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Abstract. In this paper, we describe an algorithm to compute chains of (2, 2)-
isogenies between products of elliptic curves in the theta model. The description
of the algorithm is split into various subroutines to allow for a precise field
operation count.
We present a constant time implementation of our algorithm in Rust and an
alternative implementation in SageMath. Our work in SageMath runs ten times
faster than a comparable implementation of an isogeny chain using the Richelot
correspondence. The Rust implementation runs up to forty times faster than
the equivalent isogeny in SageMath and has been designed to be portable for
future research in higher-dimensional isogeny-based cryptography.

1 Introduction

The devastating attacks on SIDH [3,25,42] have highlighted the relevance of studying
higher-dimensional abelian varieties in isogeny-based cryptography. Following the at-
tacks, it soon became evident that these new tools would have applications beyond
cryptanalysis. For instance, Robert leveraged these techniques both to give a represen-
tation of isogenies in polylogarithmic time [40] and to compute the endomorphism ring
of ordinary elliptic curves in quantum polynomial time [41].

On a more cryptographic side, the attacks have been used to design new pro-
tocols. Basso, Maino and Pope utilise these cryptanalytic techniques to construct a
trapdoor mechanism, and using standard transformations, this trapdoor is used to
derive a public-key encryption protocol named FESTA [2]. Subsequently, three addi-
tional protocols employing similar ideas to FESTA have appeared [27,33,28]. One of
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the main building blocks underlying these protocols is the computation of chains of
(2, 2)-isogenies between products of two elliptic curves. However, the cryptographic
application of these isogeny chains extends beyond FESTA-based applications. For in-
stance, SQIsign2D-West [1] uses two-dimensional isogenies between elliptic products
to achieve significant speed ups for keygen and signing as well as the fastest SQIsign
verification to date. These isogenies are also at the core of computing the group action
in SCALLOP-HD [4], as well as in novel constructions of isogeny-based weak verifiable
delay functions [15] and verifiable random functions [21]. Therefore, improving algo-
rithms to compute chains of (2, 2)-isogenies between elliptic products is of paramount
importance to the progress of higher-dimensional isogeny-based protocols.

Prior to this work, the only method to compute (2, 2)-isogenies between elliptic
products relied on ad-hoc procedures for gluing and splitting, and the use of the Rich-
elot correspondence to compute isogenies between Jacobians of genus-two hyperelliptic
curves [45,34]. This method can be considered satisfactory for cryptanalytic purposes,
but it is definitely not efficient enough for constructive applications. Indeed, for the
proof-of-concept implementations of [2,33], the two-dimensional isogenies are the bot-
tleneck of the protocol. Richelot isogenies describe (2, 2)-isogenies between Jacobians
of genus-two hyperelliptic curves in the Mumford model. Here, kernel elements are di-
visors, represented by a pair of univariate polynomials. The arithmetic of the group
elements, as well as isogeny codomain computation and evaluation, require working
in a univariate polynomial ring above the base field. This model makes doubling and
evaluation of points expensive and the implementation of the isogeny chain itself is
significantly more complicated than the more familiar isogeny chains between two el-
liptic curves, which use Vélu’s formulae. A natural question is then to ask whether it
could be possible to use different models that are more amenable to simple and efficient
algorithmic descriptions.

In the literature, another model used to compute isogenies is already known: the
theta model. Despite being suitable for isogenies between elliptic curves, the theta model
has mainly been employed to compute isogenies in higher dimension due to the lack of
alternatives. For instance, Cosset and Robert describe an algorithm for (ℓ, ℓ)-isogenies
in the theta model for odd primes ℓ [9], later improved in [24]. The case ℓ = 2 has been
briefly treated in [38, Proposition 6.3.5] and [39, Remarks 2.10.3, 2.10.7, 2.10.14] but
never formalised.

The theta model is well known for its efficient arithmetic (in low dimension). For
instance, Chudnovsky and Chudnovsky utilised the arithmetic of Kummer surfaces
represented in the theta model for factoring integers [6]. Following this work, Gaudry
derived fast formulae for the scalar multiplication on the Kummer surface associated to
genus-two hyperelliptic curves. Moreover, in [37], Renes, Schwabe, Smith and Batina
designed signature schemes for microcontrollers based on the efficient Montgomery
ladder scalar multiplication on the Kummer surface.

