 𝜃ℒℓ

0 (𝑥) = ∑𝑄∈𝐾2
𝜃ℒ

0 (̃𝑥 + 𝑄)ℓ. Then it suffices to apply the action of 𝑔𝑃 for 𝑃 ∈ 𝐾1(ℒℓ) on

this trace to recover the 𝜃ℒℓ
𝑖 : 𝜃ℒℓ

𝑃 (̃𝑥) = ∑𝑄∈𝐾2
𝜃ℒ

0 (̃𝑥 + 𝑄 + 𝑃)ℓ where the normalisation of ̃𝑥 + 𝑄 + 𝑃 is done
with respect to 𝑃.

Applying Proposition 2.10.5 to 𝑥 = 0 we may recover the theta null point of ℒℓ, and applying it to a generic
point 𝑥, this gives an algorithm to express the linear change of variable between the 𝜃ℒℓ

𝑖 and the ℓ-fold products
∏ 𝜃ℒ

𝑖𝑗 . Thus we get a general multiplication formula, extending the duplication formula to the case ℓ odd. A fully
general multiplication formula can then be obtained by combining both cases.

Let us record this result:

Corollary 2.10.8. Let 𝐴/𝑘 be an abelian variety defined over a field 𝑘, represented by a thetamodel of even level 𝑛. Let ℓ
be prime to 𝑛. Given a symplectic basis of 𝐴[ℓ], and the corresponding symplectic decomposition 𝐴[ℓ] = 𝐴1[ℓ]⊕𝐴2[ℓ]
there is a unique symmetric theta structure of level ℓ𝑛 compatible with this symplectic decomposition and the structure
of level 𝑛.

The given the coordinates of 𝑥 ∈ 𝐴 in level 𝑛, we can compute the coordinates 𝑥 ∈ 𝐴 of level 𝑛ℓ in time 𝑂(ℓ2𝑔) as
𝜃ℒℓ

𝑃 (̃𝑥) = ∑𝑄∈𝐾2
𝜃ℒ

0 (̃𝑥 + 𝑄 + 𝑃)ℓ. In particular, we can compute the theta null point of level ℓ𝑛 in time 𝑂(ℓ2𝑔).

Proposition 2.10.5 readily yields a quasi-linear isogeny algorithm:

Corollary 2.10.9. Let 𝐾 = 𝐾2(ℒ)[ℓ], 𝐾 the (unique) symmetric subgroup above 𝐾, (𝐵, ℳ) the descent of ℒℓ by 𝐾
and 𝑓 ∶ 𝐴 → 𝐵 the corresponding isogeny. Let 𝑥 ∈ 𝐴. Fix an excellent lift 𝐾 of 𝐾, and ̃𝑥 + 𝐾 of 𝑥 with respect to 𝐾.
Then identifying 𝐾1(ℒ) with 𝐾1(ℳ) via 𝑓, we have

𝜃ℳ
𝑖 (𝑓 (𝑥)) = ∑

𝑃∈𝐾
𝜃ℒ

𝑖 (𝑥 + 𝑃)ℓ.

Thus we can compute the isogeny 𝑓 in time quasi-linear (in terms of arithmetic operations in (𝐴, ℒ) in the size of
the kernel 𝐾.

Proof. This is immediate by applying the isogeny theorem (Theorem 2.5.7) on the above construction of 𝜃ℒℓ
𝑖 or by

applying the recipe of Recipe 2.5.9 to Proposition 2.10.5.

It is interesting to generalize Proposition 2.10.5 as follow. Let 𝑛1, … , 𝑛𝑚 be integers such that ∑ 𝑛2
𝑖 = ℓ. Let

𝐹 ∶ 𝐴 → 𝐴𝑚, 𝑥 ↦ ([𝑛𝑖]𝑥). Then 𝐹∗ℒ⋆,𝑚 = ℒ∑ 𝑛2
𝑖 = ℒℓ. We thus obtain sections of (𝐴, ℒℓ) by looking at

𝑚-folds products of the form ∏𝑚
𝑗=1 𝜃ℒ

𝑖𝑗 ∘𝑛𝑗. This generalises the ℓ-fold decomposition above (taking ℓ = 1+⋯+1),
except that in our current setting the linear span of these sections is not necessarily the full 𝛤(ℒℓ).

Nevertheless, we want to compute the action of 𝐺(ℒℓ) on sections of this form. Adapting the proof of Proposi-
tion 2.10.5 yields:

Proposition 2.10.10. Let 𝑥 ∈ 𝐴. Fix an excellent affine lift 𝐾𝑖 = {�̃�} of 𝐾1 and 𝐾2, and an excellent affine lift
̃𝑥 + 𝐾𝑖 of 𝑥 with respect to 𝐾𝑖. Using diff_multadd, these induce excellent affine lift ̃𝑛𝑗𝑥 + 𝐾𝑖.
Then if 𝑔 ∈ 𝐺(ℒℓ) is in the image of 𝑔′ ∈ 𝐺(ℒ) via the embedding 𝜖ℓ ∶ 𝐺(ℒ) → 𝐺(ℒℓ) described in [Mum66],

𝑔(∏𝑚
𝑗=1 𝜃ℒ

𝑖𝑗)(𝑛𝑗 ̃𝑥) = ∏𝑚
𝑗=1 𝑔′(𝜃ℒ

𝑖𝑗)(𝑛𝑗 ̃𝑥).
If 𝑔 is the unique symmetric lift above 𝑃 ∈ 𝐾1, or 𝑃 ∈ 𝐾2 then 𝑔(∏𝑚

𝑗=1 𝜃ℒ
𝑖𝑗)(𝑛𝑗 ̃𝑥) = ∏𝑚

𝑗=1(𝜃ℒ
𝑖𝑗)(̃𝑛𝑗𝑥 + 𝑃).

More generally, if 𝑔 = 𝑔1𝑔2 where 𝑔1 symmetric above𝑃 ∈ 𝐾1 and 𝑔2 symmetric above𝑄 ∈ 𝐾2, 𝑔1𝑔2(∏𝑚
𝑗=1 𝜃ℒ

𝑖𝑗)(𝑛𝑗 ̃𝑥) =
∏𝑚

𝑗=1(𝜃ℒ
𝑖𝑗)(̃𝑛𝑗𝑥 + 𝑄 + 𝑃) where ̃𝑛𝑗𝑥 + 𝑄 + 𝑃 is computed by first normalizing ̃𝑥 + 𝑄 from ̃𝑥 with respect to 𝑄 and

then normalizing ̃𝑥 + 𝑄 + 𝑃 with respect to 𝑃 and then computing ̃𝑛𝑗𝑥 + 𝑄 + 𝑃.

While sections of the form above may not span the full 𝛤(ℒℓ), by irreducibility of the action of 𝐺(ℒℓ) we can
use Proposition 2.10.10 on any of these sections to get all sections. In particular, this is enough to give another
quasi-linear way to compute isogenies by applying our recipe from Recipe 2.5.9:

Corollary 2.10.11. Let 𝐾 = 𝐾2(ℒ)[ℓ], 𝐾 the (unique) symmetric subgroup above 𝐾, (𝐵, ℳ) the descent of ℒℓ by 𝐾
and 𝑓 ∶ 𝐴 → 𝐵 the corresponding isogeny. Let 𝑥 ∈ 𝐴. Fix an excellent lift 𝐾 of 𝐾, and ̃𝑥 + 𝐾 of 𝑥 with respect to 𝐾,
and let ̃𝑛𝑖𝑥 + 𝐾 the induced lift. Then identifying 𝐾1(ℒ) with 𝐾1(ℳ) via 𝑓, we have

𝜃ℳ
𝑖 (𝑓 (𝑥)) = ∑

𝑃∈𝐾

𝑚
∏
𝑗=1

𝜃ℒ
𝑖 (̃𝑛𝑗𝑥 + 𝑃).

46

2.11 Rationality

2.10.3 Descending level

If we have a (symmetric) theta structure of level ℓ𝑛 on (𝐴, ℒℓ), it canonically induces a (symmetric) theta structure
of level 𝑛 on (𝐴, ℒ). Hence it is natural to ask for a formula to descend level.

If ℓ = 𝑚2, ℒℓ ≃ [𝑚]∗ℒ and 𝐴[𝑚] is isotropic in 𝐴[ℓ] so it suffices to apply the isogeny formula from
Theorem 2.5.7. In the general case, we can always write ℓ = ∑𝑟

𝑖=1 𝑛2
𝑖 (a sum of two or four squares), and construct

an integer matrix 𝐹 of size 𝑟 such that 𝑡𝐹𝐹 = ℓ Id (using the multiplication matrix of 𝑛1 + 𝑛2𝑖 + 𝑛3𝑗 + 𝑛4𝑘 in
the quaternions or the complex numbers). Then we can apply Theorem 2.7.1 to descend (𝐴𝑟, ℒℓ ⋆ ⋯ ⋆ ℒℓ) to
(𝐴𝑟, ℒ ⋆ ⋯ ⋆ ℒ).

This relates 𝑟-fold product of theta functions of level 𝑛 with the 𝑟-fold product of theta functions of level 𝑛ℓ, and
was used in [CR15]. One problem with this formula is that we take the trace of the functions of level 𝑛ℓ under the
action of (the lift of) the kernel of 𝐹 in 𝐴2[ℓ]𝑟, for a total cost of 𝑂(ℓ𝑔𝑟/2). In particular if 𝑟 = 4, we get a quadratic
algorithm 𝑂(ℓ2𝑔).

Using the (generalised) Segre morphism 𝐹 ∶ 𝐴 → 𝐴𝑟, 𝑥 ↦ ([𝑛𝑖]𝑥) instead, since 𝐹∗(ℒℓ ⋆ ⋯ ⋆ ℒℓ) = ℒℓ2,
𝐹(𝐴[ℓ]) is isotropic in (𝐴𝑟, ℒℓ ⋆ ⋯ ⋆ ℒℓ), so we can descend it using the isogeny theorem.

Theorem 2.10.12. Let (𝐴, ℒℓ) be an abelian variety with a symmetric theta level structure of level 𝑛ℓ. Let 𝑛1, … , 𝑛𝑚
be integers such that ℓ = ∑ 𝑛2

𝑖 . Let 𝑥 ∈ 𝐴 and fix an arbitrary affine lift ̃𝑥.
Then for 𝑖 ∈ 𝐴1[𝑛], 𝜃ℒ

𝑖 (̃𝑥) = ∑𝑡∈𝐴1[ℓ] ∏𝑚
𝑗=1 𝜃ℒℓ

𝑖+𝑡(𝑛𝑗𝑥), where 𝑛𝑗𝑥 is computed via diff_mult.
The complexity to descend the theta structure is thus 𝑂(ℓ𝑔) arithmetic operations in 𝐴.

Proof. It suffices to combine the isogeny formula Theorem 2.5.7 with the generalised Segre morphism. Indeed
since 𝐴[ℓ] is isotropic for (ℒℓ)ℓ, 𝐹(𝐴[ℓ]) is isotropic for (𝐴𝑟, (ℒℓ)𝑛1 ⋆ ⋯ ⋆ (ℒℓ)𝑛𝑟). Hence we may apply the
isogeny formula to compute 𝐴𝑚/𝐹(𝐴[ℓ]), and recover (𝐴, ℒ) as the descent of 𝐹(𝐴) by this isogeny.

Combining Proposition 2.10.2 and Theorem 2.10.12, we find the same quasi-linear algorithm to compute
isogenies as in Corollary 2.10.11:

Corollary 2.10.13. Let 𝐾 = 𝐾2(ℒℓ)[ℓ], 𝐾 the (unique) symmetric subgroup above 𝐾, (𝐵, ℳ) the descent of ℒℓ by
𝐾 and 𝑓 ∶ 𝐴 → 𝐵 the corresponding isogeny. Let 𝑥 ∈ 𝐴. Fix an excellent lift 𝐾 of 𝐾, and ̃𝑥 + 𝐾 of 𝑥 with respect to 𝐾.
Using diff_multadd, this fixes excellent lifts of ̃𝑛𝑖𝑥 + 𝐾. Then identifying 𝐾1(ℒ) with 𝐾1(ℳ) via 𝑓, we have

𝜃ℳ
𝑖 (𝑓 (𝑥)) = ∑

𝑃∈𝐾

𝑚
∏
𝑗=1

𝜃ℒ
𝑖 (̃𝑛𝑗𝑥 + 𝑃).

We give more details about this formula in Section 4.4.3.

Remark 2.10.14. We can hold the same reasoning as in Remarks 2.10.3 and 2.10.7 when ℓ is not prime to 𝑛. Let us
assume that our symplectic theta structure on (𝐴, ℒ) is induced by a given symplectic decomposition of 𝐴[2𝑛]. If
ℓ is prime to 2𝑛, 𝑓 is injective on 𝐴[2𝑛], hence the symplectic decomposition descends to 𝐵[2𝑛], hence induces a
(unique) symmetric theta structure on (𝐵, ℳ).

If ℓ is not prime to 2𝑛, part of the information on the 2𝑛-torsion is lost by the isogeny, in other words there are
several compatible choices on 𝐵. So we need to fix a totally isotropic subgroup 𝐾" of 𝐴[2𝑛ℓ] such that 𝐾 = 2𝑛𝐾"
and ℓ𝐾" = 𝐴2[2𝑛]. Then we get a symplectic decomposition of 𝐵[2𝑛] by pushing 𝐴1[2𝑛] ⊕ 𝐾" via 𝑓. Of course
if ℓ is odd, it suffices to choose 𝐾′ totally isotropic in 𝐴[𝑛ℓ] such that 𝐾 = 𝑛𝐾′ and ℓ𝐾′ = 𝐴2[𝑛], exactly as our
slogan of Remark 2.10.7 dictated.

Even if ℓ is even, we can just fix a 𝐾′ (with the caveat in this case that we need to be careful it is compatible with
a decomposition of 𝐴[2𝑛] inducing the theta structure on ℒ, ie [ℓ/2]𝐾" = 𝐴2[2𝑛]) and then use the equations
𝜆2ℓ

𝑖 = 𝐶𝑖 on a given basis of 𝐾′ to get all possible symmetric theta structure on 𝐵 compatible with our choice of 𝐾′.
See the extended slogan of Remark 2.10.7. Indeed, if we have a symmetric theta structure on (𝐴, ℒℓ) compatible
with the one on (𝐴, ℒ), then conjugating by a point of 2-torsion 𝑐 does not change the compatibility (since this
conjugates the theta structure on (𝐴, ℒ) by ℓ𝑐 and ℓ is even), but this changes the induced symmetric theta structure
on (𝐵, ℳ) if 𝑐 ∉ 𝐾. This gives us the 2𝑔 choice of signs.

2.11 rationality

If (𝐴, ℒ) is an abelian variety defined over a field 𝑘, we may ask for conditions on whether there exists a rational
symmetric theta structure on it.

47

2 Arithmetic of abelian varieties

Of course there must exists a theta structure over 𝑘 (assume 𝑘 perfect for simplicity, or use 𝑘𝑠 instead and stick
with levels prime to the characteristic). This means, if ℒ is of level 𝑛, that 𝐾(ℒ) has to be isomorphic as a Galois
module to (ℤ/𝑛ℤ)𝑔 × 𝜇𝑔

𝑛. So if the level is not prime to 𝑝, a theta structure may only exists on an ordinary abelian
variety. For a symmetric theta structure, we have seen in Section 2.6 that there is an obstruction to its existence,
measured by the value of 𝑒ℒ

∗ on 𝐾(ℒ)[2].
In general, even if it exists, a theta structure on 𝑘 may not descend on 𝑘, because 𝐺(ℒ) is only a twist (and not

isomorphic to) the Heisenberg group 𝐻(𝑛) over 𝑘. It would be interesting to work out these twists (eg if 𝑘 is a finite
field), and see how to twist the Riemann relations from Sections 2.7 and 2.8 to have the results of Section 2.10 apply
over the base field and not only an extension.

We need two conditions for a theta structure 𝛩ℒ to be rational:

• The induced isomorphism 𝐻(𝑛) → 𝐾(ℒ) has to be rational (ie Galois equivariant). Equivalently, since 𝑒ℒ is
Galois equivariant, it suffices that 𝐴[𝑛] contains a maximal totally isotropic subgroup 𝐾 whose geometric
points are rational. (But not all points of 𝐴[𝑛] need to be rational if 𝜇𝑛 ⊄ 𝑘∗.)

• The level subgroups 𝐾𝑖(ℒ) have to be rational.

Let us focus on the second condition in the symmetric case (assuming each polarisation is separable for simplicity).
Let 𝑥 ∈ 𝐾(ℒ), and 𝑦 a point such that 𝑥 = 2𝑦. Then 𝑦 ∈ 𝐾(ℒ2). Let ±𝑔𝑦 ∈ 𝐺(ℒ2) be one of the two symmetric
elements above 𝑦, then 𝑔 = 𝜂2(±𝑔𝑦) does not depend on the choice of 𝑔𝑦 (using the notations of Section 2.6.3
and Remark 2.8.7.(vi)). Hence a symmetric element above 𝑥 is canonically determined by the choice of 𝑦. It remains
to see how the 𝑔 above depends on 𝑦.

Lemma 2.11.1. Let ℒ be totally symmetric. Let 𝑦 ∈ 𝐾(ℒ2), 𝑥 = 2𝑦, and write 𝑔 = 𝛿2(±𝑔𝑦) the symmetric element
above 𝑥, where 𝑔𝑦 is a symmetric element above 𝑦. Let 𝑦 + 𝑡 where 𝑡 ∈ 𝐴[2](𝑘) be another preimage of 𝑥 by [2], and
let 𝑔𝑡 be the induced symmetric element above 𝑥. Then 𝑔𝑡 = 𝑔𝑒ℒ(𝑥, 𝑡).

Proof. Since ℒ is totally symmetric, there is a symmetric theta structure on (ℒ, ℒ2), so we can check this on
the level of the Heisenberg groups. Let 𝑔𝑦 = (𝛼, 𝑦1, 𝑦2) ∈ 𝐻(2𝑛), it is symmetric when 𝛼 = ±⟨𝑦1, 𝑦2⟩1/2, and
𝜂2(𝑔𝑦) = (𝛼2, 𝑥1, 𝑥2) with 𝛼2 = ⟨𝑦1, 𝑦2⟩. Taking (𝑦1 + 𝑡1, 𝑦2 + 𝑡2) instead, we get that 𝜂2(𝑔𝑡) = 𝛾𝜂2(𝑔𝑦) with
𝛾 = ⟨𝑦1, 𝑡2⟩⟨𝑡1, 𝑦2⟩⟨𝑡1, 𝑡2⟩. Since 𝑡 is a point of 2-torsion and 2𝑛 is divisible by 4, we have ⟨𝑡1, 𝑡2⟩ = 1. So we find
𝛾 = 𝑒2𝑛(𝑦, 𝑡) = 𝑒𝑛(𝑥, 𝑡), as required.

Corollary 2.11.2. If ℒ is totally symmetric, a symmetric theta structure 𝛩ℒ on ℒ is completely determined by a
symplectic basis 𝑓1, … , 𝑓𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔 of 𝐾(ℒ2).

Another symplectic basis yields the same 𝛩ℒ is and only if

• the induced symplectic basis 𝑒𝑖 = 2𝑓𝑖, 𝑒′
𝑖 = 2𝑓 ′

𝑖 of 𝐾(ℒ) is the same, ie the new basis is of the form 𝑓𝑖 + 𝑡𝑖, 𝑓 ′
𝑖 + 𝑡′

𝑖
with the 𝑡𝑖, 𝑡′

𝑖 ∈ 𝐴[2];

• 𝑒ℒ(𝑒𝑖, 𝑡𝑖) = 1, 𝑒ℒ(𝑒′
𝑖, 𝑡′

𝑖) = 1.

In particular, 𝛩ℒ is completely determined by a symplectic decomposition 𝐾(ℒ2) = 𝐾1(ℒ2) ⊕ 𝐾2(ℒ2) and a
choice of basis of the induced 𝐾1(ℒ).

Remark 2.11.3. Lemma 2.11.1 also shows that if a symmetric theta structure on ℒ is induced by a symplectic
basis 𝑓1, … , 𝑓𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔, then the action of conjugation by a point 𝑐 ∈ 𝐴[2] is induced by the symplectic basis

𝑓𝑖 + 𝑡𝑖, 𝑓 ′
𝑖 + 𝑡′

𝑖 where if 𝑐 = 𝑛 (∑ 𝜖𝑖𝑓𝑖 + ∑ 𝜖′
𝑖 𝑓 ′

𝑖) is the decomposition of 𝑐, 𝑡𝑖 = 𝑛𝜖′
𝑖 𝑓 ′

𝑖 and 𝑡′
𝑖 = 𝑛𝜖𝑖𝑓𝑖. In other words,

𝑡𝑖 = 0 if 𝑒ℒ2(𝑓𝑖, 𝑐) = 1 and 𝑡𝑖 = 𝑛𝑓 ′
𝑖 if 𝑒ℒ2(𝑓𝑖, 𝑐) = −1.

In particular, if 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, Corollary 2.11.2 yields a convenient way to check if two symmetric theta
structure on (𝐴, ℒ) and (𝐵, ℳ) are compatible with respect to 𝑓: there should be a symplectic decomposition of
𝐾(ℒ2) which induces 𝛩ℒ on 𝐴 and 𝛩ℳ (via 𝑓) on 𝐵, see Lemma 2.6.12.

Corollary 2.11.4. Let (𝐴, ℒ)/𝔽𝑞 be a separably polarised abelian variety of even level 𝑛 = 2𝑛0 over the finite
field 𝔽𝑞. Then there exist a rational symmetric theta structure on ℒ if and only if there exist a symplectic basis
(𝑒1, … 𝑒𝑔, 𝑒′

1, … , 𝑒′𝑔) with 𝑒1, … , 𝑒𝑔 rational and such that 𝑒𝑇,2(𝑛0𝑒𝑖, 𝑒𝑖) = 1 and 𝑒𝑇,2(𝑛0𝑒′
𝑖, 𝑒′

𝑖) = 1 where 𝑒𝑇,2
denotes the 2-Tate pairing.

In particular, if 𝜇𝑛 ⊂ 𝔽𝑞, this is equivalent to: 𝑒𝑖, 𝑒′
𝑖 form a rational symplectic basis consisting of elements whose

self 𝑛-Tate pairing 𝑒𝑇,𝑛(𝑒𝑖, 𝑒𝑖), 𝑒𝑇,𝑛(𝑒′
𝑖, 𝑒′

𝑖) is not a primitive 𝑛-th root of unity.

48

2.12 Arithmetic on Kummer varieties

Proof. This is clear fromCorollary 2.11.2 and the definition of theTate pairing as 𝑒𝑇,2(𝑛0𝑒𝑖, 𝑒𝑖) = 𝑒𝑊,2(𝑛0𝑒𝑖, 𝜋𝑞(𝑓𝑖)−
𝑓𝑖) where 𝑒𝑊,2 is the Weil pairing (or more precisely, if ℒ = ℒ𝑛

0 the Weil pairing associated to the principal po-
larisation ℒ0, ie 𝑒𝑊,2 = 𝑒ℒ2

0
), where 2𝑓𝑖 = 𝑒𝑖 and 𝜋𝑞 is the Frobenius of 𝔽𝑞. Indeed, 𝑒ℒ(𝑒𝑖, 𝜋𝑞(𝑓𝑖) − 𝑓𝑖) =

𝑒ℒ2
0
(𝑛0𝑒𝑖, 𝜋𝑞(𝑓𝑖) − 𝑓𝑖), see Chapter 3.

2.12 arithmetic on kummer varieties

We briefly discuss arithmetic on Kummer varieties, which is the focus of the article [LR16]. We recall that if 𝐴 is an
abelian variety, we define the Kummer variety as 𝐾𝐴 = 𝐴/ ± 1 (beware that some authors define the Kummer
variety as the variety 𝐴/Aut(𝐴), thus a quotient of our Kummer; in the generic case Aut(𝐴) = ±1 so the two
definitions agree.)

There are several related questions:

• What kind of arithmetic is available on a Kummer variety? The addition law does not descend, but it is well
known that the multiplication 𝑃 ↦ 𝑛.𝑃 does.

• Using theta functions, the Kummer variety is described by a symmetric theta structure of level 𝑛 = 2 (more
precisely, if ℒ = ℒ𝑛

𝐴,1 with ℒ𝐴,1 principal and 𝑛 = 2, then if ℒ𝐴,1 splits as (𝐴, ℒ𝐴,1) = ∏(𝐴, ℒ𝐴,1𝑖)
then ℒ gives an embedding of ∏ 𝐾𝐴𝑖

). Riemann relations are still valid in this case, but not sufficient to give
equations for the Kummer nor an addition law. We have seen in Section 2.8 the algorithmic usefulness of
the affine version of the addition laws given by Riemann relations. How does this transposes to Kummer
varieties?

• How to go back and forth between the abelian variety and the Kummer variety? If ℒ𝐴,1 is a principal
polarisation, the Kummer is described by ℒ2

𝐴,1 while the abelian variety by ℒ𝑛
𝐴,1 with 𝑛 ≥ 3. In particular

the duplication formula from Corollary 2.7.2 relates sections of ℒ4
𝐴,1 with sections of ℒ2

𝐴,1. But 𝛤(𝐴, ℒ4
𝐴,1)

is of dimension 4𝑔 while 𝛤(𝐴, ℒ2
𝐴,1) of dimension 2𝑔. Do we really need that many extra functions just to

encode a choice of sign?

2.12.1 Arithmetic of Kummer groups

In [LR16] we developed the arithmetic of Kummer varieties. But in fact this extends to a general commutative
group scheme 𝐺, and we used this in [LR20] to get arithmetic information on the tangent cone of a Kummer variety
at points of 2-torsion 𝑥. Indeed the tangent cone of 𝐾𝐴 at 𝑥 is isomorphic to 𝑇𝑥𝐴/ ± 1, so the arithmetic of the
tangent space descends to the tangent cone.

Let 𝐺/𝑘 be a commutative group scheme, and 𝐾 = 𝐺/ ± 1. Let 𝜋 ∶ 𝐺 → 𝐾 the projection. We are interested in
what kind of the arithmetic of 𝐺 descends to 𝐾. We denote by 𝑃, 𝑄 points of 𝐺, and [𝑃], [𝑄] their image in 𝐾.

The key definition in [LR16, Definition 2.1] is:

Definition 2.12.1. Given a model of 𝐾 defined over the field 𝑘, a schematic addition is an algorithm which
provided with two points [𝑃], [𝑄] ∈ 𝐾(𝑘), outputs equations defining the dimension 0 scheme of degree two
𝒮 = {[𝑃 + 𝑄], [𝑃 − 𝑄]}. More precisely this algorithm should output a rational parametrisation of 𝒮, that is a
polynomial 𝒫 ∈ 𝑘[𝑡] of degree 2 in one variable, and a rational isomorphism 𝑓 ∶ Spec 𝑘[𝑡]/𝒫(𝑡) → 𝒮 together
with its inverse 𝑓 −1.

More generally we may ask for an explicit schematic addition on 𝐾 not only for 𝑘-points but for general 𝑅 points,
𝑅 a 𝑘-algebra.

Using schematic additions, we get the following arithmetic operations on 𝐾:

• If [𝑇] is a point of 2-torsion on 𝐾, then the schematic addition of [𝑃] and [𝑇] is a double point, so schematic
additions allows to compute translation by points of [2]-torsion.

• Given [𝑃], [𝑄], [𝑃 − 𝑄] we can compute [𝑃 + 𝑄] as the point of 𝒮 which is not [𝑃 − 𝑄]. So we recover
differential additions from schematic additions. (One should be careful not to conflate this differential
addition, which on a Kummer variety would be a differential addition on projective coordinates, with the
differential addition we have defined for affine lifts in Section 2.8 and which we will see for Kummer below).

49

2 Arithmetic of abelian varieties

From differential additions it is easy to derive a scalar multiplication [𝑃] ↦ 𝑛[𝑃], using an addition
chain. A standard method is to use a double and add algorithm, keeping (𝑚[𝑃], (𝑚 + 1)[𝑃]) at each step
and computing (2𝑚[𝑃], (2𝑚 + 1)[𝑃]) or ((2𝑚 + 1)[𝑃], 2(𝑚 + 1)[𝑃]) via a doubling and a differential
addition according to whether our current bit is 0 or 1. Likewise we can compute multiscalar multiplications
𝑛[𝑃] + 𝑚[𝑄] given [𝑃], [𝑄], [𝑃 + 𝑄], or more generally ∑ 𝑛𝑖[𝑃𝑖] given all ∑ 𝜖𝑖[𝑃𝑖], 𝜖𝑖 ∈ {0, 1}.

• Let 𝑃, 𝑄, 𝑅, 𝑆 ∈ 𝐺(𝑘) be such that 𝑃 + 𝑄 = 𝑅 + 𝑆 and 𝑃 − 𝑄 ≠ 𝑅 − 𝑆, 𝑃 − 𝑄 ≠ 𝑆 − 𝑅. Then the point
[𝑃 + 𝑄] = [𝑅 + 𝑆] of 𝐾 is well defined from the knowledge of [𝑃], [𝑄], [𝑅], [𝑆] and can be computed as
the intersection of the output of the two schematic additions: {[𝑃 + 𝑄], [𝑃 − 𝑄]} ∩ {[𝑅 + 𝑆], [𝑅 − 𝑆]}.
This is called a compatible addition in [LR16, § 2.1].
In practice the two schematic additions will output two degree two polynomials 𝑃1 = 𝑋2 + 𝑎𝑋 + 𝑏 and
𝑃2 = 𝑋2 + 𝑐𝑋 + 𝑑 in 𝑘[𝑋] parametrizing the two schemes {[𝑃 + 𝑄], [𝑃 − 𝑄]} and {[𝑅 + 𝑆], [𝑅 − 𝑆]}.
Then 𝑃1 and 𝑃2 have a common root if and only if (𝑎𝑑 − 𝑏𝑐)(𝑐 − 𝑎) = (𝑑 − 𝑏)2 and in this case this root is
(𝑑 − 𝑏)/(𝑎 − 𝑐).
Applications of compatible addition to multiscalar multiplication is given in [LR16, § 2.3].

• If [𝑃0] ∈ 𝐾(𝑘) is not a point of 2-torsion, then from [𝑃1], … , [𝑃𝑛] ∈ 𝐾(𝑘) and [𝑃0 +𝑃1], … , [𝑃0 +𝑃𝑛] ∈
𝐾(𝑘), one can compute the multi way additions [𝑃1 + ⋯ + 𝑃𝑛] and [𝑃0 + 𝑃1 + ⋯ + 𝑃𝑛] using 2(𝑛 − 1)
compatible additions [LR16, Corollary 2.9].
The idea behind multi-way additions is that giving the points [𝑃0 + 𝑃𝑖] on 𝐾 “fixes” the sign of 𝑃𝑖 relatively
to 𝑃0, so that we can compute [𝑃1 + ⋯ + 𝑃𝑛] and [𝑃0 + 𝑃1 + ⋯ + 𝑃𝑛]. So in particular, to compute the
multiscalar multiplication ∑ 𝑛𝑖𝑃𝑖 we only need the data of [𝑃0 + 𝑃𝑖].

• If [𝑃0] ∈ 𝐾(𝑘) is not a point of 2-torsion, we have an injection 𝛼𝑃0
∶ 𝐺(𝑘) → 𝐾(𝑘) × 𝐾(𝑘), 𝑃 ↦

([𝑃], [𝑃 + 𝑃0]). It is easy to check if a tuple ([𝑃], [𝑄]) lies in the image of 𝛼𝑃0
(just check if [𝑄] is in

{[𝑃 + 𝑃0], [𝑃 − 𝑃0]}, and to do arithmetic in this model of 𝐺.
Note that 𝑃1 is another point not of 2-torsion, it is easy to switch from the model given by 𝛼𝑃0

to the model
𝛼𝑃1

if we are given the point [𝑃0 + 𝑃1] ∈ 𝐾𝐴, in particular if we are given the coordinates of 𝑃1 in the 𝛼𝑃0
model. (Otherwise if we only have [𝑃1] ∈ 𝐾𝐴 we need to make a schematic addition and choose a root,
hence get either [𝑃0 + 𝑃1] or [𝑃0 − 𝑃1].)
We remark that we do not need to represent [𝑃 + 𝑃0] fully, we just need the root 𝑥 of the polynomial
𝑃(𝑋) representing {[𝑃 + 𝑃0], [𝑃 − 𝑃0]} corresponding to [𝑃 + 𝑃0]. Furthermore, while the standard
addition on this model is quite slow (since it requires two compatible additions and a differential addition,
and a compatible addition requires two schematic addition), scalar multiplication in 𝐺 can be done using
differential additions in 𝐾, to compute ([𝑛𝑃], [𝑛𝑃 + 𝑃0]). In fact, we just need to compute [(𝑛 − 1)𝑃], [𝑛𝑃]
in 𝐾 and recover [𝑛𝑃 + 𝑃0] at the end as a compatible addition 𝑛𝑃 + 𝑃0 = (𝑛 − 1)𝑃 + (𝑃 + 𝑃0).
So if 𝐾 has an efficient model, we get a rather efficient model of 𝐺 using just one extra coordinate. We note
that, if 𝐺 is smooth, 𝛼𝑃0

is injective not only on 𝑘-points but also on 𝑘[𝜖]-points, ie on tangent vectors, so
if we have a projective embedding of 𝐾 in ℙ𝑛, 𝛼𝑃0

induce a projective embedding of 𝐺 in ℙ𝑛 × ℙ𝑛 (once
again we see the usefulness of the Segre embedding).

The above very simple idea shows that we can compute some additions on 𝒦𝐴.

2.12.2 Riemann relations in the theta model of level 2

We now specialize the above results to the model of 𝐾𝐴 given by a symmetric theta structure of level 𝑛 = 2.
Looking back at Section 2.8.1, we see that we may recover (∑

𝑡∈𝑍(2)
𝜒(𝑡)𝜃𝑖+𝑡(̃𝑥1)𝜃𝑗+𝑡(̃𝑦1)) from the other coordinates

in Equation (2.10) provided that we can find 𝑘, 𝑙 such that 𝑈ℒ2

𝜒,𝑘(̃𝑢)𝑈ℒ2
𝜒,𝑗 (̃𝑣) ≠ 0. But as we saw, this is related to the

surjectivity of the multiplication map. Here we need the following refinement of the Mumford-Koizumi-Kempf
theorem due to Kempf in [Kem88].

Theorem 2.12.2 (Mumford-Koizumi-Kempf). Let 𝐴 be an abelian variety, 𝒫 the Poincare line bundle on 𝐴 × 𝐴,
𝒫𝑥 the pullback of 𝒫 by Id×𝑥 for 𝑥 ∈ 𝐴 (ie the line bundle on 𝐴 represented by 𝑥 ∈ 𝐴 ≃ Pic0(𝐴)). Let 𝛼 be the
multiplication map

𝛼 ∶ 𝛤(𝐴, ℒ𝑛 ⊗ 𝒫𝑥) ⊗ 𝛤(𝐴, ℒ𝑚 ⊗ 𝒫𝑦) → 𝛤(𝐴, ℒ𝑛+𝑚 ⊗ 𝒫𝑥+𝑦).

50

2.12 Arithmetic on Kummer varieties

Then:

• If 𝑛 ≥ 2 and 𝑚 ≥ 3, 𝛼 is surjective for all 𝑥, 𝑦 ∈ 𝐴;

• If 𝑛 = 𝑚 = 2, then fixing any 𝑢 ∈ 𝐴, 𝛼 is surjective for 𝑥 = −𝑣 and 𝑦 = 𝑢 + 𝑣 for 𝑣 in an open dense dense
subset of 𝐴.

• If 𝑝 ≠ 2, ℒ is principal and is represented by a symmetric divisor 𝛩, the rank of

𝛼 ∶ 𝛤(𝐴, 2(𝛩 + 𝑥)) ⊗ 𝛤(𝐴, 2(𝛩 + 𝑦)) → 𝛤(𝐴, 4(𝛩 + 𝑧)),

where 𝑥 + 𝑦 = 2𝑧 is given by the number of points of 2-torsion 𝑡 ∈ 𝐴[2](𝑘) such that 𝑧 + 𝑡 ∉ 𝛩 + 𝑥.

From Theorem 2.12.2 we get that we may generically compute Riemann relations on 𝐾𝐴. However, differential
additions involve the non annulation of the 𝑈ℒ2

𝜒,𝑘(0)𝑈ℒ2
𝜒,𝑗 (0). But 𝑈𝜒,𝑖(−𝑧) = 𝜒(2𝑖)𝑈𝜒,𝑖(𝑧), so for the odd theta

functions 𝑈ℒ2
𝜒,𝑖 we have 𝑈ℒ2

𝜒,𝑗 (0) = 0 (recall that analytically the 𝑈ℒ2
𝜒,𝑖 corresponds to the 𝜃 [𝑎/2

𝑏/2] (2𝑧, 𝛺)).
This is reflected by the fact that the multiplication map 𝛤(𝐴, ℒ) ⊗ 𝛤(𝐴, ℒ) → 𝛤(𝐴, ℒ2) cannot be surjective

since 𝛤(𝐴, ℒ) consists only of even functions, so the image by the multiplication map consists of even functions.
Let us study this map in more details. Since we have a symmetric theta structure on ℒ, ℒ has to be totally

symmetric, so it descends to the Kummer variety 𝐾𝐴. Decomposing 𝛤(𝐴, ℒ𝑚) into even and odd functions
𝛤(𝐴, ℒ𝑚) = 𝛤(𝐴, ℒ𝑚)+⊕𝛤(𝐴, ℒ𝑚)−, we have that 𝛤(𝐾𝐴, ℒ𝑚) = 𝛤(𝐴, ℒ𝑚)+. So since 𝛤(𝐴, ℒ) = 𝛤(𝐴, ℒ)+,
the map 𝛤(𝐾𝐴, ℒ) ⊗ 𝛤(𝐾𝐴, ℒ) → 𝛤(𝐾𝐴, ℒ2) is surjective precisely when 𝛤(𝐴, ℒ) ⊗ 𝛤(𝐴, ℒ) → 𝛤(𝐴, ℒ2)+ is
surjective. We remark that by Theorem 2.12.2, 𝛤(𝐴, ℒ𝑚)± ⊗ 𝛤(𝐴, ℒ) → 𝛤(𝐴, ℒ𝑚+1)± is surjective whenever
𝑚 ≥ 2, so it is the map for 𝑚 = 1 that may pose a problem.

Let us first review standard properties of line bundles related to the multiplication map:

• If ℒ is ample, 𝛤(𝑋, ℒ𝑛) × 𝛤(𝑋, ℒ𝑚) → 𝛤(𝑋, ℒ𝑛+𝑚) is surjective for 𝑛, 𝑚 ≫ 0.

• If ℒ is ample, ℒ is very ample if and only if 𝑆𝑛𝛤(𝑋, ℒ) → 𝛤(𝑋, ℒ𝑛) is surjective for 𝑛 ≫ 0; this implies
that 𝛤(𝑋, ℒ𝑛) × 𝛤(𝑋, ℒ) → 𝛤(𝑋, ℒ𝑛+1) is surjective for 𝑛 ≫ 0.

• If ℒ is ample and 𝛤(𝑋, ℒ𝑛) × 𝛤(𝑋, ℒ) → 𝛤(𝑋, ℒ𝑛+1) is surjective for all 𝑛 > 0 (equivalently 𝛤(𝑋, ℒ𝑛) ×
𝛤(𝑋, ℒ𝑚) → 𝛤(𝑋, ℒ𝑛+𝑚) is surjective for all 𝑛, 𝑚 > 0 or 𝑆𝑛𝛤(𝑋, ℒ) → 𝛤(𝑋, ℒ𝑛) is surjective for all
𝑛 > 0), then ℒ is said to be projectively normal (Mumford calls such a ℒ normally generated in [Mum69]).
The terminology comes from the fact that ℒ is projectively normal exactly when the homogeneous ring
𝑆(𝑋) induced by the projective embedding given by the very ample ℒ is equal to the global ring of sections

̃𝑆(𝑋) = ⊕𝛤(𝑋, ℒ𝑛), which is normal if 𝑋 is normal (eg smooth).

For all this and much more see [Mum69], which contains much more precise results also on the kernel of the
multiplication map using Casterlnuovo-Mumford regularity.

Going back to our Kummer, using Theorem 2.12.2 we get that the rank of 𝛤(𝐴, ℒ) ⊗ 𝛤(𝐴, ℒ) → 𝛤(𝐴, ℒ2)+ is
the number of non zero theta null 𝑈ℒ2

𝜒,𝑖 (0) ≠ 0 (which we will call the even theta-null werte).

Corollary 2.12.3. The following are equivalent::

• ℒ is projectively normal on 𝐾𝐴;

• 𝛤(𝐴, ℒ) ⊗ 𝛤(𝐴, ℒ) → 𝛤(𝐴, ℒ2)+ is surjective;

• The even theta-null werte are all different from zero.

See also [LR16, § 3].
This will be our running assumption in the following. Note that this excludes both decomposable polarisations

or Jacobians of hyperelliptic curves of genus 𝑔 ≥ 3 since they are both characterised by the cancellation of suitable
theta-nulls [Mum84].

Proposition 2.12.4. If the even theta-null werte are non zero, in the differential addition formula from �̃�, 𝑄 we can
recover all the 𝜃𝑖(̃𝑃 + 𝑄)𝜃𝑗(̃𝑃 − 𝑄) + 𝜃𝑗(̃𝑃 + 𝑄)𝜃𝑖(̃𝑃 − 𝑄).

Proof. By our assumptions, we can recover all (∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃𝑖+𝑡(̃𝑃 + 𝑄)𝜃𝑗+𝑡(̃𝑃 − 𝑄)) for 𝜒 such that 𝜒(𝑖 + 𝑗) = 1,

and summing over these characters yield the result, see [Rob10, Proposition 4.8.6].

51

2 Arithmetic of abelian varieties

Letting 𝜅𝑖𝑗 = 𝜃𝑖(̃𝑃 + 𝑄)𝜃𝑗(̃𝑃 − 𝑄) + 𝜃𝑗(̃𝑃 + 𝑄)𝜃𝑖(̃𝑃 − 𝑄), it is not surprising that we can recover the val-
ues of the 𝜅𝑖𝑗 since they are invariant under the action of [−1]. It is also clear that they allow to compute the
schematic addition of Section 2.12.1. Indeed, in the 2 × 2𝑔 matrix (𝜃𝑖(̃𝑃 + 𝑄), 𝜃𝑖(̃𝑃 − 𝑄))𝑖∈𝑍(𝑛) take two lines
𝑖, 𝑗 of rank 2. Any other line 𝜃𝑘(�̃�), 𝜃𝑘(𝑄) is recovered from a linear equation involving 𝜅𝑖𝑘, 𝜅𝑗𝑘. We may encode
{𝜃𝑖(̃𝑃 + 𝑄)𝜃𝑗(̃𝑃 − 𝑄), 𝜃𝑗(̃𝑃 + 𝑄)𝜃𝑖(̃𝑃 − 𝑄)} as the roots of the polynomial equation 𝑋2 − 𝜅𝑖𝑗𝑋 + 𝜅𝑖𝑖𝜅𝑗𝑗/4. This
gives an algorithm to compute the schematic addition on 𝐾𝐴. See [Rob10, Algorithme 4.8.7] and [LR15a, § 3.3] for
more details and the algorithm.

Notice that Proposition 2.12.4 not only gives a projective schematic addition but also an affine schematic addition,
with the caveat that the 𝜅𝑖𝑗 are homogeneous of degree 2 so the affine schematic addition does not distinguish
between {𝜆 ̃𝑃 + 𝑄, 𝜆 ̃𝑃 − 𝑄} where 𝜆 = ±1. Hence all the arithmetic developed in Section 2.12.1 also exists on the
affine lifts (with the caveat above).

In particular, we already knew that we could compute three way additions generically from Theorem 2.12.2.
But if ℒ is projectively normal, we get that we can always compute three way additions (up to a sign) [LR16,
Proposition 3.7].

2.12.3 From level 2 to level 4

Given a symmetric theta structure of level 𝑛 = 2 on (𝐴, ℒ) and the theta null point of level 4 of a compatible
symmetric theta structure on (𝐴, ℒ2), we explain how to switch back and forth between the two models.

First it is easy, using the duplication formula from Corollary 2.7.2 to go from the 𝜃ℒ2
𝑖 to the 𝜃ℒ

𝑖 :

𝜃ℒ
𝑖+𝑗(𝑃)𝜃ℒ

𝑖−𝑗(𝑃) =
1
2𝑔 ∑

𝑡∈𝑍(2)
𝜃ℒ2

𝑖+𝑡(𝑃)𝜃ℒ2
𝑗+𝑡(0).

We can then invert the duplication formula using:

𝑈ℒ2
𝜒,𝑖 (𝑃)𝑈ℒ2

𝜒,𝑗 (0) = ∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃ℒ
𝑖+𝑗+𝑡(𝑃)𝜃ℒ

𝑖−𝑗+𝑡(𝑃).

Since the odd theta null values are null, we only recover the coordinates 𝑈ℒ2
𝜒,𝑖 such that 𝜒(2𝑖) = 1.

But in level 4 we have the explicit translation of points of four torsion, so it is also easy to go from the model of
(𝐴, ℒ2) to the model 𝛼𝑇 ∶ 𝐴 → (𝐾𝐴, ℒ) × (𝐾𝐴, ℒ), 𝜃ℒ2

𝑖 (𝑃) ↦ (𝜃ℒ
𝑖 (𝑃), 𝜃ℒ

𝑖 (𝑃 + 𝑇)), for 𝑇 four-torsion.
Going from [𝑃] ∈ (𝐾𝐴, ℒ) to {[𝑃 + 𝑇], [−𝑃 + 𝑇]} requires a schematic addition. A choice of root in the

schematic addition then encode the choice of 𝑃 or −𝑃 in 𝐴. It remains to explain how to go from the 𝛼𝑇 model
back to 𝐴: since we have the theta null point of level 4 on 𝐴, we have all the ([𝑇𝑖], [𝑇𝑖 + 𝑇]) where 𝑇𝑖 is the
point of four-torsion corresponding to 𝑖 ∈ 𝑍(4) ⊂ 𝑍(2𝑛). From ([𝑃], [𝑃 + 𝑇]) we can thus compute the
([𝑃 + 𝑇𝑖], [𝑃 + 𝑇 + 𝑇𝑖]), hence also the [𝑃 − 𝑇𝑖] using a differential addition. We then recover all the coordinates
of level 4 on 𝑃 via:

𝑈ℒ2
𝜒,𝑖 (𝑃)𝑈ℒ2

𝜒,𝑖 (𝑇𝑖) = ∑
𝑡∈𝑍(2)

𝜒(𝑡)𝜃ℒ
2𝑖+𝑡(𝑃 + 𝑇𝑖)𝜃ℒ

𝑡 (𝑃 − 𝑇𝑖), (2.20)

See [LR16, § 4.1] for more details.

Remark 2.12.5. • Using Section 2.12.2, compressing coordinates of Example 2.8.6 is also valid if we project via
the isogeny 𝜋 ∶ 𝐴 → 𝐵 from level ℓ𝑛 to level 𝑛 = 2, as long as the polarisation of level 2 on 𝐵 is projectively
normal. (More precisely if 𝑛 = 2 we use 𝜋 ∶ 𝐴 → 𝐵 → 𝐾𝐵). See [LR16, Theorem 4.4].

• Likewise if we are only given 𝑦 ∈ 𝜋(𝑥) ∈ 𝐵 (more precisely [𝑦] ∈ 𝐾𝐵), we can compute the preimages of 𝑦
in 𝐴 as in Remark 2.10.3.(iii). Indeed, provided we have the theta null point of 𝐴, and reusing the notations
of Remark 2.10.3.(iii), we have all the [𝜋(𝑒𝑖)], [𝜋(𝑒𝑖 + 𝑒𝑗)]. So once we choose among {[𝑦 + 𝑒1], [−𝑦 + 𝑒1]}
via a schematic addition, we get all the others [𝑦 + 𝑒𝑖] using compatible additions, and then the exact same
computation as in Remark 2.10.3.(iii) gives 𝜋−1(𝑦) or 𝜋−1(−𝑦). See [LR16, Remark 4.6].

• Given a symmetric theta structure of level (2, 2, … , 2, 2𝑚), we get that an affine lift ̃𝑥 of a point of 𝐴 is
completely determined by (𝜋(̃𝑥), 𝜋(̃𝑥 + 𝑡)) where 𝑡 is a point of 2𝑚-torsion (recall that the affine action of
translation by 𝑡 is determined by the theta structure on 𝐴). We may even take 𝑡 be a point of 𝑚-torsion if 𝑚
is odd. But this theta structure of level (2, … , 2, 2𝑚) induces an embedding of 𝐴. Hence we see that we may
represent points of 𝐴 by a pair of points on a Kummer variety, which differ by the translation of a point not
of 2-torsion. This was the basic idea which led to the consideration of the model 𝛼𝑃 in Section 2.12.1.

52

2.13 Conclusion and perspectives

• By Section 2.12.2, the results of Section 2.10 also work with a projectively normal polarisation ℒ of level 2.
Note that, for instance in Corollary 2.10.8, the symplectic basis of 𝐴[ℓ] has to be computed in 𝐴 rather than
𝐾𝐴. Typically this will be done by first computing a basis, [𝑒1], … , [𝑒2𝑔], fixing a choice of [𝑒1 + 𝑒𝑖] using
schematic additions, and then computing the rest of the elements of 𝐴[ℓ] using multiway additions.

2.13 conclusion and perspectives

We have seen the importance of the theta group 𝐺(ℒ) in developing the arithmetic of (𝐴, ℒ), if we are able to
compute its action directly. We have also seen in Section 2.9 how an explicit description of the theorem of the
square allows us to extend an explicit action of 𝐺(ℒ) to explicit actions of 𝐺(ℒℓ).

All of this is crystallised when we have a symmetric theta structure on (𝐴, ℒ) (ℒ totally symmetric). The
corresponding theta null point (𝜃𝑖(0)) encodes: the explicit action of 𝐺(ℒ), equations of 𝐴 (via Riemann relations),
and an explicit theorem of the square via differential and three-way additions. This leads to completely explicit
formulae for arithmetic and isogenies in the theta model, and also for pairings as we will see in Chapter 3.

Other models

However, the theta model, while extremely convenient (all this information is encoded by the coordinates of just
one point!), has the major drawback that it is not rational (see Section 2.11 for precise rationality conditions).
This is annoying when working with abelian varieties over finite fields, and redhibitory over number fields (the
extension can be of huge degree). There is another model where we can do explicit computations in spirit similar to
the theta model: namely when 𝐴 = Jac(𝐶) is a Jacobian; by using the tools of [CE14]. But this does not cover all
cases. Possible solutions include looking at system of generators induced by the regular representation of 𝐺(ℒ),
since this is Galois equivariant, unlike the irreducible action which requires to trivialise the action of half of 𝐾(ℒ).
We could also look, at least over finite fields, for twists of the Heisenberg group so that we can get an isomorphism
with 𝐺(ℒ) over the base field, and take the corresponding twisted irreducible representations. There is a lot of
exciting work to do on other models or even rational (twisted) theta models. An exemple of this (for Jacobians)
when 𝑔 = 2 is given by [Fly90; CF+96]. See also [Van98] for twists of theta functions when 𝐴 = Jac(𝐶) is the
Jacobian of an hyperelliptic curve 𝐶 ∶ 𝑦2 = 𝑓 (𝑥), which provide a model defined over the splitting field of 𝑓.

Another big drawback of the theta model of level 𝑛 is that it requires a number of coordinates 𝑛2𝑔 exponential
in 𝑔. In practice I have done isogeny computations in dimension up to 𝑔 = 4, and 𝑔 = 5 would be feasible, but
moderate dimensions like 𝑔 ≈ 30 would be way too costly. To handle greater dimensions, we probably need to
abandon projective models, and work with affine coordinates (on affine patches) or even just with birational models.
So the question becomes: can we find an efficient encoding of a birational model of an abelian variety 𝐴 that still
allows us (generically of course) to compute the arithmetic of 𝐴?

The case ℓ = 2

Going back to the theta models, we have seen in Section 2.10 two different ways to compute isogenies, which we
will explore in more details in Chapter 4. We have outlined how to handle the case of ℓ-isogenies with ℓ even. But
works remain to do from an implementation point of view: this case has not yet been implemented in [BCR10].
Indeed, as we have seen in Remark 2.10.14 we need more information than just the kernel. So the implementation
should find a way to encode this extra information in the most efficient way possible (eg should we really fix some
points of 2ℓ𝑛-torsion above the kernel, or could we choose correct signs as needed?). Also if the kernel 𝐾 we want
to use is not compatible with our current theta structure, we need to act by an isomorphism of the theta group (so
that it becomes compatible) first. Likewise, one should consider the best way to compute such an automorphism in
practice.

Even testing if 𝐾 is compatible is not obvious: the explicit definition of 𝛿2 involves working with ℒ4. This
also holds when we want to go from level 𝑛 to level 𝑛ℓ with ℓ even, and we need to assume that the symplectic
decomposition of 𝐴[𝑛ℓ] we take is such that the induced decomposition of 𝐴[2𝑛] does give us our symmetric
theta structure of level 𝑛. My guess is that we can detect if a point 𝑃′ such that 2𝑃′ = 𝑃 is in 𝐴𝑖[𝑛] induces the
correct symmetric lift 𝑔𝑃 above 𝑃 whenever all affine relations deduced from differential additions of the form

̃𝑎𝑃′ + 𝑏𝑄 for 𝑄 ∈ 𝐴𝑖[𝑛] hold. Ie we need to be able to normalize 𝑃′ such that ̃2𝑃′ + 𝑄 computed via a differential
addition does give ̃𝑃 + 𝑄. Here ̃𝑃′ + 𝑄, 𝑄 and ̃𝑃 + 𝑄 are given by the theta structure of level 𝑛.

53

2 Arithmetic of abelian varieties

As a particular case, let us look at the key case of 2-isogenies between abelian varieties with a theta structure
of level 𝑛 even. This is exactly given by the duplication formula, and when 𝑛 = 2 this gives generalisations of the
AGM, which occurs in the case 𝑔 = 1. Then the kernel is fixed, this is 𝐴2[2] where 𝐴[2] = 𝐴1[2] ⊕ 𝐴2[2] is
the symplectic decomposition induced by the level 𝑛 = 2 theta structure. The generalised agm involves choice of
signs (the duplication formula give the squares of the theta constants, and the signs correspond to taking square
roots). These choices correspond to choices of symmetric theta structures on 𝐵 = 𝐴/𝐴2[2], and when 𝑔 > 2 not
all possible choices of signs correspond to a theta structure (this is the case when 𝑔 = 2 too but bad cases are easy
to detect). These signs are fixed by some choices of points in 𝐴[4] (and also some information from the 8-torsion),
but a natural question would be to find compatible signs the most efficient way possible, without computing fully
the 4-torsion.

The same kind of consideration holds when increasing the level from 𝑛 to 2𝑛, using Remark 2.10.7 (ie the
duplication formula again). If we assume that we are given a symplectic basis of the 2𝑛-torsion, what is the most
efficient way to compute a theta structure of level 2𝑛 compatible with this basis, without computing the full
4𝑛-torsion?

We remark that when going from level 2 to level 4, then by Section 2.12.3 the difficulty lies only in the choice of
square roots of the duplication formula for the theta constants. Once the theta constant of level 4 is chosen, changing
level for 𝑃 ∈ 𝐴 does not require any more choices. This is similar from level 𝑛 to 2𝑛. Likewise, when computing a
2-isogeny 𝑓 ∶ 𝐴 → 𝐵 in even level via the duplication formula, once the choice of roots for 𝜃𝐵

𝑖 (0𝐵) are done, the
duplication formula directly gives the 𝜃𝐵

𝑖 (𝑓 (𝑃)) in terms of the 𝜃𝐴
𝑖 (𝑃). Of course, choosing a level 4 structure on

(𝐴, ℒ2) encodes the theta null points of level 2 both of 𝐵 = 𝐴/𝐾1(ℒ) and 𝐶 = 𝐴/𝐾2(ℒ). Conversely, from these
theta null we can reconstruct the theta null of level 4 of 𝐴. So the choice of sign in the duplication formula for a
2-isogeny or changing level from 2 to 4 are essentially equivalent.

Thomae’s formula

A related consideration: in Remark 2.9.6 we explained how we could use the results of [CE14] to get a generalised
Thomae algorithm on Jacobians (given a symplectic basis of the 𝑛-torsion). This approach can be seen as a more
algorithmic reformulation of [She08], with the advantage that we get the theta constants of level 𝑛, not simply their
power to the 2𝑛2; and more importantly this also allows us to compute the theta coordinates of any point on the
Jacobian.

Of course, the standard Thomae formula on an hyperelliptic curve gives the fourth power 𝜃4
𝑖 (0) of the theta of

level 4 in term of the Weierstrass point of 𝐶 (which encode the 2-torsion of Jac(𝐶)); we refer to [Mum84; Cos11]
for more details, and [Cel19] for an extension to non hyperelliptic curves. A question is then how to pass from
the 𝜃4

𝑖 (0) to the 𝜃2
𝑖 (0) and then 𝜃𝑖(0). Via the duplication formula, the 𝜃2

𝑖 (0) of level 4 are essentially the same as
the 𝜃𝑖(0) of level 2; more precisely we have a linear change of variable between the 𝜃ℒ2

𝑖 (0) and the 𝜃ℒ
𝑖 (0)𝜃ℒ

𝑗 (0).
In other words, the choice of square roots correspond in terms of moduli to go from the level subgroup 𝛤(2), to
𝛤(2, 4) to 𝛤(4, 8). The choice of roots from 𝜃2

𝑖 (0) to 𝜃𝑖(0) can thus be seen as a special case of going from level 2
(ie 𝛤(2, 4)) to level 4 (ie 𝛤(4, 8)). Even more interesting is the first choice of roots. We could even ask for formula
to go from level 𝛤(1, 2) to level 𝛤(2, 4). Here all our Thomae formulas involve projective theta constant, ie finding
the values of 𝜃𝑖(0)/𝜃0(0). Analytically we do have modular versions (giving the exact values of 𝜃𝑖(0)), and a topic
of considerable interest is to have algebraic versions of the affine Thomae formula when we fix a basis of differential
of 𝐴. We give such formulas when 𝑔 = 1 in [KNR+21]. We will go back to this topic in Section 5.6.5.

Equations for Kummer varieties

A last, but very important topic I want to mention is the following: Riemann equations from Theorem 2.7.3 gives
equations for the abelian variety 𝐴 and for the moduli 𝒜𝑔,𝑛 when 𝑛 ≥ 4 is even. However they are trivial when
𝑛 = 2. But the case 𝑛 = 2 is very important algorithmically to have efficient algorithms (if only because we have 2𝑔

coordinates rather than 4𝑔). When 𝑔 = 2, it is well know that Kummer surfaces are given by a quartic equation in
ℙ3. An immediate computation shows that in the theta model of level 𝑛 = 2, we can recover this equation as saying
that the equation coming from the differential addition 2̃𝑥 = diff_add(̃𝑥, ̃𝑥, ̃0𝐴, ̃0𝐴) holds. So, like Riemann
equations which were induced by the equation ̃𝑥 = diff_add(̃𝑥, ̃0𝐴, ̃𝑥, ̃0𝐴) we can recover the Kummer equation
as some sort of compatibility conditions on differential additions. It would be interesting to extend this analysis to
higher dimension 𝑔 and also to get equations for the moduli of abelian varieties with a symmetric theta structure of
level 2.

54

2.13 Conclusion and perspectives

If ℒ is symmetric and principal on 𝐴, then ℒ2 descends to a line bundle ℳ on 𝐾𝐴, where 𝛤(𝐴, ℳ𝑛) =
𝛤(𝐴, ℒ2𝑛)+. By surjectivity of the multiplication, ℳ2 is projectively normal and by a general theorem of Kempf
[Kem92], the projective embedding induced byℳ2 is described by quadric and cubic relations. So ifℳ is projectively
normal, it is very ample and the projective embedding is described by quartic and sextic relations. The question is
then to make them explicit. It would also be nice to extend the results of Section 2.12 on the arithmetic of Kummer
varieties when ℳ is not projectively normal. Note that if ℒ is indecomposable, ℳ is very ample by Proposition 2.3.1.
But if ℒ decomposes as (𝐴, ℒ) = ∏(𝐴𝑖, ℒ𝑖), it is easy to compute the arithmetic of each (𝐴𝑖, ℒ𝑖) separately, so
projective normality is not a always a prerequisite. The more interesting case is when ℒ is indecomposable but ℳ is
not projectively normal (eg 𝐴 = Jac(𝐶) is the Jacobian of an hyperelliptic curve of genus 𝑔 > 2). The equations of
the Kummer probably give us the extra relations we need to compute the arithmetic of 𝐾𝐴 as in Section 2.12.

55

3 COMPUT ING PA I R I NGS IN ABEL I AN VAR I E T I E S

contents
3.1 Introduction 57
3.2 Pairings 57

3.2.1 The Weil and Tate pairings 57
3.2.2 Variants of the Tate pairing and twists 58

3.3 Miller’s algorithm 59
3.3.1 Overview of Miller’s algorithm in abelian varieties 59
3.3.2 Miller’s algorithm in the theta model 59

3.4 Pairings on the Kummer variety 62
3.5 The Weil and Tate pairings for elliptic curves 63
3.6 Conclusion and perspectives 66

3.1 introduction

In this Chapter, we give algorithms to compute the Weil and Tate pairings (and related pairings) on an abelian
variety. We briefly describe these pairings in Section 3.2, and refer to [Rob21, Chapter 4] for a lot more informations.

The algorithms are described in Section 3.3, where we first give a general overview when having an explicit
version of the theorem of the square (as in Algorithmic Hypothesis 2.9.2), and then we specialize to the theta
model. Pairings on Kummer varieties are treated in Section 3.4. I use the occasion of writing this document to give
in Section 3.5 some results about pairings on elliptic curves which were only available as a Chapter of the book
[Rob17], which is not publicly available. Perspectives are in Section 3.6.

3.2 pairings

3.2.1 The Weil and Tate pairings

If 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, 𝐾 = Ker 𝑓, ̂𝑓 ∶ �̂� → 𝐴 the dual isogeny, 𝐾 = Ker ̂𝑓, then 𝐾 is canonically the Cartier dual
Hom(𝐾, 𝔾𝑚) of 𝐾, and the Weil-Cartier pairing is the corresponding pairing 𝐾 × 𝐾 → 𝔾𝑚. Applying that to the
isogeny 𝛷ℒℓ induced by a polarisation ℒ on 𝐴, we get a pairing 𝑒ℒℓ also denoted 𝑒𝑊,ℒ,ℓ on 𝐾(ℒ)ℓ = [ℓ]−1𝐾(ℒ).
This is the standard Weil pairing on 𝐴[ℓ] if ℒ is principal. Over a finite field there is also the Tate-Cartier pairing
associated to an isogeny. We call 𝑒𝑇,ℒℓ , also denoted by 𝑒𝑇,ℒ,ℓ the Tate-Cartier pairing associated to 𝛷ℒℓ . For more
details on how to construct these pairings and explicit formula, we refer to [Rob21, Chapter 4].

There is a small mystery here: we will see that the Weil and Tate pairing 𝑒𝑊,ℒ,ℓ and 𝑒𝑇,ℒ,ℓ can be computed in
time 𝑂(log ℓ) in (𝐴, ℒ). However I don’t know of an efficient way to compute the Weil-Cartier pairing, ie without
taking a preimage to reduce to a Weil pairing computation, see Section 3.6. In fact, my main motivation in writing
in [Rob21, Sections 4.1.1 and 4.2] the different variants of the Weil and Weil-Cartier pairings and their relationship
(along with the Tate, Tate-Cartier and Tate-Lichtenbaum pairings), was to try to find explanations as to why we had
fast reformulations for the Weil (and Tate) pairing, but not yet for the Weil-Cartier pairing.

Let me detail this here. It is customary in cryptography to look at pairings on Jacobians. Then it is not hard to
see, if we take for ℒ the principal polarisation associated to the Theta divisor, that we can define the Weil and Tate
pairing using divisors on the curve rather than divisors on the Jacobian, see [Rob21, Propositions 4.1.4 and 4.2.5].
Here Weil’s reciprocity is used to replace the definition of the Weil pairing using the divisor [ℓ]∗((𝑃) − (0)) by the
one using the divisor ℓ(𝑃) − ℓ(0). This allows us to use a fast double and add algorithm to compute a function
associated to this divisor via Miller’s algorithm described in Section 3.3.

The same method can be applied to a general abelian variety. In this case we work with cycles (and line bundles
associated to these cycles) on the abelian variety, and Lang’s reciprocity [Lan58] (a generalisation ofWeil’s reciprocity

57

3 Computing pairings in abelian varieties

to any variety) also allows us to work with the cycle ℓ(𝑃) − ℓ(0) to compute the Weil and Tate pairings, see [Rob21,
Section 4.1.2]. In this case, the version of Miller’s algorithm applied to abelian variety simply uses an explicit
version of the theorem of the square. We explained how to compute pairings using Miller’s algorithm in the theta
model in [LR15a] (using of course, differential additions). This raises the question as to whether there is a similar
reformulation of the Weil-Cartier pairing using reciprocity that makes it faster to compute.

When working on an abelian variety we also have the interpretation of 𝑒𝑊,ℒ,ℓ as resulting from the commutator
pairing on the theta group 𝐺(ℒℓ). This was the original point of view of [LR10]; we reformulated this approach to
show that it was equivalent to Miller’s original algorithm in [LR15a] in order to apply it to the variants constructed
for cryptography: ate pairings, optimal pairings. But see also the discussion after Corollary 3.3.3 as to why the point
of view of the theta group naturally recovers directly the variants given by the ate and optimal ate pairings. So this
is a second reformulation of the Weil pairing (the first one using reciprocity, the second one using the theta group),
that allows for faster computation. Unfortunately this second reformulation does not seem to help either for the
Weil-Cartier pairing.

Another motivation for writing [Rob21, Chapter 4] was also to study the restriction of the Weil and Tate pairings
to subgroups. In cryptography, it is customary to restrict to the subgroups usually called G1 and G2 for elliptic
curves, which represent eigenvectors for the Frobenius. It is well known that this still work for abelian varieties
(using characteristic spaces), but I could not find an explicit reference, so that was the occasion to write it down,
see [Rob21, Sections 4.1.3 and 4.2.3].

Anyway, in this Chapter we detail the explicit computation of the Weil, Tate (and related) pairings, in the case of
a polarised abelian variety (𝐴, ℒ) of level 𝑛 over a finite field 𝔽𝑞. Note that if ℒ = ℒ𝑛

𝐴,1, 𝑒𝑊,ℒ,ℓ = 𝑒𝑛
𝑊,ℒ𝐴,1,ℓ on

𝐴[ℓ]. We assume here that 𝑝 is prime to 𝑛ℓ. Summing up the discussion in [Rob21, Sections 4.1 and 4.2], if 𝑛 is
prime to ℓ and 𝑑 is the embedding degree, the Weil pairing 𝑒𝑊,ℒ,ℓ is a non degenerate pairing 𝐴[ℓ] × 𝐴[ℓ] → 𝜇ℓ,
and the (reduced) Tate pairing is a pairing 𝑒𝑇,ℒ,ℓ ∶ 𝐴[ℓ](𝔽𝑞𝑑) × 𝐴(𝔽𝑞𝑑)/ℓ𝐴(𝔽𝑞𝑑) → 𝜇ℓ.

We recall from [Rob21, Section 4.1.2] (see also Section 2.9) that if 𝑍𝑃 is the 0-cycle (𝑃) − (0𝐴) then we have an
associated divisor 𝐷𝑃, and the corresponding line bundle associated to this cycle is 𝑡∗

𝑃ℒ ⊗ ℒ−1. Furthermore ℓ𝐷𝑃
is a principal divisor, and we denote 𝑓ℓ𝐷𝑃

(or 𝑓ℓ𝑍𝑃
) a corresponding function. More generally we may define such

functions for any 0-cycle 𝑍𝑃 equivalent to (𝑃) − (0𝐴). Then by [Rob21, Corollary 4.1.3 and Proposition 4.2.5]:

Proposition 3.2.1. Let 𝑍𝑃 and 𝑍𝑄 be two cycles equivalent to (𝑃) − (0𝐴) and (𝑄) − (0𝐴) respectively. Then if
𝑃 ∈ 𝐴[ℓ](𝔽𝑞𝑑) and 𝑄 ∈ 𝐴(𝔽𝑞𝑑)/ℓ𝐴(𝔽𝑞𝑑), the Tate pairing is given by

𝑒𝑇,ℒ,ℓ(𝑃, 𝑄) = 𝑓ℓ𝑍𝑃
(𝑍𝑄)

𝑞𝑑−1
ℓ (3.1)

If 𝑃, 𝑄 ∈ 𝐴[ℓ], the Weil pairing is given by

𝑒𝑊,ℒ,ℓ(𝑃, 𝑄) = (−1)ℓ 𝑓ℓ𝑍𝑃
(𝑍𝑄)

𝑓ℓ𝑍𝑄
(𝑍𝑃) (3.2)

3.2.2 Variants of the Tate pairing and twists

A lot of variants of the Tate pairing have been introduced to speed up pairing computation for elliptic curves (and
Jacobians):

• The ate pairing: G2 × G1 → 𝜇ℓ given by 𝑓𝑍𝜆,𝑃
(𝑍𝑄) where 𝜆 ≡ 𝑞 (mod ℓ). (In dimension 𝑔 > 1 we can take

𝜆 = 𝑞 and the pairing is already reduced).

• The optimal ate pairing on G2 × G1, writing a multiple of ℓ as 𝑚ℓ = ∑ 𝑐𝑖𝑞𝑖 with small coefficients 𝑐𝑖 and
using the Frobenius to compute 𝑓𝑚ℓ𝑍𝑃

(𝑍𝑄) from the 𝑓𝑍𝑐𝑖,𝑃
(𝑍𝑄).

• If 𝐴 is ordinary and has twists of degree 𝑓, with 𝑓 ∣ 𝑑 (𝑑 the embedding degree), one can use a twist 𝐴′ to
represent G2 in 𝐴′(𝔽𝑒

𝑞) where 𝑒 = 𝑑/𝑓. Indeed twisting change the action of 𝜋 by 𝜁𝜋 where 𝜁 is a 𝑑-th root
of unity. It suffices to take the twist corresponding to 𝜁 acting as 𝑞𝑒 modulo ℓ (since 𝑞𝑒𝑑 = 1 mod ℓ).

• Existence of a twist also allows to define twisted versions of the ate and optimal ate pairings on G1 × G2
(using the twist to reduce the length of the Miller loop rather than the size of the field representing the
points). Indeed on the twist 𝐴′/𝔽𝑒

𝑞 above, by the same reasoning as above, G1 is sent to G′
2 and we have seen

that G2 is sent to G′
1.

58

3.3 Miller’s algorithm

• More generally, twists of degree 𝑓 allows us to decompose 𝐴(𝔽𝑞𝑓). We recall that twists are in bijection with
𝐻1(𝑘,Aut(𝐴)), and if 𝑘 = 𝔽𝑞 and 𝐴 is ordinary, thenAut𝑘(𝐴) = Aut𝑘(𝐴). So an element of 𝐻1(𝑘,Aut(𝐴))
is completely determined by the image of the Frobenius, which is a root of unity 𝜁. Then if Aut𝑘(𝐴) contains
a primitive 𝑓-root of unity 𝜁, we have a twist 𝐴𝜁 𝑖 (which becomes isomorphic to 𝐴 over 𝔽𝑞𝑓), and via the
isomorphism above on 𝐴𝜁 𝑖 the Frobenius 𝜋 is twisted by 𝜁 𝑖. Then if the kernels Ker(𝜁 𝑖𝜋 − 1) are disjoints,
𝐴(𝔽𝑓

𝑞) = ⊕𝐴𝜁 𝑖(𝔽𝑞) by the same proof as [HSV06, Theorem 3].

For all this and more details, (eg on when these pairings are non degenerate) we refer to [Rob17, § 3.2.4 and § 3.2.5]
and the references therein for elliptic curves, and [LR15a, § 6 and § 7] for abelian varieties.

3.3 miller’s algorithm

3.3.1 Overview of Miller’s algorithm in abelian varieties

Computing pairings thus boils down to computing the functions 𝑓ℓ𝑍𝑃
for 𝑃 ∈ 𝐴[ℓ] (or more generally functions

𝑓𝑍𝜆,𝑃
). There is a standard algorithm, due to Miller for elliptic curves and Jacobians [Mil86; Mil04] but which

extends readily to abelian varieties.
The cycle (𝑃 + 𝑄) + (0𝐴) − (𝑃) − (𝑄) corresponds to a divisor linearly equivalent to 0, and we let 𝜇𝑃,𝑄

be a function representing this divisor. This function 𝜇𝑃,𝑄 can be seen as making the theorem of the square
𝑡∗
𝑃+𝑄ℒ ⊗ ℒ ≃ 𝑡∗

𝑃ℒ ⊗ 𝑡∗
𝑄ℒ explicit. Its construction depends on the model of the abelian variety. It is clear that

we can compute the function associated to a principal cycle 𝑍 (we recall that we define a principal cycle to be a
cycle of degree zero such that its realisation 𝑆(𝑍) = 0𝐴) by combinations of the 𝜇𝑃,𝑄 functions (using the special
case 𝑄 = −𝑃 to replace (0) − (𝑃) by (−𝑃) − (0)). But if 𝑍 = ∑ 𝑛𝑖(𝑃𝑖), this costs 𝑂(∑|𝑛𝑖|) operations.

Like for the addition law, we look for a double and add method to compute the function associated to cycles of
the form 𝑛(𝑃) + ⋯. For an arbitrary point 𝑃 ∈ 𝐴, we let 𝑍𝑚,𝑃 be the cycle 𝑚(𝑃) − (𝑚𝑃) − (𝑚 − 1)(0𝐴), and
𝑓𝑍𝑚,𝑃

or simply 𝑓𝑚,𝑃 be the corresponding function (this depends on the choice of a divisor 𝛩 representing the
polarisation ℒ, and we denote by 𝑓𝛩,𝑚,𝑃 this function when we want to make this choice explicit). Its divisor is
linearly equivalent to 0, and if 𝑃 ∈ 𝐴[𝑚], we have that 𝑍𝑚,𝑃 = 𝑚[(𝑃) − (0𝐴)] = 𝑚𝑍𝑃. The key insight of Miller’s
algorithm is the following relation (up to changing one of the representative function by a constant factor):

𝑓𝑍ℓ1+ℓ2,𝑃
= 𝜇ℓ1𝑃,ℓ2𝑃𝑓𝑍ℓ1,𝑃

𝑓𝑍ℓ2,𝑃
(3.3)

This immediately yields a double and add algorithm to evaluate 𝑓𝑍𝑚,𝑃
(𝑄), using that 𝑓𝑍1,𝑃

= 𝑓𝑍0,𝑃
= 1. As a

corollary, provided we have an explicit version of the theorem of the square, we can compute a function associated
to a cycle 𝑍 = ∑ 𝑛𝑖(𝑃𝑖) in time 𝑂(∑ log|𝑛𝑖|). In particular, we can compute the Tate 𝑒𝑇,ℒ,ℓ and Weil 𝑒𝑊,ℒ,ℓ
pairing in time 𝑂(log ℓ) (with the caveat that the final exponentiation in the Tate pairing becomes asymptotically
dominant).

3.3.2 Miller’s algorithm in the theta model

In the following, (𝐴, ℒ) is a polarised abelian variety, with a symmetric theta structure of even level 𝑛.
If 𝐴 = ℂ𝑔/𝛬 is a complex abelian variety described by the analytic theta functions 𝜃𝑖 of level 𝑛 (we recall that

for 𝑖 ∈ 𝑍(𝑛), 𝜃𝑖(𝑧) = 𝜃 [0
𝑖/𝑛] (𝑧, 𝛺/𝑛)), we can describe these functions explicitly, see [LR15a]:

Lemma 3.3.1. Let 𝑧𝑃 ∈ ℂ𝑔 representing 𝑃 ∈ 𝐴, and 𝑖 ∈ 𝑍(𝑛). For all 𝜆, 𝜇 positive integers, we have up to a
constant factors (for all 𝑧 where this is defined):

𝜇𝜆𝑃,𝜇𝑃(𝑧) =
𝜃𝑖(𝑧 + 𝜆𝑧𝑃)𝜃𝑖(𝑧 + 𝜇𝑧𝑃)
𝜃𝑖(𝑧 + (𝜆 + 𝜇)𝑧𝑃)𝜃𝑖(𝑧) . (3.4)

More generally: 𝜇𝑃,𝑄(𝑧) = 𝜃𝑖(𝑧+𝑧𝑃)𝜃𝑖(𝑧+𝑧𝑄)
𝜃𝑖(𝑧+𝑧𝑃+𝑧𝑄)𝜃𝑖(𝑧) .

𝑓𝜆,𝑃(𝑧) =
𝜃𝑖(𝑧)

𝜃𝑖(𝑧 + 𝜆𝑧𝑃) (
𝜃𝑖(𝑧 + 𝑧𝑃)

𝜃𝑖(𝑧))
𝜆

, (3.5)

It is easy to give an algebraic interpretation of Lemma 3.3.1

59

3 Computing pairings in abelian varieties

Proposition 3.3.2. Let (𝐴, ℒ) be a polarised abelian variety with a symmetric theta structure of level 𝑛 even. Fix
once and for all an affine lift ̃0𝐴 of the theta null point.

• Let 𝑃, 𝑄, 𝑅, 𝑆 ∈ 𝐴. Fix arbitrary lifts �̃�, 𝑄 and ̃𝑃 + 𝑄, �̃�, 𝑃 + 𝑅, 𝑄 + 𝑅, 𝑅 + 𝑆, ̃𝑃 + 𝑅 + 𝑆, ̃𝑄 + 𝑅 + 𝑆.
Compute ̃𝑃 + 𝑄 + 𝑅, ̃𝑃 + 𝑄 + 𝑅 + 𝑆 using threeway_add. Let 𝑖 ∈ 𝑍(𝑛). Then

𝜇𝛩𝑖,𝑃,𝑄((𝑆 + 𝑅) − (𝑅)) =
(̃𝑅 + 𝑆 + 𝑃)𝑖(̃𝑅 + 𝑆 + 𝑄)𝑖(̃𝑅 + 𝑃 + 𝑄)𝑖�̃�𝑖

(̃𝑅 + 𝑆 + 𝑃 + 𝑄)𝑖(𝑅 + 𝑆)𝑖(𝑅 + 𝑃)𝑖(̃𝑅 + 𝑄)𝑖

where 𝛩𝑖 is the divisor representing ℒ associated to 𝜃𝑖.

In particular, fixing arbitrary lifts �̃�, 𝑄 and ̃𝑃 + 𝑄,𝑇,𝑃 + 𝑇,𝑄 + 𝑇, and computing ̃𝑃 + 𝑄 + 𝑇usingthreeway_add,

𝜇𝛩𝑖,𝑃,𝑄((𝑇) − (0)) =
(̃𝑃 + 𝑄)𝑖(𝑇 + 𝑃)𝑖(̃𝑇 + 𝑄)𝑖 ̃0𝑖

(̃𝑃 + 𝑄 + 𝑇)𝑖(𝑇)𝑖(�̃�)𝑖(𝑄)𝑖
.

• Let 𝑃, 𝑅, 𝑆 ∈ 𝐴. Fix arbitrary lifts �̃�, �̃�, 𝑃 + 𝑅, 𝑅 + 𝑆, ̃𝑃 + 𝑅 + 𝑆, and compute ̃𝜆𝑃 + 𝑅, ̃𝜆𝑃 + 𝑅 + 𝑆 using
diff_multadd. Then

𝑓𝛩𝑖,𝜆,𝑃((𝑆 + 𝑅) − (𝑅)) =
(̃𝑅 + 𝑆 + 𝑃)𝜆

𝑖 (̃𝑅 + 𝜆𝑃)𝑖�̃�𝜆−1
𝑖

(̃𝑅 + 𝑆 + 𝜆𝑃)𝑖(𝑅 + 𝑆)𝜆−1
𝑖 (𝑅 + 𝑃)𝜆

.

In particular, fixing arbitrary lifts �̃�, 𝑄, ̃𝑃 + 𝑄 and computing 𝜆𝑃, ̃𝜆𝑃 + 𝑄 using diff_multadd, then

𝑓𝛩𝑖,𝜆,𝑃((𝑄) − (0)) =
𝑄𝑖.𝜆𝑃𝑖

(̃𝑄 + 𝜆𝑃)𝑖. ̃0𝑖

⎛⎜
⎝

(̃𝑃 + 𝑄)𝑖. ̃0𝑖

𝑄𝑖.�̃�𝑖

⎞⎟
⎠

𝜆

Proof. This is [LR15a, Corollary 1 and Proposition 3]. We check that, due to our normalisations, these values does
not depend on the choice of lifts. Over ℂ we may take lifts given by the 𝜃𝑖(𝑧 + 𝑧𝑃) and so on for 𝑧 representing
𝑅 + 𝑆 and 𝑆, to see that this does define 𝜇𝛩𝑖,𝑃,𝑄((𝑅 + 𝑆) − (𝑆)). Since we evaluate on a cycle of degree zero,
this does not depends on the choice of 𝜇𝛩𝑖,𝑃,𝑄. The algebraic case follows by a lifting argument, but it can also be
proved directly using Section 2.9: differential additions give an explicit version of the theorem of the square. This
gives a formula for 𝜇𝑃,𝑄, and the formula for 𝑓𝜆,𝑃 follows immediately.

Corollary 3.3.3. If𝑃 ∈ 𝐴[ℓ],𝑄 ∈ 𝐴, take arbitrary lifts �̃�, 𝑄, ̃𝑃 + 𝑄. Compute ̃ℓ𝑃 + 𝑄 and ℓ̃𝑃usingdiff_multadd.
Write ̃ℓ𝑃 + 𝑄 = 𝜆𝑃

1 𝑄 and ℓ̃𝑃 = 𝜆𝑃
0 ̃0.

Let 𝑑 be the embedding degree, and assume that 𝑃 ∈ 𝐴[ℓ](𝔽𝑞𝑑), 𝑄 ∈ 𝐴(𝔽𝑞𝑑), and the chosen lifts are in 𝔽𝑞𝑑.
Then the (non) reduced Tate pairing is given by

𝑒𝑇,ℒ,ℓ(𝑃, 𝑄) = 𝜆𝑃
1 /𝜆𝑃

0 .

If 𝑃, 𝑄 ∈ 𝐴[ℓ], we can also compute ̃𝑃 + ℓ𝑄 and ℓ̃𝑄 using diff_multadd, and recover projective factors
̃𝑃 + ℓ𝑄 = 𝜆𝑄

1 �̃� and ℓ̃𝑄 = 𝜆𝑄
0

̃0. Then the Weil pairing is given by

𝑒𝑊,ℒ,ℓ(𝑃, 𝑄) =
𝜆𝑃

1 𝜆𝑄
0

𝜆𝑄
1 𝜆𝑃

0

.

Proof. This is an immediate application of plugging the formulae of Proposition 3.3.2 into Proposition 3.2.1, see
also [LR15a]. We note that Proposition 3.3.2 shows how the result of the non reduced Tate pairing is defined up to
an ℓ-power of an element of 𝔽∗

𝑞𝑑 .

I really like this formula, because it really fits into the theme “you could have invented the Weil and Tate pairing”
(see [Cho06] for the reference). We take a point of ℓ-torsion 𝑃, use differential additions to compute ̃ℓ𝑃 + 𝑄, we
know that we get back 𝑄 up to some factor 𝜆𝑃

1 . Looking at what happen when we change our lifts, we get the
following diagram:

60

3.3 Miller’s algorithm

̃0 𝛼�̃� 𝛼4(2�̃�) … 𝛼ℓ2(ℓ�̃�) = 𝜆′𝑃
0 ̃0

𝛽𝑄 𝛾(̃𝑃 + 𝑄) 𝛾2𝛼2

𝛽 (̃2𝑃 + 𝑄) … 𝛾ℓ𝛼ℓ(ℓ−1)

𝛽ℓ−1 (̃ℓ𝑃 + 𝑄) = 𝜆′𝑃
1 𝛽𝑄

𝛽4(2𝑄) 𝛾2𝛽2

𝛼 (̃𝑃 + 2𝑄)
… …

𝛽ℓ2(ℓ𝑄) = 𝜆′𝑄
0 ̃0 𝛾ℓ𝛽ℓ(ℓ−1)

𝛼ℓ−1 (̃𝑃 + ℓ𝑄)= 𝜆′𝑄
1 𝛼�̃�

So we get that 𝜆′𝑃
1 /𝜆′𝑃

0 = 𝜆𝑃
1 /𝜆𝑃

0 (𝛾
𝛼𝛽)

ℓ
. (The above diagram shows that we don’t really need to normalise

with 𝜆𝑃
0 for the Tate pairing, but we get a less symmetric formula.) So we could define 𝑒𝑇(𝑃, 𝑄) directly by the

formula 𝑒𝑇(𝑃, 𝑄) = 𝜆𝑃
1 /𝜆𝑃

0 . It is pretty easy to check directly bilinearity (using compatibility of diff_add with
threeway_add), and that if 𝑄 = ℓ𝑄0 with 𝑄0 ∈ 𝐴(𝔽𝑞𝑑), 𝑒(𝑃, 𝑄) is an ℓ-th power. However, it does not seem
easy to prove non degeneracy directly with this formula, without linking it with the Tate pairing.

Likewise, defining directly 𝑒𝑊(𝑃, 𝑄) via the formula 𝑒𝑊(𝑃, 𝑄) = 𝜆𝑃
1 𝜆𝑄

0

𝜆𝑄
1 𝜆𝑃

0
, the above diagram shows that it depends

not on our choice of lifts (here we really need the normalisation factors 𝜆𝑃
0 , 𝜆𝑄

0). But it should be clear from the way
our computations are done, and by the compatibility of the action of the theta group and differential additions, that
we are recovering the commutator pairing on 𝐺(ℒℓ). In fact, this is how we first proved this formula in [LR12],
before making the link with the standard definition with [LR10; LR15a].

Indeed, we can directly compute the commutator pairing in (𝐴, ℒ) as follow: if 𝑥, 𝑦 ∈ 𝐾(ℒ) and we fix arbitrary
lifts ̃𝑥, ̃𝑦, 𝑥 + 𝑦, let us write ̃𝑥 = (𝛼, 𝑖1, 𝑗1). ̃0𝐴 where (𝛼, 𝑖1, 𝑗1) ∈ ℋ(𝑛), and ̃𝑦 = (𝛽, 𝑖2, 𝑗2). ̃0𝐴, we can also write
𝑥 + 𝑦 in two ways: 𝑥 + 𝑦 = (𝛾1, 𝑖1, 𝑗1). ̃𝑦 and 𝑥 + 𝑦 = (𝛾2, 𝑖2, 𝑗2). ̃𝑥. Then 𝑒ℒ(𝑥, 𝑦) = ⟨𝑖1,𝑗2⟩

⟨𝑖2,𝑗1⟩
𝛾2𝛼
𝛾1𝛽 . Then using Key

Idea 3, we recover Corollary 3.3.3 for 𝑒ℒℓ by descending this formula for 𝑒ℒℓ2 by the isogeny [ℓ]. See [Rob10,
Théorème 5.4.1]. In fact, Proposition 2.10.5 gives another proof of this, as remarked in Remark 2.10.6.

Remark 3.3.4. So rather than proving Corollary 3.3.3 from the formula of Proposition 3.2.1 and Miller’s algorithm,
we can as in [LR10] prove the formula directly by considering the pairings as commutator pairings on the theta
group. It may seem strange that we can recover the formula from [Rob21, Corollary 4.1.3] without invoking Lang’s
reciprocity. But Lang’s theorem is based upon the theorem of the square [Lan58, § 2], and the theorem of the square
is also exactly the theorem that shows that 𝛷ℒ is a polarisation and gives rise to the theta group. Hence it is not
surprising that we can recover the same formula by working directly on the theta group.

The same philosophy gives the ate pairing and the optimal ate pairing. We briefly detail this: if 𝑃 ∈ G2 and
𝑄 ∈ 𝐴(𝔽𝑞), letting 𝜆 ≡ 𝑞 mod ℓ, we may compare ̃𝜆𝑃 + 𝑄 computed using diff_add to 𝜋𝑞(̃𝑃 + 𝑄), which are
both affine lifts of the point 𝜋𝑞(𝑃+𝑄) = 𝑞𝑃+𝑄.This gives a projective factor 𝜆𝑃

1 , which we normalise with respect
to the projective factor 𝜆𝑃

0 comparing 𝜆𝑃 and 𝜋𝑞(�̃�). Then 𝑎𝑇(𝑃, 𝑄) = 𝜆𝑃
1 /𝜆𝑃

0 is exactly the ate pairing (except
that as usual, since we work with a polarisation of level 𝑛 we compute 𝑎𝑇,ℒ(𝑃, 𝑄) = 𝑎𝑇,ℒ0

(𝑃, 𝑄)𝑛). Furthermore
writing 𝑞𝑑 − 1 = 𝑚𝜆, we can relate the ate pairing with the Tate pairing directly by tracking the projective factors
using the differential addition rather than working with divisors as in the standard proofs, see [LR15a, Remark 5].

A similar philosophy apply for the optimal ate pairing: write 𝑚ℓ = ∑ 𝑐𝑖𝑞𝑖, let 𝑃 ∈ G2 and 𝑄 ∈ 𝐴(𝔽𝑞). Compute
the 𝑐𝑖𝑃, ̃𝑐𝑖𝑃 + 𝑄 using diff_multadd, and then apply (powers of) the Frobenius 𝜋𝑞 to get 𝑐𝑖𝑞𝑖𝑃 and ̃𝑐𝑖𝑞𝑖𝑃 + 𝑄. We

then compute an arbitrary lift ̃𝑐𝑖𝑞𝑖𝑃 + ∑𝑗>𝑖 𝑐𝑗𝑞𝑗𝑃, and then use threeway_add to compute ̃𝑐𝑖𝑞𝑖𝑃 + ∑𝑗>𝑖 𝑐𝑗𝑞𝑗𝑃+𝑄
(changing the first lift by 𝜆 change the three way add by 𝜆 too, so in the end everything is correctly normalised).
We thus get ̃∑ 𝑐𝑖𝑞𝑖𝑃 and ̃∑ 𝑐𝑖𝑞𝑖𝑃 + 𝑄, and comparing with ̃0 and 𝑄 as usual gives exactly the optimal ate pairing
(up to the power 𝑛). Once again we could relate the optimal ate pairing with the Tate pairing directly by tracking
only the factors in the differential additions. We refer to [LR15a, § 6 and § 7] for more details, including a look at
the twisted versions.