Despite this efficient arithmetic, curiously, up until now, it had not really been
considered for efficient (2, 2)-isogenies between Kummer surfaces. A notable exception
is the work of Costello [10]. Costello employs the theta model to translate the com-
putation of 2n-isogenies between elliptic curves defined over Fp2 to (2n, 2n)-isogenies
between Kummer surfaces over Fp via the Weil restriction. However, the (2, 2)-isogenies
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considered by Costello are of a very special form, i.e. those deriving from very special
kernels on the Weil restriction of elliptic curves. Our work can be seen both as a special-
isation of the results of [39] to the case most interesting for isogeny-based cryptography
(namely (2n, 2n)-isogenies between product of elliptic curves or Kummer surfaces), and
as a generalisation of [10] to general (2n, 2n)-isogenies.

In this work, we mainly focus on an algorithm to compute (2n, 2n)-isogenies between
products of elliptic curves using the theta model. Since the applications we have in
mind fall within the realm of isogeny-based cryptography, we specialise in the case
of chains of (2, 2)-isogenies whose intermediate abelian surfaces are all Jacobians of
genus-two hyperelliptic curves and the kernel generators are all rational. Indeed, in all
the current schemes involving two-dimensional isogenies, encountering elliptic products
in the middle of these chains occurs with negligible probability. Still, we briefly explain
how to extend our algorithms to treat all cases in Appendix A.

Our aim is to demystify the hard algebraic geometry underpinning the theta model
and make it accessible to cryptographers who want to employ isogenies between higher-
dimensional abelian varieties within their protocols. The end result of our work is a
set of concrete algorithms which describe the necessary pieces for computing isogenies
between elliptic products; written to be particularly amenable to efficient and optimised
implementations which are not all that different in appearance to the one-dimensional
isogenies many are more familiar with.

1.1 Contributions

This paper has been written with the aim of being modular, using an algorithmic ap-
proach. All the formulae in the paper are mainly derived from the duplication formula.
As a result, a reader uniquely interested in the computational results can assume the
validity of the work in Section 2 and follow along the subsequent sections, which contain
the explicit algorithms. From the duplication formula, we first re-obtain the addition
formulae that have already been described in [17] and also give a precise operation
count in the base field.

The algorithm to compute chains of (2, 2)-isogenies between elliptic products is split
into various subroutines. Each subroutine is carefully described in algorithmic boxes;
this allows for a precise field operation count. The main advantage of this approach is
that both reducible and irreducible abelian surfaces can be described in the same way.
However, some extra care will be devoted to the splitting and gluing case.

The gluing case is the most delicate one, where zero coordinates must be carefully
handled during both arithmetic and isogeny computations. We efficiently compute the
theta model representation of an elliptic product using only the dimension one repre-
sentation of the theta structures and a few additional multiplications to recover the
product structure. A summary of the costs of the algorithms described in this paper is
shown in Table 1.

Note that unlike the case of the Richelot chain, which requires both a (2, 2)-gluing
and (2, 2)-splitting isogeny, computing the elliptic product at the end of a chain of
isogenies in the theta model is a case of simply converting from one model to another,
which can be done efficiently.
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Table 1. Base field costs of doubling, codomain computation and evaluation for generic
(normalised and projective) and gluing isogenies in the theta model. We denote by M,S, I the
costs of multiplication, squaring and inversion of an element in the base field and ignore the
cost of additions. Computation of a codomain is given along with the precomputation cost
which accounts for the one-time cost of computing field elements used when doubling and
evaluating theta points along the isogeny chain.

Isogeny Type Doubling Codomain Evaluation

Precomputations Codomain

Normalised 8S + 6M 4S + 24M + 1I 8S + 10M + 1I 4S + 3M

Projective 8S + 8M 5S + 14M 8S + 7M 4S + 4M

Gluing 12S + 12M — 8S + 13M + 1I 8S + 10M + 1I

Finally, we offer both a constant time implementation of the computation of an
isogeny between elliptic products in the programming language Rust, as well as an
alternative implementation for the computer algebra system SageMath [46]. Both are
available at the following GitHub repository:

https://github.com/ThetaIsogenies/two-isogenies.

The Rust implementation has been written with cryptographic applications in mind
and so has been built to run in constant time, with the appropriate finite field arith-
metic and no secret-dependent conditional branching. It should also be easily portable
to other projects in the future. The SageMath implementation has been designed to
be a drop-in replacement for the work of [34]. As a result, all the protocols whose
implementation relies on this work or the proof-of-concept of [2] can be upgraded to
(2, 2)-isogenies in the theta model with minimal effort. As a use case, we show the
benefit of these algorithms in FESTA in Section 5.3.