In summary:

Key Idea 5. Relating affine lifts computed in different ways using the differential addition naturally recover pairings
(in particular the commutator pairing).

Remark 3.3.5. • During the execution of Miller’s algorithm to compute the Tate and Weil pairing, the inter-
mediate steps introduce extra zeroes and poles, and so the intermediate evaluations of 𝑓𝑍𝜆,𝑃

(𝑍𝑄) may not be
well defined even if 𝑓ℓ𝑍𝑃

(𝑍𝑄) is. That is why we stated Proposition 3.2.1 allowing cycles linearly equivalent

61

3 Computing pairings in abelian varieties

to (𝑃) − (0) and (𝑄) − (0) rather than working directly with them. This has the inconvenient of giving a
non deterministic algorithm where we may need to restart the computation with a different equivalent cycle
if we encounter such a situation.

• An alternative to replacing (𝑄) − (0) by a linearly equivalent cycle would be to define an extended value
of a function 𝑓 at 𝑄 which has a pole or zero by fixing uniformisers and looking at the coefficients of the
Laurent series. One then need to check that this does not depend on the choice of uniformisers and that this
extended evaluation still gives the correct result.

This is classical for elliptic curves: 𝑓ℓ((𝑃)−(0)) has of course a pole of order ℓ at 0 so is not well defined on the
cycle (𝑄) − (0). But fixing the uniformiser 𝑧 = −𝑥/𝑦 at 0𝐸, we may define the value of a function 𝑓 at 0𝐸

as (𝑓

𝑧
𝑣0𝐸

(𝑓)) (0𝐸), which is well defined. We say that 𝑓 is normalised at 0𝐸 if the extended value 𝑓 (0𝐸) = 1.
The standard definition of the functions 𝜇𝑃,𝑄 for elliptic curves are normalised at 0𝐸, so the functions 𝑓ℓ,𝑃
computed via Miller’s algorithm are also normalised. Thus Proposition 3.2.1 becomes 𝑒𝑇,ℓ(𝑃, 𝑄) = 𝑓ℓ,𝑃(𝑄)
(non reduced) and 𝑒𝑊,ℓ(𝑃, 𝑄) = (−1)ℓ𝑓ℓ,𝑃(𝑄)/𝑓ℓ,𝑄(𝑃).
For the Weil pairing on elliptic curves, for the computation of the function 𝑓ℓ,𝑃, the intermediate poles and
zeroes introduced by Miller’s algorithm are all multiple of 𝑃. So if the computation fails, we know that 𝑄 is a
multiple of 𝑃, so its Weil pairing with 𝑃 is 1 anyway.

But for the Tate pairing, if we get an intermediate zero and pole 𝑇, we can compute an extended value at
𝑇 (generalizing the definition above for 𝑇 = 0𝐸), and at the end we recover the Tate pairing. This may not
be too useful in the cryptographic setting where we have lots of rational points, but it is useful to compute
Tate pairings on elliptic curves without many rational points. See Section 3.5 for formulae for elliptic curves,
which were implemented in Pari/GP by Bill Allombert.

• By contrast there is no problem of this type using Corollary 3.3.3. Indeed, since 𝑄 has always a non zero
coordinate 𝑖, we may always compute the projective factor relating ̃ℓ𝑃 + 𝑄 and 𝑄 using this coordinate 𝑖.
This is related to Remark 2.9.4 that our polarisation ℒ is base point free.

• Thepairing 𝑒ℒℓ is actually defined on𝐾(ℒℓ), so on𝐴[ℓ𝑛] ifℒ is of level𝑛. It is easy to extendCorollary 3.3.3 as
follow: if 𝑃 ∈ 𝐴[ℓ𝑛], we can compute ̃ℓ𝑃 + 𝑄 and look for the action of theHeisenberg group 𝑔 = (𝜆𝑃

1 , 𝑖1, 𝑗1)
such that ̃ℓ𝑃 + 𝑄 = 𝑔𝑄, and so on. Then the same formula as in Corollary 3.3.3 gives the commutator
pairing on 𝑒ℒℓ ([Rob10, Théorème 5.4.1]). Likewise for the Tate pairing 𝑒𝑇,ℒℓ .

3.4 pairings on the kummer variety

The beauty of the approach of Miller’s algorithm via differential additions in Section 3.3.2 is that it works equally
well for Kummer varieties. In the following we assume that we are away from characteristic two.

Of course the Weil and Tate pairings are not well defined on the Kummer variety 𝐾𝐴, since (using the notations
of Section 2.12), we have 𝑒([𝑃], [𝑄]) = 𝑒(𝑃, 𝑄)±1. So to get a well defined pairing, we have to work over 𝔾𝑚/ ± 1
(where −1 acts by 𝑥 ↦ 𝑥−1). This is a good occasion to illustrate the techniques of Section 2.12.1. If 𝑥 ∈ 𝔾𝑚(𝑘),
we represent by [𝑥] its value in 𝔾𝑚/ ± 1. We have a model of 𝔾𝑚/ ± 1 given by 𝑡 ∶ [𝑥] ↦ 𝑥 + 1/𝑥. The possible
values 𝑥±1 can easily be recovered from 𝑡([𝑥]) via the equation 𝑋2 − 𝑡([𝑥]) + 1 = 0.

Given [𝑥], [𝑦] ∈ 𝔾𝑚/ ± 1, represented by 𝑡𝑥, 𝑡𝑦, then the schematic addition {[𝑥𝑦], [𝑥/𝑦]} is represented by
the polynomial 𝑋2 − 𝑡𝑥𝑡𝑦𝑋 + 𝑡2

𝑥 + 𝑡2
𝑦 − 4, whose roots are 𝑡𝑥𝑦 and 𝑡𝑥/𝑦.

Plugging the constructions of Section 2.12.1, we get

• doubling: 𝑡([𝑥2]) = 𝑥2 + 1/𝑥2 = (𝑥 + 1/𝑥)2 − 2 = 𝑡2
𝑥 − 2;

• differential addition 𝑡([𝑥𝑦]) = 𝑥𝑦 + 1/𝑥𝑦 = (𝑥 + 1/𝑥)(𝑦 + 1/𝑦) − (𝑥/𝑦 + 𝑦/𝑥) = 𝑡𝑥𝑡𝑦 − 𝑡([𝑥/𝑦]);

• compatible additions …

In particular, the final exponentiation in Tate’s pairing can be done over 𝔾𝑚/ ± 1 too.
Now the Weil, Tate, ate and optimal ate pairings all require, from 𝑃, 𝑄 to compute an affine point of the form
̃𝑃 + 𝜆𝑄. On the Kummer, from [𝑃], [𝑄], we cannot compute [𝑃 + 𝑄], but we can use the schematic addition to

represent the pair {[𝑃 + 𝑄], [𝑃 − 𝑄]}. This is an affine scheme Spec𝑅 (isomorphic to Spec 𝑘 × Spec 𝑘 if 𝑃, 𝑄 comes

62

3.5 The Weil and Tate pairings for elliptic curves

from rational points in 𝐴), so we may see this pair as a point of 𝐾𝐴(𝑅). Then proceeding as in Section 3.3.2 to
compute the pairings, we get an element of 𝔾𝑚(𝑅) on which we can use 𝑡 to get the value of 𝑒(𝑃, 𝑄) + 𝑒(−𝑃, 𝑄).

For the optimal ate version of the pairing, we also need to compute 𝑐𝑖𝑞𝑖𝑄+∑𝑗>𝑖 𝑐𝑗𝑞𝑗𝑄 in order to use a three way
addition to get 𝑃 + 𝑐𝑖𝑞𝑖𝑄 + ∑𝑗>𝑖 𝑐𝑗𝑞𝑗𝑄. But given our 𝑃 + 𝑄 (or rather our {[𝑃 + 𝑄], [𝑃 − 𝑄]}), we can compute
𝑐𝑖𝑞𝑖𝑄, ∑𝑗>𝑖 𝑐𝑗𝑞𝑗𝑄 , 𝑃 + 𝑐𝑖𝑞𝑖𝑄, 𝑃 + ∑𝑗>𝑖 𝑐𝑗𝑞𝑗𝑄 and then use a compatible addition to recover 𝑐𝑖𝑞𝑖𝑄 + ∑𝑗>𝑖 𝑐𝑗𝑞𝑗𝑄.

3.5 the weil and tate pairings for elliptic curves

In writing the Chapter 3 of the book [Rob17], I have thought about proving the non degeneracy of the Weil and
Tate pairing on an elliptic curve 𝐸/𝔽𝑞 in the most elementary way, without involving cohomology. This was also a
good occasion to give formulae for the extended value of a function 𝑓 ∈ 𝑘(𝐸) at a point 𝑃 which may be a pole or
zero (see Remark 3.3.5). The idea to use extended values dates back to Miller’s original article [Mil86], but to my
knowledge no explicit formula was given for elliptic curves. Since the book is unfortunately not publicly available,
this document is a good occasion to give the formulae.

First we fix uniformisers 𝜋𝑃 at each point 𝑃 of 𝐸. It is customary to take 𝜋𝑃 = 𝑥 − 𝑥𝑃 if 𝑃 is not a Weierstrass
point, 𝜋𝑃 = 𝑦 if 𝑃 is a Weierstrass point (away from infinity), and 𝜋0𝐸

= −𝑥/𝑦. If ord𝑃 ≔ 𝑣𝑃 is the valuation on
𝑘(𝐸) induced by the rational point 𝑃, a uniformiser is a function 𝜋𝑃 such that ord𝑃 𝜋𝑃 = 1. Then if 𝑓 ∈ 𝑘(𝐸) have
valuation ord𝑃(𝑓) = 𝑚 at 𝑃, the extended value of 𝑓 at 𝑃 is defined to be ((𝑓 /𝜋𝑚

𝑃)(𝑃), 𝑚). There is an obvious
group law on this pair, so we can extend the definition to 𝑓 (𝐷) where 𝐷 is any divisor. If 𝐷 is of degree 0, this does
not change when multiplying by a constant, so the value 𝐷′(𝐷) (denoted by 𝑓𝐷′(𝐷)) makes sense for a principal
divisor 𝐷′. We then have the following generalisation of Weil’s reciprocity theorem:

Theorem 3.5.1 (Weil’s reciprocity theorem). Let 𝑓 , 𝑔 ∈ 𝑘(𝐸). Then

𝑓 (Div(𝑔)) = (−1)∑𝑃 ord𝑃(𝑓) ord𝑃(𝑔)𝑔(Div(𝑓)).

Expressing the above equation in terms of divisors, we get the following reformulation: Let 𝐷1 and 𝐷2 be two degree 0
divisors and define 𝜖(𝐷1, 𝐷2) = (−1)∑𝑃 ord𝑃(𝐷1) ord𝑃(𝐷2). If 𝐷1 and 𝐷2 are principal, then

𝑓𝐷1
(𝐷2) = 𝜖(𝐷1, 𝐷2)𝑓𝐷2

(𝐷1).

Proof. See [Ser75, p. 44–46].

We then deduce the following versions of the Weil and Tate pairings:

Theorem 3.5.2. Weil: Let 𝐸/𝔽𝑞 be an elliptic curve, ℓ a prime different from 𝑝 and 𝑃 and 𝑄 two points of ℓ-torsion on
𝐸. Let 𝐷𝑃 be a divisor linearly equivalent to [𝑃] − [0𝐸] and 𝐷𝑄 be a divisor linearly equivalent to [𝑄] − [0𝐸]. Then

𝑒𝑊,𝑟(𝑃, 𝑄) = 𝜖(𝐷𝑃, 𝐷𝑄)ℓ 𝑓ℓ𝐷𝑃
(𝐷𝑄)

𝑓ℓ𝐷𝑄
(𝐷𝑃) (3.6)

is well defined, does not depend on the choice of uniformisers nor on the choice of 𝐷𝑃 and 𝐷𝑄. In particular, 𝑒𝑊,𝑟 =
(−1)ℓ 𝑓ℓ((𝑃)−(0))((𝑄)−(0))

𝑓ℓ((𝑄)−(0))((𝑃)−(0)) , and if the functions are normalised at 0𝐸, 𝑒𝑊,𝑟 = (−1)ℓ 𝑓ℓ((𝑃)−(0))(𝑄)
𝑓ℓ((𝑄)−(0))(𝑃) .

Furthermore the application 𝐸[ℓ] × 𝐸[ℓ] → 𝜇ℓ ∶ (𝑃, 𝑄) ↦ 𝑒𝑊,ℓ(𝑃, 𝑄) is the Weil pairing. The pairing 𝑒𝑊,ℓ is an
alternate pairing, which means that 𝑒𝑊,ℓ(𝑃, 𝑄) = 𝑒𝑊,𝑟(𝑄, 𝑃)−1.

Tate: Let ℓ be an integer dividing #𝐸(𝔽𝑞), 𝑑 be the embedding degree, 𝑃 ∈ 𝐸[ℓ](𝔽𝑞𝑑) a point of ℓ-torsion defined
over 𝔽𝑞𝑑 and 𝑄 ∈ 𝐸(𝔽𝑞𝑑) a point of the elliptic curve defined over 𝔽𝑞𝑑. Let 𝐷𝑃 be a divisor linearly equivalent to
[𝑃] − [0𝐸] and 𝐷𝑄 be a divisor linearly equivalent to [𝑄] − [0𝐸]. Then

𝑒𝑇,ℓ(𝑃, 𝑄) = (𝑓ℓ𝐷𝑃
(𝐷𝑄))

𝑞ℓ−1
ℓ (3.7)

is well defined, does not depend on the choice of uniformisers nor on the choice of 𝐷𝑃 and 𝐷𝑄. Furthermore the
application 𝐸[𝑟](𝔽𝑞𝑑) × 𝐸(𝔽𝑞𝑑)/𝑟𝐸(𝔽𝑞𝑑) → 𝜇𝑟 ∶ (𝑃, 𝑄) ↦ 𝑒𝑇,ℓ(𝑃, 𝑄) is the Tate pairing.

63

3 Computing pairings in abelian varieties

Proof. This is proven in [Rob17, Theorem 3.10 and Theorem 3.11], except for the case 𝑑 = 1 in the Tate pairing, so
let us give more details.

We use Weil’s reciprocity from Theorem 3.5.1 to show that the definition of 𝑒𝑊,ℓ does not depend on the
equivalence class of 𝐷𝑃. Since it is obviously alternate, this holds for 𝐷𝑄 too. Using 𝐷𝑃 = (𝑃) − (0𝐸) it is easy to
see that the result does not depend on the choice of uniformisers. Using Weil’s reciprocity again, we show that the
Weil pairing is equivalent to the other definition using the function 𝑔ℓ,𝑃: 𝑒𝑊,ℓ(𝑃, 𝑄) = 𝑔ℓ,𝑃(𝑥 + 𝑄)/𝑔ℓ,𝑃(𝑥) where
𝑔ℓ,𝑃 has for divisor [ℓ]∗((𝑃) − (0)). Bilinearity on the right is then immediate. Likewise, if it was degenerate on
the right, the function 𝑔ℓ,𝑃 would be invariant by translation by a point 𝑄 ∈ 𝐸[ℓ], so would be of the form ℎ ∘ [ℓ].
But ℎ would have for divisor (𝑃) − (0𝐸) hence ℎ would give an isomorphism 𝐸 ≃ ℙ1, which is absurd since these
curves don’t have the same genus. Using that 𝑒𝑊,ℓ is alternate, we get bilinearity and non-degeneracy on the left too.

If 𝑑 > 1, we may also define G1 and G2 as in [Rob21, Section 4.1.3]. We have 𝐸[ℓ] = G1 ⊕ G2 (since we have
two distinct eigenvalues 1 and 𝑞) and these are 1-dimensional, and the Weil pairing is trivial on G1 × G1 and
G2 × G2, so it is non trivial on G1 × G2 and G2 × G1, or more generally on G1 × G3 for any supplement of G1 and
so on. (The whole situation is a lot simpler than in [Rob21, Section 4.1.3].)

All this is classical. The case of the Tate pairing is more fun. It is immediate that it does not depend on the
class of 𝐷𝑃, and we use Weil’s reciprocity again to show that it does not depend on the class of 𝐷𝑄. It is also
straightforward to check that it does not depend on the choice of uniformisers. We show the alternative definition
𝑒𝑇,ℓ(𝑃, 𝑄) = 𝑒𝑊,ℓ(𝑃, (𝜋𝑑 − 1)𝑄0) where ℓ𝑄0 = 𝑄 (since ℓ𝑄0 is rational, (𝜋𝑑 − 1)𝑄0 is a point of ℓ-torsion):

𝑒𝑊,ℓ(𝑃, (𝜋𝑑 − 1)𝑄0) = 𝑔ℓ,𝑃(𝜋𝑑𝑄0)
𝑔ℓ,𝑃(𝑄0) = 𝑔ℓ,𝑃(𝑄0)𝑞𝑘−1 = (𝑔ℓ

ℓ,𝑃)(𝑞𝑑−1)/ℓ = 𝑓ℓ,𝑃(𝑄)(𝑞𝑑−1)/ℓ, using that 𝜋𝑑 commutes

with 𝑔ℓ,𝑃 if 𝑃 ∈ 𝐸[ℓ](𝔽𝑞𝑑), and that 𝑔ℓ
ℓ,𝑃 = 𝑓ℓ,𝑃 ∘ [ℓ].

This shows that 𝑒𝑊,ℓ(𝑃, (𝜋𝑑 − 1)𝑄0) does not depends on the choice of 𝑄0. We can prove it directly as follow:
this is obvious if 𝐸[ℓ] is rational over 𝔽𝑞𝑑 (for instance if 𝑑 > 1), since another choice 𝑄′

0 satisfy 𝑄′
0 = 𝑄0 + 𝑇 with

𝑇 ∈ 𝐸[ℓ](𝔽𝑞𝑑), so (𝜋𝑑 − 1)(𝑄0) = (𝜋𝑑 − 1)(𝑄′
0). The remaining case is 𝑑 = 1 and G1 = 𝐸[ℓ](𝔽𝑞) of rank 1.

Then the matrix of the Frobenius 𝜋 acting on 𝐸[ℓ] is given by (1 1
0 1). But then (𝜋 − 1)𝐸[ℓ] = G1, so since the

Weil pairing is trivial on G1 × G1 we get an alternative proof that the result does not depend on 𝑄0. Bilinearity is
then obvious from the bilinearity of the Weil pairing.

It remains to show non degeneracy. We first treat the case where all the ℓ-torsion is defined over 𝔽𝑞𝑑 . Then we

have seen that 𝛼 = 𝜋𝑑−1
ℓ ∶ 𝐸(𝔽𝑞𝑑) → 𝐸[ℓ] is well defined and is an endomorphism. Its kernel is ℓ𝐸(𝔽𝑞𝑑). We

have 𝐸(𝔽𝑞𝑑) = ℤ/𝑎ℤ ⊕ ℤ/𝑏ℤ with 𝑎 ∣ 𝑏, and since 𝐸[ℓ] ⊂ 𝐸(𝔽𝑞𝑑), ℓ ∣ 𝑎, so 𝐸(𝔽𝑞𝑑)/ℓ𝐸(𝔽𝑞𝑑) ≃ (ℤ/ℓℤ)2. This
implies that 𝛼(𝐸(𝔽𝑞𝑑)) = 𝐸[ℓ](𝔽𝑞𝑑), which proves non degeneracy since the Weil pairing is non degenerate.

Also, if 𝑑 > 1, and assuming that𝐸(𝔽𝑞𝑑) does not contain a point of ℓ2-torsion sowemay identify𝐸[ℓ] = G1⊕G2
with 𝐸(𝔽𝑞𝑑)/ℓ𝐸(𝔽𝑞𝑑), then since 𝛼 commutes with 𝜋, it stabilizes G1 and G2, so we get from the above case of the
Weil pairing that 𝑒𝑇,ℓ is trivial on G1 ×G1 and G2 ×G2 and non degenerate on G1 ×G2 or G2 ×G1, or G1 ×G3…

It remains to check non degeneracy for 𝑑 = 1. We have 𝐸[ℓ](𝔽𝑞) = G1 so we need to check that there is a
𝜋𝑄0 − 𝑄0 not in G1 for a 𝑄 ∈ 𝐸(𝔽𝑞). Taking 𝑄 = 𝑃′ where 𝑃′ ∈ 𝐸(𝔽𝑞), ℓ𝑚𝑃′ ∈ G1 for some 𝑚 ≥ 0 but 𝑃′

does not have a rational preimage by [ℓ] gives the sought after point. Indeed let 𝑃 = ℓ𝑚𝑃′ ∈ G1 and assume that
𝜋𝑄0 − 𝑄0 = 𝜆𝑃 ∈ G1. Then taking 𝑄1 = 𝑄0 − 𝜆𝑃, we have ℓ𝑄1 = ℓ𝑄0 = 𝑃′ and 𝜋𝑄1 − 𝑄1 = 𝜆𝑃 − 𝜆𝑃 = 0,
so 𝑄1 is a rational preimage of 𝑃′ by [ℓ].

Working a bit more we could extend this approach to a non prime ℓ, but at this point, comparing this “by hand”
proof with the beautiful cohomological proof of [Rob21, Proposition 4.2.1], one cannot but admire the beauty of
conceptual proofs.

It remains to give the explicit formula for the extended value of 𝜇𝑃,𝑄 on a point [Rob17].

Lemma 3.5.3 (Evaluating 𝜇𝑃,𝑄). Let 𝐸 ∶ 𝑦2 = 𝑓 (𝑥) = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve. Let 𝑃 = (𝑥𝑃, 𝑦𝑃),
𝑄 = (𝑥𝑄, 𝑦𝑄), and 𝑅 = (𝑥𝑅, 𝑦𝑅) be points on 𝐸, with 𝑃, 𝑄 and 𝑃 + 𝑄 all different from 0𝐸. Then 𝜇𝑃,𝑄 = 𝑙𝑃,𝑄

𝑣𝑃,𝑄

where 𝑙𝑃,𝑄 = 𝑦 − 𝛼𝑥 − 𝛽 with 𝛼 = 𝑦𝑃−𝑦𝑄
𝑥𝑃−𝑥𝑄

when 𝑃 ≠ 𝑄 and 𝛼 = 𝑓 ′(𝑥𝑃) when 𝑃 = 𝑄, 𝛽 = 𝑦𝑃 − 𝛼𝑥𝑃 = 𝑦𝑄 − 𝛼𝑥𝑄

and 𝑣𝑃,𝑄 = 𝑥 − 𝑥𝑃+𝑄 with 𝑥𝑃+𝑄 = 𝛼2 − 𝑥𝑃 − 𝑥𝑄.
The extended value of 𝑣𝑃,𝑄(𝑅) is given by the following cases (taking into account that Div(𝑣𝑃,𝑄) = [𝑃 + 𝑄] +

[−𝑃 − 𝑄] − 2[0𝐸]):

• If 𝑅 is different from 𝑃 + 𝑄, −𝑃 − 𝑄 or 0𝐸, then 𝑅 is not in the support of Div 𝑣𝑃,𝑄 and we have a value with
valuation 0: 𝑣𝑃,𝑄(𝑅) = 𝑥𝑅 − 𝑥𝑃+𝑄;

64

3.5 The Weil and Tate pairings for elliptic curves

• If 𝑅 = 0𝐸 then we have a value with valuation −2. By definition, since the uniformiser at 0𝐸 is the function
𝑦/𝑥:

𝑣𝑃,𝑄(0𝐸) =
𝑥 − 𝑥𝑃+𝑄

(𝑦/𝑥)−2 (0𝐸) =
𝑥2(𝑥 − 𝑥𝑃+𝑄)

𝑦2 (0𝐸) = 1

because 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏;

• If 𝑅 = 𝑃 + 𝑄 or 𝑅 = −𝑃 − 𝑄 but 𝑃 + 𝑄 ≠ −𝑃 − 𝑄 (or in other words 𝑃 + 𝑄 is not a point of two torsion),
then we have a value with valuation 1. The uniformiser is 𝑥 − 𝑥𝑅 because 𝑓 (𝑥𝑅) ≠ 0 since 𝑅 is not a point of
2-torsion, and the value is

𝑣𝑃,𝑄(𝑅) =
𝑥 − 𝑥𝑃+𝑄

𝑥 − 𝑥𝑅
(𝑥𝑅) = 1

because in this case 𝑥𝑅 = 𝑥𝑃+𝑄;

• If 𝑅 = 𝑃+𝑄 and 𝑃+𝑄 is a point of 2-torsion, then this time we have a value with valuation 2. Since 𝑓 (𝑥𝑅) = 0
the uniformiser is 𝑦, so we have

𝑣𝑃,𝑄(𝑅) =
𝑥 − 𝑥𝑃+𝑄

𝑦2 (𝑥𝑅) =
1

𝑓 ′(𝑥𝑃+𝑄) .

Indeed if we write 𝑓 (𝑥) = (𝑥 − 𝑥𝑃+𝑄)𝑔(𝑥), then since 𝑦2 = 𝑓 (𝑥) we have
𝑥−𝑥𝑃+𝑄

𝑦2 (𝑥𝑅) = 1
𝑔(𝑥𝑃+𝑄) , and we

compute 𝑓 ′(𝑥) = (𝑥 − 𝑥𝑃+𝑄)𝑔′(𝑥) + 𝑔(𝑥) so that 𝑓 ′(𝑥𝑃+𝑄) = 𝑔(𝑥𝑃+𝑄).

The extended value of 𝑙𝑃,𝑄(𝑅) is given by the following cases (taking into account that Div(𝑙𝑃,𝑄) = [𝑃] + [𝑄] +
[−𝑃 − 𝑄] − 3[0𝐸]):

• If 𝑅 is different from 𝑃, 𝑄, −𝑃 − 𝑄 or 0𝐸, then 𝑅 is not in the support of Div 𝑙𝑃,𝑄 and we have a simple value
with valuation 0: 𝑙𝑃,𝑄(𝑅) = 𝑦𝑅 − 𝛼𝑥𝑅 − 𝛽;

• If 𝑅 = 0𝐸 then we have a value with valuation −3 and

𝑙𝑃,𝑄(0𝐸) =
𝑦 − 𝛼𝑥 − 𝛽

(𝑥/𝑦)−3 (0𝐸) =
(𝑦 − 𝛼𝑥 − 𝛽)𝑥3

𝑦3 (0𝐸) = 1;

• If 𝑅 = 𝑃 or 𝑅 = 𝑄 or 𝑅 = −𝑃 − 𝑄 but 𝑙𝑃,𝑄 is not tangent to 𝐸 at 𝑅, then we have a value with valuation 1. If
𝑅 is not a point of two torsion then the uniformiser is 𝑡𝑅 = 𝑥 − 𝑥𝑅 and the value is

𝑙𝑃,𝑄(𝑅) =
𝑦 − 𝛼𝑥 − 𝛽

𝑥 − 𝑥𝑅
(𝑅) =

𝑦 − 𝑦𝑅 − 𝛼(𝑥 − 𝑥𝑅)
𝑥 − 𝑥𝑅

(𝑅) =
𝑦 − 𝑦𝑅
𝑥 − 𝑥𝑅

(𝑅) − 𝛼 =
𝑓 ′(𝑥𝑅)
2𝑦𝑅

− 𝛼.

If 𝑅 is a point of two torsion, then the uniformiser is 𝑡𝑅 = 𝑦 and the value is

𝑙𝑃,𝑄(𝑅) =
𝑦 − 𝛼𝑥 − 𝛽

𝑦 (𝑅) = 1 − 𝛼
𝑥 − 𝑥𝑅

𝑦 (𝑅) = 1.

• If 𝑅 = 𝑃, 𝑅 = 𝑄 or 𝑅 = −𝑃 − 𝑄, and 𝑙𝑃,𝑄 is tangent to 𝐸 at 𝑅 but is not an inflection point, then we have
a value of valuation 2. In this case 𝑅 cannot be a point of two torsion so the uniformiser is 𝑡𝑅 = 𝑥 − 𝑥𝑅. To
compute the value we must compute the formal series corresponding to 𝑦 in the completion of 𝐾[𝐸] along 𝑥 −𝑥𝑅

up to order 2: 𝑦 = 𝑦𝑅 + 𝛼(𝑥 − 𝑥𝑅) + 𝛼2(𝑥 − 𝑥𝑅)2 + 𝑂(𝑥 − 𝑥𝑅)3. We have 𝛼2 = 𝑓 ″(𝑥𝑅)/2−𝛼2

2𝑦𝑅
, so the value is

𝑙𝑃,𝑄(𝑅) =
𝑦 − 𝑦𝑅 − 𝛼(𝑥 − 𝑥𝑅)

(𝑥 − 𝑥𝑅)2 (𝑅) = 𝛼2.

• Finally when 𝑅 is an inflection point of 𝑓, so that 𝑅 = 𝑃 = 𝑄 = −𝑃 − 𝑄 (and in particular is a point of
3-torsion), then we have a value with valuation 3. We compute the formal series corresponding to 𝑦 in in the
completion of 𝐾[𝐸] along 𝑥−𝑥𝑅 up to order 3: 𝑦 = 𝑦𝑅+𝛼(𝑥−𝑥𝑅)+0(𝑥−𝑥𝑅)2+𝛼3(𝑥−𝑥𝑅)3+𝑂((𝑥−𝑥𝑅)4).
We have 𝛼3 = 1

2𝑦𝑅
and

𝑙𝑃,𝑄(𝑅) =
𝑦 − 𝑦𝑅 − 𝛼(𝑥 − 𝑥𝑅)

(𝑥 − 𝑥𝑅)3 (𝑅) = 𝛼3.

65

3 Computing pairings in abelian varieties

Combining these values we can now compute the extended value of 𝜇𝑃,𝑄(𝑅) (taking into account thatDiv(𝜇𝑃,𝑄) =
[𝑃] + [𝑄] − [𝑃 + 𝑄] − [0𝐸]):

• When 𝑅 is not equal to 𝑃, 𝑄, 𝑃 + 𝑄, −𝑃 − 𝑄 or 0𝐸 then the valuation is 0 and we have a simple value:

𝜇𝑃,𝑄(𝑅) =
𝑦𝑅 − 𝛼𝑥𝑅 − 𝛽

𝑥𝑅 − 𝑥𝑃+𝑄
. (3.8)

(If 𝑅 = −𝑃 − 𝑄 and 𝑅 is not in the support of Div(𝜇𝑃,𝑄) then the valuation is also 0 but Equation (3.8) is not
well defined so to compute the value we need to look at the particular cases above);

• When 𝑅 = 0𝐸 the valuation is −1 and we have

𝜇𝑃,𝑄(0𝐸) = 1. (3.9)

Since the value is 1 we see that the function 𝜇𝑃,𝑄 is indeed normalised at 0𝐸;

• For all the other cases we refer to the study of the special cases done for 𝑣𝑃,𝑄 and 𝑙𝑃,𝑄 above.

Finally, when 𝑃 = −𝑄 (but 𝑃 ≠ 0𝐸) so that 𝑃 + 𝑄 = 0𝐸, then 𝜇𝑃,𝑄 = 𝑥 − 𝑥𝑃 and the extended value of 𝜇𝑃,𝑄 at
𝑅 is given by the same formulae as the study of 𝑣𝑃,𝑄(𝑅) above.

3.6 conclusion and perspectives

We have seen how the reformulations of the Tate and Weil pairing on Jacobians which are better suited for
computations are valid on a general abelian variety using Lang’s reciprocity (Proposition 3.2.1). The natural
generalisation of Miller’s algorithm then depends on an explicit version of the theorem of the square.

For an abelian variety given by a theta model, this explicit version is encoded by the differential addition (and
Riemann relations), and Miller’s algorithm gives in this case a very streamlined and deterministic algorithm, which
readily adapts to other versions (ate, optimal ate, twisted ate, …). Furthermore these algorithms naturally adapt on
a model of level 𝑛 = 2, hence on Kummer varieties.

There is a big challenge remaining however: the formulation of Proposition 3.2.1 is valid only when computing
the Weil or Tate pairing related to the isogeny [ℓ]. For a general isogeny 𝑓 ∶ 𝐴 → 𝐵, the explicit definitions of
[Rob21, Sections 4.1.1 and 4.2.1] given by [Rob21, Equation (4.2)] using the function 𝑔𝑓 ,𝑃 are way too slow to be
used if 𝑓 is of large degree. For the Tate-Cartier pairing, this is not a problem, because by [Rob21, Remark 4.2.2] it
does not really depends on the isogeny. So computing the Tate-Cartier pairing 𝑒𝑇,𝑓 on 𝐵(𝑘)/𝐴(𝑘) × 𝐾(𝑘) is the
same as computing it using 𝑒𝑇,ℓ on 𝐵(𝑘)/ℓ𝐵(𝑘) × �̂�[ℓ] via the obvious maps (here 𝑓 is an isogeny of exponent ℓ).

Computing the Weil-Cartier pairing 𝑒𝑓 is much more challenging. Of course, if ̃𝑓 is the contragredient isogeny,

and ̂̃𝑓 its dual, then by compatibility of the Weil-Cartier pairing with isogenies we have that 𝑒𝑓(𝑃, 𝑄) = 𝑒ℓ(𝑃, 𝑄0)
for any 𝑄0 ∈ 𝐴[ℓ] such that ̂̃𝑓(𝑄0) = 𝑄, but computing 𝑄0 is too expensive. Looking at divisors, we have that
𝑓ℓ,𝑃 ∘ 𝑓 = 𝑔ℓ

𝑓 ,𝑃, but of course taking the ℓ-th power of 𝑔𝑓 ,𝑃 kills the pairing and it is not obvious how we could take
a ℓ-th root of 𝑓ℓ,𝑃 ∘ 𝑓.

We could try to follow Corollary 3.3.3 and compute an affine version of the isogeny 𝑓 and its dual using Chapter 4.
But it is not clear how we could relate the point 𝑃 ∈ Ker 𝑓 and 𝑄 ∈ Ker ̂𝑓 in this manner.

So this is an exciting problem, in which I am interested because I think fast computation of the Weil-Cartier
pairing could have many applications for isogeny related cryptosystems, like SIDH or the ones giving VDF. For
instance, pairings have already been used to compress SIDH keys [CJL+17; ZSP+18; NR19], but maybe this could
be further improved.

An intermediate interesting problem is the following: if 𝛽 is a totally positive real element, we also have the
𝛽-pairing on 𝐴[𝛽]. Of course, if ℓ = 𝛽𝛽′, we can compute 𝑒𝛽(𝑃, 𝑄) as 𝑒ℓ(𝑃′, 𝑄) where 𝛽′𝑃′ = 𝑃, but we should
be able to compute the 𝛽-pairing directly.

Finally, there is an exciting proposal for a trilinear pairing [Hua18; Hua19], which is essentially 𝑒 ∶ ℓ𝑁𝑆(𝐴) ×
𝐴[ℓ] × 𝐴[ℓ] → 𝜇ℓ, (ℒ, 𝑃, 𝑄) ↦ 𝑒ℒ(𝑃, 𝑄). It would be interesting to use the methods of this Chapter to improve
the computation this map.

66

4 I SOGEN I ES

contents
4.1 Introduction 67
4.2 A generic framework for isogenies 67
4.3 Descending line bundles on 𝐴 to line bundles on 𝐵 69

4.3.1 Constructing other line bundles 69
4.3.2 The algorithm 71

4.4 Descending line bundles on 𝐵 via the descent formula 73
4.4.1 The contragredient isogeny 73
4.4.2 Finding sections on the pullback 73
4.4.3 Descent formula 74
4.4.4 Isogenies from equations of the kernel 76
4.4.5 Summary 76

4.5 Extending the isogeny computation to isogenies induced by real multiplication 77
4.6 Modular interpretation of the isogeny formula 78
4.7 Isogenies from differential equations 79

4.7.1 Elliptic curves 79
4.7.2 Hyperelliptic curves of genus 2 80
4.7.3 Compressing isogenies 82

4.8 Conclusion and perspectives 83

4.1 introduction

In this Chapter, we extend the two methods we have seen for computing isogenies in the theta model in Section 2.10
to give a general isogeny framework, whenever we have an explicit version of the theorem of the square (see
Section 4.2).

We have seen in Sections 2.1 and 2.9 that this is the case in the theta model and the Jacobian model. A specific
case is given by the various models of elliptic curves, namely each time we have an explicit pairing algorithm in this
model, we have an explicit version of the theorem of the square, hence an isogeny algorithm. But elliptic curves are
special, in that we can simply use translate of divisors by the points of the kernel and descend affine coordinates by
taking their trace under translation, see Example 4.2.1.

The two methods are then developed for ℓ-isogenies in Sections 4.3 and 4.4. Adapting these methods to compute
cyclic isogenies is described in Section 4.5, and a modular interpretation of the isogeny formula is given (for the
theta model) in Section 4.6.

In Section 4.7 we describe an alternative strategy based on differential equations, and give details for Jacobians
of hyperelliptic curves of genus 2. Finally, Section 4.8 give some perspectives.

4.2 a generic framework for isogenies

Let 𝐴 be an Abelian variety of dimension 𝑔 over the field 𝑘. Let 𝐾 be a finite subgroup scheme of 𝐴. A classical
theorem [Mum70a] guarantees the existence of 𝐵 = 𝐴/𝐾, the isogeny 𝑓 ∶ 𝐴 → 𝐵 is then faithfully flat. We refer
to [Rob21, Sections 2.2.3 and 2.3.4] for more details. The object of this section is to give a general framework to
compute 𝐵 and the isogeny 𝑓 ∶ 𝐴 → 𝐵. We will restrict to the case of étale kernels 𝐾 (ie separable isogenies). Of
course, it is necessary to make precise how 𝐴 and 𝐾 are given.

As we want to make explicit computations with 𝐴 considered as an algebraic variety, we consider that 𝐴 is given
with a very ample line bundle ℒ𝐴, hence a projective embedding 𝑖 ∶ 𝐴 → ℙ𝑚

𝑘 . For the kernel 𝐾, it will typically

67

4 Isogenies

be given by its geometric points 𝑖(𝐾(𝑘)) ⊂ ℙ𝑚
𝑘 or by equations in ℙ𝑚

𝑘 . Likewise the output 𝐵 will be (at least
implicitly) represented by an embedding into a projective space, so in particular by a very ample bundle ℒ𝐵 and
global sections of ℒ𝐵. An explicit algorithm then explains how, starting from the coordinates of 𝑃 ∈ 𝐴 given by
ℒ𝐴, to compute the coordinates of 𝑓 (𝑃) ∈ 𝐵 given by ℒ𝐵.

By descent theory (Theorem 2.5.1), (𝐵, ℒ𝐵) is completely determined by 𝑓 ∗ℒ𝐵 and the global sections of ℒ𝐵
corresponds to sections of 𝑓 ∗ℒ𝐵 invariant by translation by 𝐾.

It remains to see how we can endow 𝐵 with such a polarisation ℒ𝐵. We discuss two possibilities. We warn that
given the level of generalities we place ourselves here, the discussion in the following paragraphs has to be somewhat
generic. Concrete equations and algorithms will depend on the model of 𝐴 and 𝐵 we choose to work with. In the
rest of this Chapter, we will give such concrete algorithms when 𝐴 and 𝐵 are represented by their theta model. The
point of the following discussion is to show that there is a broad approach to isogeny computations, generically
valid in every model, and that it is only a small subset of this approach that depends on the concrete models chosen.

The first possibility is to construct from ℒ𝐴 a line bundle ℒ ′
𝐴 on 𝐴 which descends to 𝐵. From Theorem 2.5.1 we

know this will be the case if 𝐾 is isotropic for 𝑒ℒ′
𝐴
. The descents of ℒ ′

𝐴 to line bundles ℒ𝐵 on 𝐵 then corresponds to
lifts of 𝐾 into the theta group 𝐺(ℒ ′

𝐴). If we ask ℒ𝐵 to be symmetric, we restrict to symmetric lifts of 𝐾. If 𝐾 contains
points of 2-torsion, then these don’t always exist for ℒ ′

𝐴 but we may always translate ℒ ′
𝐴 such that symmetric lifts

exists. If 𝐾 does not contains points of 2-torsion, then not only a symmetric lift exists, it is unique, so the symmetric
ℒ𝐵 is canonical from the choice of ℒ ′

𝐴. We refer to Section 2.6 for more details.
Let us switch here to the language of divisors to make the difference between isomorphic and equal line bundles

clearer, so that we can illustrate the following key point. Let 𝛩𝐴 be a divisor representing ℒ𝐴. From 𝛩𝐴 we wish to
construct a divisor 𝛩′

𝐴 such that 𝐾 is isotropic for 𝑒𝛩′
𝐴

so 𝛩′
𝐴 descends to a divisor 𝛩𝐵 on 𝐵. Then the pullback

𝛩"𝐴 = 𝑓 ∗𝛩𝐵 is a divisor which is invariant by translation by 𝐾. However, 𝛩′
𝐴 is only linearly equivalent to 𝛩"𝐴,

not equal, and need not be invariant by translation. Here we see the crucial importance of the theta group 𝐺(𝛩′
𝐴):

lifting 𝐾 in 𝐺(𝛩′
𝐴) amount to choosing sections of 𝑡∗

𝑃𝛩′
𝐴 − 𝛩′

𝐴 in a coherent way.

Example 4.2.1. A very important example is the case of elliptic curves. Isogeny formulae were given by Vélu in
[Vél71]. If 𝐸 is an elliptic curve and 0𝐸 its neutral point, the standard Weierstrass model is given by the sections
𝑥, 𝑦 of the divisor 3(0𝐸), where 𝑥 is of valuation −2 at 0𝐸 and 𝑦 of valuation −3.

Let 𝐾 be a cyclic (étale) kernel of 𝐸[ℓ], and 𝑓 ∶ 𝐸 → 𝐸′ = 𝐸/𝐾 be the isogeny. Then the divisor 𝑓 ∗(0𝐸′) is equal
to 𝐷𝐾 = ∑𝑇∈𝐾(𝑘)(𝑇). The coordinates 𝑥 and 𝑦 are sections of 3𝐷𝐾, and the action of 𝐾 on them is simply given
by the translations by 𝑇 (ie, with the notations of Algorithm 4.3.2.(iii), we choose 𝑔𝑃 = 1 for all 𝑃, this is obviously
symmetric). Hence traces under 𝐾 are simply 𝑋(𝑃) = ∑𝑇∈𝐾(𝑘) 𝑥(𝑃 + 𝑇) and 𝑌(𝑃) = ∑𝑇∈𝐾(𝑘) 𝑦(𝑃 + 𝑇), these
give Weierstrass coordinates on 𝐸′. (For normalisation reasons, Vélu translates 𝑋(𝑃) by − ∑𝑇∈𝐾(𝑘),𝑇≠0𝐸

𝑥(𝑇) and
similarly for 𝑌(𝑃)). Vélu then recovers the equation of 𝐸′ by developing 𝑋 and 𝑌 along the uniformizer 𝑧 = −𝑥/𝑦
at 0𝐸.

We note the usual difference between the odd case and even case: 𝐷𝐾 is always algebraically equivalent to ℓ(0𝐸),
but is only linearly equivalent to it if ℓ is odd.

If we start with an elliptic curve given by some model (not necessarily Weierstrass), and want to compute 𝐸′ =
𝐸/𝐾 in some other model corresponding to sections of a divisor 𝐷′, it suffices to recover them as invariant sections
of the divisor 𝐷𝐾 = 𝑓 ∗𝐷′. This may be done using Miller’s algorithm to find sections of 𝐷𝐾 and then taking traces
under 𝐾 of these sections. This reduces to constructing the function 𝜇𝑃,𝑄 with divisor (𝑃) + (𝑄) − (𝑃 + 𝑄) − (0𝐸)
on our model 𝐸 (eventually normalised at 0𝐸). Since pairings have been worked out of a lot of models of elliptic
curves, we can derive isogeny algorithms for these models.

It is tempting to extend this strategy for abelian varieties: namely given a divisor 𝛩 on 𝐴, and 𝐾 maximal isotropic
for 𝑒ℓ𝛩, the divisor 𝛩𝐾 = ∑ 𝑡∗

𝑃𝛩 certainly descends to 𝐵 = 𝐴/𝐾. And we can get invariant sections of 𝛩𝐾 by
taking trace of sections of 𝛩 under translation by 𝐾. Unfortunately 𝛩𝐾 is algebraically equivalent to ℓ𝑔𝛩, so if 𝛩′

is a divisor on 𝐵 such that 𝑓 ∗𝛩′ is algebraically equivalent to ℓ𝛩, the descent of 𝛩𝐾 to 𝐵 is algebraically equivalent
to ℓ𝑔−1𝛩′. So we do not get a divisor of the same level we started with, except if 𝑔 = 1.

So instead we will descend ℓ𝛩, but this divisor is not invariant by translation by points of 𝐾 (only linearly
equivalent to its translate by points of 𝐾), so it appears that whenever 𝑔 > 1 we always need to make explicit the
action of the theta group 𝐺(ℓ𝛩), while we could hide it in the case of elliptic curves.

More Details 4.2.2. In terms of projective coordinates, Vélu’s formula can be interpreted as follow. We let 𝑋, 𝑌, 𝑍 be the
Weierstrass projective coordinates, so 𝑥 = 𝑋/𝑍 and 𝑦 = 𝑌/𝑍, and 3(0𝐸) is the polar divisor of 𝑍. Then 3𝐷𝐾 is the polar divisor
of 𝑍′ where 𝑍′(𝑃) = ∑𝑄∈𝐾 𝑍(𝑃 + 𝑄), and we have sections given by 𝑋′ = 𝑥𝑍′ = 𝑋𝑍′/𝑍 and 𝑌′ = 𝑦𝑍′ = 𝑌𝑍′/𝑍. Since
𝑍′ is invariant by translation, looking at the trace of 𝑋′ and 𝑌′ under 𝐾 and then taking the quotient by 𝑍′ to get back affine
coordinates exactly give the trace of 𝑥 and 𝑦 as above.

68

4.3 Descending line bundles on 𝐴 to line bundles on 𝐵

Nowwe have seen that 𝐷𝐾 is equivalent to ℓ(0𝐸) if ℓ is odd, and to (ℓ−1)(0𝐸)+(𝑇) where 𝑇 ≠ 0𝐸 ∈ 𝐾[2] if ℓ is even. In the
first case, there is a unique symmetric lift of 𝐾, hence a unique descent to a symmetric line bundle on 𝐸′. The other algebraically
equivalent symmetric divisors on 𝐸 are given by ℓ(0𝐸) ≃ ∑𝑄∈𝐾(𝑄), ℓ(𝑇1) ≃ (ℓ − 1)(0𝐸) + (𝑇1) ≃ ∑𝑄∈𝐾(𝑇1 + 𝑄),
ℓ(𝑇2) ≃ (ℓ − 1)(0𝐸) + (𝑇2) ≃ ∑𝑄∈𝐾(𝑇2 + 𝑄), ℓ(𝑇1 + 𝑇2) ≃ (ℓ − 1)(0𝐸) + (𝑇1 + 𝑇2) ≃ ∑𝑄∈𝐾(𝑇1 + 𝑇2 + 𝑄) where
𝑇1, 𝑇2 is a basis of 𝐸[2]. They descend to 0𝐸′, 0𝐸′ + 𝑇′

1, 0𝐸′ + 𝑇′
2, 0𝐸′ + 𝑇′

1 + 𝑇′
2, where 𝑇′

𝑖 = 𝑓 (𝑇𝑖) respectively. On the
other hand when ℓ is even, there are two possible symmetric lifts, hence two possible symmetric descent. Let 𝑇′

1, 𝑇′
2 be a basis

of 𝐸′[2], and assume that 𝑇′
2 = 𝑓 (𝑇2) for a 𝑇2 ∈ 𝐸[2], while 𝑇′

1 = 𝑓 (𝑇"1) for a 𝑇"1 ∈ 𝐸[2ℓ], such that 2𝑇"1 = 𝑇. Then
𝑓 ∗(0𝐸′) = 𝐷𝐾 ≃ (ℓ − 1)(0𝐸) + (𝑇), 𝑓 ∗(𝑇′

1) = ∑𝑄∈𝐾(𝑇"1 + 𝑄) ≃ ℓ(0𝐸), 𝑓 ∗(𝑇′
2) = ∑𝑄∈𝐾(𝑇2 + 𝑄) ≃ (ℓ − 1)(0𝐸) + (𝑇),

𝑓 ∗(𝑇′
1 + 𝑇′

2) = ∑𝑄∈𝐾(𝑇"1 + 𝑇2 + 𝑄) ≃ ℓ(0𝐸). In particular, while only ℓ(0𝐸) is totally symmetric, to get all symmetric
descent we need to consider (ℓ − 1)(0𝐸) + (𝑇) which does not satisfy 𝑒⋆(𝑥) = 1 for all 𝑥 ∈ 𝐸[2], but does so for 𝑥 ∈ 𝐾[2],
hence the existence of a symmetric lift of 𝐾. On the other hand, (ℓ − 1)(0𝐸) + (𝑇2) does not satisfy 𝑒⋆(𝑥) = 1 for 𝑥 ∈ 𝐾[2],
hence has no symmetric descent.

The second method, if 𝐾 ⊂ 𝐴[ℓ] is to look at the ℓ-contragredient isogeny ̃𝑓 ∶ 𝐵 → 𝐴. Then ℒ ′
𝐵 = ̃𝑓 ∗ℒ𝐴 is a line

bundle on 𝐵. Furthermore if 𝑔 is a section of ℒ𝐴, then 𝑔 ∘ 𝑓 is a section of ℒ ′
𝐵, so it is easy to construct sections.

Since 𝑓 = [ℓ] ∘ ̃𝑓 −1, we may then try to descend ℒ ′
𝐵 to a line bundle ℒ𝐵 of smaller level along the isogeny [ℓ].

Remark 4.2.3. For the first method, from Example 4.2.1 we saw that constructing isogenies is linked to the explicit
action of 𝐺(ℒℓ

𝐴). For instance, if we have a basis of sections of ℒℓ
𝐴 and the action of 𝐾, then taking the traces give

generators of the sections of ℒ𝐵. If, supposing 𝑛 is prime to ℓ for simplicity (the same methods as in Remarks 2.10.3,
2.10.7 and 2.10.14 works for the general case), we also have the explicit action of 𝐺(ℒℓ

𝐴) above 𝐴[𝑛], then given
one non zero section 𝑠 invariant under 𝐾 (eg constructed via a trace), we can use Recipe 2.5.9 to construct (given a
symplectic basis of 𝐴[𝑛]) a basis of theta functions of level 𝑛 on (𝐵, ℒ𝐵). Finally of course given the full action
of 𝐺(ℒℓ

𝐵), we can use Recipe 2.5.4 to build a basis of theta functions of level 𝑛ℓ. Then we can apply Mumford’s
isogeny theorem (Theorem 2.5.7) to construct the isogeny. When (𝐴, ℒ) is already given by its theta model of
level 𝑛, this is exactly the strategy of Section 2.10.2, where we give the action of 𝐺(ℒℓ) on product of sections of ℒ.

Likewise, in the second method, we have seen that it is easy to build some sections of ℒ ′
𝐵, hence if we have

the action of 𝐺(ℒ ′
𝐵) we can construct theta functions of level 𝑛ℓ on (𝐵, ℒ ′

𝐵), which we then need to descend to
theta functions of level 𝑛 on (𝐵, ℒ𝐵). When (𝐴, ℒ) is given by its theta model of level 𝑛, we can also reformulate
the strategy of Section 2.10.1 from this point of view: when 𝑃 ∈ 𝐾, the excellent lift 𝜃𝑖(𝑦 + 𝑃) correspond to the
(symmetric) action above a preimage 𝑃′ of 𝑃 by the contragredient isogeny ̃𝑓 in 𝐵[ℓ] on the section 𝜃𝑖 ∘ 𝑓. The action
of 𝐺(ℒ ′

𝐵) above a point 𝑃′
0 in 𝐵[𝑛] is directly given by the action above 𝑃0 = 𝑓 (𝑃′

0). Since 𝜃0 ∘ 𝑓 is invariant by
𝐵2[𝑛ℓ], these actions are sufficient to construct the basis of theta functions of level 𝑛ℓ on (𝐵, ℒ ′

𝐵). In particular,
given 𝑄′ ∈ Ker ̃𝑓 = 𝐵2[ℓ], the action of the symmetric lift above 𝑄′ on 𝜃𝑖(𝑦 + 𝑃) is given by the multiplication by
𝑒ℒℓ

𝐵
(𝑄′, 𝑃′).

The only non canonical choice lies in the choices of the 𝑃′ for the 𝑃 ∈ 𝐾, which is implicit in the choice of the
affine lift �̃�. On 𝐴, they are completely determined by a choice of 𝑃" ∈ 𝐴[ℓ2] such that 𝑃 = ℓ𝑃", via 𝑃′ = 𝑓 (𝑃").
Taking an excellent lift 𝑃" of 𝑃", there are ℓ2 choices, which all give the same excellent lift �̃� of 𝑃.

4.3 descending line bundles on 𝐴 to line bundles on 𝐵

We first look at the strategy to find a line bundle ℒ ′
𝐴 on 𝐴 which is equal, or simply isomorphic, to a line bundle of

the form 𝑓 ∗ℒ𝐵.
In general there is no hope that ℒ𝐴 itself is of this form. Indeed, as mentioned in Chapter 2, we usually take

ℒ𝐴 ≔ ℒ𝐴,𝑛 = ℒ𝑛
𝐴,1 with 𝑛 = 3, 4 in order to work with as few coordinates as possible (or even 𝑛 = 2 if working

with the Kummer variety is sufficient), so degℒ𝐴,𝑛 = 𝑛𝑔. But deg 𝑓 ∗ℒ𝐵 = deg 𝑓 degℒ𝐵, so if 𝑓 is an ℓ-isogeny and
we want ℒ𝐵 to be of the form ℒ𝐵,𝑛 ≔ ℒ𝑛

𝐵,1 where ℒ𝐵,1 is principal, we need to look for a line bundle ℒ ′
𝐴 of level

ℓ𝑛, hence of degree (ℓ𝑛)𝑔. An obvious candidate when ℓ is prime to 𝑛 is to look for ℒ ′
𝐴 = ℒℓ

𝐴,𝑛, and assume that 𝐾
is totally maximal isotropic for the Weil pairing induced by ℒℓ

𝐴,1 on 𝐴[ℓ] (or ℒℓ
𝐴,𝑛 restricted to 𝐴[ℓ]). If ℓ is not

prime to 𝑛 it suffice of course to take a power ℓ/𝑛 ∧ ℓ.

4.3.1 Constructing other line bundles

Since we want to deal with more general type of isogenies than ℓ-isogenies, let us first work out the type of
polarisations we can construct on 𝐴. For simplicity, we assume that (𝐴, ℒ𝐴) is of level 𝑛, hence comes from the 𝑛-

69

4 Isogenies

th power of a principal polarisation ℒ𝐴,1 (see Section 2.3). Let ℒ ′
𝐴 be another polarisation, and 𝛽 = 𝛷−1

ℒ𝐴,1
∘𝛷ℒ′

𝐴
∶

𝐴 → 𝐴 the endomorphism making the following diagram commute:

𝐴 𝐴

𝐴

𝛷ℒ′
𝐴

𝛷−1
ℒ𝐴,1𝛽

By construction 𝛽 commutes with the Rosati involution induced by ℒ𝐴,1, and is totally positive since ℒ ′
𝐴 is ample.

Conversely, if 𝛽 is a totally positive real element of End(𝐴), we can construct a morphism 𝛷ℒ′
𝐴

∶ 𝐴 → 𝐴 as follow:

𝐴 𝐴

𝐴

𝛽

𝛷ℒ𝐴,1𝛷ℒ′
𝐴

Since the pairing induced by 𝛷ℒ′
𝐴

is skew symmetric, the map 𝛷ℒ′
𝐴

is indeed a polarisation, ie comes from a line
bundle ℒ ′

𝐴. Indeed, if ℒ″
𝐴 = (Id×𝛷ℒ′

𝐴
)∗𝒫, where 𝒫 is the Poincare bundle on 𝐴 × 𝐴, it is easy to check using

skew symmetry that 𝛷ℒ″
𝐴

= 2𝛷ℒ′
𝐴
, hence ℒ″

𝐴 descends to a line bundle ℒ ′
𝐴 (see [Mil91, Proposition 16.6]).

We call this line bundle ℒ𝛽
𝐴,1, by analogy with the case 𝛽 = [𝑛] where the corresponding line bundle is ℒ𝑛

𝐴,1.

Be careful that 𝛽∗ℒ𝐴,1 ≃ ℒ𝛽2

𝐴,1, and that ℒ𝛽
𝐴,1 is only defined up to algebraic equivalence class. We can rigidify

our choice by requiring ℒ𝛽
𝐴,1 to be symmetric. In practice we will rather work with line bundles of the form ℒ𝛽

𝐴,𝑛

with ℒ𝐴,𝑛 of even level 𝑛 (we can define ℒ𝛽
𝐴,𝑛 either as ℒ𝛽

𝐴,1
𝑛
or as induced by the polarisation 𝛷ℒ𝐴,𝑛

∘ [𝛽]), so
we can even rigidify the isomorphism class of ℒ𝛽

𝐴 as to be the only totally symmetric line bundle in its algebraic
equivalence class. Alternatively, still with even level, fixing once and for all ℒ𝐴,𝑛/2 such that ℒ𝑛

𝐴 = ℒ2
𝐴,𝑛/2 (eg

ℒ𝐴,𝑛/2 = ℒ𝐴,1
𝑛/2), we may even define ℒ𝛽

𝐴 uniquely via the formula ℒ𝛽
𝐴 = (Id×𝛷ℒ𝐴,𝑛/2

∘ 𝛽)∗𝒫
To sum up: there is a bijection between algebraic equivalence class of ample line bundles on 𝐴 and totally positive

real elements in End𝑠(𝐴) where End𝑠(𝐴) denotes the endomorphisms invariant under the Rosati involution. More
generally there is a bijection between End𝑠(𝐴) and 𝑁𝑆(𝐴).

If ℒ𝐴 is not principal, there is still an action of 𝛽 on it which defines ℒ𝛽
𝐴 up to algebraic equivalence.

Definition 4.3.1. We say that an isogeny 𝑓 ∶ (𝐴, ℒ𝐴) → (𝐵, ℒ𝐵) is a 𝛽-isogeny if 𝑓 ∗ℒ𝐵 ≃ ℒ𝛽
𝐴. This implies that

𝐾 is isotropic for 𝑒ℒ𝛽
𝐴
, and the following diagram commutes:

𝐴 𝐵

𝐴 �̂�

𝐴

𝑓

̂𝑓

𝛷𝑓 ∗ℒ𝐴
𝛷ℒ𝐵

𝛷−1
ℒ𝐴

[𝛽]

If 𝐴 has a principal polarisation ℒ𝐴,1, we also say that an isogeny 𝑓 ∶ 𝐴 → 𝐵 is a 𝛽-isogeny if its kernel 𝐾 = Ker 𝑓
is maximal totally isotropic for the 𝛽-Weil pairing 𝑒ℒ𝛽

𝐴,1
on 𝐴[𝛽]. Indeed in this case ℒ𝛽

𝐴,1 descends to a principal

polarisation ℒ𝐵,1 and (𝐴, ℒ𝛽
𝐴,1) → (𝐵, ℒ𝐵,1) is a 𝛽-isogeny.

70

4.3 Descending line bundles on 𝐴 to line bundles on 𝐵

4.3.2 The algorithm

So this suggests the following strategy, for a 𝛽 isogeny, where we assume for simplicity that the level 𝑛 of ℒ𝐴 = ℒ𝐴,𝑛
is prime to the degree of 𝛽.

Algorithm 4.3.2. (i) Starting from ℒ𝐴 and its sections 𝑔𝑖, compute a basis of sections 𝑡𝑖 of ℒ𝛽
𝐴;

(ii) Compute the action of 𝐺(ℒ𝛽
𝐴) on this basis;

(iii) Find a lift 𝐾 ⊂ 𝐺(ℒ𝛽
𝐴) of 𝐾;

(iv) Identify a basis of invariant sections 𝑠𝑖 by 𝐾; This defines a descent ℒ𝐵 = ℒ𝐵,𝑛 of ℒ𝐴 to 𝐵.
(v) Compute the equations of 𝑓, by expressing the 𝑠𝑖 as rational functions in the 𝑔𝑖. Possibly compute equations

of 𝐵 in the 𝑠𝑖 coordinates too.

We detail these steps, when 𝛽 = ℓ:

• for Algorithm 4.3.2.(i) we may use a Miller type algorithm to construct sections on ℒℓ
𝐴: see Sections 2.9

and 3.3. Alternatively, since the multiplication map 𝛤(ℒ𝐴)ℓ → 𝛤(ℒℓ
𝐴) is surjective whenever 𝑛 ≥ 3, we

may simply construct the 𝑡𝑖 as ℓ-fold products of 𝑔𝑖. (When working with 𝑛 = 2, ie on the Kummer variety
𝐾𝐴, the multiplication map is surjective into even sections, that is sections invariant by the action of [−1]
whenever 𝐾𝐴 is projectively normal, see Section 2.12. But since all sections of ℒ𝐵,𝑛 are even if 𝑛 = 2, these
even sections are enough to recover the sections invariant by 𝐾.)
This gives us several constructions of sections (see Section 2.9 for more details):

1. UsingMiller’s algorithm to construction sections associated to the cycles𝑍 = ℓ(𝑃)−ℓ(0) for𝑃 ∈ 𝐴[ℓ𝑛].
If ℓ is prime to 𝑛 it suffices to consider 𝑃 ∈ 𝐴[ℓ] (along with the sections of ℒ we have).

2. Use 𝑍 = 𝑏(𝑎𝑃) + 𝑎(−𝑏𝑃) − ℓ(0) for 𝑎 + 𝑏 = ℓ and 𝑃 a random point.
3. Use ℓ-fold products of sections of ℒ. This can eg be seen as a particular case of Miller’s algorithm

applied to cycles of the form 𝑍 = ∑ℓ
𝑖=1(𝑃𝑖) − ℓ(0), 𝑃𝑖 ∈ 𝐴[𝑛], since (𝑃𝑖) − (0) corresponds to a

section of ℒ.
4. More generally use ∏𝑘

𝑖=1 𝑔𝑖(𝑛𝑖𝑥) where 𝑔𝑖 are sections of ℒ and ∑ 𝑛2
𝑖 = ℓ. Again, these can be seen

as functions associated to the cycles ∑[𝑛𝑖]∗((𝑃𝑖) − (0)).

• We explained how to do Algorithm 4.3.2.(ii) in Section 2.9. Essentially we use the explicit version of the
theorem of the square to generate sections 𝑔𝑃 of ℓ𝑡∗

𝑃𝛩 − ℓ𝛩 for 𝑃 ∈ 𝐾, which induce elements gP of 𝐺(ℒℓ
𝐴)

via gP ⋅ 𝑠 = 𝑥 ↦ 𝑔𝑃(𝑥)𝑠(𝑥 − 𝑦).

• For Algorithm 4.3.2.(iii), we normalize these sections 𝑔𝑃 so that they generate a lift 𝐾, so in particular gPℓ = 1
which determines 𝑔𝑃 up to a ℓ-th root of unity 𝜁. If ℒ is symmetric, we can rigidify the choice of lifts by
considering only symmetric lifts, that is lifts 𝑔𝑃 of 𝑃 such that [−1]∗𝑔𝑃 = (𝑔𝑃 ∘ 𝑡𝑃)−1. Then when ℓ is odd,
there is a unique symmetric lift 𝑔𝑃 of ℓ-torsion, hence there is a canonical lift. This is because the other
symmetric lift is −𝑔𝑃, which cannot be of order ℓ if 𝑔𝑃 is of order ℓ. If ℓ is not odd, we have two possibilities for
each 𝑃, and making a choice for a basis (𝑃1, … , 𝑃𝑔) of 𝐾 then yield a symmetric lift 𝐾 by the same reasoning
as in Section 2.9. This is a crucial difference with the odd case: in the odd case we can normalize each section
𝑔𝑃 independently since the normalisation is unique, we don’t need to take a basis. See Section 4.4.4 for some
consequences.
Once we have chosen a lift 𝐾, the other lifts are given by the conjugation action by 𝑄 ∈ 𝐴[ℓ𝑛] = 𝐾(ℒℓ

𝐴),
which is acting on a lift 𝑔𝑃 by 𝑒ℒℓ

𝐴
(𝑃, 𝑄). Lifts of 𝐾 thus form a torsor under 𝐴[ℓ𝑛]/𝐾⟂, where 𝐾⟂ is the

orthogonal of 𝐾 under 𝑒ℒℓ
𝐴

(see Theorem 2.5.1 for more details). If 𝑛 is prime to ℓ, then 𝐴[ℓ𝑛]/𝐾⟂ = 𝐴[ℓ]/𝐾.
If 𝐾 is symmetric, the conjugation action by 𝑄 is symmetric if and only if 𝑄 ∈ 𝐴[2].

• Then Algorithm 4.3.2.(iv) can be done by linear algebra. In fact it is often convenient to simply take a random
section 𝑡 ∈ 𝛤(ℒℓ

𝐴) and take the trace 𝑠 of 𝑡 under 𝐾. As long as ℓ is prime to the characteristic of 𝑘, we
obtain all invariant sections this way. This is convenient when we want to evaluate an invariant section at a
point. A slight problem is that to take the trace requires taking the list of all geometric points of 𝐾. But if 𝐾 is
only given by equations, we might as well work on the formal point of 𝐾 (this is the generic point if 𝐾/𝑘 is
irreducible), and compute the trace via a resultant. Concrete details of this step depends on the model of 𝐴
and the representation of 𝐾. When 𝐴 is given by a theta model it is easy to adapt the methods of [LR15b],
see Section 4.4.4.

71

4 Isogenies

We note that 𝐺(ℒ𝐵) = 𝑍(𝐾)/𝐾, so once we have an invariant section 𝑠, we may compute the action of
𝑔 ∈ 𝐺(ℒ𝐵) on it via the action of any representative in 𝑍(𝐾) ⊂ 𝐺(ℒℓ

𝐴). In particular, we may apply
Recipe 2.5.4 to compute theta functions for 𝐵. This also shows that once we have the invariant section 𝑠, the
action 𝑔 ⋅ 𝑠 for 𝑔 a representative of 𝑍(𝐾)/𝐾 give generators of 𝛤(𝐵, ℒ𝐵).
More generally, under the algorithmic hypothesis of Section 2.9 we also have Algorithmic Hypotheses 2.9.2.(i)
and 2.9.2.(ii) for (𝐵, ℒ𝐵). Indeed, if 𝑍 = ∑(𝑄𝑖) is a 0-cycle on 𝐵 lineary equivalent to 0, then 𝑓 ∗𝐷𝛩𝐵,𝑍 ≃
𝐷ℓ𝛩𝐴,𝑓 −1𝑍 where ℓ𝛩𝐴 ≃ 𝑓 ∗𝛩𝐵 (where the linear equivalence is given by the choice of 𝐾), and 𝑓 −1𝑍 =
∑(𝑃𝑖,𝑗) with 𝑓 (𝑃𝑖,𝑗) = 𝑄𝑖. Then the realisation 𝑆(𝑓 −1𝑍) is in 𝐾 if 𝑆(𝑍) = 0𝐵 or is in 𝐾⟂ ⊂ 𝐾(ℒℓ

𝐴) if
𝑆(𝑍) ∈ 𝐾(ℒ𝐵). We may thus compute a section for 𝐷ℓ𝛩𝐴,𝑓 −1𝑍 and keeping track of the linear equivalence
between ℓ𝛩𝐴 and 𝑓 ∗𝛩𝐵 (induced by 𝐾), transform it into a section of 𝑓 ∗𝐷𝛩𝐵,𝑍, which descends to 𝐵. From
the point of view of the dual abelian varieties, we simply use the fact that 𝛷ℒℓ

𝐴
= ̂𝑓 ∘ 𝛷ℒ𝐵

∘ 𝑓.

More Details 4.3.3. Concretely, if 𝑔 is a section of ℒ ℓ
𝐴 with associated divisor 𝐷𝑔, the trace 𝐺 of 𝑔 under 𝐾 is a divisor

𝐷𝐺 which descend to 𝐵. The linear equivalence between 𝐷𝑔 and 𝐷𝐺 is given by ℎ = 𝐺/ℎ, and translating ℎ gives the
linear equivalence between translates of 𝐷𝑔 and 𝐷𝐺, ie if 𝑢 is a section of 𝑓 −1𝑍 associated to 𝐷𝑔, ∏𝑧𝑖∈𝑍 ℎ(𝑥 + 𝑧𝑖)𝑛𝑖 is a
section of 𝑓 −1𝑍 associated to 𝐷𝐺.

• Algorithm 4.3.2.(v) is trickier than it looks if one wants a quasi-linear algorithm. Indeed, to get equations for
the isogeny 𝑓, it suffices to evaluate the sections 𝑠𝑖 on the generic point of 𝐴 (expressed in the 𝑔𝑖 coordinates).
But they are constructed as traces under the action of 𝐾 on sections 𝑡𝑖 ∈ 𝛤(𝐴, ℒℓ

𝐴), so evaluating such a
section 𝑠 requires summing ℓ𝑔 functions. If we work with projective coordinates, we are summing polynomial
functions of total degree ℓ in terms of the 𝑔𝑖, and the complexity of evaluating the sum depends on how
we generated our section 𝑡. For instance the situation is nicer if we generate sections of ℒℓ

𝐴 as products of
sections of ℒ𝐴, since this gives a compact representation of 𝑡. Working with affine coordinates, we would
sum rational functions of total degree 𝑂(ℓ) in terms of the 𝑔𝑖/𝑔0 (for instance). Furthermore, computing
this trace on the generic point may not be that easy unless we have an efficient representation of 𝑘(𝐴).
We may also use an interpolation technique (or a rational interpolation in the affine setting), but it may not
be possible to choose the interpolation points such that a fast interpolation technique is available, so provided
we already have a basis of 𝛤(𝐴, ℒℓ

𝐴) expressed as polynomials in the basis of 𝛤(𝐴, ℒ𝐴), this requires solving
a linear system of dimension 𝑂(ℓ𝑔). And we require at least 𝑂(ℓ𝑔) points of interpolation, each evaluation
costing 𝑂(ℓ𝑔) due to the trace.
A trick due to [CE14] is to instead evaluate the 𝑠𝑖 on one fat point 𝑃 ∈ 𝐴(𝑘[𝜖]), with 𝜖2 = 0. We may then
use this evaluation to get the matrix relating 𝑓 ∗𝜔𝐵 with 𝜔𝐴. Plugging the expression of 𝑓 in terms of the 𝑔𝑖,
(𝑠𝑖) ∘ 𝑓 = 𝑅(𝑔𝑖), and expressing both 𝑓 ∗𝜔𝐵 and 𝜔𝐴 in terms of the 𝑑𝑔𝑖, this yields a differential equation
satisfied by 𝑅. Picking 𝑔 uniformisers 𝑥1, … , 𝑥𝑔 at 0𝐴, we solve this differential equation in the completion
𝒪𝐴,0𝐴

≃ 𝑘[[𝑥1, … , 𝑥𝑔]], to recover 𝑓 has a formal series via a Newton approach1. A rational reconstruction
then allows to recover 𝑅. When done with fast algorithms, this can be done (heuristically) in time 𝑂(ℓ𝑔).
See for example Section 4.7.

Example 4.3.4. • The isogeny formula from Theorem 2.5.7 can be reinterpreted as follow: given a basis of
theta functions for 𝛤(ℒℓ

𝐴), taking the trace of 𝐾 for this basis gives functions of 𝛤(ℒ𝐵). In fact Theorem 2.5.7

may be recovered by taking the trace of 𝜃ℒℓ
𝐴

0 and then acting by 𝑍(𝐾)/𝐾 on this trace.

• Corollary 2.10.9 can thus be seen as an application of the method of this section to the theta model: we
generate sections of ℒℓ

𝐴 via multiplication, and the differential addition readily gives the action of the theta
group, hence in particular of 𝐾. As we have seen, taking traces is then the same as applying the isogeny
formula from Theorem 2.5.7 directly.

• The article [CE14] apply this method when 𝐴 is a Jacobian (see also Section 2.9 for an extension of their
method to compute theta coordinates).

Now if we replace ℓ by an endomorphism 𝛽, the general strategy is the same, except that it is less obvious to do
Algorithm 4.3.2.(i), namely producing sections of 𝛽𝛩. We will go back to this in Section 4.5, and we will see that
we can for instance get sections whenever we can write 𝛽 = ∑ 𝛾𝑖𝛾𝑖. This is a generalisation of the method that
uses the decomposition ℓ = ∑ 𝑛2

𝑖 .
1Eventually increasing the precision by computing the image of a point in 𝐴(𝑘[𝜖]/𝜖𝑚 if needed to bootstrap the Newton process.

72

4.4 Descending line bundles on 𝐵 via the descent formula

4.4 descending line bundles on 𝐵 via the descent formula

4.4.1 The contragredient isogeny

An alternative approach to compute a 𝛽-isogeny 𝑓, is to get a line bundle on 𝐵 via the use of the contragredient
isogeny ̃𝑓. We recall that if 𝐾 is a totally maximal isotropic subgroup of 𝐴[𝛽], ̃𝑓 ∶ 𝐵 → 𝐴 is the isogeny whose kernel
is 𝐾′ = 𝑓 (𝐴[𝛽]), so that ̃𝑓 ∘ 𝑓 = [𝛽]𝐴 and 𝑓 ∘ ̃𝑓 = [𝛽]𝐵. (Since 𝛽(𝐾) = 0 ⊂ 𝐾 = Ker 𝑓, 𝛽 descends to 𝐵).

𝑦 ∈ 𝐵

𝑥 ∈ 𝐴

𝑓 (𝑥) ∈ 𝐵

̃𝑓

𝑓
[𝛽]

If we let ℒ𝐵 be a descent of ℒ𝛽
𝐴, 𝑓 ∶ (𝐴, ℒ𝛽

𝐴) → (𝐵, ℒ𝐵) and ̃𝑓 ∶ (𝐵, ℒ𝛽
𝐵) → (𝐴, ℒ𝐴) are 𝛽-isogenies:

(𝐴, ℒ𝛽
𝐴) (𝐵, ℒ𝛽

𝐵)

(𝐴, ℒ𝐴) (𝐵, ℒ𝐵)

𝑓
̃𝑓

In the case that ℒ𝐴 = ℒ𝐴,1 is principal and 𝐾 is maximal, ℒ𝐵,1 = ℒ𝐵 is a principal line bundle. Then by
definition of ℒ𝛽

𝐴,1, we see that via the identification of 𝐴 and 𝐴, 𝐵 and �̂� given by 𝛷ℒ𝐴,1
, 𝛷ℒ𝐵,1

respectively, ̃𝑓
corresponds to the dual isogeny ̂𝑓. Like in Section 4.3, in practice we work with ℒ𝐴,𝑛 on 𝐴, so we rather look at

̃𝑓 ∗ℒ𝐴,𝑛 = ℒ𝛽
𝐵,𝑛.

The strategy works in two steps:

1. Find sections of ℒ𝛽
𝐵 ;

2. Descend to ℒ𝐵.

We detail these steps. For simplicity we assume for now that 𝛽 = ℓ and we explain how to adapt this for more
general endomorphisms in Section 4.5. We also assume that ℓ is prime to the level 𝑛 of ℒ𝐴.

4.4.2 Finding sections on the pullback

There is an easy way to get sections of ℒℓ
𝐵, namely the sections of the form 𝑔 ∘ ̃𝑓 where 𝑔 ∈ 𝛤(𝐴, ℒ𝐴) is a section of

ℒ𝐴. By Theorem 2.5.1, this gives us all sections in 𝛤(𝐵, ℒℓ
𝐵)𝐾′ , where 𝐾′ is the lift giving ℒ𝐴. Write a symplectic

decomposition 𝐵[ℓ] = 𝐾′ ⊕ 𝐾", where 𝐾" is any symplectic supplement of 𝐾′. Then for any lift 𝐾" of 𝐾" into
the theta group 𝐺(ℒℓ

𝐵), the action of 𝐾" on 𝛤(𝐵, ℒℓ
𝐵)𝐾′ gives us the remaining sections by Theorem 2.5.1. More

precisely: if (𝑔1, … , 𝑔𝑛𝑔) is a basis of 𝛤(𝐴, ℒ𝐴), then a basis of 𝛤(𝐵, ℒℓ
𝐵) is given by (ℎ ⋅ 𝑔𝑖 ∘ ̃𝑓)ℎ∈𝐾",𝑖∈{1,…,𝑛𝑔}.

Concretely, if ℎ𝑄" is the element of 𝐾" above 𝑄" ∈ 𝐾", and 𝑃 ∈ 𝐵, then in projective coordinates, ℎ𝑄" ⋅ (𝑔𝑖 ∘
̃𝑓 (𝑃)) = (𝑔𝑖(̃𝑓 (𝑃 + 𝑄"))).But the points ̃𝑓 (𝑄"), for 𝑄" ∈ 𝐾" correspond bijectively to the points 𝑄 ∈ 𝐾.
So having chosen 𝐾", computing coordinates given by ℒℓ

𝐵 of 𝑅 ∈ 𝐵 then corresponds to lifting (ie picking affine
coordinates) in a coherent way the ℓ𝑔 projective points (𝑔𝑖(̃𝑓 (𝑅 + 𝑄"))) = (𝑔𝑖(̃𝑓 (𝑅) + 𝑄)) in 𝐴 for 𝑄" ∈ 𝐾" or
𝑄 ∈ 𝐾. Once again, since ℓ is odd, there is a unique choice which corresponds to 𝐾" symmetric. Of course there
are still several choices of basis of sections corresponding to the choice of 𝐾" itself. We can reinterpret this in terms
of trivialisation as follow: let 𝑃 = ̃𝑓 (𝑅). Fixing a trivialisation of ℒ𝐴 at 𝑃 then gives trivialisations at 𝑃 + 𝑇 for
𝑇 ∈ 𝐴𝑖[𝑛] via the theta structure. This is not enough if 𝑄 ∈ 𝐾, because 𝑄 ∉ 𝐾(ℒ𝐴) so there is no trivialisation
at 𝑃 + 𝑄. However via the isomorphism ̃𝑓 ∗ℒ𝐴 ≃ ℒℓ

𝐵 induced by 𝐾′, we can fix a trivialisation of ℒℓ
𝐵 at 𝑅, which

then gives a trivialisation at 𝑅 + 𝑄" for 𝑄" ∈ 𝐾", which descends to a trivialisation of ℒ𝐴 at 𝑃 + 𝑄. Of course this

73

4 Isogenies

choice of trivialisation at 𝑃 + 𝑄 depends on 𝑅. And the choice of 𝐾" itself is reflected in the trivialisations at the
0𝐴 + 𝑄, 𝑄 ∈ 𝐾 induced by a trivialisation at 0𝐵.

We fix these trivialisations in the same manner as in Section 2.10.1, using the symmetry of ℒ to fix suitable
trivialisations at these points. (Namely, fixing a basis 𝑒𝑖 of 𝐾, we fix trivialisations at the 𝑒𝑖, 𝑒𝑖 + 𝑒𝑗 and 𝑃 + 𝑒𝑖
that satisfy the same compatibility conditions than in Section 2.10.1, these can be determined using Algorithmic
Hypothesis 2.9.2 directly). This gives compatible affine lifts of the (𝑔𝑖(̃𝑓 (𝑅) + 𝑄)) for all 𝑄 at once, ie describe a
basis of sections of 𝛤(ℒℓ

𝐵) evaluated on the point 𝑅 above 𝑃 = ̃𝑓 (𝑅) fixed by our choices of trivialisations.

More Details 4.4.1. More precisely, if (𝑒1, … , 𝑒𝑔) is a basis 𝐾, we fix a trivialisation of ℒ𝐴 at 𝑒𝑖 which induce trivialisations at
the multiple of 𝑒𝑖 by Section 2.9.3. Using the symmetry of ℒ𝐴, we rigidify things by requiring compatibility with the action of
[−1], this determines the trivialisation at 𝑒𝑖 up to a ℓ-th root of unity when ℓ is odd as in Section 2.10.1. We do the same at the
𝑒𝑖 + 𝑒𝑗, then we get compatible trivialisations at all 𝑄 ∈ 𝐾. For instance, if we fix a trivialisation at 𝑒1, this fixes one at −𝑒1, and
then via the theorem of the square at 2𝑒1 (by translation), and so on.

For the point 𝑃 + 𝑄, 𝑄 ∈ 𝐾, we fix a trivialisation at 𝑃 and each 𝑃 + 𝑒𝑖. Our choices above each 𝑄 fixes the isomorphism in
the theorem of the square, hence determines the other trivialisations at 𝑃 + 𝑄 by translation.

This is the strategy, formulated a bit differently that was exploited in [LR12]. It relied on an explicit theta model
on 𝐴 and 𝐵, but as discussed above this whole strategy works equally well with other models, under Algorithmic
Hypothesis 2.9.2.

4.4.3 Descent formula

The remaining problem is that we want sections of ℒ𝐵 rather than sections of ℒℓ
𝐵. More precisely, given a point 𝑃

on 𝐴, we want to compute the coordinates of 𝑓 (𝑃) given by the sections of ℒ𝐵. We have just seen how to get the
coordinates of 𝑓 (𝑃) given by sections of ℒℓ

𝐵, these are the

(𝑔𝑖(̃𝑓 (𝑓 (𝑃)) + 𝑄))𝑖∈1…𝑛𝑔,𝑄∈𝐾 = (𝑔𝑖(ℓ𝑃 + 𝑄))𝑖∈1…𝑛𝑔,𝑄∈𝐾. (4.1)

So the idea is to use the multiplication by ℓ on 𝐵 to relate coordinates 𝑢 ∘ [ℓ](𝑃) = 𝑢(ℓ𝑃) with 𝑢 ∈ 𝛤(𝐵, ℒ𝐵)
with the coordinates 𝑣(𝑃), 𝑣 ∈ 𝛤(𝐵, ℒℓ

𝐵). Assume that we have such a formula 𝑢∘[ℓ] = 𝑆(𝑣) with 𝑆 a multivariate
rational function. Then we can express the isogeny 𝑓 ∶ 𝐴 → 𝐵 as follow: if 𝑃 ∈ 𝐴, and 𝑃0 ∈ 𝐵 is any point
such that ̃𝑓 (𝑃0) = 𝑃, then ℓ𝑃0 = 𝑓 (𝑃), and 𝑢(𝑓 (𝑃)) = 𝑢 ∘ [ℓ](𝑃0) = 𝑆(𝑣(𝑃0)). And so taking for 𝑣 the basis
of Equation (4.1) above, this yields 𝑢(𝑓 (𝑃)) = 𝑆((𝑔𝑖(̃𝑓 (𝑃0) + 𝑄))𝑖∈1…𝑛𝑔,𝑄∈𝐾 = 𝑆((𝑔𝑖(𝑃 + 𝑄))𝑖∈1…𝑛𝑔,𝑄∈𝐾.
Furthermore, since we are applying [ℓ] when descending, our choice of 𝑃0 (induced by our choices of trivialisations
at 𝑃) does not matter.

𝑃0 ∈ (𝐵, ℒℓ
𝐵)

𝑃 ∈ (𝐴, ℒ0)

𝑓 (𝑃) ∈ (𝐵, ℒ𝐵)

̃𝑓

𝑓
[ℓ]

It remains to explain how to find the rational function 𝑆. Unfortunately, [ℓ]∗ℒ𝐵 = ℒℓ2
𝐵 , so we cannot use Theo-

rem 2.5.7 directly (that’s why the arrow [ℓ] ∶ (𝐵, ℒℓ
𝐵) → (𝐵, ℒ𝐵) is dashed, it does not respect the polarisations).

Koizumi’s formula

In [CR15], we used the following trick of Koizumi [Koi76] instead: write ℓ Id = 𝐹 𝑡𝐹 for an 𝑟×𝑟-matrix 𝐹 ∈ Gl𝑟(ℤ).
Concretely, since ℓ = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 is always a sum of four squares, we can always find such an 𝐹 with 𝑟 = 4 as
the multiplication matrix of the quaternion 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, and whenever ℓ is a sum of two squares we can find
𝐹 such that 𝑟 = 2. Then it is easy to check that 𝐹∗ℒ𝐵

⋆𝑟 ≃ ℒℓ
𝐵

⋆𝑟. So on 𝐵𝑟, we can descend ℒℓ
𝐵

⋆𝑟 to ℒ𝐵
⋆𝑟 along

the multiplication by [ℓ] by first descending it along 𝐹, and then simply applying 𝑡𝐹 (which just amount to some
arithmetic), or conversely. So we put again our good friend the Segre embedding to good usage.

74

4.4 Descending line bundles on 𝐵 via the descent formula

In the theta model, Koizumi’s formula is given via Theorem 2.5.7 by

𝐹∗𝜃ℒ𝐵⋆⋯⋆ℒ𝐵
(𝑖1,…,𝑖𝑟) = ∑

(𝑗1,…,𝑗𝑟)∈𝑍(ℓ𝑛)
𝑟

𝐹(𝑗1,…,𝑗𝑟)=(𝑖1,…,𝑖𝑟)

𝜃ℒℓ
𝐵⋆⋯⋆ℒℓ

𝐵
(𝑗1,…,𝑗𝑟) (4.2)

If 𝑋′ = (𝑋′
1, … , 𝑋′

𝑟) is in (𝐵𝑟, ℒℓ,⋆𝑟
𝐵) and 𝑌 = 𝐹(𝑋′) ∈ (𝐵𝑟, ℒ⋆𝑟

𝐵), then

𝜃ℒ𝐵
𝑖1 (𝑌1) ⋅ ⋯ ⋅ 𝜃ℒ𝐵

𝑖𝑟 (𝑌𝑟) = ∑
(𝑗1,…,𝑗𝑟)∈𝑍(ℓ𝑛)

𝑟

𝐹(𝑗1,…,𝑗𝑟)=(𝑖1,…,𝑖𝑟)

𝜃ℒℓ
𝐵

𝑗1 (𝑋′
1) ⋅ ⋯ ⋅ 𝜃ℒ⋆𝑟

𝐵
𝑗𝑟 (𝑋′

𝑟), (4.3)

But in Equation (4.3) we can use ̃𝑓 to interpret the theta coordinates of level ℓ𝑛 on 𝑋′ in 𝐵𝑟 of index (𝑗1 +
𝑡1, … , 𝑗𝑟 + 𝑡𝑟) where 𝑗 ∈ 𝑍(𝑛)𝑟 and 𝑡 ∈ ℤ𝑟

ℓ as theta coordinates of level 𝑛 in 𝐴𝑟 of (𝑋1 + 𝑃𝑡1
, … , 𝑋𝑟 + 𝑃𝑡𝑟

), where
𝑋 = ̃𝑓 (𝑋′), using the identification ℤℓ → 𝐾. We can rewrite Equation (4.3) as

𝜃ℒ𝐵
𝑖1 (𝑌1) ⋅ ⋯ ⋅ 𝜃ℒ𝐵

𝑖𝑟 (𝑌𝑟) = ∑
(𝑡1,…,𝑡𝑟)∈ℤℓ

𝑟

𝐹(𝑡1,…,𝑡𝑟)=(0,…,0)

𝜃ℒ𝐴
𝑗1 (𝑋1 + 𝑃𝑡1

) ⋅ ⋯ ⋅ 𝜃ℒ𝐴
𝑗𝑟 (𝑋𝑟 + 𝑃𝑡𝑟

). (4.4)

where 𝑗 = 𝐹−1(𝑖) ∈ 𝑍(𝑛)𝑟.
In particular, if 𝑖 ∈ 𝑍(𝑛) and (𝑗1, … , 𝑗𝑟) ∈ 𝑍(𝑛)𝑟 is the unique preimage of (𝑖, 0, … , 0) by 𝐹, 𝑃0 a preimage of

𝑃 by ̃𝑓, 𝑋′ = 𝑡𝐹(𝑃0, 0, … , 0) ∈ 𝐵𝑟 and 𝑋 = 𝑡𝐹(𝑃, 0, … , 0) ∈ 𝐴𝑟 we get, since 𝑌 = 𝐹𝑋′ = (𝑓 (𝑃), 0, … , 0):

𝜃ℒ𝐵
𝑖 (𝑓 (𝑃)) ⋅ ⋯ ⋅ 𝜃ℒ𝐵

0 (0) = ∑
(𝑡1,…,𝑡𝑟)∈ℤℓ

𝑟

𝐹(𝑡1,…,𝑡𝑟)=(0,…,0)

𝜃ℒ𝐴
𝑗1 (𝑋1 + 𝑃𝑡1

) ⋅ ⋯ ⋅ 𝜃ℒ𝐴
𝑗𝑟 (𝑋𝑟 + 𝑃𝑡𝑟

). (4.5)

We will call this change of level method the Koizumi change of level formula. These three steps are summarized
in the diagram below:

𝑃0 ∈ (𝐵, ℒℓ
𝐵) (𝑃0, 0, … , 0) ∈ (𝐵𝑟, ℒℓ

𝐵 ⋆ ⋯ ⋆ ℒℓ
𝐵)

𝑃 ∈ (𝐴, ℒ𝐴) 𝑡𝐹(𝑃0, 0, … , 0) ∈ (𝐵𝑟, ℒℓ
𝐵 ⋆ ⋯ ⋆ ℒℓ

𝐵)

𝑓 (𝑃) ∈ (𝐵, ℒ𝐵) 𝐹 ∘ 𝑡𝐹(𝑃0, 0, … , 0) ∈ (𝐵𝑟, ℒ𝐵 ⋆ ⋯ ⋆ ℒ𝐵)

̃𝑓

𝑓
[ℓ]

𝑡𝐹

𝐹

Here the computation of 𝑡𝐹 is done in ℒℓ
𝐵 while we use Koizumi’s formula from Equation (4.5) to compute the

action of 𝐹 in order to go back to level 𝑛. We could also first descend and then compute 𝑡𝐹.

A faster descent formula

Here lies a complexity problem: descending ℒℓ
𝐵

⋆𝑟 along 𝐹 amount to taking some traces along the kernel of 𝐹,
which is of size 𝑂(ℓ𝑟𝑔). Using a theta model on ℒℓ

𝐵
⋆𝑟, half of the trace action is trivial, hence need not be computed.