We give explicit timings of our implementations in Table 2. In SageMath, our im-
plementation achieves a ten times speed up for the codomain computation and more
than twenty times speed up for evaluation time compared to [34]. For characteristic
of size 254 bits, the Rust code runs approximately forty times faster than the same
algorithms written in SageMath, and more than two times as fast for very large char-
acteristic (1293 bits). Concretely, on an Intel Core i7-9750H CPU with a clock-speed
of 2.6 GHz with turbo-boost disabled, we compute an isogeny chain of length n = 208
between elliptic products over Fp2 with a 254 bit characteristic in only 2.13 ms.

Roadmap In Section 2, we give a concise summary of the algebraic theory of theta
functions. The most important parts of this section are the duplication formula and
the algorithm to construct theta structures on elliptic products; the reader willing
to accept these two main building blocks can skip this section entirely. In Section 3,
we derive addition formulae from the duplication formula. The isogeny formulae are
described in Section 4. We discuss our implementation results in Section 5 and draw
some conclusions in Section 6.

https://github.com/ThetaIsogenies/two-isogenies
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Notation Throughout the paper, M,S, I will represent the cost of multiplication,
squaring and inversion of an element in the base field, respectively. In Section 2, we
will introduce the Hadamard transform H; in dimension two,

H(x, y, z, w) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·


x
y
z
w


We also define (θ̃00(P ) : θ̃10(P ) : θ̃01(P ) : θ̃11(P )) = H (θ00(P ), θ10(P ), θ01(P ), θ11(P ))
to be the dual coordinates of P , and the ⋆ operator:

(x, y, z, w) ⋆ (x′, y′, z′, w′) = (xx′, yy′, zz′, ww′).

Another useful operator we will introduce in Section 3 is the squaring operator S:

S(x, y, z, w) = (x2, y2, z2, w2).

When computing the cost of inverting k elements, we will use batched inversions.
Batched inversions allow us to invert k elements at a cost of 3(k − 1) multiplications
and only one inversion [26, §10.3.1]. We refer to our implementation for an explicit
description of the algorithm.5

Acknowledgments. Huge thanks are given to Thomas Pornin for his advice and pre-
vious collaborations, both of which were instrumental in the design and implementation
of the constant time Rust implementation. We also thank Sabrina Kunzweiler for fruit-
ful discussion and the anonymous reviewer for pointing out additional applications of
the theta model outside isogeny-based cryptography.

2 Preliminaries

We assume the reader has some familiarity with (N,N)-isogenies between principally
polarised abelian surfaces; we refer to [25, §2] for a cryptographer-friendly introduc-
tion to the subject (see also [7, Ch. V, §8 ] for a general introduction). Before giving
an explicit description of the algorithm used to compute (2n, 2n)-isogenies between
products of two elliptic curves, we provide a concise and self-contained summary of
the algebraic theory of theta functions. Using theta functions, it is possible to perform
arithmetic on principally polarised abelian varieties. The reader willing to assume the
validity of the duplication formula and the algorithm to construct theta structures on
elliptic products can skip this section entirely and use Algorithm 2 as a black box.

For all the other readers, in what follows, we utilise the language of Mumford’s
theory to provide a summary of the algebraic theory of theta functions [29,30,31]. We
will first briefly recapitulate Mumford’s results, then recall the duplication formula,
which will allow us to describe isogeny formulae between principally polarised abelian
surfaces, and finally provide a formula for the change of basis in the case of a product
of two elliptic curves, which is the case analysed in the paper.
5 Python implementation of batched inversion

https://github.com/ThetaIsogenies/two-isogenies/blob/main/Theta-SageMath/utilities/batched_inversion.py


6 P. Dartois, L. Maino, G. Pope, and D. Robert

2.1 Mumford’s Theory

In [44, §2.2], Robert and Sarkis provide a concrete treatment of Mumford’s theory in the
case of elliptic curves. In this section, we describe Mumford’s theory for a principally
polarised abelian variety (A, λ) of dimension g in a similar manner, working over an
algebraically closed field k of characteristic different from two.

Assume that the principal polarisation λ is represented by a divisor Θ, which we will
further assume to be symmetric: [−1]∗Θ = Θ (we can always find such a representative).
The principal polarisation is then given by λ = ΦΘ : A→ Â, P 7→ t∗PΘ −Θ.6

We can then define the polarisation of level n: λ ◦ [n] : P 7→ t∗PnΘ − nΘ. Its kernel
coincides with A[n]. This means that, if P ∈ A[n], t∗PnΘ − nΘ is a principal divisor.
We will denote by gP a function on A with this divisor; the function gP is well defined
up to multiplication by an invertible constant in k. This is a fundamental ingredient
to introduce the theta group.

The theta group of level n is given by G(nΘ) = {(P, gP ), P ∈ A[n]}, with group law
(P, gP ) · (Q, gQ) = (P +Q, gP ( )gQ(P + )). Finally we have an (irreducible) action of
G(nΘ) on Γ (nΘ) = {f ∈ k(A)∗ | div(f) ≥ −nΘ}∪{0}, via (P, gP ) ·f = gP ( )f( +P ).
We also have an operator δ−1 on G(nΘ): δ−1(P, gP ) = (−P, [−1]∗gP ).

Let G(n) be the Heisenberg group k∗ ×K(n) × K̂(n) where K(n) = (Z/nZ)g and
K̂(n) = (Ẑ/nẐ)g, where the multiplication is given by

(α, x, χ) · (α′, x′, χ′) := (αα′χ′(x), x+ x′, χ · χ′).

We have an operator δ−1 on G(n) given by δ−1(α, x, χ) = (α,−x, 1/χ), and an irre-
ducible action of G(n) to V (n), the vector space of functions (Z/nZ)g −→ k generated
by the Kronecker delta functions δi : i ∈ (Z/nZ)g, via (α, x, χ) · δi = αχ(i)δx+i.

For technical reasons, we will from now on assume that n is even. We will denote
by L the line bundle associated to nΘ. A symmetric theta structure ΘL of type n is an
isomorphism G(n) → G(nΘ) that commutes with the action of δ−1 and which induces
the identity on the natural embedding of k∗ in both groups. It induces an isomorphism
Θ

L
: A[n] → H(n) = K(n) × K̂(n), which sends the Weil pairing enΘ on A[n] to the

pairing en on H(n) given by en((x1, χ1), (x2, χ2)) = χ2(x1)/χ1(x2). In particular, the
symmetric theta structure of level n ΘL induces a canonical symplectic basis of the
n-torsion; and Mumford shows in [29] that conversely ΘL is induced by a symplectic
basis of the 2n-torsion. We will say that these bases are compatible with ΘL.

By uniqueness of the irreducible action of the Heisenberg group [29], the theta
structure ΘL induces an isomorphism β : Γ (A,nΘ) ∼−→ V (n), uniquely defined up to
a scalar. Via β, it is possible to transfer the basis δi : i ∈ (Z/nZ)g of V (n), to a
basis (θi)i∈(Z/nZ)g on Γ (A,nΘ); the functions θi are called theta coordinates of level n.
Using theta coordinates, it is possible to represent abelian varieties via an embedding
into the projective space [32, Ch. II, Theorem 1.3]. In particular, if n > 2, the abelian
variety A can be completely described in the projective space via the evaluation of
theta coordinates at the identity using the Riemann relations; we call the projective
point

(
θi(0

A)
)
i∈(Z/nZ)g the theta-null point. Given a point P ∈ A and T ∈ A[n], we

6 With Â, we denote the dual abelian variety of A.
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can efficiently represent P + T in theta coordinates: if T corresponds to (s, χ) via Θ
L
,

(θi(P + T ))i = (χ(i)θi+s(P ))i . (1)

Let f : A→ B be an isogeny between abelian varieties, let ΘA, ΘB be two divisors
inducing principal polarisations on A and B respectively. Suppose there exists an iso-
morphism α : f∗ΘB

∼−→ nΘA, we say that f is an n-isogeny. Then, one can prove that
ker(f) ⊂ A[n]. On the other hand, given K ⊂ A[n], it is not generally true that the
isogeny f ′ : A → B of kernel K generates an isomorphism between nΘA and (f ′)∗Θ′

B

for some divisor Θ′
B on B. By [29], this is exactly true when K is maximal isotropic for

the Weil pairing en on A[n]7. We note that if we have a theta structure ΘL on A, then
the image of K(n) = (Z/nZ)g and K̂(n) = (Ẑ/nẐ)g by Θ

L
are maximal isotropic sub-

groups of A[n]. If K is equal to the image of K̂(n) by Θ
L
, we say that it is compatible

with the theta structure.
In this work we will consider (2n, 2n)-isogenies A → B between abelian surfaces,

with kernel K maximal isotropic in A[2n], and A will be endowed with a symmetric
theta structure of level two. We will say that K is compatible with our theta structure
if not only K[2] is compatible in the sense above, but also that K[4] is compatible with
the symmetric structure. This is to say that if T ′ ∈ K[4] is a point of exact order four,
and T = 2T ′, with T corresponding to Θ

L
(0, χ), then we require the theta coordinates

θi(T
′) to be invariant under the action of ΘL(1, 0, χ). Unraveling the definition, this

is equivalent to the fact that a basis of K[4] extends to a symplectic basis of A[4]
compatible with ΘL.