Indeed, rather than computing the trace under the fullKer𝐹, we only need to compute it under 𝐵1[ℓ]𝑟 ∩Ker𝐹. This
reduces the complexity to 𝑂(ℓ𝑟𝑔/2) [CR15]. Unfortunately this still yields a quasi-quadratic algorithm whenever
𝑟 = 4.

In Section 2.10.3, we introduced an alternative change of level using the (generalised) Segre embedding. Write
ℓ = ∑𝑟

𝑖=1 𝑛2
𝑖 , and 𝐹 ∶ (𝐵, ℒℓ

𝐵
ℓ) → (𝐵𝑟, ℒℓ

𝐵
⋆𝑟), 𝑥 ↦ (𝑛𝑖𝑥) the generalised Segre morphism. Let 𝐺 ∶ 𝐵𝑟 → 𝐶 be the

quotient of 𝐵𝑟 by 𝐹(𝐵[ℓ]), so that 𝐺 ∘ 𝐹 ∶ (𝐵, ℒℓ
𝐵

ℓ) → (𝐵, ℒ𝐵) is simply [ℓ]. We call this map 𝐹 because this is
exactly the map F from Koizumi’s formula composed with the diagonal embedding 𝛥 ∶ 𝐵 → 𝐵𝑟. In other words,
the only difference with Koizumi’s formula is that we do not quotient by the full kernel of F, but by the kernel of F
intersected with the image of the diagonal embedding. This quotient behaves the same as the full quotient on 𝛥(𝐵).

The whole point is that we only need the coordinates for ℒℓ
𝐵 to express points in the image of 𝐹.

75

4 Isogenies

𝑃0 ∈ (𝐵, ℒℓ
𝐵

ℓ) (𝑛1𝑃0, … , 𝑛𝑟𝑃0) ∈ (𝐵𝑟, ℒℓ
𝐵 ⋆ ⋯ ⋆ ℒℓ

𝐵)

𝑃 ∈ (𝐴, ℒ𝐴)

𝑓 (𝑃) ∈ (𝐵, ℒ𝐵) 𝐺(𝑛1𝑃0, … , 𝑛𝑟𝑃0) ∈ 𝐶

𝐹

̃𝑓

𝑓
[ℓ] 𝐺

This strategy applied to the theta model gives exactly Corollary 2.10.13.

4.4.4 Isogenies from equations of the kernel

Another complexity problem is that the trace requires taking the geometric points of Ker𝐹. In [LR15b] we explain
how to circumvent this when given equations of 𝐾 by working with formal points. (The main difficulty, answered
in this article, lies in how to compute the action of the lift 𝐾" given only the equations of 𝐾.) It is straightforward to
extend this approach to our new change of level formula.

We detail this a bit. While in Section 2.10 it was convenient to compute an excellent lift 𝐾 of 𝐾 by lifting a basis
of 𝐾 and then using the differential additions and three way additions to lift the other points, it actually suffices
(if ℓ is odd) to compute an excellent lift �̃� of 𝑃 for each 𝑃 ∈ 𝐾 independently. Indeed from the point of view of
computing sections of ℒℓ

𝐴 we have seen in Section 2.10.2 that the ℓ choices of excellent lifts all induce the same
symmetric lift on 𝐺(ℒℓ

𝐴) (as expected by unicity of a symmetric lift), or from the point of view of Section 2.10.3
the different choices are killed by the descent formula. Computing �̃� only involves computing the multiples of 𝑃
given by (ℓ′ + 1)𝑃 and ℓ′𝑃, hence can be done formally over the full kernel if we have equations for it.

Of course for this computation to be efficient we need to have a nice model of the kernel 𝐾, for instance a
triangular representation. In the best cases, the kernel is parametrized by a univariate polynomial 𝐸(𝑋) (otherwise
do a random change of variable, possibly in a small extension, to separate points). All our isogenies formulae we have
seen in this Chapter are given by traces, ie of the form ∑𝑃∈𝐾(𝑘) 𝑊(𝑃) where 𝑊 is a function defined on 𝐾 (typically
computed via the formal normalisation of �̃� above, see eg Equation (4.5)). Expressing 𝑊 as 𝑊(𝑋) ∈ 𝑘[𝑋]/𝐸(𝑋),
we can compute this trace as ∑𝑃∈𝐾(𝑘) 𝑊(𝑃) = 𝑇(0) where 𝑇 is the remainder of the euclidean division of 𝑋𝑊𝐸′

by 𝐸.
Unfortunately I don’t know how to do this when ℓ is even. We have seen in Section 2.10 that we have more

choices of excellent affine lifts because there are several ways to descend ℒ𝐴 to a symmetric line bundle, since
the isogeny kills part of our information on the 𝑛-level structure. This is not a problem when we have an explicit
basis of 𝐾 because each choice on a basis of 𝐾 is induced by a symmetric theta structure on ℒ𝐵. But this does not
work if we make a choice for each point of 𝐾 individually. So we need to specify these choice somehow, eg encode
efficiently 𝐾0 such that 𝐾0 is totally isotropic and 2𝐾0 = 𝐾 (see Remark 2.10.14), and in this case the equation of
the kernel alone is not sufficient.

4.4.5 Summary

We summarize the algorithm induced by this second approach:

1. Fix (implicitly) a symplectic decomposition 𝐵[ℓ] = 𝐾′ ⊕ 𝐾", where 𝐾′ = 𝑓 (𝐴[ℓ]) ≃ 𝐴[ℓ]/𝐾. Alternatively
𝐾" can be specified from 𝐴 as 𝑓 (𝐾ℓ) where 𝐾ℓ is a maximal isotropic subgroup of 𝐴[ℓ2] such that ℓ𝐾ℓ = 𝐾;

2. Determine the action of the canonical symmetric lift 𝐾" on the basis of sections 𝛤(𝐵, ℒℓ
𝐵)𝐾′ = {𝑔 ∘ 𝑓 , 𝑔 ∈

𝛤(𝐴, ℒ𝐴)}. This amount in making a coherent symmetric choice of affine lifts of the projective points
(𝑔𝑖(𝑃 + 𝑄))𝑖∈1…𝑛𝑔 for 𝑄 ∈ 𝐾, where (𝑔𝑖)𝑖=1…𝑛𝑔 is a basis of 𝛤(𝐴, ℒ𝐴). We refer to Section 2.10.1 for more
details in the theta model (see also Section 5.2.2).

3. Use a change of level formula to descend these sections into sections of ℒ𝐵, like for instance the formula
given in Section 2.10.3.

76

4.5 Extending the isogeny computation to isogenies induced by real multiplication

4.5 extending the isogeny computation to isogenies induced by real multiplication

If ℓ = ∑ 𝑛2
𝑖 , we can use this decomposition for the first method to produce sections of 𝛤(𝐴, ℒℓ

𝐴) as ∏ 𝑠𝑖(𝑛𝑖𝑥),
𝑠𝑖 ∈ 𝛤(𝐴, ℒ), and in the second method to descend the line bundle ℒℓ

𝐵. We now extend this to the case of
𝛽 ∈ 𝒪++

ℱ a totally positive real element, assuming for simplicity that 𝒪ℱ = End𝑠(𝐴).
Now if we replace ℓ by a totally positive 𝛽 in order to compute (for instance) cyclic isogenies, we need to look at a

decomposition 𝛽 = ∑ 𝛼2
𝑖 , with 𝛼𝑖 totally real. In fact, we could even use a decomposition 𝛽 = ∑𝑟

𝑖=1 𝛼𝑖𝛼𝑖 for general
endomorphisms 𝛼 where 𝛼 denotes the Rosati-Involution. Our sections of ℒ𝛽

𝐴 are then of the form ∏ 𝑠𝑖(𝛼𝑖𝑥).
From the point of view of generating sections via cycles, these corresponds to cycles of the form ∑ 𝛼∗

𝑖 ((𝑃𝑖) − (0)),
with 𝑃𝑖 ∈ 𝐾(ℒ𝐴).

Likewise, we can use this decomposition to descend ℒ𝛽
𝐵 by the isogeny 𝐵[𝛽] by looking at the generalised Segre

morphism 𝐹 ∶ 𝐵 → 𝐵𝑟, 𝑥 ↦ (𝛼𝑖𝑥). The pullback of ℒ𝛽
𝐵

⋆𝑟
by 𝐹 is then ℒ𝐵

𝛽2
, hence 𝐹(𝐵[𝛽]) is indeed isotropic.

More generally, we could look for a morphism 𝐹 ∶ (𝐵, ℒ𝛽
𝐵) → (𝐶, ℒ𝐶) (not respecting polarisations) such that

𝐹(𝐵[𝛽]) ⊂ 𝐾(ℒ𝐶) and is isotropic, ie𝐵[𝛽] is isotropic for𝐹∗ℒ𝐶 (eg𝐹∗ℒ𝐶 = ℒ𝐵
𝛽2

).We can then applyMumford’s
isogeny theorem to 𝐹(𝐵[𝛽]). For instance, if we know how to compute an 𝛼𝑖-isogeny (𝐵, ℳ𝛼𝑖) → (𝐶𝑖, ℳ𝑖) while
working with coordinates from (𝐵, ℳ), we could use the map 𝐹 ∶ 𝐵 → ∏ 𝐶𝑖, 𝑥 ↦ (𝛼𝑖(𝑥)) when 𝛽 = ∑ 𝛼𝑖. The
decomposition above is the special case where 𝛼𝑖 = 𝛾𝑖𝛾𝑖 and the 𝛼𝑖-isogeny is simply given by the endomorphism
𝛾𝑖. This opens the path to a recursive algorithm to compute 𝛽 isogenies.

Anyway, let us go back to decomposing 𝛽 as a sum of squares of real endomorphism: 𝛽 = ∑ 𝛽2
𝑖 . First, since 𝛽 is

totally positive, by a theorem of Siegel such a decomposition always exist with 𝛽𝑖 ∈ 𝐾. If 𝛽𝑖 = 𝛾𝑖/𝑁 with 𝛾𝑖 ∈ 𝒪ℱ,
then to evaluate 𝛽𝑖(𝑃) one needs to compute 𝛾𝑖(𝑄) with 𝑃 = 𝑁𝑄. The result depends on 𝑄, but at the end of the
isogeny computation this does not matter since 𝛽 is an endomorphism, so 𝑁𝛽 is zero on the 𝑁-torsion.

Otherwise, the rest of the isogeny algorithm proceed the same as in the case of 𝛽 = ℓ. We just need to be able to
compute affine lifts 𝛽𝑖(𝑥 + 𝑡) where 𝑥 is a point and 𝑡 an element of the kernel. We can then either use the Frobenius
and Verschiebung as in [DJR+22] or decompose 𝛽𝑖 into sum of isogenies which we know how to compute on affine
lift (in a compatible way), as in [Rob13, § 4.1]. For instance when 𝑔 = 2, √𝑑 is a standard 𝑑-isogeny, so we can use
the formula of Section 2.10.

Remark 4.5.1. We conclude by several remarks:

• When applying the algorithm on a polarised abelian variety (𝐴, ℒ) with a symmetric theta structure,
it is important to take a theta structure induced by a symplectic decomposition 𝐾(ℒ2) = 𝐾1(ℒ2) ⊕
𝐾2(ℒ2) where 𝐾𝑖(ℒ2) is stable under the real multiplication. This way real endomorphisms respect the
decomposition.

• In [DJR+22] we did not have the fast descent method yet, so we used a generalisation of Koizumi’s formula.
This requires finding a matrix 𝐹 such that 𝑡𝐹𝐹 = 𝛽 from the decomposition 𝛽 = ∑𝑟

𝑖=1 𝛽2
𝑖 . By standard

results on Clifford Algebra, this is always possible if 𝑟 = 2𝑑 is a power of two. So there are two drawbacks:
first we may need to increase 𝑟, hence get a worse complexity, secondly the construction of the matrix 𝐹 may
introduce denominators (even if 𝛽𝑖 are endomorphisms).

• Likewise, using a matrix 𝐹 to descend ℒ𝛽
𝐵

⋆𝑟
on 𝐵𝑟 may not give a theta structure on (𝐵𝑟, ℒ⋆𝑟

𝐵) which is a
product theta structure. So in [DJR+22] we had to do a costly linear algebra (which is 𝑂(1) asymptotically
but very expensive in practice) to recover a product theta structure (in order to find back (𝐵, ℒ𝐵)) via the
theta transformation formula. By contrast the new descent formula descends (𝐵, ℒ𝛽

𝐵) directly.

• In [DJR+22], we use the Frobenius to compute the action of the real endomorphisms.Wemake the simplifying
assumption, when computing the image of a point 𝑥 by the isogeny, that 𝑥 is rational and of order 𝑚 prime
to the denominators that appear. This allows us to ensure that 𝛽𝑖𝑥 = 𝜆𝑖𝑥 for some integer 𝜆𝑖, and we can
compute 𝛽𝑖 ̃𝑥 = 𝜆𝑖 ̃𝑥 via differential additions. But as explained above, we can relax these conditions, since it
is easy to extend the method of [Rob13, § 4.1] which uses multiway additions to compute 𝛽𝑖 ̃𝑥 whenever we
can express 𝛽𝑖 as a multivariate polynomial of endomorphisms we already know how to compute affinely (eg
the Frobenius, or √𝑑 in dimension 2).

• The optimal decomposition of 𝛽 (reducing the size of the denominator) then becomes a number theory
optimisation problem.

77

4 Isogenies

• From the point of view of finding sections of 𝛽𝛩, when 𝛽 = ∑ 𝛼𝑖, we may use the following approach. The
real multiplication allows to make sense of a line bundle associated to a cycle with coefficients given by
real endomorphisms, rather than just integers (at least for a totally symmetric line bundle). If 𝑃 ∈ 𝐴[𝛽] =
Ker(ℒ𝛽), we would like to construct a section associated to the cycle 𝛽(𝑃) − 𝛽(0). If 𝛽 = ∑ 𝛼𝑖, we can
try to find sections associated to 𝛼𝑖(𝑃) − (𝛼𝑖𝑃) − (𝛼𝑖 − 1)(0), and then use the theorem of the square to
combine these to a section of (∑ 𝛼𝑖)(𝑃) − ((∑ 𝛼𝑖)𝑃).
The core difficulty of our situation, is that while for cycles with integer coefficients (linearly equivalent to 0),
we may only use the theorem of the square to ultimately reduce to the zero-cycle, in our case, Algorithmic
Hypothesis 2.9.2 is not enough, and we have to use the real multiplication somehow (via eg the above
decompositions of 𝛽).

For instance, I do not know yet know how to generalise the method from [CE14] which uses cycles of the
form 𝑍 = 𝑏(𝑎𝑃) + 𝑎(−𝑏𝑃) − ℓ(0). Here of course we would instead use real endomorphisms 𝑎, 𝑏 such that
𝑎 + 𝑏 = 𝛽, but it is not obvious how to generate the sections. Perhaps the tools used in [Hua18; Hua19] can
be useful.

4.6 modular interpretation of the isogeny formula

When using the isogeny algorithm in the theta models, all computations have an affine version. In other words, once
we have chosen rigidifications at 0𝐴 and 0𝐵 (ie affine points ̃0𝐴 and ̃0𝐵), if 𝑓 (𝑃) = 𝑄, and we choose a trivialisation
of ℒℓ

𝐴 at 𝑃 giving the affine lift �̃�, it is immediate to compute the affine lift 𝑄 giving the compatible trivialisation of
ℒ𝐵 at 𝑄.

But we have seen in Section 2.9.3 how the trivialisation of ℒ𝐴 at 0𝐴 is induced by a choice of basis of differentials
𝑤𝐴 of 𝐴. So a natural question is to find which basis 𝑤𝐵 on 𝐵 induce the affine lift ̃0𝐵 of 𝐵 induced by the isogeny
and the choice of ̃0𝐴. In this Section, we assume that 𝐴 and 𝐵 are endowed with compatible symmetric theta
structures of even level.

We have the following results.

Lemma 4.6.1. In the isogeny formula Theorem 2.5.7, if we take 𝜆 = 1 (ie ̃𝑓 (̃0𝐴) = ̃0𝐵), then if ̃0𝐴 is induced by 𝑤𝐴,
̃0𝐵 is induced by 𝑤𝐵 such that 𝑓 ∗𝑤𝐵 = 𝑤𝐴. In other words Theorem 2.5.7 with 𝜆 = 1 naturally gives the values of the

theta constant as modular forms for the normalised isogeny.

Proof. We give an analytic proof, see also [Kem91, §5.3]: by the proof of Theorem 2.5.7, it suffices to treat isogenies
of the first type. We take 𝐴 = ℂ𝑔/(ℤ𝑔 + 𝛺ℤ𝑔) and for kernel 1

ℓ 𝛺ℤ𝑔/𝛺ℤ𝑔, so 𝐵 corresponds to the abelian
variety 𝐵 = ℂ𝑔/(ℤ𝑔 ⊕ 1

ℓ 𝛺ℤ𝑔) and 𝑓 is the normalised isogeny : 𝑧 ↦ 𝑧. The theta null point of level ℓ𝑛 on 𝐴 is

given by 𝜃 [0
𝑖

ℓ𝑛
] (0, 𝛺

ℓ𝑛), while the one on 𝐵 is given by 𝜃 [0
𝑗
𝑛

] (0, 𝛺/ℓ
𝑛), so the normalised isogeny corresponds to

compatible (affine) theta null points.

Lemma 4.6.2 (Affine Segre). If ̃0𝐴 is an affine lift of the theta null point of 𝐴 given by 𝑤𝐴 and ̃0𝐵 of 𝐵 given by 𝑤𝐵,
then the Segre embedding 𝜃𝑖(̃0𝐴)𝜃𝑗(̃0𝐵) of (̃0𝐴, ̃0𝐵) corresponds to the differential basis (𝑤𝐴, 𝑤𝐵) of 𝐴 × 𝐵.

Proof. Analytically, this follow from the equation: 𝜃 [𝑎1
𝑏1

] (𝑧1, 𝛺1)𝜃 [𝑎2
𝑏2

] (𝑧2, 𝛺2) = 𝜃 [𝑎1𝑎2
𝑏1𝑏2

] ((𝑧1, 𝑧2), (𝛺1 0
0 𝛺2

)).

From these two results, it is easy to follow the differential basis along the steps of the isogeny algorithm, using the
version of Section 4.4.3 with Koizumi’s descent. Denote by (𝜃𝐴

𝑖 (0, √𝑤𝐴))𝑖∈𝑍(𝑛) the affine theta null point induced
by 𝑤𝐴 (see Section 2.9.3 for why we use this notation and [Can16] for an algebraic meaning of this notation).

Theorem 4.6.3. Let 𝑤𝐴 be a basis of 𝑘-rational regular differentials on 𝐴 and (𝜃𝐴
𝑖 (0, √𝑤𝐴))𝑖∈𝑍(𝑛) be a modular lift.

Finally, let 𝑟 = 1, 2 or 4 depending on ℓ being a square, a sum of two square or not. Then the affine isogeny formula
yields the products (𝜃𝐵

𝑖1(0, √𝑤𝐵) × ⋯ × 𝜃𝐵
𝑖𝑟(0, √𝑤𝐵))𝑖1,…,𝑖𝑟∈𝑍(𝑛) where 𝑤𝐵 is such that 𝑓 ∗𝑤𝐵 = 𝑤𝐴. Note that the

product is uniquely defined except if 𝑟 = 1 in which case we get all constants up to a common sign.

Proof. This is [KNR+21, Theorem 4.5].

We will apply this in Section 5.6.5 to descend algebraic modular forms along isogenies.

78

4.7 Isogenies from differential equations

Unfortunately, I do not have yet such amodular result for the faster approaches of the isogeny computation. Using
the first strategy (see Section 4.3), this would involve determining the affine constant (ie the modular form) relating
theta constants of level ℓ𝑛 and the products of theta constants of level 𝑛: ∏𝑟

𝑖=1 𝜃𝑖(0) (the number depending on
the version of the generalised Segre morphism we use). Similarly, from the point of view of Section 4.4, this would
involve determining the affine (ie modular) version of the morphism 𝐵 → 𝐶. With Koizumi’s descent formula, this
is easy because 𝐵 → 𝐶 = 𝐵𝑟 is given by the Segre embedding, but in the faster version 𝐶 = 𝐵𝑟/𝐵[ℓ], so the theta
constants are mixed.

An alternative strategy would be to have an algebraic way to evaluate a given modular form. By algebraic I mean
given a modular form 𝔤, a representation of 𝐴 and a basis of differential 𝑤𝐴, to evaluate 𝔤(𝐴, 𝑤𝐴). Then given
the explicit isogeny 𝑓 ∶ 𝐴 → 𝐵, we can compute the normalised differential 𝑤𝐵 (ie such that 𝑓 ∗𝑤𝐵 = 𝑤𝐴), and
evaluate 𝔤(𝐵, 𝑤𝐵), this gives the modular version of the isogeny. From this point of view, Theorem 4.6.3 can be
seen as a way to evaluate the theta constants (seen as modular forms) algebraically along isogenies, we will use
that in Section 5.6.5. As we will see in Section 5.4, because of the Kodaira-Spencer isomorphism, a particularly
important case for algebraic evaluation is when 𝔤 = 𝑑𝐽, the differential of a modular invariant.

4.7 isogenies from differential equations

We now explain how, given the tangent map, we can compute the isogeny 𝑓 ∶ 𝐴 → 𝐵 by solving a differential
equation. The tangent map 𝑀 itself may be computed by computing the image of a fat point 𝑃𝜖 ∈ 𝐴(𝑘[𝜖]). We
will see another method using modular polynomials in Section 5.4.

4.7.1 Elliptic curves

Using differential equations to compute isogenies between elliptic curves is due to Elkies. Over a finite field 𝔽𝑞,
using [BMS+08], once we have 𝑀 the differential equation allows to recover the ℓ-isogeny 𝑓 ∶ 𝐸1 → 𝐸2 (equivalently
its kernel) in quasi-linear time 𝑂(ℓ log 𝑞), provided that 𝑝 > 8ℓ − 5 (with slightly more information they only need
𝑝 > 2ℓ − 1).

Indeed, writing 𝐸1 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝐸2 ∶ 𝑌2 = 𝑋3 + 𝐴𝑋 + 𝐵 (assuming 𝑝 > 3 for simplicity), then since
𝑓 ∗𝑑𝑋/𝑌 = 1

𝑀𝑑𝑥/𝑦 by assumption, we know that 𝑓 (𝑥, 𝑦) = (𝑢(𝑥), 𝑀𝑦𝑢′(𝑥)) where 𝑢 = 𝑔/ℎ is a rational function
whose denominator is ℎ(𝑥) = ∏𝑃∈Ker 𝑓 0𝐸

(𝑥 − 𝑥(𝑃)) = 𝑥ℓ−1 + 𝜎𝑥ℓ−2 + … . Given the kernel 𝐾, hence the
denominator ℎ(𝑥), 𝑢 is explicitly given by 𝑢(𝑥) = ℓ𝑥 − 𝜎 − (3𝑥2 + 𝐴)ℎ′(𝑥)/ℎ(𝑥) − 2(𝑥3 + 𝐴𝑥 + 𝐵)(ℎ′(𝑥)/ℎ(𝑥))′

[Koh96]. (If ℓ is odd we can work with the square root of ℎ). Furthermore plugging the equation of 𝐸2 shows that 𝑢
satisfy the differential equation

𝑀2(𝑥3 + 𝑎𝑥 + 𝑏)𝑢′(𝑥)2 = 𝑢(𝑥)3 + 𝐴𝑢(𝑥) + 𝐵. (4.6)

To solve this singular differential equation, it is convenient to express 𝑓 along the uniformisers 𝑧 = 𝑥/𝑦 and 𝑍 =
𝑋/𝑌 at 0𝐸1

and 0𝐸2
, ie writing 𝑍 = 𝑣(𝑧). Via this change of variable, this gives a non singular differential equation

satisfied by 𝑣(𝑧) ∈ 𝑘[[𝑧]], which can be solved by Newton iterations to some precision, from which a rational
reconstruction gives 𝑣(𝑧) ∈ 𝑘(𝑧) in quasi-linear time and we then recover 𝑢(𝑥) ∈ 𝑘(𝑥) in time 𝑂(𝑀(ℓ) log ℓ)
operations in 𝔽𝑞 where 𝑀(⋅) is the complexity of the multiplication, ie in 𝑂(ℓ log 𝑞) binary operations. In [BMS+08,

§ 4.3] the authors use the change of variable 𝑢 = 1
𝑆(1

√𝑥
)2

instead, so that 1/√𝑋 = 𝑆(1/√𝑥). This is essentially

the same as the change of variable above since 1/𝑥 = 𝑧2 + 𝑂(𝑧6). The Newton step requires 𝑝 > 8ℓ − 5,
but if 𝜎 = ∑𝑃∈Ker 𝑓 0𝐸

𝑥(𝑃) is also known, Elkies give an algorithm to recover 𝑢(𝑥) directly without rational
reconstruction from 𝑣(𝑧) ∈ 𝑘[[𝑧]], for a total complexity of 𝑂(𝑀(ℓ)) operations in 𝔽𝑞 and we only need
𝑝 > 2ℓ − 1 (see [BMS+08, Theorem 2]).

In the setting of [BMS+08], 𝑀 is recovered from the derivatives of the modular polynomial 𝛷ℓ evaluated at
𝑗𝐸1

and 𝑗𝐸2
, and 𝜎 can be recovered for the second derivatives (see the formulae in [Sch95, § 7]). When given

the kernel, Vélu’s formula [Vél71] gives the normalised isogeny 𝑓 ∶ 𝐸1 → 𝐸2. Finally, if the isogeny is given via a
“black box” allowing to evaluate 𝑓 (𝑃) for points 𝑃 in 𝐸1, we can compute equations for 𝐸2 by evaluating on a few
points, then compute 𝑀 by evaluating at a fat point. For instance, since 𝑥 = 𝑧−2 + 𝑂(𝑧2) and 𝑦 = 𝑧−3 + 𝑂(𝑧),
𝑑𝑥/𝑦 = (−2 + 𝑂(𝑧))𝑑𝑧, then we take the fat point induced by 𝑧 mod 𝑧2 above 0𝐸, to recover 𝑍 ∘ 𝑓 = 𝑀𝑧 modulo
𝑧2. If needed, 𝜎 could also be recovered by working modulo 𝑧4 and looking at the coefficient of 𝑧3.

79

4 Isogenies

4.7.2 Hyperelliptic curves of genus 2

For hyperelliptic curves of genus 2, as far as I am aware the idea to use differential equations too to compute
isogenies (even when given its kernel, rather than in a modular context as in Elkie’s method) is from [CE14].
Differential equations are also used in [CMS+17] to compute endomorphism rings of Jacobians.

The map 𝑀 determines 𝑓 if the characteristic is large enough, because there is at most one ℓ-isogeny 𝐴 → 𝐵
with tangent map 𝑀 and ℓ ≤ 𝑁, where 4𝑁 < char 𝑘 (or 𝑁 = ∞ if char 𝑘 = 0), see [KPR20, Lemma 5.1]. We will
assume 𝑓 separable (this is the case under the hypothesis above), so that 𝑀 is inversible.

If 𝐴 is a Jacobian, 𝐴 = Jac(𝐶), taking a base point 𝑃 of 𝐶, it suffices to describe the map 𝐶 → 𝐴 → 𝐵. This
allows to solve the differential equation on the completion of a point of 𝐶 rather than of 𝐴, ie work with a power
series ring of dimension 1 rather than 𝑔.

We give a bit more details when 𝐴, 𝐵 are the Jacobians of genus 2 hyperelliptic curves 𝒞, 𝒞 ′, and refer to [KPR20,
§ 5] for a more treatment. We look at the compositium

𝒞 Jac(𝒞) Jac(𝒞 ′) 𝒞 ′2,sym 𝔸4𝑄↦[𝑄−𝑃] 𝑓 ∼ 𝑚

where 𝑃 is any rational point on 𝒞, and 𝑚 is the rational map given by

{(𝑥1, 𝑦1), (𝑥2, 𝑦2)} ↦ (𝑥1 + 𝑥2, 𝑥1𝑥2, 𝑦1𝑦2,
𝑦2 − 𝑦1
𝑥2 − 𝑥1

).

This compositum is a tuple of four rational fractions 𝑠, 𝑝, 𝑞, 𝑟 ∈ 𝑘(𝑢, 𝑣) that we call the rational representation of 𝑓
at the base point 𝑃.

Taking if needed a degree 2 étale extension to desymmetrize, we solve the power series 𝑥1, 𝑥2, 𝑦1, 𝑦2 of 𝑓𝑃, that
satisfy the differential system given by

⎧{{{{{
⎨{{{{{⎩

𝑥1 𝑑𝑥1
𝑦1

+
𝑥2 𝑑𝑥2

𝑦2
= (𝑚1,1𝑥 + 𝑚1,2)

𝑑𝑥
𝑦

𝑑𝑥1
𝑦1

+
𝑑𝑥2
𝑦2

= (𝑚2,1𝑥 + 𝑚2,2)
𝑑𝑥
𝑦

𝑦2
1 = 𝐸𝒞′(𝑥1)

𝑦2
2 = 𝐸𝒞′(𝑥2),

(𝑆)

where we consider the coordinates 𝑥, 𝑦 on 𝒞 as elements of 𝑘[[𝑧]], 𝑧 a uniformizer of 𝒞 around 𝑃.
The initialisation is given by the image of 𝑃 in 𝐶′sym,2 which is of the form {𝑄, 𝜄(𝑄)}, where 𝜄 is the hyperelliptic

involution. Now if we computed the tangent matrix via the image of 𝑃𝜖, we already know 𝑄. If we computed it by
using modular polynomials as in Section 5.4, then we need to use the geometry of the curves to recover 𝑄, see
[KPR20, Proposition 5.4].

A small difficulty is that the differential system is singular of valuation 1 [KPR20, Lemma 5.6]. so we need to use
the geometry of the curves again [KPR20, § 5.2] to find the first few terms in the series before switching to Newton
iterations [KPR20, Proposition 5.8].

Once we have enough precision, we do a rational reconstruction. The degrees of 𝑠, 𝑝, 𝑞, 𝑟 as morphisms from 𝒞
to ℙ1 can be computed as intersection degrees of the divisor 𝑓𝑃(𝒞) on Jac(𝒞 ′), and the polar divisors of 𝑠, 𝑝, 𝑞 and
𝑟 as functions on Jac(𝒞 ′) (or alternatively as intersection degrees of 𝒞 and the pullback of the polar divisor). For
an ℓ-isogeny we get bounds of the form 𝑂(ℓ), and for a 𝛽-isogeny, we get bounds of the form 𝑂(Tr𝐾/ℚ(𝛽)), see
[KPR20, § 5.3].

In summary:

Theorem 4.7.1 ([KPR20]). Let 𝑓 ∶ 𝐴 → 𝐵 be an ℓ-isogeny between 𝐴 = Jac(𝐶), 𝐵 = Jac(𝐶′), two Jacobians
of hyperelliptic curves of genus 2 such that we have the tangent matrix of 𝑓 (eg on the canonical differential basis
(𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦) induced by the equations of the hyperelliptic curves). Assume that 𝑝 > 8ℓ + 7 (or 𝑝 = 0). Then we can
compute the representation 𝑓 ∶ 𝐶 → Jac(𝐶) → Jac(𝐶′) which is given by rational functions of total degree 𝑂(ℓ) in
time 𝑂(ℓ) operations in an extension 𝑘′/𝑘 of degree at most 4 and 𝑂(1) square roots in 𝑘′.

The same holds in the Hilbert case for a 𝛽-isogeny. In this case, if 𝑝 = 0 or 𝑝 > 4Tr(𝛽) + 7, the representation
𝑓 ∶ 𝐶 → Jac(𝐶) → Jac(𝐶′) is given by rational functions of total degree 𝑂(Tr(𝛽)) and can be computed in quasi-linear
time in 𝑘′/𝑘 along with 𝑂(1) square roots in 𝑘′.

Of course, a similar algorithm works when 𝐴 or 𝐵 is a product of elliptic curves.

80

4.7 Isogenies from differential equations

Proof. The Newton algorithm to solve the differential system is quasi-linear, as is the rational reconstruction.
A first quadratic extension is needed to compute a generic base point 𝑃 (in the sense of [KPR20, Lemma 5.2])

to define the mapping 𝐶 → Jac(𝐶). If we start the algorithm with a curve with a base point 𝑃 already, then 𝑃
will generically be generic, so no extensions are needed (generically). The last quadratic extension is because for
simplicity we desymmetrize the system to work on the completion of 𝐶′2 rather than 𝐶′sym,2, in other words to
express 𝑓 ((𝑃′) − (𝑃)) as (𝑃1) + (𝑃2) − (𝑄) − (𝑖(𝑄)) where {𝑄, 𝑖(𝑄)} is the image of 𝑃 in 𝐶′sym,2 rather than as
a divisor written in Mumford coordinates.

Remark 4.7.2. The assumption on the characteristic to be able to solve the differential system is essentially harmless
in practice: as explained in [KPR20, § 1], if 𝑝 is too small compared to ℓ, we can use the idea of [LS08] to lift the
isogeny to ℤ𝑞/𝑝𝑚ℤ𝑞 with 𝑚 large enough and solve the differential system there. Once the lifting is done, this still
gives a quasi-linear algorithm if solving the differential system does not loose to much 𝑝-adic precision. When
𝑔 = 1 this was proved in [LV16; CEL20], and when 𝑔 = 2 this was recently proved in [Eid20]. For the complexity
of the lifting itself, see Section 5.4.3.

Remark 4.7.3. More generally, when we have an ℓ-isogeny 𝑓 ∶ (Jac(𝐶), ℓ𝛩) → (𝐴, ℒ), where 𝛩 is the Theta

divisor on Jac(𝐶). We can look at the composition 𝐶 𝑖−→ Jac(𝐶)
𝑓

−→ 𝐴, assuming that 𝐶 has a rational point for
simplicity. Then we may compute this map by solving a suitable differential equation.

Then by the push-pull formula, if 𝐷 is a divisor on Jac(𝐶), 𝑖∗(𝑖∗[𝐷]) = [𝑖(𝐶)] ⋅ 𝐷. By Poincaré’s adjunction
formula, deg([𝑖(𝐶)] ⋅ [𝛩]) = 𝑔. This is also a consequence of Riemann’s inversion of the Jacobi map: if 𝐸 is an
effective divisor of degree 𝑔 on 𝐶, (𝐶 + (𝐾𝐶 − 𝐸)) ∩ 𝛩 is linearly equivalent to 𝐸 (after pulling back to 𝐶).

Thus if 𝑠 is a section of ℒ𝑚 on 𝐴, if 𝐷𝑠 is the polar divisor of 𝑠, then since 𝑓 ∗𝐷𝑠 ≃ 𝑚ℓ𝛩, 𝑖∗𝑓 ∗𝑠 has for polar
divisor a divisor of degree 𝑚ℓ𝑔. This allows to bound the degree of pullback of sections of 𝐴 restricted to 𝐶.

In particular, we can apply this to study endomorphisms 𝛼 ∶ Jac(𝐶) → Jac(𝐶). For instance, when 𝐶 ∶ 𝑦2 = ℎ(𝑥)
is hyperelliptic, we can look at 𝐶 𝑖−→ Jac(𝐶) [ℓ]−−→ Jac(𝐶) (here there is no need to compute the action on tangent
space at 0 since we know that it is given by [ℓ]). Cantor’s polynomials [Can94] give the expression of this map
in terms of the Mumford coordinates (𝑢, 𝑣), this is the generalisation of the ℓ-division polynomial from elliptic
curves. The coordinates of 𝑢 and 𝑣 are given by rational functions whose polar divisors are 𝑂(1) multiple of 𝛩
where 𝛩 is the theta divisor, (we can determine these constants explicitly if needed).

Since ℓ∗𝛩 ≃ ℓ2𝛩, we deduce that the Cantor polynomials are of degree 𝑂(1)𝑔ℓ2 on 𝐶, hence of degree 𝑂(1)𝑔ℓ2

when expressed in terms of 𝑥, 𝑦. This answers a conjecture of [AGS19b, § 6].
This can be generalised to a version of Cantor polynomials for a real endomorphism 𝛼. If the real multiplication

field is given by 𝐾 = ℚ(𝜂), and 𝔩 is a prime above a totally split prime ℓ, we can find 𝛼 = ∑𝑔
𝑖=1 𝑎𝑖𝜂𝑖 in 𝔩 with

𝑎𝑖 = 𝑂(ℓ1/𝑔) (constants depending on 𝐾) [Abe20, Lemma 5]. So using the bound above on the 𝑎𝑖-multiplication,
we get that the 𝛼-Cantor polynomial have coefficients of degree 𝑂(ℓ2/𝑔). This also solves a conjecture in [Abe20,
§ 2] which allows to improve the exponent bound for point counting on RM hyperelliptic curves, from an exponent
𝑐 = 9 to 𝑐 = 7.

If we have a totally positive real endomorphism 𝛽, I conjecture that deg ([𝛽𝛩] ⋅ [𝑖(𝐶)]) = Tr(𝛽). This is true
when 𝑔 = 2, using a formula of Kani [Kan19a, Remark 16], see [KPR20, Proposition 5.13]. Applying the above
conjecture to 𝛽 = 𝛼2, this gives us the bound 𝑂(ℓ2/𝑔) directly. If 𝛼 is totally positive and 𝑓 ∶ Jac𝐶 → 𝐵 is an
𝛼-isogeny, then this conjecture would also prove that the restriction 𝑓 ∣ 𝐶 is of degree 𝑂(ℓ1/𝑔).

Update @2021-06: The conjecture is true. The following argument is due to Kamal Khuri Makdisi (possible
mistakes here are entirely mine).

Suppose that we have real multiplication by 𝒪𝐾. Then for all 𝑎 ∈ 𝒪𝐾, there exists a line bundle 𝐿𝑎 (by symmetry
of 𝑎) (it is enough here to consider its algebraic equivalence class, ie the corresponding polarisation, ie wemay tensor
it by elements in Pic0(𝐴)). We can check that 𝐿𝑎 is ample iff 𝑎 >> 0 is totally positive, that 𝜒(𝐿𝑎) = 𝑁𝐾/𝑄(𝑎), and
that the cohomologie of 𝐿𝑎 lives in 𝐻𝑖, 𝑖 the number of negative conjugate of 𝑎. Since 𝜒(𝐿𝑎) = (1/𝑔!)𝐿𝑎 ⋅𝐿𝑎 … 𝐿𝑎 by
Riemann-Roch, looking at 𝜒(𝐿𝑛1𝑎1+⋯+𝑛𝑔𝑎𝑔

) as a polynomial in the 𝑛𝑖 gives formula for the intersection products.
For instance when 𝑔 = 2, taking 𝑎1 = 𝑎 and 𝑎2 = 1, ie 𝐿1 = 𝛩, we have 𝜒(𝑛𝐿𝑎 + 𝑚𝛩) = 𝑁(𝑛𝑎 + 𝑚) =

(𝑛𝑎 + 𝑚)(𝑛𝜎(𝑎) + 𝑚) = (1/2)(𝑛2𝐿𝑎 ⋅ 𝐿𝑎 + 2𝑚𝑛𝐿𝑎 ⋅ 𝛩 + 𝑚2𝛩 ⋅ 𝛩. Looking at the coefficient of 𝑚𝑛, we recover
that 𝐿𝑎 ⋅ 𝛩 = 𝑎 + 𝜎(𝑎) = Tr𝐾/ℚ 𝑎.

For the more general computation of the intersection product 𝐶 ⋅ 𝐿 where 𝐶 is a curve of genus 𝑔 and 𝐿 a
divisor of dimension 𝑔 − 1, the same computation as in [GH14, Chapter 2, § 7] show that if 𝐿 = 𝐿(𝐻, 𝜒),
𝐶 ⋅ 𝐿(𝐻, 𝜒) = − ∑𝑔

𝑖=1 𝐸(𝑒𝑖, 𝑓𝑖) where 𝐸 = ℑ𝐻 is the symplectic form associated to 𝐻 and (𝑒1, … , 𝑒𝑔, 𝑓1, … 𝑓𝑔) is a
symplectic basis for the symplectic form 𝐸1 associated to 𝛩. When 𝐸 = 𝐸1, we get 𝐶 ⋅ 𝛩 = 𝑔. When 𝐿 = 𝐿𝑎, we
get Tr𝐾/ℚ(𝑎).

81

4 Isogenies

This approach works to bound the degree of division polynomial on a curve 𝐶 expressed in terms of coordinates
on Jac(𝐶) whose polar divisors are bounded multiples of 𝛩. This also suggests the alternative strategy to compute
Cantor like division polynomials by solving a differential equation rather than via a recursive formula. This paves
the way to extend [AGS19b; Abe20] to non hyperelliptic curves.

Remark 4.7.4. When computing an isogeny of the form 𝑓 ∶ 𝐴 = Jac(𝐶) → 𝐵, when we have a rational point 𝑃 on
𝐶, we have seen that it is convenient to use the representation of the isogeny as 𝑓 ∶ 𝐶 → 𝐵. Conversely, to construct
back the map Jac(𝐶) → 𝐵, it suffices to use elimination theory to build ∑ 𝑓 (𝑃𝑖) where 𝐷 = ∑ ((𝑃𝑖) − (𝑃)). Of
course when 𝑔 = 2, 𝐶 ∶ 𝑦2 = 𝑓 (𝑥) with deg 𝑓 = 5 and we use 𝑃 = ∞ the point at infinity, we can use Mumford’s
representation 𝐷 = (𝑢, 𝑣), where if 𝐷 = (𝑃1) + (𝑃2) − 2(𝑃), 𝑢(𝑥) = (𝑋 − 𝑥(𝑃1))(𝑋 − 𝑥(𝑃2)) = 𝑋2 − 𝑎𝑥 + 𝑏
and 𝑣(𝑥(𝑃𝑖)) = 𝑦(𝑃𝑖). To recover 𝑓 (𝐷), it suffices to compute 𝑓 (𝑋, 𝑣(𝑋)) + 𝑓 (𝑎 − 𝑋, 𝑣(𝑎 − 𝑋)) modulo 𝑢(𝑋).
We can also recover equations of the kernel by asking that 𝑓 (𝑋, 𝑣(𝑋)) = −𝑓 (𝑎 − 𝑋, 𝑣(𝑎 − 𝑋)). See Section 5.5 for
more details on this step.

4.7.3 Compressing isogenies

A separable isogeny 𝑓 ∶ 𝐴 → 𝐵 over a finite field 𝔽𝑞 is completely determined by its kernel 𝐾 = Ker 𝑓. Representing
this kernel requires 𝑂(deg 𝑓 log 𝑞) bits. But we can compress this by using the representation of 𝑓 via the differential
equations as above. For simplicity we treat the case of elliptic curves, the case of abelian surfaces (or abelian varieties)
being an immediate generalisation.

So we have a kernel 𝐾 of degree ℓ on an elliptic curve 𝐸 over 𝔽𝑞, which we can assume cyclic. We can represent
it via the polynomial of degree ℓ − 1 over 𝔽𝑞: ℎ(𝑥) = ∏𝑇∈𝐾0𝐸

(𝑥 − 𝑥(𝑇)) (or its square root if ℓ is odd), for a
total size of 𝑂(ℓ log 𝑞) bits. If 𝐾 = ⟨𝑇⟩ and 𝑇 ∈ 𝔽𝑞, then 𝑇 is of course enough to characterize 𝐾, and only require
𝑂(log 𝑞) bits. But in general 𝑇 will live in an extension of degree ℓ, so specifying 𝑇 requires 𝑂(ℓ log 𝑞) bits, and we
do not gain compared to directly giving the equation of 𝐾.

We now explain, if 𝑞 = 𝑝𝑑, how there is always a representation that use only 𝑂(𝑑 log ℓ + log 𝑞) bits. We remark
that if 𝑇 is rational, then this already imply log ℓ = 𝑂(log 𝑞) using the Hasse-Weil bounds since 𝑇 is of ℓ-torsion.
Hence there is always a representation of the kernel as compact as when 𝑇 is rational (whenever 𝑑 is fixed).

One way to achieve this representation is to encode 𝑓 by a point 𝑃 ∈ 𝐸 and the value 𝑓 (𝑃). This is sufficient to
represent 𝑓 provided that 𝑃 is a point of order 𝑁 ≥ ℓ (the exact value of 𝑁 is not needed), so this imply to work in
an extension 𝔽𝑞𝑚 of degree 𝑚 = 𝑂(log𝑞 ℓ), so (𝑃, 𝑓 (𝑃)) take size 𝑂(log ℓ + log 𝑞). There are several drawback to
this representation however: first we need to find a point 𝑃 of sufficiently large order, and secondly reconstructing 𝑓
amount to a rational fraction interpolation between the points [𝑖]𝑃 and [𝑖]𝑓 (𝑃) for 𝑖 = 1, … , ℓ. For elliptic curves
this is not a problem because 𝑓 is essentially given by a rational function 𝑢(𝑥) = 𝑔(𝑥)/ℎ(𝑥) in 𝑥 only, so can be
computed in quasi-linear time, but for higher dimension since we don’t control the interpolation points, hence we
cannot use fast interpolation.

A solution to both of these problems is to take for 𝑃 a fat point (say above 0𝐸), ie 𝑃 ∈ 𝐸(𝔽𝑞[𝜖]). If 𝑃 is not
trivial it will behave like a point of order 𝑝. Furthermore, by the computations of Section 4.7.1, to give such a 𝑃 and
its value 𝑓 (𝑃) is the same as giving equations of 𝐸 and 𝐸′ = 𝐸/𝐾 and the action of 𝑓 on the canonical differentials
𝑑𝑥/𝑦, or alternatively to give equations of 𝐸′ such that 𝑓 is normalised.

Then recovering 𝑓, hence 𝐾 amount to solving the differential equation from Equation (4.6), which we have seen
can be done in quasi-linear time. In other words the decompression is quasi-linear. Conversely, given 𝐾, Vélu’s
formula give the normalised 𝐸′, so the compression is linear. This strategy works as long as 𝑝 is sufficiently large
compared to ℓ. In small characteristic, we need to lift to ℤ𝑞/𝑝𝑚ℤ𝑞 with 𝑚 = 𝑂(log𝑝 ℓ), and give the normalised
equations of 𝐸 and 𝐸′ there. Thus in general the compressed representation takes 𝑂(𝑚 log 𝑞) = 𝑂(𝑑 log ℓ + log 𝑞)
bits. The decompression is still quasi linear, but for the compression we need to lift 𝐸 arbitrarily to 𝑝-adic precision
𝑚, and then lift 𝐾 and then compute the isogeny. Once 𝐾 is lifted, computing the isogeny using Vélu’s formula take
time 𝑂(ℓ𝑚 log 𝑞) = 𝑂(ℓ(𝑑 log ℓ + log 𝑞)), hence is quasi-linear if 𝑑 is fixed.

We will see methods for lifting 𝐾 in Chapter 6. We can lift 𝐾 by lifting ℎ(𝑥) as a factor of the ℓ-division polynomial
𝜓ℓ, since it is prime to its cofactor, by lifting a Bézout relation. Since 𝜓ℓ is of degree 𝑂(ℓ2), this costs 𝑂(ℓ2𝑚 log 𝑞)
using fast arithmetic. Alternatively, we can lift a generator 𝑇 of 𝐾, this involves working over an extension of degree
𝑂(ℓ), hence costs 𝑂(ℓ𝑚 log 𝑞). Indeed the multiplication by [ℓ] can be computed in time 𝑂(log ℓ) operations in
the base ring, so lifting 𝑇 is quasi-linear by Remark 6.2.3. Furthermore, since all the non trivial geometric points of
𝐾 live in the same extension of degree 𝑒 ∣ ℓ − 1, we can use an equal degree factorisation algorithm (after log ℓ gcds
and modular compositions) to find 𝑇 in time 𝑂(ℓ log 𝑞) operations in 𝔽𝑞 by [KU11].

In summary:

82

4.8 Conclusion and perspectives

Proposition 4.7.5. An ℓ-isogeny 𝑓 ∶ 𝐸 → 𝐸′ can be compressed into 𝑂(1) elements in ℤ𝑞/𝑝𝑚ℤ𝑞 with 𝑚 = 𝑂(log𝑝 ℓ),
ie in 𝑂(𝑚 log 𝑞) = 𝑂(𝑑 log ℓ + log 𝑞) bits, and the compression and decompression are quasi-linear, ie take time
𝑂(ℓ𝑚 log 𝑞) = 𝑂(ℓ(𝑑 log ℓ + log 𝑞)).

We will also see in Section 5.4.1 and Remark 5.4.5 that to give normalised equations for 𝐸 and 𝐸′ with respect to
the isogeny 𝑓 is also equivalent to give the values 𝑗(𝐸), 𝑑𝑗(𝐸, 𝑤𝐸), 𝑗(𝐸′), 𝑑𝑗(𝐸′, 𝑤𝐸′) such that 𝑓 ∗𝑤𝐸′ = 𝑤𝐸. This
is interesting because these values are encoded by the ℓ-modular polynomial 𝜙ℓ, see Section 5.3. In particular,
given 𝑗(𝐸), and 𝑗(𝐸′), one can compute 𝑑𝑗(𝐸′, 𝑤𝐸′) from 𝑑𝑗(𝐸, 𝑤𝐸) and the derivatives 𝜕/𝜕𝑋𝜙ℓ(𝑗(𝐸), 𝑗(𝐸′)) and
𝜕/𝜕𝑌𝜙ℓ(𝑗(𝐸), 𝑗(𝐸′)). (Lifting 𝑗(𝐸) to ℤ𝑞/𝑝𝑚ℤ𝑞 first if needed when 𝔽𝑞 is of small characteristic.) This has two
interesting consequences: the first is that we may recover 𝑓 only from the derivatives of 𝜙ℓ at 𝑗(𝐸), 𝑗(𝐸′), without
needing the kernel 𝐾 (we will go back to this in Section 5.4), and the second that the evaluated polynomials
𝜙ℓ(𝑗(𝐸), 𝑌) and 𝜕/𝜕𝑋𝜙ℓ(𝑗(𝐸), 𝑌) which are of size 𝑂(ℓ𝑚 log 𝑞) give a compact representation of all ℓ-isogenies
with domain 𝐸.

We will see in Section 5.3.8 that if 𝑞 = 𝑝𝑑, we can evaluate these polynomials in time 𝑂(ℓ2(𝑚 log 𝑞 + 𝑑2)). This
gives our third method to lift to precision 𝑚 (with the advantage of not needing the kernel). We will also use this in
Section 5.4.1 to study the problem of recovering the isogeny given only 𝐸 and 𝐸′.

4.8 conclusion and perspectives

We have described a general framework to compute isogenies in quasi-linear time. This framework encompasses
the isogenies computations done in the theta model [LR12; CR15; LR15b] and in Jacobians [CE14; Mil20]. There is
still exciting work to do, notably implementation wise for cyclic isogenies (speed up the implementation in the
theta models and adapt the methods to the Jacobian models). It should not be too hard to work out isogenies in the
projective rational model for abelian surfaces of Cassels and Flynn [Fly90; CF+96], by working out Algorithmic
Hypothesis 2.9.2 there. Having fast isogenies is an important tool that we will use in Chapters 5 and 7.

But the most exciting challenge is whether we could dream of an ℓ-isogeny algorithm in time 𝑂(log ℓ) (even
polynomial in log ℓ would be a breakthrough). Of course for this to possibly work we have to assume that the kernel
𝐾 has rational points, and we are given a basis 𝑃1, … , 𝑃𝑔 of 𝐾/𝑘 rather than equations of the kernel. Indeed, since
the kernel is of degree ℓ𝑔, just writing equations would be too costly.

When ℓ = ℓ𝑛
0 is the power of a small prime, there is such an algorithm, by decomposing the ℓ-isogeny as a

composition of 𝑛 ℓ0-isogenies. To get a quasi-linear algorithm is not trivial however, and is the main work of [JD11;
DJP14]. Indeed, let 𝑃 be a generator of 𝐾 ⊂ 𝐸[ℓ]. We may compute 𝑃1 = ℓ𝑛−1

0 𝑃, and if 𝑓1 is the corresponding
ℓ0-isogeny with kernel generated by 𝑃1, compute 𝑓1 and iterate. We could also compute all multiples ℓ𝑖

0𝑃 and push
them through 𝑓1, then 𝑓2 and so on. The best strategy depends on whether computing the ℓ0-multiple of a point or
pushing a point via an isogeny is faster, but both are in 𝑂(𝑛2) (as a dependency on 𝑛). An intermediate strategy
is as follow: assume 𝑛 = 𝑚2. Then we compute the ℓ𝑚𝑖

0 𝑃, and then 𝑃1, and we push them through 𝑓1 and so on.
This gives a complexity of 𝑂(𝑛3/2). A clever recursion on this strategy then gives a quasi linear algorithm. This of
course readily extends to abelian varieties.

Of course, to compute the multiplication by [ℓ], the double and add algorithm gives a complexity in 𝑂(log ℓ),
which do not depends on the prime decomposition of ℓ. For ℓ-isogenies, the above strategy does not work if ℓ is
prime. However there was a very recent breakthrough to compute ℓ-isogenies between elliptic curve using Vélu’s
formula in time 𝑂(√ℓ) [BDL+20].

This raises the exiting prospect that maybe there do exists an algorithm polynomial in 𝑂(log ℓ). Maybe such an
algorithm would also help in computing the Weil-Cartier pairing (see Section 3.6). Meanwhile, a more reasonable
task is to extend the 𝑂(√ℓ) algorithm to abelian varieties, using the formula of this Chapter.

83

Part II

ALGOR I THMS FOR MODULAR SPACES

85

5 MODULAR CORRESPONDANCES

contents
5.1 Introduction 87
5.2 A general modular correspondance in the theta model 88

5.2.1 Defining the modular correspondance 88
5.2.2 Fibers of the modular correspondance 90
5.2.3 Automorphisms of the modular correspondance 92

5.3 Modular polynomials 93
5.3.1 Definition of the modular polynomials 93
5.3.2 Computing Siegel modular polynomials in dimension 2 94
5.3.3 Computing Hilbert modular polynomials in dimension 2 95
5.3.4 Evaluating modular functions and period matrices 96
5.3.5 An evaluation-interpolation approach for covers and modular polynomials 98
5.3.6 Denominators of the modular polynomials 99
5.3.7 Size of the modular polynomials 102
5.3.8 Evaluating modular polynomials 103

5.4 Applications of modular polynomials to isogenies between abelian varieties 110
5.4.1 Elkies’ method for elliptic curves 110
5.4.2 Adapting Elkies’ method in higher dimension 112
5.4.3 Lifting isogenies 114
5.4.4 Elkie’s method for abelian surfaces 114

5.5 Applications to point counting for abelian surfaces 116
5.5.1 Complexity of Schoof ’s algorithm for abelian surfaces in the Siegel case 116
5.5.2 Complexity of a SEA algorithm for abelian surfaces in the Siegel case 117
5.5.3 Complexity of Schoof ’s algorithm for abelian surfaces in the Hilbert case 118
5.5.4 Complexity of a SEA algorithm for abelian surfaces in the Hilbert case 118
5.5.5 Complexity of a Schoof-Pila and SEA like algorithm in higher dimension 119

5.6 Applications to exploring isogeny graphs 121
5.6.1 Isogeny graphs over a finite field via modular polynomials 121
5.6.2 Isogeny graphs over a finite field via explicit isogeny computations 122
5.6.3 Type of ℓ-isogenies for abelian surfaces 123
5.6.4 The structure of the ℓ-isogeny graph of ordinary abelian surfaces 124
5.6.5 The structure of isogeny graphs of products of elliptic curves 125

5.7 Conclusion and perspectives 128

5.1 introduction

The main goal of this Chapter is to compute modular (aka Hecke) correspondances on Siegel ℌ𝑔 and Hilbert ℌ𝑔
1

moduli spaces. More details on these moduli and modular correspondances are in [Rob21, Chapter 5].
The Siegel moduli space parametrizing principally polarised complex abelian varieties is given by 𝒜𝑔,ℂ =

ℌ𝑔/ Sp2𝑔(ℤ) [Rob21, Section 5.4]. If 𝛤0(ℓ) ⊃ 𝛤(ℓ) is the standard level subgroup, we have a modular correspon-
dance 𝒜𝑔,𝛤0(ℓ),ℂ ≔ ℌ𝑔/𝛤0(ℓ) → 𝒜𝑔,ℂ × 𝒜𝑔,ℂ defined by 𝜏 ↦ (𝜏, 𝜏/ℓ) and parametrizing ℓ-isogenies.

Modular invariants then give (Siegel) modular polynomials which describe this correspondance. If 𝑔 = 1 the
standard modular invariant is the 𝑗-invariant, if 𝑔 = 2 several choice of Igusa 𝑗1, 𝑗2, 𝑗3 invariants have been used
in the literature. We will be using Streng’s version [Str10, § 2.1] which gives smaller coefficients. These modular
invariants can be defined in terms of the covariants 𝐼2, 𝐼4, 𝐼6, 𝐼10 of hyperelliptic curves of genus 2, or in terms of

87

5 Modular correspondances

the modular forms 𝜓4, 𝜓6, 𝜒10, 𝜒12 or in term of theta constants. See [Igu60; GL12, § 2; Str10, § 2.1 and § 7.1],
[KPR20, § 2.2 and § 3.3][§ 2 and § 3]DRcanonicalliftg2 for more informations and formulae; a summary is
in [Rob21, Section 8.2]. Igusa invariants are only birational invariants on 𝒜𝑔,ℂ when 𝑔 = 2, so the modular
polynomials only give a birational version of the modular correspondance (equivalently: they describe the modular
correspondance at the generic point of 𝒜𝑔,𝛤0(ℓ),ℂ; they describe the field extension ℂ(𝒜𝑔,𝛤0(ℓ),ℂ) = ℂ(𝑗𝑖(𝜏/ℓ))
over ℂ(𝒜𝑔,ℂ) = ℂ(𝑗𝑖(𝜏)), 𝑖 = 1, … , 3). For instance, for abelian surfaces, Streng’s invariants are defined when
𝜒10 ≠ 0, which is exactly the locus of Jacobians of hyperelliptic curves of genus 2. By [Igu60] this locus is
isomorphic to ℂ[𝑦1, 𝑦2, 𝑦3, 𝑦4]𝜇5 = Proj[𝐼2, 𝐼4, 𝐼6, 𝐼10][𝐼−1

10] (where the grading is such that 𝐼2𝑖 is of weight 2𝑖).
Streng’s invariants generate the coordinate ring 𝒜𝑔,ℂ[𝜓−1

4 , 𝜒−1
10] hence are modular invariants on this affine open.

Using [Igu60] wemay extend this to characteristic 𝑝, except when 𝑝 = 2 where Streng invariants have bad reduction,
so we have to use invariants constructed from 𝐽2, 𝐽4, 𝐽6, 𝐽8, 𝐽10 which have good reduction everywhere, see [MR22a].

Complex abelian varieties with real multiplication by 𝒪ℱ (ℱ a totally real number field of degree 𝑔) are
parametrized by the Hilbert moduli space ℌ𝑔

1/ Sl2(𝒪ℱ ⊕ 𝜕−1
ℱ) [Rob21, Section 5.5]. If 𝛽 ≫ 0 is totally posi-

tive, the level subgroup 𝛤0(𝛽) allows to define the moduli space ℌ𝑔
1/𝛤0(𝛽) paremetrizing 𝛽-isogenies. Hilbert

modular polynomials are then defined using Hilbert modular invariants. For abelian surfaces we either use Gund-
lach invariants [Gun63; Gun65] (in small discriminant), or pullback of Igusa invariants. We have also computed
modular polynomials (both in the Hilbert and Siegel case) using level 2 theta constants [Mil15a], [MR20b].

These modular correspondances extend over ℤ and behave well (the moduli stacks are smooth and the maps
of the correspondance are representable finite étale) over ℤ[1/ℓ], ie for étale isogenies, see [Rob21, Sections 5.7
and 5.8], By contrast, fibers of the 𝑝-modular correspondance in caracteristic 𝑝 are not even quasi-finite when
𝑔 > 1, for instance there are fiber components of strictly positive dimension corresponding to kernels isomorphic
to 𝛼𝑔

𝑝 above a supersingular abelian variety, see [CN90].
From the algebraic point of view, (scalar) modular forms can be seen as sections of the Hodge line bundle on

𝒜𝑔 (which is ample, see [FC90, Chapter V]). If 𝜋 ∶ 𝑋𝑔 → 𝒜𝑔 is the universal abelian stack with universal section
𝜖, the Hodge vector bundle is ℋ ≔ 𝜋∗𝛺1

𝒜𝑔
≃ 𝜖∗𝛺1

𝒜𝑔
. (The isomoprhism comes from [EGM12, Prop. 3.15] and

the fact that since an abelian variety as only constant global sections since it is projective, a global differential
form is invariant.) If 𝜌 ∶ Gl𝑔 → 𝑉 is a representation, a modular form of weight 𝜌 is a section 𝑠 of 𝜌(ℋ) (along
with some boundary conditions if 𝑔 = 1), ie a functorial application (𝐴, 𝑤𝐴) ↦ 𝔤(𝐴, 𝑤𝐴) where 𝑤𝐴 is a basis of
differential forms, such that if 𝜂 ∶ 𝐴 → 𝐴′ is an isomorphism, and 𝛾 is the matrix of 𝜂∗ in the bases 𝑤𝐴′ , 𝑤𝐴, then

𝔤(𝐴, 𝑤𝐴) = 𝜌(𝛾)𝔤(𝐴′, 𝑤𝐴′). Analytically, this corresponds to 𝔤(𝛾 ⋅ 𝜏) = 𝜌(𝑐𝜏 + 𝑑)𝔤(𝜏), where 𝛾 = (𝑎 𝑐
𝑏 𝑑).

This allows to have an algebraic interpretation of the modular polynomials. We refer to [Rob21, Chapter 5] for
more details.

A slight difficulty is that modular invariants give coordinates on the coarse moduli space, and on the level of
coarse spaces the moduli are no longer smooth everywhere (although they are smooth at points with generic
automorphisms). See [KPR20, § 4.2] for a detailed study of the modular correspondance at the level of the coarse
spaces, compared to the modular correspondance defined at the level of the algebraic stacks.

In Section 5.2 we describe in more details the modular correspondance in the theta model, and classify its fibers.
Modular polynomials, especially modular polynomials for abelian surfaces are described in Section 5.3, both for the
Siegel and Hilbert (ie real multiplication) case. We give a general evaluation/interpolation algorithm, describe their
size and then give algorithms to compute the evaluated modular polynomials directly. We then give applications
of modular polynomials for isogenies computations in Section 5.4, point counting in Section 5.5, and exploring
isogeny graphs in Section 5.6. We will see other applications for canonical lifts in Chapter 6 and class polynomials
of CM abelian varieties in Chapter 7. Finally Section 5.7 gives some perspectives.

5.2 a general modular correspondance in the theta model

We construct a modular correspondance 𝒜𝑔,ℓ𝑛 → 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛 in the theta model, which will be used in Chapter 6
to compute canonical lifts.

5.2.1 Defining the modular correspondance

In this section, we denote by𝒜𝑔,𝑛 themoduli space overℤ[1/𝑛] of abelian varieties with a symmetric theta structure
of level 𝑛 (with 𝑛 even), and 𝒳𝑔,𝑛 the universal abelian scheme above it, with a totally symmetric normalized
relatively ample line bundle (see Remark 2.7.5).

88

5.2 A general modular correspondance in the theta model

If 𝑛 ≥ 4, Riemann’s relations define projective schemes 𝒳𝑔,𝑛 → 𝒜𝑔,𝑛 by Theorem 2.7.4, and we denote (𝜃𝑖)𝑖∈𝑍(𝑛)

the theta coordinates on either 𝒳𝑔,𝑛 or 𝒳𝑔,𝑛 and (𝜃𝑖(0))𝑖∈𝑍(𝑛) the theta null point coordinates on either 𝒜𝑔,𝑛 or
𝒜𝑔,𝑛 coming from the section 𝑠 ∶ 𝒜𝑔,𝑛 → 𝒳𝑔,𝑛 (which restricted to 𝒜𝑔,𝑛 corresponds to the zero section of 𝒳𝑔,𝑛).

Then the isogeny and change of level formula from Chapters 2 and 4 naturally extend to define a modular
correspondance 𝜋 ∶ 𝒜𝑔,ℓ𝑛 → 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛, induced by 𝜋 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳𝑔,𝑛 × 𝒳𝑔,𝑛 where the first projection
𝜋1 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳𝑔,𝑛 is the universal change of level structure and the second projection 𝜋2 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳𝑔,𝑛 is the
universal isogeny.

In fact if ℓ is prime and prime to 𝑛, we may see 𝜋1 ∶ 𝒜𝑔,ℓ𝑛 → 𝒜𝑔,𝑛 as a 𝛤/𝛤(ℓ) = Sp2𝑔(ℤ/ℓℤ) (Galoisian)
cover were 𝛤 = Sp2𝑔 ℤ, and the image 𝜋(𝒜𝑔,ℓ𝑛) ⊂ 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛 then defines a 𝛤/𝛤0(ℓ) (non Galoisian) cover
𝒜𝑔,𝑛,𝛤0(ℓ) over 𝒜𝑔,𝑛. We will detail the construction of the map 𝜋 and also explain how to define a 𝛤/𝛤1(ℓ) (non
Galoisian) cover 𝒜𝑔,𝑛,𝛤1(ℓ) over 𝒜𝑔,𝑛. We restrict to ℓ prime to 𝑛, but the general case is not harder, see Section 2.10
and [Rob10, Chapitre 6].

On 𝒳𝑔,𝑛, we have an explicit action 𝜆 of the Heisenberg group ℋ(𝑛) on 𝛤(ℒ𝒳𝑔,𝑛
) [Mum67a, Step 1, p. 84],

whose restriction to 𝒳𝑔,𝑛 is the one induced by the universal theta structure. Writing ℋ(𝑛) = 𝔾𝑚 × 𝑍(𝑛) × �̂�(𝑛)
where �̂�(𝑛) ≃ ⊕𝑔

𝑖=1𝜇𝑛 is the Cartier dual of 𝑍(𝑛), this canonical action is given by 𝜆(𝑖).𝜃𝑗 = 𝜃𝑖+𝑗 for 𝑖 ∈ 𝑍(𝑛)
and 𝜆(𝑖).𝜃𝑗 =< 𝑖, 𝑗 > 𝜃𝑗 for 𝑖 ∈ �̂�(𝑛) where < 𝑖, 𝑗 > is the canonical pairing between 𝑍(𝑛) and its Cartier dual
�̂�(𝑛). Acting on the zero section 𝑠 gives a canonical basis of 𝑛-torsion (for 𝒳𝑔,𝑛) and Mumford’s isogeny theorem
[Mum66] Theorem 5.2.6 describes the universal isogeny (with a descent of level of the theta structure)

𝜋2 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳𝑔,𝑛, (𝜃𝑖)𝑖∈𝑍(ℓ𝑛) ↦ (𝜃𝑖)𝑖∈𝑍(𝑛)⊂𝑍(ℓ𝑛). (5.1)

On 𝒳𝑔,ℓ𝑛 the level ℓ𝑛 theta structure induces a symplectic basis of the ℓ𝑛-torsion, and in particular a symplectic
decomposition 𝐾1 ⊕ 𝐾2 of the ℓ-torsion. Over a field 𝑘, 𝐾1 = {(< 𝑖, 𝑗 > 𝜃𝑗(0))𝑗∈𝑍(ℓ𝑛)}𝑖∈�̂�(ℓ) is the kernel
of 𝜋2, while 𝐾2 = {(𝜃𝑖+𝑗(0))𝑗∈𝑍(ℓ𝑛)}𝑖∈ℤℓ

is such that 𝜋2(𝐾2) = {(𝜃𝑖+𝑗(0))𝑗∈𝑍(𝑛)}𝑖∈ℤℓ
is the kernel of the

ℓ-contragredient isogeny 𝜋2.
We can now describe the modular correspondance as follow.

a map induced by 𝜋2. Denote 𝛱2 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳ℓ𝑔
𝑔,𝑛, (𝜃𝑖)𝑖∈𝑍(ℓ𝑛) ↦ (𝜋2(𝜆(𝑖)(𝜃𝑗))𝑗∈𝑍(ℓ𝑛))𝑖∈𝑍(𝑙)

, where 𝜆 is

the action of the Heisenberg group ℋ(ℓ𝑛) described above. For 𝑗 ∈ ℤℓ the component 𝛱 𝑗
2 of 𝛱2 is given by

𝛱 𝑗
2

∗
(𝜃𝒳𝑔,𝑛

𝑖) = 𝜃𝒳𝑔,ℓ𝑛
𝑖+𝑗 , 𝑖 ∈ 𝑍(𝑛). (5.2)

The image of the restriction of 𝛱2 to 𝒜𝑔,ℓ𝑛 (seen as the zero section of 𝒳𝑔,ℓ𝑛) then describes the moduli scheme
𝒯𝑔,𝑛,ℓ of abelian varieties with a level 𝑛 symmetric theta structure together with the points of an isotropic kernel of
the ℓ-torsion. This is the 𝛤/𝛤1(ℓ) cover 𝒜𝑔,𝑛,𝛤1(ℓ) of 𝒜𝑔,𝑛 we were looking for.

It is easy to see that 𝜋2 extends to a morphism 𝜋2 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳𝑔,𝑛 (or rather a rational map since contrary to 𝜋2,
𝜋2 may not be defined everywhere). Since the action 𝜆 is defined on 𝒳𝑔,ℓ𝑛, we can also extend 𝛱2 to a (rational)

morphism 𝛱2 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳
ℓ𝑔

𝑔,𝑛. Let 𝒯𝑔,𝑛,ℓ be the image of 𝒜𝑔,ℓ𝑛. By construction 𝒯𝑔,𝑛,ℓ embeds into 𝒯𝑔,𝑛,ℓ and since

we have explicit equations for 𝒜𝑔,ℓ𝑛, it is easy to derive equations for 𝒯𝑔,𝑛,ℓ.

More Details 5.2.1. Namely, letting (𝑃𝑗) ∈ 𝒳
ℓ𝑔

𝑔,𝑛(𝑘), the 𝑃𝑗 are in 𝒯𝑔,𝑛,ℓ when 𝑃0 ∈ 𝒜𝑔,𝑛 and the 𝑃𝑗 satisfy all (projective)
Riemann relations of Theorem 2.7.3. If (𝑃𝑗) ∈ 𝒳 ℓ𝑔

𝑔,𝑛, as usual a suitable subset of Riemann relations given by differential
additions and three way additions suffices to encode all the relations.

defining 𝜋1. Likewise, we may define a descent of level formula. We introduced several version of these in
Section 2.10.3, and they all easily extend to the universal abelian scheme. Since we work projectively here, they are
all equivalent, and we choose to detail the Koizumi-Kempf descent of level formula (because we have a modular
interpretation of it).

So let 𝑟 = 1 if ℓ is a square, 𝑟 = 2 if ℓ is a sum of two squares and 𝑟 = 4 otherwise (the reason of our choice of 𝑟
will appear in Step 3). On 𝒜𝑔,ℓ𝑛 the Segre embedding yields a map 𝑆 ∶ 𝒜𝑔,ℓ𝑛 → 𝒜𝑟𝑔,ℓ𝑛, which sends the universal
abelian variety 𝒳𝑔,ℓ𝑛 to 𝒳𝑟

𝑔,ℓ𝑛 with its product theta structure [Mum66, Lemma 1, p. 323]. Concretely,

𝑆∗(𝜃𝒳𝑟𝑔,ℓ𝑛
𝑖1,…,𝑖𝑟) = 𝜃𝒳𝑔,ℓ𝑛

𝑖1 ⋅ ⋯ ⋅ 𝜃𝒳𝑔,ℓ𝑛
𝑖𝑟 (5.3)

89

5 Modular correspondances

In particular, for a 𝑘-rational point of 𝒜𝑔,ℓ𝑛 corresponding to (𝐴, ℒℓ) (where ℒ is of level 𝑛), 𝑆 sends the theta
null point of level ℓ𝑛 of (𝐴, ℒℓ) to the theta null point of (𝐴𝑟, ℒℓ ⋆ ⋯ ⋆ ℒℓ)

Let 𝐹 be an 𝑟 × 𝑟 matrix with integral coefficients such that 𝑡𝐹𝐹 = ℓ Id, the Koizumi-Kempf formula [Koi76;
Kem89a] yields a map 𝒜𝑟𝑔,ℓ𝑛 → 𝒜𝑟𝑔,𝑛 which corresponds to the isogeny 𝐹 ∶ 𝒳𝑟

𝑔,ℓ𝑛 → 𝒳𝑟
𝑔,ℓ𝑛 along with the descent

of product theta structure from level ℓ𝑛 to level 𝑛. By Section 4.4.3, the formula is given, for (𝑖1, … , 𝑖𝑟) ∈ 𝑍(𝑛)𝑟, by

𝐹∗(𝜃𝒳𝑟𝑔,𝑛
𝑖1,…,𝑖𝑔) = 𝐹∗(𝜃𝒳𝑔,𝑛

𝑖1 ⋅ ⋯ ⋅ 𝜃𝒳𝑔,𝑛
𝑖𝑟) = ∑

(𝑗1,…,𝑗𝑟)∈𝑍(ℓ𝑛)
𝑟

𝐹(𝑗1,…,𝑗𝑟)=(𝑖1,…,𝑖𝑟)

𝜃𝒳𝑔,ℓ𝑛
𝑗1 ⋅ ⋯ ⋅ 𝜃𝒳𝑔,ℓ𝑛

𝑗𝑟 . (5.4)

Since Equation (5.4) is homogeneous, this is well defined for projective coordinates.
In particular, seeing 𝐹 as an isogeny ℱ sends (𝐴𝑟, ℒℓ ⋆ ⋯ ⋆ ℒℓ) to (𝐴𝑟, ℒ ⋆ ⋯ ⋆ ℒ), from which (𝐴, ℒ) can

be recovered by projecting to one of the factor. Then 𝜋1 is the composition of this projection with ℱ ∘ 𝑡𝐹 ∘ 𝑆.
Then we define 𝜋 = 𝜋1 × 𝜋2 and 𝛱 = 𝜋1 × 𝛱2.

Remark 5.2.2. We may extend 𝜋, and 𝛱 to 𝜋 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳𝑔,𝑛 × 𝒳𝑔,𝑛 and 𝛱 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳𝑔,𝑛 × 𝒳
ℓ𝑔

𝑔,𝑛. They also have
affine versions, where to a trivialisation of ℒℓ on 𝐴 we associate corresponding trivialisations of ℳ on 𝐵 and of
ℒ⋆ℓ on 𝐴𝑟.

5.2.2 Fibers of the modular correspondance

We may exploit the modular correspondance to find isogenous abelian varieties as follow. Starting from a 𝑘-rational
point (𝐴, ℒ, 𝛩𝐴) (we will often drop the theta structure for simplicity) of 𝒜𝑔,𝑛, we may either look at the geometric
fiber 𝜋−1

1 (𝐴, ℒ) ⊂ 𝒜𝑔,ℓ𝑛 and project it into 𝒜𝑔,𝑛 via 𝜋2 or instead look at 𝜋1 ∘ 𝜋−1
2 . This exactly correspond to

the two isogeny strategies considered in Chapter 4.

More Details 5.2.3. Note that due to the way we chose to construct our descent map 𝜋1, the point of level ℓ𝑛 above 𝑥 of level 𝑛
is given by ℓ𝑦, where 𝑦 ∈ 𝜋−1

1 (𝑥), so in the first method the isogeny is given via ℓ𝜋2 ∘ 𝜋−1
1 .

Let us illustrate the second method here, the first would proceed in the same manner. This is simply a restatement
of the method of Section 2.10.1 from a more “modular” point of view.

Let us then start with (𝐵, ℳ) a 𝑘-rational point of 𝒜𝑔,𝑛. We first go through the intermediate covers 𝒜𝑔,ℓ𝑛 →
𝒜𝑔,𝑛,𝛤1(ℓ) → 𝒜𝑔,𝑛,𝛤0(ℓ) → 𝒜𝑔,𝑛, a preimage of (𝐵, ℳ) in 𝒜𝑔,𝑛,𝛤1(ℓ) thus correspond to a maximal totally isotropic
kernel 𝐾 of the ℓ-torsion, along with an explicit indexing of the geometric points of 𝐾 by (ℤ/ℓℤ)𝑔. The point of
going through 𝒯𝑔,𝑛,ℓ = 𝒜𝑔,𝑛,𝛤1(ℓ) is that we have explicit equations of 𝒯𝑔,𝑛,ℓ, induced by the Riemann relations
on 𝒜𝑔,ℓ𝑛 (which define this projective scheme by Theorem 2.7.4). Indeed, up to reindexing, 𝛱2 simply maps the
universal (projective) theta coordinates (𝜃𝑖)𝑖∈𝑍(ℓ𝑛) to tuples of projective coordinates ((𝜃𝑖+𝑗)𝑗∈𝑍(𝑛))𝑖∈ℤℓ

.

By construction, given such a preimage (𝐵, 𝐾) in 𝒯𝑔,𝑛,ℓ, geometric points of 𝛱−1
2 (𝐵, 𝐾) ⊂ 𝒜𝑔,ℓ𝑛 corresponds

to abelian varieties 𝐴𝑘 ∈ 𝒜𝑔,ℓ𝑛(𝑘) with a level ℓ𝑛 symmetric theta structure such that the universal isogeny 𝜋2
restricted to 𝐴 is the contragredient isogeny of 𝐵𝑘 → 𝐴𝑘 = 𝐵𝑘/𝐾𝑘. More precisely, if we start (𝐵, ℳ, 𝐾)/𝑘 ∈
𝒜𝑔,𝑛,𝛤0(ℓ), if 𝑘′ is an étale extension of 𝑘 such that all points of 𝐾 are defined, then fixing an isomorphism ℤℓ → 𝐾
over 𝑘′ yields a 𝑘′-point of 𝒯𝑔,𝑛,ℓ. A 𝑘"-point in 𝛱−1

2 (𝐵, 𝐾) then correspond to a theta structure on (𝐴, ℒℓ) defined
over 𝑘" such that the contragredient isogeny 𝑓 of ̃𝑓 ∶ 𝐵 → 𝐴 is given by the pullback of 𝜋2 to 𝐴. The discussions in
Section 2.10.1 can then be reinterpreted as a way to use Riemann relations to give explicit equations for 𝛱−1

2 (𝐵, 𝐾)
and 𝛱−1

2 (𝐵, 𝐾).
Let us recall this briefly: the abelian variety (𝐵, ℳ)/𝑘 is described by its theta null point (𝜃𝐵

𝑖 (0))𝑖∈𝑍(𝑛), and
the points of 𝐾 by their projective theta coordinates {(𝜃𝐵

𝑖 (𝑃𝑗))𝑖∈𝑍(𝑛)}𝑃𝑗∈ℤℓ
}. Take arbitrary affine lifts of the theta

coordinates of 𝑃𝑗. Introduce indeterminates (𝜆𝑖)𝑖∈ℤℓ
, and construct the affine point 𝑄 = (𝜆𝑖𝜃𝑗(𝑃𝑖))𝑖∈ℤℓ,𝑗∈𝑍(𝑛).

Via the Chinese remainder theorem, 𝑄 can be seen as a point on ℙ𝑍(ℓ𝑛)
𝑘 . Plugging the equations of 𝒜𝑔,ℓ𝑛 on 𝑄 then

describes the zero dimensional scheme 𝛱−1
2 (𝐵, 𝐾) in term of the 𝜆𝑖. In practice, as explained in Section 2.10.1,

only a subset of the Riemann equations defining 𝒜𝑔,ℓ𝑛 are enough to describe 𝛱−1
2 (𝐵, 𝐾) completely: the ones

needed for differential additions and three way additions.

90

5.2 A general modular correspondance in the theta model

Indeed, from differential additions, we get relations of the type 𝛾″
𝑖𝑗𝜆𝑖−𝑗𝜆𝑖+𝑗 = 𝛾′

𝑖𝑗𝜆2
𝑖 𝜆2

𝑗 for some constants 𝛾″
𝑖𝑗, 𝛾′

𝑖𝑗.
Since over 𝑘 there is always a Riemann relation yielding a non-zero coefficient, we can assume that 𝛾″

𝑖𝑗 is inversible
and get an equation

𝜆𝑖−𝑗𝜆𝑖+𝑗 = 𝛾𝑖𝑗𝜆2
𝑖 𝜆2

𝑗 . (5.5)

Likewise the Riemann equations for three way additions yields relations of the form

𝜆𝑖+𝑗+𝑘𝜆𝑖𝜆𝑗𝜆𝑘 = 𝛾𝑖𝑗𝑘𝜆𝑖+𝑗𝜆𝑖+𝑘𝜆𝑗+𝑘. (5.6)

Thus the 𝜆𝑖 are completely determined from the 𝜆𝑒𝑖
and 𝜆𝑒𝑖+𝑒𝑗

, where (𝑒1, … , 𝑒𝑔) is a basis of ℤℓ for 𝑖 ≠ 𝑗 ∈
{1, … , 𝑔}, if they are non zero. Indeed from these indeterminates, one can use Equation (5.6) repeatedly to compute
all 𝜆𝑒𝑖1

+𝑒𝑖2+⋯+𝑒𝑖𝑚
and then use Equation (5.5) to compute all 𝜆𝑛1𝑒1+𝑛2𝑒2+⋯+𝑛𝑔𝑒𝑔

where 𝑛1, … , 𝑛𝑔 ∈ {0, … , 𝑛−1}.
Finally looking at the Riemann equations yielding the opposite of a point, we get the symmetry relations

𝜆𝑖 = 𝛾𝑖𝜆−𝑖. (5.7)

Writing ℓ = 2ℓ′ + 1 (ℓ is odd), using Equations (5.5) and (5.7) we get equations of the type 𝜆ℓ
𝑖 = 𝐶𝑖. But we have

just seen that all 𝜆𝑖 can be rewritten in terms of the 𝜆𝑒𝑖
, 𝜆𝑒𝑖+𝑒𝑗

so in final it remains the equations:

𝜆ℓ
𝑒𝑖

= 𝐶𝑒𝑖
𝜆ℓ

𝑒𝑖+𝑒𝑗
= 𝐶𝑒𝑖,𝑒𝑗

(5.8)

for 𝑖 ≠ 𝑗 ∈ {1, … , 𝑔}. We refer to [LR12; CR15] for more details.

Proposition 5.2.4. Let 𝑒1, … , 𝑒𝑔 be a basis of ℤℓ. The zero dimensional scheme 𝛱−1
2 (𝐵, 𝐾) is the open subscheme of

𝛱−1
2 (𝐵, 𝐾) given by 𝜆𝑖 ≠ 0. It is isomorphic via Equations (5.5) and (5.6) to the scheme defined by Equation (5.8) in

𝑘[𝜆𝑒𝑖
, 𝜆𝑒𝑖+𝑒𝑗

] where 𝑖 ≠ 𝑗 ∈ {1, … , 𝑔}.

Proof. By the discussion above, the scheme 𝑆 defined by Equations (5.5) to (5.7) contains the scheme 𝛱−1
2 (𝐵, 𝐾). If

(𝐴, ℒ) is an abelian variety with a symmetric level ℓ𝑛 theta structure coming from a geometric point of 𝛱−1
2 (𝐵, 𝐾),

then 𝜆𝑖 ≠ 0, otherwise the image of the ℓ-torsion by 𝜋2 would not be well defined. Furthermore, looking at the
action of the subgroup 𝒢𝐴,𝐾 of automorphisms of the theta group on the theta null point of 𝐴 which leave invariant
(via 𝛱2) the data (𝐵, 𝐾) shows that the orbit of 𝐴 is of degree ℓ𝑔(𝑔+1)/2 (see [FLR11]). On the other hand the above
discussion shows that the open locus 𝑆 of 𝑆 given by 𝜆𝑖 ≠ 0 is isomorphic to the scheme defined by Equation (5.8),
which is of degree ℓ𝑔(𝑔+1)/2 so we have equality. In particular the action of 𝒢𝐴,𝐾 on 𝛱−1

2 (𝐵, 𝐾) is transitive, as
expected since the action of the automorphisms of the theta group on the fibers of 𝜋2 is already transitive.

Concretely, to a geometric point of 𝑆, the corresponding point 𝑄 of 𝛱−1
2 (𝐵, 𝐾) is constructed as follow: first use

Equations (5.5) and (5.6) to compute all 𝜆𝑖, 𝑖 ∈ ℤℓ, and then set 𝑄 = (𝜆𝑖𝜃𝑗(𝑃𝑖))𝑖∈ℤℓ,𝑗∈𝑍(𝑛). This is exactly the
method of Section 2.10.1.

Remark 5.2.5. Over a local ring (𝑅, 𝑚), the same method can be used to describe 𝛱−1
2 (𝐵, 𝐾). In this case we

need to take primitive affine lifts of the points 𝑃𝑖 in the kernel (meaning that their reduction modulo 𝑚 is not
trivial), and the condition 𝜆𝑖 ≠ 0 becomes 𝜆𝑖 ∉ 𝑚, so that the 𝜆𝑖 are inversible in 𝑅. Indeed an abelian scheme
over 𝑅 has good reduction over 𝑘 = 𝑅/𝑚, so the image of the theta null point of level ℓ𝑛 on 𝐵 by 𝛱1 has to be well
defined over 𝑘.

And so we recover once again the isogeny algorithm of Section 4.4

Theorem 5.2.6. Let 𝑛 be an even integer greater or equal to 4 and ℓ be an integer prime to 𝑛. The image of 𝛱2 × 𝜋1 ∶
𝒜𝑔,ℓ𝑛 → 𝒯𝑔,𝑛,ℓ × 𝒜𝑔,𝑛 induces a modular correspondence defined over ℤ[1

ℓ𝑛].
Let 𝑘 be a field of characteristic prime to ℓ𝑛. If (𝐵, 𝐾) is a 𝑘-point of 𝒯𝑔,𝑛,ℓ, then 𝜋1 ∘ 𝛱−1

2 (𝐵, 𝐾) only has a single
𝑘-point (with multiplicity ℓ𝑔 and which is actually defined over 𝑘), corresponding to 𝐴 = 𝐵/𝐾.

Proof. The first part follows from the steps above. For the statement over a field 𝑘, by construction, each geometric
point in 𝛱−1

2 (𝐵, 𝐾) corresponds to 𝐴 = 𝐵/𝐾 with a level ℓ𝑛 structure compatible with the level 𝑛 structure on 𝐵.
Descending the product level ℓ𝑛 structure via 𝐹 then induces the same level 𝑛 structure on 𝐴.

91

5 Modular correspondances

Let us extend this construction to 𝒳𝑔,ℓ𝑛, ie study the fibers of 𝜋2 ∶ 𝒳𝑔,ℓ𝑛 → 𝒳𝑔,𝑛, once we have chosen a point 𝐴
(encoded by its theta null point of level ℓ𝑛) in 𝛱−1

2 (𝐵, 𝐾). If 𝑃 is a point of 𝐵, we will also explain how to compute
𝑓 (𝑃), where 𝑓 ∶ 𝐵 → 𝐴 = 𝐵/𝐾 is the corresponding isogeny.

The action by translation of the finite group scheme 𝐾 on 𝑃 yields a subscheme of 𝑃 + 𝐾 of 𝐵ℓ𝑔 and one can then
consider the points of the fiber 𝛱−1

2 (𝑃 + 𝐾). Then we descend this subscheme via 𝜋1, ie by first using the Segre
embedding, then computing first 𝑡𝐹 formally on this subscheme by using the addition law, so without changing
level (this step was actually unnecessary for the theta null point since 𝑡𝐹(0) = 0), and then 𝐹 by using Koizumi’s
relation to go from level ℓ𝑛 to level 𝑛. This gives a scheme whose unique point is 𝑓 (𝑃) with multiplicity ℓ𝑔(𝑔+1)/2ℓ𝑔

(over each of the ℓ𝑔(𝑔+1)/2 geometric point of 𝛱−1
2 (𝐵, 𝐾) in 𝒜𝑔,ℓ𝑛, the fiber 𝛱−1

2 (𝑃 + 𝐾) in 𝒳𝑔,ℓ𝑛 is of degree ℓ𝑔.
Of course we may fix 𝐴 and compute the fiber 𝛱−1

2 (𝑃 + 𝐾) over 𝐴 to get a scheme of multiplicity only ℓ𝑔.) The
strategy extends to (ℬ, 𝒦)/ Spec𝑅 an 𝑅-point of 𝒯𝑔,𝑛,ℓ, and 𝑃 a 𝑅′-point of ℬ.

Concretely, if (𝐵, 𝐾) is a 𝑘-point of 𝒯𝑔,𝑛,ℓ and 𝑃 a 𝑘-point of 𝐵, 𝑓 ∶ 𝐵 → 𝐴 = 𝐵/𝐾 the isogeny, then we have that
̃𝑓 ∶ (𝐴, ℒℓ) → (𝐵, ℳ) given by the ℓ-contragredient isogeny is the pullback of 𝜋2. The abelian variety 𝐴 is given

by its theta null point of level ℓ𝑛, a point (possibly defined over an extension) of 𝛱−1
2 (𝐵, 𝐾). Then the geometric

points of 𝛱−1
2 (𝑃 + 𝐾) over 𝐴 are the preimages 𝑓 −1(𝑃). We can give equations for these preimages as before, by

introducing the projective point 𝑄 = (𝜇𝑖𝜃𝑗(𝑃 + 𝑃𝑖))𝑖∈ℤℓ,𝑗∈𝑍𝑛, where 𝜇𝑖 are indeterminates and we recall that 𝑃𝑖

are the geometric points of 𝐾. If 𝑄 ∈ 𝒳𝑔,ℓ𝑛 (rather than just 𝒳𝑔,ℓ𝑛), then we have 𝜇𝑖 ≠ 0. Plugging the equations
of 𝐴 (given by Riemann relations) give equations for the 𝜇𝑖. More precisely differential additions and three way
additions give equations of the form 𝜇𝑖+𝑗 = 𝜖𝑖𝑗𝜇𝑖𝜇𝑗. So all the 𝜇𝑖 are determined from 𝜇𝑒𝑖

where (𝑒1, … , 𝑒𝑔) is
a basis of ℤℓ and we have equations of degree ℓ: 𝜇ℓ

𝑒𝑖
= 𝐶′

𝑖. The whole system of equations is of degree ℓ𝑔 so we
do have described all preimages of 𝑓. With the notations of Section 2.10.1, the equations on the 𝜇𝑖 encode the
possible excellent lifts. By definition of the contragredient isogeny, to compute ̃𝑓 (𝑃) we just need to compute the
multiplication by [ℓ] on any of these preimages, which we do as a composition of 𝑡𝐹 and 𝐹 (via the Koizumi-Kempf
isogeny formula for the latter) as explained above. We obtain a non reduced scheme of degree ℓ𝑔 with only one
point: ̃𝑓 (𝑃). Over a local ring (𝑅, 𝑚), we would use the same strategy except that we ask that the 𝜇𝑖 are non zero in
𝑅/𝑚.