Example 1. Let (a : b : c : d) be a theta-null point of level two in dimension two
obtained from the theta structure ΘL. Implicitly, this determines a symplectic basis
(S1, S2, T1, T2) of the two-torsion. Let i1 = ([1], [0]) ∈ K(2), i2 = ([1], [0]) ∈ K(2),
χ1, χ2 ∈ K̂(2, 2) such that

χj(ik) =

{
−1 if j = k,
1 if j ̸= k.

Then, let us define S1 = Θ
L
(i1), S2 = Θ

L
(i2), T1 = Θ

L
(χ1) and T2 = Θ

L
(χ2).

If P = (x : y : z : t), we have S1 = (b : a : d : c) and P + S1 = (y : x : t : z),
S2 = (c : d : a : b) and P + S2 = (z : t : x : y), T1 = (a : −b : c : −d) and
P + T1 = (x : −y : z : −t), T2 = (a : b : −c : −d) and P + T2 = (x : y : −z : −t).

Remark 2 (Rational theta coordinates). In practice, our base field k is not algebraically
closed. However, if we assume that A[2n] is k-rational then the associated level-n theta
structure is also k-rational. Especially, the theta-null point is k-rational and level-n
theta coordinates of k-rational points are k-rational. In our work focused on crypto-
graphic applications, k will be a finite field (e.g. Fp2) but the formulae we provide are
valid on any perfect field.
7 We say K is isotropic for en when en(x, y) = 1 for all x, y ∈ K and maximal isotropic if it

is maximal as a subgroup of A[n] for this property.
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Another fundamental ingredient is the change of theta structure given by Heisenberg
group automorphisms. A Heisenberg group automorphism is an automorphism of G(n)
acting as the identity on k∗. In particular, such an automorphism induces a symplectic
automorphism on H(n) with respect to its natural pairing en. The most fundamental
example is the Hadamard Transform, which is the automorphism that swaps K(n)

and K̂(n).

Hadamard Transform Let (θi)i be some theta coordinates on A. The action of
the Hadamard transform on (θi)i is described in [39, Eq. 2.4]. The resulting theta
coordinates after this transform are called the dual theta coordinates; we will denote
such coordinates by (θ̃i)i. In what follows, we will use the Hadamard transform on
level-two theta coordinates. For the sake of clarity, we explicitly state the action of this
symplectic automorphism in dimension one and two.

First, let us fix an ordering for theta coordinates. In dimension one, there are only
two theta coordinates. Whenever we write (x : y) to represent a point P in theta
coordinates, we actually mean (θ0(P ) : θ1(P )). Hence, specialising [39, Eq. 2.4], we
obtain (θ̃0(P ) : θ̃1(P )) = (x+ y : x− y). In dimension two, we represent a point P in
theta coordinates by a tuple (x : y : z : w), where we fix the ordering (θ00(P ) : θ10(P ) :
θ01(P ) : θ11(P )). 8 Specialising [39, Eq. 2.4], we have

θ̃00(P ) = x+ y + z + w, θ̃01(P ) = x+ y − z − w

θ̃10(P ) = x− y + z − w, θ̃11(P ) = x− y − z + w.

Henceforth, we will use the operator H to refer to the action of the Hadamard transform
on theta coordinates. Finally, we remark that H

(
H

(
(θAi )i

))
= (θAi )i (projectively).

2.2 Duplication Formula

Let (θAi )i be theta coordinates of level two on A. Implicitly, we have a symplectic
decomposition of A[2] = K(L) = K(L)1 ⊕ K(L)2 — from now on, we will drop the
dependence on the line bundle L and simply write A[2] = K1⊕K2. Let (S1, . . . , Sg) be
the canonical basis induced by Θ

L
(K(2)) and (T1, . . . , Tg) the canonical basis induced

by Θ
L
(K̂(2)), which means K1 = ⟨S1, . . . , Sg⟩ and K2 = ⟨T1, . . . , Tg⟩. Now, let us

consider the isogeny f : A→ B, where ker(f) = K2. The abelian variety B is principally
polarised and in turn can be endowed with a type two theta structure, whose theta
coordinates are denoted by (θBi )i. Also, let us define ⋆ to be the operator such that
(xi)i ⋆ (yi)i = (xiyi)i. Then, a consequence of the isogeny theorem [29, Theorem 4, p.
302] (see also [38, Theorem 3.6.4]) and duplication formula [29, Equation A, p. 332]
shows that:(

θAi (P +Q)
)
i
⋆
(
θAi (P −Q)

)
i
= H

((
θ̃Bi (f(P ))

)
i
⋆
(
θ̃Bi (f(Q))

)
i

)
, (2)

H
((
θAi (f̃(R))

)
i
⋆
(
θAi (f̃(S))

)
i

)
=

(
θ̃Bi (R+ S)

)
i
⋆
(
θ̃Bi (R− S)

)
i
, (3)

where f̃ denotes the dual isogeny of f and (θ̃Bi )i are the dual theta coordinates of (θBi )i.
8 The subscript ij refers to the pair ([i], [j]) ∈ K(2).
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2.3 Theta Structures on Elliptic Products

We now focus on products of two elliptic curves and explain how to endow these
products with a theta structure of type two. First, let us recall that every theta structure
of type two comes from a symplectic basis of the four-torsion [29, Remark 4, p. 319].
Let E1 and E2 be two elliptic curves. The natural candidate for a theta structure on
E1 × E2 is the product theta structure, which is obtained via the combination of the
theta structures on elliptic curves [13, Lemma F.3.1].

Proposition 3. Let (ai : bi) be theta-null points on Ei induced by a symplectic four-
torsion basis (ei, fi), for i = 1, 2. Then, (a1a2 : b1a2 : a1b2 : b1b2) is a theta-null point
for E1 × E2 induced by the symplectic four-torsion ⟨(e1, 0), (0, e2)⟩ ⊕ ⟨(f1, 0), (0, f2)⟩.

However, in the next sections, we might need to work with theta structures asso-
ciated to a different symplectic four-torsion basis. In what follows, we explain how to
construct theta structures associated with a fixed symplectic four-torsion basis. First,
we explain how to do it over elliptic curves and then transfer our results to elliptic
products.

Let E be an elliptic curve, and (T ′
1, T

′
2) a basis of the four-torsion. To compute the

theta-null point associated to this basis, we proceed as follows. Given a point T ∈ E[2],
there are two symmetric elements ±g (satisfying δ−1(g) = g−1) above T in the theta
group G (L(2(0E))). We can fix a symmetric element via a point T ′ of four-torsion
above T . Let T1 = 2T ′

1, T2 = 2T ′
2, and let g1, g2 be these elements associated to T ′

1

and T ′
2, respectively. Unraveling the construction by Mumford of a symmetric theta

structure of level two induced by a symplectic basis of level four, the theta coordinate
θ0 must be invariant under the action of g2, and θ1 = g1 · θ0. The coordinate θ0 can be
computed as the trace of a global section s ∈ Γ (E,L(2(0E))), provided it is not equal
to zero, i.e. θ0 = id · s+ g2 · s ̸= 0.

Working on a Montgomery curve in Weierstrass coordinates, we have a canonical
point of four-torsion T ′ = (1 : 1) above T = (0 : 1) that induces the canonical element
g of the theta group acting by g · (X,Z) = (Z,X). Indeed, translation by T is given
by (X : Z) 7→ (Z : X), and the two symmetric elements above this translation act by
(X,Z) 7→ (±Z,±X) since they have order two. The element gT ′ in G (L(2(0E))) fixed
by T ′ corresponds to ±g. Still by unraveling Mumford’s construction, the correct sign
choice for the symmetric element gT ′ induced by T ′ is given by the one that leaves
invariant any affine lift of T ′. In our case, this is g.

For a general elliptic curve, if T ′ = (x, y, z) is a point of four-torsion and 2T ′ = T =
(u, v, w), we can map T ′ to the Montgomery point (1 : 1) via the linear transformation
(in the Kummer line): M : (X : Z) 7→ (X ′ : Z ′) = (zwX−zuZ : (xw−zu)Z). It follows
that the action of gT ′ is given by

MTUMT−1
=

1

xw − zu

(
uz zw

wx2/z − 2ux −uz

)
,

with M =

(
wz −zu
0 xw − uz

)
, U =

(
0 1
1 0

)
. This computation is the output of Algorithm 1.
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Example 4. Using previous notation, on a Montgomery curve we have T ′
2 = (−1 : 1),

which acts by g2 · (X,Z) = (−Z,−X). Taking the trace of X under this action we get
θ0 = id ·X + g2 ·X = X − Z.