5.2.3 Automorphisms of the modular correspondance

In Section 5.2.1, we have defined 𝒜𝑔,𝑛,𝛤0(ℓ) and 𝒜𝑔,𝑛,𝛤1(ℓ) as the images of 𝜋 ∶ 𝒜𝑔,ℓ𝑛 → 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛 and
𝛱 ∶ 𝒜𝑔,ℓ𝑛 → 𝒜𝑔,𝑛 × 𝒜ℓ𝑔

𝑔,𝑛 respectively. We may also try to construct them as 𝛤/𝛤0(ℓ) and 𝛤/𝛤1(ℓ) covers of 𝒜𝑔,𝑛
directly.

First let us study the automorphisms of the fiber 𝜋−1
2 (𝐵, ℳ) ⊂ 𝒜𝑔,ℓ𝑛. Let (𝐴, ℒℓ) be a point of this fiber. The

symmetric automorphisms of the Heisenberg group of level ℓ𝑛 acts on 𝐴, and if 𝛾 is such an automorphism, the
resulting theta null point 𝛾 ⋅ 0𝐴 is still in the fiber if it is compatible with the theta structure of level 𝑛 on 𝐵.

Let us assume ℓ prime to 𝑛 for simplicity (so ℓ is odd), then 𝛾 has to preserve the symmetric level 𝑛 structure on
𝐴 (induced by the symmetric level ℓ𝑛 structure), hence is also an automorphism preserving 𝜋1 (ie 𝜋1(𝛾 ⋅ 0𝐴) =
𝜋1(0𝐴). But from our assumptions, these automorphisms are canonically identified with Sp(𝐴[ℓ], 𝑒ℒℓ), by sending
a symplectic automorphism 𝛾 of 𝐴[ℓ] to the unique symmetric automorphism 𝛾 of 𝐺(ℒℓ) which respect the
symmetric level 𝑛 structure and whose restriction to 𝐴[ℓ] is 𝛾 (the converse mapping is simply the restriction
𝛾 ↦ 𝛾 ∣ 𝐴[ℓ]).

It is convenient to identify an affine lift ̃0𝐴 = (𝜃ℒℓ
𝑖 (0𝐴))𝑖∈𝑍(ℓ𝑛) with the affinepoints �̃�𝑖 = ((𝜃ℒℓ

𝑖+𝑗(0𝐴))𝑗∈𝑍(𝑛))𝑖∈ℤℓ

on �̃�.
Then using Remark 2.6.7 we can describe the automorphisms coming from Sp(𝐴[ℓ], 𝑒ℒℓ) as follow.

• The matrix 𝑆, which transposes 𝐴1[ℓ] and 𝐴2[ℓ]. This acts by 𝑆 ⋅ 𝜃𝑖 = ∑𝑗∈ℤℓ
⟨−𝑗, 𝜎(𝑖)⟩𝜃𝑖+𝑗. In particular, if

we denote by 𝜋3 = 𝜋2 ∘ 𝑆, then 𝐶 ≔ 𝜋3(𝐴, ℒℓ) corresponds to the quotient of 𝐴 by 𝐴1[ℓ].

• Matrices of the form (𝑎 0
0 𝑡𝑎−1). This simply permutes the �̃�𝑖, and this also stabilizes 𝐶.

• Matrices of the form (1 0
𝑐 1). Then this sends �̃�𝑖 to −⟨𝑖, −𝜓0(𝑖)⟩�̃�𝑖 where 𝜓0 ∶ ℤℓ → �̂�(ℓ) is the mapping

induced by 𝑐.
These automorphisms fixes 𝐴2[ℓ], hence preserve 𝛱2, but change the symplectic supplement 𝐴1[ℓ] hence
does not preserve 𝜋3.

92

5.3 Modular polynomials

The matrices of the third type generate 𝛤1(ℓ)/𝛤(ℓ), while those of the second and third type generate 𝛤0(ℓ)/𝛤(ℓ).
We refer to [FLR11] for more details, and to [Rob10, § 6.3] for the case when ℓ is no longer prime to 𝑛 (and

even to general 𝛿-structures). Note that both these references study the fibers of 𝜋2 (and 𝜋3) but only consider
the modular correspondance induced by 𝜋2 × 𝜋3 (hence ℓ2-isogenies) rather than the one from 𝜋1 × 𝜋2 (hence
ℓ-isogenies) as we do here. In [FLR11] (again studied in more detail and extended to ℓ not prime to 𝑛 in [Rob10,
Chapiter 6]) we also classify degenerate points of the fiber 𝜋−1

2 (𝐵, ℳ), ie points that live in 𝒳𝑔,ℓ𝑛 but not in 𝒳𝑔,ℓ𝑛.
They broadly are of two types: degenerate points where the 𝑃𝑖 no longer generate a full group of order ℓ𝑔 in 𝐵
(typically copies of 0𝐵), and degenerate points where 𝑃𝑖 = (0, … , 0) is not well defined as a projective point. These
degenerate points are precisely points of the fiber where the action of 𝛤0(ℓ)/𝛤(ℓ) is not free.

A main problem in the modular correspondence 𝒜𝑔,ℓ𝑛 → 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛 we defined is that the modular corre-
spondance 𝒜𝑔,𝑛,𝛤0(ℓ) we really want is only given by the image of 𝒜𝑔,ℓ𝑛. Computing this image may be done by a
Groebner basis algorithm, but in practice this is very expensive. So we use the Riemann equations of 𝒜𝑔,ℓ𝑛 instead
(or rather 𝒜𝑔,ℓ𝑛) but this means that the fibers encode a full level ℓ structure along with the isogenies, hence the
automorphisms we have just studied.

It would be interesting to construct 𝒜𝑔,𝑛,𝛤0(ℓ) as the quotient of 𝒜𝑔,ℓ𝑛 by these automorphisms. We would
need to define elements invariant under the actions of 𝛤0(ℓ)/𝛤(ℓ), typically by first taking suitable products like
∏𝑗 𝜃𝑛𝑗𝑖 with ∑ 𝑛2

𝑗 = ℓ to be invariant under 𝛤1(ℓ)/𝛤(ℓ) and then taking traces under 𝛤0(ℓ)/𝛤1(ℓ). We want to
find invariants such that we still can compute equations on these invariants and also descend the maps 𝜋1 and 𝜋2
explicitly through them. This would give an alternative construction of 𝒜𝑔,𝑛,𝛤0(ℓ), as a quotient rather than as an
image.

5.3 modular polynomials

5.3.1 Definition of the modular polynomials

We may also look at modular polynomials. We will mainly focus on the cases 𝑔 = 1 and especially 𝑔 = 2, since
these are the cases where non trivial modular polynomials have been computed. We recall that we give more details
on Siegel and Hilbert moduli spaces in [Rob21, Chapter 5].

The Siegel case

Wemay look at themodular polynomials as defining a birational version of themodular correspondance 𝒜𝑔,𝛤0(ℓ) →
𝒜𝑔 × 𝒜𝑔 (eg as the generic point of the image, since 𝒜𝑔,𝛤0(ℓ) is birationally equivalent to its image through the
modular correspondance).

For instance in genus 1, letting 𝑗(𝜏) be the usual 𝑗-invariant, the modular polynomial is given by 𝛷ℓ(𝑋, 𝑌) such
that 𝛷ℓ(𝑗(𝜏), 𝑌) = ∏𝛾∈𝛤/𝛤0(ℓ)(𝑌 − 𝑗(1

ℓ 𝛾 ⋅ 𝜏). We can also interpret 𝛷ℓ(𝑗, 𝑌) as the minimal polynomial of
𝑗(𝜏/ℓ) over ℂ(𝑗) = ℂ(𝒜1), as defining the extension field ℂ(𝒜1,𝛤0(ℓ))/ℂ(𝒜1), or as defining equations of the
modular curve 𝑋0(ℓ). It is well known that 𝛷ℓ is symmetric, of degree ℓ + 1 in 𝑋 and actually lives in ℤ[𝑋, 𝑌].

In genus 𝑔 = 2, we fix three modular Igusa invariants 𝑗1, 𝑗2, 𝑗3 and we may define modular polynomials such that
the corresponding system of equations 𝛷ℓ(𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3) is birational to 𝒜𝑔,𝛤0(ℓ). (We cannot expect
better since 𝑗1, 𝑗2, 𝑗3 only induce a birational isomorphism of 𝒜𝑔 with 𝔸3

ℂ.)
Wemay define 𝛷ℓ,1(𝑋) as theminimal polynomial of 𝑗1(𝜏/ℓ) over ℂ(𝑗1, 𝑗2, 𝑗3),: 𝛷ℓ,1(𝑗1(𝜏), 𝑗2(𝜏), 𝑗3(𝜏), 𝑌) =

∏𝛾∈𝛤/𝛤0(ℓ)(𝑌 − 𝑗1(1
ℓ 𝛾 ⋅ 𝜏). It is of degree #𝛤/𝛤0(ℓ) = ℓ3 + ℓ2 + ℓ + 1. Indeed, since 𝛤0(ℓ) ⊂ 𝛤 is a maximal

subgroup when ℓ is prime, ℂ(𝑗1, 𝑗2, 𝑗3)(𝑗1(𝜏/ℓ)) is the function field ℂ(𝒜𝑔,𝛤0(ℓ)). Hence, letting 𝑗′𝑖(𝜏) = 𝑗𝑖(𝜏/ℓ),
we may then write polynomials such that 𝑗′2 = 𝛷ℓ,2(𝑗1, 𝑗2, 𝑗3)(𝑗′1) and 𝑗′3 = 𝛷ℓ,3(𝑗1, 𝑗2, 𝑗3)(𝑗′1).

One need to be careful here that while the 𝛷ℓ,𝑖 are polynomials in 𝑗′1, their coefficients in terms of the 𝑗𝑖 are given
by rational functions. Typically we take for Igusa invariants invariants such that the denominators corresponds to
(powers of) the cusp form 𝜒10, the cusp form that cancels on the locus of product of elliptic curves (with their
product polarisation). Then the denominators contain the equation of the Humber surface 𝐻ℓ2 which corresponds
to abelian surfaces ℓ-isogenous to a product of elliptic curves. This interpretation was given in [BL09]; see also
[MR20b; MR19] for the denominators of Hilbert modular polynomials. We refer to [Gru10, Proposition 2.14] as
to why this locus corresponds to the Humbert surface of discriminant ℓ2. In brief: if we have a product 𝐸1 × 𝐸2
we have endomorphisms (𝑃, 𝑄) ↦ (𝑛1𝑃 + 𝑚1 ̃𝑓 (𝑄), 𝑛2𝑓 (𝑃) + 𝑚2𝑄) where 𝑓 ∶ 𝐸1 → 𝐸2 is an isogeny. If 𝐴 is
ℓ-isogenous to a product, pulling back these endomorphisms show that 𝐴 contains an order of discriminant ℓ2.

93

5 Modular correspondances

Finally, the work of Kieffer [Kie20a] gives a complete description of the full denominator, in particular explain the
origin of what we called “parasite factors” in [MR20b] (which mean extra factors than the one corresponding to
the Humbert surface of discriminant ℓ2), we explain this in Section 5.3.6.

In practice we replace the polynomials 𝛷ℓ,2, 𝛷ℓ,3 with polynomials 𝛹ℓ,2, 𝛹ℓ,3 such that 𝑗′𝑖𝛷′
ℓ,1(𝑗1, 𝑗2, 𝑗3)(𝑗′1) =

𝛹ℓ,𝑖(𝑗1, 𝑗2, 𝑗3)(𝑗′1) where the derivative is taken with respect to the variable 𝑗′1. This is the so called Hecke representa-
tion, also used to represent class polynomials in genus 2 (see eg [GHK+06]) and which yields smaller polynomials.
It is also sometimes convenient to work with level structure, eg to work with theta constants. For instance the four
theta constants of level 2 are particularly convenient since they give a projective birational equivalence between
𝒜𝑔,2,4ℂ

and ℙ3
ℂ.

The Hilbert case

In [MR20b] we define modular polynomials on Hilbert and Humbert surfaces (ie moduli corresponding to real
endomorphism) parametrizing 𝛽-isogenies, but the definition extends easily to all dimensions.

If we fix a real quadratic maximal order 𝒪ℱ, the Hilbert surface parametrizes abelian surface with real multipli-
cation by 𝑂𝐾. Then if 𝛽 is a totally positive element of 𝒪ℱ, we can define 𝛽-modular polynomials parametrizing
𝛽-isogenies (preserving the real multiplications). In this case we have 𝛤 = Sl2(𝒪ℱ ⊕ 𝛿𝔽) and 𝛤/𝛤0(𝛽) is of index
𝑁(𝛽) + 1. Note that if ℓ is an inert prime we only have ℓ2 + 1 ℓ-isogenies preserving the real multiplication among
the ℓ3 + ℓ2 + ℓ + 1 ℓ-isogenies, that is such that the kernel 𝐾 is stable by 𝒪ℱ, so we get modular polynomials of
smaller degrees.

For instance, if 𝑔1, 𝑔2 are Gundlach invariants, we define for 𝛽 ≫ 0 totally positive in the real order 𝒪ℱ,
𝛷𝛽,1(𝑔1(𝜏), 𝑔2(𝜏), 𝑌) = ∏𝛾∈𝛤/𝛤0(𝛽)(𝑌 − 𝑔1(1

𝛽𝛾 ⋅ 𝜏)).

5.3.2 Computing Siegel modular polynomials in dimension 2

The principle behind the computation of modular polynomials is straightforward: we proceed by evaluation-
interpolation over ℂ. The actual implementation is far from trivial through: to get a quasi-optimal algorithm in the
size of the modular polynomials, we need:

• Fast evaluation of the modular invariants 𝑗𝑖(𝜏). This allows to do the evaluation part: compute the 𝑗𝑖(𝜏) and
all 𝑗1(1

ℓ 𝛾 ⋅ 𝜏), so that we can write 𝛷ℓ,1(𝑗𝑖(𝜏))(𝑋) = ∑ 𝑐𝑖(𝜏)𝑋𝑖, and likewise for the 𝛹ℓ,𝑖.

• Fast interpolation of the coefficients 𝑐𝑖(𝜏) as rational functions in the 𝑗𝑖(𝜏) (or as a polynomial over ℤ in
𝑗(𝜏) when 𝑔 = 1).
There is no difficulty for the interpolation when 𝑔 = 1, but when 𝑔 = 2 not only do we have to interpolate a
rational function, but to get a fast interpolation we need to be able to choose the values of the 𝑗𝑖.
Indeed to interpolate amultivariate polynomial 𝑃(𝑥1, … , 𝑥𝑛) with 𝑛 variables 𝑥1, … , 𝑥𝑛, the strategy requires
to fix the values of 𝑥1, … , 𝑥𝑛−1 and compute 𝑃 with 𝑑𝑛 + 1 different values of 𝑥𝑛 (where 𝑑𝑛 is the degree of
𝑥𝑛 in 𝑃) so that we can interpolate 𝑃(𝑥1, … , 𝑥𝑛) as 𝑃(𝑥1, … , 𝑥𝑛−1)(𝑋𝑛) and iterate through 𝑥𝑛−1, …, 𝑥1.
We refer to [Mil15b, § 4.1.1] for details.

So the interpolation step requires being able to fix the values 𝑗1(𝜏), 𝑗2(𝜏), 𝑗3(𝜏) and from this compute the
values of the 𝑗𝑖(

1
ℓ 𝛾 ⋅ 𝜏) needed for the evaluation. In practice we use an algorithm due to Dupont [Dup06] which

recovers the matrix 𝜏 (in the fundamental domain).
More precisely Dupont gives an algorithm that recovers a period matrix 𝜏 from the value of the level 2 theta

functions 𝑏𝑖(𝜏) = 𝜃𝑖(𝜏/2)/𝜃0(𝜏/2) 𝑖 = 1, 2, 3 (with his indexing), and to evaluate level 2 or level 4 theta functions
from a period matrix in quasi-linear time with respect to the needed precision. Since the Igusa invariants are given
by explicit polynomials in terms of the theta, we also have fast evaluation and fast period matrix computation for
these invariants, see Section 5.3.4.

Using Dupont’s algorithm, we can implement the evaluation-interpolation algorithm formodular polynomials, in
time quasi-linear in their size. This was done by Milio in his thesis [Mil15a; Mil15b]. This generalize the quasi-linear
computation done in [Eng09a] when 𝑔 = 1.

Modular polynomials using Igusa’s invariant are too big, so I suggested to Milio to compute modular polynomials
in terms of the theta functions instead (more precisely the 𝑏𝑖(𝜏)). In particular I explained how we could use the
automorphisms of the theta group to show that 𝛹ℓ,2 = 𝛹ℓ,3 and I suggested to look at these automorphisms to
also explain the other symmetries and vanishing of coefficients he observed, which he did beautifully in [Mil15a,

94

5.3 Modular polynomials

§ 5.2 and 5.3]. Note that using [Kie20a], I can now prove Milio’s Conjecture 41 that there is no “parasite” factors in
the denominator: since the theta functions are of the same weight, the “rewriting” procedure of [Kie20a] does not
introduce parasite factors.

In his PhD, Milio computed ℓ-modular polynomial with ℓ = 2, 3 using Streng’s version of Igusa invariants (the
case ℓ = 2 was already done by Dupont in [Dup06] using less effective Igusa invariants), and ℓ = 3, 5, 7 for theta
invariants. The polynomials for ℓ = 7 already take several GB, we will see why in Section 5.3.7.

5.3.3 Computing Hilbert modular polynomials in dimension 2

The same methods extend to compute Hilbert modular polynomials in quasi-linear time in genus 2 [MR20b].
We use the forgetful map from the Hilbert surface to the Siegel threefold to do a fast evaluation of (symmetric)
Hilbert modular functions and compute their period matrix 𝜏 = (𝜏1, 𝜏2) ∈ ℌ2

1 form the values of the modular
functions. Indeed to 𝜏 we can associate an explicit Siegel period matrix 𝛺𝜏, see [MR20b, § 2.3]. We use Humbert’s
lemma for the converse: if 𝛺 is a matrix which is Sp2𝑔(ℤ) equivalent to a matrix of the form 𝛺𝜏, Humber’s lemma
gives an algorithm to find a matrix in Sp2𝑔(ℤ) inducing such an equivalence, from which it is easy to recover 𝜏
(Sl2(𝒪ℱ ⊕ 𝛿ℱ) embeds into Sp2𝑔(ℤ), but is of dimension strictly less, so a matrix 𝛺 equivalent to 𝛺𝜏 will not be
of the form 𝛺𝜏′ for a 𝜏′ equivalent to 𝜏 in general).

Some quick remarks:

• If 𝑓 (𝜏) is a function of level 𝛤, then 𝑓 (𝜏/𝛽) is of level 𝛤0(𝛽), so this provides a convenient way to get modular
functions for 𝛤0(𝛽). Furthermore 𝛤0(𝛽) ⊂ 𝛤(𝛽) is a maximal subgroup [MR20b, Proposition 4.11], so it
is easy to get primitive elements. However, unlike in the Siegel case, this is not true if we work with a level
subgroup 𝛤 ′ of 𝛤 (typically to work directly with theta functions), if 𝑓 (𝜏) is invariant for 𝛤 ′, 𝑓 (𝜏/𝛽) may
be invariant by a smaller subgroup of 𝛤 ′ ∩ 𝛤0(𝛽), even if 𝛽 is prime to the level. See [MR20b, § 4.3] for a
discussion of this.

• Since we evaluate modular functions by going through the Siegel moduli, this naturally allows to evaluate
symmetric Hilbert modular functions. We recall that an Hilbert modular function 𝑓 (𝜏) is symmetric if
𝑓 (𝜏1, 𝜏2) = 𝑓 (𝜏2, 𝜏1), this means that conjugating the embedding 𝒪ℱ → End(𝐴) by the Galois action does
not change the value of 𝑓. There are three approaches to deal with non symmetry, all discussed in [MR20b]:

1. We only use symmetric modular functions, so we cannot distinguish between 𝛽 and 𝛽′ isogenies
where 𝛽′ is the real conjugate of 𝛽, and we compute symmetric Hilbert modular polynomials which
parametrizes both 𝛽 and 𝛽′-isogenies;

2. We work with a level structure that allows to distinguish the symmetric morphism even on the Siegel
side (this means that the matrix 𝑀𝜎 from [MR20b, p. 10] corresponding to the symmetry is not in the
level subgroup).

3. We use (at least) one non symmetric modular function 𝑓 in the modular polynomials. Its minimal
polynomial over the symmetric modular functions is of degree 2 and we can evaluate it since its
coefficients are given by symmetric modular function. We can then evaluate 𝑓 by using its Fourier
coefficients to compute the correct root at low precision and then augmenting the precision via Newton
iterations. Likewise for the period matrix.

• More generally we could define 𝐼-modular polynomials for 𝐼 an ideal of 𝒪ℱ. Then the 𝐼-isogenous variety
would have a polarisation of type [𝐼], the value of 𝐼 in the narrow class group Cl+(𝒪ℱ). The polarisation is
principal if and only if 𝐼 is a trivial element of the narrow class group, ie is of the form 𝐼 = (𝛽) with 𝛽 ≫ 0,
which explain why we have restricted to this case. In term of Hecke correspondances, the general case of
𝐼-isogenies means that the Hecke correspondance may send a connected component of the corresponding
Shimura variety to another one, see [Kie20a, § 2.4]. Still, the general case would be useful to fully explore
isogeny graphs, see Section 5.6.

There is also the question of which Hilbert modular functions to use. For small discriminants, the Humbert
surface is rational, so since it is of dimension 2 we can use two invariants, which we call Gundlach invariants since
they were defined by Gundlach in the case 𝐾 = ℚ(√5) and ℚ(√2). In general, we can always take pullback of
Igusa invariants, provided they are defined on the generic point of the Humbert surface (this is always the case
with Streng’s invariant since the zero locus 𝐻1 of 𝜒10 does not contain the Humbert surface 𝐻𝛥). Likewise for
pullback of level 2 theta constants. But then these pullbacks are not algebraically independent over the surface, so
this slightly complicate the interpolation step. We present a general strategy in Section 5.3.5.

95

5 Modular correspondances

The computation itself was done by Milio using Plafrim, the cluster at University of Bordeaux. He computed
modular polynomials (in Gundlach or theta invariants) with 𝛽 of norm ℓ with ℓ up to ℓ = 97 for ℚ(√2) and ℓ = 59
for ℚ(√5). Once again we refer to Section 5.3.7 as to why these are so much smaller than in the Siegel case.

5.3.4 Evaluating modular functions and period matrices

Let us describe briefly Dupont’s algorithm to evaluate theta constants and period matrices [Dup06] when 𝑔 = 2
and generalisations [Lab16].

Starting with the affine point 𝜃𝑖(0, 𝐴𝜏) ≔ 𝜃𝑖(𝜏/2), 𝑖 = 0, 1, 2, 3, the duplication formula 𝜏 ↦ 2𝜏 relate them
with the affine point 𝜃𝑖(0, 𝐴2𝜏) = 𝜃𝑖(𝜏). A subtility here is that there are several choices of roots possible in the
duplication formula, ie of choice of signs, and (essentially) all possible choices are valid in genus 2, ie correspond to
a duplication formula for 𝜏 up by acting on 𝜏 by a matrix 𝑀 in 𝛤(2, 4). Following a terminology of Labrande, I will
call a good choice of sign for 𝜏 the choice of signs which give 2𝜏. Dupont defines what I will call here a topological
choice of of sign as the choice of sign that gets the values closer together in the complex plan (Dupont calls this a
“bon choix de racine” but this conflicts with our terminology.) He shows that if 𝜏 has large imaginary part, or 𝜏 is in
the standard fundamental Siegel domain, then this topological choice of sign is good, ie do correspond to 𝜏 ↦ 2𝜏.
So starting with such a 𝜏, and iterating these topological choices we get the values 𝜃𝑖(2𝑛𝜏) which converge to
(1, 0 … , 0). But the duplication formula are homogeneous, so if we start with 𝜆𝜃𝑖(𝜏/2), in particular if we start
with the three values 𝑏𝑖(𝜏) ≔ 𝜃𝑖(𝜏/2)/𝜃0(𝜏/2) the limit allows to recover 𝜆. Hence we may see the generalised
AGM as a way to compute a good affine theta null point (ie coming from a 𝜏) from the projective one. Then for a

matrix 𝑀 = (𝑎 𝑐
𝑏 𝑑), we can compute the values 𝑏𝑖(𝑀 ⋅ 𝜏) = 𝜃𝑖(𝑀 ⋅ 𝜏/2)/𝜃0(𝑀 ⋅ 𝜏/2) (eg using Remark 2.6.7).

If 𝑀 is a matrix such that, for the image of the fundamental domain by 𝑀, the choice of topological signs still
correspond to the duplication 𝜏 → 2𝜏, then using the AGM again for these new projective thetas allows to recover
𝜃0(𝑀 ⋅ 𝜏/2). Using modularity of the theta functions, this gives us det(𝑐𝜏 + 𝑑). With appropriate choices of 𝑀 as
specified in [Dup06], this allows to recover 𝜏. This gives a quasi-linear algorithm to get 𝜏 from the 𝑏𝑖(𝜏). Inverting
this algorithm via Newton iterations yields a quasi-linear algorithm to compute the 𝑏𝑖(𝜏), hence the 𝜃𝑖(𝜏) from 𝜏.
It is remarkable that the fast evaluation of theta functions proceed through the inversion of the computation of the
period matrix rather than the converse.

Let us give some quick remarks on this algorithm:

• While Dupont specify a set of four matrices 𝑀1 = Id, 𝑀2, … , 𝑀4 used to recover 𝜏, he could only prove
that, in the image of the standard fundamental domain by 𝑀 the good choices of sign correspond to the
duplication of 𝜏, for 𝑀 = Id. So his algorithm was heuristic, but this fact has been recently proved by Kieffer
in [Kie20c], by a careful study of the behaviour of the theta functions seen as modular forms (I recommend
to look at the nice pictures).

• In Dupont’s original algorithm, he does not work with the theta functions of level 2 𝜃𝑖(𝜏/2) but rather with
the squares 𝜃𝑖(𝜏)2 of the first four theta functions of level 4 (or rather level (2, 2)). The duplication formula
allows to go back and forth from products 𝜃𝑖(𝜏/2)𝜃𝑗(𝜏/2) of two theta functions of level 2 with the squares
of all 16 theta functions of level (2, 2). So only taking the first four squares forget some information, that
Dupont has to recover afterwards. This does not change the time complexity of the algorithm, but makes it
slightly harder to implement. This was done by Dupont because the resulting duplication formula on these
four squares is equal to the Borchardt mean, so more closely ressembles the AGM in dimension 1.

In [LT16; Lab18; Lab16], Labrande extends these algorithms to compute the theta functions (of level 2) 𝜃𝑖(𝑧, 𝜏)
in 𝑧 and 𝜏 when 𝑔 ≤ 2, and conversely to recover 𝑧 from these values. There are still some heuristics remainings,
even for computing theta constants, but good progress has been made on some of them in [Kie20b; Kie20c] (see
below). Update @2022: And [Kie22a] removed yet more heuristics.

The general strategy of [Lab16] is as follow: we use the duplication formula both in 𝑧 and 𝜏, this relates squares
𝜃𝑖(𝑧, 2𝜏)2 in termof the 𝜃𝑖(𝑧, 𝜏). A good choice of sign (in the terminology of Labrande) is the choice corresponding
to 𝑧 mod 𝛬2𝜏 and 2𝜏. An algebraic choice of sign is a choice of sign corresponding to 𝑧′ and 2𝜏′ for 𝑧′ equivalent
to 𝑧 (ie 𝑧 = 𝑧′ mod 𝛬𝜏 and 𝜏′ equivalent to 𝜏). A good choice is algebraic, but not all sign choices are algebraic. A
topological choice of sign is the choice of sign making the values closer in a quadrant.

Iterating good choices of sign, the values converge to 1. Using homogeneity (the normalisation is a bit more
delicate, see [Lab16, § 6.2.4]), from the 𝜃𝑖/𝜃0(0, 𝜏) and the 𝜃𝑖/𝜃0(𝑧, 𝜏), the generalised AGM (using good choices
of sign) converge quadratically and gives 𝜃0(0, 𝜏) and 𝜃0(𝑧, 𝜏). Using appropriate matrices action 𝛾 along with the

96

5.3 Modular polynomials

full functional equation of 𝜃𝑖 both in 𝑧 and 𝜏, this gives explicit parameters depending on 𝑧 and 𝜏, hence allows to
recover them.

A thorny question is how to choose the good choice of signs. When 𝜏 has large enough imaginary part, the
topological choices are good. Otherwise, if 𝑧 and 𝜏 are given in low precision, we can use the explicit Fourier series
of theta functions to evaluate the 𝜃𝑖(𝑧, 2𝑛𝜏) at low precision to get the correct choice of signs. In good cases, one
can identify a domain where all topological of sign are good. The best case is when this holds for the fundamental
domain and its image by the action of the matrices 𝛾 used to recover 𝑧 and 𝜏. This is indeed the case when 𝑔 = 1
for 𝑧 = 0 [Dup06], and a general 𝑧 [Lab16], and as we have seen when 𝑔 = 2 for 𝑧 = 0 by [Dup06] completed by
[Kie20c]. In these good cases, there is no need for low precision computation.

Evaluating the theta functions 𝜃𝑖(𝑧, 𝜏) is done via a Newton iteration inversing the procedure above giving 𝑧, 𝜏
from the 𝜃𝑖. The convergence of this Newton process is only heuristic when 𝑔 ≥ 2. Actually, the tangent spaces
are not even of the same dimensions when 𝑔 > 2 or 𝑔 = 2 and 𝑧 ≠ 0, so the Jacobian of the system is not even
inversible. We would need to add the (tangent) equations of the moduli when 𝑔 > 3 and of the Kummer when
𝑔 ≥ 2, but we don’t have them for general 𝑔 (see Section 2.13). A fun trick of [Lab16, Conjecture 7.4.4] is to simply
add more relations using the matrices 𝛾 above.

Finally, this algorithm (assuming the Newton process converges) is quasi-linear in the precision, but not uniform
(in 𝑧, 𝜏). To get a uniform algorithm we assume that there is a uniform algorithm on a compact subset of the
standard fundamental domain given by ℑ𝜏 ≤ 𝐶 for some constant 𝐶 (this is more or less equivalent to assuming
that the Newton iterations in Dupont’s algorithm do converge on this subset).

Then for a general 𝜏 in the fundamental domain, either ℑ𝜏 ≤ 𝐶 so we can apply Dupont’s algorithm directly,
or ℑ𝜏 is large enough that a naive evaluation using the Fourier series is sufficiently fast, and in the remaining
intermediate case we can apply a logarithmic number of well chosen duplication formula to get back to one of the
first two cases. This strategy is done by Dupont when 𝑔 = 1 and 𝑧 = 0, and is extended by Labrande to a general
𝑧 For 𝑔 = 2 and 𝑧 = 0 this is done by Kieffer in [Kie20b, § 4.1]. Furthermore when 𝑔 = 1 the existence of the
uniform convergence of the Newton process on a compact set is proven (when 𝑧 = 0 by Dupont and for a general 𝑧
by Labrande).

We summarize these results, letting 𝑁 be the required precision.

• For all 𝑔, there is an improved version of the “naive” algorithm using the explicit Fourier series in 𝑂(𝑁1+𝑔/2)
to evaluate the 𝜃𝑖(𝑧, 𝜏) [Lab16, Chapter 5].When 𝑔 = 1, 2, Labrande proves a complexity of𝑂(𝑁1+𝑔/2/ℑ𝜏1,1),
and conjectures this hold for a general 𝑔, which is important for the uniform algorithm outlined above.

• When 𝑔 = 1, there is a uniform and proved quasi-linear algorithm to compute the 𝜃𝑖(𝑧, 𝜏), or conversely 𝑧
and 𝜏, [Lab16, Chapter 6]. It does not require low precision approximations, because the proven domain of
(𝑧, 𝜏) where all topological sign choices are good is large enough.

• When 𝑔 = 2, there is a proven quasi-linear algorithm to compute 𝜏 (now that [Dup06, Conjecture 9.1] has
been solved in [Kie20c]). The computation of 𝑧 requires a low precision approximation to ensure the good
choice, but we could probably extend [Kie20c] to show that all topological sign choices are good when 𝑧 is in
a nice enough domain.
There is an heuristic (assuming convergence of the Newton process) quasi-linear algorithm to compute the
𝜃𝑖(𝑧, 𝜏). Again, without more knowledge of when topological choices are good for 𝑧, it requires evaluating
the 𝜃𝑖(𝑧, 𝜏) to low precision when 𝑧 ≠ 0. Such an approximation can be computed via hyperelliptic integrals,
see [MN17a; MN17b; Lab16, Chapter 8].
Under the assumption of a uniform algorithm on a compact set, Kieffer shows uniformity in the fundamental
domain [Kie20b, § 4.1] to compute theta constants. However, for a general 𝜏, the standard reduction algorithm
to the fundamental domain is only quadratic in the precision [Str10, § II.5.3] and [Kie20b, § 4.2], one would
need to adapt [NSV11; NS16] to the symplectic case to get quasi-linear speed.

• For general 𝑔, Dupont proves the quadratic speed of convergence of the Borchardt mean, so we get a quasi-
linear algorithm to compute 𝜏, provided we have low precision approximation to choose the good choices
of signs. The quadratic speed of convergence to get 𝑧 is only heuristic [Lab16, Conjecture 7.4.3]. The fact
that we can get enough relations so that the Jacobian of the equations becomes inversible is heuristic [Lab16,
Conjecture 7.4.4], let alone the convergence of the Newton process to compute the 𝜃𝑖(𝑧, 𝜏).
Still, Labrande conjectures the existence of a quasi-linear algorithm to compute the 𝜃𝑖(𝑧, 𝜏). The converse is
more delicate: without more knowledge on the good vs topological choices, we need low precision approxi-
mations of 𝑧 and 𝜏. But if we are not on a Jacobian of an hyperelliptic curve, we cannot rely on hyperelliptic
integrals to compute these approximations. We go back to this topic in Section 5.7.

97

5 Modular correspondances

Update @2022-03: In [Kie22a], Kieffer made great progress on proving the convergence of the Newton process
and certifying the rate of convergence (which was missing even for 𝑔 = 1). The current picture is as follow: for
𝑔 = 1, evaluating the theta constants and the theta coordinates 𝜃𝑖(𝑧) in level 2 or 4 can be done in proven uniform
quasi-linear time with the precision. The same is true when 𝑔 = 2 for the theta constant 𝜃𝑖(0).

Also, in the updated version of [Kie20b], Kieffer shows that even if we do not have a quasi-linear reduction
algorithm to the fundamental domain when 𝑔 = 2, the number of iteration of the “naive” algorithm is small enough
(ie 𝑂(log ℓ)) when 𝜏 is of the form ℓ𝛾𝜏0 for 𝛾 ∈ 𝛤0(ℓ). In other words, in this case, which is used for the evaluation
of modular polynomials, 𝜏 is close enough to the fundamental domain that the reduction is not the dominant
complexity step.

We now explain how we could compute modular forms of higher level and period matrices from modular
invariants, if we assume that we can do these computations for theta functions of level 2. The coordinate ring of
modular forms is integral above the coordinate ring of theta constants (at least in characteristic zero) [Igu64; Igu66].
More precisely, Igusa proves that the modular forms of level 𝛤(𝑛, 2𝑛) is the integral closure of the ring of theta
constants of level 𝑛. So if we pick up some modular invariant of a given level, and we know its minimal polynomial
over the theta ring, we can evaluate it from Newton iterations, using its Fourier series at low precision for the
initialisation. So we reduce to evaluating theta functions of level 𝑛. But change of level formulae or Mumford’s
isogeny theorem (see Section 5.2) gives us equations over theta functions of level 2, from which we can also evaluate
via Newton iterations and small precision initialisation. Likewise, if we have values of the modular invariants, we
plug the modular relations with the theta, so we get the theta values of level 𝑛. Then we can compute those of
level 2, compute the corresponding period matrix modulo 𝛤(2, 4) and lift it to a period matrix 𝛺′ modulo 𝛤(𝑛, 2𝑛).
Evaluating the theta on 𝛺′ and comparing with our current values then give us, using the functional equation of
theta functions, how to correct the 𝛺′ to get the correct representative (this is faster than testing all the lifts).

Alternatively, we can use a fast algorithm to evaluate theta functions 𝜃(𝑧, 𝜏) rather than just the theta constants
𝜃(0, 𝜏), and conversely to recover 𝑧 from the values of the thetas. Then the theta constants of level 2𝑛 can be
computed by evaluating the theta functions of level 2 at a 𝑛-torsion point.

5.3.5 An evaluation-interpolation approach for covers and modular polynomials

One reason that the evaluation-interpolation approach works well in dimension 1 and 2, is that the moduli space
𝒜𝑔 is rational (ie birational to ℙ𝑁), so we can describe it using only primary invariants 𝑗1, … , 𝑗𝑁. This works even
for small level. For elliptic curve at level 1 we have the 𝑗-invariant, at level 𝛤(2) we have the Legendre invariant
𝜆, and at level 𝛤(2, 4) we have the theta function 𝜃1/𝜃0. For abelian surfaces at level 1 we have the three Igusa
invariants 𝑗1, 𝑗2, 𝑗3, at level 𝛤(2) the three Rosenhain invariants 𝜆, 𝜇, 𝜈 and at level 𝛤(2, 4) the three theta functions
𝑏𝑖 = 𝜃𝑖/𝜃0, 𝑖 = 1, 2, 3. Also Hilbert surfaces or Humbert surfaces of small discriminant are rational, so we have
two Gundlach invariants. Still we cannot expect this to hold for all moduli spaces on which we want to construct
modular/Hecke correspondances (if only because 𝒜𝑔 is of general type for 𝑔 ≥ 7), so we need to explain how to do
interpolation when we also have secondary invariants. For Hilbert or Humbert surfaces it is also often convenient
to look at pullback of Igusa invariants or theta functions, so we have a non trivial relation, ie a secondary invariant.

Here we focus on this general case. More generally if we have a finite separable 𝐺-cover 𝑋 → 𝑌 over a perfect field
𝑘, where 𝑋, 𝑌 are integral of dimension 𝑑, and we have coordinates 𝑥1, … 𝑥𝑚 on 𝑋 we want to express birationaly
in term of coordinates 𝑦1, … , 𝑦𝑛 on 𝑌, we may introduce modular polynomials as follow: since 𝑘(𝑋)/𝑘(𝑌) is
finite, we can write 𝑘(𝑋) = 𝑘(𝑌)(𝑥0) by the primitive element theorem. Then 𝑘(𝑋) is characterised by the
minimal polynomial 𝛷(𝑋) of 𝑥0 over 𝑘(𝑌): 𝛷(𝑋) = ∏𝑔∈𝐺(𝑋 − 𝑔 ⋅ 𝑥0). Then we use the Hecke representation
𝑥𝑖𝛷′(𝑥0) = 𝛹𝑖(𝑦𝑖, 𝑥0) to represent the elements 𝑥𝑖: 𝛹𝑖(𝑋) = ∑𝑔∈𝐺 𝑔 ⋅ 𝑥𝑖 ∏ℎ∈𝐺∣ℎ≠𝑔(𝑋 − ℎ ⋅ 𝑥0) = ∑𝑔∈𝐺 𝑔 ⋅
𝑥𝑖𝛷(𝑋)/(𝑋 − 𝑔 ⋅ 𝑥0).

In particular we can apply this to the cover given by the 𝛤0(ℓ) level structure, and more generally for covers of
Shimura varieties. Typically we have 𝑦𝑖 given by 𝑗𝑖(𝜏), and the 𝑥𝑖 given by the 𝑗𝑖(𝜏/ℓ). This representation was
introduced in [MR20b, § 3.4] for the case of covers of Hilbert surfaces (so 𝛤0(𝛽)-covers); see also [Kie20a] for an
extension of this representation where rather than representing 𝑘(𝑋) by 𝑘(𝑌)(𝑥0) we allow intermediate fields
𝑘(𝑌)(𝑥′

0) ⊂ 𝑘(𝑌)(𝑥′
0, 𝑥′

1) ⊂ … 𝑘(𝑋).
We present an evaluation-interpolation approach to compute birational equations 𝛷, 𝛹𝑖 for this cover. We

assume that we know how to compute the fibers of 𝑋 → 𝑌. Then given a point 𝑦 of 𝑌, we compute all the points
in the fiber 𝑋𝑦, and compute a representation of 𝑋𝑦 as follow: generically 𝑥0 will separate the coordinates, and
we use the Hecke representation to represent the other coordinates. This gives polynomials in 𝑥0, … , 𝑥𝑚, whose
coefficients 𝑐𝑖 are rational functions of 𝑌 evaluated at 𝑦.

98

5.3 Modular polynomials

It remain to explain how to recover the coefficients 𝑐𝑖 explicitly. For simplicity, since 𝑌 is an integral variety
of dimension 𝑑, we assume that we have expressed 𝑘(𝑌) as 𝑘(𝑌) = 𝑘(𝑦1, … , 𝑦𝑑)[𝑦𝑑+1] where 𝑦1, … , 𝑦𝑑 form a
transcendance basis and 𝑦𝑑+1 is given by the primitive element theorem, and that we have the monic minimal
polynomial 𝑃 of degree 𝑁 of 𝑦𝑑+1 in terms of the 𝑦𝑖. In the terminology of invariant theory, 𝑦1, … , 𝑦𝑑 are primary
invariant and 𝑦𝑑+1 is a secondary invariant. We have a function 𝑓 ∈ 𝑘(𝑌), on which we know how to compute the
evaluation map 𝑡 ↦ 𝑓 (𝑡).

A problem for the interpolation is that the presentation of 𝑓 in terms of the 𝑦𝑖 is not unique (since it is defined
modulo 𝑃), so if at each evaluation we change the representation, these won’t glue together for the interpolation.
But of course there is a canonical presentation by looking at the representation with the minimal degree in 𝑦𝑑+1 (so
doing the standard euclidean division by 𝑃). Then if we have a way in the evaluation, given 𝑦1(𝑡), … , 𝑦𝑑(𝑡) to write
all the 𝑁-roots of 𝑃(𝑦1(𝑡), … , 𝑦𝑑(𝑡), 𝑌) as values 𝑦𝑑+1(𝑡𝑟) (such that 𝑦𝑖(𝑡𝑟) = 𝑦𝑖(𝑡) if 𝑖 ≤ 𝑑) for 𝑟 = 1, … , 𝑁, then
we can do interpolation on 𝑦𝑑+1 to write 𝑓 (𝑡) = ∑𝑁−1

𝑘=0 𝑐𝑘(𝑦1, … , 𝑦𝑑)𝑦𝑘
𝑑+1. Then it suffices to proceed through

standard rational interpolation of the 𝑐𝑘 in terms of the 𝑦1, … , 𝑦𝑑.
Of course this strategy could be extended when adding more secondary invariants (for instance to get an integral

model of 𝑋 → 𝑌 rather than a birational model), by fixing a Grobner basis and interpolating the representation of 𝑓
given by this Grobner basis. This works when using evaluation points such that the Grobner basis of the evaluated
functions is the evaluation of the Grobner basis (this is the generic case).

We remark that for the computation of modular polynomials the situation is slightly different: namely given
𝑦 ∈ 𝑌 we don’t know how to compute the fiber 𝑋𝑦 directly. Instead, we go through the universal covers H𝑔 (Siegel
case) or ℌ𝑔

1 (Hilbert case). Let’s take a look at Hilbert modular polynomials for instance: from the value of a modular
invariant 𝐽(𝜏) we first need to compute 𝜏 ∈ ℌ𝑔

1 (ie go back to the universal cover) to evaluate the 𝐽(𝛾 ⋅ 𝜏/𝛽). So
if we want fast interpolation, this requires to compute 𝜏 from 𝐽(𝜏) in quasi-linear time, and then evaluate the
𝐽(𝛾 ⋅ 𝜏/𝛽) in quasi-linear time. If we start with 𝜏 directly, then we sample points in 𝑌 randomly, so we have to
resort to linear algebra to find the relations. We could also do linear algebra on the Fourier coefficients rather than
on evaluation points.

Remark5.3.1. Still even non quasi-linear algorithms to computemodular polynomials will be useful in Section 5.3.8
and Chapter 6, so let us record this fact here: as long as we have an algorithm polynomial in the precision to evaluate
the needed modular functions 𝐽(𝜏), 𝐽(𝜏/ℓ) on “random” matrices 𝜏 (small enough that 𝐽(𝜏) and 𝐽(𝜏/ℓ) are not
too large) we have an algorithm to compute the modular polynomials in time polynomial in their size, by evaluation
followed by interpolation via linear algebra.

The same holds if we can compute Fourier coefficients fast enough. And if 𝐽 have integral Fourier coefficients
we can do linear algebra over ℤ if we use the explicit denominators of the modular polynomial, see Section 5.3.6.
This has the advantage that we can solve the linear system over ℤ by a CRT approach (modulo small primes 𝑝𝑖) to
control the intermediate growth. This bypasses stability problems from doing linear algebra using complex floating
point.

If the modular invariants 𝐽 are expressed as polynomials of theta functions, these assumptions hold: we have
the Fourier coefficients of the theta functions, and we can evaluate them at precision 𝑚 in time 𝑂(𝑚𝐶) with
𝐶 = 1 + 𝑔/2 or, heuristically 𝐶 = 1 + 𝜖, by [Lab16], see Section 5.3.4. More generally for the evaluation, we could
ask for the minimal polynomials of the invariants 𝐽 over the theta constants of level 2, see Section 5.3.8.

Anticipating Section 5.3.7, in the Siegel case we have ℓ𝑁(𝑁+1) terms with 𝑁 = 𝑔(𝑔 + 1)/2 and the coefficients
are of size 𝑂(ℓ𝑁). If the invariants are given as polynomials in terms of the theta constant, the evaluation at
precision 𝑂(ℓ𝑁) costs 𝑂(ℓ𝑁𝐶+𝑁(𝑁+1)), and the linear algebra (assuming the system is sufficiently stable) costs
𝑂(ℓ𝑁+𝑁(𝑁+1)𝑤) where 𝑤 ≤ 3 is the exponent for the matrix multiplication. In the Hilbert case we have ℓ𝑔+1

terms and the coefficients are of size 𝑂(ℓ), for a total cost of 𝑂(ℓ𝐶+𝑔+1 + ℓ1+(𝑔+1)𝑤).

5.3.6 Denominators of the modular polynomials

A modular interpretation of the denominators

We have seen that in dimension 2 the coefficients 𝑐𝑖(𝑗1, 𝑗2, 𝑗3) of the modular polynomials are given by rational
functions. Having to interpolate a rational function is annoying from the complexity point of view: already in the
univariate case fast algorithms rely on fast half gcd algorithms and even if they are still quasi-linear they introduce
more logarithmic factors.

This is worse in the multivariate case, because during the evaluation simplifications between the numerators and
denominators can prevent getting the correct interpolation. See the examples at [Mil15b, § 4.1.2]. The solution is to

99

5 Modular correspondances

fix one coefficient, but to do that in a coherent way, rather than interpolating a multivariate function 𝐹(𝑋1, … , 𝑋𝑛)
we have to interpolate 𝐹(𝑋1, 𝑋1𝑋2, … , 𝑋1𝑋𝑛). We can then proceed variable by variable, interpolating with 𝑋1
last. But this means that the last interpolation step depends on the total degree of 𝐹 rather than its degree in 𝑋1. We
refer to [Mil15b, § 4.1.2] for some tricks and more details in the complexity analysis.

In truth we would really like to not interpolate rational functions. So instead of computing the monic polynomial
𝛷ℓ,1(𝑋), we would like to compute 𝐷𝛷ℓ,1(𝑋) where 𝐷 is (a multiple of) the denominator. But to do that we need
a modular interpretation of the denominator. A wonderful key insight of Kieffer in [Kie20a; Kie20b] is that we
need to interpret the denominator not as a rational function in the Igusa invariants (ie as a modular function of
weight 0), but as a modular form.

In other words, we need to compute the modular correspondance for modular forms rather than for mod-
ular functions. Let us first look at the case of elliptic curves: the modular polynomial is given by 𝛷ℓ(𝑗(𝜏)) =
∏𝛾∈𝛤/𝛤0(ℓ)(𝑋−𝑗(𝛾⋅𝜏/ℓ)). But 𝑗(𝜏) = 𝑐𝑔2(𝜏)3/𝛥(𝜏)with 𝑐 = 1728. So if we let 𝐷(𝜏) = ∏𝛾∈𝛤/𝛤0(ℓ) 𝛥(𝛾⋅𝜏/ℓ),
we get that 𝐷(𝜏)𝛷ℓ(𝑗(𝜏)) = ∏𝛾∈𝛤/𝛤0(ℓ)(𝛥(𝛾 ⋅ 𝜏/ℓ)𝑋 − 𝑐𝑔2(𝛾 ⋅ 𝜏/ℓ)). The problem is that 𝐷(𝜏) is not modular,
and even depends on the choice of representatives 𝛾. But all this can be fixed by normalizing with 𝛥(𝛾 ⋅ 𝜏)/𝛥(𝜏),
ie by considering instead 𝐷(𝜏) = ∏𝛾∈𝛤/𝛤0(ℓ) det(𝛾 ⋅ 𝜏)−𝑤𝛥(𝛾 ⋅ 𝜏/ℓ) with 𝑤 = 12 the weight of 𝛥. Then 𝐷(𝜏)
is a modular form of weight 𝑤(ℓ + 1). Furthermore by [Kie20b, Proposition 3.2], 𝐷(𝜏) is defined over ℤ.

The same holds in the genus 2 case. Here we typically take for Igusa invariants 𝑗𝑖, invariants having some power 𝑑
of the cusp form 𝜒10(𝜏) as their denominators. Then if we let 𝐷(𝜏) = ∏𝛾∈𝛤/𝛤0(ℓ) det(𝛾 ⋅𝜏)−𝑑𝑤𝜒𝑑

10(𝛾 ⋅𝜏/ℓ) with
𝑤 = 10 the weight of 𝜒10, we get a modular form of weight 𝑑𝑤(ℓ3 + ℓ2 + ℓ + 1). Furthermore this denominator is
exactly (a power of) the modular form associated to the Humbert surface 𝐻ℓ2 of discriminant ℓ2.

The parasite factors (as dubbed in [MR20b]) are then explained as the rewriting procedure when expressing the
quotient of two Siegel modular forms of the same weight in terms of the 𝑗1, 𝑗2, 𝑗3, see [Kie20a, § 3.2 and § 3.3].

We can now use the following modified strategy to compute modular polynomials:

• Rather than computing the modular functions 𝑗𝑖(𝛾 ⋅ 𝜏/ℓ), we compute the modular forms 𝔤(𝛾 ⋅ 𝜏/ℓ) for
𝔤 = 𝐼2, 𝐼4, 𝐼6, 𝐼10. Dupont’s algorithm naturally give the value of the 𝜃𝑖 (and not only the 𝜃𝑖/𝜃0), so since
these modular forms are given by explicit polynomials in the 𝜃𝑖 we have a fast evaluation algorithm.

• Then we have coefficients 𝑐𝑖(𝜏) which are modular forms (of the same known weight) that we interpolate as
polynomials in 𝐼2, 𝐼4, 𝐼6, 𝐼10. It might seem that this require to interpolate with 4 variables rather than 3, but
by homogeneity, since we know the weights of the 𝑐𝑖, we can scale everything by 𝜆 such that for instance
𝜆10𝐼10(𝜏) = 1. Then we interpolate a polynomial in 𝐼2, 𝐼4, 𝐼6 and we multiply each term by the correct
power of 𝐼10 so that the weight is the required one.

This new strategy has not yet been implemented ([Kie20b] only deal with evaluation, since this is enough for our
applications as we will see below), but I expect this would give quite a practical speed up compared to the algorithms
as implemented by Milio.

Affine modular polynomials

We stress an important point: the new strategy computes first the modular polynomials 𝐷𝛷 expressed in terms
of modular forms of a suitable weight. I will call this the “integral modular polynomials”. In genus 2 this typi-
cally involves the forms of weight 20: 𝐼5

4 , 𝐼12𝐼2
4 , 𝐼4𝐼6𝐼10. Then we may quotient by the leading coefficient (ie the

denominator) to get a modular polynomial 𝛷 written in terms of modular functions.
We have the following modular interpretation of the correcting factors 𝑔(𝛾 ⋅ 𝜏)/𝑔(𝜏) (𝑔 the modular form

appearing in the denominator of the modular invariants 𝐽): the isogeny between 𝜏 and 𝛾 ⋅ 𝜏/ℓ is not normalised,
but the one between 𝛾 ⋅ 𝜏 and 𝛾 ⋅ 𝜏/ℓ is.

We may use the same trick to define an “affine modular polynomial” relating 𝔤(𝜏) and 𝔤(𝜏/ℓ) for 𝔤 a scalar
modular form of weight 𝑘. We define 𝛷𝔤,ℓ(𝜏) = ∏(𝑋 − 𝔤(𝜏)

𝔤(𝛾𝜏)𝔤(𝛾𝜏/ℓ)). Then the coefficients of 𝛷𝔤,ℓ are given
by modular forms. Algebraically, 𝛷𝔤,ℓ(𝐴, 𝑤𝐴) = ∏(𝑋 − 𝔤(𝐵, 𝑤𝐵)) where the product is over all ℓ-isogenies
𝑓 ∶ 𝐴 → 𝐵 with 𝑓 ∗𝑤𝐵 = 𝑤𝐴.

So 𝛷𝔤 encodes more information than 𝛷: namely it allows to recover the determinant to the power 𝑘 of the
action of the isogeny on differentials. This works as follow: we start with (𝐴, 𝑤𝐴) and compute 𝔤(𝐴, 𝑤𝐴). Using
the modular polynomial 𝛷𝔤 we can recover the value 𝔤(𝐵, 𝑤𝐵) where 𝑓 ∶ 𝐴 → 𝐵 is an isogeny where 𝑓 ∗𝑤𝐵 = 𝑤𝐴.
Taking any differential 𝑤′

𝐵 on 𝐵, we can evaluate 𝔤(𝐵, 𝑤′
𝐵) and compare with 𝔤(𝐵, 𝑤𝐵): 𝔤(𝐵, 𝑤′

𝐵) = 𝑢𝔤(𝐵, 𝑤𝐵).
Then 𝑓 ∗𝑤′

𝐵 = 𝑀𝑤𝐴 where det𝑘 𝑀 = 𝑢. We will exploit this in Section 6.4.

100

5.3 Modular polynomials

In summary: the affine modular polynomials encode the normalized ℓ-isogenies, ie the isogenies 𝑓 ∶ 𝐴 → 𝐵
where 𝑓 ∗𝑤𝐵 = 𝑤𝐴. This interpretation is still valid algebraically, and allows us to compute them directly over a
finite field for instance (by using Chapter 4 and Section 5.6.2).

Remark 5.3.2. We have seen that in dimension 2, the invariants we use have for denominator powers of 𝜒10,
whose zero locus corresponds to product of elliptic curves. Thus if 𝐴 is ℓ-isogenous to a 𝐵 which is a product of
elliptic curves, 𝐷(𝐽(𝐴)) = 0. So the evaluated modular polynomial 𝐷𝛷ℓ(𝐽(𝐴), 𝑋) is of degree less than usual.
Looking at the equation of 𝐷𝛷ℓ, we get that 𝛷ℓ(𝐽(𝐴), 𝑋) = 𝐷′ ∏𝐵(𝑋 − 𝐽(𝐵)) where the product only iterate
through the ℓ-isogenous 𝐵 which are not product of elliptic curves.

So computing 𝐷𝛷 allows us to recover the isogenous 𝐵 where the modular invariant 𝐽 is well defined. There are
two solutions to get all the isogenous 𝐵 in every cases: either compute them for other system of invariants that fully
cover 𝒜𝑔, or better compute affine modular polynomials for a system of generators of covariants. In dimension 2
(and not too small characteristic), we could also use affine modular polynomials parametrizing the 𝜓4, 𝜓6, 𝜒10, 𝜒12
of the normalised isogenous variety directly, rather than just the three numerators of 𝑗1, 𝑗2, 𝑗3.
Remark 5.3.3. We will see in Section 5.4 that the modular polynomials 𝛷ℓ are actually sufficient to recover
normalised isogenies. Indeed, if 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, differentiating the modular equation 𝛷ℓ(𝐽𝐴, 𝐽𝐵) gives a
relation between 𝑑𝐽𝐴 and 𝑑𝐽𝐵. When non singular, this relation allows to recover 𝑑𝐽𝐵 from 𝑑𝐽𝐴 and we give precise
conditions in [KPR20] as to when this happens. But 𝑑𝐽 is a vectorial form of weight Sym2, hence it essentially
allows to recover 𝑤 (up to a sign). Starting with 𝑤𝐴, this allows to recover the normalised 𝑤𝐵 (up to a sign), hence
evaluate any scalar modular form 𝔤 on (𝐵, 𝑤𝐵) (at least if 𝔤 is of even weight or the dimension is even), or even
vectorial modular forms. A similar reasoning holds for Hilbert modular polynomials and Hilbert modular forms.
So in practice we don’t need the affine modular polynomial 𝛷𝔤,ℓ for the modular form 𝔤.

Update @2022-09: For abelian surfaces, we have seen above that the modular form 𝐷ℓ(𝜏) = ∏𝛾∈𝛤/𝛤0(ℓ) det(𝛾 ⋅
𝜏)−10𝜒𝑑

10(𝛾 ⋅ 𝜏/ℓ) corresponding to the denominators of 𝛷ℓ is the modular form whose locus describe 𝐻ℓ2,
the Humbert surface of discriminant ℓ2. Indeed, algebraically, by the discussion above, we have 𝐷ℓ(𝐴, 𝜔𝐴) =
∏(𝐵,𝜔𝐵) 𝜒10(𝐵, 𝜔𝐵) where the product is take across all normalised ℓ-isogenies 𝑓 ∶ (𝐴, 𝜔𝐴) → (𝐵, 𝜔𝐵). Since
the zero locus of 𝜒10 is the locus of product of elliptic curves, we have that 𝐷ℓ(𝐴, 𝜔𝐴) = 0 exactly when 𝐴 is
ℓ-isogenous to a product of elliptic curve, and this locus corresponds to 𝐻ℓ2. The interesting thing is that the
evaluation-interpolation strategy for modular polynomials applies to the computation of 𝐷ℓ too (since this is just
one “coefficient” of the modular polynomials!) This modular form has weight 𝑂(ℓ3) and when expressed as a
polynomial 𝑃 in terms of 𝜓4, 𝜓6, 𝜒10, 𝜒12 the total degrees are 𝑂(ℓ3) and the coefficients have height 𝑂(ℓ3) by
[Kie20a], so the total size of 𝑃 is in 𝑂(ℓ12). It can be computed in quasi-linear time by the evaluation-interpolation
approach. It can then be evaluated on an abelian surface defined over 𝔽𝑞 in time 𝑂(ℓ9 log 𝑞). Detecting if an abelian
surface is ℓ-split has interesting cryptographic applications [CD22]. Using the methods of Section 5.3.8, 𝐷ℓ can
also be directly evaluated via the anlytic approach in time 𝑂(ℓ3(log 𝑞 + 𝑑2𝑀)) when 𝑞 = 𝑝𝑑.

Denominators of Hilbert modular polynomials of abelian surfaces

Let us conclude this section by describing denominators of Hilbert modular polynomials. First the same strategy
of introducing them as modular form will speed up their computation. What is more interesting is the modular
interpretation of the denominator 𝐷𝛽 of the 𝛽-modular polynomials for abelian surfaces. If we use modular
invariants whose denominators are given by pullback of 𝜒10, then 𝐷𝛽 parametrizes abelian surfaces that are 𝛽-
isogenous to product of elliptic curves (with real multiplication). Pulling back the extra endomorphisms available
on such a product, we expect that the abelian surface 𝐴 has special endomorphisms (in addition to 𝒪ℱ). This is
indeed the case, in fact the Néron Severi group of 𝐴 will be (generically) of rank 3.

In fact, like denominators of Siegel modular polynomials which correspond to the Humbert surface of special
discriminant ℓ2, denominators of Hilbert modular polynomials correspond to special generalisedHumbert varieties.
These were introduced by Kani in [Kan19a; Kan18; Kan19b] to study the decomposition of the intersection of two
Humbert surfaces 𝐻𝑛 ∩ 𝐻𝑚 in irreducible components. Indeed Kani introduced a refined Humbert invariant on
the Neron-Severi group 𝑁𝑆(𝐴) of 𝐴, this is a quadratic form of rank 𝑚 − 1 where 𝑚 is the rank of 𝑁𝑆(𝐴). The
generalised Humbert variety 𝐻(𝑞) then classify abelian surfaces whose generalised Humbert invariant is 𝑞, and the
classical Humbert surfaces 𝐻𝑛 correspond to 𝑞(𝑥) = 𝑛𝑥2.

In the initial version of [MR20b], we had a section explaining in further details the link between (the components
of) 𝐷𝛽 and 𝐻(𝑞). Unfortunately we had to remove it for length reason, we should probably make a separate article
about this (this is in project in [MR19]). It is still available as version v2 of the Hal url. In the rest of this section the
references I give to [MR20b] are to this version.

101

5 Modular correspondances

First, if 𝐴 is 𝛽-isogenous to a product of elliptic curves, it is actually 𝑚-isogenous to a product by [MR20b,
Lemma 4.21]. So 𝐷(𝛽) lies in 𝐻𝛥 ∩ 𝐻𝑚2 where 𝛥 is the discriminant of 𝒪ℱ. We explain how to find possible
values of 𝑚 in [MR20b, Lemma 5.1]. So we can write 𝐷(𝛽) as an intersection of 𝐻𝛥 and several 𝐻𝑚2 . Since 𝐻(𝑞)
lies in any Humbert surface 𝐻𝑛 such that 𝑞 primitively represent 𝑛, we go through each form 𝑞 that primitively
represents 𝛥, and then check those who also primitively represent 𝑚2 for the 𝑚 appearing in the decomposition of
𝐷(𝛽) above.

A question in [MR20b, Conjecture 5.2] was whether the set of values 𝑚 are the same on each irreducible
component. But this can be proved using [Kan19b, Corollary 6], see [MR19, Theorem 1.2].

Example 5.3.4. For ℚ(√2) and 𝛽 = 5 + 2√2 ∣ 17, the denominator of 𝛷1,𝛽 has for irreducible component the
generalised Humbert variety 𝐻(8𝑥2 + 4𝑥𝑦 + 9𝑦2) = 𝐽7

1 − 𝐽6
1𝐽3

2 − 6𝐽6
1𝐽2

2 + 𝐽6
1𝐽2 + … which lies in

𝐻8 ∩ 𝐻32 ∩ 𝐻72 ∩ 𝐻112 ∩ 𝐻232 ∩ 𝐻312 … .

In particular, an abelian surface 𝛽-isogenous to a product of elliptic curves is also ℓ-isogenous to such a product for
ℓ = 3, 7, 11, 23, 31, ….

5.3.7 Size of the modular polynomials

The degree of the modular polynomial of abelian surfaces in terms of 𝑗′1, 𝑗′2, 𝑗′3 are well understood (we recall that
𝑗𝑖(𝜏) ≔ 𝑗𝑖(𝜏/ℓ)). For instance for 𝛷1,ℓ, this is of degree ℓ3 + ℓ2 + ℓ + 1 in 𝑗′1. What is less obvious is their height,
and the degree of their coefficients 𝑐𝑖(𝑗1, 𝑗2, 𝑗3) in term of 𝑗1, 𝑗2, 𝑗3.

The discussion in Section 5.3.6 answers the first question: multiplying by 𝐷(𝜏), the coefficients 𝑐𝑖 are modular
forms of known weight, and it is easy to get the degree from this weight. A bound on the height has been beautifully
given in [Kie20a]. Kieffer’s method rely on Raynaud’s height isogeny theorem [Ray85]: the Falting’s height of two
ℓ-isogenous abelian varieties over a number field differ by 𝑂(log ℓ). This means that if 𝐽(𝜏) has small height 𝑂(1),
the height of the isogenous abelian surfaces have height bounded by 𝑂(log ℓ).

If 𝑃 is a polynomial of degree 𝑑 in ℚ[𝑋] such that 𝑃(𝑥𝑖) is of height bounded by 𝐻 for 𝑑 + 1 points, then
interpolation gives a bound of 𝑂(𝑑𝐻) for the coefficients of 𝑃. But this bound can be improved if we have more
points 𝑥𝑖 such that 𝑃(𝑥𝑖) is small. The same holds if 𝑃 is a rational function, but this is harder to prove since
cancellation may occur between the denominators and numerator during evaluation, so one need to prove that
cancellations cannot occur too often. Using a careful study, Kieffer proves in [Kie20a] that in a number field 𝐾, 𝑃
has coefficients of height 𝑂(𝐻) (neglecting some factors) if it is a polynomial and there are 2𝑑 evaluation points of
small heights (ie the heights of the 𝑃(𝑥𝑖) is 𝐻), or if it is a rational function and there are 𝑂(𝑑3) evaluation points
of small heights.

Applied to modular polynomials, this proves that the height of the coefficients is in 𝑂(𝐷) where 𝐷 is the degree
of the modular correspondance. In fact Kieffer proves a general version in [Kie20a] for a modular correspondance
on a Shimura variety of PEL type, and gives refinement (in particular more explicit constants) in the case 𝑔 = 2.

In summary: in any dimension, the total degree of the coefficients 𝑐𝑖 is bounded by 𝑂(𝐷) and their height
by 𝑂(𝐷) where 𝐷 is the degree of the modular correspondance. So for abelian surfaces, 𝐷 = 𝑂(ℓ3) for ℓ-
modular polynomials in the Siegel case, and 𝐷 = 𝑂(𝑁(𝛽)) for 𝛽-modular polynomials in the Hilbert case. In
dimension 𝑔 = 1, we recover the classical fact that 𝛷ℓ(𝑋, 𝑌) has degree 𝑂(ℓ) in 𝑋, and 𝑌, and its coefficients have
height 𝑂(ℓ), so its total size is 𝑂(ℓ3).

More generally, in dimension 𝑔, in the Siegel case the degree 𝐷 = #𝛤/𝛤0(ℓ) is equal to 𝐷 = 𝑂(ℓ𝑔(𝑔+1)/2) (an
explicit version can be given using 𝑞-combinatorics but we won’t need this). The modular polynomial 𝛷ℓ,1(𝑋)
will then have degree 𝐷 in 𝑋, and its coefficients 𝑐𝑖 are given by polynomials of total degree 𝐷 in the 𝑔(𝑔 + 1)/2
variables given by the primary invariants of the Siegel space (we can neglect the secondary invariant since their
degrees above the primary invariants do not depend on ℓ). Letting 𝑁 = 𝑔(𝑔 + 1)/2 the dimension of 𝒜𝑔, this
shows that we have 𝑂(𝐷𝐷𝑁) terms, each with a coefficient of height 𝑂(𝐷), with 𝐷 = 𝑂(ℓ𝑁), for a total size of
𝑂(𝐷𝑁+2) = 𝑂(ℓ𝑁(𝑁+2)). This still holds for Hilbert modular polynomials over a real field 𝐾 of dimension 𝑔,
using that the dimension of 𝐻𝑔 is 𝑁 = 𝑔, and with 𝐷 = 𝑂(𝑁(𝛽)) = 𝑂(𝑁𝑟(𝛽)𝑁), where 𝑁𝑟(𝛽) = 𝑁(𝛽)1/[𝐾∶ℚ]:
the total size is 𝑂(𝐷𝑁+2) = 𝑂(ℓ𝑔+2) if ℓ = 𝑁(𝛽).

For instance: if 𝑔 = 2, in the Siegel case 𝑁 = 3 and 𝐷 = 𝑂(ℓ3), so the Siegel ℓ-modular polynomials are of total
size 𝑂(ℓ15), while in the Hilbert case if 𝛽 is of norm ℓ, 𝑁 = 2 and 𝐷 = 𝑂(ℓ), so they are of size 𝑂(ℓ4).

Remark 5.3.5. The approach developed by Kieffer in [Kie20a] also solves a question raised by Labrande in [Lab16,
p. 168]. In that Chapter, Labrande computes isogenies between elliptic curves over a number field by using complex

102

5.3 Modular polynomials

Table 5.1: Siegel modular polynomials in dimension 2

ℓ Size (Streng’s Igusa invariants) Theta constants

2 2.1 MB
3 890 MB 270 KB
5 305 MB
7 29000 MB

Table 5.2: Hilbert modular polynomials in dimension 2

ℓ (ℚ(√2)) Size (Gundlach) Theta ℓ (ℚ(√5)) Size (Gundlach) Theta

2 8.5 KB 5 22 KB 45 KB
7 172 KB 11 3.5 MB 308 KB
17 5.8 MB 221KB 19 33 MB 3.6 MB
23 21 MB 29 188 MB 21 MB
31 70 MB 31 248 MB 28 MB
41 225 MB 7.2 MB 41 785 MB 115 MB
73 81 MB 59 3600 MB 470 MB
89 188 MB
97 269 MB

embeddings and the fast evaluation of theta functions (in 𝑧) he developed in his PhD. He asks about the precision
𝑃 he needs to work with in order to be able to recognize the coefficients of the isogeny and of the isogenous curve
as elements in 𝐾. We can use the isogeny height theorem to estimate this 𝑃, this bound the Faltings height of the
isogenous curve 𝐸′. Then we may also estimate the heights of the polynomials defining the isogeny directly or
using [Kie20a]: a 𝑛-torsion point of 𝐸 is sent via the isogeny to a 𝑛-torsion point of 𝐸′, and we can bound their
heights (since their canonical height is 0), so we can bound the height of the polynomials defining the isogeny.
For elliptic curves we have precise relations between the standard heights and Falgings height (resp. the canonical
height), so this can be made fully explicit.

Example 5.3.6. Examples of the size of modular polynomials for abelian surfaces are given in Tables 5.1 and 5.2.
These polynomials were computed by Milio for his PhD thesis [Mil15b; Mil15a; MR20b]. Previously Dupont had
computed in [Dup06] the Siegel modular polynomials for ℓ = 2 using Spalleck’s version of Igusa invariants; this
gives much bigger modular polynomials than using Streng’s version: 26.8MB (compressed).

Like in Example 5.3.4, for ℚ(√2), 𝛽 = 5 + 2√2 ∣ 17, letting 𝑏1, 𝑏2, 𝑏3 be the pullback of level 2 theta functions
𝜃𝑖/𝜃0 on the Hilbert space, the denominator of 𝛷1,𝛽 is 𝑏6

3𝑏18
2 + (6𝑏8

3 − 6𝑏4
3 + 1)𝑏16

2 + (15𝑏10
3 − 24𝑏6

3 + 7𝑏2
3)𝑏14

2 +
(20𝑏12

3 −42𝑏8
3+9𝑏4

3+2)𝑏12
2 +(15𝑏14

3 −48𝑏10
3 +37𝑏6

3+4𝑏2
3)𝑏10

2 +(6𝑏16
3 −42𝑏12

3 +68𝑏8
3−26𝑏4

3+3)𝑏8
2+(𝑏18

3 −24𝑏14
3 +

37𝑏10
3 +8𝑏6

3 −𝑏2
3)𝑏6

2 +(−6𝑏16
3 +9𝑏12

3 −26𝑏8
3 −24𝑏4

3 +2)𝑏4
2 +(7𝑏14

3 +4𝑏10
3 −𝑏6

3)𝑏2
2 +(𝑏16

3 +2𝑏12
3 +3𝑏8

3 +2𝑏4
3 +1).

To illustrate the differences of heights between Hilbert and Siegel modular polynomials, one coefficient of the
denominator of the Siegel modular polynomial 𝛷1,5 is 1180591620717411303424.

5.3.8 Evaluating modular polynomials

We recall the Schoof-Pila method to compute the number of points of an abelian surface over 𝔽𝑞 (with 𝑞 = 𝑝𝑛):
compute the characteristic polynomial 𝜒𝜋 of the Frobenius 𝜋 on the ℓ-torsion and then use the CRT to recover 𝜒𝜋.
Using the Weil bounds this requires 𝑂(log 𝑞) primes ℓ of size 𝑂(log 𝑞). Computing the action on the ℓ-torsion is in
𝑂(ℓ6) operations in 𝔽𝑞, for a total cost of 𝑂(log 𝑞7) operations in 𝔽𝑞 using [GS12], ie of 𝑂(log 𝑞8) (see Section 5.5).
It might seem hopeless to improve point counting using a SEA like algorithm by using isogenies to restrict to a
subgroup of the ℓ-torsion since the ℓ-modular polynomial is already of size 𝑂(ℓ15).

But things get much better if there is a way to directly evaluate the modular polynomials on 𝑗1(𝐴), 𝑗2(𝐴), 𝑗3(𝐴)
where 𝐴/𝔽𝑞 is an abelian surface. Indeed, 𝛷ℓ,1 is then a polynomial in 𝔽𝑞[𝑋] of degree 𝑂(ℓ3), so if ℓ = 𝑂(log 𝑞)
is of size log4 𝑞.

103

5 Modular correspondances

A complex analytic approach for elliptic curves and abelian surfaces

We do know how to evaluate the modular polynomials over ℂ, this is part of the evaluation-interpolation algorithm,
and can be done in time quasi-linear in the size of the evaluation. This means that we know how to evaluate the
modular polynomials over a number field 𝐾. Still, an important difference is that in the evaluation-interpolation
approach we may choose our evaluation points, while here it will be given.

Concretely, wemay embed 𝐾 into ℂ via an embedding 𝜙, and if we know 𝜙(𝑥) with 𝑥 ∈ 𝐾 with enough precision
(depending on the height of 𝑥 and constants depending on 𝐾 like its discriminant) we can use the LLL algorithm to
recover 𝑥 ∈ 𝐾. While the LLL algorithm can be made quasi-linear in the precision, it is still cubic in the dimension
𝑛 of 𝐾, so a better alternative approach is to consider all 𝑛 embedding 𝜙𝑖 ∶ 𝐾 → ℂ, and reconstruct 𝑥 from these
embeddings. This requires to compute more values but on the other hand we can also recover 𝑥 using less precision
on the 𝜙𝑖(𝑥). We refer to [Kie20b, § 2.3] for more details.

So this suggests the following strategy to evaluate a modular polynomial over 𝔽𝑞: find a number field 𝐾 and a
place 𝔭 such that 𝒪𝐾/𝔭 ≃ 𝔽𝑞, lift 𝐴 to 𝒪𝐾, evaluate the modular polynomials on this lift and then reduce them
modulo 𝔭. If 𝑞 = 𝑝 we may of course take 𝐾 = ℚ. The lifted 𝑗-invariants are of height 𝑂(log 𝑝), so for abelian
surfaces the evaluated modular polynomial over ℚ is of degree 𝑂(ℓ3) with coefficients of height 𝑂(ℓ3 log 𝑝), so if
ℓ = 𝑂(log 𝑝) it is of total size 𝑂(log 𝑝7). In a SEA like algorithm this would be the dominating step, so using this
method we will get a complexity 𝑂(log 𝑝8), see Section 5.5. Likewise, in the Hilbert case, if ℓ is the norm of 𝛽, the
evaluated polynomial over ℚ is of degree 𝑂(ℓ) with coefficients of height 𝑂(ℓ log 𝑝) for a total size of 𝑂(log 𝑝3) if
ℓ = 𝑂(log 𝑝).

So I suggested to Kieffer to look at this “lifting” approach, which he did brilliantly in [Kie20b]. Indeed the
practical details are far from trivial:

• To count points over 𝔽𝑞 we need to recognize elements in a number field, this is harder than for ℚ;

• As remarked above, unlike the general evaluation/interpolationmethod to compute themodular polynomials,
we do not choose the evaluation point. Hence Dupont’s algorithm which is quasi-linear in the precision for a
fixed 𝜏 is not sufficient, one need to prove some uniformity condition. Furthermore, since the evaluation
point is given, the values 𝛾 ⋅ 𝜏/ℓ may fall far from the standard fundamental domain. Even the reduction
algorithm to go back to the fundamental domain has to be considered carefully [Kie20b, § 4.2]. We refer to
Section 5.3.4 for more details.

• Likewise, we need to show that if the height of the modular functions is bounded, we can bound appropriately
and recover uniformly the period matrix 𝜏 at some precision [Kie20b, § 5].

• Furthermore Kieffer made the interesting observation that if we take an abelian surface or an hyperelliptic
genus 2 curves given by “small” coefficients over 𝔽𝑝, then we may lift the modular invariants to ℚ so that
they are of small 𝑂(1) height, rather than 𝑂(log 𝑝), so the coefficients of the evaluated modular polynomial
are only of height 𝑂(ℓ3). The evaluated polynomial is then of size 𝑂(log 𝑝6).
In the Hilbert case we would have coefficients of height 𝑂(ℓ) and the evaluated polynomial is of size 𝑂(ℓ2).

With all this hard work, Kieffer obtains, under some heuristics about the convergence of the Newton process to
evaluate theta constants via Dupont’s algorithm:

Proposition 5.3.7 (Kieffer). Given the Igusa invariants of an abelian surface over 𝔽𝑝, the Siegel modular polynomial
of level ℓ can be evaluated in time 𝑂(ℓ3 log2 𝑝 + ℓ6 log 𝑝) in general, and in time 𝑂(ℓ6) if the surface is given by small
integral coefficients.

In the Hilbert case, if 𝛽 is of norm ℓ, the Hilbert modular polynomial of level 𝛽 may be evaluated in time 𝑂(ℓ log2 𝑝+
ℓ2 log 𝑝), and in time 𝑂(ℓ2) if the surface is given by small integral coefficients.

Remark 5.3.8. See also [Kie20b, § 6.3] for the case of evaluating modular polynomials over 𝔽𝑞. Essentially if
𝑞 = 𝑝𝑑 with 𝑑 constant or sufficiently small (eg 𝑑 = 𝑂(log 𝑝)), the same complexity holds replacing log 𝑝 by log 𝑞:
𝑂(𝐷 log2 𝑞 + 𝐷2 log 𝑞) where 𝐷 is the degree of the modular correspondance, ie the number of isogenies, which is
𝑂(ℓ3) in the Siegel case and 𝑂(ℓ) in the Hilbert case. But there are extra complexity terms if 𝑑 is large with respect
to log 𝑝. In the general case, if 𝑃 is a polynomial defining 𝔽𝑞, we lift it to a (unitary) polynomial 𝑃 ∈ ℤ[𝑋], so
that 𝔽𝑞 = ℤ[𝑋]/(𝑝, 𝑃) and 𝑃 is irreducible modulo 𝑝, and we let 𝐾 = ℚ[𝑋]/𝑃(𝑋). We can then bound the
complexity by 𝑂(𝐷 log2 𝑞 + 𝐷𝑑4𝑀2 + 𝐷2 log 𝑞 + 𝐷2𝑑2𝑀) where 𝑀 = max(1, ℎ(𝑃)) is a bound on the height of
the polynomial 𝑃(𝑋), see [Kie20b, Proposition 6.4].

104

5.3 Modular polynomials

We detail this (and refine a bit) because it will be useful for the other strategies. We denote by 𝜎𝑗 the 𝑑 embeddings
of 𝐾 into ℚ, and let 𝛼 be a root of 𝑃. If 𝑥 ∈ 𝐾, we represent it by the polynomial 𝑥 = ∑ 𝜆𝑖𝛼𝑖, 𝜆𝑖 ∈ ℚ. We
have ℎ({𝜎𝑗(𝑥)}) ≤ ℎ({𝜆𝑖}) + (𝑑 − 1)ℎ({𝜎𝑗(𝛼)}) + log 𝑑 ≤ ℎ({𝜆𝑖}) + (𝑑 − 1)ℎ(𝑃) + (𝑑 − 1) log 2 + log 𝑑 ≤
ℎ({𝜆𝑖}) + 𝑂(𝑑𝑀). Conversely, we can interpolate the 𝜆𝑖 from the values of the 𝜎𝑗(𝑥), and using Mahler’s bound
(or simply Hadamard’s lemma) ℎ(Disc𝑃) ≤ (2𝑑 − 2)ℎ(𝑃) + 2𝑑 log 𝑑 to invert the Vandermonde matrix, we get
that ℎ({𝜆𝑖}) ≤ ℎ({𝜎𝑗(𝑥)}) + (2𝑑 − 2)ℎ(𝑃) + (2𝑑 + 1) log 𝑑 ≤ ℎ({𝜎𝑗(𝑥)}) + 𝑂(𝑑𝑀)). If the 𝜆𝑖 are in ℤ (ie
𝑥 ∈ ℤ[𝛼]), we can improve the bound to ℎ({𝜆𝑖}) ≤ ℎ({𝜎𝑗(𝑥)}) + (𝑑 − 1)ℎ(𝑃) + (𝑑 + 1) log 𝑑. We also recall
the obvious bound ℎ({𝑥𝑖}) ≤ ∑ ℎ(𝑥𝑖), so ℎ({𝜎𝑗(𝑥)}) ≤ 𝑑ℎ(𝑥). Via fast interpolation, the 𝜆𝑖 can be recovered
from the complex values of the 𝜎𝑗(𝑥), working at precision 𝑚 = 𝛺(ℎ({𝜎𝑗(𝑥)}) + 𝑑𝑀) in time 𝑂(𝑑𝑚), taking into
account precision losses of at most 𝑂(ℎ({𝜎𝑗(𝑥)}) + 𝑑𝑀 + 𝑑 log 𝑑) [Kie20b, Lemma 2.4].

If 𝛼′
𝑖 form a basis of 𝒪𝐾, wemay also represent an element 𝑥 ∈ 𝐾 as 𝑥 = ∑ 𝜆′

𝑖𝛼′
𝑖 rather than 𝑥 = ∑ 𝜆𝑖𝛼𝑖.Then we

can replace in the terms above logDisc𝑃 = 𝑂(𝑑𝑀 +𝑑 log 𝑑) by log|Disc𝐾| if 𝛼′
𝑖 is a sufficiently nice basis, eg an LLL

or BKZ or HKZ reduced basis (plus some extra terms depending on how well our basis is reduced). For instance, by
[Cou20, § 2], there exists a basis 𝛼′

𝑖 such that ℎ(𝜎 ′
𝑗 (𝛼′

𝑖)) ≤ 2
𝑑 log|Disc𝐾|, so ℎ({𝜎𝑗(𝑥)}) ≤ ℎ({𝜆′

𝑖}) + 2
𝑑 log|Disc𝐾| +

log 𝑑 and ℎ({𝜆′
𝑖})) ≤ ℎ({𝜎𝑗(𝑥)})+4 log|Disc𝐾|+ 2𝑑+1

2 log 𝑑 (or ℎ({𝜆′
𝑖})) ≤ ℎ({𝜎𝑗(𝑥)})+2 log|Disc𝐾|+ 𝑑+1

2 log 𝑑
if 𝑥 ∈ 𝒪𝐾, ie 𝜆′

𝑖 ∈ ℤ). See also [Kie20b, Lemma 2.6, § 6.3] for the case of an LLL reduced basis of 𝒪𝐾.
If 𝐽𝐴 = ∑ 𝑎𝑖𝛼𝑖, we let 𝐻0 = ℎ({𝑎𝑖}) be a bound on the heights of the 𝑎𝑖 ∈ ℚ. So 𝐻1 ≔ ℎ({𝜎𝑖(𝐽𝐴)}) =

𝑂(𝐻0 + 𝑑𝑀) and the evaluated modular polynomial on 𝐽𝐴 then has coefficients 𝑐𝑗 of heights ℎ({𝜎𝑖(𝑐𝑗)}) =
𝑂(𝐷(𝐻1 + 𝑑𝑀)) = 𝑂(𝐷(𝐻0 + 𝑑𝑀)) = 𝑂(𝐻) where 𝐻 = 𝑂(𝐻0 + 𝑑𝑀). Here we assume that we work with
the affine modular polynomials, otherwise when evaluating the rational functions (assuming the denominators do
not vanish), using that ℎ(𝑐𝑁) = ℎ(𝑐−1

𝑁), we get a bound of ℎ({𝜎𝑖(𝑐𝑗/𝑐𝑁)}) = 𝑂(𝑑𝐷𝐻) = 𝑂(𝑑𝐷(𝐻0 + 𝑑𝑀)).
We recognize the coefficients as elements 𝑐𝑗 = ∑ 𝑐𝑗,𝑖𝛼𝑖, and the above formula show that the 𝑐𝑗,𝑖 ∈ ℚ have

heights 𝑂(𝐷𝐻) = 𝑂(𝐷(𝐻0 + 𝑑𝑀)). These coefficients 𝑐𝑗,𝑖 can be recovered by interpolation in time 𝑂(𝐷𝑑𝐻) =
𝑂(𝑑𝐷(𝐻0 + 𝑑𝑀)) from the values 𝜎𝑖(𝑐𝑗) of each complex embedding, working at precision 𝑚 = 𝛺(𝐷𝐻) =
𝛺(𝐷(𝐻0 + 𝑑𝑀)) (taking into account precision losses). Interpolating all coefficients then take time 𝑂(𝐷2𝑑𝐻) =
𝑂(𝐷2𝑑(𝐻0 + 𝑑𝑀)). The evaluation of the 𝑑 embeddings 𝜎𝑖(𝑐𝑗) of 𝑐𝑗 is not quasi-linear and can be only done in
time 𝑂(𝐷𝑑𝐻 +(𝑑𝐻)2) = 𝑂(𝑑𝐷(𝐻0 +𝑑𝑀)+(𝑑(𝐻0 +𝑑𝑀))2) (it would be 𝑂(𝐷𝑑𝐻) = 𝑂(𝑑𝐷(𝐻0 +𝑑𝑀)) in a
quasi-linear algoarithm). So the evaluation of all coefficients 𝑐𝑗 takes time 𝑂(𝐷2𝑑𝐻 + 𝐷(𝑑𝐻)2) = 𝑂(𝐷(𝑑𝐷(𝐻0 +
𝑑𝑀) + (𝑑(𝐻0 + 𝑑𝑀))2)), and dominates the interpolation step. When 𝐽𝐴 ∈ 𝔽𝑞, we take for 𝑃 a lift to ℤ of a
polynomial defining 𝔽𝑞, so 𝐻0 = 𝑂(log 𝑝) and 𝐻 = 𝑂(log 𝑝 + 𝑑𝑀), or 𝐻 = 𝑂(𝑑𝑀) with small parameters. The
total complexity is then 𝑂(𝐷2𝑑𝐻 + 𝐷𝑑2𝐻2) = 𝑂(𝐷2𝑑(𝐻0 + 𝑑𝑀) + 𝐷𝑑2(𝐻0 + 𝑑𝑀)2)so for 𝐻0 = 𝑂(log 𝑝),
𝑑𝐻0 = 𝑂(log 𝑞) and we recover the complexity stated above.

The computations are all quasi-linear in the height 𝐻, except as we have seen for the evaluation step, more
precisely for the reduction to the fundamental domain, which is essentially quasi-quadratic (hence the term in
(𝑑𝐻)2 above). A quasi-linear reduction algorithm (modeled on [NSV11; NS16]) would give an improved (quasi-
linear) complexity of 𝑂(𝐷2𝑑𝐻) = 𝑂(𝑑𝐷2(𝐻0 + 𝑑𝑀)) over a number field, hence 𝑂(𝐷2(log 𝑞 + 𝑑2𝑀)) over a
finite field, or 𝑂(𝐷2𝑑2𝑀) with small parameters.

Over a finite field, using the trivial bound 𝑀 = 𝑂(log 𝑝), we get a bound of 𝑂(𝐷𝑑2 log2 𝑞 + 𝐷2𝑑 log 𝑞), with a
fully quasi-linear algorithm this would give 𝑂(𝐷2𝑑 log 𝑞) instead. But this trivial bound on 𝑀 is too pessimistic,
by [AL86; Shp96] under GRH, we can deterministically find irreducible polynomials modulo 𝑝 of degree 𝑑 and
height 𝑀 = 𝑂(2𝑑 log log 𝑝). Actually, since a random polynomial of degree 𝑑 is irreducible modulo 𝑝 with
probability ≥ 1/2𝑑, in practice we can get 𝑀 = 𝑂(1) by doing 𝑂(𝑑) irreducibility tests over 𝔽𝑝, for a total cost
of 𝑂(𝑑2 log2 𝑝) = 𝑂(log2 𝑞) by [KU11]. We obtain a complexity of 𝑂(𝐷 log2 𝑞 + 𝐷𝑑4 + 𝐷2 log 𝑞 + 𝐷2𝑑2), resp.
𝑂(𝐷2(log 𝑞 + 𝑑2)) with a quasi-linear reduction algorithm. This may involve changing the representation of 𝔽𝑞,
but by [BDD+19] an isomorphism can be computed in time 𝑂(𝑑(1+𝜔)/2 log 𝑝 + 𝑑 log2 𝑝) (this can be seen as a
precomputation) and then applying the isomorphism on each coefficient uses a modular composition, hence costs
𝑂(𝑑(1+𝜔)/2 log 𝑝), or even 𝑂(log 𝑞) using [KU11].

The same strategy holds for evaluating a modular polynomial on an invariant defined in ℤ/𝑝𝑚ℤ or ℤ𝑞/𝑝𝑚ℤ𝑞,
this will be useful in Section 5.4.3 and Chapter 6. This time the lift to 𝐾 has height 𝐻 = 𝑂(𝑚 log 𝑝 + 𝑑𝑀), so it
suffices to replace in the formulae above log 𝑝 (resp. log 𝑞) by 𝑚 log 𝑝 (resp. 𝑚 log 𝑞).We can still use an isomorphism
to switch to a polynomial of small height, by lifting the isomorphism modulo 𝑝 using Newton iterations; the fast
modular composition of [KU11] holds over ℤ𝑞/𝑝𝑚ℤ𝑞, see [KU11, § 4.3].