Let T ′
1 = (a+ b : a− b) be another point of four-torsion; its double is then (a2+ b2 :

a2 − b2). Let x = a+ b, z = a− b, u = a2 + b2, w = a2 − b2. We compute θ1 = g1 · θ0 =
g1 · (X−Z) = z(u−w)/(wx−uz)X+(wx2/z−2ux+uz)/(wx−uz)Z = b/aX+b/aZ.
We recover the same conversion formula between Montgomery and theta coordinates
as obtained in [43, Ch. 7, Appendix A.1].

We can use the same strategy to compute the theta-null point associated to a
symplectic basis of the four-torsion on a product of elliptic curves. If T ′ = (T ′

1, T
′
2) ∈

E1×E2 is a point of four-torsion, the associated element gT ′ is given by gT ′ = gT ′
1
⊗gT ′

2
.

Let Xi, Zi be global sections of 2(0Ei) defining the x-coordinate on Ei as x = Xi/Zi.
We can take θ0 as the trace of X1⊗X2, i.e. θ0 =

∑
i gi ·X1⊗X2 =

∑
i gi,1 ·X1⊗gi,2 ·X2,

where the gi = gi,1 ⊗ gi,2’s are the elements above K2 fixed by the four-torsion. The
other theta coordinates are computed via the action of the elements above K1 on θ0.

Algorithm 1 Action by Translation
Input: A point P ′ in the four-torsion of the Kummer line of an elliptic curve
Output: The 2× 2 submatrix M with coefficients mij describing the action of gP ′ lifting the

action by translation of P = 2P ′.
1: P ← [2]P ′ (▷)Cost: 2S + 3M
2: Let P ′ = (X : Z) and (U : W ) = P
3: WX, WZ, UX, UZ ←W ·X, W · Z, U ·X, U · Z
4: δ ←WX − UZ
5: Compute δ−1, Z−1 via batched inversions (▷)Cost: 3M + 1I
6: m00 ← −UZ · δ−1

7: m01 ← −WZ · δ−1

8: m10 ← UX · δ−1 −X · Z−1

9: m11 ← −m00

10: return M (▷)Total cost: 2S + 14M + 1I

In practice, in the algorithm to compute the (2n, 2n)-isogeny f : E1×E2 → E′
1×E′

2,
we only have access to ker(f)[4] = ⟨T ′

1, T
′
2⟩ and not to a complete symplectic torsion

basis of (E1 ×E2)[4]; let T ′
1 = (P1, P2) and T ′

2 = (Q1, Q2). To bypass this problem, we
define S′

1 = (0, Q2) and S′
2 = (P1, 0).9 Then, K1 = ⟨S1, S2⟩ and K2 = ⟨T1, T2⟩ , where

Si = [2]S′
i and Ti = [2]T ′

i . We use the symplectic four-torsion basis (S′
1, S

′
2, T

′
1, T

′
2) when

endowing E1×E2 with a theta structure. We summarise this procedure in Algorithm 2.
The output of this algorithm is a matrix N that allows for a change of coordinates
as follows. If R = (R1, R2) ∈ E1 × E2 is a point in Weierstrass coordinates for the
Montgomery elliptic curves, where Ri = (Xi : Zi), the image of R in theta coordinates
is given by N · (X1 ·X2, X1 · Z2, Z1 ·X2, Z1 · Z2)

⊺
.

9 Here, we assume that both P1 and Q2 have order four. When this is not the case, f is a
diagonal isogeny (P,Q) 7→ (ϕ1(P ), ϕ2(Q)), which can be computed via two one-dimensional
isogenies ϕ1 and ϕ2; see also Appendix A.
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Algorithm 2 Change of Basis
Input: The points (P ′

1, P
′
2) and (Q′

1, Q
′
2) in the four-torsion of E1 × E2 below the kernel.