Finally the complexities given above hold for an arbitrary dimension 𝑔 (adjusting 𝐷 of course), provided that we

105

5 Modular correspondances

have fast (uniform) evaluation of theta constants and fast evaluation of (one) period matrix, and also fast reduction
to the fundamental domain to get the fully quasi-linear algorithm (over 𝐾). For the evaluation/period matrix, from
the discussion of Section 5.3.4, the main difficulty is the fast evaluation of the period matrix, unless we are in
the special case where 𝐴 is a Jacobian of an hyperelliptic curve, in which case we can compute the periods at low
precision.

Remark 5.3.9. For 𝑔 = 1 we have all these quasi-linear algorithms, using [Dup06; Lab18] for evaluation/period
matrices (when 𝑔 = 1 there is no heuristics remaining), and the reduction to the fundamental domain is done
using Gauss’ algorithm which is linear [VV09, Theorem 6] in the size of the period matrix. Since 𝐷 = ℓ for 𝑔 = 1,
we get a complexity of 𝑂(ℓ2(log 𝑞 + 𝑑2𝑀)) to evaluate modular polynomials over elliptic curves above a finite
field 𝔽𝑞, and we recall that we can take 𝑀 = 𝑂(1).

In [Sut13], for the evaluation of 𝛷ℓ at 𝑗 ∈ 𝔽𝑞, Sutherland gives a complexity of 𝑂(ℓ3 + ℓ2 log 𝑞) but with a better
space complexity of 𝑂(ℓ log 𝑞 + ℓ2), using the CRT method (with some clever tricks) to compute the full modular
polynomial modulo small primes 𝑝𝑖, then evaluate it at 𝑗 mod 𝑝𝑖, then reconstruct the evaluation to 𝔽𝑞. So the
strategy developed above for 𝑔 = 2 because the modular polynomials are too large is actually also useful for elliptic
curves.

Remark 5.3.10. We can also tweak the algorithm to not only get the evaluation of the modular polynomials, but
also of their derivatives in the same complexity, this will be helpful in Section 5.4. Indeed, to evaluate the derivative
at 𝐽𝐴 ∈ 𝔽𝑞, it suffices to evaluate them at several values 𝐽𝐴 + 𝑝𝜈 in ℤ𝑞/𝑝2ℤ𝑞. Likewise to get the derivatives in
ℤ𝑞/𝑝𝑚ℤ𝑞 we evaluate 𝐽𝐴 + 𝑝𝑚𝜈 in ℤ𝑞/𝑝2𝑚ℤ𝑞, taking 𝑚 large enough allows to recover the derivatives at 𝐽𝐴 ∈ 𝐾.
See Section 5.4.3 for other strategies.

Update @2022-03: In the new version of [Kie20b], Kieffer shows that the evaluation of the modular polynomial
in dimension 𝑔 = 2 is quasi-linear. Indeed, while the reduction step is not quasi-linear for a general matrix 𝜏,
a careful study of the matrices involved in the evaluation of the modular polynomial shows that the reduction
step is fast enough for these cases, see the update Page 98. And as mentioned in this update, he proved that the
computation of the period matrix and theta constants is uniformly quasi-linear in the precision without heuristics!

In summary, we now have:

Proposition (Kieffer). Let 𝐽 be modular invariants 𝐽 of an abelian variety of dimension 𝑔 ≤ 2 defined over a number
field 𝐾 = 𝑄(𝛼) of degree 𝑑 (so 𝐽 is the 𝑗-invariant if 𝑔 = 1, and the Igusa invariants for 𝑔 = 2). Then the Siegel (resp.
Hilbert) modular polynomial 𝛷(𝐽, 𝑌) can be evaluated in quasi-linear time 𝑂(𝐷2𝑑(𝐻0 + 𝑑𝑀)) where 𝐻0 = ℎ(𝐽),
𝑀 = ℎ(𝑃𝛼) (𝑃𝛼 the minimal polynomial of 𝛼) and 𝐷 is the degree of the modular correspondance (so 𝐷 = 𝑂(ℓ) for
𝜙ℓ when 𝑔 = 1, 𝐷 = 𝑂(ℓ3) in Siegel for 𝜙𝑒𝑙𝑙 when 𝑔 = 2, and 𝐷 = 𝑂(ℓ) in Hilbert for 𝜙𝛽 when 𝛽 is of norm ℓ and
𝑔 = 2).

So by Remarks 5.3.8 and 5.3.10:

Corollary. If 𝐽 ∈ ℤ𝑞/𝑝𝑚ℤ𝑞, the (Siegel or Hilbert) modular polynomial in dimension 𝑔 ≤ 2 and its derivative
can be evaluated on 𝐽 in time 𝑂(𝐷2(𝑚 log 𝑞 + 𝑑2𝑀)), or 𝑂(𝐷2𝑑2𝑀) for small parameters. Furthermore, one can
(heuristically) take 𝑀 = 𝑂(1).

A CRT and 𝑝-adic lifting approach to evaluating modular polynomials in any dimension

As mentioned in Remark 5.3.8, the main stumbling point to generalize the complex analytic strategy to arbitrary
dimension is the lack of an algorithm to evaluate the period matrix from the theta constants when 𝑔 > 2 and 𝐴 is
not a Jacobian (but see Section 5.7 for a potential approach). Anticipating Section 5.6.2 and Chapter 6 we outline
two different approaches based on 𝑝-adic lifting and CRT reconstruction. We use the same idea as above: we lift
our abelian variety/its invariants from 𝔽𝑞 to a number field 𝐾. This step was easy for abelian surfaces because we
just need to lift the Igusa invariants, and more generally for Jacobians we just need to lift the curve, but for higher
dimension we will have equations between our invariants, so we may need to take field extensions to get a rational
moduli point, and this step may not at all be trivial. Fortunately this does not depend on the modular polynomials
we want to evaluate.

The question then boils down to evaluating 𝛷ℓ(𝐽(𝐴), 𝑋) where 𝐽(𝐴) ∈ 𝐾, in quasi-linear time in its size (which
of course, as we saw in Remark 5.3.8 is not the same as the size of its reduction to 𝔽𝑞; getting a quasi-linear
algorithm for the evaluation of the reduced modular polynomial looks much more challenging). This is a system of
dimension 0, which we can compute by evaluating all of its points. In this kind of situation there are often three

106

5.3 Modular polynomials

strategies available: use complex approximation, 𝑝-adic approximation or use a a CRT approach. We will see this
again in Chapter 7.

The strategy implemented in [Kie20b] is to look at the complex embeddings: evaluate the modular polynomial
for each complex embedding and then reconstruct the coefficients in 𝐾 (or 𝒪𝐾 if we take an integral lifting and use
the version of the modular polynomials with explicit denominator from Section 5.3.6). The 𝑝0-adic version use
the 𝑝0-adic embeddings instead (typically with 𝑝0 much smaller than 𝑝), and the CRT algorithm reconstruct the
coefficients 𝑐𝑖 ∈ 𝐾 from their values modular several prime ideals.

For simplicity we assume that our modular invariants 𝐽 used as coordinates on 𝒜𝑔 are defined over ℤ (ie their
Fourier coefficients are integral), so they are well defined modulo 𝑝. We can also work with invariants defined over
ℚ, in this case we need to sieve out the primes of bad reduction in the CRT or 𝑝0-lifting approach.

the siegel case. Let us focus on one place, and for simplicity assume for now that 𝐾 = ℚ. Here 𝑝0 is a small
prime of ℚ, not the (potentially large) prime 𝑝 where 𝐴/𝔽𝑝 is defined. Then we can compute 𝐽(𝐴/ℚ) mod 𝑝0,
ie reduce 𝐴 to 𝔽𝑝0

(assuming 𝑝0 is of good reduction of course), compute 𝐴[ℓ] using Section 5.6.2, then all the
possible kernels to form 𝛷ℓ(𝐽(𝐴), 𝑋) mod 𝑝0. This will typically require working over an extension of 𝑝0 of
degree 𝑑 = 𝑂(𝑑0ℓ𝑔) where 𝔽

𝑝𝑑0
0

is the field of definition of the isogenies and 𝔽𝑝𝑑 of the points in their kernels. We

may also bound 𝑑 by 𝑑 = 𝑂(ℓ2𝑔), the field of definition of the points of 𝐴[ℓ].
So we first have a precomputation step to compute a symplectic basis of 𝐴[ℓ] which involves point counting

(more precisely determining 𝜒𝜋) over 𝔽𝑝0
and then sampling points, which cost of 𝑂(𝑑2 log2 𝑝0).

We then compute all the 𝑂(ℓ𝑁) isogenies, where 𝑁 = 𝑔(𝑔 + 1)/2. If the kernel is rational, its points are defined
in an extension of degree at most 𝑂(ℓ𝑔) so the isogeny cost at most 𝑂(ℓ2𝑔). If the kernel is defined over 𝔽

𝑝𝑑0
0

,

we work over a bigger extension but the Galois action gives us 𝑑0-isogenies, so we have the same average cost of
𝑂(ℓ2𝑔). So the total cost for all isogenies is at most 𝑂(ℓ𝑁+2𝑔 log 𝑝0). The final cost, neglecting logarithmic factors,
in particular algorithms polynomial in log 𝑝0 such as point counting of 𝐴/𝔽𝑝0

, is then 𝑂(ℓ4𝑔 + ℓ𝑁+2𝑔) binary
operations. This is 𝑂(ℓ𝑁+2𝑔) if 𝑔 > 1. If we Sieve 𝑝0 so that all points in (𝐴/𝔽𝑝0

)[ℓ] are rational (or more generally
such that the points of the kernels are rational over the fields of definition of the kernels), this becomes 𝑂(ℓ𝑁+𝑔)
(including 𝑔 = 1).

If 𝐴/𝐾 has invariants of height 𝐻, we recall from Section 5.3.7 that the height of the evaluatedmodular polynomial
is 𝑂(ℓ𝑁 + 𝐻ℓ𝑁) = 𝑂(𝐻ℓ𝑁), and its degree 𝑂(ℓ𝑁). So given 𝐴/ℚ, we need to look at its reduction modulo 𝑝𝑚

0
where 𝑚 = 𝑂(𝐻ℓ𝑁). We lift the basis of 𝐴/𝔽𝑝0

[ℓ] to ℤ/𝑝𝑚
0 via Newton iterations (since 𝐴[ℓ] is étale over 𝔽𝑝0

the
lifting behaves well). We then compute ℓ𝑁 isogenies over ℤ/𝑝𝑚

0 , each isogeny costing ℓ𝑔 operations in ℤ/𝑝𝑚
0 , so

the total cost is then 𝑂(𝐻ℓ2𝑁+𝑔).
A similar strategy works for the CRT algorithm, with the added bonus that using explicit CRT [BS07] we can

do the CRT reconstruction modulo 𝑝 directly, so this only requires a memory the size of the evaluated modular
polynomial modulo 𝑝. We need 𝑂(𝐻ℓ𝑁) primes, and if we sieve for primes 𝑝0 such that (𝐴/𝔽𝑝0

)[ℓ] is composed of
rational points, we expect roughly one out of 𝑂(ℓ2𝑔) prime to work. So the largest primewould be 𝑝0 = 𝑂(𝐻ℓ𝑁ℓ2𝑔),
but the dependency of the algorithm on 𝑝0 is only polynomial in log 𝑝0, so this is taken care of by the 𝑂 notation.The
advantage is that the isogeny computations are done over the base field, so we also get an algorithm in 𝑂(𝐻ℓ2𝑁+𝑔).

the hilbert case. A similar method works for cyclic 𝛽-modular polynomials (provided we can explicit real
multiplication, see the end of Section 5.6.2). If 𝛽 is of norm ℓ, we have 𝑂(ℓ) isogenies each costing in average at
most 𝑂(ℓ) to compute over an extension of 𝔽𝑝0

of degree 𝑂(ℓ), ie this costs 𝑂(ℓ3). Furthermore, the initialisation
step computes a basis of 𝐴[𝛽] in 𝑂(𝑑2 log2 𝑝0) operations over 𝔽𝑝0

if 𝑑 = 𝑂(ℓ2) is the degree of definition of the
geometric points of 𝐴[𝛽]. The total cost is 𝑂(ℓ4).

So like in the Siegel case, we want to Sieve for 𝑝0 such that the points of the kernels are rational over the fields of
definition of the kernels, this is the case if 𝐴[𝛽] has rational points. In this case each isogeny costs (on average)
𝑂(ℓ), for a total cost of 𝑂(ℓ2) operations over 𝔽𝑝0

. The height of the evaluated modular polynomial is 𝑂(𝐻ℓ) and
its degree is 𝑂(ℓ). The 𝑝0-adic approach and the CRT approach then both have a complexity of 𝑂(𝐻ℓ3).

As remarked above, we can do a more intelligent sieving than searching for all points of 𝐴[𝛽] to be rational.
𝐴[𝛽] is an 𝔽ℓ = 𝒪𝐴/𝛽-module of rank 2, where 𝒪𝐴 = End𝑠(𝐴) are the real endomorphisms, furthermore the
characteristic polynomial of the Frobenius is 𝜒𝜋 = 𝑋2 − 𝑡𝑋 + 𝑞 modulo 𝛽, for 𝑡 ∈ ℤ[𝜋 + 𝜋]. We assume that
ℤ[𝜋 + 𝜋] is locally maximal at ℓ, we let ℓ0 be the characteristic of 𝔽ℓ, 𝑒0 be the embedding degree (ie the order
of 𝑞 in 𝔽ℓ), 𝑒1 the minimal extension where all kernels become rational, and 𝑒2 the minimal extension where all
points of 𝐴[𝛽] become rational. Then it is easy to check that either 𝑒2 = 𝑒0 ∧ 𝑒1 or 𝑒2 = 2(𝑒0 ∧ 𝑒1).

107

5 Modular correspondances

There are three possibilities: if 𝛽 is split or inert in ℤ[𝜋], then 𝜋∣𝐴[𝛽] = (𝜆1 0
0 𝜆2

), with 𝜆𝑖 ∈ 𝔽ℓ in the

split case, and 𝜆𝑖 ∈ 𝔽ℓ2 with 𝜆2 = 𝜆ℓ
1 in the inert case. Then 𝑒1 is the order of 𝜆1/𝜆2, so 𝑒1 ∣ ℓ − 1 in the split

case, and 𝑒1 ∣ ℓ + 1 in the inert case. Finally, if 𝛽 is ramified, either 𝜋∣𝐴[𝛽] = (𝜆 0
0 𝜆) in which case 𝑒1 = 1, or

𝜋∣𝐴[𝛽] = (𝜆 1
𝜆 0) (this is the case at the bottom of the volcano) in which case 𝑒1 = ℓ0. So there is a non negligeable

probability that 𝑒2 = 𝑒1, essentially with heuristic probability 1/2 we are in the split case, and 𝑒1 = 𝑒2 whenever
𝜆1/𝜆2 is primitive. Since the sieving is much less agressive, this gains a polylogarithmic factor in ℓ.

complexity. In summary, if we fix the number field 𝐾 so that parameters depending on 𝐾 are hidden in the
𝑂() notation:

Lemma 5.3.11. Assume that 𝐽𝐴 is of height 𝐻 in a number field 𝐾. Then when evaluating the Siegel modular
polynomials 𝛷ℓ(𝐽𝐴, 𝑋), it has 𝑂(ℓ𝑁) coefficients of heights 𝑂(𝐻ℓ𝑁) for a total size of 𝑂(𝐻ℓ2𝑁) with 𝑁 = 𝑔(𝑔+1)/2
(we hide in the 𝑂 notation constants depending on the number field, like its degree, discriminant, etc). The 𝑝0-adic
and the CRT method computes the evaluation in time 𝑂(𝐻ℓ2𝑁+𝑔).The Hilbert modular polynomial 𝛷𝛽(𝐽𝐴, 𝑋) has
𝑂(ℓ) coefficients of heights 𝑂(𝐻ℓ) for a total size 𝑂(𝐻ℓ2), the 𝑝0-adic and CRT method costs 𝑂(𝐻ℓ3).

If we then reduce the evaluated modular polynomial to 𝔽𝑞, via a fast modulo 𝑝 reduction this is quasi-linear in
the size of the evaluated modular polynomial in 𝐾. As a corollary, evaluating the modular polynomial over 𝔽𝑞,
with 𝑞 = 𝑝𝑑 and 𝑑 fixed, costs 𝑂(ℓ2𝑁+𝑔 log 𝑞) in the Siegel case, and 𝑂(ℓ3 log 𝑞) in the Hilbert case. We can also
evaluate the derivative of the modular polynomials as in Remark 5.3.10.

Remark 5.3.12. Note that, using the same analysis as Remark 5.3.8, we may bound the constants hidden in the
𝑂() using the degree of the number field and the height of the coefficients of the polynomial we use to represent
it. Using the notations of this Remark, we represent 𝐾 as 𝐾 = ℚ[𝛼]/𝑃(𝛼) and we note 𝑀 = max(1, ℎ(𝑃)). If
𝐽𝐴 ∈ 𝐾 = ∑ 𝑎𝑖𝛼𝑖 has coefficients 𝑎𝑖of height 𝐻0, we need to recognize coefficients 𝑐𝑗 of height 𝑂(𝐷(𝐻0 + 𝑑𝑀)),
and the evaluated modular polynomial is of size 𝑂(𝑑𝐷2(𝐻0 + 𝑑𝑀)). The cost of the evaluation using the 𝑝0-adic
or CRT method is then 𝑂(𝑑𝐷2𝐸(𝐻0 + 𝑑𝑀)), where 𝐸 is the cost for computing one isogeny, ie 𝐸 = ℓ𝑔 in the
Siegel case and 𝐸 = ℓ in the Hilbert case. Lifting a modular invariant defined over 𝔽𝑞, 𝐻0 = 𝑂(log 𝑝), so the
height is 𝐻 = 𝑂(log 𝑝 + 𝑑𝑀), or 𝑂(𝑑𝑀) with small parameters. Likewise, if we lift modular invariants defined
over ℤ𝑞/𝑝𝑚ℤ𝑞, the height is 𝐻 = 𝑂(𝑚 log 𝑝 + 𝑑𝑀), and the total cost is 𝑂(𝐷2𝐸(𝑚 log 𝑞 + 𝑑2𝑀)).

For instance, for the evaluation of the Hilbert modular polynomial over 𝔽𝑞, we have 𝐷 = 𝐸 = 𝑂(ℓ), and using
𝑀 = 𝑂(1), so the evaluated polynomial has 𝑂(ℓ) coefficients of heights 𝑂(ℓ(log 𝑝 + 𝑑)), and the evaluation costs
𝑂(ℓ3(log 𝑞 + 𝑑2)).

We can compare this with the full modular polynomial, which has a size of 𝑂(𝐷𝑁+2), and evaluating it in 𝐾
costs 𝑂(𝑑(𝐻0 + 𝑑𝑀)𝐷𝑁+2), while evaluating it directly in 𝔽𝑞 costs 𝑂(log 𝑞𝐷𝑁+1), and evaluating it in ℤ𝑞 at
precision 𝑚 costs 𝑂(𝑚 log 𝑞𝐷𝑁+1). In particular, the full Siegel modular polynomial has a size of 𝑂(ℓ𝑁(𝑁+2)),
and evaluating it in 𝐾 costs 𝑂(𝑑(𝐻 + 𝑑𝑀)ℓ𝑁(𝑁+2)), while evaluating it directly in 𝔽𝑞 costs 𝑂(ℓ𝑁(𝑁+1) log 𝑞). The
full Hilbert modular polynomial has a size of 𝑂(ℓ𝑔+2), and evaluating it in 𝐾 costs 𝑂(𝑑(𝐻 + 𝑑𝑀)ℓ𝑔+2), while
evaluating it directly in 𝔽𝑞 costs 𝑂(ℓ𝑔+1 log 𝑞).

We need to be a bit careful when working with a number field. In the 𝑝0-adic method, if we work with only
one place 𝔓0 above 𝑝0, then we need to uses LLL to reconstruct the coefficients as elements of 𝐾, which requires
to increase the precision and is in 𝑂(𝑑4) in terms of 𝑑 using [NS16]. So we fix 𝑝0 unramified in 𝐾 = ℚ(𝛼), and
compute all ℚ𝑝0

Galois conjugate of the coefficients 𝑐𝑗, reconstructing the 𝑐𝑗 is then a simple matter of interpolation.
More precisely, with ourmethod we get the value of 𝑐𝑗 in ℤ[𝛼]/𝔓𝑚

0 for each 𝔓0 above 𝑝0, which gives the value of 𝑐𝑗
in ℤ[𝛼]/𝑝𝑚

0 by a CRT reconstruction. Then we do a rational reconstruction1 (over ℚ) to recognize the 𝑐𝑗 ∈ ℚ(𝛼).
Since we do some Sieving on 𝑝0, we don’t want 𝑝0 to split completely in 𝐾 otherwise our probability of success
decrease too much. The ideal case is when 𝑝0 stays inert; for instance if 𝐾/ℚ to be cyclic, then by Cebotarev’s
density theorem this case occurs with probability 𝜙(𝑑)/𝑑. Otherwise we need to assume that there are sufficiently
many unramified primes that do not split too much. When evaluating over 𝔽𝑞, we can also change the polynomial
𝑃(𝑋) defining 𝐾 rather than changing 𝑝0, ie we may construct a nice list of number fields 𝐾 as a precomputation
step.

1This rational reconstruction is not necessary if we evaluate at modular invariants in ℤ[𝛼], eg when lifting from a finite field, and we
use the description of the denominators as modular forms from Section 5.3.6, and we use the modular version of the isogeny algorithm
from Section 4.6 to compute these denominators.

108

5.3 Modular polynomials

The same strategy holds for the CRT approach, either we reconstruct the 𝑐𝑗 modulo an ideal lattice 𝐼, and this
also involves an LLL computation (of dimension 𝑑 + 1 or 𝑑 if the 𝑐𝑗 are in ℤ[𝛼]) to recognize the coefficients as
elements of ℚ(𝛼), or more efficiently we systematically use all primes above each of the 𝑝𝑖 we use in the CRT, to
get the 𝑐𝑗 as elements of ℤ[𝛼]/𝑁, where 𝑁 = ∏ 𝑝𝑖. Likewise, we need to use 𝑝𝑖 that don’t split too much, and we
can also combine both approaches to get a modulus 𝑁 = ∏ 𝑝𝑚𝑖

𝑖 .

Remark 5.3.13 (LLL reconstruction of elements in a number field). As alluded to the previous Remark, when
reconstructing elements in a number field, it is better to work with each embedding. But if we only have one
embedding, we can still reconstruct the element 𝑥 using LLL. It is not the purpose of this document to give a course
on lattice, so we will only detail this very briefly, because the same kind of situation will appear in Chapter 7 where
we use all Galois conjugate rather than just one to speed up the computation of the class polynomial.

There are three related problems. First, given an algebraic number 𝛼, we want to reconstruct its minimal
polynomial 𝑃𝛼. Given each (complex or 𝑝-adic) embedding 𝜎𝑖(𝛼), we simply use a product tree to reconstruct
𝑃𝛼 in quasi-linear time, working at precision ℎ(𝑃𝛼), for a total cost of 𝑂(𝑑ℎ(𝑃𝛼)) where 𝑑 = deg 𝛼; we recall
that 𝑑ℎ(𝛼) − 𝑑 log 2 ≤ ℎ(𝑃𝛼) ≤ 𝑑ℎ(𝛼) + 𝑑 log 2. Given only one embedding, we need to work at precision
𝛽 = 𝑂(𝑑2 + 𝑑ℎ(𝑃𝛼)) and use LLL in dimension 𝑑, see [Sch84; KLL88] for more details. Using [NS16], this costs
𝑂(𝑑4𝛽).

Another problem is to reconstruct 𝑥 ∈ 𝐾 given its value modulo a fractional ideal 𝐼. When 𝐼 = 𝑚𝒪𝐾 with
𝑚 = 𝑂(ℎ(𝜎𝑗(𝑥)), the reconstruction is easy (eventually doing rational reconstruction of coefficients if 𝑥 ∉ 𝒪𝐾).
For a general 𝐼, using [Bel04, Lemma 3.12] one can also use a LLL-reduced basis and reconstruct 𝑥 provided
𝑁(𝐼) = 𝛺(𝑑2 + 𝑑ℎ(𝜎𝑗(𝑥))) (using in the notations of [Bel04] that log𝑇2(𝑥) = 𝑂(ℎ(𝜎𝑗(𝑥)) + log 𝑑).

The last problem, is given a basis 𝑏𝑖 of 𝐾 = ℚ(𝛼), and the value of the embeddings of 𝑥 along with those of the
𝑏𝑖, to reconstruct 𝑥 = ∑ 𝜆𝑖𝑏𝑖. When we have all embeddings this is a simple matrix inversion at precision ℎ(𝜆𝑖),
and when 𝑏𝑖 = 𝛼𝑖 this matrix inversion can be computed in quasi-linear time by interpolation. With only one
embedding, by [HPS] we need to work at precision 𝛽 = 𝑂(𝑑2 + 𝑑ℎ(𝑃𝛼) + 𝑑ℎ(𝜆𝑗𝑖, 𝜆𝑖)), where 𝑏𝑗 = ∑ 𝜆𝑗𝑖𝛼𝑖.

So we don’t quite get a quasi-linear algorithm over a number field 𝐾, but I conjecture one exists (we have seen
this is the case if 𝑔 = 1). With 𝑑 fixed (or small enough), this would give an 𝑂(ℓ2𝑁 log 𝑞) evaluation in the Siegel
case, and 𝑂(ℓ2 log 𝑞) in the Hilbert case.

Conjecture 5.3.14. Using the notations of Remark 5.3.12, there is an evaluation algorithm over a number field
𝐾 in time 𝑂(𝑑𝐷(𝐷𝐻 + 𝑑𝑀)) = 𝑂(𝐷2(𝑑𝐻0 + 𝑑2𝑀), hence an evaluation algorithm over ℤ𝑞/𝑝𝑚ℤ𝑞 in time
𝑂(𝐷2(𝑚 log 𝑞 + 𝑑2𝑀)).

Strategies. We present three potential strategies. The first strategy uses complex evaluation, the required algorithms
are detailed in Remark 5.3.8. To get a quasi-linear algorithm in the 𝑝0-adic or CRT method, we need to evaluate our
𝐷 isogenies in average 𝑂(1) time. This ultimately boils down to evaluate multivariate polynomials on coordinates
of generators of the kernel.The second strategy would then be to see if we can use the quasi-optimal multivariate
evaluation algorithm from [KU11, § 4] in the settings of isogenies.

The third strategy adapts the 𝑝0-adic method to uses canonical lifting. Indeed, suppose that we need to evaluate
themodular polynomials on 𝐽𝐴 ∈ ℤ𝑞/𝑝𝑚

0 ℤ𝑞 (where 𝑚 gives enough precision to reconstruct the evaluatedmodular
polynomials in 𝐾). Then if 𝐽𝐴 is the reduction modulo 𝑝𝑚

0 of the canonical lift ̃𝐽𝐴 of 𝐽𝐴 mod 𝑝0 (assuming this is an
ordinary point), then it suffices to compute all isogenies 𝐵𝑖 modulo 𝑝0, and then their canonical lifts �̃�𝑖 mod 𝑝𝑚

0 . By
the theory of canonical lifts, these are exactly the varieties isogenous to 𝐽𝐴 mod 𝑝𝑚

0 . The computation of canonical
lifts uses the modular polynomial 𝛷𝑝0

(but remember that 𝑝0 is small), and their computation is quasi-linear in the
precision. Computing the isogenies modulo 𝑝0 costs 𝑂(𝐷𝐸) = 𝑂(𝐷2) operations in 𝔽𝑝0

, so in this case we have
a quasi-linear algorithm. But of course, there is no reason that 𝐽𝐴 mod 𝑝𝑚

0 = ̃𝐽𝐴 mod 𝑝𝑚
0 . But since they both

reduce modulo 𝑝0 to the same abelian variety, we can describe 𝐽𝐴 using the Serre-Tate canonical coordinates of the
local moduli [Kat81]. Furthermore the modular correspondance is easy to describe in these local coordinates (see
[CN90, § 3.4]), so then we would need to convert back the local coordinates of the 𝐵𝑖 mod 𝑝𝑚

0 isogenous to 𝐴
mod 𝑝𝑚

0 to modular invariants 𝐽𝐵𝑖
mod 𝑝𝑚

0 , using our computed values of ̃𝐽𝐵𝑖
mod 𝑝𝑚

0 . This strategy requires
back and forth transformation between modular invariants and local coordinates (given the modular invariants of
the canonical lift), form [Kat81, Main theorem 3.7.1], this essentially requires an explicit version of the Kodaira-
Spencer isomorphism and a description of the “physical” Tate module 𝑇𝑝0

𝐴 with its Weil pairing at precision 𝑝𝑚
0 .

The question boils down to whether this conversion can be computed efficiently, in particular if the description of
𝑇𝑝0

𝐴 at high enough precision does not require taking extensions of too large degrees.

We obtain:

109

5 Modular correspondances

Corollary 5.3.15. There is an algorithm in 𝑂(𝐷𝑁+2𝐸) evaluation-interpolation strategy to compute the Siegel and
Hilbert modular polynomials. Under Conjecture 5.3.14, this becomes a quasi-linear 𝑂(𝐷𝑁+2) algorithm.

Overview. Indeed we may work with a birational model of 𝒜𝑔, using (at most) 𝑁 + 1 invariants, with 𝑁 primary
invariants, where 𝑁 is the dimension. The defining equation of the birational model then gives a bound on the
degrees and heights of the defining polynomials of our number fields (if we evaluate the primary invariants to small
integers), so we get a uniform bound on the evaluation step. By Hilbert’s irreducibility theorem the specialisations
will generically give a number field. But in fact working with an étale algebra is not a problem, using the usual trick
that when an inversion fails, we can use it to factor the polynomial.

Note that as a bonus of the way we do the evaluation step, we easily get all the Galois conjugates, ie (generically)
the values of the evaluations for all the possible secondary invariants.Thenwe can do a fast polynomial interpolation
as in Section 5.3.5 if we compute “integral modular polynomials”, otherwise a rational fraction reconstruction.

All in all these look like promising methods, and I plan to study them further: see if implementations can be
made practical.

5.4 applications of modular polynomials to isogenies between abelian varieties

An interesting algorithmic problem about isogenies is, provided that we have an oracle giving two ℓ-isogenous
abelian varieties 𝐴 and 𝐵, to find the corresponding isogeny 𝑓 ∶ 𝐴 → 𝐵.

Of course in practice this oracle may be given by modular polynomials (or more generally a suitable modular
correspondance). It may seem that we lack sufficient informations to recover 𝑓 (for starters there may be several
isogenies between 𝐴 and 𝐵). But we have seen in Section 4.7 that if we have the action of 𝑓 on explicit differentials
𝑤𝐴 and 𝑤𝐵 of 𝐴 and 𝐵, we can recover the isogeny (efficiently) by solving a differential system. Alternatively we
require the tangent map 𝑀 of 𝑓 at 0.

From this point of view, in large characteristic (or 𝑝 = 0) we don’t even need to know ℓ, only a bound 𝑁 on it (so
we solve the differential system along some uniformisers, and the bound gives us the precision we need before
doing the rational reconstruction). Indeed, the other possible isogenies with the same tangent map are of the form
𝑓 + 𝑔 with 𝑔 purely inseparable, so of larger degree than 𝑓 for large 𝑝. More precisely, by [KPR20, Lemma 5.1], if
𝑝 > 4𝑁 (or 𝑝 = 0), 𝑓 is the only ℓ-isogeny with ℓ ≤ 𝑁 and tangent map 𝑀. (This is the same argument than at the
beginning of Section 4.7.)

This raises the question of how we can find this matrix 𝑀.

5.4.1 Elkies’ method for elliptic curves

Once againmodular polynomials provide a solution. For elliptic curve thiswas Elkies’ insight.Writing𝛷ℓ(𝑗(𝜏), 𝑗(𝜏/ℓ)) =
0, we get by differentiating:

𝑑𝑗(𝜏)
𝜕𝛷ℓ(𝑗(𝜏), 𝑗(𝜏/ℓ))

𝜕𝑋 +
1
ℓ 𝑑𝑗(𝜏/ℓ)

𝜕𝛷ℓ(𝑗(𝜏), 𝑗(𝜏/ℓ))
𝜕𝑌 = 0 . (5.9)

But 𝑑𝑗(𝜏) is a modular form of weight 2, so we can use it to get informations about differentials. Algebraically
we proceed as follow: let 𝐸1 and 𝐸2 be ℓ-isogenous. Write 𝐸1 ∶ 𝑦2 = 𝑥3 + 𝑎1𝑥 + 𝑏1, the canonical differential
associated is 𝑤𝐸1

= 𝑑𝑥/𝑦 (here we assume 𝑝 > 3, it is straightforward to adjust for 𝑝 = 2, 3). As a modular form
/𝑑𝜏(𝜏) (which I will write 𝑑𝑗(𝜏) to have notations coherent with higher dimension) is defined over ℤ so the value
𝑑𝑗(𝐸1, 𝑤𝐸1

) is well defined. Indeed, 𝑑𝑗(𝜏)/𝑗(𝜏) = −𝐸6(𝜏)/𝐸4(𝜏) (where 𝐸4(𝜏), 𝐸6(𝜏) are the Eisenstein series),
so algebraically 𝑑𝑗(𝐸1, 𝑤𝐸1

) = 𝑐𝑗(𝐸1)𝑏1/𝑎1 for some constant 𝑐, since these Eisenstein series give the coefficients 𝑎
and 𝑏 of an elliptic curve (up to some constants). This constant 𝑐 is easily determined (𝑐 = 864/48 = 18 by [Sch95,
§ 7]) but we won’t actually need it!

Plugging 𝑗(𝜏) = 𝑗(𝐸1), 𝑗(𝜏/ℓ) = 𝑗(𝐸2) and 𝑑𝑗(𝜏) = 𝑑𝑗(𝐸1, 𝑤𝐸1
) in Equation (5.9) we recover the value of

𝑑𝑗(𝜏/ℓ) = 𝑑𝑗(𝐸2, 𝑤𝐸2
) provided that 𝜕𝛷ℓ(𝑗(𝐸1), 𝑗(𝐸2))/𝜕𝑌 ≠ 0. But 𝑗(𝜏/ℓ) corresponds to the elliptic curve

𝐸2 ∶ ℂ/(ℤ ⊕ 𝜏/ℓℤ) such that the isogeny 𝑓 ∶ 𝐸1 → 𝐸2 is simply 𝑧 ↦ 𝑧. In other words the isogeny is normalised,
ie 𝑓 ∗𝑤𝐸2

= 𝑤𝐸1
. So Equation (5.9) allows to recover 𝑑𝑗(𝐸2, 𝑤𝐸2

) for 𝑤𝐸2
given by a normalised isogeny.

It is then easy to find an equation of 𝐸2 ∶ 𝑦2 = 𝑥3 + 𝑎2𝑥 + 𝑏2 such that 𝑤𝐸2
is given 𝑑𝑥/𝑦: simply take an

arbitrary equation 𝐸2 ∶ 𝑦2 = 𝑥3 + 𝑎′
2𝑥 + 𝑏′

2, take 𝑤′
𝐸2

= 𝑑𝑥/𝑦 and compute 𝑑𝑗(𝐸2, 𝑤′
𝐸2

) = 𝑐𝑗(𝐸2)𝑏′
2/𝑎′

2, and
compare it to 𝑑𝑗(𝐸2, 𝑤𝐸2

) (here the constant 𝑐 is compensated from the once from 𝑑𝑗(𝐸2, 𝑤𝐸2
)).

110

5.4 Applications of modular polynomials to isogenies between abelian varieties

Let us write 𝑑𝑗(𝐸2, 𝑤𝐸2
) = 𝑚2𝑑𝑗(𝐸2, 𝑤′

𝐸2
). Then since 𝑑𝑗 is of weight 2, 𝑚 is exactly the value such that

𝑓 ∗𝑤′
𝐸2

= 𝑚𝑤𝐸1
(at this level we cannot distinguish between 𝑓 and −𝑓 so there is always a sign ambiguity). It then

suffices to solve a differential equation. It is also easy to get the promised equation for 𝐸2: an isomorphism of short
Weierstrass equations is given by (𝑥, 𝑦) ↦ (𝑢2𝑥, 𝑢3𝑦) and this acts on the canonical differential 𝑑𝑥/𝑦 by 𝑢. So
from 𝐸′

2 we get that 𝑎2 = 𝑎′
2𝑚4 and 𝑏2 = 𝑏′

2𝑚6.
It is instructive to look at what happens if we differentiate the equation 𝛷ℓ(𝑗(𝜏), 𝑗(ℓ𝜏)) instead. We find a

value 𝑑𝑗(𝐸2, 𝑤"𝐸2
) such that 𝑑𝑗(𝐸2, 𝑤𝐸2

) = ℓ2𝑑𝑗(𝐸2, 𝑤"𝐸2
). But analytically, 𝑗(ℓ𝜏) correspond to the curve

ℂ/(ℤ ⊕ ℓ𝜏ℤ), and this time the isogeny is given by 𝑧 ↦ ℓ𝑧. So 𝑓 ∗𝑤"𝐸2
= ℓ𝑤𝐸1

= ℓ𝑓 ∗𝑤𝐸2
, so 𝑤"𝐸2

= ℓ𝑤𝐸2
and

this is indeed coherent with the fact that 𝑑𝑗 is of weight 2.

Summary5.4.1. In summary, for a separable ℓ-isogeny 𝑓 ∶ 𝐸1 → 𝐸2 (assuming𝐸1, 𝐸2 have no extra automorphisms
for simplicity) defined over 𝑘, the following datum are equivalent (up to a sign):

1. Differentials 𝑤1 on 𝐸1 and 𝑤2 on 𝐸2 and the relation 𝑓 ∗𝑤2 = 𝜆𝑤1;

2. Equations 𝑦2
𝑖 = 𝑥3

𝑖 + 𝑎𝑖𝑥𝑖 + 𝑏𝑖 on 𝐸𝑖 and the relation 𝑓 ∗𝑑𝑥2/𝑦2 = 𝜆𝑑𝑥1/𝑦1;

3. The equation of the tangent space 𝑑𝑗2 = 𝜆2

ℓ 𝑑𝑗1 of the ℓ-modular curve 𝑋0(ℓ) at 𝑗1, 𝑗2, where 𝑗𝑖 = 𝑗(𝐸𝑖);

4. The derivative 𝜕𝛷ℓ/𝜕𝑋 and 𝜕𝛷ℓ/𝜕𝑌 at 𝑗1, 𝑗2;

5. Given the 𝑗-invariant 𝑗1,𝜖 = 𝑗(𝐸1,𝜖) of a (non-trivial) deformation of 𝐸1 to 𝑘[𝜖], the value of 𝑗2,𝜖 = 𝑗(𝐸2,𝜖)
of the unique deformation of 𝐸2 to 𝑘[𝜖] lifting 𝑓 to 𝐸1,𝜖.

Indeed, given 𝑤 = 𝑑𝑥/𝑦 on 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, the corresponding deformation to 𝑘[𝜖] is given by 𝑗(𝐸𝜖) =
𝑗(𝐸) + 𝜖𝑑𝑗(𝐸, 𝑤) = 𝑗(𝐸) + 𝜖𝑐𝑏/𝑎.

From the algorithmic point of view, this means that the derivatives of the modular polynomials allows to compute
the normalised isogenous elliptic curve, conversely since Vélu’s formula gives normalised isogenies, they can be
used to compute the derivatives.

We will see in Section 5.4.2 that these equivalences hold in all dimension. See also [KPR20, § 4.5] for more
details on this equivalence for Jacobians of hyperelliptic curves of genus 2.

Remark 5.4.2. Giving the 𝑗-invariant 𝑗(𝐸) of an elliptic curve only allows to recover 𝐸 up to a twist. Assuming
𝑝 > 3 for simplicity, the coefficients 𝑎 and 𝑏 of a short Weierstrass equation 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, which are
modular forms of weight 4 and 6 respectively, of course completely determine 𝐸. However, if we are already given
𝑗(𝐸), only giving 𝑎 or 𝑏 is not enough to completely recover the equation of 𝐸. The solution is to give instead the
value 𝑓 (𝐸) of a modular function of weight 2, and the modular function 𝑑𝑗(𝐸) is one such “canonical” example.
Indeed from the above equations, it is immediate to recover 𝑎 and 𝑏 from 𝐸 and 𝑑𝑗(𝐸), so 𝑑𝑗(𝐸) can be seen as a
convenient way to distinguish between the twists of 𝐸. It has a pole at the curve corresponding to 𝑗 = 0.

recovering isogenies. For alternative strategies to compute an explicit ℓ-isogeny 𝐸 → 𝐸1 between two
given isogenous elliptic curves (without knowledge of the kernel), via interpolation between points of 𝑝-torsion or
𝑟-torsion, we refer to [Cou94; Cou96; Feo10; DHP+16]. In particular the interpolation method of [DHP+16, § 5.3]
has a complexity of 𝑂(ℓ2 log6 𝑞) to compute the isogeny between two ℓ-isogenous elliptic curves over 𝔽𝑞.

We remark that Elkies method to recover the isogeny via its differential equation as in Section 4.7.1 is dominated
by evaluating themodular polynomial, and using the analytic method to evaluate 𝛷ℓ when 𝑔 = 1 (see Remark 5.3.9)
yields a better complexity of 𝑂(ℓ2(log 𝑞 + 𝑑2)).
More Details 5.4.3. More precisely, the dominant step is the computation of the derivative of the modular polynomial 𝛷ℓ to get
the action 𝑀 on differentials. Then determining the isogeny by solving the corresponding differential equation is quasi-linear,
as explained in Section 4.7.1. If the characteristic 𝑝 is too small compared to ℓ, then as explained in Section 4.7 we need to lift
to ℤ𝑞/𝑝𝑚ℤ𝑞 with 𝑚 = 𝑂(log ℓ/ log 𝑝), but the lift only requires evaluating modular polynomials (see Section 5.4.3) and is
quasi-linear in 𝑚, so this changes the complexity by a factor 𝑂(log ℓ), which do not change the 𝑂() notation.

Since the isogeny can be represented by its kernel 𝐾 of size 𝑂(ℓ log 𝑞), we get a uniform quasi-quadratic algorithm
(uniform, because contrary to [DHP+16] it is also quadratic in log 𝑞). In fact the dependency in log 𝑞 is actually
quasi-linear whenever 𝑑 = 𝑂(log 𝑝).

It is a challenging problem to get a quasi-linear dependency on ℓ. However, if we are given the ℓ + 1 isogenous
elliptic curves 𝐸𝑖

2 (assuming all isogenies are rational), then once we have computed 𝛷ℓ(𝑗𝐸, 𝑌) and 𝜕𝛷ℓ/𝜕𝑋(𝑗𝐸, 𝑌)
2They can be recovered as roots of 𝛷ℓ(𝑗𝐸, 𝑌) in 𝑂(ℓ log 𝑞) operations in 𝔽𝑞, ie 𝑂(ℓ log2 𝑞) binary operations

111

5 Modular correspondances

in time 𝑂(ℓ2(log 𝑞 + 𝑑2)), recovering each isogeny 𝐸 → 𝐸𝑖 takes time 𝑂(ℓ log 𝑞) by Proposition 4.7.5. So we get a
quasi-linear complexity (if 𝑑 is small) by isogeny on average. In other words the factor ℓ2 is because computing the
evaluated modular polynomials encode all the isogenies.

An alternative strategy when 𝑞 is small and 𝐸 is ordinary is to compute End(𝐸) and then if ℓ is an Elkies prime
for End(𝐸) (in particular it does not divide the conductor of End(𝐸)), we can use the class group to decompose
the isogeny as product of smaller isogenies and get an algorithm quasi-linear in ℓ, see eg [CEL20, Theorem 19].

We argued in Section 4.7.3 that since the isogenies can be recovered in quasi-linear time from equations of 𝐸
and the 𝐸𝑖 along with their actions on the canonical differentials, or equivalently given the 𝑗(𝐸), 𝑑𝑗(𝐸, 𝑤𝐸), 𝑗(𝐸𝑖),
𝑑𝑗(𝐸𝑖, 𝑤𝐸𝑖

) where 𝑤𝐸𝑖
is normalised with respect to 𝑤𝐸, then we can encode each of them by 𝑂(1) elements in

𝔽𝑞 (if ℓ is small compared to 𝑝). But to give this data for each 𝐸𝑖 is essentially equivalent to give 𝛷ℓ(𝑗𝐸, 𝑌) and
𝜕𝛷ℓ/𝜕𝑋(𝑗𝐸, 𝑌). Indeed one direction is given by computing the product ∏(𝑌 − 𝑗𝐸𝑖

) and an interpolation, which
is quasi-linear, and the other direction is given by computing the rational roots (which is in 𝑂(ℓ log2 𝑞)), and
multipoint evaluation (which is quasi-linear, ie in 𝑂(ℓ log 𝑞)). From this point of view of compressed isogeny
representations, we are not quasi-linear on the size of the output on average, because we only have a quasi-linear
algorithm for the evaluation of modular polynomials over a number field 𝐾, not over 𝔽𝑞.

In summary, we can complete Proposition 4.7.5 as follow:

Proposition 5.4.4. Given 𝐸/𝔽𝑞, we can evaluate the modular polynomials 𝛷ℓ(𝑗(𝐸), 𝑌) and 𝜕𝛷ℓ/𝜕𝑋(𝑗(𝐸), 𝑌) at
𝑝-adic precision 𝑚 = 𝑂(log𝑝 ℓ) in time 𝑂(ℓ2(𝑚 log 𝑞 + 𝑑2)). Once evaluated, the rational roots can be computed

𝑂(ℓ log2 𝑞) and then the roots 𝑗(𝐸𝑖) can be lifted to 𝑝-adic precision 𝑚 and then the derivatives 𝑑𝑗(𝐸𝑖) evaluated
in quasi-linear time 𝑂(ℓ𝑚 log 𝑞) using multipoint evaluation. This give the compressed isogeny representation of
Proposition 4.7.5.

5.4.2 Adapting Elkies’ method in higher dimension

the siegel case. With this reformulation of Elkie’s algorithm, it is clear how to extend this to higher
dimension. Letting 𝐽 be a system of modular invariants on the modular space 𝒜𝑔, we differentiate the modular
equation 𝛷ℓ(𝐽(𝜏), 𝐽(𝜏/ℓ)) to find a matrix relationship between 𝑑𝐽(𝜏) and 𝑑𝐽(𝜏/ℓ), encoding the normalised
isogeny 𝑧 ↦ 𝑧, provided that 𝜕𝛷ℓ/𝜕𝑌 is inversible at these points. (In other words we fix a basis of the tangent spaces
such that 𝑑𝑓 (0) = Id). But since 𝐽 is a modular function of weight 0, differentiating themodular equation shows that
𝑑𝐽 is a vectorial modular function of dimension 𝑔(𝑔 + 1)/2 and of weight Sym2(ℂ𝑔). (In general differentiating a
modular function of non trivial weight does not give a modular function, one as to take a Cohen-Rankin bracket
instead. But this works in weight 𝜌 = 1.)

A quick word about the Sym2 action on 𝑘𝑔(𝑔+1)/2. We illustrate this in dimension 𝑔 = 2, the general case
is similar. There are two natural Sym2 representations, dual to each other. The first one is the standard action

of a matrix (𝑎 𝑐
𝑏 𝑑) on the homogeneous polynomials of degree 2 in two variables 𝑥, 𝑦: 𝑘𝑥2 ⊕ 𝑘𝑥𝑦 ⊕ 𝑘𝑦2. The

other representation is to write an element (𝑢1, 𝑢2, 𝑢3) of 𝑘3 as a matrix 𝑢 = (𝑢1 𝑢2
𝑢2 𝑢3

) and then the action of

𝑚 = (𝑎 𝑐
𝑏 𝑑) is given by 𝑡𝑚𝑢𝑚. This is this representation which comes naturally for modular functions, and to

which we refer in the following. This explains the factor 2 in [KPR20, Definition 3.17].

Key Idea 6. The differential 𝑑𝐽 of a modular invariant 𝐽 encodes (up to a sign) the full action on the differentials 𝑤𝐴.

We remark that when 𝐽 consists of more than 𝑔(𝑔 + 1)/2 modular invariants, the action of the Sym2 𝑇0(𝐴) is
recovered by working over 𝑔(𝑔 + 1)/2 uniformisers 𝑑𝐽𝑖 at 𝑇𝐴𝒜𝑔; this requires having the equations of the tangent
space to 𝐴 at 𝒜𝑔 in the 𝐽𝑖 coordinates (it suffices of course to have the equations satisfied by the 𝐽𝑖 around 𝐴).

So to get an Elkies’ like algorithm, the question boils down algebraically to being able to compute 𝑑𝐽(𝐴, 𝑤𝐴)
given equations of 𝐴 and an explicit basis of differentials 𝑤𝐴 = (𝑤1, … , 𝑤𝑔). We can then plug 𝑑𝐽(𝐴, 𝑤𝐴), 𝐽(𝐴),
𝐽(𝐵) in the differential of the modular equation to find the value of 𝑑𝐽(𝐵, 𝑤𝐵) where 𝑓 ∗𝑤𝐵 = 𝑤𝐴 is normalised.
Taking equations for 𝐵 and an arbitrary basis 𝑤′

𝐵 of differentials, we can then compute 𝑑𝐽(𝐵, 𝑤′
𝐵) and compare:

𝑑𝐽(𝐵, 𝑤𝐵) = 𝑁𝑑𝐽(𝐵, 𝑤′
𝐵) where 𝑁 is a matrix of dimension 𝑔(𝑔 + 1)/2. Finding a matrix 𝑀 of dimension 𝑔

such that Sym2 𝑀 = 𝑁 then gives 𝑓 ∗𝑤′
𝐵 = 𝑀𝑤𝐴. From this equation we can either normalize 𝑤′

𝐵 or solve the
differential system directly. We remark that if 𝑁 is in the image of Sym2, the only preimages are ±𝑀, with once
again the inescapable sign ambiguity.

112

5.4 Applications of modular polynomials to isogenies between abelian varieties

It is instructive to reformulate this approach geometrically. The values 𝐽(𝐴) can be seen as the coordinates of 𝐴 in
the moduli space 𝒜𝑔 given by 𝐽. If 𝐴 is defined over a field 𝑘, 𝐴 corresponds to a 𝑘-point Spec 𝑘 → 𝒜𝑔. If 𝑣 ∈ 𝑇𝐴𝒜𝑔
is a point of the tangent space to 𝒜𝑔 at 𝐴, then 𝑑𝐽(𝐴)(𝑣) corresponds to a morphism Spec 𝑘[𝜖] → 𝒜𝑔 factoring
the map Spec 𝑘 → 𝒜𝑔 corresponding to 𝐴, where as usual 𝜖2 = 0. But by the universal property of 𝒜𝑔, this maps
corresponds to an abelian variety 𝐴𝜖/𝑘[𝜖]. Since the composition Spec 𝑘 → Spec 𝑘[𝜖] → 𝒜𝑔 corresponds to 𝐴 by
assumption, we have that the pullback 𝐴𝜖 ⊗𝑘[𝜖] 𝑘 ≃ 𝐴. In other words, 𝑑𝐽(𝐴)(𝑣) corresponds to a deformation
𝐴𝜖 of 𝐴.

Nowwe consider themodular correspondance 𝛷ℓ ∶ 𝒜𝑔(ℓ) → 𝒜𝑔 ×𝒜𝑔 (this is the geometric interpretation of the
modular polynomials). If we work with stacks, the two projections 𝛷ℓ,𝑖 ∶ 𝒜𝑔(ℓ) → 𝒜𝑔 are étale, so if 𝑓 ∶ 𝐴 → 𝐵 is
an ℓ-isogeny such that (𝐴, 𝐵) lies in the image of 𝛷ℓ, we may define a deformation map 𝒟(𝑓) ∶ 𝑇𝐴(𝒜𝑔) → 𝑇𝐵(𝒜𝑔)
as

𝒟(𝑓) ≔ 𝑑𝛷ℓ,2 ∘ 𝑑𝛷ℓ,1
−1.

This is the geometric interpretation of differentiating modular polynomials.
From the analytic discussion above, we expect there is a link between the deformation map 𝒟(𝑓) and the tangent

map 𝑑𝑓 ∶ 𝑇0(𝐴) → 𝑇0(𝐵). The link is provided by the Kodaira-Spencer isomorphism: 𝑇𝐴(𝒜𝑔) is isomorphic to
Sym2 𝑇0(𝐴) (this is the algebraic interpretation of the fact that 𝑑𝐽 is of weight Sym2). So Sym2 𝑑𝑓 ∶ Sym2 𝑇0(𝐴) →
𝑇0(𝐵) can be interpreted via the Kodaira-Spencer isomorphism as a map Sym2 𝑑𝑓 ∶ 𝑇𝐴(𝒜𝑔) → 𝑇𝐵(𝒜𝑔). We
expect Sym2 𝑑𝑓 and 𝒟(𝑓) ∶ 𝑇𝐴(𝒜𝑔) → 𝑇𝐵(𝒜𝑔) to be related, indeed we have by [KPR20, Proposition 4.20]:

Sym2(𝑑𝑓) = ℓ𝒟(𝑓). (5.10)

So from 𝒟(𝑓) we can recover 𝑑𝑓 (up to a sign as always), provided we have an explicit version of the Kodaira-
Spencer isomorphism (this is the geometric version of computing 𝑑𝐽(𝐴, 𝑤𝐴) given explicits 𝐴 and 𝑤𝐴). We have
the following modular interpretation of the deformation matrix 𝒟(𝑓). Given the isogeny 𝑓 ∶ 𝐴 → 𝐵, we have
seen that a tangent vector 𝑣 ∈ 𝑇𝐴𝒜𝑔 corresponds to a deformation 𝐴𝜖/𝑘[𝜖]. The isogeny 𝑓 lifts (uniquely) to 𝐴𝜖
by étaleness of 𝒜𝑔(ℓ) → 𝒜𝑔, and we let 𝐵𝜖 be the isogenous abelian scheme. This is a deformation of 𝐵, hence
corresponds to a tangent vector 𝑤 ∈ 𝑇𝐵𝒜𝑔. We have that 𝑤 = 𝒟(𝑓)(𝑣).

We refer to [KPR20, § 4] for more details. The geometric interpretation is nice because at the level of stacks
everything is smooth and the modular correspondance is étale, so the deformation map is always well defined. But
in practice we work with modular polynomials, and this introduces two problems:

• This involves working with the coarse moduli spaces, and these are generically smooth but not smooth at all
points (unlike the case of elliptic curves where the coarse space is ℙ1).

• The modular polynomials does not even describe the modular correspondance at the level of coarse spaces
but only a birational version of it.

So in [KPR20, § 4] we give precise geometric conditions on when this approach to computing isogenies will work
(ie more precise than just saying it will work generically). As expected this is strongly linked to the presence of
extra automorphisms on 𝐴 and 𝐵 and whether they respect the isogeny (see [KPR20, § 4.2.1]).

the hilbert case. We also explain how to extend this approach when considering 𝛽-isogenies on the Hilbert
stack ℋ𝑔 [KPR20, § 4.2.3]. In this case the Kodaira-Spencer isomorphism in ℋ𝑔 is given by

𝑇𝐴(ℋ𝑔) ≃ Homℤ𝐾⊗𝒪𝑆
(Lie(𝐴)∨, Lie(𝐴∨)) = Lie(𝐴∨) ⊗ℤ𝐾⊗𝒪𝑆

Lie(𝐴) ⊗ℤ𝐾
ℤ∨

𝐾.

Here since 𝐴/𝑆 is an 𝑆-point of ℋ𝑔, Lie(𝐴) is a ℤ𝐾 ⊗ 𝒪𝑆 locally free of rank 1.
We exploit the fact that the forgetting map ℋ𝑔 → 𝒜𝑔 induces the following diagram:

𝑇𝐴(ℋ𝑔) 𝑇𝐴(𝒜𝑔)

Homℤ𝐾⊗𝒪𝑘
(Lie(𝐴)∨, Lie(𝐴∨)) HomSym(Lie(𝐴)∨, Lie(𝐴∨)).

where the vertical arrows are the Kodaira–Spencer isomorphisms. This means that if we have an explicit version
of the Kodaira–Spencer isomorphism in the Siegel case, we may recover an explicit version in the Hilbert case,

113

5 Modular correspondances

provided we can identify the image of 𝑇𝐴(ℋ𝑔) in 𝑇𝐴(𝒜𝑔) in the above diagram. It is enough to have equations for
the image of ℋ𝑔 in 𝒜𝑔, since taking their tangents at 𝐴 then cuts out the image of 𝑇𝐴(ℋ𝑔). If 𝑔 = 2, when working
with coarse spaces, this amount to having the equation of the Humbert surface for 𝒪ℱ. We refer to [KPR20] for
more details.

5.4.3 Lifting isogenies

derivative of modular polynomials. It follows from the whole discussion that we do not need the
full modular correspondance to extract the tangent map of 𝑓, we only need to know it locally at the isogenous
points (locally meaning at 𝑇𝐴(𝒜𝑔) and 𝑇𝐵(𝒜𝑔)). This explains why the results of Section 5.3.8 suffice to compute
isogenies: we only need the evaluated modular polynomial along with their derivatives.

We briefly explain how to extend the methods of Section 5.3.8 to compute the derivative of the modular
polynomials directly, rather than via an evaluation in ℤ𝑞/𝑝2ℤ𝑞 as in Remark 5.3.10. In this Section, we use these
derivatives to relate the differentials of modular invariants 𝑑𝐽𝐴(𝐴, 𝑤𝐴), 𝑑𝐽𝐵(𝐵, 𝑤𝐵) for 𝑓 ∶ (𝐴, 𝑤𝐴) → (𝐵, 𝑤𝐵)
a normalised isogeny. Conversely, we can compute the derivatives of the modular polynomials (notably the
deformation matrix) from these differential invariants. Indeed, from the evaluation 𝛷ℓ(𝐽𝐴, 𝑌) we get the value of
𝜕𝛷ℓ/𝜕𝑌(𝐽𝐴, 𝑌), and 𝜕𝛷ℓ/𝜕𝑋(𝐽𝐴, 𝑌) may be interpolated from the values 𝑑𝐽𝐴(𝐴, 𝑤𝐴), 𝑑𝐽𝐵(𝐵, 𝑤𝐵) of each of the
normalised3 isogenies 𝑓 ∶ (𝐴, 𝑤𝐴) → (𝐵, 𝑤𝐵).

In the complex analytic approach, the Newton’s method to compute the theta constants naturally gives their
derivative along the way. In the 𝑝0-adic or CRT approach, either the isogeny formula we use naturally compute
normalised isogenies (see Section 4.6), or alternatively we could fix differential basis and compute the action of the
isogeny on these basis directly. This also holds for the three strategies outlined in Conjecture 5.3.14. For instance
for the third strategy using canonical lifts, then in the Serre-Tate formal moduli, differentials of the lift 𝐴 are
essentially given by elements 𝑥𝐴 ∈ 𝑇𝑝(𝐴∨)(𝑘) by [Kat81, § 3]. By [Kat81, Lemma 3.5.1], if 𝑥𝐴 ∈ 𝑇𝑝(𝐴∨)(𝑘)
corresponds to 𝑤𝐴 and 𝑥𝐵 ∈ 𝑇𝑝(𝐵∨)(𝑘) corresponds to 𝑤�̃� with ̂𝑓 (𝑥𝐵) = 𝑥𝐴 (̂𝑓 being the dual isogeny), then
𝑓 ∶ (𝐴, 𝑤𝐴) → (�̃�, 𝑤�̃�) is normalised. This allows to control the differentials by just computing the action of the
isogeny 𝑓 ∶ 𝐴 → 𝐵 (ie over 𝔽𝑝0

rather than ℤ𝑝0
) on 𝑇𝑝(𝐴).

lifting isogenies. We have seen in Section 4.7 that once we have the action of the isogeny 𝑓 ∶ 𝐴 → 𝐵
on differentials, to solve the differential equation we need the characteristic to be large enough. If this is not the
case, it suffices to lift the isogeny to ℤ𝑞/𝑝𝑚ℤ𝑞, with 𝑚 large enough, ie typically 𝑚 = 𝑂(log ℓ/ log 𝑝), so that
𝑚 log 𝑝 = 𝑂(log ℓ).

For that we lift 𝐴 arbitrarily to 𝐴, then we evaluate the modular polynomial on 𝐽(𝐴), and we solve for 𝐽(�̃�) via a
Newton lift. Under our standard assumption that the derivatives of the modular polynomials are inversible, this
is done in quasi-linear time once we have the evaluated modular polynomial. By Section 5.3.8 (and reusing the
notations), the evaluation itself costs 𝑂(𝐷2𝐸(𝑚 log 𝑞 + 𝑑2𝑀)), with 𝐸 = 1 under Conjecture 5.3.14 (or if 𝑔 = 1).
In [LS08] for 𝑔 = 1, the lifting is done by computing 𝛷ℓ and then evaluating it at 𝐽(𝐸) at 𝑝-adic precision 𝑚, for a
cost of 𝑂(ℓ3 + ℓ2𝑚 log 𝑞).

Here we don’t need the evaluation of the derivatives 𝜕𝛷ℓ/𝜕𝑋𝑖 of the modular polynomial, but they will be helpful
in Chapter 6, and can be computed in the same complexity by the remarks above.

5.4.4 Elkie’s method for abelian surfaces

This approach works for a general abelian variety. Instanciating the algorithm, we need an explicit method to solve
the differential equation, see eg [KPR20, § 5] and the summary in Section 4.6 for Jacobians of genus 2 hyperelliptic
curve, and an explicit version of the Kodaira-Spencer isomorphism.

Again, for Jacobians of genus 2 hyperelliptic curves this is done in [KPR20, § 3 and § 4.4]. Given an hyperelliptic
Jacobian 𝐽 = Jac(𝐶), the curve equation gives a canonical basis 𝑤𝐶 = (𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦) of differentials (the extension
to characteristic 𝑝 = 2 is straightforward). Here we use the canonical isomorphism 𝐻0(𝐽, 𝛺𝐽) = 𝐻1(𝐶, 𝛺𝐶).

So we want to compute 𝑑𝑗(𝐽, 𝑤𝐶) where 𝑗 is a Igusa invariant. But if 𝔤 is a modular function of weight 𝜌, pulling
back 𝔤 along the Torelli embedding gives 𝔤 as a covariant of the same weight (using a suitable normalisation as
is done in [KPR20, Definition 3.7]). Furthermore by the Koecher principle, a modular function defined over
𝒜𝑔 automatically extends to a toroidal compactification, so 𝔤 seen as a covariant is also well defined on semi-

3Of course whenever we have equations for the isogeny 𝑓, we can compute its action on differential, so we can always compute the
normalised differential 𝑤𝐵.

114

5.4 Applications of modular polynomials to isogenies between abelian varieties

stable curves, not only on smooth curves. Since non-semi stable curves are of codimensions > 1, by normality
of the moduli spaces 𝔤 is defined everywhere, hence is a polynomial covariant (in terms of the coefficients of the
hyperelliptic curve).

We remark that since every principally polarised abelian surface is a Jacobian or a product of elliptic curves, the
Torelli morphisms from compact curves to 𝒜𝑔 is surjective (but it is of course no longer injective on non smooth
curves). This can be exploited to go the other way around and study modular forms from covariants, see [CFv17;
CFG18]. Beware that conversely, a polynomial modular covariant 𝔤 need not give an holomorphic modular form,
this is the case for instance for Igusa’s invariant 𝐼2 which is 𝜒12/𝜒10 when seen as a modular form. Indeed, 𝔤 may
not be well defined at the compact curves whose Jacobian is a product of two elliptic curves (see [CFG18, § 4] for
how to determine the order of vanishing of a covariant on this locus).

The identification of scalar modular forms and scalar covariants was already computed by Igusa in [Igu60].
But the case of vectorial modular form is actually easier and can be used to recover the scalar case. Indeed if
𝐶 ∶ 𝑦2 = 𝐹(𝑥) with 𝐹(𝑥) = 𝑎0 + ⋯ + 𝑎6𝑥6, the form 𝐹 is a canonical covariant of weight det−2 Sym6, so Disc ⋅𝑓
is of weight det8 Sym6. But a mass formula shows that the space of modular forms of weight det8 Sym6 is of
dimension 1. So if we identify such a modular form 𝑓8,6 on the Siegel side, we know that 𝐹 = 𝜆𝑓8,6/𝜒10 since 𝜒10
corresponds to the discriminant. Since 𝑓8,6 is a cusp form, the quotient is well defined.

But such a function 𝑓8,6 is well known, either as the modular function associated to some explicit lattice, or as the
modular function given by the value at 0 of the derivative along 𝑧 of the 6 odd level (2, 2) theta constants [KPR20,
Example 2.8], [CFv17]. In fact this 𝑓8,6 is defined over ℤ as can be checked from its Fourier coefficients, and while
𝐹 is not well defined in characteristic 𝑝 = 2, the covariant 𝛥 ⋅ 𝐹 is well defined over ℤ. So we have 𝜆 = ±1, and
with the appropriate normalisation 𝜆 = 1, see [KPR20, § 3.3, § 4.4]. From this identification we can recover the
modular functions 𝑑𝑗𝑖 as explicit covariants [KPR20, Theorem 3.14].

Remark 5.4.5 (Explicit Kodaira-Spencer in dimension 𝑔 = 1, 2). When 𝑔 = 1, the 𝑗-invariant of an elliptic curve
𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 only gives 𝐸 up to isomorphism, and does not give the coefficients 𝑎, 𝑏. However, if we are
also given 𝑑𝑗(𝐸, 𝑤𝐸) = 18𝑏/𝑎 (where 𝑤𝐸 = 𝑑𝑥/𝑦 is the canonical differential), then we can recover 𝑎, 𝑏 uniquely
up to a common sign. In other words, fixing 𝑎, 𝑏 (up to a sign) is the same as fixing 𝑗(𝐸), 𝑑𝑗(𝐸). Perhaps a better
way to see this is to take an arbitrary representative 𝐸′ ∶ 𝑦2 = 𝑥3 + 𝑎′𝑥 + 𝑏′ of the isomorphism class of 𝐸, compute
𝑑𝑗(𝐸′) = 𝑢2𝑑𝑗(𝐸), and then act by the isomorphism (𝑥, 𝑦) ↦ (𝑢2𝑥, 𝑢3𝑦) to recover 𝐸. In both representations, we
only need 2 coefficients.

The same strategy holds for abelian surfaces: namely if 𝐴 = Jac(𝐶), 𝑗𝑖(𝐴), 𝑑𝑗𝑖(𝐴, 𝑤𝐴) encode the equation
of 𝐶 (up to the action of [−1]) since we know conversely how to compute 𝑑𝑗𝑖(𝐴, 𝑤𝐴) from the equation of 𝐶
where 𝑤𝐴 = (𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦) are the canonical differentials associated to this equation (with the ±1 ambiguity
coming from the fact that the 𝑑𝑗𝑖 only allows to get the Sym2 𝛾 of the automorphism 𝛾). Here we use the fact that in

genus 2, automorphisms 𝛾 ∶ (𝑥, 𝑦) ↦ (𝑎𝑥+𝑏
𝑐𝑥+𝑑 , 𝑦(𝑎𝑑−𝑏𝑐)

(𝑐𝑥+𝑑)2) of the curve acts by (𝑎 𝑐
𝑏 𝑑) on the canonical differentials

𝑤𝐴 = (𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦) (see [KPR20]), in other words automorphisms of 𝐶 corresponds to automorphisms on
the differentials. We note that we only need 6 coefficients to represent 𝐶, compared to 12 coefficients for the
𝑗𝑖(𝐴), 𝑑𝑗𝑖(𝐴). Another difference with elliptic curves is that given the 𝑗𝑖(𝐴), computing a representative 𝐶′ is more
difficult: Mestre’s algorithm rely on finding a point on a conic, so there is an obstruction of degree 2 for the field of
definition of 𝐶′ to be the field of definition of the 𝑗𝑖(𝐴).

Finally, the same method in dimension 𝑔 = 1, 2 allows to compute the Kodaira-Spencer isomorphism explicitly.
Given a lift 𝐸𝜖 ∶ 𝑦2 = 𝑥3 + (𝑎 + 𝑎1𝜖)𝑥 + (𝑏 + 𝑏1𝜖), we get 𝑗(𝐸𝜖) = 𝑗(𝐸) + 𝑑𝑗(𝐸, 𝑤)𝜖. Comparing 𝑑𝑗(𝐸, 𝑤) with
𝑑𝑗(𝐸, 𝑤𝐸) allows to find 𝑤 = ±𝑢𝑤𝐸, so we get the differential corresponding to the lift 𝐸𝜖. Conversely, given
a differential 𝑤 = 𝑢𝑤𝐸, we can compute 𝑑𝑗(𝐸, 𝑤) = 𝑢2𝑑𝑗(𝐸, 𝑤𝐸), and the lift 𝐸𝜖 is uniquely determined by
the equation 𝑗(𝐸𝜖) = 𝑗(𝐸) + 𝑑𝑗(𝐸, 𝑤)𝜖 above. Likewise, we can use the same method in genus 2: if 𝑤 = 𝛾𝑤𝐴,
and 𝐽 = (𝑗1, 𝑗2, 𝑗3) we can compute 𝑑𝐽(𝐴, 𝑤) = Sym2 𝛾𝑑𝐽(𝐴, 𝑤𝐴), and then compute 𝐶𝜖 such that 𝐽(𝐶𝜖) =
𝐽(𝐶) + 𝑑𝐽(𝐴, 𝑤)𝜖, and conversely recover 𝑤 (up to a sign) from 𝐶𝜖. If 𝐶𝜖 = ∑(𝑎𝑖 + 𝑎′

𝑖𝜖)𝑥𝑖, the equation above
give linear equations on the 𝑎′

𝑖, so recovering them is easy. We refer to [KPR20, Remark 4.28] for more details.

We thus obtain [KPR20, Theorems 1.1, 6.2 and 6.3] as an application of Theorem 4.7.1:

Theorem 5.4.6. Assume we are given a local version of the modular correspondance of level ℓ for abelian surfaces at 𝐴
and 𝐵 (implicitly assumed to be in the image of the correspondance), that 𝐴 = Jac(𝐶), 𝐵 = Jac(𝐶′) and 𝑝 > 8ℓ + 7
(or 𝑝 = 0). Then we can compute the representation 𝑓 ∶ 𝐶 → Jac(𝐶) → Jac(𝐶′) which is given by rational functions of
total degree 𝑂(ℓ) in time 𝑂(ℓ) operations in an extension 𝑘′/𝑘 of degree at most 8 along with 𝑂(1) square roots in 𝑘′.

115

5 Modular correspondances

The same hold in theHilbert case for a 𝛽-modular isogeny. In this case, if 𝑝 = 0 or 𝑝 > 4Tr(𝛽)+7, the representation
𝑓 ∶ 𝐶 → Jac(𝐶) → Jac(𝐶′) is given by rational functions of total degree 𝑂(Tr(𝛽)) and can be computed in quasi-linear
time in 𝑘′/𝑘 along with 𝑂(1) square roots in 𝑘′.

Proof. The modular correspondance allows to recover the tangent matrix, from which we apply the Newton
algorithm to solve the differential system as explained in Section 4.7. Compared to Theorem 4.7.1, the extension
𝑘′/𝑘 can be of degree 8 because here we use Mestre’s algorithm to recover a curve 𝐶 from the Igusa invariants. This
requires a degree 2 extension in general, and is not needed if the base field is finite.

We note that it is easy to extend this result in the case where 𝐴 or 𝐵 is a product of elliptic curves, we give some
details in [KPR20], and that if 𝑝 is too small we can lift the isogeny (see Remark 4.7.2).

Using Section 5.3.8 and the notations there, lifting to sufficient 𝑝-adic precision 𝑚 = 𝑂(log ℓ/ log 𝑝), if necessary
as in Section 5.4.1, the dominant step is the evaluation of the (derivative of) the modular polynomials, so we get:

Corollary 5.4.7. Given two ℓ-isogenous abelian surfaces 𝐴 and 𝐵 defined over 𝔽𝑞, then provided that the derivatives
𝜕𝛷ℓ/𝜕𝑋 and 𝜕𝛷ℓ/𝜕𝑌 of the modular polynomials are invertible at 𝐽𝐴 and 𝐽𝐵, the isogeny 𝐴 → 𝐵 can be recovered
in time 𝑂(𝐷(log2 𝑞 + 𝑑4) + 𝐷2(log 𝑞 + 𝑑2)) using Remark 5.3.8, 𝑂(𝐷2𝐸(log 𝑞 + 𝑑2)) using Remark 5.3.12 4 or
𝑂(𝐷2(log 𝑞 + 𝑑2)) under Conjecture 5.3.14. Given only 𝐴, once we have evaluated the modular polynomial (and its
derivative) via the complexity above, recovering 𝐽𝐵 take time 𝑂(𝐷 log 𝑞) operations over 𝔽𝑞, ie 𝑂(𝐷 log2 𝑞).

5.5 applications to point counting for abelian surfaces

Since we know how to compute isogenies on abelian surfaces from modular polynomials, it is straightforward5 to
adapt the SEA algorithm from elliptic curves to abelian surfaces, by modifying accordingly the Schoof algorithm in
the Siegel or Hilbert case. Update @2022: Kieffer’s paper on the SEA algorithm for genus 2 is available in [Kie22b]

5.5.1 Complexity of Schoof’s algorithm for abelian surfaces in the Siegel case

Thegoal is to compute the characteristic polynomial of the Frobenius𝜒𝜋(𝑋) = 𝑋4−𝑠1𝑋3+(𝑠2+2𝑞)𝑋2−𝑞𝑠1𝑋+𝑞2

by finding its valuemodulo ℓ for several primes ℓ. Using the CRT andWeil’s bounds, which give |𝑠1| ≤ 4√𝑞, |𝑠2| ≤ 4𝑞,
we need 𝑂(log 𝑞) primes ℓ of size 𝑂(log 𝑞).

Schoof ’s algorithm find 𝜒𝜋 mod ℓ by computing 𝜋 over an efficient representation of 𝐴[ℓ].
We follow [GS12] which is the currently fastest implementation for Jacobians of hyperelliptic curves of genus 2.

For simplicity we assume asymptotically fast algorithms for the basic arithmetic operations.

1. Writing a polynomial system for 𝐴[ℓ]: 𝑂(ℓ2) operations in 𝔽𝑞.This system is of total degree ℓ4 and composed
of bivariate polynomials of degree 𝑂(ℓ2). It can be obtained as follow: if 𝐴 = Jac𝐶, Cantor gives an
explicit algorithm6 to compute the multiplication by ℓ on a point 𝑃 ∈ 𝐶 (or rather its divisor (𝑃) − (∞));
this is given by polynomials of degree 𝑂(ℓ2). The system describing 𝐴[ℓ] is given by writing formally
𝐷 = (𝑃1) + (𝑃2) − 2(∞) and then writing ℓ(𝑃1 − ∞) = −(ℓ𝑃2 − ∞).

2. Computing a suitable representation of𝐴[ℓ] (ie an efficient parametrisation) using a resultant and subresultant
(this gives a triangular representation of the system): this uses an evaluation-interpolation approach7 to

4Since we unfortunately don’t quite have a quasi-linear algorithm to evaluate the modular polynomial over a number field, either with
the analytic method or the 𝑝-adic or CRT method, the best strategy between the two depends on the value of ℓ relative to log 𝑞.

5The hard part is the implementation, since this need to combine a lot of non trivial algorithms: fast evaluation of theta constants,
fast evaluation of modular polynomials, fast resolution of the differential equation, fast resultants and subresultants to get an efficient
representation of the kernel, CRT over a real order…This is currently being implemented by Kieffer.

6See also Remark 4.7.3.
7By [Vil18] the evaluation-interpolation approach to computing bivariate resultants is no longer the fastest method asymptotically.

However for the cryptographic sizes for point counting, the interpolation approach is probably faster in practice, so we stick to the complexity
of the standard evaluation/interpolation approach to the resultant. The new algorithm computes the resultant of two polynomials of degree
𝑑 on 𝑋 and 𝑛 on 𝑌 in time 𝑂(𝑛2−1/𝜔𝑑), instead of 𝑂(𝑛2𝑑) via the evaluation/interpolation method which uses 𝑂(𝑛𝑑) evaluation points,
and compute 𝑂(𝑛𝑑) univariate resultants of degree 𝑛. When 𝑑 = 𝑛, this improve the complexity from 𝑂(𝑛3) to 𝑂(𝑛2.58) using 𝜔 = 2.376
from the Coppersmith–Winograd algorithm (the current best bound is a variant of the Coppersmith-Winograd algorithm which gives
𝜔 ≤ 2.373 [AW21]). This faster resultant can also be used to compute a Grobner basis, so in good cases a triangular representation of the
system [Vil18, § 7]. In the Siegel case, this improves the complexity of finding an efficient parametrisation of 𝐴[ℓ] to 𝑂(ℓ5.16) operations
in 𝔽𝑞, and of the kernel of an ℓ-isogeny to 𝑂(ℓ2.58). In the Hilbert case, an efficient parametrisation of 𝐴[𝛽] is computed in 𝑂(ℓ2.58),
and of the kernel of a 𝛽-isogeny in 𝑂(ℓ1.29). This does not change the complexities of the algorithms below since the dominant steps are
elsewhere, except in the Schoof-Siegel case which would be in 𝑂(𝑞7.16).

116

5.5 Applications to point counting for abelian surfaces

compute ℓ4 resultants of polynomials of degree ℓ2 in one variable for a total cost of 𝑂(ℓ6) operations in 𝔽𝑞
[GS12, § 3.2].

3. In this efficient representation, computing the addition on formal points of ℓ-torsion costs 𝑂(ℓ4) while
applying the Frobenius 𝑂(ℓ4 log 𝑞) operations in 𝔽𝑞.
So finding the values 𝑠1, 𝑠2 mod ℓ such that 𝜒𝜋(𝐷) = 0 for 𝐷 a formal point of 𝐴[ℓ] costs 𝑂(1) applications
of the Frobenius and 𝑂(ℓ) operations in 𝐴[ℓ] (using a baby-step giant-step approach), for a total cost of
𝑂(ℓ5 + ℓ4 log 𝑞) operations in 𝔽𝑞.

4. So taking ℓ = 𝑂(log 𝑞), we get than one step of the CRT costs 𝑂(log 𝑞6) operations in 𝔽𝑞.

5. The total cost is then 𝑂(log 𝑞7) operations in 𝔽𝑞, ie a binary cost of 𝑂(log 𝑞8).

Recall that for elliptic curves, an efficient representation of 𝐸[ℓ] is given by the ℓ-division polynomial, and
the complexity is dominated by the evaluation of the Frobenius modulo this polynomial of degree ℓ2; this costs
𝑂(ℓ2 log 𝑞) operations over 𝔽𝑞. So a step of the CRT costs 𝑂(log 𝑞3) operations in 𝔽𝑞, for a total binary cost of
𝑂(log 𝑞5).

In genus 2 we could hope to find a faster algorithm to get the efficient representation of 𝐴[ℓ], a hypothetical
quasi-linear algorithm would cost 𝑂(ℓ4) operations in 𝔽𝑞. The dominating step would then be the BSGS step along
with the evaluation of the Frobenius, which cost 𝑂(log 𝑞5) operations in 𝔽𝑞, and the total binary complexity would
be 𝑂(log 𝑞7).

5.5.2 Complexity of a SEA algorithm for abelian surfaces in the Siegel case

The SEA like algorithm follows the same approach as the Schoof algorithm except it computes an ℓ-isogeny
𝑓 ∶ 𝐴 → 𝐵 to recover 𝜒𝜋 mod ℓ by working over 𝐾 = Ker 𝑓 which is only of degree ℓ2 rather than ℓ4. Let us detail
the steps, assuming for simplicity that we are over 𝔽𝑝 (or that if 𝑞 = 𝑝𝑑, 𝑑 is small compared to 𝑂(log 𝑝), so that we
have quasi-linear evaluation of the modular polynomials over a number field), and that 𝐴 = Jac𝐶.

• Evaluating the ℓ-modular polynomial: 𝑂(ℓ3 log2 𝑞 + ℓ6 log 𝑞) binary operations by Proposition 5.3.7, or
𝑂(ℓ6) with small parameters.

• Finding a root: this requires computing the Frobenius modulo a univariate polynomial of degree ℓ3, for a
cost8 of 𝑂(ℓ3 log 𝑞) operations in 𝔽𝑞. Here we make the same heuristic as in the genus 1 case with respect to
the density of Atkin vs Elkies prime, that there is a rational root for sufficiently many ℓ. We assume this is the
case, and we denote 𝑓 ∶ 𝐴 → 𝐵 the isogeny, and 𝐾 its kernel.

• Computing a representation of the isogeny of the form 𝐶 → Jac(𝐶), given by polynomials of degree 𝑂(ℓ):
𝑂(ℓ + log 𝑝) operations in 𝔽𝑞 by Section 5.4 (the 𝑂(log 𝑞) is for the square root). This allows us to represent
the kernel 𝐾 by writing 𝐷 = (𝑃1)+(𝑃2)−2(∞) and then plugging the equations 𝑓 (𝑃1−∞) = −𝑓 (𝑃2−∞).

• Computing a suitable representation of 𝐾 (ie an efficient parametrisation) using a resultant and subresultant:
this uses an evaluation-interpolation approach to compute ℓ2 resultants of polynomials of degree ℓ in one
variable for a total cost of 𝑂(ℓ3) operations in 𝔽𝑞.

• In this efficient representation, computing the addition on formal points of 𝐾 costs 𝑂(ℓ2) while applying the
Frobenius 𝑂(ℓ2 log 𝑞) in 𝔽𝑞.
So finding the values 𝑠1, 𝑠2 mod ℓ such that 𝜒𝜋(𝐷) = 0 for 𝐷 by the same approach as in Schoof algorithm
costs 𝑂(ℓ3 + ℓ2 log 𝑞) operations in 𝔽𝑞.

• So taking ℓ = 𝑂(log 𝑞), we get than the dominating step is the evaluation with a cost of 𝑂(log 𝑞7) binary
operations. The rest only take 𝑂(log 𝑞3) operations in 𝔽𝑞. If 𝐴 is given by small parameters, the evaluation
step is still dominant but only costs 𝑂(log 𝑞6).

8More precisely to find the rational roots of 𝑃, we compute 𝑋𝑞 modulo 𝑃 via a fast exponentiation, then take the gcd 𝑄 with 𝑃. If there
are several roots we may then apply the Cantor-Zassenhaus algorithm to 𝑄. The dominating step in our setting is essentially the Frobenius
computation.

117

5 Modular correspondances

• The total cost is then 𝑂(log 𝑞8), or 𝑂(log 𝑞7) with small parameters. So compared to the Schoof algorithm
of Section 5.5.1 we gain a degree in the asymptotic complexity when the parameters of the curve are small,
which is usually the case in the cryptographic setting (the remark that small coefficients make the SEA
algorithm asymptotically faster is due to Kieffer).

With a faster evaluation, since the evaluated modular polynomial is of size 𝑂(ℓ3 log 𝑞), and finding a root cost
𝑂(ℓ3 log 𝑞2) binary operations anyway, we could hope for an evaluation algorithm of complexity 𝑂(log 𝑞5).
This would yield a total cost of 𝑂(log 𝑞6). The dominating step would then be shared with finding a root.

Recall that for elliptic curves, the modular polynomial is of size 𝑂(ℓ3), and the dominating step is the evaluation
which costs 𝑂(ℓ2 + ℓ log 𝑞) and finding of a root which costs 𝑂(ℓ log 𝑞) operations over 𝔽𝑞 respectively. The binary
complexity is of 𝑂(log 𝑞3) by prime ℓ, and the total complexity of 𝑂(log 𝑞4).

5.5.3 Complexity of Schoof’s algorithm for abelian surfaces in the Hilbert case

If we have (explicit) real multiplication by 𝒪ℱ, the Schoof algorithm finds 𝜒𝜋 mod 𝛼 by computing 𝜋 over an
efficient representation of 𝐴[𝛼], 𝛼 ∈ 𝒪ℱ. If 𝛼 is of norm ℓ, 𝐴[𝛼] is of degree ℓ2 (because [𝛼] is an 𝛼2-isogeny).

In fact rather than determining 𝜋 directly, it is enough to recover 𝜓 = 𝜋 + 𝜋 as an element of 𝒪ℱ. Note that
the minimal polynomial of 𝜓 is 𝑋2 − 𝑠1𝑋 + 𝑠2. Letting 𝒪ℱ = ℤ[𝜂], we can write 𝜓 = 𝑚 + 𝑛𝜂 and we have
𝑚, 𝑛 ∈ 𝑂(√𝑞) [GKS11, § 3.1]. See also [Abe20, § 2.2] and Section 5.5.5 for arbitrary 𝑔.

So the Schoof algorithm still uses 𝑂(log 𝑞) primes 𝛼 of norm 𝑂(log 𝑞). Here the algorithm assumes that 𝜂 is
efficiently computable, and restrict to 𝛼 above a split prime ℓ: ℓ = 𝛼𝛼𝜎 where 𝜎 is the Galois involution.

1. Writing a polynomial system for 𝐴[𝛼]: 𝑂(ℓ) operations in 𝔽𝑞. This system is of total degree ℓ2 and composed

of bivariate polynomials of degree 𝑂(ℓ). It can be obtained by writing 𝛼 = 𝑎 + 𝑏𝜂, with 𝑎, 𝑏 ∈ 𝑂(√ℓ) and
then proceeding as in the Siegel case.

2. Computing a suitable representation of 𝐴[𝛼] an evaluation-interpolation approach computes ℓ2 resultants
of polynomials of degree ℓ in one variable for a total cost of 𝑂(ℓ3) operations in 𝔽𝑞.

3. Finding the values 𝑚, 𝑛 mod ℓ (by working over 𝐴[𝛼] and 𝐴[𝛼𝜎]), costs 𝑂(ℓ2(ℓ+ log 𝑞)) field operations. A
baby-step giant-step algorithm could yield a complexity of𝑂(ℓ2(√ℓ+log 𝑞)) field operations. A simplification
here is that the real endomorphisms acts by a scalar over 𝐴[𝛼] since 𝒪ℱ/𝛼 ≃ ℤ/ℓℤ, see [GKS11,Theorem 1].
So the values of 𝑚 and 𝑛 are recovered modulo 𝛼 and 𝛼𝜎, hence modulo ℓ.

4. So taking ℓ = 𝑂(log 𝑞), we get than one step of the CRT costs 𝑂(log 𝑞3) operations in 𝔽𝑞.

5. The total cost is then 𝑂(log 𝑞4) operations in 𝔽𝑞, ie 𝑂(log 𝑞5). Here the dominating steps are the efficient
representation of 𝐴[𝛼] (which is not done in quasi-linear time 𝑂(ℓ2)) and the BSGS step. So even improving
the computation of 𝐴[𝛼] would not change the complexity.

5.5.4 Complexity of a SEA algorithm for abelian surfaces in the Hilbert case

We finish by a SEA like algorithm in the Hilbert case. We reuse the notations from Section 5.5.3. Note that we do
not need here 𝜂 to be computable, so rather than looking for 𝜓 ≔ 𝜋 + 𝜋 = 𝑚 + 𝑛𝜂, we will simply recover 𝜓 as an
element in 𝒪ℱ directly by doing a CRT over 𝒪ℱ rather than via a CRT of its minimal polynomial over ℤ.

Indeed, to exploit the SEA algorithm we need a rational root of a 𝛼-modular polynomial, for a prime 𝛼. The
situation is completely similar to the elliptic curve case (we even have volcanoes as shown in [IT14]), so we expect
to have an Elkies prime 𝛼 about half the time. If we wanted to do the CRT over ℤ we would also need a rational
root for 𝛼𝜎, the Galois conjugate, so that we can reconstruct the information modulo ℓ = 𝛼𝛼𝜎. We expect this
would decrease the probability by a factor of two. This would not change the asymptotic complexity but would lose
a factor 2 in practice. So I suggested to Kieffer to look at this strategy instead, which he is currently implementing.
This should help to have a nice record breaking point counting for an abelian surface with RM!

We restrict to the case 𝑞 = 𝑝𝑑 with a fixed (or sufficiently small) 𝑑 for simplicity.

• Evaluating the 𝛼-modular polynomial: 𝑂(ℓ log2 𝑞 + ℓ2 log 𝑞) binary operations by Proposition 5.3.7.

118

5.5 Applications to point counting for abelian surfaces

• Finding a root: this requires computing the Frobenius modulo a univariate polynomial of degree ℓ, for a cost
of 𝑂(ℓ log 𝑞) operations in 𝔽𝑞. We assume we are in the Elkies case and there is a rational root, corresponding
to an isogeny 𝑓 with kernel 𝐾.

• Computing a representation of the isogeny of the form 𝐶 → Jac(𝐶), given by polynomials of degree
𝑂(Tr 𝛼): 𝑂(√ℓ + log 𝑞) operations in 𝔽𝑞 by Section 5.4 (the 𝑂(log 𝑞) is for the square root, and we can

take a representative 𝛼 = 𝑎 + 𝑏𝜂 with 𝑎, 𝑏 ∈ 𝑂(√ℓ)). This allows us to represent the kernel 𝐾 by writing
𝐷 = (𝑃1) + (𝑃2) − 2(∞) and then plugging the equations 𝑓 (𝑃1 − ∞) = −𝑓 (𝑃2 − ∞).

• Computing a suitable representation of 𝐾 (ie an efficient parametrisation) using a resultant and subresultant:
this uses an evaluation-interpolation approach to compute ℓ resultants of polynomials of degree √ℓ in one
variable for a total cost of 𝑂(ℓ3/2) operations in 𝔽𝑞.

• In this efficient representation, we compute 𝑚 such that 𝜓 − 𝑚 = 0 on 𝐾. Since 𝐾 is an 𝒪ℱ/𝛼 = ℤ/ℓℤ-
module, this determines 𝜓 modulo 𝛼. Applying 𝜋, this is the same as 𝜋2 − 𝑞 − 𝜋𝑚 = 0 on 𝐾. So finding 𝑚
requires a DLP and 𝑂(1) applications of the Frobenius, for a complexity of 𝑂(ℓ(ℓ + log 𝑞)) operations over
𝔽𝑞, or 𝑂(ℓ(√ℓ + log 𝑞)) with a BSGS algorithm.

• The CRT in 𝒪ℱ requires 𝑂(log 𝑞) primes 𝛼 of norm ℓ = 𝑂(log 𝑞).

• The total binary cost is then 𝑂(log 𝑞4), exactly as in SEA’s algorithm for elliptic curves! The dominating step
here is the evaluation and finding a root of the modular polynomial, which cost 𝑂(log 𝑞3) binary operations.
Having small coefficient helps the evaluation, but does not change the asymptotic (apart from logarithmic
factors) since finding a root was also dominant.

Again, we refer to future work from Kieffer for more details, and hopefully a record computation.

5.5.5 Complexity of a Schoof-Pila and SEA like algorithm in higher dimension

When we work with a Jacobian of a curve 𝐴 = Jac𝐶, the curve provides a compact way to represent the multiplica-
tion by ℓ or an isogeny. But we have seen that already in Schoof ’s algorithm in dimension 2, recovering an efficient
representation of Jac𝐶[ℓ] by writing a divisor as a sum of two points on the curve is not quasi-linear in the degree
of the system. The situation gets worse in higher dimension, since we need to express the divisor as a sum of 𝑔
points. Also we want to generalize this to all abelian varieties.

The Schoof-Pila algorithm has been studied in details, and in general we have algorithms with complexity
𝑂(log 𝑞𝑐) with 𝑐 polynomial in 𝑔 [AH01] (both for curves and abelian varieties), linear in 𝑔 in the hyperelliptic
case [AGS19b], and even bounded [Abe20] for hyperelliptic curves with real multiplication (the bound is 9 + 𝜖
and conjectured to be 7 + 𝜖, but see Remark 4.7.3).

We recall that the characteristic polynomial of the Frobenius 𝜒𝜋(𝑋) = 𝑋2𝑔+∑2𝑔−1
𝑖=0 𝑐𝑖𝑋𝑖 satisfy 𝑐𝑖 = 𝑞2𝑔−𝑖𝑐2𝑔−𝑖

and |𝑐𝑖| ≤ (2𝑔
𝑖)𝑞(2𝑔−𝑖)/2 by the Weil bounds. Let 𝜓 = 𝜋 + 𝜋 be the trace, this is a real endomorphism and the

minimal polynomial of the Frobenius over ℤ[𝜓] is given by 𝑋2 − 𝜓𝑋 + 𝑞 = 0. So the characteristic polynomial
𝜒𝜓(𝑋) = 𝑋𝑔 + ∑𝑔−1

𝑖=0 𝑠𝑖𝑋𝑖 determines 𝜒𝜋, and we have 𝑠𝑖 = 𝑂(𝑞(𝑔−𝑖)/2) [Abe20, Proposition 4]. If the real field
is given by 𝐾 = ℚ(𝜂), we can write 𝜓 = ∑𝑔−1

𝑖=0 𝑎𝑖𝜂𝑖 with 𝑎𝑖 = 𝑂(√𝑞) by loc. cite. The relationship between the
coefficients is as follow: 𝜒𝜋(𝑋) = ∑𝑔

𝑖=0 𝜎𝑖(𝑋2𝑔−𝑖 +𝑞𝑔−𝑖𝑋𝑖) with 𝜎𝑖 = 𝑐2𝑔−𝑖 if 𝑖 ≠ 𝑔 and 𝜎𝑔 = 𝑐𝑔/2, 𝜎𝑖 = 𝑂(𝑞𝑖/2).
Then ∑𝑔

𝑖=0 𝜎𝑔−𝑖(𝜋𝑖 + �̂�𝑖) = 0. Write 𝜋𝑖 + �̂�𝑖 = 𝜓𝑖 + ∑𝑖−1
𝑗=0 𝛼𝑖𝑗𝜓𝑗, 𝛼𝑖𝑗 = 𝑂(𝑞(𝑖−𝑗)/2). Then 𝑠𝑖 = ∑𝑔

𝑗=𝑖 𝛼𝑗𝑖𝜎𝑔−𝑗, see
[Abe20, § 2.2].

For point counting in the Hilbert case, in [Abe20] the action of 𝜂 is assumed to be known, and 𝜓 is recovered by
working over totally split primes and doing a CRT over ℤ. In our case, using modular polynomials, we only need
to recover the action of 𝜓 modular 𝛽, 𝛽 of prime norm, and then doing a CRT over 𝒪ℱ. We could also relax the
condition that 𝛽 is of prime norm, but in this case we would need to know how 𝒪ℱ acts on 𝐴 (eg how 𝜂 acts), so
that we can then identify the kernel as an 𝒪ℱ/𝛽 module, to identify 𝜓 as an element of 𝒪ℱ/𝛽.

Let us be optimistic and assume a quasi-linear algorithm could be found for all the steps in the Schoof or SEA
like algorithm, and let’s look at the complexity.

For a Schoof like algorithm:

• We would work with an efficient representation of 𝐴[ℓ] in the Siegel case, or 𝐴[𝛼] in the Hilbert case (𝛼
above a totally split prime ℓ), for a complexity of 𝑂(ℓ2𝑔) or 𝑂(ℓ2) operations in 𝔽𝑞.

119

5 Modular correspondances

• In the Siegel case, we need to recover 𝑔 coefficients modulo ℓ, so a BSGS algorithm costs 𝑂(ℓ2𝑔(ℓ𝑔/2 + log 𝑞))
operations in 𝔽𝑞 (taking into account the Frobenius computations). In the Hilbert case this would be
𝑂(ℓ2(ℓ1/2 + log 𝑞)) operations in 𝔽𝑞.

• The cost for a prime is then 𝑂(log 𝑞5𝑔/2) (assuming 𝑔 ≥ 2) and 𝑂(log 𝑞3) operations in 𝔽𝑞 respectively.

• So the ideal algorithm would cost 𝑂(log 𝑞5𝑔/2+2) and 𝑂(log 𝑞5) respectively. The dominating step in both
cases would be the BSGS step.

For a SEA like algorithm, letting 𝑁 = 𝑔(𝑔 + 1)/2 be the dimension of 𝒜𝑔:

• We have a magic evaluation algorithm which evaluate the modular polynomial in quasi-linear time. This
costs 𝑂(ℓ𝑁) operations in 𝔽𝑞 in the Siegel case versus 𝑂(ℓ) operations in 𝔽𝑞 in the Hilbert case.

• Finding a root then costs 𝑂(ℓ𝑁 log 𝑞) and 𝑂(ℓ log 𝑞) operations in 𝔽𝑞 respectively.

• The magical algorithm to get an efficient representation of the kernel would cost 𝑂(ℓ𝑔) and 𝑂(ℓ) operations
in 𝔽𝑞 respectively.

• Recovering the information for a prime would cost 𝑂(ℓ𝑔(ℓ𝑔/2 + log 𝑞)) and 𝑂(ℓ(ℓ1/2 + log 𝑞)) operations
in 𝔽𝑞 respectively.

• The cost for a prime is then 𝑂(log 𝑞1+𝑁) and 𝑂(log 𝑞2) operations in 𝔽𝑞 respectively.

• So the ideal algorithm would cost 𝑂(log 𝑞𝑁+2) and 𝑂(log 𝑞4) respectively. In both cases the dominating
step would be finding a root.

It is interesting to note that with ideal algorithms, in the Siegel case the Schoof like method has the same
complexity as the SEA like method when 𝑔 = 4, and becomes faster for 𝑔 > 4. Indeed, with 𝑔 = 4 the SEA
like method allows to parametrize a system of degree ℓ4 rather than ℓ8, but for that we need to find a root of a
polynomial of degree 𝑂(ℓ10). Of course in practice there is no quasi-linear algorithm to compute an efficient
representation of 𝐴[ℓ] or the kernel 𝐾, so the break off point is probably a bit higher.

Let us look at the hypothesis of a magic evaluation algorithm for modular polynomials and compare it to the
complexity if we make instead the more reasonable hypothesis that there exists a quasi-linear uniform algorithm to
compute theta constants (and conversely period matrices from theta constants), or if we apply the 𝑝0-adic algorithm
from Section 5.3.8. We restrict to 𝑞 = 𝑝𝑑, with 𝑑 constant (or sufficiently small compared to log 𝑝). Without small
parameters, in the Siegel case we have a polynomial with 𝑂(ℓ𝑁) coefficients of heights 𝑂(ℓ𝑁 log 𝑞), for a total size
of 𝑂(log 𝑞2𝑁+1) since ℓ = 𝑂(log 𝑞). With small parameters over 𝔽𝑝, the coefficients are of height ℓ𝑁, for a total
size of 𝑂(log 𝑞2𝑁). This becomes the dominant step if 𝑔 > 1. For Hilbert polynomials, we have 𝑂(ℓ) coefficients
of size 𝑂(ℓ log 𝑞) or 𝑂(ℓ) with small parameter, for a total size of 𝑂(log 𝑞3) or 𝑂(log 𝑞2) with small parameters.
While this is larger than the size of the reduction to 𝔽𝑞, the cost is the same complexity as finding a root anyway. A
caveat in the 𝑝0-adic method is that we also need the derivative of the modular polynomials, and as explained in
Section 5.4.2 this is more expansive: 𝑂(log 𝑞2𝑁+𝑔+1) in the Siegel case, and 𝑂(log 𝑞4) in the Hilbert case (we gain
a factor log 𝑞 with small parameters).

So in the Hilbert case, fast evaluation of theta functions or 𝑝0-adic lifting (with small parameters) provide a way
to evaluate modular polynomials sufficiently fast for an “optimal algorithm”. The main remaining stumbling block
to get a quasi-optimal algorithm is the computation of an efficient representation of the kernel of the isogeny, we
get a leeway of 𝑂(ℓ2 + log2 𝑞) operations in 𝔽𝑞 for that.

The most promising candidates are Jacobians of hyperelliptic curve. Heuristically, under the conjecture of
Remark 4.7.3 the representation 𝑓 ∶ 𝐶 → 𝐵 of the isogenies will be of degree 𝑂(ℓ1/𝑔). We can then adapt the
complexity analysis of [Abe20, § 4.2] which gives a dominant part of 𝑂(𝑑𝑥𝛿2 log 𝑞 + 𝛿2 log2 𝑞). In our case, 𝑑𝑥 =
𝑂(ℓ1/𝑔) and 𝛿 = 𝑂(ℓ), which gives a complexity of 𝑂(ℓ2+1/𝑔 log 𝑞+ℓ2 log2 𝑞) to compute the geometric resolution,
ie 𝑂(log4 𝑞) with ℓ = 𝑂(log 𝑞), which would yield an 𝑂(log5 𝑞) point counting algorithm. But unfortunately a
strong caveat is that the complexity analysis of [Abe20] works for an endomorphism. In our case, while the domain
is a Jacobian of an hyperelliptic curve, the codomain won’t even be a Jacobian in general. So we need to adapt the
algorithm when the target variety is, for instance, represented by theta functions. This is the main obstruction to
having an 𝑂(log5 𝑞) algorithm for an RM hyperelliptic curve. (For this complexity, the evaluation of the modular
polynomials and their derivatives using the 𝑝0-adic method is fast enough even without small parameters.)

120

5.6 Applications to exploring isogeny graphs

So there is hope to obtain at least an 𝑂(log5 𝑞) “almost optimal” point counting complexity in this case, but
there is a lot of work remaining. It would work as follow, when 𝐴 = Jac(𝐶)/𝔽𝑝 is the Jacobian of an hyperelliptic
curve of genus 𝑔 with (explicit) real multiplication. For simplicity we assume that we have a rational level 2 theta
structure, so we can use modular polynomials in theta invariants.

• Evaluate the Hilbert modular polynomials 𝛷𝛽.

• If there is a rational root, recover the action on differentials from the derivative of the theta constants. We
refer to Section 5.7 for how we can use the heat equation to get an explicit Kodaira-Spencer isomorphism
from the theta constants, and how to adapt this to other modular invariants.

• Represent the isogeny as 𝑓 ∶ 𝐶 → 𝐵, where 𝐵 is given by theta functions.

• Solve the differential equation via Newton iterations (after an initialisation to enough precision).

• Use geometric resolution to represent the kernel efficiently (this is the most difficult step).

• Compute the action of the Frobenius.

Alternatively we could look at the contragredient isogeny ̃𝑓 ∶ 𝐵 → Jac(𝐶), and determine 𝜓 on Ker ̃𝑓, this allows
to work with the Jacobian on the target for easier determination of the kernel. In particular, when 𝑔 = 3, 𝐵 will
(generically) be a Jacobian which simplify the computations. I am optimistic there exists an 𝑂(log4 𝑞) algorithm.

Indeed, [AGS19a] gives an 𝑂(log6 𝑝) (so a bit worse than the “optimal”) algorithm for point counting on
an hyperelliptic curve with RM using Schoof ’s method. In our case, the kernel of ̃𝑓 is modelled via the map
𝐶′ → 𝐵 = Jac(𝐶′) → Jac(𝐶) (where 𝐶′ may not be hyperelliptic), and is given by polynomials of degree 𝑂(ℓ1/𝑔) in
the coordinates of𝐶′ (see Remark 4.7.3). Using the analysis of [AGS19a, § 3] the full kernel is computed by first taking
triresultants, this gives bivariate polynomials of degree 𝑂(ℓ2/3) in time 𝑂(ℓ5/3) and then by biresultants, this gives
a univariate polynomial of degree 𝑂(ℓ4/3) in time 𝑂(ℓ2) (operations over 𝔽𝑞). This is fast enough for an 𝑂(log4 𝑞)
algorithm. The main remaining block is to find a sufficiently efficient way to evaluate the modular polynomials and
their derivatives. For instance the 𝑝0-adic approach works if we have small parameters. Alternatively, we could use
the analytic method; Labrande gives in [Lab16, Remark 7.4.5] a preliminary potential quasi-linear algorithm to
evaluate theta functions when 𝑔 = 3 (see Section 5.3.4). We also need to recover the period matrix sufficiently fast,
but since we are over a Jacobian we could compute hyperelliptic periods at low precision to get the correct sign
choices.

5.6 applications to exploring isogeny graphs

Exploring isogeny graphs is a core toolbox for many applications: it allows to enumerate all abelian varieties having
certain properties (which force them to be isogenous). We will see an example for algorithms to compute class
polynomials in Chapter 7.

Since over a finite field the (non polarised) isogeny class is characterised by the characteristic polynomial of
the Frobenius, exploring the isogeny graphs can also be used to find special abelian varieties in this class. This is
typically used to try to find Jacobians of curves when looking for curves with many points.

5.6.1 Isogeny graphs over a finite field via modular polynomials

Of course modular polynomials are the key tools to explore isogeny graphs. When plugging the invariants of an
abelian variety 𝐴, the evaluated modular polynomials parametrize the invariants of the ℓ-isogenous varieties 𝐵.

If the parametrization of the modular polynomials is done such that we have a univariate polynomial parametriz-
ing the solutions, then over a finite field finding a rational root amount to a Frobenius computation (this is the
dominating step), for a binary cost of 𝑂(𝐷 log 𝑞2), where 𝐷 = 𝑂(ℓ𝑔(𝑔+1)/2) is the degree, ie the number #𝛤/𝛤0(ℓ)
of isogenies). We refer to Section 5.3.8 for the evaluation of modular polynomials.

There is a slight technicality here: if we find 𝑘-rational modular invariants 𝐽𝐴, 𝐽𝐵 such that 𝛷ℓ(𝐽𝐴, 𝐽𝐵) = 0, it only
means that there is an isogeny 𝑓 ∶ 𝐴 → 𝐵 defined over 𝑘. Indeed with modular polynomials we work over the coarse
moduli space rather than the fine moduli space (which is an algebraic stack). So a 𝑘-rational point 𝑥 of the coarse
modular correspondance may not correspond to a rational isogeny. The obstruction is measured by an element of
𝐻2(Spec 𝑘,Aut(𝑥)) in the sens of Giraud (ie as gerbes bound by the band induced by Aut(𝑥)). In our case, if the

121

5 Modular correspondances

automorphisms of 𝐴 preserve the kernel of the isogeny 𝑓, (𝐴, 𝐾) and 𝐴 then have the same automorphisms, so
the obstruction in the 𝐻2 is the same. So if 𝐴 descends to 𝑘 then 𝑓 too (but note that we may need to twist 𝐵). See
[DR73, § VI.3.1] and [KPR20, Proposition 4.11]. In particular if 𝐴 only has generic automorphisms then they all
stabilize 𝐾 (in the Siegel case because the generic automorphisms are 1, −1 and in the Hilbert case because they are
given by real multiplications but 𝐾 is stable under the real multiplications for an Hilbert modular correspondance),
so there is no problem of descent.

A related remark: if 𝐴 and 𝐵 are already 𝑘-isogenous, and End𝑘(𝐴) = End𝑘(𝐴) then every 𝑘-isogeny 𝑓 ∶ 𝐴 → 𝐵
is actually defined over 𝑘. Indeed the free ℤ-moduleHom𝑘(𝐴, 𝐵) is not empty by hypothesis, and has the same rank
as Hom𝑘(𝐴, 𝐵) by the hypothesis on End𝑘(𝐴). So a multiple 𝑔 of 𝑓 is rational, but if 𝑔 is 𝑘-divisible it is 𝑘-divisible,
so 𝑓 is rational.

5.6.2 Isogeny graphs over a finite field via explicit isogeny computations

So everything is nice when we have modular polynomials, but we may want to compute isogeny graphs even
without them. In fact, in Section 5.3.8, we have seen that we can iterate through isogenous abelian varieties to
evaluate the modular polynomials. A solution is to brute force the problem by computing the full ℓ-torsion, iterating
through all maximal isotropic kernels and compute the corresponding isogenies using Chapter 4.

We can only hope to get a somewhat reasonable algorithm if the base field is a finite field 𝔽𝑞. Then, we could
compute the ℓ-torsion directly using the same method as the Schoof like algorithms of Section 5.5, ie using division
polynomials. This is not too bad for abelian surfaces (or elliptic curves), as we have seen in Section 5.5.1 that we
may compute an efficient representation of 𝐴[ℓ] in time 𝑂(ℓ6 log 𝑞) binary operations (resp 𝑂(ℓ2 log 𝑞) for elliptic
curves).

In this section we consider an alternative strategy, in arbitrary dimension, when the characteristic polynomial of
the Frobenius of 𝐴/𝔽𝑞 is known (we can also compute it in time polynomial in log 𝑞). This is the strategy that was
implemented in [BCR10] and which is described in [BCR11].

First we work with an extension of degree 𝑑 such that the points of the possibles kernels live. Since we know 𝜒𝜋,
a bound on 𝑑 is given by the order of 𝑋 in (ℤ/ℓℤ)[𝑋]/𝜒𝜋, but we can get a better bound as follow: if 𝐾 is totally
maximal isotropic and rational, then since 𝜋 stabilize 𝐾 its characteristic polynomial 𝑃 of its restriction to 𝐾 is of
degree 𝑔 and divides 𝜒𝜋. But since 𝐾 is isotropic and 𝜋 is 𝑞-symplectic, we have that 𝜒𝜋(𝑋) = 𝑃(𝑋)𝑋𝑔𝑃(𝑞/𝑋).
So we can restrict our search of rational divisors of 𝜒𝜋 to polynomials 𝑃 satisfying this property. This gives us an
extension of degree 𝑑 bounded by ℓ𝑔 − 1.

Next we compute a basis of 𝐴[ℓ](𝔽𝑞𝑑). Here we make the assumption that we have an algorithm to take an
almost uniform random point in 𝐴(𝔽𝑞𝑑) (if 𝐴 is a Jacobian it suffices to sum 𝑔 + 1 points on the curve). Since
we have 𝜒𝜋 we know #𝐴(𝔽𝑞𝑑), so multiplying by the cofactor 𝑐, we get a (almost uniform) point in the ℓ-primary
component 𝐴[ℓ∞](𝔽𝑞𝑑). Since #𝐴(𝔽𝑞𝑑) = 𝑂(𝑞𝑑𝑔), this step takes 𝑂(𝑔𝑑 log 𝑞) arithmetic operations in 𝐴(𝔽𝑞𝑑).
We are interested in the asymptotic with respect to ℓ, so this is 𝑂(𝑑2 log2 𝑞) binary operations.

Now one needs to be careful that if we have a random point 𝑃 in the ℓ-primary component of order ℓ𝜈, multiplying
by ℓ𝜈−1 to get a point of ℓ-torsion is not uniform. For instance if the ℓ-primary component is generated by 𝑃1
of order ℓ2 and 𝑃2 of order ℓ, a random point 𝑃 is of the form 𝜆𝑃1 + 𝜇𝑃2 and is of order ℓ2 if 𝜆 ≠ 0, so ℓ𝑃 is
a multiple of ℓ𝑃1 and we almost never recover multiples of 𝑃2 this way. This is easy to correct: assume we have
already sampled 𝑃1 and we sample 𝑃 as above. We do a DLP to get ℓ𝑃 = 𝜆1ℓ𝑃1 where 𝜆 = 𝜆1 + ℓ𝜆2. Then we
define 𝑃′ = 𝑃 − 𝜆1𝑃1, this is a point of ℓ-torsion, and (ℓ𝑃1, 𝑃′) gives a basis of the ℓ-torsion.

Let’s formalize this as follow:

Lemma 5.6.1. If 𝐺 is a finite ℓ-primary commutative group of order ℓ𝑁, we say that a system of generators 𝑃1, … , 𝑃𝑚
is minimal if 𝑃𝑖 is of order ℓ𝑛𝑖 and the application ∏ ℤ/ℓ𝑛𝑖 → 𝐺, 𝜆𝑖 ↦ ∑ 𝜆𝑖𝑃𝑖 is a bijection. Since the application is
surjective by hypothesis this is equivalent to ℓ𝑁 = ∏ ℓ𝑛𝑖 , and if 𝑃′

𝑖 = ℓ𝑛𝑖−1 this is equivalent to the 𝑃′
𝑖 being a basis of

the ℤ/ℓℤ vector space 𝐺[ℓ]. So 𝑚 is the rank of 𝐺.

This gives the following algorithm to construct a minimal basis of 𝐺: we sample a random point 𝑃1, this is a
minimal generator of 𝐻 = ⟨𝑃1⟩. Assume we have constructed minimal generators 𝐻 = ⟨𝑃1, … , 𝑃𝑘⟩. We sample a
new random point 𝑃𝑘+1 in 𝐺, of order ℓ𝑛𝑘+1 . We let 𝑃′

𝑘+1 = ℓ𝑛𝑘+1−1𝑃𝑘+1. Either 𝑃′
𝑘+1 is not in the linear span of

the 𝑃′
𝑖 , 𝑖 ≤ 𝑘 and we have minimal generators of 𝐻′ = ⟨𝑃1, … , 𝑃𝑘+1⟩ or we have a linear relation ∑ 𝜆𝑖𝑃′

𝑖 = 0. We
then use this relation to correct 𝑃𝑗 where 𝑗 is such that 𝑃𝑗 is the point of minimal order such that 𝜆𝑗 ≠ 0. We iterate
again with this new 𝑃𝑗, updating a new point again if needed (this terminates because the new 𝑃𝑗 is of order strictly
less than the old one by construction), until we get a minimal system of generators of 𝐻 + ⟨𝑃𝑘+1⟩. We refer to
[BCR11, § 3.1] for more details on this algorithm.

122

5.6 Applications to exploring isogeny graphs

This gives a randomized algorithm which needs to sample 𝑂(𝑚) uniform points in 𝐺, perform 𝑂(𝑚) scalar
multiplication for a total cost of 𝑂(𝑚𝑁ℓ) operations in 𝐺, and perform 𝑂(𝑚) search of a linear relation between
points of ℓ-torsion. If 𝐺 is represented by an abstract group, as is our case of 𝐺 = 𝐴(𝔽𝑞𝑑)[ℓ∞] which is of rank
at most 2𝑔, searching for linear relations costs 𝑂(ℓ𝑚/2) using a BSGS algorithm. For our 𝐺 the total cost is then
𝑂(𝑑 log 𝑞 + ℓ𝑔) operations in 𝐴(𝔽𝑞𝑑). In practice with our experiments from [BCR10] on abelian surfaces with ℓ
of a few hundred, finding linear relations is the most expansive step. So it is worthwhile to speed it up.

There are two possible improvements for our particular 𝐺. The first is to use the Weil pairing 𝑒ℓ, we can then do
DLPs in 𝜇ℓ instead to get our linear relations, this costs 𝑂(√ℓ) (of course there is no point in using a subexponential
DLP algorithm for 𝜇ℓ here). The worst case is when our first sampled points give a group 𝐻 such that 𝐻[ℓ] is
isotropic for the Weil pairing (this will be the case if 𝜇ℓ ⊄ 𝔽𝑞𝑑). In this case the Weil pairing cannot help us,
and we are reduced to doing BGSG in 𝐻[ℓ], which is of rank at most 𝑔. So we get an algorithm which costs
𝑂(𝑑 log 𝑞 + log ℓ + ℓ𝑔/2) operations in 𝐴(𝔽𝑞𝑑).

The other possibility, if 𝜇ℓ ⊂ 𝔽𝑞𝑑 , is to use the Tate pairing on 𝐴[ℓ](𝔽𝑞𝑑) × 𝐴(𝔽𝑞𝑑)/ℓ𝐴(𝔽𝑞𝑑). We sample 𝑂(𝑔)
extra points in 𝐴(𝔽𝑞𝑑) to have a good probability to have a system of generators of 𝐴(𝔽𝑞𝑑)/ℓ𝐴(𝔽𝑞𝑑), then we use
the Tate pairing and DLP in 𝜇ℓ to decompose our points of ℓ-torsion along our current generators. Note that if 𝑑 is
such that 𝜇ℓ is not in 𝔽𝑞𝑑 , we need to take a further extension 𝑑′ = 𝑂(ℓ𝑑) to apply this strategy: we sample extra
points in 𝐴(𝔽𝑞𝑑(𝜇ℓ)) to compute the Tate pairing with the points sampled in 𝐴(𝔽𝑞𝑑)[ℓ]. The full algorithm costs
𝑂(𝑑 log 𝑞 + ℓ1/2) operations in 𝐴(𝔽𝑞𝑑) along with 𝑂(1) Tate pairings over 𝐴(𝔽𝑞𝑑(𝜇ℓ)). So essentially this costs
𝑂(𝑑′ log 𝑞 log ℓ + 𝑑2 log2 𝑞 + 𝑑 log 𝑞ℓ1/2)) binary operations.

Then once we have a basis of 𝐴(𝔽𝑞𝑑)[ℓ] we may look for rational isotropic kernels (using the methods above to
construct a partial symplectic basis and computing the matrix of the Frobenius acting on our basis), and compute
isogenies (costing 𝑂(ℓ𝑔) operations in 𝐴(𝔽𝑞𝑑)) for each of them. This dominates the complexity above, except the
sampling in 𝐴(𝔽𝑞𝑑)[ℓ∞].

Summing up the full cost, the algorithm thus requires 𝑂(𝑑2 log2 𝑞 + 𝑋ℓ𝑔𝑑 log 𝑞) operations to compute 𝑋
isogenies, with 𝑑 bounded by 𝑂(ℓ𝑔), along with some precomputations which do not depend on ℓ like computing
𝜒𝜋 (for small ℓ we could also compute a triangular representation as in Section 5.5 but this of course is polynomial
in ℓ).

To compute cyclic isogenies, we have a similar strategy to compute a basis of 𝐴[𝛽] and then iterate through the
kernels and the isogenies. In this case, we need to be able to compute the real multiplication (namely the action of
ℓ/𝛽) to sample points in the 𝛽-primary component. More precisely, there should be an algorithm in 𝑂(log𝑁(𝛼)) to
evaluate multiplication by 𝛼. See Section 4.5 for more on computing real endomorphisms. We then get a complexity
of 𝑂(𝑑2 log2 𝑞 + 𝑋ℓ𝑑 log 𝑞) to evaluate 𝑋 isogenies, where 𝑑 = 𝑂(ℓ2) if ℓ = 𝑁(𝛽).

5.6.3 Type of ℓ-isogenies for abelian surfaces

We give a partial study of the number of rational isotropic kernels in 𝐴[ℓ] according on how 𝜒𝜋 mod ℓ split for
abelian surfaces over 𝔽𝑞. This could be used to get an Atkin-type point counting algorithm using the splitting
behaviour of Siegel modular polynomials in dimension 2, as was done in the (much easier) case of Hilbert-modular
polynomial [BGG+17]. Here we only focus on the number of rational roots.

First we have seen that if the splitting of 𝜒𝜋 is of type (4), (1, 3), (1, 1, 2) there is no kernel, because 𝜒𝜋(𝑋)
cannot be written as 𝑃(𝑋)𝑞2𝑃(𝑞/𝑋).

• In the case (2, 2), 𝜒𝜋 = 𝑄1𝑄2 with 𝑄𝑖 irreducibles, and 𝑄2 the 𝑞-reciprocal of 𝑄1. Then if 𝑄1 ≠ 𝑄2,
𝜋 is cyclic over 𝐴[ℓ], there are two stables subspaces given by Ker𝑄𝑖 and they are isotropic by [Rob21,
Lemma 4.1.6]. 𝐴[ℓ] = Ker𝑄1 ⊕ Ker𝑄2 is a symplectic decomposition.

If 𝑄1 = 𝑄2 = 𝑄, then if the minimal polynomial is 𝑄2, 𝜋 is cyclic, the only stable subspace isKer𝑄 which is
isotropic by [Rob21, Lemma 4.1.6] since Ker𝑄 = Im𝑄. Otherwise the minimal polynomial is 𝑄, so we may
see 𝐴[ℓ] as an 𝔽ℓ[𝜋] = 𝔽ℓ[𝑋]/𝑄(𝑋)-vector space of dimension 2. There are ((ℓ2)2 −1)/(ℓ2 −1) = ℓ2 +1
stable subspaces. There can be several cases for the number of isotropic kernels.

• In the case (1, 1, 1, 1), there are four eigenvalues 𝜆1, 𝜆2, 𝜇1, 𝜇2 with 𝜆2 = 𝑞/𝜆1, 𝜇2 = 𝑞/𝜇1.

– If they are all distincts,𝜋 is cyclic, there are 4 isotropic invariant subspaces of dimension 2 corresponding
to the two symplectic decompositions 𝐴[ℓ] = ⟨𝜆1, 𝜇1⟩ ⊕ ⟨𝜆2, 𝜇2⟩ and 𝐴[ℓ] = ⟨𝜆1, 𝜇2⟩ ⊕ ⟨𝜆2, 𝜇1⟩.

123

5 Modular correspondances

– If 𝜆1 = 𝜆2 = 𝜆, 𝜒𝜋 = (𝑋 − 𝜆)2(𝑋 − 𝜇1)(𝑋 − 𝜇2). By [Rob21, Lemmas 4.1.5 and 4.1.6], there is a
symplectic basis (𝑒1, 𝑒2, 𝑓1, 𝑓2) where ⟨𝑒1, 𝑓1⟩ = Ker(𝑋 − 𝜆)2, ⟨𝑒2⟩ = Ker(𝑋 − 𝜇1), 𝑓2 = Ker(𝑋 − 𝜇2).
If the minimal polynomial is of degree 4, then 𝜋 is cyclic and there are two stable isotropic kernels
given by Ker(𝑋 − 𝜆)(𝑋 − 𝜇1) and Ker(𝑋 − 𝜆)(𝑋 − 𝜇2).
Otherwise 𝜋 is diagonalisable, there are 2(ℓ + 1) stable subspaces of dimension 2 (take for generators
any element of ⟨𝑒1, 𝑓1⟩ along with 𝑒2 or 𝑓2), which given the symplectic basis are all isotropic.

– If 𝜆1 = 𝜇1, 𝜒𝜋 = (𝑋 − 𝜆1)2(𝑋 − 𝜆2)2. The characteristic subspace of 𝜆𝑖 is isotropic, so we have a
symplectic decomposition 𝐴[ℓ] = Ker(𝑋 − 𝜆1)2 ⊕ Ker(𝑋 − 𝜆2)2.
If the minimal polynomial is 𝜒𝜋, 𝜋 is cyclic, and the stable subspaces of dimension 2 are Ker(𝑋 −
𝜆1)(𝑋 − 𝜆2), Ker(𝑋 − 𝜆1)2, Ker(𝑋 − 𝜆2)2, which are all isotropic.
If the minimal polynomial is (𝑋 − 𝜆1)2(𝑋 − 𝜆2), then Ker(𝑋 − 𝜆1)2 and Ker(𝑋 − 𝜆2) are isotropic.
Taking an adapted symplectic basis, we see there is a third isotropic kernel given by the eigenvector for
𝜆1 and its unique orthogonal 𝜆2 eigenvector.
If theminimal polynomial is (𝑋−𝜆1)(𝑋−𝜆2),𝜋 is diagonalisable.We have a symplectic decomposition
𝐴[ℓ] = (Ker𝑋 − 𝜆1) ⊕ (Ker𝑋 − 𝜆2), and taking an adapted symplectic basis we see that there are
ℓ + 1 other isotropic kernels (since 𝜋∣𝐾 has to be diagonal): take an eigenvector for 𝜆1 and its unique
orthogonal 𝜆2 eigenvector.

– Finally if 𝜆1 = 𝜆2 = 𝜇1 = 𝜇2 = 𝜆, 𝜒𝜋 = (𝑋 − 𝜆)4.
If the minimal polynomial is of degree 4, 𝜋 is cyclic and there is a unique stable subspace of dimension
2, Ker(𝑋 − 𝜆)2 which is isotropic.
If the minimal polynomial is of degree 3, we have a vectorial decomposition 𝐴[ℓ] = 𝐶((𝑋 − 𝜆)3) ⊕
𝐶(𝑋 − 𝜆) where 𝐶(𝑃) is the companion matrix of 𝑃. There are ℓ + 1 stable subspaces 𝐾 where 𝜋∣𝐾 is
diagonal, and ℓ stable subspaces 𝐾 where 𝜋∣𝐾 is of type 𝐶((𝑋 − 𝜆)2) (taking the 𝔽𝑞[𝜋] span of 𝑣 + 𝑤
where 𝑣 is a generator of the 𝐶((𝑋 − 𝜆)2) subspace of 𝐶((𝑋 − 𝜆)3) and 𝑤 an element of 𝐶(𝑋 − 𝜆)). I
don’t know how many are isotropic.
If the minimal polynomial is of degree 2, and we have a vectorial decomposition 𝐴[ℓ] = 𝐶((𝑋 −
𝜆)2) ⊕ 𝐶((𝑋 − 𝜆)2), then Ker(𝑋 − 𝜆) = Im(𝑋 − 𝜆) so is isotropic. Completing a basis 𝑒1, 𝑒2 of
Ker(𝑋 −𝜆) with a symplectic basis 𝑓1, 𝑓2, the 𝑘[𝜋]-space spanned by 𝑓𝑖 is of type 𝐶((𝑋 −𝜆)2), 𝑖 = 1, 2.
The other stable subspaces of dimension 2 are of type 𝐶((𝑋 −𝜆)2, so are cyclic and spanned by 𝜋-linear
combinations of 𝑓1, 𝑓2 (which are not all divisible by 𝜋 − 𝜆). There are ℓ4 − ℓ2 such combination, which
give (ℓ4 − ℓ2)/(ℓ2 − ℓ) = ℓ(ℓ + 1) stable subspaces. I don’t know how many are isotropic.
If 𝐴[ℓ] = 𝐶((𝑋 − 𝜆)2) ⊕ 𝐶((𝑋 − 𝜆)) ⊕ 𝐶((𝑋 − 𝜆)) we can hold a similar reasoning.
Finally if the minimal polynomial is of degree 1, every subspace is stable and there are ℓ3 + ℓ2 + ℓ + 1
isotropic kernels.

5.6.4 The structure of the ℓ-isogeny graph of ordinary abelian surfaces

We briefly detail the structure of the isogeny graph in the case of ordinary abelian surfaces over 𝔽𝑞. This was
a joint work with Ionica, Martindale and Streng [IMR+14] which was not published, because our results
were partly recovered in [BJW17] looking at Tate modules instead.
The assumption that 𝐴/𝔽𝑞 is ordinary allows to lift to characteristic zero and use the theory of complex
multiplication. Also the case 𝑔 = 2 helps a lot because End(𝐴) is a CM quartic order. So its real suborder
End𝑠(𝐴) is an order 𝑂 in a real quadratic field 𝐾. But quadratic orders are Gorenstein: its dual for the trace
𝑂⋆ is principal. Since for a fractional ideal 𝐼 we have 𝐼𝐼⋆ = 𝑅(𝐼)⋆ where 𝑅(𝐼) is the order associated to 𝐼,
this means that 𝐼 is always invertible for its associated order. This simplifies a lot the study of 𝑂-modules
such as the lattices corresponding to the lifted abelian surfaces with real multiplication by 𝑂.
We know that End(𝐴) ⊃ ℤ[𝜋, 𝜋], so End𝑠(𝐴) ⊃ ℤ[𝜋 + 𝜋]. When looking at the quadratic real orders
that may appear in the isogeny graph, we may label them as 𝑂1 (locally maximal at ℓ), 𝑂ℓ of index ℓ in 𝑂1,
𝑂ℓ𝑘 and so on. So we may decompose the isogeny graphs into “pancakes”, one pancake for each order, and
look at how isogenies move inside a pancake and across a pancake (we say that it is RM ascending if the real
order increases and RM descending if the real order decreases).

124

5.6 Applications to exploring isogeny graphs

Over 𝑂1 if ℓ splits into totally positive elements as 𝛽𝛽𝜎, it is easier to understand the graphs by looking at
the 𝛽 and 𝛽𝜎 isogeny graphs. These are volcanoes [IT14], exactly as in the elliptic curve case, and a ℓ-isogeny
between abelian surfaces with real multiplication by 𝑂1 is the composition of a 𝛽-isogeny followed by a
𝛽𝜎-isogeny.

More precisely, we have End(𝐴) = 𝑂1 + 𝔣𝑂𝐿 where 𝐿 = End0(𝐴) is the full CM field, 𝑂𝐿 is its maximal
order and the 𝑂1-ideal 𝔣 is the conductor of End(𝐴) over 𝐾. Then

– If 𝔣 is prime to 𝛽, there are 2, 1, or 0 horizontal-isogenies according to whether 𝛽 splits, is ramified or is
inert in End(𝐴), and the rest are descending to 𝑂1 + 𝔣𝛽𝑂𝐿;

– If 𝔣 is not prime to 𝛽 there is one ascending isogeny (to 𝑂1 + 𝔣/𝛽𝑂𝐾) and ℓ descending ones;
– We are at the bottom when the 𝛽-valuation of 𝔣 is equal to the valuation of the conductor of ℤ[𝜋, 𝜋].

Then there is one ascending isogeny.
In 𝑂ℓ there are no 𝛽-isogenies (if we want principally polarised abelian surfaces). Ascending RM isogenies,
that is ℓ-isogenies going from 𝑂ℓ to 𝑂1 are over ℂ of the form

ℂ𝑔/(𝑂ℓ ⊕ 𝑂∨
ℓ 𝜏) → ℂ𝑔/(𝑂1 ⊕ 𝑂∨

1 𝜏),

(we can check that this is indeed an ℓ-isogeny). So Sl2(𝑂1 ⊕ 𝑂∨
1)/ Sl2(𝑂ℓ ⊕ 𝑂∨

ℓ) acts on such isogenies.
We can use this action to check how many ℓ-isogenies descend from the 𝑂1 pancake to the 𝑂ℓ one
(here there are no rationality considerations). When ℓ splits in 𝑂1, Sl2(𝑂1 ⊕ 𝑂∨

1)/ Sl2(𝑂ℓ ⊕ 𝑂∨
ℓ) ≃

Sl2(𝑂1/ℓ𝑂1)/ Sl2(𝑂ℓ/ℓ𝑂1) ≃ SL2(𝔽2
𝑙)/ Sl2(𝔽𝑙) ≃ Sl2(𝔽𝑙), so we find ℓ3 − ℓ ℓ-isogenies changing the real

multiplication. On the other hand we have seen above that there is (ℓ + 1)2 ℓ-isogenies preserving the real
multiplication In total we find all ℓ3 + ℓ2 + ℓ + 1 ℓ-isogenies.
If ℓ is inert, we find # SL2(𝔽ℓ2)/ SL2(𝔽ℓ) = ℓ3+ℓ RM-descending isogenies, while there are ℓ2+1 (the degree
of theHilbert ℓ-modular polynomial) RM-horizontal isogenies. If ℓ is ramified,we find # SL2(𝔽ℓ[𝜖])/ SL2(𝔽ℓ) =
ℓ3 RM-descending isogenies, while there are indeed (ℓ + 1)ℓ + 1 = ℓ2 + ℓ + 1 RM-horizontal isogenies.
In 𝑂ℓ, we find Sl2(𝑂ℓ ⊕ 𝑂∨

ℓ)/ Sl2(𝑂ℓ2 ⊕ 𝑂∨
ℓ2) ≃ Sl2(𝑂ℓ/ℓ𝑂ℓ)/ Sl2(𝑂ℓ2/ℓ𝑂ℓ) ≃ SL2(𝔽𝑙[𝜖])/ Sl2(𝔽𝑙),

so there are ℓ3 RM-descending isogenies. There is only one RM-ascending isogeny, so there are ℓ2 + ℓ
RM-horizontal isogenies.
In summary (see [Rob15]):

– On 𝑂1:

* If ℓ is split there are ℓ2 + 2ℓ + 1 RM-horizontal ℓ-isogenies and ℓ3 − ℓ RM-descending ℓ-isogenies;

* If ℓ is inert there are ℓ2 + 1 RM-horizontal ℓ-isogenies and ℓ3 + ℓ RM-descending ℓ-isogenies;

* If ℓ is ramified there are ℓ2 + ℓ + 1 RM-horizontal ℓ-isogenies and ℓ3 RM-descending ℓ-isogenies;
– If 𝑂 is not maximal at ℓ, there are 1 RM-ascending ℓ-isogeny, ℓ2 + ℓ RM-horizontal ℓ-isogenies and ℓ3

RM-descending ℓ-isogenies.

We finish by some examples of isogeny graphs of abelian surfaces along with the corresponding endomorphisms
orders in Figures 5.1 and 5.2.

5.6.5 The structure of isogeny graphs of products of elliptic curves

When exploring a full isogeny graph (meaning allowing isogenies of various degrees), it is interesting to first have a
formal description of this graph, then from it to compute the isogenies of minimal degrees that span the graph, and
then apply the methods of Sections 5.6.1 and 5.6.2 to compute it. For instance when exploring a graph of abelian
varieties over 𝔽𝑞 with maximal complex multiplication, the structure of the isogeny graph is given by the action of
the Shimura class group, see Chapter 7. For ordinary abelian varieties over 𝔽𝑞, we can use Deligne’s equivalence of
categories [DM69], further studied in [How95].

In this section we look at the description of the isogeny class of a product of 𝑔 elliptic curves. A formal description
of it and a way to make it effective are the core results of [KNR+21]. This isogeny class is particularly useful when
looking for curves with maximal number of points. Indeed looking at the zeta function of such a curve shows that
its Jacobian 𝐽 is then isogenous to 𝐸𝑔 where 𝐸 is an elliptic curve with a maximal number of points. So if we can
describe the isogeny class of 𝐸𝑔, we can try to see if an isogenous 𝐴/𝔽𝑞 is the Jacobian of a curve defined over 𝔽𝑞.

125

5 Modular correspondances

Figure 5.1: ℓ-isogeny graphs of abelian surfaces

3 3

3 3

3 3 3

3

3 3 3

Figure 5.2: Cyclic isogeny graph of abelian surfaces

𝛽1 is inert and 𝛽2 is

split in 𝐾.

3 3

3 3

126

5.6 Applications to exploring isogeny graphs

Beware that if 𝐴/𝔽𝑞 is a Jacobian of a curve 𝐶 over the algebraic closure with associated principal polarisation
𝛩 and (𝐴, 𝛩) descends to 𝔽𝑞, then 𝐶 descends to 𝔽𝑞 but if 𝐶 is not hyperelliptic 𝐴 may not be the Jacobian of 𝐶
over 𝔽𝑞. Indeed the Jacobian 𝐽(𝐶)/𝔽𝑞 may only be a quadratic twist of 𝐴/𝔽𝑞. We refer to [Ser01] for a beautiful
exposition of this. If 𝐴/𝔽𝑞 has a maximal number of point but is a quadratic twist of 𝐽(𝐶), then 𝐽(𝐶), hence 𝐶, has
a minimal number of points. It is shown in [ZLR10; Rit10] that in dimension 3 this quadratic obstruction to the
descent of 𝐴 = Jac(𝐶) as a Jacobian over 𝔽𝑞 can be measured by whether the modular form 𝜒18(𝐴) ∈ 𝔽𝑞 is a
square or not (it is 0 if and only if 𝐶 is hyperelliptic or 𝐴 is not absolutely simple).

Let us now describe the isogeny class of 𝐸𝑔. If 𝐸/𝔽𝑞 is an elliptic curve and 𝑅 ⊂ End(𝐸), Serre introduced two
ways to define a functor between abelian varieties isogenous to a product of 𝐸 and finite 𝑅-modules.

If 𝑀 is a finite 𝑅-module, and we take a partial resolution 𝑅𝑚 → 𝑅𝑛 → 𝑀 → 0 of 𝑀, we may define 𝑀 ⊗𝑅 𝐸 as
the cokernel 𝐸𝑚 → 𝐸𝑛 → 𝑀 ⊗𝑅 𝐸 → 0 and Hom𝑅(𝑀, 𝐸) as the kernel 0 → Hom𝑅(𝑀, 𝐸) → 𝐸𝑛 → 𝐸𝑚. (If 𝑅
is not commutative, for 𝑀 ⊗ 𝐸 we take 𝑀 a right 𝑅-module and for Hom𝑅(𝑀, 𝐸) a left 𝑅-module.) In the other
direction, to such an abelian variety 𝐴 we may associate the 𝑅-modules Hom(𝐸, 𝐴) and Hom(𝐴, 𝐸) respectively.

We may also introduce Tor1𝑅(𝑀, 𝐸) and Ext1𝑅(𝑀, 𝐸) functors the usual way. For instance, the resolution above
gives rise to 0 → Tor1𝑅(𝑀, 𝐸) → 𝐸𝑚 → 𝐸𝑛 → 𝑀 ⊗𝑅 𝐸 → 0. As an example, if 𝑅 = ℤ and 𝑀 = ℤ/𝑛ℤ, then
𝑀 ⊗𝑅 𝐸 = 0, and Tor1𝑅(𝑀, 𝐸) = Hom𝑅(𝑀, 𝐸) = 𝐸[𝑛]. See also [Wat69, Proposition A.3] for a characterisation
of Ext1𝑅(𝑅/𝐼, 𝐴) for 𝐴 an abelian variety with 𝑅 = End(𝐴). If 𝑅 = End(𝐸) = ℤ[𝜋] is a commutative maximal
order, Serre proves that 𝑀 ↦ 𝑀 ⊗𝑅 𝐸 is an equivalence of category between abelian varieties isogenous to 𝐸𝑔 and
torsion-free 𝑅-modules (ie projective modules since 𝑅 is Dedekind).

Although it is contravariant, the function Hom𝑅(⋅, 𝐸) is often more convenient. Indeed if 𝑅 = End(𝐸), this
functor restricted to the finitely presented torsion-free left 𝑅-module is fully faithful and exact and has for quasi-
inverse 𝐴 ↦ Hom(𝐴, 𝐸) on its image by [JKB+18, Theorem 4.4 and Theorem 4.8]. It is an equivalence of category
(to the abelian varieties isogenous to 𝐸𝑔) if 𝐸 is ordinary and 𝑅 = End(𝐸) = ℤ[𝜋] [JKB+18, Theorem 1].

Under this last condition, in [KNR+21, § 3.2] we exploit that Hom𝑅(⋅, 𝐸) is compatible with duality to give an
equivalence of categories between polarised abelian varieties isogenous to 𝐸𝑔 and Hermitian 𝑅-lattices of rank 𝑔. In
[KNR+21, § 3.3] we explain how to recover the kernel of the isogeny 𝐸𝑔 → 𝐴 corresponding to such an Hermitian
𝑅-lattice. Then in [KNR+21, § 4] we explain how to compute this isogeny via theta functions. We describe in
[KNR+21, § 2] an algorithm to enumerate the equivalence class of all Hermitian 𝑅-lattices (we do not assume 𝑅
maximal which complicates this enumeration), so we have a full description of the isogeny class.

Since we have an explicit formula for 𝜒18 in terms of the theta constant, this allows to find maximal curves
in genus 3. There is a fun little trick: since the Theta isogeny algorithm of Chapter 4 requires a symmetric theta
structure, we need to take an extension 𝔽𝑞𝑑 of 𝔽𝑞 to compute the isogeny. It may seem that we first need to descend
the isogenous 𝐴 back to 𝔽𝑞 to be able to compute the true value of 𝜒18(𝐴). But 𝜒18(𝐴) really depends on the
choice of a differential basis 𝑤𝐴 of 𝐴 (see also Section 2.9.3), so even if we only have 𝐴 defined over 𝔽𝑞𝑑 , we only
need to be sure we evaluate 𝜒18 at a differential basis 𝑤𝐴 which descends to 𝔽𝑞. Concretely, we use the affine
version of the isogeny theorem (ie the modular version), and we have seen in Section 4.6 how to keep track of
the differentials. In particular for an isogeny 𝐴 → 𝐵, if we start with an affine theta lift of the theta constants
induced by a rational differential 𝑤𝐴, then on 𝐵 we have affine lifts of 𝑟-fold product of theta constants induced by
𝑤𝐵 such that 𝑓 ∗𝑤𝐵 = 𝑤𝐴, so 𝑤𝐵 is rational when 𝑤𝐴 is so. So we only need to be sure that we use an affine (ie
modular) version of Thomae’s formula which gives the affine lift of the theta null point of 𝐸 corresponding to the
rational differential 𝑑𝑥/𝑦 and this is explained in [KNR+21, § 4.4]. Since 𝑤𝐵 is rational, this allow us to compute
rational modular forms 𝑔(𝐵, 𝑤𝐵) (if 𝑔 is defined over the base field). Likewise in [KNR+21, § 5.3] we explain how
to compute Schottky’s modular form (which identify Jacobians in dimension 4) algebraically.

There are two inconveniences of our algorithm: first we have seen in Section 4.6 that we only have for now a
modular interpretation of the isogeny formula which uses Koizumi’s descent (ie the matrix version). So we cannot
yet use the faster descent which gives faster isogeny computations (in particular when 𝑟 = 4). Secondly, we recall
that we have 𝑟 = 2 if ℓ is a sum of two squares, and 𝑟 = 4 otherwise. But in the latter case, since we only compute
𝑟-fold products of theta constant, we cannot express a modular form of odd weight this way (since the thetas
are of weight 1/2). More generally: we can only evaluate modular forms that are expressed in terms of 𝑟-fold
product of thetas. Of course, by a suitable normalisation afterwards, rather than computing all 𝑟-fold products in
the isogeny formula, it is enough to just compute the products of the form 𝜃𝑖(0)𝜃0(0)𝑟−1 in the isogeny algorithm,
see [KNR+21, p. 26]. Hopefully the new descent algorithm will also allow to compute modular forms of odd weight
when 𝑟 = 4.

127

5 Modular correspondances

5.7 conclusion and perspectives

Fast evaluation of theta functions

As we have seen, a key tool in computing modular polynomials in dimension 𝑔 = 1, 2 is fast evaluation of the theta
constants 𝜃𝑖(0, 𝜏) and period matrices, using the algorithms from [Dup06]. As explained in Section 5.3.4, these
algorithms have been extended in [Lab16] to fast algorithms to compute the theta functions 𝜃𝑖(𝑧, 𝜏) in 𝑧 and 𝜏.
There are still some heuristics remainings, even for computing theta constants, but good progress has been made
on some of them in [Kie20b; Kie20c].

A big challenge is to extend these computations to genus 𝑔 > 2. One key question is the choice of signs in
the duplication formula. First, one has to make an algebraic choice, ie one which do correspond to a symmetric
theta structure, see Section 2.13. But for the convergence, we need more: namely the “good” choice corresponding
exactly to 𝜏 ↦ 2𝜏 (and not one of the other 2𝛾𝜏 where 𝛾 ∈ 𝛤/𝛤(2, 4)).The problem gets worse for computing the
period matrix: here we cannot rely on small precision computations to get the correct choice of sign, except when
𝐴 = Jac(𝐶) is the Jacobian of an (hyperelliptic) curve where we can do small precision period integral evaluation
[MN17a; MN17b], see [Lab16, Chapter 8].

When 𝑔 = 2, the topological choice of sign, at least when 𝜏 is in the standard fundamental domain, corresponds
to a “good choice of roots” [Dup06, Chapitre 7]. This is proven for the fundamental domain in [Dup06], but the
algorithm actually needs this for a larger domain (to recover the explicit action of some specific matrices on 𝜏 in
order to then recover 𝜏, as explained in Section 5.3.2), and this has been proved in [Kie20c].

Another approach is as follow: for application to isogenies and point counting in Sections 5.4 and 5.5 we have
seen that we need the derivative (𝜃𝑖(𝜏)/𝜃0(𝜏))′ of the theta constants (see Key Idea 6). Since we have them, we
might as well push them through the duplication formula (the duplication formula relates normalised isogenies, so
we can control how the basis of differential are transformed). In other words, rather than simply looking at how the
modular forms 𝜃𝑖 behave when 𝜏 goes to infinity, we can also look at how the derivatives (𝜃𝑖/𝜃0)′ behave. This has
the advantage that we can directly recover Sym2(𝑐𝜏 + 𝑑) rather than just det(𝑐𝜏 + 𝑑), hence this requires only
two calls to the AGM (keeping track of the derivative) rather than severals. This should also help in the choice of
sign, and to extend the algorithm in higher dimensions.

Like for the computation of theta constants, I hope that looking at the derivatives of the thetas and pushing
these through the duplication formula to get more informations from only one AGM iteration will also allow to
generalize the computation of the 𝜃𝑖(𝑧, 𝜏) and its converse to higher dimensions 𝑔, without computing at small
precision to get the correct signs.

Modular correspondances and evaluating modular polynomials

I also plan to look in more details the 𝑝-adic and CRT based algorithms of Section 5.3.8 for computing evaluated
modular polynomial. It would be nice to have a quasi-linear algorithm in all dimension, following one of the
strategies of Conjecture 5.3.14.

For the modular correspondances from Section 5.2, using the theta model, we have already seen that the main
question is to find equations for the image. An exception to this is for modular correspondances of the form
𝒜𝑔,ℓ𝑛 → 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛 when ℓ ∣ 𝑛, in this case it is easier to find equations, see for instance Example 6.3.1.(ii).

Still the modular correspondance should provide enough information to study Hecke correspondances. This
requires finding points in 𝒜𝑔,ℓ𝑛, but we can do so either from starting with a point of 𝒜𝑔,𝑛 and computing the
ℓ-torsion (we will come back to this in Example 6.3.1), or simply by looking at product of smaller dimensional
abelian varieties, for instance taking 𝐴 = 𝐸𝑔, 𝐸 an elliptic curve (it is easier to build the level 𝑛ℓ theta null point for
an elliptic curve than for a higher dimensional abelian variety, and then it suffices to take the Segre embedding).
Of course this latter approach only give special points, but using deformation afterwards should give us enough
informations about the modular correspondance. We plan to apply this to study 𝑝-adic Hecke-correspondances
with Caruso and Lubicz.

Evaluation of modular forms and computing modular correspondances of higher levels

A related problem is to construct explicit birational models of Siegel and Hilbert moduli with other level structures
than the 𝛤0(ℓ)-ones, eg 𝛤1(𝑛) and 𝛤(𝑛), and the maps between them. In other words: construct the minimal
polynomial (or a tower of field extension) over 𝑘(𝒜𝑔) of modular forms of the corresponding levels. This is strongly
related to constructing moduli for polarisations of type 𝛿 = (𝛿1, … , 𝛿𝑔). The analytic evaluation/interpolation

128

5.7 Conclusion and perspectives

approach requires computing period matrices from the modular values, and conversely, we refer to the end of
Section 5.3.4 for an approach.

The CRT approach and 𝑝-adic approach should be straightforward to generalise: in the first case we simply build
up all level structures modulo small primes, and in the second case we do so over one prime 𝑝0, and then lift the
structures to sufficient 𝑝0-adic precision (this should work well as long as the level structure is étale over the base
field).

Applications of modular polynomials to isogenies, point counting, and isogeny graphs

One major goal will also be to extend the computation of isogenies from modular polynomial done in Section 5.4.
The algorithmic outline in [KPR20] is sufficiently general that to apply it to higher dimensional abelian varieties we
only need an explicit version of the Kodaira-Spencer isomorphism. Of course this depends on the models of abelian
varieties we have, the modular invariants we use, and how we encode our basis of differential. In [KPR20] we use
Jacobians of hyperelliptic curves 𝐶 ∶ 𝑦2 = 𝑓 (𝑥) of genus 2, the basis of differential 𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦 being implicitly
encoded by the choice of the equation of 𝐶. The main work would be to extend this to higher dimensional Jacobians.
For instance, for genus 3 we could try use the theory of concomitants of ternary quadrics [CFG20]. A somewhat
orthogonal but interesting question would also be to express via the Kodaira-Spencer isomorphism the tangent
space at Jac(𝐶) of the moduli of curves (inside 𝑇Jac(𝐶)(𝒜𝑔)), respectively of hyperelliptic curves if 𝐶 is hyperelliptic.

The advantage of Jacobians is that we can express the differential equation expressing the isogeny at the level of
the curve 𝐶, as in Section 4.7, hence work with a power series ring of one variable rather than 𝑔. Finally, for abelian
varieties, we can of course always use the theta model. We then have explicit projective equations of the abelian
variety by Theorem 2.7.4, so we can use differentials given by the 𝑑𝜃𝑖. The Kodaira-Spencer isomorphism can then
be recovered, for theta functions, by the heat equation (see [Cv00, p. 9; Per16, Eq 18] for an algebraic, respectively
an analytic, approach to the heat equation), along with some linear algebra to express this in terms of the 𝑑(𝜃𝑖/𝜃0):

2𝜋𝑖(1 + 𝛿𝑗𝑘)
𝜕𝜃𝑖
𝜕𝜏𝑗𝑘

=
𝜕2𝜃𝑖

𝜕𝑧𝑗𝜕𝑧𝑘
.

This allows to express the derivative (in 𝜏) of the modular thetas in terms of a basis of Sym2 𝛺0(𝐴) induced by the
derivative (in 𝑧) of the theta coordinates. For more general modular invariants, if we have modular relations relating
them to theta constants, we can then derive these relations to recover the derivative of the modular forms in terms
of the derivative of the theta constants. Likewise, on a Jacobian 𝐽 = Jac(𝐶), we can relate the differentials on the
curve with the derivatives of the theta coordinates using the generalised Thomae’s algorithm from Chapter 2. (As
remarked in Section 4.6, it would also be nice to have a way to evaluate algebraically for more general modular forms
𝔤 than 𝑑𝐽. For instance given the projective theta constants and a basis of differential given by some uniformisers in
the Riemann relations, can we compute the affine lift of these constants induced by this differential?)

One of the main application is then point counting, as explained in Section 5.5. Of course, as explained in this
Section, when 𝑔 ≥ 3, we only expect to gain compared to Schoof algorithm when we have real multiplication.

Finally, to explore isogeny graphs, by Section 5.6.4 it is clear that we need cyclic isogenies to fully explore them.
But the (non polarised) Hilbert moduli decomposes under components with polarisations of type indexed by the
narrow class group of the RM field 𝐾 (see [Rob21, Sections 5.5 and 5.8] for more details). So if 𝐼 is a fractional ideal
of the real multiplication, then 𝐼-isogenies send principally polarised abelian varieties to abelian varieties with a
polarisation of type [𝐼] ∈ Cl+(ℱ), which is not principal unless 𝐼 = (𝛽) with 𝛽 ≫ 0. So to fully explore isogeny
graphs, we should construct modular polynomials between those components, even if we are only interested in
principally polarised abelian varieties (this helps to decompose an isogeny into compositions of 𝑃𝑖-isogenies, 𝑃𝑖
prime ideals of 𝒪ℱ). A question is then how to find good modular invariants on these components (eg induced by
theta constants of mixed level 𝛿).

129

6 CANON ICAL L I F TS

contents
6.1 Introduction 131
6.2 Canonical lifts and point counting 131

6.2.1 Canonical lifts 131
6.2.2 Using lifts for point counting 132
6.2.3 Computing a canonical lift of an elliptic curve 133
6.2.4 Lifting the kernel of the Verschiebung 134
6.2.5 Computing the isogeny 136
6.2.6 Taking the norm 136

6.3 Canonical lifts for abelian varieties 136
6.4 Computing the action on tangent space without lifting isogenies (Revenge of the Sith) 139
6.5 Computing the action on tangent space via lifting the isogeny (A New Hope) 140

6.5.1 Isogeny induced by the modular correspondance 140
6.5.2 Recovering the matrix on tangent space over the Kummer varieties 141
6.5.3 Lifting the kernel 141

6.6 Computing the action on tangent space without lifting isogeny (The Empire Strikes Back) 142
6.7 Conclusion and perspectives 144

6.1 introduction

In Section 6.2 we review Satoh’s method (and following improvements) of using canonical lifts of elliptic curves
for point counting. We explain how to adapt this to compute canonical lifts for abelian varieties in Section 6.3.
We then give three different methods to do point counting (more precisely recovering 𝜒𝜋): in Section 6.4 we lift
modular forms, in Section 6.5 we lift modular functions along with the kernel of the Verschiebung and compute the
normalised isogeny using Chapter 4, and finally in Section 6.6 we apply Section 5.4 instead, ie we lift derivative of
modular invariants, which are vectorial modular forms of weight Sym2. We give some perspectives in Section 6.7.

6.2 canonical lifts and point counting

6.2.1 Canonical lifts

Let 𝐾 be a 𝑝-adic field, 𝑘 = 𝒪𝐾/𝑚 its residue field. By Serre-Tate theory, deforming an abelian variety 𝐴/𝑘 is
the same as deforming its 𝑝-divisible group 𝐴(𝑝). By Grothendieck-Messing this is the same as deforming the
corresponding crystal 𝔻(𝐴(𝑝)/𝑊(𝑘)).1 This then becomes in principle a problem of linear algebra: deforming
a crystal over a nilpotent divided power thickening (we assume for simplicity here that 𝑝 > 2 so that 𝑝𝑛/𝑛! is
nilpotent) is the same as deforming its Hodge filtration to an admissible filtration [Mes72, Theorem V.1.6]. We
refer to [Rob21, Section 3.4] for more details.

We will work over 𝐾 = ℚ𝑞, the unramified extension of ℚ𝑝 of residue field 𝔽𝑞: ℚ𝑞 = Frac(ℤ𝑞) with ℤ𝑞 =
𝑊(𝔽𝑞) the ring of Witt vectors, and we will call 𝜎 the Galois action given by the lift of the (small) Frobenius 𝜋 of
𝔽𝑞 to ℚ𝑞.

Given 𝐴/𝔽𝑞, we can thus control its deformations to ℤ𝑞/𝑝𝑛ℤ𝑞. In particular, there is no obstruction to deforming
𝐴 since there is none to deforming a 𝑝-divisible group by [Mes72]2, and we may glue deformations to ℤ𝑞/𝑝𝑛ℤ𝑞

1Since we are over a perfect field, this crystal is essentially the corresponding Dieudonné module D(𝐴(𝑝)), more precisely D(𝐴(𝑝)) =
𝔻(𝐴(𝑝)/𝑊(𝑘))𝑊(𝑘).

2Of course this can be proved directly for an abelian scheme, this is due to Grothendieck and Mumford, see [Gro62; DA70; MFK94,
Proposition 6.7; Oor71, § 2.2, § 2.3, § 2.4].

131

6 Canonical lifts

together to form a formal abelian scheme 𝐴 over ℤ𝑞. By Grothendieck’s algebraicity theorem [GD64, § III.5.4.5],
if 𝐴/𝔽𝑞 is separably polarised then we have effectivity [Oor71, § 2.4], ie 𝐴 is actually an abelian scheme 𝐴 over
ℤ𝑞. By the theory of Néron models, 𝐴 is then completely determined by its generic fiber 𝐴ℚ𝑞

/ℚ𝑞 (since 𝐴 is an
abelian scheme it is the Néron model of its generic fiber).

We are mainly interested in the ordinary case. We recall that since 𝑘 is perfect we have a (split) connected-
étale exact sequence on 𝐴(𝑝). The étale part lifts canonically3, and in the ordinary case the connected part is of
multiplicative type, hence lifts canonically too (eg by taking the Cartier dual of the canonical lift of its étale Cartier
dual). Letting 𝐴(𝑝)𝑒𝑡 and 𝐴(𝑝)° be the lifts, lifting 𝐴 then amount to finding an extension 0 → 𝐴(𝑝)° → 𝐺 →
𝐴(𝑝)𝑒𝑡 → 0, ie corresponds to Ext1(𝐴(𝑝)°, 𝐴(𝑝)𝑒𝑡) (𝐺 is then the 𝑝-divisible group of the lift 𝐴). This gives rise to
canonical coordinates on the moduli space [Mes72, Appendix; Kat81]. The 0 element, which corresponds to the
unique extension which is still split, then gives the canonical lift.

By Serre-Tate theory and formal GAGA, the canonical lift is thus a fully faithfull functor 𝐴/𝔽𝑞 ↦ 𝐴ℚ𝑞

for ordinary abelian varieties. In particular End(𝐴) ≃ End(𝐴), and this characterizes 𝐴 [Mes72, Appendix,
Corollary 1.3].

Canonical lifts are compatibles with the Galois action. Hence if 𝐴/𝔽𝑞 is an ordinary abelian variety, the (small)
Frobenius 𝜋𝑝 ∶ 𝐴 → 𝜋𝑝(𝐴) lifts to an isogeny 𝛴𝑝 ∶ 𝐴 → 𝜎(𝐴). The existence of this lifting is also enough to
characterize 𝐴 [Mes72, Appendix, Corollary 1.2] and provides a way to compute it (in good cases), see Section 6.3.

Furthermore, by construction of the canonical lift, 𝐴(𝑝) ≃ 𝐴(𝑝)° ⊕ 𝐴(𝑝)𝑒𝑡, and 𝑇𝑝(𝐴(𝑝)𝑒𝑡) is isomorphic
as a ℤ𝑝[𝜋]-module to 𝑇𝑝(𝐴(𝑝)𝑒𝑡), while 𝑇𝑝(𝐴(𝑝)°) is its dual. Over the finite extension 𝔽𝑞𝑒 where the étale
𝑝𝑚-torsion points become defined, 𝐴[𝑝] ≃ 𝜇𝑔

𝑝𝑚 × (ℤ/𝑝𝑚ℤ)𝑔, and so the same holds for the lift 𝐴 over ℚ𝑞𝑒, in
particular 𝐴[𝑝𝑚](ℚ𝑝) ⊂ ℚ𝑞𝑒[𝜁𝑝𝑚]. So the étale part of 𝐴[𝑝𝑚] lifts into the unramified extension ℚ𝑞𝑒 , while the
local part lift into a (tamely if 𝑚 = 1) ramified extension.

The idea to use canonical lifts algorithmically for point counting is due to Satoh [Sat00].We have seen in Chapter 5
that we can also use lifts to compute modular polynomials, and in Chapter 7 we will use lifts to compute (Shimura)
class polynomials.

6.2.2 Using lifts for point counting

Let 𝑞 = 𝑝𝑑 and 𝐴/𝔽𝑞 be an ordinary abelian variety. We denote by 𝜋𝑞 the Frobenius over 𝔽𝑞 and by 𝜋 or 𝜋𝑝 the
small Frobenius. We will let �̂�𝑞 be the big Verschiebung and �̂�𝑝 the small Verschiebung. We will use the abusive
but convenient notation 𝜋(𝐴) to denote the image of the relative Frobenius: 𝜋(𝐴) = 𝐴 ×𝜋 𝔽𝑞.

Then since the Verschiebung �̂�𝑞 is separable, the Frobenius 𝜒𝜋 has 𝑔 inversible eigenvalues 𝜆𝑖 modulo 𝑝 whose
product modulo 𝑝 is the determinant of 𝑑�̂�𝑞 on the tangent space of �̂�𝑞 at 0. The remaining eigenvalues are given
by 𝑞/𝜆𝑖, so the inversible eigenvalues are enough to recover 𝜒𝜋. In the following we will often switch from tangent
spaces to differentials (ie the cotangent space). By duality taking a basis of one induce a basis of the other.

Since 𝐴[𝑝𝑑] ≃ 𝐴𝑒𝑡[𝑝𝑑] ⊕ 𝐴mult[𝑝𝑑], we may compute the étale part of 𝐴[𝑝𝑑] to get the kernel of �̂�𝑞 and apply
an isogeny algorithm to compute its action on a differential basis 𝑤𝐴. For instance if 𝐴 is an elliptic curve 𝐸, the

𝑝𝑑-division polynomial 𝛹𝐸,𝑝𝑑(𝑥) is of the form (𝜓𝐸,𝑝𝑑)
𝑝𝑑

with 𝜓𝐸,𝑝𝑑 of degree 𝑝𝑑−1
2 encoding the 𝑥-coordinates

of the points of 𝐸𝑒𝑡[𝑝𝑑]. (Here we assume 𝑝 > 2 for simplicity in the description of the division polynomials. The
division polynomial is not of degree (𝑝2𝑑 − 1)/2 as expected because its leading coefficients are zero modulo 𝑝.).

If 𝐸 is given by a Weierstrass equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, we have the canonical differential 𝑤𝐸 = 𝑑𝑥/𝑦.
Applying Vélu’s formula to 𝑃, we compute another elliptic curve 𝐸′ ∶ 𝑦2 = 𝑥3 + 𝑎′𝑥 + 𝑏′, such that the isogeny
𝑓 ∶ 𝐸 → 𝐸′ is normalised, ie 𝑓 ∗𝑤𝐸′ = 𝑤𝐸. But 𝐸′ is isomorphic to 𝐸 and computing the isomorphism gives us
exactly the invertible eigenvalues (modulo 𝑝). Indeed, isomorphisms of short Weierstrass equations are given by
(𝑥, 𝑦) ↦ (𝑢2𝑥, 𝑢3𝑦), if 𝐸𝑢 ∶ 𝑦2 = 𝑥3 + 𝑎𝑢4𝑥 + 𝑏𝑢6 is the image of 𝐸 by this isomorphism, 𝑤𝐸𝑢

= 1
𝑢𝑤𝐸. So if

𝑎′/𝑎 = 𝑢4 and 𝑏′/𝑏 = 𝑢6, we get that the action of 𝜋𝑞 on 𝑤𝐸 is given by the multiplication by 𝑢. (This method only
recovers 𝑢2; we need the equation of the isogeny rather than just the coefficients of the normalized curve to get 𝑢.)

Of course computing an isogeny of degree 𝑞 is not possible in the cryptographic setting of a large 𝑞, but if 𝑞 = 𝑝𝑑

with a small 𝑝 and a large 𝑑, we may instead decompose the Verschiebung �̂�𝑞 as 𝑑 small Verschiebungs �̂�𝑝. In fact
we only need to compute one small Verschiebung: given the action 𝑀 on differentials of �̂�𝑝 ∶ (𝜋(𝐸), 𝜋(𝑤𝐸)) →

3It is also fully determined by 𝑇𝑝(𝐴) = 𝑇𝑝(𝐴(𝑝)𝑒𝑡) which is both the Galoisian free ℤ𝑝-module associated to 𝐴(𝑝)𝑒𝑡/𝑘 by
Grothendieck’s étale Galois theory and also the dual of 𝐻1(𝐴, ℤ𝑝) ≃ Hom(𝜋1

𝑒𝑡𝐴, ℤ𝑝), encoding the étale covers of 𝐴 of degrees a
power of 𝑝.

132

6.2 Canonical lifts and point counting

(𝐸, 𝑤𝐸) (ie �̂�∗
𝑝𝑤𝐸 = 𝑀𝜋(𝑤𝐸)), then the action of �̂�𝑝 ∶ (𝜋2(𝐸), 𝜋2(𝑤𝐸)) → (𝜋(𝐸), 𝜋(𝑤𝐸)) is simply 𝜋(𝑀)

and so on. So the full action of �̂�𝑞 ∶ (𝐸, 𝑤𝐸) → (𝐸, 𝑤𝐸) is given by the 𝔽𝑞/𝔽𝑝 norm of 𝑀. Of course the same
strategy holds for an abelian variety, except this time 𝑀 is a 𝑔 × 𝑔 matrix rather than a scalar. Unfortunately if 𝑝 is
small, knowing the eigenvalues modulo 𝑝 does not give enough informations.

Satoh’s insight in [Sat00] was to first lift 𝐸/𝔽𝑞 to its canonical lift 𝐸/ℚ𝑞 where ℚ𝑞. Then 𝜎(𝐸) is a canonical lift
of 𝜋(𝐸). Furthermore, since 𝜎𝑞 ≔ 𝜎𝑞 reduces to 𝜋𝑞 modulo 𝑝, its action gives the lift of the endomorphism of 𝐸
induced by the Frobenius 𝜋𝑞 ∈ End(𝐸), ie it corresponds to 𝜋𝑞 ∈ End(𝐸) = End(𝐸). Alternatively, by étaleness
of 𝑇ℓ(𝐸) for ℓ ≠ 𝑝, 𝑇ℓ(𝐸) is isomorphic to 𝑇ℓ(𝐸) as a ℤℓ[𝜋]-module, so the eigenvalues are the same.

The action 𝜎 can be computed efficiently if we represent ℤ𝑞 by a Teichmuller lift, ie by ℤ𝑝[𝑋]/𝑇(𝑋) where 𝑇 is
a factor of 𝑋𝑞−1 − 1, ie 𝑥 = 𝑋 mod 𝑇 is a 𝑞 − 1 root of unity. In this case 𝜎(𝑥) = 𝑥𝑝, so 𝜎(∑ 𝑎𝑖𝑥𝑖) = ∑ 𝑎𝑖(𝑥𝑝)𝑖

and the computation of 𝜎 can be done in time 𝑂(𝑚𝑑) if 𝑝 is fixed and 𝑚 is the 𝑝-adic precision. The Teichmuller
lift 𝑇 can be efficiently computed via Newton iterations from a defining polynomial for 𝔽𝑞.

Since canonical lifting is functorial, the Verschiebung �̂�𝑝 and Frobenius 𝜋𝑝 lift to 𝐸, we will call the lifts �̂�𝑝 and
𝛴𝑝. Since we are in characteristic zero, computing the action of �̂�𝑞 ∶ 𝐸 → 𝐸 on tangent space is enough to recover
𝜒𝜋, and as before it suffices to compute the action 𝑀 of �̂�𝑝 ∶ 𝜎(𝐸) → 𝐸 and take its norm over ℚ𝑞/ℚ𝑝.

Note that we could also compute the action of 𝛴𝑞 instead (via 𝛴𝑝) but we would get the non invertible eigenvalues
modulo 𝑝, so this would cause a loss of precision.

This yields the following algorithm for an abelian variety 𝐴/𝔽𝑞.

Algorithm 6.2.1. (i) Compute the canonical lift 𝐴 at 𝑝-adic precision 𝑚;
(ii) Lift the kernel of the Verschiebung �̂�𝑝 to 𝐴 to get the kernel of �̂�𝑝;
(iii) Compute the action 𝑀 of �̂�𝑝 ∶ 𝐴 → 𝜎−1(𝐴) on tangent spaces or differentials given by 𝑤𝐴, 𝜎−1𝑤𝐴, via an

isogeny algorithm.
(iv) Compute the characteristic polynomial 𝑃 of the norm of 𝑀 in ℚ𝑝.
(v) Recover 𝜒𝜋(𝑋) = 𝑃(𝑋)𝑞𝑔𝑃(𝑞/𝑋) as an element of ℤ[𝑋].
From Weil’s bound, the last step shows that we need to take the precision 𝑚 to be 𝑔𝑑/2 + 𝑂(1).

Considering 𝑝 and 𝑔 fixed, we will see that there exists a quasi-linear algorithm for each of these steps, so since
we work at precision 𝑂(𝑑) over ℤ𝑞 we have a complexity of 𝑂(𝑑2) binary operations, ie a quasi-quadratic point
counting algorithm with respect to 𝑑. The complexity in terms of 𝑝 and 𝑔 depends on the algorithms used, but will
typically be polynomial in 𝑝𝑔.

Let us detail the different steps, in the case of an elliptic curve. For more details, we recommend the excellent
survey [Gau04].

6.2.3 Computing a canonical lift of an elliptic curve

For reasons we will explain below, we assume from now on that 𝑗𝐸 ∉ 𝔽𝑝2 (and we will do similar assumptions
when lifting abelian varieties).

For Algorithm 6.2.1.(i), Satoh’s original algorithmwas to lift all curves 𝐸𝑖 together, where 𝐸𝑖 = 𝜋𝑖(𝐸) viamodular
equations 𝛷𝑝(𝑗�̃�𝑖

, 𝑗�̃�𝑖+1
) = 0, letting 𝑗�̃�𝑛

= 𝑗�̃�0
. Using multivariate Newton iterations, this gives a 𝑂(𝑑3) lifting

algorithm.
The paper [VPV01] remarked that rather than lifting the whole isogeny cycle directly, we could instead proceed

isogeny by isogeny along the cycle, augmenting the precision by one each time. This does not change the 𝑂(𝑑3)
time complexity but the memory is 𝑂(𝑑2). In fact this is just a variant of the fixed point algorithm when we have a
contracting function: 𝑗�̃� is a fixed point of 𝛷𝑝𝑑(𝑗�̃�, 𝑗�̃�) = 0, but when we use 𝛷𝑝 instead we have a fixed cycle of
length 𝑑. So we start with the fixed cycle modulo 𝑝, 𝛷𝑝(𝑗𝐸𝑖

, 𝑗𝐸𝑖+1
) and iterate the function 𝛷𝑝. Using the properties

of 𝛷𝑝 mod 𝑝 given by Kroenecker’s equality (see below), it is not hard to show that we obtain a linear convergence
to the cycle 𝑗�̃�𝑖

.
A quasi-linear lifting algorithm (ie in𝑂(𝑑2))was proposed byHarley in [Har02], using the equation𝛷𝑝(𝑗�̃�, 𝜎(𝑗�̃�))

instead. For a Newton iteration, given a solution 𝑗 at precision 𝑘, we write 𝑗�̃� = 𝑗 + 𝑝𝑘𝑒 and solve 𝛷𝑝(𝑗 + 𝑝𝑘𝑒, 𝜎(𝑗) +
𝑝𝑘𝜎(𝑒) = 0 mod 𝑝2𝑘). This gives an equation of the form

𝑣 + 𝑒𝜕𝛷𝑝/𝜕𝑋(𝑗, 𝑗𝜎) + 𝑒𝜎𝜕𝛷𝑝/𝜕𝑌(𝑗, 𝑗𝜎) = 0 mod 𝑝𝑘.

133

6 Canonical lifts

Kronecker’s equality states that 𝛷𝑝(𝑋, 𝑌) = (𝑋𝑝 − 𝑌)(𝑌𝑝 − 𝑋) mod 𝑝. So we get that 𝜕𝛷𝑝/𝜕𝑋(𝑗, 𝑗𝜎) = 0
mod 𝑝 while 𝛷𝑝/𝜕𝑌(𝑗, 𝑗𝜎) ≠ 0 mod 𝑝. The last inequality is only valid if 𝑗 ∉ 𝔽𝑝2. Indeed if 𝐸 is defined over
𝔽𝑝2 , 𝜋 = �̂� so we have multiplicity problems when lifting.

So the equation is of the form 𝑒𝜎 + 𝐴𝑒 + 𝐵 with 𝐴 = 0 mod 𝑝. This is often called an Artin-Schreier equation
in the literature (wrongly IMHO since its reduction modulo 𝑝 is 𝑒𝑝 + 𝐵 = 0 which is not separable hence not an
Artin-Schreier polynomial). Solving this equation is done via a Newton iteration (so we do a Newton iteration
inside a Newton iteration, which should please fans of the movie Inception), and we get the solution in quasi-linear
time. Indeed, writing 𝑒 = 𝑒1 +𝑝𝑘𝑒2 with 𝑒1 a solution at precision 𝑘 we have to solve an equation 𝑒𝜎

2 +𝐴𝑒2 +𝐵′ = 0
mod 𝑝𝑘. Since 𝐴 = 0 mod 𝑝, the initialisation modulo 𝑝 is simply taking a 𝑝-th root.

We note that while for the isogeny step it is more convenient to lift the Verschiebung to compute �̂�𝑝, for the
canonical lift step it is better to look at the Frobenius, ie solve 𝛷𝑝(𝑗, 𝑗𝜎) = 0 rather than for 𝛷𝑝(𝑗, 𝑗𝜎−1). Indeed, lets
take a basis (𝑃, 𝑄) of 𝐸[𝑝](ℚ𝑞), where 𝑃 reduces to an étale point modulo 𝑝 and 𝑄 reduces to 0𝐸. In particular
𝑃 lives in an étale extension of ℚ𝑞 while 𝑄 in a (tamely) ramified extension. Then ⟨𝑄⟩ is the unique lift of the
Frobenius, while there are ℓ lifts of the Verschiebung given by ⟨𝑃 + 𝜆𝑄⟩. So from the point of view of Newton lifts,
it is better to lift using the Frobenius.

6.2.4 Lifting the kernel of the Verschiebung

We have seen that there are several ways to lift the Verschiebung, but since 𝑃 is in an unramified extension of ℚ𝑞
and 𝑄 is in a ramified extension, there is a unique unramified lift given by ⟨𝑃⟩. We will call this the canonical lift of
the Verschiebung. We discuss several ways of computing this lift. The first idea is to compute the point 𝑃 by lifting
its reduction 𝑃 mod 𝑝.

So we have a system of equations in (𝑥𝑃, 𝑦𝑃) given by the equation of 𝐸 ∶ 𝑦2
𝑃 = 𝑓�̃�(𝑥𝑃) and [𝑝](𝑥𝑃, 𝑦𝑃) = 0.

Since the multiplication by [𝑛] acts by 𝑛 on the tangent space at 0 of an elliptic curve, and since 𝐸/ℤ𝑞 is an elliptic
curve so in particular is smooth, we see that the Jacobian of this system has a Smith normal form with diagonal
(1, 𝑝), hence is not invertible.

Of course for elliptic curves it suffices to solve for 𝑥𝑃, ie solve 𝛹�̃�,𝑝(𝑥𝑃) = 0 where 𝛹�̃�,𝑝 is the 𝑝-division
polynomial (𝑝 > 2). By the same reasoning as above, 𝛹 ′

𝑝 is of valuation 1, as can also be seen from the fact that
𝛹�̃�,𝑝(𝑋) mod 𝑝 = 𝛹𝐸,𝑝(𝑋) = 𝜓𝐸,𝑝(𝑋)𝑝, 𝜓𝐸,𝑝(𝑋) being the polynomial of degree (𝑝 − 1)/2 giving the roots of
the étale points of 𝐸[𝑝], hence is separable.

Aside 6.2.2. Lets look in more details on how to do Newton iterations to solve an equation 𝑓 (𝑥) = 0 where
we have a solution 𝑋𝑛 mod 𝑝𝑛 such that 𝑓 ′(𝑋𝑛) is of valuation 𝑒. Writing 𝑍 = 𝑋𝑛 + 𝑝𝑛𝑌𝑛, we get (if 𝑝 ≠ 2)
𝑓 (𝑍) = 𝑓 (𝑋𝑛) + 𝑝𝑛𝑓 ′(𝑋𝑛)𝑌𝑛 + 𝑝2𝑛 𝑓 "(𝑋𝑛)

2 𝑌2
𝑛 + 𝑂(𝑝3𝑛).

1. If 𝑒 < 𝑛, 𝑓 ′(𝑋𝑛) is well defined modulo 𝑝𝑛, 𝑓 (𝑋𝑛) is well defined modulo 𝑝𝑛+𝑒 (ie does not depend
on the choice of representative of 𝑋𝑛 mod 𝑝𝑛) and we need 𝑓 (𝑋𝑛) = 0 mod 𝑝𝑛+𝑒. Writing 𝑛 = 𝑒 +
𝑚, we look for 𝑌𝑛 mod 𝑝𝑚, and we solve for 𝑓 (𝑍) = 0 mod 𝑝2𝑛, so we have to solve an equation
𝑓 (𝑋𝑛)/𝑝𝑛+𝑒 + 𝑓 ′(𝑋𝑛)/𝑝𝑒𝑌𝑛 = 0 mod 𝑝𝑚. This gives us 𝑌𝑛 mod 𝑝𝑚, hence 𝑍 mod 𝑝𝑒+2𝑚 such that
𝑓 (𝑍) = 0 mod 𝑝2𝑒+2𝑚. Furthermore 𝑓 ′(𝑍) = 𝑓 ′(𝑋𝑛) + 𝑓 "(𝑋𝑛)𝑝𝑒+𝑚𝑌𝑛 + 𝑂(𝑝𝑒+2𝑚) is still of val-
uation 𝑒. Letting 𝑋𝑒+2𝑚 = 𝑍, we find 𝑋𝑒+2𝑚 mod 𝑝𝑒+2𝑚 such that 𝑓 ′(𝑋𝑒+2𝑚) is of valuation 𝑒 and
𝑓 (𝑋𝑒+2𝑚) = 0 mod 𝑝2𝑒+2𝑚, doubling the 𝑚 precision. To boostrap we need 𝑚 = 1, ie 𝑋𝑒+1 mod 𝑝𝑒+1

such that 𝑓 (𝑋𝑒+1) = 0 mod 𝑝2𝑒+1. We recover the standard Newton lifting when 𝑒 = 0. {{ Thus at the 𝑘-th
iteration, we find 𝑋𝑛 modulo 𝑝𝑛 with 𝑛 = 𝑒 + 2𝑘 such that 𝑓 (𝑋𝑛) = 0 modulo 𝑝𝑛+𝑒. In other words, given 𝑋𝑁 at
precision 𝑁 such that 𝑓 (𝑋𝑁) = 0 at precision 𝑁′ = 𝑁 +𝑒, a step gives 𝑋2𝑁−𝑒 at precision 2𝑛−𝑒 such that 𝑓 (𝑋2𝑁−𝑒) = 0
at precision 2𝑁 − 𝑒 + 𝑒 = 2𝑁 = 2𝑁′ − 2𝑒. }}

Theexact same reasoning holds in themultivariate case, if we let 𝑒 be the smallest integer such that 𝑝𝑒𝑓 ′(𝑋𝑛)−1

has integral coefficients.

2. The more interesting case is 𝑛 ≤ 𝑒. A complication is that the valuation of 𝑓 ′(𝑋𝑛) may depend on the
choice of representative of 𝑋𝑛 mod 𝑝𝑛, so here we fix one representative such that 𝑓 ′(𝑋𝑛) is of valuation 𝑒.
However, all representatives 𝑋𝑛 satisfy 𝑓 ′(𝑋𝑛) = 0 mod 𝑝𝑛, so 𝑓 (𝑋𝑛) is well defined modulo 𝑝2𝑛, and if
furthermore 𝑓 "(𝑋𝑛) ≠ 0 mod 𝑝 we may take a representative such that 𝑒 = 𝑛.

In any case, we need to assume 𝑓 (𝑋𝑛) = 0 mod 𝑝2𝑛. We write 𝑋𝑛+1 = 𝑋𝑛 + 𝑝𝑛𝑥𝑛 and we try to determine
the value of 𝑥𝑛 mod 𝑝. We need to solve a quadratic equation 𝑎𝑥2

𝑛 + 𝑏𝑝𝑒−𝑛𝑥𝑛 + 𝑐 = 0 mod 𝑝 where

134

6.2 Canonical lifts and point counting

𝑎 = 𝑓 "(𝑋𝑛)/2, 𝑏 = 𝑓 ′(𝑋𝑛)/𝑝𝑒, 𝑐 = 𝑓 (𝑋𝑛)/𝑝2𝑛. (Here we assume that the characteristic is different from 2
for simplicity.) If a solution 𝑥𝑛 exists, then 𝑓 (𝑋𝑛+1) = 0 mod 𝑝2𝑛+1, 𝑓 ′(𝑋𝑛+1) = 𝑓 ′(𝑋𝑛) + 𝑝𝑓 "(𝑋𝑛)𝑥𝑛 =
𝑏𝑝𝑒 + 2𝑎𝑝𝑛𝑥𝑛.

a) If 𝑓 (𝑋𝑛) is of valuation exactly 2𝑛, then 𝑐 ≠ 0 mod 𝑝, so if a solution exists, 𝑥𝑛 ≠ 0 mod 𝑝. If 𝑎 = 0
mod 𝑝, a solution is possible only if 𝑒 = 𝑛, and then 𝑓 ′(𝑋𝑛+1) is still of valuation 𝑒. Since 𝑓 (𝑋𝑛+1) = 0
mod 𝑝2𝑛+1, we can now bootstrap using Item 1. Note that in this case we may compute 𝑥𝑛+1 as
−𝑓 (𝑋𝑛)/𝑓 ′(𝑋𝑛), ie exactly as a standard Newton iteration (but which only increase the precision by 1
rather than doubling it) which is well defined modulo 𝑝 because both terms are exactly divisible by 𝑝𝑒.
If 𝑎 ≠ 0 mod 𝑝, there are two potential solutions. If 𝑒 > 𝑛, the two solutions are distincts. If 𝑥𝑛 is one
of them, then 𝑓 ′(𝑋𝑛+1) is of valuation 𝑛, 𝑓 (𝑋𝑛+1) = 0 mod 𝑝2𝑛+1 so we can bootstrap using Item 1.
If 𝑒 = 𝑛, there are still two, not necessarily distinct, potential solutions. If they are distinct, 𝑓 ′(𝑋𝑛+1)
is still of valuation 𝑒, and 𝑓 (𝑋𝑛+1) = 0 mod 𝑝2𝑛+1 so we can bootstrap using Item 1. If they are not
distinct, then 𝑏 + 2𝑎𝑥𝑛 = 0 mod 𝑝, hence the valuation of 𝑓 ′(𝑋𝑛+1) > 𝑒.

b) Otherwise 𝑐 = 0 mod 𝑝, so 𝑥𝑛 = 0 is a solution, so we have a solution modulo 𝑝𝑛+1. There is a
second solution only if 𝑒 = 𝑛 and 𝑎 ≠ 0 mod 𝑝. In this case 𝑓 ′(𝑋𝑛+1) is still of valuation 𝑒, so we may
bootstrap using Item 1.

{{ As an exemple let’s look at the case 𝑒 = 1. We have 𝑋1 modulo 𝑝 such that 𝑓 (𝑋1) = 0 modulo 𝑝 and 𝑓 ′(𝑋1) is of
valuation exactly 1. To increase the precision we require that 𝑓 (𝑋1) = 0 modulo 𝑝2.
If 𝑓 (𝑋1) is of valuation strictly greater than 2, then we have a solution 𝑋2 = 𝑋1 mod 𝑝2, with satisfy 𝑓 (𝑋2) = 0
modulo 𝑝3 and 𝑓 ′(𝑋2) is of valuation 1. We can now do the standard Newton iteration: the first one gives 𝑋3 modulo
𝑝3 such that 𝑓 (𝑋3) = 0 modulo 𝑝4, the second one 𝑋5 modulo 𝑝5 such that 𝑓 (𝑋5) = 0 modulo 𝑝6, the third one 𝑋9
modulo 𝑝9 such that 𝑓 (𝑋9) = 0 modulo 𝑝10 and so on.
If 𝑓 (𝑋1) is of 𝑝-adic valuation exactly 2, we look for 𝑋2 = 𝑋1 + 𝑝𝑥1 such that 𝑓 (𝑋2) = 0 modulo 𝑝3 and 𝑓 ′(𝑋2) is still
of valuation 1. Then we can do standard Newton iterations as above.

Dividing by 𝑝2, we have to solve an equation 𝑎𝑥2
1 + 𝑏𝑥1 + 𝑐 = 0 mod 𝑝 where 𝑎 = 𝑓 "(𝑋1)/2, 𝑏 = 𝑓 ′(𝑋1)/𝑝,

𝑐 = 𝑓 (𝑋1)/𝑝2. If 𝑎 = 0, the unique solution is 𝑥1 − 𝑐/𝑏 = −𝑓 (𝑋1)/𝑓 ′(𝑋1). Otherwise, if a solution 𝑥1 exists and is a
simple root, then we also have found our 𝑋2. However, if 𝑥1 is a double root, then 𝑓 (𝑋2) = 0 modulo 𝑝3, but 𝑓 ′(𝑋2) is
of valuation at least 2. So we need 𝑓 (𝑋2) = 0 modulo 𝑝4 and to solve another quadratic equation. }}

Going back to elliptic curves, we may check that our solution 𝛹�̃�,𝑝(𝑥𝑃) = 0 satisfy 𝛹 ′
�̃�,𝑝(𝑥𝑃 mod 𝑝) is of

valuation exactly 𝑒 = 1, 𝛹"�̃�,𝑝(𝑥𝑃 mod 𝑝) = 0 mod 𝑝 and 𝛹�̃�,𝑝(𝑥𝑃 mod 𝑝) = 0 mod 𝑝2 (these value does
not depend on the choice of representatives). (Here we assume 𝑝 > 3, see [FGH00] for the cases 𝑝 = 2, 3.) So at
the initialisation, we are exactly in the case of Item 2a with 𝑛 = 𝑒 = 1, and 𝑎 = 0 mod 𝑝, so we may compute a
solution without worries using Newton iterations (even though the required precision at the start is only 2 rather
than 3 as we would have naively expected to apply Newton iterations).This explains eg why [FGH00, § 7.2] converge,
even through we are not in the conditions of their Lemma 2.1.

Remark 6.2.3. When doing a Newton iteration, when we double the precision 𝑚 to 2𝑚, then (𝑝𝑚)2 = 0 in
ℤ𝑞/𝑝2𝑚ℤ𝑞. Thus we don’t need the polynomial equation 𝑓 (𝑥) = 0, we just need a way to evaluate 𝑓, then evaluating
at 𝑥 and 𝑥 + 𝑝𝑚 gives 𝑓 ′(𝑥). A similar method holds in the multivariate case. We can apply this when lifting a
𝑝-torsion point: the evaluation [𝑝]𝑃 is given by the double and add algorithm.

Of course this method has the inconvenience of requiring to work in an extension of 𝔽𝑞 (hence an unramified
extension of ℚ𝑞) where the étale points of 𝑝-torsion are defined. It is better to lift the polynomial 𝜓𝑝(𝑋) mod 𝑝
as a factor of 𝛹𝑝(𝑋) directly. It is standard to use Newton lifting to lift a polynomial decomposition 𝑃(𝑋) =
𝑃1(𝑋)𝑃2(𝑋) provided 𝑃1 mod 𝑝 and 𝑃2 mod 𝑝 are prime to each other, but in our case 𝜓𝑝(𝑋) is a factor of
multiplicity 𝑝. Satoh carefully handles this case in [Sat00, Lemma 2.1].

As Xavier Caruso explained to me, a high level overview of Satoh’s algorithm may be seen as follow: we know
from the general theory of canonical lift that there is a unique unramified lift of 𝜓𝑝(𝑋). In particular this lift is a
factor of the horizontal slope part of the slope decomposition of 𝛹𝑝(𝑋). We recall that the slopes of the Newton
polygon of a polynomial 𝑃 each correspond to a factor 𝑃𝑖 (not necessarily irreducible) of 𝑃, whose roots have
valuations encoded by the slope: 𝑃𝑖 is of degree the 𝑥-length of the line segment, and the roots have valuation −𝜇𝑖
where 𝜇𝑖 is the slope of the line segment. In particular our unramified factor corresponds to the horizontal segment
of the Newton polygon of 𝛹𝑝.

Slope factorization may be computed by Newton iterations [CRV16, § 4]. Hence we may see Satoh’s algorithm
[Sat00, Lemma 2.1] as a fancy way to combine slope factorization and Newton lifting of factorizations into relatively
prime components in one step.

135

6 Canonical lifts

6.2.5 Computing the isogeny

Once we have lifted the kernel of the Verschiebung, either by lifting its defining polynomial directly or by lifting
a generator, we may apply Vélu’s formula. This gives us the equation of a curve 𝐸1 ∶ 𝑦2 = 𝑥3 + 𝑎1𝑥 + 𝑏1. But if
𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, we know that 𝐸1 is isomorphic to 𝜎−1(𝐸) ∶ 𝑦2 = 𝑥3 + 𝜎−1(𝑎)𝑥 + 𝜎−1(𝑏). As we have seen,
the equation of an elliptic curve 𝐸 implicitly encodes the choice of a differential 𝑤𝐸 = 𝑑𝑥/𝑦 (up to a sign), and
𝜎−1(𝐸) corresponds to the choice 𝜎−1(𝑤�̃�), while the curve computed by Vélu’s formula correspond to the choice
𝑓 ∗𝑤�̃�1

= 𝑤�̃� where 𝑓 is the isogeny. So the isomorphism encodes the action on differentials. Using the notations of
Section 6.2.2, if 𝜎−1(𝐸) = 𝐸1,𝑢 where 𝐸1,𝑢 is the image of 𝐸1 by the isomorphism (𝑥, 𝑦) ↦ (𝑥𝑢2, 𝑦𝑢3) which acts
by 𝑀 ≔ 1/𝑢 on the canonical differentials 𝑑𝑥/𝑦, then �̂�∗

1𝜎−1𝑤�̃� = 𝑀𝑤�̃�, and 𝑀 is then the inversible eigenvalue.
Of course we could also compute the lift of the Verschiebung on 𝜎(𝐸) → 𝐸 instead.

We have 𝑎1/𝜎−1(𝑎) = 𝑀4, 𝑏1/𝜎−1(𝑏) = 𝑀6. The only complication is that the isomorphism between 𝐸1 and
𝜎−1(𝐸) only gives the value of 𝑀2, to get 𝑀 we also need the equation of the isogeny 𝐸 → 𝐸1 so we can compute
the pullback of 𝜎−1(𝑤�̃�) through the map 𝐸 → 𝐸1 ≃ 𝜎−1(𝐸). In practice, taking the norm 𝑣 of 𝑀2 allows easily
to recover the trace 𝑡2 as 𝑡2 = 𝑣 + 𝑞2/𝑣 + 2𝑣, so we get ±𝑡, and we can recover 𝑡 by standard methods (by testing
on a point, or computing the trace modulo 𝑝 using Hasse’s formula, see [Sat00, Theorem 4.4]).

Remark 6.2.4. A similar remark holds for Jacobians of hyperelliptic curves of genus 𝑔 = 2: if 𝐽 = Jac(𝐶), a choice
of curve equation of 𝐶 encodes a basis of differential 𝑤𝐽 = (𝑥𝑖𝑑𝑥/𝑦). If we compute a canonical lift ̃𝐽 of 𝐽 via a lift 𝐶
of 𝐶, and we have an isogeny formula which allow to compute the normalised isogenous curve 𝐶1 for the isogeny 𝑓
corresponding to the (canonical) lift of the Verschibung, then computing an isomorphism between 𝜎−1𝐶 and 𝐶1
allows to recover the tangent matrix (see eg [Mes01, § 2]). For 𝑔 > 2, the action of automorphisms on hyperelliptic
curves is still given by Gl2, so not every choice of basis of differential correspond to a choice of curve equation. In
particular we may not always encode the normalised isogeny by only giving the curve equations.

6.2.6 Taking the norm

For elliptic curves, the action on differentials is given by a scalar 𝑀 ∈ ℚ𝑞. If ℚ𝑞 is represented by a Teichmuller
lift 𝑇(𝑋), the norm of 𝑀 is simply given by the resultant of 𝑀 (seen as a polynomial in ℚ𝑝[𝑋] modulo 𝑇) with 𝑇,
so can be computed asymptotically in quasi-linear time in the precision 𝑚.

In practice most implementations use the formula 𝑁ℚ𝑞/ℚ𝑝
(𝑥) = exp(Trℚ𝑞/ℚ𝑝

(log 𝑥)) which can be computed
in time 𝑂(𝑚3/2) [SST03].

Let us now look at how to generalise these steps for abelian varieties.

6.3 canonical lifts for abelian varieties

The obvious generalisation of Section 6.2.3 is to use a modular correspondance 𝛷𝑝 defined on some modular
invariant 𝐽 on 𝒜𝑔 to lift an ordinary abelian variety 𝐴/𝔽𝑞.

Letting 𝐴𝑖 = 𝜋𝑖(𝐴), 𝐴𝑖 the canonical lift of 𝐴𝑖, which is also 𝜎 𝑖(𝐴), wemay either use a fixed point like algorithm
to lift the isogeny cycle 𝛷𝑝(𝐽𝐴𝑖

, 𝐽𝐴𝑖+1
) = 0 by iterating the modular correspondance, or solve directly the equation

𝛷𝑝(𝐽𝐴, 𝜎(𝐽𝐴)) = 0.
Like in Section 6.2.3, a Newton approach write 𝐽 = 𝐽 + 𝑝𝑘𝑒 and then solves an equation of the form

𝑣 + 𝑒𝜕𝛷𝑝/𝜕𝑋(𝐽, 𝐽𝜎) + 𝑒𝜎𝜕𝛷𝑝/𝜕𝑌(𝐽, 𝐽𝜎) = 0 mod 𝑝𝑘.

Now if 𝐽 ∉ 𝔽𝑝2 , we expect 𝜕𝛷𝑝/𝜕𝑌(𝐽, 𝐽𝜎) to be inversible modulo 𝑝 (because the Frobenius lifts uniquely), and
we expect 𝜕𝛷𝑝/𝜕𝑋(𝐽, 𝐽𝜎) = 0 (essentially because otherwise we could have multiple possible lifts). In dimension 1
this was a corollary of the Kronecker’s equality, so we call this assumption the Kronecker condition. In dimension 2
we prove the Kronecker condition (generically) in [MR20a] in a somewhat ad-hoc way, by directly differentiating
the equation defining the polynomials and looking at the multiplicity of the roots. This should extend in any
dimension, but a cleaner proof follows formally from standard arguments using the canonical coordinates of the
Serre-Tate local moduli [Kat81]. In particular [CN90, § 3.4] gives a description of the modular correspondance 𝛷
in the local moduli, from which we get immediately that in terms of the local coordinates 𝑥, 𝑥𝜎 corresponding to
𝐽, 𝐽𝜎, 𝜕𝛷/𝜕𝑋(𝑥, 𝑥𝜎) = 0 mod 𝑝 while 𝜕𝛷/𝜕𝑌(𝑥, 𝑥𝜎) is inversible modulo 𝑝. Note that this only means that the
Kronecker conditions are satisfied generically for the modular polynomial 𝛷𝑝, because it only encodes a birational

136

6.3 Canonical lifts for abelian varieties

equation of the coarse moduli space. That’s why, although the fine modular space of level 𝛤0(𝑝) is smooth at
ordinary points modulo 𝑝, for elliptic curves both derivative of the modular polynomial vanish whenever 𝑗𝐸 ∈ 𝔽𝑝2 ,
ie the modular polynomial is not smooth at these points. In particular, 𝛷𝑝 does not define 𝑋0(𝑝) around the points
(𝑗𝐸, 𝑗𝜎𝐸) when 𝑗𝐸 ∈ 𝔽𝑝2, so to lift around these points one need to compute the normalisation so that we get the
correct equations (at least when there are no extra automorphisms so that the coarse space is equal to the fine
space).

Note that if the Kronecker condition were not satisfied, we could still solve the Artin-Schreier like equation using
a Newton approach, the only things that change is the initialisation step: modulo 𝑝 we have to solve an equation of
the type 𝐴𝑒𝑝 + 𝐵𝑒 + 𝐶 = 0 (𝑒 a vector of length 𝑔(𝑔 + 1)/2). If 𝐵 ≠ 0, we could try to find a solution by viewing
the equation as an 𝔽𝑝-linear equation of dimension 𝑑𝑔(𝑔 + 1)/2, but then we are not quasi-optimal anymore.
This situation happens for instance when there is an ℓ-isogeny relating 𝐴 and a Galois conjugate, so we can use 𝜙ℓ
instead of 𝜙𝑝 to lift 𝐴, see [Koh08].

Note also that if the Kronecker condition is satisfied, we can also lift the abelian variety by using a fixed point
approach like in Section 6.2.3, iterating the modular correspondance to lift the isogeny cycle. The increase of
precision is only linear rather than quadratic as in Newton’s approach, hence this does not give a quasi-linear lifting
algorithm either.

Example 6.3.1. (i) Mestre introduced in [Mes01] the idea to use the AGM to compute the canonical lift of an
elliptic curve in characteristic 2. Since the AGM encodes the duplication formula for theta functions, it can
be seen as a modular correspondance of level 𝑝 = 2. Hence Mestre’s algorithm to iterate the AGM may be
seen as the fixed point variant of the canonical lift algorithm (so the lifting algorithm is not quasi-linear). Of
course this can be generalised to abelian varieties in characteristic two by using the duplication formula for
theta functions of level 2, as Mestre does in [Mes02]. See also [Rit03], and [Car03, § 2] for an algebraic proof
of the convergence of the fixed point approach. We also refer to [LL03; LL06] for the Newton approach to
lifts via the duplication formulae, and to [Koh08, § 4.1] for a simplification of the modular equations induced
by the duplication formula in the case 𝑔 = 2 using a different parametrization.
This requires to work in a field extension where the level 2 symmetric theta structure is defined. In dimen-
sion 𝑔 = 2, since a principally polarised abelian surface is generically a Jacobian of an hyperelliptic curve,
one can also use the level 2 modular correspondance induced by Richelot’s isogeny [Ric36; Ric37], using
curve equations directly as in [Mes01, § 2] (via a fixed point approach) or using the Rosenhain invariants
𝜆, 𝜇, 𝜈 as in [GHK+06]. (which only requires to take a field extension given by a 𝐴[2]𝑒𝑡 and allows a Newton
approach).

(ii) Using theta functions there is a level 𝑝2 “multiplication formula”, see Remark 2.8.1. Indeed, with the notation
of this Remark, taking 𝑛 = 𝑚 = 1 and 𝑠 = 𝑡 = 𝑝, the isogeny 𝐹 ∶ 𝐴×𝐴 → 𝐴×𝐴, (𝑃, 𝑄) ↦ (𝑃+𝑝𝑄, 𝑃−𝑝𝑄)
satisfy 𝐹∗(ℒ ⋆ ℒ) = ℒ2 ⋆ ℒ2𝑝2

.
The 𝑝2-multiplication induces a modular correspondance 𝛷𝑝2 of degree 𝑝2 (ie encoding 𝑝2-isogenies) on
𝒜𝑔,𝑛𝑝. Here 𝒜𝑔,𝑛 refers to the moduli of symmetric theta structure of level 𝑛 ie to 𝒜𝑔,𝑛,2𝑛, see Remark 2.7.5.
Typically we use 𝑛 = 2 or 𝑛 = 4. This is used in [CL08a] for canonical lifting and point counting. For lifting
the equation to solve is then 𝛷𝑝2(𝜃𝑖(𝐴), 𝜎2(𝜃𝑖(𝐴)). We can reformulate [CL08a, Theorem 2.1] as follow:
the 𝑝2-multiplication map relates theta null points on 𝒜𝑔,𝑛𝑝 with theta null points of 𝒜𝑔,𝑛𝑝3 . Projecting back
to 𝒜𝑔,𝑛𝑝 via Mumford’s isogeny formula, this defines a modular correspondance 𝒜𝑔,𝑛𝑝3 → 𝒜𝑔,𝑛𝑝 × 𝒜𝑔,𝑛𝑝.
Compared to the general modular correspondance of Section 5.2, the fact that we stay of level 𝑝 on the target
allows to define equations for the image directly on 𝒜𝑔,𝑛𝑝.
A 3-multiplication formulawas used in [CKL08] to compute canonical lifts of abelian surfaces in characteristic
𝑝 = 3 and the general 𝑝2-multiplication formula is used in [CL08a]. We remark that Kempf ’s multiplication
Theorem 2.12.2 formula (or simply Lemma 2.6.12) gives a direct (and much simpler) proof of [CKL08,
Proposition 3.7, Lemma 3.8].
We can also use Section 2.6 to revisit (and give simpler proofs of) [Car03, Theorem 4.1.1 and Corollary 4.1.2;
Car07, Theorem 2.1] for the cases we are interested in. Indeed, if we suppose that ℒ is symmetric, then using
the notation of Carls, ℒ(𝑞) is symmetric, so we may construct it by taking a symmetric lift of the kernel. But
if 𝑝 > 2 this symmetric lift is unique.
Furthermore, if 𝐴/ℤ𝑞 is an abelian scheme with ordinary reduction and which is the canonical lift of its
reduction, there is a canonical symplectic decomposition 𝐴[𝑝] = 𝐴𝑒𝑡[𝑝] ⊕ 𝐴0[𝑝] induced by lifting the
corresponding decomposition modulo 𝑝 (see Section 6.2.1). (In fact by [Car03, § 2.1] there is also such
a canonical decomposition on 𝐴(𝑝) without assuming 𝐴 canonical, this is a consequence of the fact that
iterating the AGM converges to the canonical lift 𝐴, so we have symplectic decompositions on 𝐴(𝑝𝑑)[𝑝𝑑]

137

6 Canonical lifts

which converge to the symplectic decomposition of 𝐴(𝑝).)
If ℒ is symmetric and principal, this gives a canonical symmetric theta structure on ℒ𝑝 (𝑝 > 2). Similarly, if
ℒ is a totally symmetric line bundle of level 𝑚 with 𝑚 prime to 𝑝 and we have a symmetric theta structure
on ℒ induced by a symplectic decomposition of 𝐴[2𝑚] (see Section 2.6.3), we get a canonical symplectic
decomposition of 𝐴[2𝑚𝑝], hence a canonical symmetric theta structure on ℒ𝑝, compatible with the Galois
action. In particular since 𝜎 and 𝛴 reduces to the Frobeniusmodulo 𝑝, we have that 𝛴 ∶ (𝐴, ℒ𝑝) → 𝜎(𝐴, ℒ))
is compatible with the symmetric theta structures (compare with the proof in [Car03, § 4.5.3]). Using
Section 2.6.3 we can also treat the case 𝑝 = 2.

(iii) In [FLR11], we use a modified version of the modular correspondance of Section 5.2, namely we use
𝜋3 × 𝜋2 ∶ 𝒜𝑔,𝑛𝑝 → 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛 which maps 𝐴 to (𝐴/𝐴1[𝑝], 𝐴/𝐴2[𝑝]) where 𝐴[𝑝] = 𝐴1[𝑝] ⊕ 𝐴2[𝑝] is
the symplectic decomposition induced by the theta structure of level 𝑛𝑝 (because we did not have the version
of Section 5.2 at the time).
This is also of degree 𝑝2, and can be seen as a simplification of the equations of [CL08a]. Indeed, although
only implicitly stated in the article, we can use this modular correspondance to compute the canonical lift, by
solving for 𝜃𝑖(𝐴) ∈ 𝒜𝑔,𝑛𝑝 such that 𝜋2(𝜃𝑖(𝐴)) = 𝜎2(𝜋3(𝜃𝑖(𝐴)). This give simpler equations than using
the 𝑝2-multiplication formula in 𝒜𝑔,𝑛𝑝.
We could instead use the modular correspondance 𝜋1 × 𝜋2 defined in Section 5.2.1, given by 𝐴 ↦
(𝐴, 𝐴/𝐴2[𝑝]) which is of degree 𝑝 (ie encoding 𝑝-isogenies). This does not change the dependency on
𝑑 but improve slightly the dependency on 𝑝: using a 𝑝2-modular correspondance does not really change the
Newton step but it requires to compute 𝜎2 rather than 𝜎, so is a bit slower.
A drawback of the modular correspondance 𝒜𝑔,𝑛𝑝 → 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛 is that the real modular correspondance
is only defined by the image of 𝒜𝑔,𝑛𝑝, but we don’t have equations for this image (see the discussion at the
end of Section 5.2.3). So in practice starting with 𝐴/𝔽𝑞 with a theta structure of level 𝑛 on ℒ𝑛

0 , we compute

a level 𝑛𝑝 theta structure (ie a point in 𝒜𝑔,𝑛𝑝 given by 𝜃ℒ𝑛𝑝
0 (0)) and lift this theta null point of level 𝑛𝑝. So

while the equations are simpler, similarly to the modular correspondance of Example 6.3.1.(ii) on 𝒜𝑔,𝑛𝑝
induced by the 𝑝2-multiplication formula, we lift a theta null point of level 𝑛𝑝. So in the initialisation step,
we need to go from the theta null point of level 𝑛 over 𝔽𝑞 to the theta null point of level 𝑛𝑝.
In [CL08a] lifting 𝐴 of level 𝑛 to level 𝑛𝑝 was done by a Groebner basis algorithm. Our main motivation in
[FLR11] to introduce the modular correspondance above was that this helped the lifting of 𝐴 from level 𝑛 to
level 𝑛𝑝. This still used a Groebner basis algorithm, but one optimised for the symmetries coming from the
automorphisms Section 5.2.3 of the system, see [FLR11, § 6].
With the results of Section 2.10 we can now easily do this lift of level computation provided we have the
points of 𝐴[𝑝]𝑒𝑡. We can use both the lift via an isogeny version of Section 2.10.1 or by staying on the same
variety as in Section 2.10.2. Indeed since 𝐴 is ordinary it lifts, so a theta structure of level 𝑛𝑝 on 𝐴 makes
sense even if the polarisation is inseparable. We remark that since 𝐴[𝑝] = 𝐴[𝑝]mult ⊕ 𝐴[𝑝]𝑒𝑡 is a symplectic
decomposition (here we work with group schemes), the points of 𝐴[𝑝]𝑒𝑡 implicitly determine the formal
points of 𝐴[𝑝]mult.
This reduces the problem of lifting to level 𝑛𝑝 to finding the étale points of 𝑝-torsion on 𝐴, which has been
well studied, if only for the Schoof-Pila point counting algorithm, see Section 5.5. We can then bound the
dependency on 𝑝 of the algorithm, for instance [AH01] gives an algorithm polynomial in 𝑝 using multivariate
resultants to describe 𝐴[𝑝]. We could also use the geometric resolution algorithm of [AGS19b, Proposition 3].

(iv) In [MR20a], we compute lifts of abelian surfaces using the Siegel modular polynomials defined in Section 5.3.
Using modular polynomials in Igusa invariants has the advantage that it can always be done over the base
field, while with the theta modular correspondance above we have seen that we need to take an extension
where the level 𝑛𝑝 theta structure is defined.
We also computed canonical lifts using theta modular polynomials (ie using a symmetric theta structure of
level 2). We then lift the kernel of the Verschiebung (see Section 6.5), and compare the action of 𝜎−1 and of
the normalised isogeny. In this model we can use the modular isogeny algorithm from Section 4.6 to evaluate
the normalised Igusa invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10 on the isogenous curve (as in Section 5.6.5). This gives us the
product (𝜆1𝜆2)2 of the inversible eigenvalues.
Streng’s invariants used to compute modular polynomials have bad reduction modulo 2. So in [MR22a,
Theorem 2.4] we use Igusa’s covariants 𝐽2, 𝐽4, 𝐽6, 𝐽8, 𝐽10 which are defined over ℤ to define arithmetic Igusa
invariants 𝑗1, 𝑗2, 𝑗3 over each affine of the cover 𝒜2[𝐽−1

2 𝐽−1
10], 𝒜2[𝐽−1

4 𝐽−1
10], … 𝒜2[𝐽−1

8 𝐽−1
10] (minus the singular

locus). In particular, the reduction of 𝒜2[𝐽−1
2 𝐽−1

10] modulo 2 corresponds to hyperelliptic curves of type
(1, 1, 1), which are exactly the curves whose Jacobians are ordinary. Using the arithmetic invariants 𝑗1, 𝑗2, 𝑗3
for this locus, we can define modular polynomials with good reduction modulo 2, this allows us to lift abelian

138

6.4 Computing the action on tangent space without lifting isogenies (Revenge of the Sith)

surfaces in characteristic two.
(v) We also explain in [MR20a], when 𝐴 has rational real multiplication for which we have already computed

Hilbert modular polynomials, how to use an Hilbert modular correspondance instead (in any dimension
𝑔). Indeed the Frobenius preserves real multiplication by assumption, so it suffices to lift it via the Hilbert
modular polynomial 𝛷𝑝 rather than the Siegel one, since it is of smaller degree.
We can improve this if 𝑝 splits in the real order 𝒪. Assume 𝑔 = 2 for simplicity, then if 𝑝 splits into two totally
positive primes 𝑝1𝑝2 in 𝒪, 𝐴[𝑝]𝑒𝑡 decomposes into 𝐴[𝑝1]𝑒𝑡 ⊕ 𝐴[𝑝2]𝑒𝑡. If we let 𝐴′ = 𝐴/𝐴[𝑝1]𝑒𝑡, rather
than solving for 𝛷𝑝(𝐽(𝐴), 𝜎(𝐽(𝐴)) = 0, we solve for 𝛷𝑝1

(𝐽(𝐴), (𝐽(𝐴′)) = 0, 𝛷𝑝2
((𝐽(𝐴′), 𝜎(𝐽(𝐴))) = 0.

This allows to work with modular polynomials of degrees 𝑝 + 1 rather than 𝑂(𝑝2). For the initialisation, if
𝐽(𝐴′) is the reduction of 𝐽(𝐴′) modulo 𝑝 we find it via a gcd on 𝛷𝑝1

(𝐽(𝐴), 𝑋) and 𝛷𝑝2
(𝜋(𝐽(𝐴)), 𝑋). For

the Newton iteration, via linear algebra to eliminate the variables coming from 𝐴′, we also reduce to doing
an Artin-Schreier lifting.

We will see in Sections 6.4 to 6.6 how to get either the determinant or the full matrix of the action of the �̂�𝑞 on
the tangent space (via a norm of the action of the small Vershiebung �̂�𝑝). From the full matrix, we can recover 𝜒𝜓
(using the notations of Section 5.5.5) at some 𝑝-adic precision 𝑚, and from the Weil bounds we need to work with
𝑚 = 𝑔𝑑/2 + 𝑂(1). When we only have the determinant, we recover 𝜒𝜓 via an LLL algorithm, but this requires to
increase the precision, and does not always allow to recover 𝜒𝜓 (see the discussion at the end of Section 6.4).

6.4 computing the action on tangent space without lifting isogenies (revenge of
the sith)

At the time the canonical lift algorithms were extended to abelian varieties, the extension of Vélu formula to abelian
varieties of Chapter 4 were not known.

So the strategy was different than lifting the kernel and computing the isogeny. Indeed even Mestre’s AGM
algorithm for elliptic curve did not follow this approach. As we have seen in Section 6.3, the theta duplication
formula can be used to lift the modular invariants 𝜃𝑖(𝐴)/𝜃0(𝐴). But the duplication formula is also well defined
on the modular forms 𝜃𝑖(𝐴). Analytically the version of the duplication formula which express 𝜃𝑖(0, 𝜏/2) in term
of the 𝜃𝑖(0, 𝜏) encodes the normalised isogeny while the one which express 𝜃𝑖(0, 2𝜏) encode the isogeny acting by
𝑧 ↦ 2𝑧 on the tangent space.

This means that once we have lifted 𝐴 to 𝐴, doing a cycle of 𝑑 2-isogenies using the affine duplication formula
encode the action of �̂�𝑞 on the tangent space. Here we only recover the determinant of the action, since the theta
functions are scalar modular forms.

This is beautifully explained in [Mes02]: starting with a arbitrary lift 𝜃(0)
𝑖 (0) to ℤ𝑞 of the theta null point of 𝐴,

and iterating the duplication formula to get points 𝜃(𝑗)
𝑖 (0), then not only do the (level 𝛤(2, 4)) modular invariants

𝜃(𝑚𝑗+𝑘)
𝑖 (0)/𝜃(𝑚𝑗+𝑘)

0 converges (when 𝑗 → ∞) to the modular invariants of 𝛴𝑘𝐴, but the theta modular forms
allows to recover the determinant 𝑢 ≔ det𝑀 via 𝜎𝑘(𝑢) = 𝜃(𝑚𝑗+𝑘)

𝑖 (0)/𝜃(𝑚(𝑗+1)+𝑘)
𝑖 (0). (The quotient is done the

other way around from Satoh’s algorithm, because Mestre uses a form of the duplication formula that normalises
the action on differential to the multiplication by 2 rather than 1.)
More Details 6.4.1. In Satoh, we compute 𝔤(𝐴1, 𝑤𝐴1

)/𝔤(𝜎−1(𝐴0, 𝑤0)), this gives 𝜌(𝑀) where 𝑀 is the matrix of �̂�∗ in the
basis 𝜎−1(𝑤0) and 𝑤0, and 𝜌 is the weight of 𝔤.The norm then gives the action of �̂�∗ on the differentials 𝑤0. If 𝔤 is of weight 1, this
recovers the product of inversible eigenvalues 𝜆𝑖. Mestre computes 𝔤(𝐴0, 𝑤0)/𝔤(𝐴0, 𝑤′

𝐴0
), since 𝔤(𝐴0, 𝑤0) = 𝜎𝑞(𝔤(𝐴0, 𝑤0)),

if 𝑤′
𝐴0

was the normalised isogeny, this would recover the inverse of the product of the non inversible eigenvalues, which is

equal to ∏ 𝜆𝑖
𝑞 . But Mestre takes 𝑤′

𝐴1
where the isogeny is normalised by 𝑞, so this also recovers ∏ 𝜆𝑖.

In practice, lifting is faster when done via a Newton process, and rather than computing the full (affine) isogeny
cycle, we just do one step of the affine duplication formula, and take a norm.A slight difficulty is that since the 𝜃𝑖 are of
level 𝛤(2, 4), onemay need (depending on the choice of normalisations) to first compute an isomorphism of the level
structure too. In otherwords, if 𝜃(1)

𝑖 (𝐴) denotes one step of the duplication formula for the normalisedVerschiebung
from 𝜃𝑖(𝐴), we may first need to find an automorphism such that 𝜃(1)

𝑖 (𝛾𝐴)/𝜃(1)
0 (𝛾𝐴) = 𝜎−1 (𝜃𝑖(𝐴)/𝜃0(𝐴)) (for

all 𝑖) before recovering the common scalar 𝑢 = 𝜃(1)
𝑖 (𝐴)/𝜎−1(𝜃𝑖(𝛾𝐴)) (for any 𝑖).

This is not hard but an easier solution is to simply evaluate a modular form 𝔤 of level 1 and weight 𝑚, like the
trace of all 𝜃2𝑚

𝑖 . Since 𝔤 is of weight det𝑚, we then recover (𝜆1 ⋯ 𝜆𝑔)𝑚 as 𝑁ℚ𝑞/ℚ𝑝
(𝔤(𝐴1)/𝔤(𝜎−1𝐴0)).

We can use this approach in any situation where we have a modular correspondance not only on modular
invariants but also on modular forms. We will call this an affine modular correspondance, and this parametrizes

139

6 Canonical lifts

the values (𝐺(𝐴, 𝑤𝐴), 𝐺(𝐵, 𝑤𝐵)) where 𝐺 = (𝑔1, … , 𝑔𝑗) is given by some modular forms of weight 𝑚, 𝑓 ∶ 𝐴 → 𝐵
is an ℓ-isogeny (we will use ℓ = 𝑝), and 𝑤𝐴, 𝑤𝐵 are normalized in a suitable way, eg by 𝑓 ∗𝑤𝐵 = 𝑤𝐴. All theta
modular correspondances used in Section 6.3 are naturally affine (see also Sections 4.6 and 5.2). For instance, the
same techniques as above hold for the modular correspondance 𝜋1 × 𝜋2 ∶ 𝒜𝑔,𝑛𝑝 → 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛: we compare a
modular form 𝔤 on 𝜋2(𝐴) with 𝔤 on 𝜎−1(𝜋1(𝐴)).4

We have also seen in Section 5.3.6 that we can define affine modular polynomials using modular forms rather
than modular invariants. Using these affine modular polynomials in [MR20a] could have dispensed us from lifting
the kernel of the Verschiebung and then computing the isogeny, but at the time I had not yet realised that we could
use and compute affine modular polynomials in the Igusa invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10 directly. But see Section 6.6 for
an even better strategy.

The method of Section 6.2.5 can also be seen as an avatar of this principle: using the notations of this Section,
when we only compute the coefficients 𝑎1, 𝑏1 of the normalised isogenous elliptic curve (without computing the
isogeny itself), and we compare them to 𝜎−1(𝑎), 𝜎−1(𝑏), we are comparing modular forms of weight 4 and 6
respectively, hence we only recover the action of 𝑀2.

A drawback of this approach is that this only recovers the element 𝜆 = 𝜆1 ⋯ 𝜆𝑔 + 𝑞/𝜆1 ⋯ 𝜆𝑔. This element is a
root of what is called the symmetric characteristic polynomial of the Frobenius 𝜒sym

𝜋 in [Rit03, § 4.2.2]. So we may
try to recover 𝜒sym

𝜋 from 𝜆 via an LLL algorithm. Then [Rit03, § 4.2.2] explain how we may recover (in good cases,
like when 𝜒𝜋 is irreducible, ie 𝐴/𝔽𝑞 is absolutely simple) 𝜒𝜋 from 𝜒sym

𝜋 . A difficulty is that we may not always
recover 𝜒sym

𝜋 from 𝜆, because this polynomial is not always irreducible (even if 𝜒𝜋 is). This does not happen when
𝑔 ≤ 3, but Mestre gives an exemple in [Mes02] with 𝑔 = 4.

Thus the approach of this Section does not always allow to recover enough information. Even in the cases it does,
the LLL step to recover 𝜒sym

𝜋 requires to work with precision 𝑚 = 𝐶𝑔𝑛/2 + 𝑂(1) for some constant 𝐶 depending
on 𝑔 while we would like to work in precision 𝑚 = 𝑔𝑛/2 + 𝑂(1). For a bound on 𝐶, see [LL06, § 5.4; CL08a, p. 19].
For instance, when 𝑝 = 2, we have 𝐶 = 3/2 with 𝑔 = 2 and 𝐶 = 6 with 𝑔 = 3.

6.5 computing the action on tangent space via lifting the isogeny (a new hope)

To get a better precision bound and recover 𝜒𝜋 in all cases, going back at the root of Satoh’s algorithm for elliptic
curves, the straightforward solution is to compute the isogeny corresponding to �̂�.

We need to recover thematrix 𝑀 of �̂�∗ acting on the basis 𝜎−1(𝑤𝐴) and 𝑤𝐴 (or alternatively on 𝑤𝐴 and 𝜎(𝑤𝐴)).
Then taking the characteristic polynomial 𝑃 of the norm of 𝑀, 𝜒𝜋 = 𝑃(𝑋)𝑋𝑔𝑃(𝑞/𝑋). In practice it is often easier
to compute the matrix 𝑀 as follow: we first compute the normalised isogeny �̂� ∶ (𝐴, 𝑤𝐴) → (𝐴′, 𝑤𝐴′). By abuse
of notation, we will denote 𝑤𝐴′ = �̂�∗𝑤𝐴 when �̂�∗𝑤𝐴′ = 𝑤𝐴 (ie 𝑤𝐴′ = 𝛴∗𝑤𝐴/𝑝). We let 𝐹 ∶ 𝐴′ → 𝜎−1𝐴 be an
isomorphism, then 𝑀 is given by the action of 𝐹∗ on the basis 𝜎−1(𝑤𝐴), 𝑤𝐴′ .

6.5.1 Isogeny induced by the modular correspondance

When we said in Section 6.4 that the alternative method of using modular functions to recover the action on the
tangent space was used because Vélu’s like formulas were not know in higher dimension, this is not quite true.
Indeed the theta duplication formula also gives 𝜃𝑖(2𝑧, 2𝜏) in function of the 𝜃𝑖(𝑧, 𝜏), so gives equations for the
2-isogeny. More generally the modular correspondance 𝜋 ∶ 𝒜𝑔,𝑛𝑝 → 𝒜𝑔,𝑛 × 𝒜𝑔,𝑛 also encodes the 𝑝-isogeny.

The fact that the theta modular correspondance of level 𝑝 explicitly gives the 𝑝-isogeny is of course well known,
but strangely (as far as I know), it seems this was not used to get the full action on the tangent space until [LR20].

Letting 𝐴 ∈ 𝒜𝑔,𝑛𝑝 and fixing a basis of differentials 𝑤𝐴, since 𝜋 gives the correspondance 𝒳𝑔,𝑛𝑝 → 𝒳𝑔,𝑛 × 𝒳𝑔,𝑛
explicitly we can keep track of the differentials and compute (𝜋1(𝐴), 𝜋1,∗(𝑤𝐴)) and (𝜋2(𝐴), 𝜋2,∗(𝑤𝐴)). So
to recover the action on differentials at level 𝑚, it suffices to compute an isomorphism 𝐹 between 𝜋2(𝐴𝜎) and
𝜋1(𝐴) and compute the matrix 𝑀 such that 𝐹∗𝜋1,∗(𝑤𝐴)) = 𝑀𝜋2,∗(𝜎(𝑤𝐴)). The action of the Frobenius is then
recovered from the norm of 𝑀 as usual. (Working with a modular correspondance of degree 𝑝2 we would act by
𝜎2 instead, and we only recover the characteristic polynomial of 𝜋2

𝑞 at the end if 𝑑 is even.)

4Since our theta null points are of the same level, the use of 𝔤 is not required. But in [CL08a], since they did not have a version of 𝜋1
or 𝜋3, they were comparing a theta null point of level 𝑛 with one of level 𝑛𝑝, so using modular forms of level 1 was necessary to get a
meaningful computation. A nice trick is that since they have a modular correspondance of degree 𝑝2, using a modular form of weight 1/2
allows to recover the product of eigenvalues; a form of weight 1 would only have given their squares. We also remark that since we are
taking a norm anyway afterwards, we could also take the norm of 𝔤(𝜋2(𝐴))/𝔤(𝜋1(𝐴)).

140

6.5 Computing the action on tangent space via lifting the isogeny (A New Hope)

6.5.2 Recovering the matrix on tangent space over the Kummer varieties

Apart from this trivial remark, the main interest of [LR20] is that we explain how to use this strategy with theta
functions of level 2 rather than level 4. As shown in Section 2.12 this only encodes the Kummer variety rather than
the abelian variety. We want to recover the action on tangent spaces by working only on the Kummer varieties.

Since this has applications others than point counting, we treat the general case of 𝑓 ∶ 𝐴 → 𝐵 an isogeny. We
want to recover 𝑑𝑓 ∶ 𝑇0𝐴 → 𝑇0𝐵 while working over the Kummer varieties 𝐾𝐴 and 𝐾𝐵.

If we had a rational point 𝑃 on 𝐴 not of 2-torsion we could compute the action on tangent space of 𝐾𝐴 at 𝑃 since
it is isomorphic to the tangent space of 𝐴 at 𝑃, but we do not want to assume that. (In the cryptographic setting we
are given a point anyway, so it would suffice to lift it to ℚ𝑞, and compute the tangent space at this lift, but this is less
fun.)

We always have the neutral point 0𝐴, and since 𝐾𝐴 is not smooth at 0𝐴 we work with the tangent cone 𝑇𝑐
0𝐾𝐴

at 0𝐴 instead. By general invariant theory, 𝑇𝑐
0𝐾𝐴 ≃ 𝑇0𝐴/ ± 1, and more generally since �̂�𝐴,0 ≃ 𝑘[[𝑥1, … , 𝑥𝑔]],

we have �̂�𝐾𝐴,0 ≃ 𝑘[[𝑥1, … , 𝑥𝑔]]/ ± 1 ≃ Sym2 𝑘[[𝑥1, … , 𝑥𝑔]], so 𝑇𝑐
0𝐾𝐴 ≃ Spec Sym2 𝑘[𝑥1, … , 𝑥𝑔]. A concrete

model of Spec Sym2 𝑘[𝑥1, … , 𝑥𝑔] is given by 𝑈 = Spec 𝑘[𝑢𝑖𝑗]/(𝑢𝑖𝑗𝑢𝑘𝑙 − 𝑢𝑖𝑘𝑢𝑗𝑙) where 𝑢𝑖𝑗 represents 𝑥𝑖𝑥𝑗. Given
the equations of 𝐾𝐴, we can compute 𝑇𝑐

0𝐾𝐴 and then an isomorphism of 𝑇𝑐
0𝐾𝐴 with 𝑈 (or a quadratic twist of

𝑈 if needed). This isomorphism allows us to get a basis of 𝑇0𝐾𝐴 which is the Sym2 of a basis of 𝐴. We can then
recover Sym2 𝑀 where 𝑀 is the matrix acting on tangent spaces of the isogeny 𝑓 ∶ 𝐴 → 𝐵, hence recover ±𝑀. We
refer to [LR20] for more details, and mention that the isomorphism between 𝑇𝑐

0𝐾𝐴 and 𝑈 is computed using the
arithmetic of Section 2.12.1.

6.5.3 Lifting the kernel

It remains to explain how to compute the isogeny when we compute canonical lifts via modular polynomials or
theta modular polynomials, ie when we stay in level 𝑛 and do not go to level 𝑛𝑝. In this case we simply follow
Satoh’s original algorithm: we lift the kernel of �̂� and use Chapter 4 to compute the isogeny. Like in the dimension 1
case, the Verchiebung has many lifts, but only one which is unramified. For instance for abelian surfaces, letting
⟨𝑒1, 𝑒2, 𝑓1, 𝑓2⟩ be a symplectic basis of 𝐴[𝑝] where 𝑒1, 𝑒2 reduces to étale points (so live in an étale extension) and
𝑓1, 𝑓2 to multiplicative points (so live in a tamely ramified extension), ⟨𝑓1, 𝑓2⟩ is the only kernel reducing to the
Frobenius, there are ℓ(ℓ + 1) kernels similar to ⟨𝑒1, 𝑓2⟩ which reduce to a kernel with 𝑝-rank 1, and ℓ3 kernels
which reduce to the Verschiebung, but ⟨𝑒1, 𝑒2⟩ is the only unramified one.

We lift the kernel by lifting its geometric points (it suffices to lift generators). Ideally we would like to lift the
whole kernel at once as is done in Satoh’s algorithm. This would requires to compute a triangular representation of
𝐴[𝑝] and 𝐴[𝑝] (as in Section 5.5.1), to lift univariate polynomials. For our computations with small 𝑝 this was not
worth the hassle, and we will see in Section 6.6 how to bypass this step anyway.

So we simply compute points in 𝐴[𝑝]𝑒𝑡, write the equation 𝑝𝑃 = 0 formally in 𝐴 (or better (𝑝′ + 1)𝑃 = −𝑝′𝑃
when 𝑝 = 2𝑝′ + 1), and lift via Newton iterations, as in Section 6.2.4. Note that we only need a triangular
representation of 𝐴[𝑝] to find 𝑃, any system of equations of 𝐴[𝑝] is enough for a Newton lifting.

If 𝐴 is embedded into ℙ𝑁, we get a polynomial system of equations in 𝑁 variables. Since 𝐴/ℤ𝑞 is smooth the
equations are smooth over ℤ𝑞, and since the action of 𝑃 ↦ [𝑝]𝑃 is given by 𝑝 on the tangent space 𝑇0𝐴, this means
that the Jacobian of this polynomial system has for Smith normal form the diagonal (1, … , 1, 𝑝, … , 𝑝) with the
factor 𝑝 repeated 𝑔 times (they correspond to the embedding of 𝑇0𝐴 into ℙ𝑁). In particular, if 𝐽 is the Jacobian
of the polynomial system, 𝐽−1 is of valuation −1, so Newton’s algorithm converge as soon as we have a solution
at precision 3. Indeed the analysis of Section 6.2.4 is exactly the same in the multivariate case. However reaching
precision 3 is harder than in the univariate case because the theory of multivariate Newton polygons is less helpful,
so we bootstrap the Newton lifting by solving the quadratic system directly (via a Grobner basis). In practice this
initialisation step is sufficiently fast. Due to the nature of the Jacobian of the system, not all variables and equations
are at the same precision, so if we do the linear change of variable induced by the Smith normal form we can keep
track of the variables that naturally have better precision. We could also use the tools to track the 𝑝-adic precision
developed in [CRV18]. Geometrically this is explained as follow: lifting 𝑃 means finding �̃� ∈ ℙ𝑁 such that �̃� ∈ 𝐴
and �̃� ∈ 𝐴[𝑝], and only the second step involves a loss of precision.

We refer to [MR20a] for more details on how to lift the points in the kernel of the Verschiebung for abelian
surfaces given by their theta model of level 𝑚 = 2.

Remark 6.5.1. By the same method we can lift points of ℓ-torsion, ℓ prime to 𝑝. In fact this case is easier since
𝐴[ℓ] is étale over 𝔽𝑞, the tangent map is inversible and Newton iterations converge immediately.

141

6 Canonical lifts

The case of lifting abelian surfaces in characteristic two is special.Wemay assume that 𝐴 is a Jacobian, 𝐴 = Jac(𝐶)
(otherwise 𝐴 is a product of elliptic curves which we may lift directly). Since 𝐴 is ordinary, 𝐶 is a genus 2 curve of
type (1, 1, 1) following the terminology of [Igu60]. We lift 𝐶 using its universal normal form (a form introduced by
Igusa valid in any characteristic), see [MR22a, § 4.3]. The Weierstrass points of the curve then encode the 2-torsion.
It remains to identify the Verschiebung. In this case, it is easier to identify the Frobenius instead by looking at the
divisors which reduce to a principal divisor modulo 2 [MR22a, Proposition 4.7], and we recover the Verschiebung
as the dual isogeny. We can then uses the Richelot isogeny Jac(𝐶) → Jac(𝐶′) (it is not hard to check that it is
normalised), so the isomorphism between 𝐶′ and 𝜎−1(𝐶) recovers the matrix of the Verschiebung on tangent
space by Remark 6.2.4.

6.6 computing the action on tangent space without lifting isogeny (the empire
strikes back)

Still it is annoying having to lift the kernel, if only because it requires to compute a nice representation of 𝐴[𝑝]. We
would like to revisit the modular method of Section 6.4 but somehow recover more informations than just the
determinant of the action on the tangent space.

The solution is obvious: rather than looking for a modular correspondance between scalar modular forms, it
suffice to look for a modular correspondance for vectorial modular forms, using Key Idea 6. Then we can use the
exact same strategy as in Section 6.4 using the vectorial modular form.

But if 𝑗 is a modular function, 𝑑𝑗 is a vectorial modular form of weight Sym2 by the Kodaira-Spencer isomorphism,
see Section 5.4.2. And differentiating the modular polynomial 𝛷𝑝(𝐽𝐴, 𝐽𝐵) = 0 exactly gives us the modular relation
between 𝑑𝐽𝐴 and 𝑑𝐽𝐵 we are looking for. And we need the modular polynomial 𝛷𝑝 for lifting 𝐴 anyway.

This gives the following strategy: we lift 𝐴, compute 𝑑𝐽(𝐴, 𝑤𝐴) for any rational differential basis 𝑤𝐴 of 𝐴, plug it
into the differentiation of the modular polynomial (ie look at the tangent space of the modular equation) to get
𝑑𝐽(𝜎−1𝐴, 𝑤𝜎−1𝐴) where 𝑤𝜎−1𝐴 is the normalised differential. We compare with the value of 𝜎−1(𝑑𝐽(𝐴, 𝑤𝐴)) =
𝑑𝐽(𝜎−1𝐴, 𝜎−1(𝑤𝐴)) to get Sym2 𝑀 where 𝑀 is the matrix of the action of �̂� on the differentials 𝑤𝐴, 𝜎−1𝑤𝐴.
We recover 𝑀 (up to a sign), and compute the norm as usual to get the matrix of �̂�𝑞, hence the characteristic
polynomial 𝜒𝜋.

In fact, looking at the equation shows that we can dispense with an explicit version of the Kodaira-Spencer
isomorphism. To get the normalised value 𝑑𝐽(𝜎−1𝐴, 𝑤𝜎−1𝐴), we solve the system

𝜕𝛷𝑝/𝜕𝑋(𝐽, 𝜎−1(𝐽))𝑑𝐽(𝐴, 𝑤𝐴) +
1
𝑝𝜕𝛷𝑝/𝜕𝑌(𝐽, 𝜎−1(𝐽))𝑑𝐽(𝜎−1𝐴, 𝑤𝜎−1𝐴) = 0.

We remark that while 𝜕𝛷𝑝/𝜕𝑌(𝐽, 𝜎−1(𝐽)) is not inversible modulo 𝑝, 1
𝑝𝜕𝛷𝑝/𝜕𝑌(𝐽, 𝜎−1(𝐽)) is, so there is at most

one bit loss of precision. This gives us

Sym2 𝑀 = 𝜎−1(𝑑𝐽−1(𝐴, 𝑤𝐴))𝑑𝐽(𝜎−1𝐴, 𝑤𝜎−1𝐴) (6.1)

= 𝜎−1(𝑑𝐽−1(𝐴, 𝑤𝐴)) (
1
𝑝𝜕𝛷𝑝/𝜕𝑌(𝐽(𝐴), 𝜎−1(𝐽(𝐴))))

−1
(𝜕𝛹𝑝/𝜕𝑋(𝐽(𝐴), 𝜎−1(𝐽(𝐴)))) 𝑑𝐽(𝐴, 𝑤𝐴).

(6.2)

Taking the norm of (1
𝑝𝜕𝛷𝑝/𝜕𝑌(𝐽(𝐴), 𝜎−1(𝐽(𝐴))))

−1
(𝜕𝛹𝑝/𝜕𝑋(𝐽(𝐴), 𝜎−1(𝐽(𝐴)))) gives the same norm as the

norm of Sym2 𝑀 up to conjugation by 𝜎−1 (𝑑𝐽(𝐴, 𝑤𝐴)).
The whole strategy fully dispenses with lifting kernels and only requires the modular polynomial. We only need

that there is no non generic automorphisms (so the partial derivative of the modular polynomials are inversible).
As far as I am aware, this strategy was never implemented even for elliptic curves. For elliptic curves, since we work
with the modular invariant 𝑗, unlike Satoh’s original algorithm, there is no special cases when 𝑝 = 2, 3 and the
elliptic curve equations are different. However, we also only recover the square 𝑡2 of the trace 𝑡 (since we compute
the action of the Sym2), in other words on the level of moduli we cannot distinguish 𝐸 from its quadratic twist. The
implementation is so simple that it only takes a 50 lines GP script to illustrate this in dimension one:

Example 6.6.1. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be the elliptic curve defined over 𝔽55 which is defined using the
irreducible polynomial 𝑥5 − 𝑥 − 1, with 𝑎 = 𝑥2 − 𝑥 − 1 and 𝑏 = 𝑥3 − 1.

142

6.6 Computing the action on tangent space without lifting isogeny (The Empire Strikes Back)

Table 6.1: Improvement of the new version of Satoh’s algorithm in dimension 1

𝑞 Time (old) Memory (old) Time (new) Memory (new)

111008 48.5s 512MB 4.5s 128MB
101102 91s 1024MB 9s 128MB
101256 633s 4096MB 26s 128MB
101310 924s 8192MB 35s 256MB
101418 1813s 16384MB 55s 256MB

We lift𝐸 to𝐸 at precision (𝑛+5)/2.We compute𝑢 = (𝜕𝛹𝑝/𝜕𝑋(𝜎(𝑗(𝐸)), (𝑗(𝐸)))) (1
𝑝𝜕𝛷𝑝/𝜕𝑌(𝜎(𝑗(𝐸)), 𝑗(𝐸)))

−1
.

The norm 𝑣 of 𝑢 is equal to 4 + 3 ⋅ 5 + 4 ⋅ 52 + 53 + 2 ⋅ 54 + 𝑂(56), and we have 𝑣 = (𝜆1𝜆2)2 where 𝜆1, 𝜆2 are the
inversible eigenvalues. So if 𝑡 is the trace, 𝑡2 = 𝑣 + 𝑞2/𝑣 + 2𝑞 = 4 + 3 ⋅ 5 + 4 ⋅ 52 + 53 + 2 ⋅ 54 + 2 ⋅ 55 + 𝑂(56),
so 𝑡 = ±(3 + 2 ⋅ 5 + 3 ⋅ 52) = ±88, and we check that the correct value is 𝑡 = 88.

Allombert converted the script to the Pari library, it gains a factor 10 (for 𝑝 = 11) to 25 (for 𝑝 = 101) compared
to the older implementation (and it gains a large factor in the memory). We give example of improvements to the
point counting of an elliptic curve over 𝔽𝑞 for several different values of 𝑞 in Table 6.1. The gains should be even
higher for higher dimensions.

As a corollary, we get a quasi-quadratic (in 𝑑) algorithm for point counting. This was already announced in
[CL08a] using a variant of the modular correspondance from Section 5.2 (see Example 6.3.1.(ii)), but our algorithm
works over the base field directly (no need for a theta structure), does not rely on LLL (and can always reconstruct
𝜒𝜋, whereas the reconstruction step of [CL08a] needs to assume that 𝑃sym is irreducible, which may not be the
case even if 𝜒𝜋 is irreducible), and has a much better understood dependency on 𝑝 (and the dependency on 𝑝 is
better than the one from Example 6.3.1.(iii)).

Dependency on 𝑝 of the algorithm.

The main dependency on 𝑝 is the cost of computing 𝛷𝑝, using the results of Chapter 5 notably Remark 5.3.1 we
know that it is in 𝑂(𝑝𝐶) for some explicit constant 𝐶 depending on 𝑔.

In fact, we’d rather evaluate it directly (along with its derivative), using Section 5.3.8. We recall that these
evaluations cost 𝑂(𝐷2𝐸(𝑚 log 𝑞 + 𝑑2𝑀)), so the dependency on 𝑝 is 𝑂(𝑝𝐶) with 𝐶 = 𝑔(𝑔 + 1) + 𝑔 in the Siegel
case and 𝐶 = 3 in the Hilbert case. Under Conjecture 5.3.14 (or if 𝑔 = 1), we have 𝐸 = 1 in which cas 𝐶 = 𝑔(𝑔 +1)
and 𝐶 = 2 respectively.

However we need to be careful that if we work over the representation of ℤ𝑞/𝑝𝑚ℤ𝑞 defined by the Teichmuller
lift, then 𝑀 = 𝑂(𝑚 log 𝑝). For point counting, we work at precision 𝑚 = 𝛩(𝑑), so this gives a complexity cubic
in 𝑑. The solution is either to work with a polynomial of small height for the evaluation, and then switch to
the Teichmuller representation, or use fast modular composition for the evaluation of 𝜎 without relying on the
Teichmuller lift. By [KU11], both approaches can be done in quasi-linear time.

This is only interesting when 𝑔 > 1 and the full modular polynomials are too big (at least in the Siegel case)
to even be computed. When 𝑔 = 1 we gain the 𝑂(𝑝3) precomputation for 𝛷𝑝, and the evaluation goes from
𝑂(𝑝2𝑚𝑑 log 𝑝) when we have 𝛷𝑝 to 𝑂(𝑝2(𝑑𝑚 log 𝑝 + 𝑑2𝑀) = 𝑂(𝑝2𝑑2) with a small 𝑀 and taking 𝑚 = 𝛩(𝑑).
So the soft 𝑂 factors are the same, but in practice the evaluations are slower since they hide some extra logarithmic
factors. Since the lift is in 𝑂(𝑝2𝑑2) anyway, if 𝑝 is sufficiently large compared to 𝑑 that the gain of 𝑂(𝑝3) becomes
worthwhile, we are better of with Kedlaya’s algorithm in this case.

Remark 6.6.2. It is thus interesting to compare this algorithm to Kedlaya’s algorithm. Kedlaya has a much better
dependency on 𝑝 and 𝑔 but a worse dependency on the degree 𝑑: 𝑂(𝑝𝑑3) [Ked01; GG03; Ked16], or 𝑂(𝑝1/2𝑑3.5)
[Har07].5 It was originally given for elliptic curves, but has been extended to all curves [Tui16], and even to smooth
projective hypersurfaces [CHK19] (but has only been really used for surfaces). By contrast, our improved version
of Satoh’s algorithm can only handle abelian varieties, but works even on abelian varieties which are not Jacobians.

5Here we assume 𝑔 fixed for simplicity. The dependency on 𝑔 of Kedlaya’s algorithm is polynomial in 𝑔, whereas for Satoh’s algorithm
it is polynomial in 𝑝𝑔 or even 𝑝𝑔2

, at least if we don’t assume that we know the real multiplication so that we can use Hilbert modular
polynomials rather than Siegel modular polynomials.

143

6 Canonical lifts

If 𝑔 = 1, the full complexity to lift to precision 𝑚 (for point counting, 𝑚 = 𝛩(𝑑)) is 𝑂(𝑝3 + 𝑝2𝑑𝑚). The 𝑝3 is
for the computation of 𝛷𝑝, but it may be thought of as a precomputation since it does not depend on 𝐸. We have
seen that by evaluating 𝛷𝑝 directly, it actually can be reduced to 𝑂(𝑝2𝑑𝑚).

It is plausible that, when 𝑔 = 1, there exists an algorithm that is in 𝑂(𝑝2𝑑 + 𝑝𝑑2 + 𝑝3/2𝑑𝑚) (or even 𝑂(𝑝2𝑑 +
𝑝𝑑2 + √𝑝𝑑𝑚), provided that the étale part of 𝐸[𝑝] lives in a small extension). Namely, we lift 𝐸 to a candidate 𝐸0
along with an étale point of 𝑝-torsion �̃�0. Modulo 𝑝, this point 𝑃0 live in an extension 𝑒 of degree at most 𝑝 − 1 and
is computed in time 𝑂(𝑝2𝑑 + 𝑝𝑑2): 𝑂(𝑝2𝑑) to compute the division polynomial via the recurrence formula, then
we factorize its separable part which is of degree 𝑝 in time 𝑂(𝑝1.5𝑑 + 𝑝𝑑2) by [KU11]. {{ In fact since we can recover
the trace 𝑡 modulo 𝑝 using Hasse’s formula, we can compute the action of the Frobenius on the étale part: 𝜋𝑃 = 𝑡.𝑃. Then the
étale part lives in the degree 𝑒 extension where 𝑡𝑒 = 1 mod 𝑝, so we have 𝑒, and we only need an equal degree factorisation
which costs 𝑂(𝑝𝑑2). }} We then lift the point to �̃�0 ∈ 𝐸0 in time 𝑂(𝑚𝑑𝑒) using Remark 6.2.3, since we know how to
evaluate [𝑝] efficiently. We can then compute the isogeny via the fast version of Vélu’s formula from [BDL+20] in
time 𝑂(√𝑝𝑒𝑑𝑚), and check if we get 𝜎−1(𝐸), and use a Newton iteration to converge, using Remark 6.2.3 again.
Once 𝑃0 is computed, the cost to compute 𝐸 at precision 𝑚 is then 𝑂(√𝑝𝑒𝑑𝑚).

Update @2022-06: The strategy works, it was implemented by Maiga and is the subject of the paper [MR22b].
If we are given a point 𝑃 of 𝑝-torsion in an extension of degree 𝑒, then using the sqrtVelu formula we can indeed
compute the canonical lift to precision 𝑚 in time 𝑂(√𝑝𝑒𝑑𝑚).

When writing that paper, I realized we could make several improvements to the method outlined above. First to
get this point 𝑃 of 𝑝-torsion, we do not need to compute the full division polynomial 𝜓𝑝. We can directly compute
the kernel of the Verschiebung 𝐻𝑝 of degree only 𝑂(𝑝) in time 𝑂(𝑝 log 𝑞) = 𝑂(𝑝𝑑). Then, to bypass the distinct
degree factorisation, we can retrieve an eigenvalue 𝜆 of the Frobenius to precision 1. We then compute the degree 𝑒
of the extension in time 𝑂(𝑑2 + 𝑑𝑝), and then do an equal degree factorisation in 𝑂(𝑝𝑑2), for a total cost to find
𝑃 of 𝑂(𝑑2𝑝). We refer to [MR22b, § 4.1, § 4.1] for more details. If we know the cardinal of 𝐸 already, sampling a
point directly costs 𝑂(𝑒2𝑑2). Anyway, the total cost to lift to precision 𝑚 is thus 𝑂(√𝑝𝑒𝑑𝑚 + 𝑑2𝑝).

The other improvement is that if 𝑒 is too large, it is better to directly work formally with 𝑥 ∣ 𝐻𝑝(𝑥), the formal
étale point of 𝑝-torsion. In other words we lift 𝐻𝑝 directly, see [MR22b, § 4.4]. The complexity to lift to precision 𝑚
is then in 𝑂(𝑝𝑑𝑚), using Vélu’s formula here, since we have the (lifted) kernel 𝐻𝑝.

6.7 conclusion and perspectives

We have seen that using modular correspondances or modular polynomials, we can compute a canonical lift in
time quasi-linear in the precision. As Section 6.6 shows, the modular polynomials also allows to get relations on
the derivative of the modular invariants, hence get the Sym2 action of the lift of the Frobenius on tangent space.

Using the modular polynomial 𝛷𝑝 is not the only way to compute canonical lifts. Indeed we can also lift other
isogenies between Galois images (see [Koh08, § 3.1]). This can for instance be used to lift abelian varieties when
their modular invariant is in 𝔽𝑝2 . (We could also take a non rational isogeny, lift the isogenous variety, and then
redescend, or simply boostrap the Newton step to enough precision.)

Lifting (not necessarily canonical) is an important tool, which we already used in Section 5.3.8 to evaluate
modular polynomials and which we will use again in Section 7.4 to compute class polynomials. We have seen in
Section 5.3.8 that it would also be nice to know how to compute non-canonical lifts of ordinary abelian varieties
(given their local moduli coordinates).

I am also interested in computing other lifts than (canonical) lifts of ordinary abelian varieties (they exist by
smoothness of the moduli space), in view of applications to the security of SIDH. This is the reason I mentioned
the full Serre-Tate correspondance in Section 6.2.1. Related to this, we know that the 𝑝-divisible group 𝐴(𝑝)
(hence its Dieudonné module D𝑝(𝐴)) encodes all the required information on 𝐴 (the formal group law of 𝐴 is the
formal group associated to its connected part, the endomorphisms of 𝐴 can be read of it by Tate’s isogeny theorem
[Tat66]…). It would be interesting to study this in more details, especially for endomorphism rings computations.

144

7 CLASS POLYNOM IALS

contents
7.1 Introduction 145
7.2 An overview of class polynomial computations 145

7.2.1 The main theorem of complex multiplication 145
7.2.2 Strategies to compute the Shimura class polynomial 146

7.3 Enumerating abelian varieties with CM over a finite field 146
7.4 Using 𝑝-adic lifts to compute the class polynomials 148
7.5 Conclusion and perspectives 149

7.1 introduction

We give a quick overview of class polynomial computations in Section 7.2, the interested reader will find more
details in [Rob21, Chapter 9]. The class polynomials parametrizes the moduli 𝒜𝑔,𝛷 of all abelian varieties with CM
by (𝒪ℰ, 𝛷). They also define the Shimura class field ℌ𝐸.

There are three methods to compute class polynomials: analytic (ie working over ℂ), 𝑝-adic using canonical
lifts, and a CRT approach. The CRT approach is briefly described in Section 7.3 (more details are given in [LR13;
ER13]). A new result of this Chapter is that we give a quasi-linear algorithm to compute class polynomials via
the 𝑝-adic approach in Section 7.4, under the (cheating) assumption that ℌ𝐸 has a sufficiently small prime 𝔓 (of
ordinary reduction), or that we are already given an abelian variety with CM by 𝒪ℰ over 𝔽𝔓.Some perspectives are
in Section 7.5.

7.2 an overview of class polynomial computations

7.2.1 The main theorem of complex multiplication

For the theory of complex multiplication, we refer to [Rob21, Chapter 9] and its references. If ℰ is a CM field of
degree 2𝑔, the class polynomials encode the modular invariants of all abelian varieties with complex multiplication
by 𝒪ℰ.

In the case of elliptic curves (ie 𝑔 = 1), it is well known that these elliptic curves form a torsor under the action
of Cl(𝒪ℰ) by isogenies (where the action of [𝐼] on 𝐸 is given by 𝐸/𝐸[𝐼]). And if 𝐸 has complex multiplication, the
main theorem of complex multiplication relates the action of 𝐼 ∈ Cl(𝒪ℰ) on 𝐸 with the Galois action of 𝐼 given by
class field theory (ie by the Artin Symbol) on 𝑗(𝐸).

In particular the class polynomial gives an equation for the Hilbert class field of 𝐸. This can be generalised to
construct ring class fields (by looking at the 𝑗-invariant of elliptic curve with CM by an order 𝑂 of ℰ), and ray class
field (by evaluating modular functions of level 𝑛, typically the 𝑥-coordinate of an 𝑛-torsion point). See [Sil94] and
[ER13, § 1.2.1] for a very brief overview.

Shimura extended these results to (principally polarised) abelian varieties with complex multiplication. Here,
due to the polarisation, a slightly different class group acts on such abelian varieties 𝐴, which I termed the Shimura
class group in [LR13]. The whole theory of complex multiplication extends to non maximal orders, and even to CM
algebras (ie product of CM orders, but this does not occur for simple abelian varieties with complex multiplication
anyway). In this Chapter, I focus on the maximal case for simplicity.

A brief summary of the main theorem of complex multiplication is given in [Rob21, Chapter 9]. Let ℰ be a CM
field, 𝛷 a CM type, ℱ its real subfield, 𝒪ℰ the maximal order, ℰ𝑟 the reflex field, ℱ 𝑟 its real subfield. Let 𝒜𝑔,𝛷/ℚ
be the moduli (of dimension 0) of all abelian varieties with CM by (𝒪ℰ, 𝛷). For the purpose of this Chapter, we just
need to know that the points of 𝒜𝑔,𝛷 are defined over a class field ℌ𝐸 of ℰ𝑟 (defined in [Rob21, Theorem 9.4.1]),
and that the splitting of 𝒜𝑔,𝛷 into ℰ𝑟-irreducible components under the Galois action corresponds to the action of

145

7 Class polynomials

the image of Cl𝐾𝑟 by the type norm in the Shimura class group [Rob21, Corollary 9.4.2]; and these components are
defined over ℱ 𝑟. Furthermore, the Taniyama-Shimura formula [Rob21, Theorem 9.5.1] describes the characteristic
polynomial 𝜒𝜋 of the reductions modulo 𝔓 of the abelian varieties with CM by 𝒪ℰ (they have potential good
reduction everywhere). Furthermore, if the reduction is ordinary (eg if 𝑝 splits completely in ℰ), then there is a
bijection between the reduction of the abelian varieties in 𝒜𝑔,𝛷 and the abelian varieties in 𝔽𝑞 with CM by 𝒪ℰ, see
[Rob21, Section 9.5]. These results thus gives an explicit description of the abelian varieties with CM over number
fields and finite fields.

7.2.2 Strategies to compute the Shimura class polynomial

Since 𝒜𝑔,𝛷 is (geometrically reduced) of dimension 0, it suffices to enumerate all its geometric points and construct
the corresponding polynomial representation.

We typically use a Hecke representation, like for modular polynomials. Let 𝐽 = (𝑗1, … , 𝑗𝑛) be modular invariants.
If 𝑗1 separate the points, then 𝐻𝛷,1(𝑋) = ∏𝐴∈𝒜𝑔,𝛷

(𝑋 − 𝑗1(𝐴)), and 𝑗𝑖(𝐴)𝐻′
𝛷,1(𝑗1(𝐴)) = 𝐻𝛷,𝑖(𝑗1(𝐴)) with

𝐻𝛷,𝑖(𝑋) = 𝜎𝐴∈𝒜𝑔,𝛷
𝑗𝑖(𝐴) ∏

𝐵∈𝒜𝑔,𝛷,𝐵≠𝐴
(𝑋 − 𝑗1(𝐵)).

Here we assume that 𝑗1(𝐴) separates the points for simplicity, see eg [Str10, § III.5] for a general triangular definition
when this is not the case.

To get an irreducible component of 𝒜𝑔,𝛷 over ℱ 𝑟, it suffices to find one point of this component and then to
look at the action of the image of the type norm in the Shimura class group to get the other ones. So enumeration is
easy once we have found a starting point.

There are three main strategies:

1. Via complex approximation. This strategy constructs the period matrices of the abelian varieties in 𝒜𝑔,𝛷(ℂ),
and then evaluate modular forms on these matrices. In dimension 1 and 2, we can use fast evaluation of
theta constants to get fast evaluation of the modular invariants. This allows to get an approximation of the
class polynomials in quasi-linear time in their size (for a given precision), and if the precision is large enough
a rational reconstruction (over ℚ or ℱ 𝑟 depending on what type of irreducible component we want to
compute) is done.

2. Via 𝑝-adic approximation. This is the same strategy as via complex approximation, except that the class
polynomials are computed via 𝑝-adic approximations. We detail this in Section 7.4.

3. Via a CRT approach. This is similar to the 𝑝-adic method, except that rather than working with one prime 𝑝
at precision 𝑁 we work with several primes 𝑝𝑖 at precision 1 (ie in ℤ/𝑝𝑖ℤ or 𝒪𝐾𝑟/𝔭𝑖), and use the CRT to
recover the class polynomials. See Section 7.3

In the complex case, a starting point can be taken to be the lattice 𝛷(𝒪ℰ). However we will see that both for the
𝑝-adic and CRT approach getting a maximal variety 𝐴/𝔽𝑞 with CM by (ℰ, 𝛷) is harder.

We briefly mention the complexity of the analytic approach, which essentially boils down to being able to evaluate
the modular invariants associated to the CM points in quasi-linear time. When 𝑔 = 1 the analytic approach is
studied in [Eng09b] and for 𝑔 = 2 in [Str10] using the naive but rigourous evaluation of theta constants and [ET14]
using Dupont’s fast but heuristic algorithm to get a quasi-linear algorithm. Letting 𝑁 be the degree of the class
polynomials and 𝐻 their height, using the very heuristic putative fast algorithm to evaluate theta functions of [Lab16,
§ 7.4] (see Section 5.3.4) along with [NSV11; NS16] for fast rational reconstruction, the analytic method gives
an 𝑂(𝑁𝐻) algorithm. Using the proved “improved naive” algorithm for the evaluation, we get an 𝑂(𝑁𝐻1+𝑔/2)
algorithm instead.

7.3 enumerating abelian varieties with cm over a finite field

Fix a primitive CM type (ℰ, 𝛷), and 𝐴 ∈ 𝒜𝑔,𝛷. Let 𝔭 be a prime of 𝒪ℱ𝑟 , 𝑝 = 𝔭 ∩ ℤ, 𝔓 a prime of 𝒪ℌ𝐸
above 𝔭,

and 𝔽𝑞 ≔ 𝔽𝔓 with 𝑞 ≔ 𝑁(𝔓) = 𝑝𝑓𝔓 . Assume that 𝑝 is unramified in 𝒪ℰ and 𝔭 in ℌ𝐸.
Let 𝔞 = 𝑁𝛷(𝔭). Then by the Taniyama-Shimura formula (see [Rob21, Theorem 9.5.1]), 𝑓𝔓 is the order of 𝔞 in

Cl(𝒪ℰ), and the Artin symbol (𝔓
𝔭) corresponds to the Galois action of the small Frobenius 𝜋𝔭 on 𝐴𝔓/𝔽𝑞 which

is an 𝔞-isogeny. In particular, the Frobenius 𝜋𝑞 = 𝜋𝔓 seen as an element 𝜋 ∈ 𝒪ℰ satisfy 𝜋𝔓𝒪ℰ = 𝑁ℌ𝐸,𝛷(𝔓).

146

7.3 Enumerating abelian varieties with CM over a finite field

We say that 𝔭 is an ordinary prime if 𝐴𝔓 is ordinary (and simple) (since the elements of 𝒜𝑔,𝛷 are isogenous, this
does not depends on the representative). By [Rob21, Section 9.5] the reduction of the points of 𝒜𝑔,𝛷 modulo 𝔭 are
exactly given by the abelian varieties with CMby (ℰ, 𝛷) and defined over 𝔽𝑞, with 𝑞 given by the Taniyama-Shimura
formula above. By [Sug14, Theorem 1.2] 𝔭 is an ordinary prime if 𝑝 splits completely in ℰ, furthermore in this case,
by [Mil06, Corollary 8.3], the CM type can be read of from the decomposition of 𝜋𝔓𝒪ℰ (as the set of 𝜙 factoring
through ℰ𝑣 for the places 𝑣 ∣ 𝜋𝔓).

We briefly explain how to find all abelian varieties with CM in 𝔽𝑞.

1. Compute the characteristic polynomial of 𝜋 using the Taniyama-Shimura formula. This gives the isogeny
class.

2. Find an abelian variety 𝐴/𝔽𝑞 in the isogeny class (ie such that End0(𝐴) ≔ End(𝐴) ⊗ ℚ = ℰ) by point
counting (first sampling some random points and testing if they are of the correct order).

3. Check if End(𝐴) is maximal and if not compute an isogeny that increases the endomorphism ring.

4. Once we have a maximal abelian variety 𝐴, compute the other ones using the action of the Shimura class
group ℭ(ℰ).

This is the strategy implemented in [LR13], more details are given in [ER13, § 5]. Note that at the time we did
not have cyclic isogenies or modular polynomials for cyclic isogenies, so for abelian surfaces the going up phase
of the algorithm did not always succeed. From the structure of the isogeny graph of Section 5.6.4, ℓ-isogenies are
enough to get maximal real multiplication, but afterwards we need cyclic 𝐼-isogenies. If 𝐼 is not principal, this
requires modular polynomial for not necessarily principally polarised abelian varieties with real multiplication, see
Section 5.7.

The vertical method for endomorphism rings computations

We briefly explain how to compute the endomorphism ring, following [FL08], and then how to go up. We already
know thatEnd(𝐴) ⊂ ℤ[𝜋, 𝜋], andEnd(𝐴) is stable under theRosati involution (ie under the complex conjugation).
Taking an appropriate basis of 𝒪ℰ/ℤ[𝜋, 𝜋], we reduce to check if an endomorphism 𝛼 ∈ 𝒪ℰ is in End(𝐴).

Localising, we may assume that 𝛼 is of order ℓ𝑚 in 𝒪ℰ/ℤ[𝜋, 𝜋]. So ℓ𝑚𝛼 is a polynomial in 𝜋 and 𝜋, and
is an endomorphism of 𝐴, and by the universal property of the isogeny [ℓ𝑚], 𝛼 is in End(𝐴) if and only if
(ℓ𝑚𝛼)(𝐴[ℓ𝑚]) = 0.

In good cases #𝑝 ∤ 𝒪ℰ/ℤ[𝜋, 𝜋] ([FL08, Proposition 3.7] states that this is always true when 𝑞 = 𝑝 > 3 and
𝑔 = 2), so ℓ ≠ 𝑝 and we may check that (ℓ𝑚𝛼)(𝐴[ℓ𝑚]) = 0 by computing it on a basis of the ℓ𝑚-torsion. Note that
since 𝑞𝜋 ∈ ℤ[𝜋] (we can check this looking at 𝜒𝜋), [ℤ[𝜋, 𝜋] ∶ ℤ[𝜋]] is of index a power of 𝑝, so if ℓ is prime to
𝑝 we may also express ℓ𝑚𝛼 as a polynomial of the Frobenius (up to replacing 𝛼 by 𝑝𝑥𝛼). This makes it slightly easier
to evaluate (but evaluating 𝜋 is not too hard, we just compute 𝜋(𝑃) = 𝑞𝜋−1(𝑃)).

Of course we first test ℓ𝑚−1𝛼, then ℓ𝑚−2𝛼 and so on. This requires to compute a basis of 𝐴[ℓ], 𝐴[ℓ2] and so
on, which we do using Section 5.6.2. The extension 𝔽𝑞𝑑 defining the geometric points of 𝐴[ℓ] can be computed
from 𝜒𝜋 mod ℓ. Then, if 𝐴(𝔽𝑞𝑑) does not contain 𝐴[ℓ2], the points of 𝐴[ℓ𝑚] are defined over 𝔽𝑞𝑑ℓ(𝑚−1) . Indeed if
𝑃 ∈ 𝐴[ℓ2], 𝜋𝑑(𝑃) = 𝑃 + 𝑄 with 𝑄 ∈ 𝐴[ℓ] so 𝜋ℓ𝑑 = 𝑃 + ℓ𝑄 = 𝑃, so all geometric points of 𝐴[ℓ2] are defined
over 𝔽𝑞ℓ𝑑 and we conclude by induction. See also [FL08, Proposition 6.3] for a converse when End(𝐴) is maximal.

Note that if we know 𝑂 = End(𝐴) already, we may consider 𝐴[ℓ] as an 𝑂/ℓ𝑂 module, so look at the order of
𝜋 ∈ 𝑂/ℓ𝑂. This typically gives smaller bounds on 𝑑: [ER13, § 5.5.2], [FL08, Proposition 6.2]. If 𝛼 is not zero on
𝐴[ℓ𝑚], we let 𝑖 be the smallest integer such that 𝛼 is not zero on 𝐴[ℓ𝑖], then 𝛼(𝐴[ℓ𝑖]) ⊂ 𝐴[ℓ] and this image gives
a candidate for an isogeny to try to increase the endomorphism ring. We refer to [ER13, § 5] for more tricks.

The horizontal method for endomorphism rings computations

Another strategy is to use the horizontal method to compute endomorphisms [BS09; Bis11]. Looking at the Shimura
class groups of the lattice of orders between 𝒪ℰ and ℤ[𝜋, 𝜋], we can look at a group relation (of primes not dividing
the index [𝒪ℰ ∶ ℤ[𝜋, 𝜋]]) valid in one order 𝑂 but not in its suborders. Starting from a candidate 𝐴, on which we
already know that End(𝐴) ⊃ 𝑂1, 𝑂1 a suborder of 𝑂, we can follow the isogeny cycle induced by the relation valid
on ℭ(𝑂) but not ℭ(𝑂1), and then check whether we get back to 𝐴 or to another variety 𝐵. In the later case we
know that End(𝐴) ⊅ 𝑂, and we can try to find a common ℓ-isogeny (this time with ℓ dividing the index) from 𝐵

147

7 Class polynomials

and 𝐴 to close the isogeny cycle. This strategy was implemented in [BLR11]. This paper was not published because
at the time computing the ℓ-isogeny going up required to compute points in 𝐴[ℓ] using Section 5.6.2 followed by
the isogeny formula of Chapter 4. So it was not really worthwhile compared to the horizontal method (the main
gain was that we did not need to compute 𝐴[ℓ𝑚] if ℓ𝑚 divides the index, only 𝐴[ℓ]). But now that we have an
efficient way to evaluate modular polynomials (especially for abelian surfaces), we should revisit this article: the
common isogeneous target is simply given by the gcd of the two modular polynomials evaluated at 𝐴 and 𝐵.

The CRT algorithm

With this strategy we have the following CRT algorithm to compute an irreducible component of 𝒜𝑔,𝛷 over ℱ 𝑟

(assuming 𝑔 = 2 for simplicity, the generalisation is immediate): call a prime 𝔭0 ∈ 𝒪ℱ𝑟 a good CRT prime if it
is of degree 1 over ℚ and it splits completely in 𝒪ℰ𝑟 into 𝔭0 = 𝔭𝔭, and 𝔭 is an ordinary prime of degree 1 in ℌ𝐸.
Then we may try to find one 𝐴 with CM by (𝒪ℰ, 𝛷) using the strategy above [LR13, § 2 and § 3], and find the
others using the action of the type norm [LR13, § 4]. By sieving on the good CRT primes, we may assume that the
index [𝒪ℰ ∶ ℤ[𝜋, 𝜋]] is not divisible by too large primes [LR13, § 5.1 and § 6]. We then do a CRT reconstruction
of the class polynomial in ℱ 𝑟, doing a LLL step to reconstruct a coefficient 𝑐𝑖 ∈ ℱ 𝑟 from its value in 𝒪ℱ𝑟/𝐼, 𝐼 the
ideal given by the CRT [LR13, § 5.3]. Alternatively, we could work over both each CRT prime 𝔭0 and their Galois
conjugate to get the values 𝒪ℱ𝑟/𝑁, then we just need to do a rational reconstruction over ℚ (in the Dihedral case
this amount to working with both classes of CM types). But since the CRT step is expansive, it is faster to do the
LLL computation, this gains a factor two.

Unfortunately, to get a quasi-linear algorithm to compute the class polynomial, we would need a quasi-linear
algorithm to compute its reduction modulo 𝑝 at each of the CRT primes. But even for abelian surfaces, simply
sampling 𝐴 in the correct isogeny class takes too long, see [LR13, § 5.1]. If we have explicit equation for the Humbert
surface (parametrizing real multiplication by 𝒪ℱ), we can speed up this step by sampling inside it, but this is still
not quite enough to get a quasi-linear algorithm (from back of the enveloppe computations).

Broadly, if the image of the type norm ofCl(𝒪ℰ𝑟) in the Shimura class group is of cardinal 𝑁, then 𝑁 = [ℌ𝐸 ∶ ℰ𝑟]
is the degree of the class polynomial. By Cebotarev density theorem we expect a density of 1/𝑁 prime to split
completely in ℌ𝐸. Less heuristically, under GRH we can bound the minimal prime splitting totally by 𝑂(log2 𝛥ℌ𝐸

)
[LO77; Bac90]. Since 𝛥ℌ𝐸

= 𝛥𝑁
ℰ𝑟 (see [BGL11, § 6.4]), this gives a bound 𝑝 = 𝑂(𝑁2) for the minimal prime. If

the class polynomials are of height 𝐻, then we need (neglecting log factors) 𝑂(𝐻) primes, so the largest prime is
𝑂(𝑁2 + 𝐻𝑁).

I don’t know of a general height bound for Shimura class polynomials, but in dimension 1 (ie for quadratic
imaginary fields) we have 𝑁, 𝐻 = 𝑂(√𝛥𝐾) so the class polynomial is of size 𝑂(𝛥𝐾). In dimension 2 (ie for quartic
CM fields), we have 𝑁 = 𝑂(√𝛥0𝛥1) where 𝛥0 = 𝛥ℱ and 𝛥1 = 𝛥𝐾/ℱ. A bound on 𝐻 given in [Str10, § II.11] using
[GL12] is 𝑂(𝛥3/2

1 𝛥5/2
0), but in practice it seems to be 𝑂(𝛥1/2

1 𝛥1/2
0) [Str10, Appendix 3], so once again 𝑁 ≈ 𝐻.

Heuristically we expect this to hold again in higher dimension: all points of 𝒜𝑔,𝛷 have the same Faltings height by
[Col93], and we expect this height to be small compared to the degree by Colmez’ conjecture on the Faltings height
of CM points [Col93; AGH+18; YZ18], so 𝐻 = 𝑂(𝑁). In any case, we have 𝑁 = 𝑂(𝐻), so the largest prime will
be 𝑂(𝐻𝑁), ie the size of the class polynomial.

But then in dimension 𝑔 we expect by Honda-Tate to have roughly 𝑂(𝑝𝑔(𝑔+1)/4) isogeny classes, hence we
expect an isogeny class to be of size roughly 𝑂(𝑝𝑔(𝑔+1)/4) so sampling already costs 𝑂(𝑝𝑔(𝑔+1)/4) tries.

The CRT algorithm is optimal if 𝑔 = 1. Indeed we don’t even need to sample in the isogeny class (but this does
speed things up), since we have 𝑝 = 𝑂(𝛥𝐾) = 𝑂(𝐻𝑁) and there are 𝑂(√𝛥𝐾) maximal curves already. So directly
sampling for 𝐸 with maximal CM by 𝒪ℰ can be done in time 𝑂(𝑁), then reconstructing the class polynomial
modulo 𝑝 costs 𝑂(𝑁) operations in 𝔽𝑝, and the full class polynomial is reconstructed using 𝑂(𝐻) CRT primes,
this gives a 𝑂(𝐻𝑁) algorithm. We refer to [Sut11; ES10] for optimisations using isogeny classes and smaller class
invariants.

7.4 using 𝑝-adic lifts to compute the class polynomials

Let 𝔓 be a prime of 𝒪ℌ𝐸
of ordinary reduction, 𝑞 ≔ 𝑁(𝔓) = 𝑝𝑓𝔓, 𝔭 = 𝔓 ∩ 𝒪ℱ𝑟 and 𝑝 = 𝔓 ∩ ℤ. We can then

compute the class polynomials over 𝔽𝑞, as in Section 7.3 and then use 𝑝-adic lifting, using the tools of Chapter 6,
rather than via a CRT. For simplicity, we detail the algorithm in the case 𝑔 = 2, but the extension to arbitrary 𝑔 is
immediate.

148

7.5 Conclusion and perspectives

First we need to find a maximal abelian variety 𝐴/𝔽𝑞, ie one CM point over the residue field 𝔽𝑞 = 𝒪ℌ𝐸
/𝔓. Then

we use isogenies or modular polynomials to find the 𝑁 other ones, using small generators of the class group, hence
isogenies of small degree (prime to th e index). This second step is quasi linear in the size of the class polynomial
over 𝔽𝑞 ([LR13, § 6]). Finally we lift all of them to ℚ𝔓 at precision 𝑚 = 𝑂(log𝐻/ log 𝑞). This is done in time
quasi-linear in the precision thanks to Chapter 6. We then reconstruct the class polynomial in ℚ𝔭, and recognize
coefficients in ℱ 𝑟 by doing a rational reconstruction (using eg a variant of [NSV11; NS16]). We could bypass
this LLL step of dimension 𝑔 + 1 by computing the class polynomial in ℚ𝔭 and its Galois conjugate, so that the
reconstruction in ℱ 𝑟 boils down to an interpolation.

A key difference of this approach with [GHK+06; CKL08] (which use 2-adic and 3-adic lifting respectively) is
that the authors only lift one abelian surface with CM, which gives one root of the class polynomial. They then
recover the class polynomial via an LLL computation. Even using a fast LLL variant which is quasi-linear in the
needed precision like [NSV11; NS16], this LLL step is not quasi-linear in the required dimension, which depends on
𝑁, the degree of the class polynomial, see Remark 5.3.13. By contrast our method reconstructs the class polynomial
from all its roots (in other words all the Galois conjugates under Gal(ℌ𝐸/ℰ𝑟)), which is more efficient.

To get a quasi-linear algorithm to compute the class polynomials, we first need that 𝑝 is sufficiently small that
computing the 𝛷𝑝 modular polynomials for lifting does not dominate the complexity step. Alternatively, since we
control exactly the Galois action in the CM case, we could use 𝛷ℓ modular polynomials for lifting whenever the
Galois image 𝜎 𝑖𝐴 is related to 𝐴 by an ℓ-isogeny, as discussed in Section 6.3.

From the discussion of Section 7.3, the real difficulty is the initialisation step, ie find a maximal 𝐴 over 𝔽𝑞. If
we have an algorithm to find a maximal abelian variety in time 𝑞𝐶, then we need to find 𝔓 such that 𝑝𝑓𝔓 is in
𝑂((𝑁𝐻)1/𝐶), where 𝑁𝐻 is the size of the class polynomials (ie 𝑁 is the degree and 𝐻 the height). Depending on
ℌ𝐸 and 𝐶, such a 𝔓 may or may not exist. If we look for a 𝑝 which stays inert in ℌ𝐸. Then 𝑝 is small, but 𝑞 = 𝑝𝑁 is
too large. If we look for 𝑝 which splits completely, we have seen in Section 7.3 that the smallest such 𝑝 is heuristically
in 𝑂(𝑁), and there is a proved bound under GRH of 𝑂(𝑁2), which is too large.

A solution to the initialisation problem is to cheat and start with an abelian variety 𝐴/𝔽𝑞 (and 𝑝 sufficiently
small), and then compute the class polynomials associated to End(𝐴) (but then we do not have much control on
the order). This is the assumption in [GHK+06; CKL08].

A more honest solution would be to somehow recursively compute a stratification of 𝒜𝑔 by moduli spaces of
codimension 1 in each other (and containing the CM points), so that sampling could be done more efficiently, ie at
the end we would sample in a dimension 1 variety (as is the case for the CM method for elliptic curves) rather than
in dimension 𝑔(𝑔 + 1)/2.

Another strategy that I would like to explore is, rather than looking at primes of ordinary reduction, to look at
primes of supersingular or even superspecial reduction. Then we could try to construct 𝐴 directly over 𝔽𝑞 as a
product of supersingular elliptic curves (or isogenous to such a product). This could help solve the initialisation
step both for the CRT and 𝑝-adic approaches (but in the 𝑝-adic approach this would complicate the lifting).

7.5 conclusion and perspectives

The global strategy to compute class polynomials extend to compute the class polynomials for the more general
class fields given by [Rob21, Theorem 9.4.1] (ie class fields of level 𝔟): the moduli space is of dimension 0, so we
enumerate all possibilities and evaluate suitable modular invariants at high enough complex precision, or high
enough 𝑝-adic precision, or high enough “CRT precision”.

To get quasi-linear algorithms in the complex analytic approach, we would need a way to evaluate modular
invariants of level 𝑁 (level depending on the class polynomial we want to compute). See Section 5.7 for an approach.

In the 𝑝-adic and CRT approaches, since we know how to evaluate isogenies on points, once we have a starting
abelian variety (𝐴, 𝑃) with 𝑃 of 𝔟-torsion, we could use isogenies (of degrees prime to 𝔟) to compute the other ones,
moving 𝑃 along the isogenies. Likewise, lifting 𝑃 does not pose problems (see Remark 6.5.1), so long as we can
write equations for 𝔟-division polynomials (or simply the multiplication by 𝔟) and 𝔟 is prime to 𝑝 (so the 𝔟-torsion
is étale and lifting it via Newton iteration behaves well). The hard part is to find one such (𝐴, 𝑃) over 𝔽𝑞, as we
have seen is the case when 𝔟 = 1 already.

However when 𝑔 = 1, the CRT method works well, ie is quasi-linear. It has been used to compute class
polynomials [Sut11], and we have used it in [ERS16] to compute ray class fields of quadratic imaginary fields in
quasi-linear time. This is a joint work with Enge and Seiler, unfortunately unpublished but the main ideas are in
Seiler’s master thesis. The main difference in [ERS16] is that while Seiler consider primes that split totally in the
Hilbert class field and then compute 𝔟-torsion polynomials; we consider primes that split totally in the ray class

149

7 Class polynomials

field. We can then uses the methods of Section 5.6.2 to compute the 𝔟-torsion points. In fact, as we have seen, it
suffices to compute the 𝔟-point for one elliptic curve with CM, and then use isogenies both to compute the other
CM curves as in Section 7.3 and to push the 𝔟-torsion point to get all of them. Considering primes that split totally
in the ray class field, and not only in the Hilbert class field, is key for a quasi-linear algorithm.

When 𝑔 = 2, the class polynomials have non integral coefficients, ie they live in ℱ 𝑟 rather than in 𝒪ℱ𝑟. Like
for modular polynomials, this is due to the fact that the Igusa invariants we use are only defined away from
𝜒10 = 0. So the denominators correspond to primes 𝑝 such that there is an 𝐴 with CM by (ℰ, 𝛷) which reduces
modulo 𝑝 to a product of elliptic curves (this is in particular the case for supersingular reduction). So once we
have evaluated our polynomials at some precision, we need to do a rational reconstruction step rather than just an
integral reconstruction. But we do have a good control on this denominator, see [Str10, § II.9] and the refinements
in [LV14].

For higher 𝑔, it would be interesting to have an integral version of the class polynomials, by interpreting the
denominator as a certain modular value, as we did in Section 5.3.6 for the modular polynomials. It would be
sufficient to define a canonical differential basis on our abelian varieties with CM, compatible with the Galois action.
Clearly we should take a basis 𝑤𝐴 on 𝐴 such that the action of 𝒪ℰ is diagonal on 𝑤𝐴 (given by the CM type 𝛷),
but this is not quite enough to normalize 𝑤𝐴.

As we saw in Section 7.3 the height bound on the class polynomials 𝑂(𝛥3/2
1 𝛥5/2

0) for 𝑔 = 2 is pessimistic
compared to thee bound 𝑂(𝛥1/2

1 𝛥1/2
0) observed in practice. It is possible we could prove the improved height

bounds (without relying on Colmez conjecture) using the refinements of [LV14] for the denominators and then
refining the arguments in [Str10, § II.11] which bound the numerators. (Streng’s height estimation is dominated by
the estimated bound 𝑂(𝛥3/2

1 𝛥5/2
0) on denominators of [GL12], but even a refined bound of 𝑂(𝛥1/2

1 𝛥1/2
0) for the

the height of the denominators would only give a height of 𝑂(𝛥1/2
1 𝛥3/2

0 + 𝛥0𝛥3/4
1) for the class polynomials using

[Str10, § II.11].)
Class polynomials are just an exemple of Shimura varieties (of PEL type). I would have liked to call this Chapter

“Computing integral models of Shimura varieties”, but unfortunately I don’t know of efficient ways to compute
them (even in small dimension), apart of course from modular polynomials and class polynomials. The reason
is that in dimension > 0, we cannot enumerate all points, and while evaluation-interpolation works, to get fast
interpolation we require to sample points in the variety in a controlled way. Otherwise relations are found by linear
algebra (either on Fourier coefficients as in [Gru10], or on some evaluations as we did in [MR20b] to compute
some Humbert surfaces), but this is not quasi-optimal. This look like a challenging (hence fun!) problem.

Even on themoduli of abelian surfaces there are lots of interesting Shimura varieties to compute: Hilbert/Humbert
surfaces, Shimura curves, generalised Humbert varieties…We refer to [Elk08; EK14; Gru10] for some explicit
computations. Likewise, once we have equations for Hilbert surfaces (we do have them for small discriminants), we
could try to compute the families of abelian variety with real multiplication. For instance we could use Chapter 5
to compute the endomorphism √𝑑 on the generic point of the surface (or via evaluation/interpolation of the
computation of √𝑑 on geometric points, ie over some abelian surfaces in this family).

150

PERSONAL B I B L IOGRAPHY

[BCR10] G. Bisson, R. Cosset, and D. Robert. AVIsogenies. Magma package devoted to the computation
of isogenies between abelian varieties. 2010. url: https://www.math.u-bordeaux.fr/
~damienrobert/avisogenies/. Free software (LGPLv2+), registered to APP (reference IDDN.-
FR.001.440011.000.R.P.2010.000.10000). Latest version 0.7, released on 2021-03-13. (Cit. on pp. 3, 7,
13, 53, 122, 123).

[BCR11] G. Bisson, R. Cosset, and D. Robert. “On the Practical Computation of Isogenies of Jacobian Surfaces”.
2011. url: https : / / www . math . u - bordeaux . fr / ~damienrobert / avisogenies/. In
preparation. (Cit. on pp. 3, 8, 12, 122).

[BLR11] G. Bisson, K. E. Lauter, and D. Robert. “Using horizontal isogenies to find hyperelliptic curves of
cryptographic interest”. 2011. In preparation. (Cit. on pp. 3, 12, 148).

[CR15] R. Cosset and D. Robert. “An algorithm for computing (ℓ, ℓ)-isogenies in polynomial time on
Jacobians of hyperelliptic curves of genus 2”. In: Mathematics of Computation 84.294 (Nov. 2015),
pp. 1953–1975. doi: 10.1090/S0025-5718-2014-02899-8. url: http://www.normalesup.
org / ~robert / pro / publications / articles / niveau . pdf. HAL: hal-00578991, eprint:
2011/143. (Cit. on pp. 3, 7, 9, 11, 18, 19, 33, 47, 74, 75, 83, 91).

[DJR+22] A. Dudeanu, D. Jetchev, D. Robert, and M. Vuille. “Cyclic Isogenies for Abelian Varieties with
Real Multiplication”. In: Moscow Mathematical Journal 22 (Feb. 2022), pp. 613–655. url: http:
//www.normalesup.org/~robert/pro/publications/articles/cyclic.pdf. HAL:
hal-01629829. (Cit. on pp. 3, 9, 11, 33, 77).

[ER13] A. Enge and D. Robert. “Computing class polynomials in genus 2”. Apr. 2013. url: http://www.
normalesup.org/~robert/pro/publications/reports/2013-04-class_poly_g2.pdf
(cit. on pp. 145, 147).

[ERS16] A. Enge, D. Robert, and G. Seiler. “A CRT approach to computing ray class fields of imaginary
quadratic fields”. 2016. url: http://www.normalesup.org/~robert/pro/publications/
articles/rayclass.pdf. In preparation. (Cit. on pp. 9, 12, 149).

[FLR11] J.-C. Faugère, D. Lubicz, and D. Robert. “Computing modular correspondences for abelian varieties”.
In: Journal of Algebra 343.1 (Oct. 2011), pp. 248–277. doi: 10.1016/j.jalgebra.2011.06.
031. arXiv: 0910 . 4668 [cs.SC]. url: http : / / www . normalesup . org / ~robert / pro /
publications/articles/modular.pdf. HAL: hal-00426338. (Cit. on pp. 3, 7, 11, 12, 91, 93,
138).

[IMR+14] S. Ionica, C. Martindale, D. Robert, and M. Streng. “Isogeny graphs of ordinary abelian surfaces over
a finite field”. Mar. 2014. In preparation. (Cit. on pp. 3, 8, 12, 124).

[KPR20] J. Kieffer, A. Page, andD. Robert. “Computing isogenies frommodular equations between Jacobians of
genus 2 curves”. Oct. 2020. arXiv: 2001.04137 [math.AG]. url: http://www.normalesup.org/
~robert/pro/publications/articles/modular_isogenies_g2.pdf. HAL: hal-02436133.
(Cit. on pp. 3, 9, 11, 12, 80, 81, 88, 101, 110–116, 122, 129).

[KNR+20] M. Kirschmer, F. Narbonne, C. Ritzenthaler, and D. Robert. FromLatticesToModularForms. Compu-
tation of modular forms in the isogeny class spanned by products of elliptic curves. Apr. 2020. url:
https://gitlab.inria.fr/roberdam/fromlatticestomodularforms (cit. on p. 3).

[KNR+21] M. Kirschmer, F. Narbonne, C. Ritzenthaler, and D. Robert. “Spanning the isogeny class of a power
of an elliptic curve”. In: Mathematics of Computation 91.333 (Sept. 2021), pp. 401–449. doi: 10.
1090/mcom/3672. arXiv: 2004.08315. url: http://www.normalesup.org/~robert/pro/
publications/articles/algebraic_obstruction.pdf. HAL: hal-02554714. (Cit. on pp. 3,
7, 8, 11, 12, 54, 78, 125, 127).

151

https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/
https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/
https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/
https://doi.org/10.1090/S0025-5718-2014-02899-8
http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf
http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf
http://hal.archives-ouvertes.fr/hal-00578991
http://eprint.iacr.org/2011/143
http://www.normalesup.org/~robert/pro/publications/articles/cyclic.pdf
http://www.normalesup.org/~robert/pro/publications/articles/cyclic.pdf
http://hal.archives-ouvertes.fr/hal-01629829
http://www.normalesup.org/~robert/pro/publications/reports/2013-04-class_poly_g2.pdf
http://www.normalesup.org/~robert/pro/publications/reports/2013-04-class_poly_g2.pdf
http://www.normalesup.org/~robert/pro/publications/articles/rayclass.pdf
http://www.normalesup.org/~robert/pro/publications/articles/rayclass.pdf
https://doi.org/10.1016/j.jalgebra.2011.06.031
https://doi.org/10.1016/j.jalgebra.2011.06.031
https://arxiv.org/abs/0910.4668
http://www.normalesup.org/~robert/pro/publications/articles/modular.pdf
http://www.normalesup.org/~robert/pro/publications/articles/modular.pdf
http://hal.archives-ouvertes.fr/hal-00426338
https://arxiv.org/abs/2001.04137
http://www.normalesup.org/~robert/pro/publications/articles/modular_isogenies_g2.pdf
http://www.normalesup.org/~robert/pro/publications/articles/modular_isogenies_g2.pdf
http://hal.archives-ouvertes.fr/hal-02436133
https://gitlab.inria.fr/roberdam/fromlatticestomodularforms
https://doi.org/10.1090/mcom/3672
https://doi.org/10.1090/mcom/3672
https://arxiv.org/abs/2004.08315
http://www.normalesup.org/~robert/pro/publications/articles/algebraic_obstruction.pdf
http://www.normalesup.org/~robert/pro/publications/articles/algebraic_obstruction.pdf
http://hal.archives-ouvertes.fr/hal-02554714

Bibliography

[LR13] K. E. Lauter and D. Robert. “Improved CRT Algorithm for Class Polynomials in Genus 2”. In: ANTS
X — Proceedings of the Tenth Algorithmic Number Theory Symposium. Ed. by E. W. Howe and K. S.
Kedlaya. Vol. 1. The Open Book Series. Berkeley: Mathematical Sciences Publisher, Nov. 2013,
pp. 437–461. doi: 10.2140/obs.2013.1.437. url: http://www.normalesup.org/~robert/
pro/publications/articles/classCRT.pdf. Slides: 2012-07-ANTS-SanDiego.pdf (30min,
International Algorithmic Number Theory Symposium (ANTS-X), July 2012, San Diego, USA), HAL:
hal-00734450, eprint: 2012/443. (Cit. on pp. 3, 8, 11, 12, 145, 147–149).

[LR10] D. Lubicz and D. Robert. “Efficient pairing computation with theta functions”. In: ed. by G. Hanrot, F.
Morain, and E.Thomé. Vol. 6197. Lecture Notes in Comput. Sci. 9th International Symposium, Nancy,
France, ANTS-IX, July 19-23, 2010, Proceedings. Springer–Verlag, July 2010. doi: 10.1007/978-
3-642-14518-6_21. url: http://www.normalesup.org/~robert/pro/publications/
articles/pairings.pdf. Slides: 2010-07-ANTS-Nancy.pdf (30min, International Algorithmic
Number Theory Symposium (ANTS-IX), July 2010, Nancy), HAL: hal-00528944. (Cit. on pp. 3, 8,
11, 18, 33, 58, 61).

[LR12] D. Lubicz and D. Robert. “Computing isogenies between abelian varieties”. In: Compositio Mathemat-
ica 148.5 (Sept. 2012), pp. 1483–1515. doi: 10.1112/S0010437X12000243. arXiv: 1001.2016
[math.AG]. url: http://www.normalesup.org/~robert/pro/publications/articles/
isogenies.pdf. HAL: hal-00446062. (Cit. on pp. 3, 7, 9, 11, 12, 18, 19, 33, 35, 43, 61, 74, 83, 91).

[LR15a] D. Lubicz and D. Robert. “A generalisation of Miller’s algorithm and applications to pairing com-
putations on abelian varieties”. In: Journal of Symbolic Computation 67 (Mar. 2015), pp. 68–92.
doi: 10.1016/j.jsc.2014.08.001. url: http://www.normalesup.org/~robert/pro/
publications/articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192. (Cit. on pp. 3, 8,
11, 18, 33–35, 52, 58–61).

[LR15b] D. Lubicz and D. Robert. “Computing separable isogenies in quasi-optimal time”. In: LMS Journal of
Computation and Mathematics 18 (1 Feb. 2015), pp. 198–216. doi: 10.1112/S146115701400045X.
arXiv: 1402.3628. url: http://www.normalesup.org/~robert/pro/publications/
articles/rational.pdf. HAL: hal-00954895. (Cit. on pp. 3, 9, 11, 71, 76, 83).

[LR16] D. Lubicz and D. Robert. “Arithmetic on Abelian and Kummer Varieties”. In: Finite Fields and
Their Applications 39 (May 2016), pp. 130–158. doi: 10.1016/j.ffa.2016.01.009. url:
http://www.normalesup.org/~robert/pro/publications/articles/arithmetic.pdf.
HAL: hal-01057467, eprint: 2014/493. (Cit. on pp. 3, 4, 9, 11, 33, 35, 49–52).

[LR20] D. Lubicz and D. Robert. “Linear representation of endomorphisms of Kummer varieties”. Dec. 2020.
url: http://www.normalesup.org/~robert/pro/publications/articles/action.pdf.
HAL: hal-03204365. (Cit. on pp. 3, 9, 11, 12, 49, 140, 141).

[LR23] D. Lubicz and D. Robert. “Fast change of level and applications to isogenies”. In: Research in Number
Theory (ANTS XV Conference) 9.1 (2023). doi: 10.1007/s40993-022-00407-9. url: http:
//www.normalesup.org/~robert/pro/publications/articles/change_level.pdf.
HAL: hal-03738315. (Cit. on pp. 3, 9, 11).

[MR20a] A. Maiga and D. Robert. “Computing the canonical lift of genus 2 curves in odd characteristic”.
Dec. 2020. url: http://www.normalesup.org/~robert/pro/publications/articles/
canonical_lift_g2.pdf. HAL: hal-03738314. (Cit. on pp. 3, 9, 11, 12, 136, 138–141).

[MR22a] A. Maiga and D. Robert. “Computing the 2-adic canonical lift of genus 2 curves”. In: Proceedings
of the Seventh International Conference on Mathematics and Computing – ICMC 2021. Ed. by D.
Giri, K.-K. R. Choo, S. Ponnusamy, W. Meng, S. Akleylek, and S. P. Maity. Vol. 1412. Advances in
Intelligent Systems and Computing (ICMC 2021). Singapore: Springer, Mar. 2022, pp. 637–672.
doi: 10.1007/978-981-16-6890-6_48. url: http://www.normalesup.org/~robert/pro/
publications/articles/canonical_lift_g2_p2.pdf. HAL: hal-03119147. (Cit. on pp. 3, 9,
11, 12, 88, 138, 142).

[MR22b] A. Maiga and D. Robert. “Towards computing canonical lifts of ordinary elliptic curves in medium
characteristic”. Mar. 2022. url: http://www.normalesup.org/~robert/pro/publications/
articles/fast_canonical_lift_g1.pdf. HAL: hal-03702658. (Cit. on p. 144).

[MR19] E. Milio and D. Robert. “Denominators of modular polynomials on Hilbert surfaces”. June 2019. In
preparation. (Cit. on pp. 3, 8, 11, 93, 101, 102).

152

https://doi.org/10.2140/obs.2013.1.437
http://www.normalesup.org/~robert/pro/publications/articles/classCRT.pdf
http://www.normalesup.org/~robert/pro/publications/articles/classCRT.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2012-07-ANTS-SanDiego.pdf
http://math.ucsd.edu/~kedlaya/ants10/
http://hal.archives-ouvertes.fr/hal-00734450
http://eprint.iacr.org/2012/443
https://doi.org/10.1007/978-3-642-14518-6_21
https://doi.org/10.1007/978-3-642-14518-6_21
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-ANTS-Nancy.pdf
http://ants9.org/
http://ants9.org/
http://hal.archives-ouvertes.fr/hal-00528944
https://doi.org/10.1112/S0010437X12000243
https://arxiv.org/abs/1001.2016
https://arxiv.org/abs/1001.2016
http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf
http://hal.archives-ouvertes.fr/hal-00446062
https://doi.org/10.1016/j.jsc.2014.08.001
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://hal.archives-ouvertes.fr/hal-00806923
http://eprint.iacr.org/2013/192
https://doi.org/10.1112/S146115701400045X
https://arxiv.org/abs/1402.3628
http://www.normalesup.org/~robert/pro/publications/articles/rational.pdf
http://www.normalesup.org/~robert/pro/publications/articles/rational.pdf
http://hal.archives-ouvertes.fr/hal-00954895
https://doi.org/10.1016/j.ffa.2016.01.009
http://www.normalesup.org/~robert/pro/publications/articles/arithmetic.pdf
http://hal.archives-ouvertes.fr/hal-01057467
http://eprint.iacr.org/2014/493
http://www.normalesup.org/~robert/pro/publications/articles/action.pdf
http://hal.archives-ouvertes.fr/hal-03204365
https://doi.org/10.1007/s40993-022-00407-9
http://www.normalesup.org/~robert/pro/publications/articles/change_level.pdf
http://www.normalesup.org/~robert/pro/publications/articles/change_level.pdf
http://hal.archives-ouvertes.fr/hal-03738315
http://www.normalesup.org/~robert/pro/publications/articles/canonical_lift_g2.pdf
http://www.normalesup.org/~robert/pro/publications/articles/canonical_lift_g2.pdf
http://hal.archives-ouvertes.fr/hal-03738314
https://doi.org/10.1007/978-981-16-6890-6_48
http://www.normalesup.org/~robert/pro/publications/articles/canonical_lift_g2_p2.pdf
http://www.normalesup.org/~robert/pro/publications/articles/canonical_lift_g2_p2.pdf
http://hal.archives-ouvertes.fr/hal-03119147
http://www.normalesup.org/~robert/pro/publications/articles/fast_canonical_lift_g1.pdf
http://www.normalesup.org/~robert/pro/publications/articles/fast_canonical_lift_g1.pdf
http://hal.archives-ouvertes.fr/hal-03702658

[MR20b] E. Milio and D. Robert. “Modular polynomials on Hilbert surfaces”. In: Journal of Number Theory
216 (Nov. 2020), pp. 403–459. doi: 10.1016/j.jnt.2020.04.014. url: https://www.
sciencedirect.com/science/article/abs/pii/S0022314X20301402. HAL: hal-01520262,
Reproducible archive: https://data.mendeley.com/datasets/yy3bty5ktk/1. (Cit. on pp. 8,
11, 12, 88, 93–95, 98, 100–103, 150).

[Rob10] D. Robert. “Theta functions and cryptographic applications”. PhD thesis. Université Henri-Poincarré,
Nancy 1, France, July 2010. url: http://www.normalesup.org/~robert/pro/publications/
academic/phd.pdf. Slides: 2010-07-Phd-Nancy.pdf (1h, Nancy), TEL: tel-00528942. (Cit. on
pp. 12, 18–20, 22–24, 26–28, 31, 32, 34–38, 43, 51, 52, 61, 62, 89, 93).

[Rob13] D. Robert. “Computing cyclic isogenies using real multiplication”. (Notes). ANR Peace meeting, Paris.
Apr. 2013. url: http://www.normalesup.org/~robert/pro/publications/notes/2013-
04-Peace-Paris-Cyclic-Isogenies.pdf (cit. on pp. 9, 77).

[Rob15] D. Robert. “Isogenies, Polarisations and Real Multiplication”. Modular Forms and Curves of
Low Genus: Computational Aspects, ICERM, Providence, USA. Sept. 2015. url: http://www.
normalesup.org/~robert/pro/publications/slides/2015-09-Providence-ICERM.pdf
(cit. on p. 125).

[Rob17] D. Robert. Guide to Pairing-Based Cryptography. 2017. url: https://www.worldcat.org/
title/guide-to-pairing-based-cryptography/oclc/971264380. Chapter 3 on « Pairings »
with Sorina Ionica, and Chapter 10 on « Choosing Parameters » with Sylvain Duquesne, Nadia El
Mrabet, Safia Haloui and Franck Rondepierre (cit. on pp. 9, 11, 57, 59, 63, 64).

[Rob21] D. Robert. General theory of abelian varieties and their moduli spaces. Jan. 2021. url: http:
//www.normalesup.org/~robert/pro/publications/books/avtheory.pdf. Draft version.
(Cit. on pp. 6, 7, 11, 18–20, 33, 37, 39, 57, 58, 61, 64, 66, 67, 87, 88, 93, 123, 124, 129, 131, 145–147,
149).

[Rob22] D. Robert. “Breaking SIDH in polynomial time”. Accepted for publication at Eurocrypt 2023.
Aug. 2022. url: http://www.normalesup.org/~robert/pro/publications/articles/
breaking_sidh.pdf. eprint: 2022/1038, HAL: hal-03943959. (Cit. on p. 2).

[SR11] A. Shamir and D. Robert. “Comparative power attacks on Edwards curves”. 2011. In preparation.
(Cit. on p. 3).

153

https://doi.org/10.1016/j.jnt.2020.04.014
https://www.sciencedirect.com/science/article/abs/pii/S0022314X20301402
https://www.sciencedirect.com/science/article/abs/pii/S0022314X20301402
http://hal.archives-ouvertes.fr/hal-01520262
https://data.mendeley.com/datasets/yy3bty5ktk/1
http://www.normalesup.org/~robert/pro/publications/academic/phd.pdf
http://www.normalesup.org/~robert/pro/publications/academic/phd.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-Phd-Nancy.pdf
http://tel.archives-ouvertes.fr/tel-00528942
http://chic2.gforge.inria.fr/
http://www.normalesup.org/~robert/pro/publications/notes/2013-04-Peace-Paris-Cyclic-Isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/notes/2013-04-Peace-Paris-Cyclic-Isogenies.pdf
https://icerm.brown.edu/sp-f15-w1/
https://icerm.brown.edu/sp-f15-w1/
http://www.normalesup.org/~robert/pro/publications/slides/2015-09-Providence-ICERM.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2015-09-Providence-ICERM.pdf
https://www.worldcat.org/title/guide-to-pairing-based-cryptography/oclc/971264380
https://www.worldcat.org/title/guide-to-pairing-based-cryptography/oclc/971264380
http://www.normalesup.org/~robert/pro/publications/books/avtheory.pdf
http://www.normalesup.org/~robert/pro/publications/books/avtheory.pdf
 https://eurocrypt.iacr.org/2023/
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://eprint.iacr.org/2022/1038
http://hal.archives-ouvertes.fr/hal-03943959

STUDENT B I B L IOGRAPHY

[Kie20a] J. Kieffer. “Degree and height estimates for modular equations on PEL Shimura varieties”. Accepté à
London Mathematical Society. 2020. arXiv: 2001.04138 [math.AG]. HAL: hal-02436057. (Cit. on
pp. 9, 11, 94, 95, 98, 100–103).

[Kie20b] J. Kieffer. “Evaluating modular polynomials in genus 2”. 2020. arXiv: 2010.10094 [math.NT].
HAL: hal-02971326. (Cit. on pp. 9, 11, 12, 96–98, 100, 104–107, 128).

[Kie20c] J. Kieffer. “Sign choices in the AGM for genus two theta constants”. Accepté à Publications Mathéma-
tiques de Besançon. 2020. arXiv: 2010.07579 [math.NT]. HAL: hal-02967220. (Cit. on pp. 9, 11,
96, 97, 128).

[Kie22a] J. Kieffer. “Certified Newton schemes for the evaluation of low-genus theta functions”. In: (2022).
arXiv: 2203.02000 [math.NT] (cit. on pp. 96, 98).

[Kie22b] J. Kieffer. “Counting points on abelian surfaces over finite fields with Elkies’s method”. In: (2022).
arXiv: 2203.02009 [math.NT] (cit. on p. 116).

[KPR20] J. Kieffer, A. Page, andD. Robert. “Computing isogenies frommodular equations between Jacobians of
genus 2 curves”. Oct. 2020. arXiv: 2001.04137 [math.AG]. url: http://www.normalesup.org/
~robert/pro/publications/articles/modular_isogenies_g2.pdf. HAL: hal-02436133.
(Cit. on pp. 3, 9, 11, 12, 80, 81, 88, 101, 110–116, 122, 129).

[MR20a] A. Maiga and D. Robert. “Computing the canonical lift of genus 2 curves in odd characteristic”.
Dec. 2020. url: http://www.normalesup.org/~robert/pro/publications/articles/
canonical_lift_g2.pdf. HAL: hal-03738314. (Cit. on pp. 3, 9, 11, 12, 136, 138–141).

[MR22a] A. Maiga and D. Robert. “Computing the 2-adic canonical lift of genus 2 curves”. In: Proceedings
of the Seventh International Conference on Mathematics and Computing – ICMC 2021. Ed. by D.
Giri, K.-K. R. Choo, S. Ponnusamy, W. Meng, S. Akleylek, and S. P. Maity. Vol. 1412. Advances in
Intelligent Systems and Computing (ICMC 2021). Singapore: Springer, Mar. 2022, pp. 637–672.
doi: 10.1007/978-981-16-6890-6_48. url: http://www.normalesup.org/~robert/pro/
publications/articles/canonical_lift_g2_p2.pdf. HAL: hal-03119147. (Cit. on pp. 3, 9,
11, 12, 88, 138, 142).

[MR22b] A. Maiga and D. Robert. “Towards computing canonical lifts of ordinary elliptic curves in medium
characteristic”. Mar. 2022. url: http://www.normalesup.org/~robert/pro/publications/
articles/fast_canonical_lift_g1.pdf. HAL: hal-03702658. (Cit. on p. 144).

[Mil15a] E. Milio. “A quasi-linear time algorithm for computing modular polynomials in dimension 2”. In:
LMS Journal of Computation and Mathematics 18.1 (2015), pp. 603–632. arXiv: 1411.0409 (cit. on
pp. 8, 11, 12, 88, 94, 103).

[Mil15b] E. Milio. “Calcul de polynômes modulaires en dimension 2”. Thèse de doctorat dirigée par Enge,
Andreas et Robert, Damien; Mathematiques pures, Bordeaux 2015. PhD thesis. 2015. url: http:
//www.theses.fr/2015BORD0285 (cit. on pp. 8, 94, 99, 100, 103).

[MR19] E. Milio and D. Robert. “Denominators of modular polynomials on Hilbert surfaces”. June 2019. In
preparation. (Cit. on pp. 3, 8, 11, 93, 101, 102).

[MR20b] E. Milio and D. Robert. “Modular polynomials on Hilbert surfaces”. In: Journal of Number Theory
216 (Nov. 2020), pp. 403–459. doi: 10.1016/j.jnt.2020.04.014. url: https://www.
sciencedirect.com/science/article/abs/pii/S0022314X20301402. HAL: hal-01520262,
Reproducible archive: https://data.mendeley.com/datasets/yy3bty5ktk/1. (Cit. on pp. 8,
11, 12, 88, 93–95, 98, 100–103, 150).

155

https://arxiv.org/abs/2001.04138
http://hal.archives-ouvertes.fr/hal-02436057
https://arxiv.org/abs/2010.10094
http://hal.archives-ouvertes.fr/hal-02971326
https://arxiv.org/abs/2010.07579
http://hal.archives-ouvertes.fr/hal-02967220
https://arxiv.org/abs/2203.02000
https://arxiv.org/abs/2203.02009
https://arxiv.org/abs/2001.04137
http://www.normalesup.org/~robert/pro/publications/articles/modular_isogenies_g2.pdf
http://www.normalesup.org/~robert/pro/publications/articles/modular_isogenies_g2.pdf
http://hal.archives-ouvertes.fr/hal-02436133
http://www.normalesup.org/~robert/pro/publications/articles/canonical_lift_g2.pdf
http://www.normalesup.org/~robert/pro/publications/articles/canonical_lift_g2.pdf
http://hal.archives-ouvertes.fr/hal-03738314
https://doi.org/10.1007/978-981-16-6890-6_48
http://www.normalesup.org/~robert/pro/publications/articles/canonical_lift_g2_p2.pdf
http://www.normalesup.org/~robert/pro/publications/articles/canonical_lift_g2_p2.pdf
http://hal.archives-ouvertes.fr/hal-03119147
http://www.normalesup.org/~robert/pro/publications/articles/fast_canonical_lift_g1.pdf
http://www.normalesup.org/~robert/pro/publications/articles/fast_canonical_lift_g1.pdf
http://hal.archives-ouvertes.fr/hal-03702658
https://arxiv.org/abs/1411.0409
http://www.theses.fr/2015BORD0285
http://www.theses.fr/2015BORD0285
https://doi.org/10.1016/j.jnt.2020.04.014
https://www.sciencedirect.com/science/article/abs/pii/S0022314X20301402
https://www.sciencedirect.com/science/article/abs/pii/S0022314X20301402
http://hal.archives-ouvertes.fr/hal-01520262
https://data.mendeley.com/datasets/yy3bty5ktk/1

B I B L IOGRAPHY

[Abe20] S. Abelard. “Counting points on hyperelliptic curves with explicit real multiplication in arbitrary
genus”. In: Journal of Complexity 57 (2020), p. 101440 (cit. on pp. 12, 81, 82, 118–120).

[ACL20] S. Abelard, A. Couvreur, and G. Lecerf. “Sub-quadratic time for riemann-roch spaces: case of smooth
divisors over nodal plane projective curves”. In: Proceedings of the 45th International Symposium on
Symbolic and Algebraic Computation. 2020, pp. 14–21 (cit. on p. 18).

[ACL21] S. Abelard, A. Couvreur, and G. Lecerf. “Efficient computation of Riemann-Roch spaces for plane
curves with ordinary singularities”. 2021. url: https://hal.archives-ouvertes.fr/hal-
03110135/document (cit. on p. 18).

[AGS19a] S. Abelard, P. Gaudry, and P.-J. Spaenlehauer. “Counting points on genus-3 hyperelliptic curves with
explicit real multiplication”. In: The Open Book Series 2.1 (2019), pp. 1–19 (cit. on p. 121).

[AGS19b] S. Abelard, P. Gaudry, and P.-J. Spaenlehauer. “Improved complexity bounds for counting points
on hyperelliptic curves”. In: Foundations of Computational Mathematics 19.3 (2019), pp. 591–621
(cit. on pp. 12, 81, 82, 119, 138).

[AH01] L. M. Adleman and M.-D. Huang. “Counting points on curves and abelian varieties over finite fields”.
In: Journal of Symbolic Computation 32.3 (2001), pp. 171–189 (cit. on pp. 119, 138).

[AL86] L. M. Adleman and H. W. Lenstra. “Finding irreducible polynomials over finite fields”. In: Proceedings
of the eighteenth annual ACM symposium on Theory of computing. 1986, pp. 350–355 (cit. on p. 105).

[AW21] J. Alman and V. V. Williams. “A refined laser method and faster matrix multiplication”. In: Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM. 2021, pp. 522–539 (cit. on
p. 116).

[AGH+18] F. Andreatta, E. Z. Goren, B. Howard, and K. M. Pera. “Faltings heights of abelian varieties with
complex multiplication”. In: Annals of Mathematics 187.2 (2018), pp. 391–531 (cit. on p. 148).

[Bac90] E. Bach. “Explicit bounds for primality testing and related problems”. In: Math. Comp. 55.191 (1990),
pp. 355–380. issn: 0025-5718. doi: 10.2307/2008811 (cit. on p. 148).

[BGG+17] S. Ballentine, A. Guillevic, E. L. García, C. Martindale, M. Massierer, B. Smith, and J. Top. “Isogenies
for point counting on genus two hyperelliptic curves with maximal real multiplication”. In: Algebraic
geometry for coding theory and cryptography. Springer, 2017, pp. 63–94 (cit. on p. 123).

[BS19] R. Barbulescu and S. Shinde. “A classification of ECM-friendly families using modular curves”. 2019.
url: https://hal.inria.fr/hal-01822144/ (cit. on p. 6).

[Bel04] K. Belabas. “A relative van Hoeij algorithm over number fields”. In: Journal of Symbolic Computation
37.5 (2004), pp. 641–668 (cit. on p. 109).

[BDL+20] D. Bernstein, L. De Feo, A. Leroux, and B. Smith. “Faster computation of isogenies of large prime
degree”. In: Algorithmic Number Theory Symposium (ANTS XIV). Vol. 4. 1. Mathematical Sciences
Publishers, 2020, pp. 39–55. arXiv: 2003.10118. url: https://msp.org/obs/2020/4/p04.
xhtml (cit. on pp. 83, 144).

[BS07] D. Bernstein and J. Sorenson. “Modular exponentiation via the explicit Chinese remainder theorem”.
In: Mathematics of Computation 76.257 (2007), pp. 443–454 (cit. on p. 107).

[BL04] C. Birkenhake and H. Lange. Complex abelian varieties. Vol. 302. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, 2004,
pp. xii+635. isbn: 3-540-20488-1 (cit. on pp. 19, 20, 28).

[Bis11] G. Bisson. “Endomorphism Rings in Cryptography”. PhD thesis. 2011 (cit. on pp. 5, 147).
[BS09] G. Bisson and A. Sutherland. “Computing the endomorphism ring of an ordinary elliptic curve over

a finite field”. In: Journal of Number Theory (2009) (cit. on pp. 5, 147).
[BBB+18] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. “Verifiable delay functions”. In: Annual International

Cryptology Conference. Springer. 2018, pp. 757–788 (cit. on p. 2).

157

https://hal.archives-ouvertes.fr/hal-03110135/document
https://hal.archives-ouvertes.fr/hal-03110135/document
https://doi.org/10.2307/2008811
https://hal.inria.fr/hal-01822144/
https://arxiv.org/abs/2003.10118
https://msp.org/obs/2020/4/p04.xhtml
https://msp.org/obs/2020/4/p04.xhtml

[BMS+08] A. Bostan, F. Morain, B. Salvy, and E. Schost. “Fast algorithms for computing isogenies between
elliptic curves”. In: Mathematics of Computation 77.263 (2008), pp. 1755–1778 (cit. on pp. 5, 79).

[BDD+19] L. Brieulle, L. De Feo, J. Doliskani, J.-P. Flori, and É. Schost. “Computing isomorphisms and embed-
dings of finite fields”. In: Mathematics of Computation 88.317 (2019), pp. 1391–1426 (cit. on pp. 6,
105).

[BGL11] R. Bröker, D. Gruenewald, and K. Lauter. “Explicit CM theory for level 2-structures on abelian
surfaces”. In: Algebra & Number Theory 5.4 (2011), pp. 495–528. arXiv: 0910.1848 (cit. on p. 148).

[BL09] R. Bröker and K. Lauter. “Modular polynomials for genus 2”. In: LMS J. Comput. Math. 12 (2009),
pp. 326–339. issn: 1461-1570. arXiv: 0804.1565 (cit. on p. 93).

[BLS12] R. Bröker, K. Lauter, andA. Sutherland. “Modular polynomials via isogeny volcanoes”. In:Mathematics
of Computation 81.278 (2012), pp. 1201–1231. arXiv: 1001.0402 (cit. on p. 5).

[BJW17] E. H. Brooks, D. Jetchev, and B. Wesolowski. “Isogeny graphs of ordinary abelian varieties”. In:
Research in Number Theory 3.1 (2017), p. 28 (cit. on pp. 8, 124).

[Can16] L. Candelori. “The transformation laws of algebraic theta functions”. 2016. arXiv: 1609.04486
(cit. on pp. 42, 78).

[Can20] L. Candelori. “The algebraic functional equation of Riemann’s theta function”. In: Annales de l’Institut
Fourier. Vol. 70. 2. 2020, pp. 809–830. arXiv: 1512.04415 (cit. on pp. 28, 42).

[Can94] D. G. Cantor. “On the analogue of the division polynomials for hyperelliptic curves.” In: Journal für
die reine und angewandte Mathematik 1994.447 (1994), pp. 91–146 (cit. on p. 81).

[Car03] R. Carls. “Generalized AGM sequences and approximation of canonical lifts”. PhD thesis. Apr. 2003.
url: http://www.math.leidenuniv.nl/carls (cit. on pp. 137, 138).

[Car07] R. Carls. “Canonical coordinates on the canonical lift”. In: J. Ramanujan Math. Soc. 22.1 (2007),
pp. 1–14 (cit. on p. 137).

[CKL08] R. Carls, D. Kohel, and D. Lubicz. “Higher-dimensional 3-adic CM construction”. In: J. Algebra 319.3
(2008), pp. 971–1006. issn: 0021-8693. doi: 10.1016/j.jalgebra.2007.11.016 (cit. on pp. 137,
149).

[CL08a] R. Carls and D. Lubicz. “A 𝑝-adic quasi-quadratic time and quadratic space point counting algorithm”.
In: International Mathematics Research Notices (2008) (cit. on pp. 7, 137, 138, 140, 143).

[CEL20] X. Caruso, E. Eid, and R. Lercier. “Fast computation of elliptic curve isogenies in characteristic two”.
2020. arXiv: 2003.06367 (cit. on pp. 81, 112).

[CRV16] X. Caruso, D. Roe, and T. Vaccon. “Division and slope factorization of p-adic polynomials”. In:
Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation. 2016,
pp. 159–166 (cit. on p. 135).

[CRV18] X. Caruso, D. Roe, and T. Vaccon. “ZpL: a p-adic precision package”. In: Proceedings of the 2018 ACM
International Symposium on Symbolic and Algebraic Computation. 2018, pp. 119–126 (cit. on p. 141).

[CF+96] J. W. S. Cassels, E. V. Flynn, et al. Prolegomena to a middlebrow arithmetic of curves of genus 2. Vol. 230.
Cambridge University Press, 1996 (cit. on pp. 7, 53, 83).

[CD22] W. Castryck and T. Decru. An efficient key recovery attack on SIDH (preliminary version). Cryptology
ePrint Archive, Paper 2022/975. 2022. url: https://eprint.iacr.org/2022/975 (cit. on pp. 2,
101).

[CLM+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. “CSIDH: an efficient post-quantum
commutative group action”. In: International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2018). Springer. 2018, pp. 395–427 (cit. on pp. 2, 6).

[Cel19] T. O. Celik. “A Thomae-like Formula: Algebraic Computations of Theta Constants”. 2019. arXiv:
1901.08459 (cit. on p. 54).

[CN90] C.-L. Chai and P. Norman. “Bad reduction of the Siegel moduli scheme of genus two with 𝛤o (p)-level
structure”. In: American Journal of Mathematics (1990), pp. 1003–1071 (cit. on pp. 88, 109, 136).

[CLG09] D. Charles, K. Lauter, and E. Goren. “Cryptographic hash functions from expander graphs”. In:
Journal of Cryptology 22.1 (2009), pp. 93–113. issn: 0933-2790 (cit. on pp. 2, 6).

158

https://arxiv.org/abs/0910.1848
https://arxiv.org/abs/0804.1565
https://arxiv.org/abs/1001.0402
https://arxiv.org/abs/1609.04486
https://arxiv.org/abs/1512.04415
http://www.math.leidenuniv.nl/carls
https://doi.org/10.1016/j.jalgebra.2007.11.016
https://arxiv.org/abs/2003.06367
https://eprint.iacr.org/2022/975
https://arxiv.org/abs/1901.08459

[Cho06] T. Y. Chow. “You could have invented spectral sequences”. In: Notices of the AMS 53 (2006), pp. 15–19
(cit. on p. 60).

[Cv00] C. Ciliberto and G. van der Geer. “The moduli space of abelian varieties and the singularities of the
theta divisor”. In: Surveys in differential geometry. Vol. 7. Surv. Differ. Geom. Int. Press, Somerville,
MA, 2000, pp. 61–81 (cit. on p. 129).

[CFG18] F. Cléry, C. Faber, and G. van der Geer. “Covariants of binary sextics and modular forms of degree 2
with character”. 2018. arXiv: 1803.05624 [math.AG] (cit. on p. 115).

[CFG20] F. Cléry, C. Faber, and G. van der Geer. “Concomitants of Ternary Quartics and Vector-valued Siegel
and Teichmüller Modular Forms of Genus Three”. 2020. arXiv: 1908.04248 [math.AG] (cit. on
p. 129).

[CFv17] F. Cléry, C. Faber, and G. van der Geer. “Covariants of binary sextics and vector-valued Siegel modular
forms of genus two”. In: Math. Ann. 369.3-4 (2017), pp. 1649–1669 (cit. on p. 115).

[Col93] P. Colmez. “Périodes des variétés abéliennes à multiplication complexe”. In: Annals of Mathematics
(1993), pp. 625–683 (cit. on p. 148).

[Cos11] R. Cosset. “Application des fonctions thêta à la cryptographie sur courbes hyperelliptiques”. PhD
thesis. 2011 (cit. on p. 54).

[CHK19] E. Costa, D. Harvey, and K. Kedlaya. “Zeta functions of nondegenerate hypersurfaces in toric varieties
via controlled reduction in p-adic cohomology”. In: The Open Book Series 2.1 (2019), pp. 221–238
(cit. on p. 143).

[CMS+17] E. Costa, N. Mascot, J. Sijsling, and J. Voight. “Rigorous computation of the endomorphism ring of a
Jacobian”. 2017. arXiv: 1705.09248 (cit. on p. 80).

[CJL+17] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik. “Efficient compression of SIDH
public keys”. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2017, pp. 679–706 (cit. on p. 66).

[CLN16] C. Costello, P. Longa, and M. Naehrig. “Efficient algorithms for supersingular isogeny Diffie-Hellman”.
In: Advances in Cryptology (Crypto 2016). Springer. 2016, pp. 572–601. url: https://ecc2017.
cs.ru.nl/slides/ecc2017-costello.pdf (cit. on pp. 2, 6, 10).

[CS20] C. Costello and B. Smith. “The supersingular isogeny problem in genus 2 and beyond”. In: International
Conference on Post-Quantum Cryptography. Springer. 2020, pp. 151–168 (cit. on p. 3).

[Cou94] J. Couveignes. “Quelques calculs en théorie des nombres”. PhD thesis. 1994 (cit. on p. 111).
[Cou96] J. Couveignes. “Computing l-isogenies using the p-torsion”. In: Algorithmic Number Theory (1996),

pp. 59–65 (cit. on p. 111).
[CL08b] J. Couveignes and R. Lercier. “Galois invariant smoothness basis”. In: Algebraic geometry and its

applications (2008) (cit. on p. 6).
[CL09] J. Couveignes and R. Lercier. “Elliptic periods for finite fields”. In: Finite fields and their applications

15.1 (2009), pp. 1–22 (cit. on p. 6).
[Cou06] J. M. Couveignes. “Hard Homogeneous Spaces.” In: IACR Cryptology ePrint Archive 2006 (2006),

p. 291 (cit. on pp. 2, 6).
[Cou20] J.-M. Couveignes. “Enumerating number fields”. In: Annals of Mathematics 192.2 (2020), pp. 487–497

(cit. on p. 105).
[CE14] J.-M. Couveignes and T. Ezome. “Computing functions on Jacobians and their quotients”. In: LMS

Journal of Computation and Mathematics 18.1 (2014), pp. 555–577. arXiv: 1409.0481 (cit. on pp. 11,
13, 19, 40, 41, 53, 54, 72, 78, 80, 83).

[CK12] J.-M. Couveignes and J.-G. Kammerer. “The geometry of flex tangents to a cubic curve and its
parameterizations”. In: Journal of Symbolic Computation 47.3 (2012), pp. 266–281 (cit. on p. 4).

[CL13] J.-M. Couveignes and R. Lercier. “Fast construction of irreducible polynomials over finite fields”. In:
Israel Journal of Mathematics 194.1 (2013), pp. 77–105 (cit. on p. 6).

[De 17] L. De Feo. Mathematics of Isogeny Based Cryptography. 2017. arXiv: 1711.04062 (cit. on p. 2).

159

https://arxiv.org/abs/1803.05624
https://arxiv.org/abs/1908.04248
https://arxiv.org/abs/1705.09248
https://ecc2017.cs.ru.nl/slides/ecc2017-costello.pdf
https://ecc2017.cs.ru.nl/slides/ecc2017-costello.pdf
https://arxiv.org/abs/1409.0481
https://arxiv.org/abs/1711.04062

[DHP+16] L. De Feo, C. Hugounenq, J. Plût, and É. Schost. “Explicit isogenies in quadratic time in any charac-
teristic”. In: LMS Journal of Computation and Mathematics 19.A (2016), pp. 267–282 (cit. on pp. 12,
111).

[DJP14] L. De Feo, D. Jao, and J. Plût. “Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies”. In: Journal of Mathematical Cryptology 8.3 (2014), pp. 209–247 (cit. on pp. 2, 6, 83).

[DKS18] L. De Feo, J. Kieffer, and B. Smith. “Towards practical key exchange from ordinary isogeny graphs”.
In: International Conference on the Theory and Application of Cryptology and Information Security.
Springer. 2018, pp. 365–394. arXiv: 1809.07543 (cit. on pp. 2, 6).

[DKL+20] L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. “SQISign: compact post-quantum
signatures from quaternions and isogenies”. In: International Conference on the Theory and Application
of Cryptology and Information Security (Asiacrypt 2020). Springer. 2020, pp. 64–93 (cit. on p. 2).

[DMP+19] L. De Feo, S. Masson, C. Petit, and A. Sanso. “Verifiable Delay Functions from Supersingular
Isogenies and Pairings”. 2019. eprint: CryptologyePrintArchive,Report2019/166. url:
https://eprint.iacr.org/2019/166.pdf (cit. on pp. 2, 6).

[DR73] P. Deligne and M. Rapoport. “Les schémas de modules de courbes elliptiques”. In: Modular functions
of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). 1973, 143–316.
Lecture Notes in Math., Vol. 349 (cit. on p. 122).

[DM69] P. Deligne and D. Mumford. “The irreducibility of the space of curves of given genus”. In: Publications
Mathématiques de l’Institut des Hautes Études Scientifiques 36.1 (1969), pp. 75–109 (cit. on p. 125).

[DA70] M. Demazure and M. Artin. Schémas en groupes (SGA3). Springer Berlin, Heidelberg, New York,
1970 (cit. on p. 131).

[DT08] C. Diem and E. Thomé. “Index calculus in class groups of non-hyperelliptic curves of genus three”.
In: Journal of Cryptology 21.4 (2008), pp. 593–611 (cit. on p. 3).

[DH76] W. Diffie and M. Hellman. “New directions in cryptography”. In: IEEE Transactions on information
Theory 22.6 (1976), pp. 644–654 (cit. on p. 1).

[DIK06] C. Doche, T. Icart, and D. Kohel. “Efficient scalar multiplication by isogeny decompositions”. In:
Public Key Cryptography-PKC 2006 (2006), pp. 191–206 (cit. on p. 6).

[Dup06] R. Dupont. “Moyenne arithmetico-geometrique, suites de Borchardt et applications”. In: These de
doctorat, Ecole polytechnique, Palaiseau (2006) (cit. on pp. 6, 94–97, 103, 106, 128).

[EGM12] B. Edixhoven, G. van der Geer, and B. Moonen. Abelian varieties. Book project, 2012. url: http:
//van-der-geer.nl/~gerard/AV.pdf (cit. on p. 88).

[Eid20] É. Eid. “Fast computation of hyperelliptic curve isogenies in odd characteristic”. 2020. arXiv:
2009.12180 [math.AG] (cit. on p. 81).

[Elk92] N. Elkies. “Explicit isogenies”. In: manuscript, Boston MA (1992) (cit. on p. 5).
[Elk97] N. Elkies. “Elliptic and modular curves over finite fields and related computational issues”. In:

Computational perspectives on number theory: proceedings of a conference in honor of AOL Atkin,
September 1995, University of Illinois at Chicago. Vol. 7. Amer Mathematical Society. 1997, p. 21
(cit. on p. 5).

[EK14] N. Elkies and A. Kumar. “K3 surfaces and equations for Hilbert modular surfaces”. In: Algebra &
Number Theory 8.10 (2014), pp. 2297–2411 (cit. on p. 150).

[Elk08] N. D. Elkies. “Shimura curve computations via K3 surfaces of Néron–Severi rank at least 19”. In:
International Algorithmic Number Theory Symposium. Springer. 2008, pp. 196–211 (cit. on p. 150).

[Eng09a] A. Enge. “Computing modular polynomials in quasi-linear time”. In: Math. Comp 78.267 (2009),
pp. 1809–1824 (cit. on pp. 5, 94).

[Eng09b] A. Enge. “The complexity of class polynomial computation via floating point approximations”. In:
Mathematics of Computation 78.266 (2009), pp. 1089–1107 (cit. on p. 146).

[EGT09] A. Enge, P. Gaudry, and E. Thomé. “An 𝐿(1/3) Discrete Logarithm Algorithm for Low Degree
Curves”. In: Imprint (2009) (cit. on p. 3).

[ES10] A. Enge and A. Sutherland. “Class invariants by the CRT method, ANTS IX: Proceedings of the
Algorithmic Number Theory 9th International Symposium”. In: Lecture Notes in Computer Science
6197 (July 2010), pp. 142–156 (cit. on pp. 5, 148).

160

https://arxiv.org/abs/1809.07543
Cryptology ePrint Archive, Report 2019/166
https://eprint.iacr.org/2019/166.pdf
http://van-der-geer.nl/~gerard/AV.pdf
http://van-der-geer.nl/~gerard/AV.pdf
https://arxiv.org/abs/2009.12180

[ET14] A. Enge and E. Thomé. “Computing class polynomials for abelian surfaces”. In: Experimental
Mathematics 23.2 (2014), pp. 129–145 (cit. on p. 146).

[FC90] G. Faltings and C.-L. Chai. Degeneration of abelian varieties. Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) 22. Springer-Verlag, Berlin, 1990 (cit. on pp. 42, 88).

[Feo10] L. de Feo. “Algorithmes Rapides pour les Tours de Corps Finis et les Isogénies”. PhD thesis. Ecole
Polytechnique X, Dec. 2010. url: http://hal.inria.fr/tel-00547034/en (cit. on p. 111).

[Fly90] E. Flynn. “The Jacobian and formal group of a curve of genus 2 over an arbitrary ground field”. In:
Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 107. 03. Cambridge Univ Press.
1990, pp. 425–441 (cit. on pp. 53, 83).

[FGH00] M. Fouquet, P. Gaudry, and R. Harley. “An extension of Satoh’s algorithm and its implementation”.
In: (2000) (cit. on p. 135).

[FM02] M. Fouquet and F. Morain. “Isogeny volcanoes and the SEA algorithm”. In: Algorithmic number
theory (Sydney, 2002). Vol. 2369. Lecture Notes in Comput. Sci. Berlin: Springer, 2002, pp. 276–291.
doi: 10.1007/3-540-45455-1_23 (cit. on p. 5).

[FL08] D. Freeman and K. Lauter. “Computing endomorphism rings of Jacobians of genus 2 curves over
finite fields”. In: Algebraic geometry and its applications (2008), pp. 29–66 (cit. on p. 147).

[GHS02] S. Galbraith, F. Hess, and N. Smart. “Extending the GHS Weil descent attack”. In: Advances in
Cryptology—EUROCRYPT 2002. Springer. 2002, pp. 29–44 (cit. on p. 6).

[Gau04] P. Gaudry. “Algorithmes de comptage de points d’une courbe définie sur un corps fini”. 2004. url:
http://www.loria.fr/~gaudry/publis/pano.pdf (cit. on p. 133).

[Gau07] P. Gaudry. “Fast genus 2 arithmetic based on Theta functions”. In: Journal of Mathematical Cryptology
1.3 (2007), pp. 243–265 (cit. on p. 6).

[Gau09] P. Gaudry. “Index calculus for abelian varieties of small dimension and the elliptic curve discrete
logarithm problem”. In: Journal of Symbolic Computation 44.12 (2009), pp. 1690–1702 (cit. on p. 3).

[GG03] P. Gaudry and N. Gurel. “Counting points in medium characteristic using Kedlaya’s algorithm”. In:
Experimental Mathematics 12.4 (2003), pp. 395–402 (cit. on p. 143).

[GHK+06] P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenthaler, and A. Weng. “The 2-adic CM method for genus
2 curves with application to cryptography”. In: Advances in cryptology—ASIACRYPT 2006. Vol. 4284.
Lecture Notes in Comput. Sci. Berlin: Springer, 2006, pp. 114–129. doi: 10.1007/11935230_8
(cit. on pp. 94, 137, 149).

[GL09] P. Gaudry and D. Lubicz. “The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer
lines”. In: Finite Fields and Their Applications 15.2 (2009), pp. 246–260 (cit. on p. 3).

[GKS11] P. Gaudry, D. R. Kohel, and B. A. Smith. “Counting Points onGenus 2 Curves with RealMultiplication”.
In: ASIACRYPT. Ed. by D. H. Lee and X. Wang. Vol. 7073. Lecture Notes in Computer Science.
Springer, 2011, pp. 504–519. isbn: 978-3-642-25384-3 (cit. on pp. 12, 118).

[GS12] P. Gaudry and É. Schost. “Genus 2 point counting over prime fields”. In: Journal of Symbolic
Computation 47.4 (2012), pp. 368–400 (cit. on pp. 12, 103, 116, 117).

[GL12] E. Z. Goren and K. E. Lauter. “Genus 2 curves with complex multiplication”. In: International
Mathematics Research Notices 2012.5 (2012), pp. 1068–1142 (cit. on pp. 88, 148, 150).

[GH14] P. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley & Sons, 2014 (cit. on p. 81).
[GD64] A. Grothendieck and J. Dieudonné. “Eléments de géométrie algébrique”. In: Publ. math. IHES 20.24

(1964), p. 1965 (cit. on p. 132).
[Gro62] A. Grothendieck. Fondements de la géométrie algébrique: extraits du Séminaire Bourbaki, 1957-1962.

Secrétariat mathématique, 1962 (cit. on p. 131).
[Gru10] D. Gruenewald. “Computing Humbert surfaces and applications”. In: Arithmetic, Geometry, Cryptog-

raphy and Codint Theory 2009 (2010), pp. 59–69 (cit. on pp. 93, 150).
[Gun63] K.-B. Gundlach. “Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers

ℚ(√5)”. In: Math. Annalen 152 (1963), pp. 226–256 (cit. on p. 88).
[Gun65] K.-B. Gundlach. “Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen”. In:

Journal für die reine und angewandte Mathematik 220 (1965) (cit. on p. 88).

161

http://hal.inria.fr/tel-00547034/en
https://doi.org/10.1007/3-540-45455-1_23
http://www.loria.fr/~gaudry/publis/pano.pdf
https://doi.org/10.1007/11935230_8

[HPS] G. Hanrot, A. Pellet-Mary, and D. Stehlé. “Reconstructing an element of a number field from any of
its canonical embeddings”. Private communication (cit. on p. 109).

[Har02] R. Harley. Asymptotically optimal p-adic point-counting. Email at the Number Theory List. 2002
(cit. on p. 133).

[HHL09] A. W. Harrow, A. Hassidim, and S. Lloyd. “Quantum algorithm for linear systems of equations”. In:
Physical review letters 103.15 (2009), p. 150502 (cit. on p. 10).

[Har07] D. Harvey. “Kedlaya’s algorithm in larger characteristic”. In: Int. Math. Res. Notices (2007) (cit. on
p. 143).

[HSV06] F. Hess, N. Smart, and F. Vercauteren. “The Eta pairing revisited”. In: IEEE Transactions on Information
Theory 52.10 (2006), pp. 4595–4602 (cit. on p. 59).

[Hes02] F. Hess. “Computing Riemann–Roch spaces in algebraic function fields and related topics”. In: Journal
of Symbolic Computation 33.4 (2002), pp. 425–445 (cit. on pp. 9, 18).

[How95] E.Howe. “Principally polarized ordinary abelian varieties over finite fields”. In:AmericanMathematical
Society 347.7 (1995) (cit. on p. 125).

[Hua18] M.-D. A. Huang. “Trilinear maps for cryptography”. 2018. arXiv: 1803.10325 [cs.CR] (cit. on
pp. 13, 66, 78).

[Hua19] M.-D. A. Huang. “Trilinear maps for cryptography II”. 2019. arXiv: 1810.03646 [cs.CR] (cit. on
pp. 13, 66, 78).

[Igu60] J.-i. Igusa. “Arithmetic variety of moduli for genus two”. In: Annals of Mathematics (1960), pp. 612–
649 (cit. on pp. 88, 115, 142).

[Igu64] J.-i. Igusa. “On the graded ring of theta-constants”. In: American Journal of Mathematics 86.1 (1964),
pp. 219–246 (cit. on p. 98).

[Igu66] J.-i. Igusa. “On the graded ring of theta-constants (II)”. In: American Journal of Mathematics 88.1
(1966), pp. 221–236 (cit. on p. 98).

[IT14] S. Ionica and E. Thomé. “Isogeny graphs with maximal real multiplication.” In: IACR Cryptology
ePrint Archive 2014 (2014), p. 230 (cit. on pp. 118, 125).

[JD11] D. Jao and L. De Feo. “Towards quantum-resistant cryptosystems from supersingular elliptic curve
isogenies”. In: International Workshop on Post-Quantum Cryptography (PQCrypto 2011). Springer.
2011, pp. 19–34 (cit. on pp. 2, 6, 83).

[JW15] D. Jetchev and B. Wesolowski. “On graphs of isogenies of principally polarizable abelian surfaces and
the discrete logarithm problem”. 2015. arXiv: 1506.00522 (cit. on p. 6).

[Jon93] A. J. de Jong. “The moduli spaces of polarized abelian varieties”. In: Mathematische Annalen 295.1
(1993), pp. 485–503 (cit. on p. 33).

[JKB+18] B. W. Jordan, A. G. Keeton, B. Poonen, E. M. Rains, N. Shepherd-Barron, and J. T. Tate. “Abelian
varieties isogenous to a power of an elliptic curve”. In: Compos. Math. 154.5 (2018), pp. 934–959
(cit. on p. 127).

[Kan18] E. Kani. “Elliptic subcovers of a curve of Genus 2 II. The refined Humbert invariant”. In: Journal of
Number Theory 193 (2018), pp. 302–335 (cit. on p. 101).

[Kan19a] E. Kani. “Elliptic subcovers of a curve of genus 2. I. The isogeny defect”. In: Annales mathématiques
du Québec 43.2 (2019), pp. 281–303 (cit. on pp. 81, 101).

[Kan19b] E. Kani. Generalized Humbert Schemes and Intersections of Humbert Surfaces. 2019. url: https:
//mast.queensu.ca/~kani/papers/interHum11.pdf (cit. on pp. 101, 102).

[KLL88] R. Kannan, A. K. Lenstra, and L. Lovász. “Polynomial factorization and nonrandomness of bits
of algebraic and some transcendental numbers”. In: Mathematics of Computation 50.181 (1988),
pp. 235–250 (cit. on p. 109).

[Kat81] N. Katz. “Serre-Tate local moduli”. In: Surfaces algébriques. Springer, 1981, pp. 138–202 (cit. on
pp. 109, 114, 132, 136).

[Ked01] K. Kedlaya. “Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology”. 2001.
arXiv: math/0105031 (cit. on pp. 5, 143).

162

https://arxiv.org/abs/1803.10325
https://arxiv.org/abs/1810.03646
https://arxiv.org/abs/1506.00522
https://mast.queensu.ca/~kani/papers/interHum11.pdf
https://mast.queensu.ca/~kani/papers/interHum11.pdf
https://arxiv.org/abs/math/0105031

[Ked16] K. S. Kedlaya. 𝑝-adic cohomology. 2016. arXiv: math/0601507 (cit. on p. 143).
[KU11] K. S. Kedlaya and C. Umans. “Fast polynomial factorization and modular composition”. In: SIAM

Journal on Computing 40.6 (2011), pp. 1767–1802 (cit. on pp. 82, 105, 109, 143, 144).
[KM97] S. Keel and S. Mori. “Quotients by groupoids”. In: Annals of mathematics 145.1 (1997), pp. 193–213

(cit. on p. 33).
[Kem88] G. Kempf. “Multiplication over abelian varieties”. In: American Journal of Mathematics 110.4 (1988),

pp. 765–773 (cit. on pp. 21, 34, 50).
[Kem89a] G. Kempf. “Linear systems on abelian varieties”. In: American Journal of Mathematics 111.1 (1989),

pp. 65–94 (cit. on pp. 21, 23, 30, 32, 34, 90).
[Kem92] G. Kempf. “Equations of Kümmer Varieties”. In: American Journal of Mathematics 114.1 (1992),

pp. 229–232 (cit. on pp. 21, 55).
[Kem89b] G. Kempf. “Projective coordinate rings of abelian varieties”. In: Algebraic analysis, geometry and

number theory (1989), pp. 225–236 (cit. on pp. 21, 32).
[Kem90] G. R. Kempf. “Some wonderful rings in algebraic geometry”. In: Journal of Algebra 134.1 (1990),

pp. 222–224 (cit. on p. 21).
[Kem91] G. R. Kempf. Complex abelian varieties and theta functions. Springer Science & Business Media, 1991

(cit. on pp. 37, 78).
[Khu04] K. Khuri-Makdisi. “Linear algebra algorithms for divisors on an algebraic curve”. In: Mathematics of

Computation 73.245 (2004), pp. 333–357 (cit. on pp. 9, 18).
[Khu07] K. Khuri-Makdisi. “Asymptotically fast group operations on Jacobians of general curves”. In: Mathe-

matics of Computation 76.260 (2007), pp. 2213–2239 (cit. on pp. 9, 18).
[Kie21] J. Kieffer. “Higher-dimensional modular equations, applications to isogeny computations and point

counting”. Thèse de doctorat dirigée par Damien Robert, Mathématiques Pures, Université de
Bordeaux. PhD thesis. 2021. url: http://www.theses.fr/2021BORD0188 (cit. on p. 8).

[Koh96] D. Kohel. “Endomorphism rings of elliptic curves over finite fields”. PhD thesis. University of
California, 1996 (cit. on pp. 5, 79).

[Koh08] D. R. Kohel. “Complex multiplication and canonical lifts”. In: Algebraic Geometry And Its Applications:
Dedicated to Gilles Lachaud on His 60th Birthday. World Scientific, 2008, pp. 67–83 (cit. on pp. 137,
144).

[Koi76] S. Koizumi. “Theta relations and projective normality of abelian varieties”. In: American Journal of
Mathematics (1976), pp. 865–889 (cit. on pp. 34, 74, 90).

[Kou00] A. Kouvidakis. “Theta line bundles and the determinant of the Hodge bundle”. In: Transactions of the
American Mathematical Society 352.6 (2000), pp. 2553–2568 (cit. on p. 42).

[Kup05] G. Kuperberg. “A subexponential-time quantum algorithm for the dihedral hidden subgroup problem”.
In: SIAM Journal on Computing 35.1 (2005), pp. 170–188 (cit. on p. 2).

[Lab16] H. Labrande. “Explicit computation of the Abel-Jacobi map and its inverse”. PhD thesis. 2016 (cit. on
pp. 6, 12, 96, 97, 99, 102, 121, 128, 146).

[Lab18] H. Labrande. “Computing Jacobi’s theta in quasi-linear time”. In: Mathematics of Computation 87.311
(2018), pp. 1479–1508 (cit. on pp. 96, 106).

[LT16] H. Labrande and E. Thomé. “Computing theta functions in quasi-linear time in genus two and above”.
In: LMS Journal of Computation and Mathematics 19.A (2016), pp. 163–177 (cit. on p. 96).

[LO77] J. C. Lagarias andA.M.Odlyzko. “Effective versions of the Chebotarev density theorem”. In: Academic
press, New York, 1977, pp. 409–464 (cit. on p. 148).

[LV16] P. Lairez and T. Vaccon. “On p-adic differential equations with separation of variables”. In: Proceedings
of the ACM on International Symposium on Symbolic and Algebraic Computation. 2016, pp. 319–323
(cit. on p. 81).

[Lan58] S. Lang. “Reciprocity and Correspondences”. In: American Journal of Mathematics 80.2 (1958),
pp. 431–440 (cit. on pp. 57, 61).

[LV14] K. Lauter and B. Viray. “Denominators of Igusa class polynomials”. In: Publications mathématiques
de Besançon 2 (2014), pp. 5–29 (cit. on p. 150).

163

https://arxiv.org/abs/math/0601507
http://www.theses.fr/2021BORD0188

[LL03] R. Lercier andD. Lubicz. “Counting Points on Elliptic Curves over Finite Fields of Small Characteristic
in Quasi Quadratic Time”. In: Advances in Cryptology—EUROCRYPT ’2003. Ed. by E. Biham. Lecture
Notes in Computer Science. Springer-Verlag, May 2003 (cit. on p. 137).

[LL06] R. Lercier and D. Lubicz. “A quasi-quadratic time algorithm for hyperelliptic curve point counting”.
In: Ramanujan J. 12.3 (2006), pp. 399–423 (cit. on pp. 137, 140).

[LS08] R. Lercier and T. Sirvent. “On Elkies subgroups of ℓ-torsion points in elliptic curves defined over a
finite field.” In: Journal de théorie des nombres de Bordeaux 20.3 (2008), pp. 783–797 (cit. on pp. 12,
81, 114).

[LLG+20] R. Lercier, Q. Liu, E. L. García, and C. Ritzenthaler. “Reduction type of smooth quartics”. 2020. arXiv:
1803.05816 [math.NT] (cit. on p. 4).

[Mai22] A. Maiga. “Relèvement canonique de surfaces abéliennes”. Thèse de doctorat dirigée par Damien
Robert et Djiby Sow, Université de Bordeaux et de Dakar. PhD thesis. June 2022 (cit. on p. 8).

[MR08] V. Maillot and D. Rössler. “On the determinant bundles of abelian schemes”. In: Compositio Mathe-
matica 144.2 (2008), pp. 495–502 (cit. on p. 42).

[MM22] L. Maino and C. Martindale. An attack on SIDH with arbitrary starting curve. Cryptology ePrint
Archive, Paper 2022/1026. 2022. url: https://eprint.iacr.org/2022/1026 (cit. on p. 2).

[Mes72] W. Messing. “The crystals associated to Barsotti-Tate groups”. In: The crystals associated to Barsotti-
Tate groups: with applications to abelian schemes. Springer, 1972, pp. 112–149 (cit. on pp. 131,
132).

[Mes01] J.-F. Mestre. Lettre à Gaudry et Harley. 2001. url: http://www.math.jussieu.fr/mestre
(cit. on pp. 136, 137).

[Mes02] J.-F. Mestre. Notes of a talk given at the Cryptography Seminar Rennes. 2002. url: http://www.
math.univ-rennes1.fr/crypto/2001-02/mestre.ps (cit. on pp. 137, 139, 140).

[Mil20] E. Milio. “Computing isogenies between Jacobians of curves of genus 2 and 3”. In: Mathematics of
Computation 89.323 (2020), pp. 1331–1364. arXiv: 1709.06063 (cit. on pp. 13, 83).

[Mil86] V. Miller. “Short programs for functions on curves”. In: Unpublished manuscript 97 (1986), pp. 101–
102 (cit. on pp. 59, 63).

[Mil04] V. S. Miller. “The Weil Pairing, and Its Efficient Calculation”. In: J. Cryptology 17.4 (2004), pp. 235–261.
doi: 10.1007/s00145-004-0315-8 (cit. on p. 59).

[Mil91] J. Milne. Abelian varieties. 1991. url: http://www.jmilne.org/math/CourseNotes/av.html
(cit. on p. 70).

[Mil06] J. S. Milne. Complex multiplication. 2006. url: https://www.jmilne.org/math/CourseNotes/
cm.html (cit. on p. 147).

[MN17a] P. Molin and C. Neurohr. “Computing period matrices and the Abel-Jacobi map of superelliptic
curves”. 2017. arXiv: 1707.07249 (cit. on pp. 97, 128).

[MN17b] P. Molin and C. Neurohr. hcperiods: Arb and Magma packages for periods of superelliptic curves. 2017
(cit. on pp. 97, 128).

[Mor95] F. Morain. “Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects
algorithmiques”. In: J. Théor. Nombres Bordeaux 7 (1995), pp. 255–282 (cit. on p. 5).

[Mor85] L. Moret-Bailly. Pinceaux de variétés abéliennes. Société mathématique de France, 1985 (cit. on p. 42).
[Mor90] L. Moret-Bailly. “Sur l’équation fonctionnelle de la fonction thêta de Riemann”. In: Compositio

Mathematica 75.2 (1990), pp. 203–217 (cit. on p. 42).
[Mum66] D. Mumford. “On the equations defining abelian varieties. I”. In: Invent. Math. 1 (1966), pp. 287–354

(cit. on pp. 3, 6, 18, 20–27, 29, 31–34, 37, 39, 44, 46, 89).
[Mum67a] D. Mumford. “On the equations defining abelian varieties. II”. In: Invent. Math. 3 (1967), pp. 75–135

(cit. on pp. 3, 18, 20, 21, 32, 37, 42, 89).
[Mum67b] D.Mumford. “On the equations defining abelian varieties. III”. In: Invent. Math. 3 (1967), pp. 215–244

(cit. on pp. 3, 18, 20, 21, 36).
[Mum69] D. Mumford. “Varieties defined by quadratic equations”. In: Questions on Algebraic Varieties (CIME,

III Ciclo, Varenna, 1969) (1969), pp. 29–100 (cit. on pp. 21, 51).

164

https://arxiv.org/abs/1803.05816
https://eprint.iacr.org/2022/1026
http://www.math.jussieu.fr/mestre
http://www.math.univ-rennes1.fr/crypto/2001-02/mestre.ps
http://www.math.univ-rennes1.fr/crypto/2001-02/mestre.ps
https://arxiv.org/abs/1709.06063
https://doi.org/10.1007/s00145-004-0315-8
http://www.jmilne.org/math/CourseNotes/av.html
https://www.jmilne.org/math/CourseNotes/cm.html
https://www.jmilne.org/math/CourseNotes/cm.html
https://arxiv.org/abs/1707.07249

[Mum70a] D. Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No.
5. Published for the Tata Institute of Fundamental Research, Bombay, 1970, pp. viii+242 (cit. on
pp. 19, 20, 67).

[Mum70b] D. Mumford. The structure of the moduli spaces of curves and abelian varieties. Mathematics Institute,
University of Warwick, 1970 (cit. on p. 33).

[Mum83] D. Mumford. Tata lectures on theta I. Vol. 28. Progress in Mathematics. With the assistance of C.
Musili, M. Nori, E. Previato and M. Stillman. Boston, MA: Birkhäuser Boston Inc., 1983, pp. xiii+235.
isbn: 3-7643-3109-7 (cit. on pp. 20, 28, 37).

[Mum84] D. Mumford. Tata lectures on theta II. Vol. 43. Progress in Mathematics. Jacobian theta functions
and differential equations, With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and
H. Umemura. Boston, MA: Birkhäuser Boston Inc., 1984, pp. xiv+272. isbn: 0-8176-3110-0 (cit. on
pp. 20, 51, 54).

[Mum91] D. Mumford. Tata lectures on theta III. Vol. 97. Progress in Mathematics. With the collaboration
of Madhav Nori and Peter Norman. Boston, MA: Birkhäuser Boston Inc., 1991, pp. viii+202. isbn:
0-8176-3440-1 (cit. on pp. 21, 36).

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory. Vol. 34. Springer Science &
Business Media, 1994 (cit. on pp. 33, 131).

[NR19] M. Naehrig and J. Renes. “Dual isogenies and their application to public-key compression for isogeny-
based cryptography”. In: International Conference on the Theory and Application of Cryptology and
Information Security. Springer. 2019, pp. 243–272 (cit. on p. 66).

[Nar18] A. K. Narayanan. “Fast computation of isomorphisms between finite fields using elliptic curves”. In:
International Workshop on the Arithmetic of Finite Fields. Springer. 2018, pp. 74–91 (cit. on p. 6).

[NS16] A. Neumaier and D. Stehlé. “Faster LLL-type reduction of lattice bases”. In: Proceedings of the ACM
on International Symposium on Symbolic and Algebraic Computation. 2016, pp. 373–380 (cit. on
pp. 97, 105, 108, 109, 146, 149).

[NSV11] A.Novocin, D. Stehlé, andG.Villard. “An LLL-reduction algorithmwith quasi-linear time complexity”.
In: Proceedings of the forty-third annual ACM symposium on Theory of computing. 2011, pp. 403–412
(cit. on pp. 97, 105, 146, 149).

[Oor71] F. Oort. “Finite group schemes, local moduli for abelian varieties, and lifting problems”. In: Compositio
Mathematica 23.3 (1971), pp. 265–296 (cit. on pp. 32, 131, 132).

[21] PARI/GP version 2.14. The PARI Group. Univ. Bordeaux, 2021. url: http://pari.math.u-
bordeaux.fr/ (cit. on p. 3).

[Per16] S. Perna. “Heat equation for theta functions and vector-valued modular forms”. 2016. arXiv:
1510.03384 [math.AG] (cit. on p. 129).

[Pol00] A. Polishchuk. “Determinant bundles for abelian schemes”. In: Compositio Mathematica 121.3 (2000),
pp. 221–245 (cit. on p. 42).

[Ray85] M. Raynaud. “Hauteurs et isogénies”. In: Astérisque 127 (1985), pp. 199–234 (cit. on p. 102).
[Ric36] F. Richelot. “Essai sur une méthode générale pour déterminer la valeur des intégrales ultra-elliptiques,

fondée sur des transformations remarquables de ces transcendantes”. In: C. R. Acad. Sci. Paris 2
(1836), pp. 622–627 (cit. on p. 137).

[Ric37] F. Richelot. “De transformatione Integralium Abelianorum primiordinis commentation”. In: J. reine
angew. Math. 16 (1837), pp. 221–341 (cit. on p. 137).

[Rit03] C. Ritzenthaler. “Problèmes arithmétiques relatifs à certaines familles de courbes sur les corps finis”.
PhD thesis. Université Denis Diderot Paris VII, June 2003 (cit. on pp. 137, 140).

[Rit10] C. Ritzenthaler. “Explicit computations of Serre’s obstruction for genus-3 curves and application to
optimal curves”. In: LMS Journal of Computation and Mathematics 13 (2010), pp. 192–207 (cit. on
p. 127).

[RS06] A. Rostovtsev and A. Stolbunov. “Public-key cryptosystem based on isogenies”. In: International
Association for Cryptologic Research. Cryptology ePrint Archive (2006). eprint: http://eprint.
iacr.org/2006/145 (cit. on pp. 2, 6).

165

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://arxiv.org/abs/1510.03384
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145

[SST03] T. Satoh, B. Skjernaa, and Y. Taguchi. “Fast Computation of Canonical Lifts of Elliptic curves and its
Application to Point Counting”. In: Finite Fields and Their Applications 9.1 (2003), pp. 89–101 (cit. on
p. 136).

[Sat00] T. Satoh. “The canonical lift of an ordinary elliptic curve over a finite field and its point counting”. In:
J. Ramanujan Math. Soc. 15.4 (2000), pp. 247–270 (cit. on pp. 5, 132, 133, 135, 136).

[Sch84] A. Schönhage. “Factorization of univariate integer polynomials by Diophantine approximation and
an improved basis reduction algorithm”. In: International Colloquium on Automata, Languages, and
Programming. Springer. 1984, pp. 436–447 (cit. on p. 109).

[Sch85] R. Schoof. “Elliptic curves over finite fields and the computation of square roots mod 𝑝”. In:
Mathematics of computation 44.170 (1985), pp. 483–494 (cit. on p. 5).

[Sch95] R. Schoof. “Counting points on elliptic curves over finite fields”. In: J. Théor. Nombres Bordeaux 7.1
(1995), pp. 219–254 (cit. on pp. 5, 79, 110).

[Sea13] G. J. Seal. Tensors, monads and actions. 2013. arXiv: 1205.0101 [math.CT] (cit. on p. 1).
[Ser75] J.-P. Serre. Groupes algébriques et corps de classes. 2nd. Vol. 7. Publications de l’Institut de mathéma-

tique de l’Université de Nancago. Hermann, 1975 (cit. on p. 63).
[Ser01] J. Serre. “Appendix to Geometric methods for improving the upper bounds on the number of rational

points on algebraic curves over finite fields, by K”. In: Lauter. J. Algebraic Geom 10.1 (2001), pp. 30–36
(cit. on p. 127).

[She08] N. Shepherd-Barron. “Thomae’s formulae for non-hyperelliptic curves and spinorial square roots of
theta-constants on the moduli space of curves”. In: (2008) (cit. on p. 54).

[Sho94] P. W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In: Proceedings
35th annual symposium on foundations of computer science. Ieee. 1994, pp. 124–134 (cit. on p. 2).

[Shp96] I. E. Shparlinski. “On irreducible polynomials of small height over finite fields”. In: Applicable Algebra
in Engineering, Communication and Computing 7.6 (1996), pp. 427–431 (cit. on p. 105).

[Sil94] J. H. Silverman. Advanced topics in the arithmetic of elliptic curves. Vol. 151. Graduate Texts in
Mathematics. New York: Springer-Verlag, 1994, pp. xiv+525. isbn: 0-387-94328-5 (cit. on p. 145).

[Sma03] N. Smart. “An analysis of Goubin’s refined power analysis attack”. In: Cryptographic Hardware and
Embedded Systems-CHES 2003 (2003), pp. 281–290 (cit. on p. 6).

[Smi08] B. Smith. “Isogenies and the discrete logarithm problem in Jacobians of genus 3 hyperelliptic curves”.
In: Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2008, pp. 163–180. arXiv: 0806.2995 [math.NT] (cit. on p. 6).

[Stacks] T. Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu. 2018 (cit. on
p. 11).

[Sto10] A. Stolbunov. “Constructing public-key cryptographic schemes based on class group action on a
set of isogenous elliptic curves”. In: Advances in Mathematics of Communications 4.2 (2010), p. 215
(cit. on pp. 2, 6).

[Str10] M. Streng. “Complex multiplication of abelian surfaces”. Proefschrift. Universiteit Leiden, 2010
(cit. on pp. 87, 88, 97, 146, 148, 150).

[Sug14] K.-i. Sugiyama. “On a generalization of Deuring�s results”. In: Finite Fields and Their Applications 26
(2014), pp. 69–85 (cit. on p. 147).

[Sut11] A. Sutherland. “Computing Hilbert class polynomials with the Chinese remainder theorem”. In:
Mathematics of Computation 80.273 (2011), pp. 501–538 (cit. on pp. 5, 148, 149).

[Sut13] A. Sutherland. “On the evaluation of modular polynomials”. In: The Open Book Series 1.1 (2013),
pp. 531–555 (cit. on p. 106).

[SZ17] A. Sutherland and D. Zywina. “Modular curves of prime-power level with infinitely many rational
points”. In: Algebra & Number Theory 11.5 (2017), pp. 1199–1229 (cit. on p. 6).

[Tat66] J. Tate. “Endomorphisms of abelian varieties over finite fields”. In: Inventiones mathematicae 2.2
(1966), pp. 134–144 (cit. on p. 144).

[Tes06] E. Teske. “An elliptic curve trapdoor system”. In: Journal of cryptology 19.1 (2006), pp. 115–133
(cit. on p. 6).

166

https://arxiv.org/abs/1205.0101
https://arxiv.org/abs/0806.2995
https://stacks.math.columbia.edu

[Tia20] S. Tian. “Translating the discrete logarithm problem on Jacobians of genus 3 hyperelliptic curves
with (ℓ, ℓ, ℓ)-isogenies”. 2020. arXiv: 2007.03172 [math.AG] (cit. on p. 13).

[Tra14] C. Tran. “Formules d’addition sur les jacobiennes de courbes hyperelliptiques: application à la
cryptographie”. PhD thesis. Rennes 1, 2014 (cit. on p. 8).

[Tui16] J. Tuitman. “Counting points on curves using a map to 𝑷1”. In: Mathematics of Computation 85.298
(2016), pp. 961–981 (cit. on p. 143).

[VV09] B. Vallée and A. Vera. “Probabilistic analyses of lattice reduction algorithms”. In: The LLL Algorithm.
Springer, 2009, pp. 71–143 (cit. on p. 106).

[VHI06] W. Van Dam, S. Hallgren, and L. Ip. “Quantum algorithms for some hidden shift problems”. In: SIAM
Journal on Computing 36.3 (2006), pp. 763–778 (cit. on p. 2).

[Van98] P. Van Wamelen. “Equations for the Jacobian of a hyperelliptic curve”. In: Transactions of the American
Mathematical Society 350.8 (1998), pp. 3083–3106 (cit. on p. 53).

[Vél71] J. Vélu. “Isogénies entre courbes elliptiques”. In: Compte Rendu Académie Sciences Paris Série A-B
273 (1971), A238–A241 (cit. on pp. 5, 68, 79).

[VPV01] F. Vercauteren, B. Preneel, and J. Vandewalle. “A memory efficient version of Satoh’s algorithm”. In:
International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2001,
pp. 1–13 (cit. on p. 133).

[Vil18] G. Villard. “On computing the resultant of generic bivariate polynomials”. In: Proceedings of the 2018
ACM International Symposium on Symbolic and Algebraic Computation. 2018, pp. 391–398 (cit. on
p. 116).

[Wat69] W. Waterhouse. “Abelian varieties over finite fields”. In: Ann. Sci. Ecole Norm. Sup 2.4 (1969), pp. 521–
560 (cit. on p. 127).

[YZ18] X. Yuan and S.-W. Zhang. “On the averaged Colmez conjecture”. In: Annals of Mathematics 187.2
(2018), pp. 533–638 (cit. on p. 148).

[ZSP+18] G. H. Zanon, M. A. Simplicio, G. C. Pereira, J. Doliskani, and P. S. Barreto. “Faster isogeny-based
compressed key agreement”. In: International Conference on Post-Quantum Cryptography. Springer.
2018, pp. 248–268 (cit. on p. 66).

[ZLR10] A. Zykin, G. Lachaud, and C. Ritzenthaler. “Jacobians among abelian threefolds: A formula of klein
and a question of serre”. In: Doklady Mathematics. Vol. 81. 2. Springer. 2010, pp. 233–235. arXiv:
0802.4017 (cit. on p. 127).

167

https://arxiv.org/abs/2007.03172
https://arxiv.org/abs/0802.4017

	Page de garde
	Contents
	1 Introduction
	1.1 Secret sharing and cryptography
	1.2 Purpose of this document and a brief description of my research
	1.2.1 Overview
	1.2.2 Algorithms for abelian varieties
	1.2.3 Algorithms for moduli spaces
	1.2.4 The yin and yang of arithmetic, pairings, and isogenies
	1.2.5 An ode to algebraic geometry

	1.3 A chronology
	1.4 Some useless trivia
	1.5 Outline
	1.6 Perspectives
	1.7 Updates

	i Algorithms for abelian varieties
	2 Arithmetic of abelian varieties
	2.1 Introduction
	2.2 Abelian varieties over C
	2.3 Coordinates and polarisations
	2.4 Algebraic theta functions
	2.5 Descent theory and Mumford's isogeny formula
	2.5.1 Descent theory
	2.5.2 The isogeny formula for θ-functions

	2.6 Symmetry and symmetric theta structures
	2.6.1 Descending symmetric line bundles
	2.6.2 Symmetric theta structures
	2.6.3 Symmetry and isogenies

	2.7 Addition formula and equations for abelian varieties
	2.8 Riemann relations and the differential addition
	2.8.1 Unicity of the differential addition
	2.8.2 Using the differential addition
	2.8.3 Analytic interpretation of the differential addition
	2.8.4 Applications of the differential addition

	2.9 Affine lifts and differential addition law in other models
	2.9.1 Functions constructed from an explicit version of the theorem of the square
	2.9.2 Computing a theta structure
	2.9.3 Trivialisations of the line bundle

	2.10 Changing level and application to isogenies
	2.10.1 Raising level via an isogeny
	2.10.2 Raising level on the same variety
	2.10.3 Descending level

	2.11 Rationality
	2.12 Arithmetic on Kummer varieties
	2.12.1 Arithmetic of Kummer groups
	2.12.2 Riemann relations in the theta model of level 2
	2.12.3 From level 2 to level 4

	2.13 Conclusion and perspectives

	3 Computing pairings in abelian varieties
	3.1 Introduction
	3.2 Pairings
	3.2.1 The Weil and Tate pairings
	3.2.2 Variants of the Tate pairing and twists

	3.3 Miller's algorithm
	3.3.1 Overview of Miller's algorithm in abelian varieties
	3.3.2 Miller's algorithm in the theta model

	3.4 Pairings on the Kummer variety
	3.5 The Weil and Tate pairings for elliptic curves
	3.6 Conclusion and perspectives

	4 Isogenies
	4.1 Introduction
	4.2 A generic framework for isogenies
	4.3 Descending line bundles on A to line bundles on B
	4.3.1 Constructing other line bundles
	4.3.2 The algorithm

	4.4 Descending line bundles on B via the descent formula
	4.4.1 The contragredient isogeny
	4.4.2 Finding sections on the pullback
	4.4.3 Descent formula
	4.4.4 Isogenies from equations of the kernel
	4.4.5 Summary

	4.5 Extending the isogeny computation to isogenies induced by real multiplication
	4.6 Modular interpretation of the isogeny formula
	4.7 Isogenies from differential equations
	4.7.1 Elliptic curves
	4.7.2 Hyperelliptic curves of genus 2
	4.7.3 Compressing isogenies

	4.8 Conclusion and perspectives

	ii Algorithms for modular spaces
	5 Modular correspondances
	5.1 Introduction
	5.2 A general modular correspondance in the theta model
	5.2.1 Defining the modular correspondance
	5.2.2 Fibers of the modular correspondance
	5.2.3 Automorphisms of the modular correspondance

	5.3 Modular polynomials
	5.3.1 Definition of the modular polynomials
	5.3.2 Computing Siegel modular polynomials in dimension 2
	5.3.3 Computing Hilbert modular polynomials in dimension 2
	5.3.4 Evaluating modular functions and period matrices
	5.3.5 An evaluation-interpolation approach for covers and modular polynomials
	5.3.6 Denominators of the modular polynomials
	5.3.7 Size of the modular polynomials
	5.3.8 Evaluating modular polynomials

	5.4 Applications of modular polynomials to isogenies between abelian varieties
	5.4.1 Elkies' method for elliptic curves
	5.4.2 Adapting Elkies' method in higher dimension
	5.4.3 Lifting isogenies
	5.4.4 Elkie's method for abelian surfaces

	5.5 Applications to point counting for abelian surfaces
	5.5.1 Complexity of Schoof's algorithm for abelian surfaces in the Siegel case
	5.5.2 Complexity of a SEA algorithm for abelian surfaces in the Siegel case
	5.5.3 Complexity of Schoof's algorithm for abelian surfaces in the Hilbert case
	5.5.4 Complexity of a SEA algorithm for abelian surfaces in the Hilbert case
	5.5.5 Complexity of a Schoof-Pila and SEA like algorithm in higher dimension

	5.6 Applications to exploring isogeny graphs
	5.6.1 Isogeny graphs over a finite field via modular polynomials
	5.6.2 Isogeny graphs over a finite field via explicit isogeny computations
	5.6.3 Type of ℓ-isogenies for abelian surfaces
	5.6.4 The structure of the ℓ-isogeny graph of ordinary abelian surfaces
	5.6.5 The structure of isogeny graphs of products of elliptic curves

	5.7 Conclusion and perspectives

	6 Canonical lifts
	6.1 Introduction
	6.2 Canonical lifts and point counting
	6.2.1 Canonical lifts
	6.2.2 Using lifts for point counting
	6.2.3 Computing a canonical lift of an elliptic curve
	6.2.4 Lifting the kernel of the Verschiebung
	6.2.5 Computing the isogeny
	6.2.6 Taking the norm

	6.3 Canonical lifts for abelian varieties
	6.4 Computing the action on tangent space without lifting isogenies (Revenge of the Sith)
	6.5 Computing the action on tangent space via lifting the isogeny (A New Hope)
	6.5.1 Isogeny induced by the modular correspondance
	6.5.2 Recovering the matrix on tangent space over the Kummer varieties
	6.5.3 Lifting the kernel

	6.6 Computing the action on tangent space without lifting isogeny (The Empire Strikes Back)
	6.7 Conclusion and perspectives

	7 Class polynomials
	7.1 Introduction
	7.2 An overview of class polynomial computations
	7.2.1 The main theorem of complex multiplication
	7.2.2 Strategies to compute the Shimura class polynomial

	7.3 Enumerating abelian varieties with CM over a finite field
	7.4 Using p-adic lifts to compute the class polynomials
	7.5 Conclusion and perspectives

	Bibliography