Output: The 4× 4 change of basis matrix N .
1: G1 ← action_by_translation(P ′

1) (▷)Algorithm 1: Cost: 2S + 14M + 1I
2: G2 ← action_by_translation(P ′

2)
3: H1 ← action_by_translation(Q′

1)
4: H2 ← action_by_translation(Q′

2)
5: t00|1 ← g00|1 · h00|1 + g01|1 · h10|1 (▷)Compute the first column of G1 ×H1

6: t10|1 ← g10|1 · h00|1 + g11|1 · h10|1
7: t00|2 ← g00|2 · h00|2 + g01|2 · h10|2 (▷)Compute the first column of G2 ×H2

8: t10|2 ← g10|2 · h00|2 + g11|2 · h10|2
9: n00 ← g00|1 · g00|2 + h00|1 · h00|2 + t00|1 · t00|2 + 1 (▷)Compute the trace for the first row

10: n01 ← g00|1 · g10|2 + h00|1 · h10|2 + t00|1 · t10|2
11: n02 ← g10|1 · g00|2 + h10|1 · h00|2 + t10|1 · t00|2
12: n03 ← g10|1 · g10|2 + h10|1 · h10|2 + t10|1 · t10|2
13: n10 ← h00|2 · n00 + h01|2 · n01 (▷)Compute the action of (0, Q′

2) for the second row
14: n11 ← h10|2 · n00 + h11|2 · n01

15: n12 ← h00|2 · n02 + h01|2 · n03

16: n13 ← h10|2 · n02 + h11|2 · n03

17: n20 ← g00|1 · n00 + g01|1 · n02 (▷)Compute the action of (P ′
1, 0) for the third row

18: n21 ← g00|1 · n01 + g01|1 · n03

19: n22 ← g10|1 · n00 + g11|1 · n02

20: n23 ← g10|1 · n01 + g11|1 · n03

21: n30 ← g00|1 · n10 + g01|1 · n12 (▷)Compute the action of (P ′
1, Q

′
2) for the final row

22: n31 ← g00|1 · n11 + g01|1 · n13

23: n32 ← g10|1 · n10 + g11|1 · n12

24: n33 ← g10|1 · n11 + g11|1 · n13

25: return N (▷)Total cost: 8S + 100M + 4I

Remark 5. In Algorithm 2, it is possible to optimise the computation of the four inver-
sions required in the four calls to Algorithm 1 in lines 1, 2, 3 and 4 by using a unique
batched inversion. We decided not to show this optimisation in Algorithm 2 for the
sake of a cleaner exposition.

3 Addition Formulae

In this section, we derive addition formulae using the equations in Section 2.2. These
formulae have already been described in dimension two [17]. However, we prefer to
restate them in dimension two to highlight the connection with (2, 2)-isogenies and
provide an explicit operation count. In what follows, we use the same notation as in
Section 2.2.

Let P,Q ∈ A and suppose we have (θAi (P −Q))i. To compute (θAi (P +Q))i, we can
use Equation 2, but first we need to recover

(
θ̃Bi (f(P ))

)
i
and

(
θ̃Bi (f(Q))

)
i
, which can

be computed as (
θ̃Bi (f(P ))

)
i
⋆
(
θ̃Bi (0)

)
i
= H

((
θAi (P )

)
i
⋆
(
θAi (P )

)
i

)
,
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and similarly for
(
θ̃Bi (f(Q))

)
i
. The quantity

(
θ̃Bi (0)

)
i

is actually not needed, as we

only need
(
θ̃Bi (0)

)
i
⋆
(
θ̃Bi (0)

)
i

if we use(
θ̃Bi (f(P ))

)
i
⋆
(
θ̃Bi (0)

)
i
⋆
(
θ̃Bi (f(Q))

)
i
⋆
(
θ̃Bi (0)

)
i
,

to compute
(
θ̃Bi (f(P ))

)
i
⋆
(
θ̃Bi (f(Q))

)
i
. For the sake of compactness, we introduce the

operator S that, on input
(
θAi (P )

)
i
, returns

(
θAi (P )

)
i
⋆
(
θAi (P )

)
i
. We formalise this

procedure in Algorithm 3.
Let (a : b : c : d) be a theta-null point for A and define (α : β : γ : δ) to be the dual

coordinates (θ̃Bi (0))i of the theta-null point (θB(0)i)i. For simplicity, let us assume that
α ·β ·γ ·δ ̸= 0; the (rare) case when one of the dual coordinates is zero is briefly treated
in Remark 6. Equation 2 proves that (α2 : β2 : γ2 : δ2) = H(a2 : b2 : c2 : d2). However,
since we are working projectively, we need to use the quantities (α2/β2, α2/γ2, α2/δ2)
and (a/b, a/c, a/d), which can be computed via batched inversions.

Algorithm 3 Differential addition
Input: The theta coordinates of P , Q and P −Q, and (λ̃1, λ̃2, λ̃3) = (α2/β2, α2/γ2, α2/δ2).
Output: The theta coordinates P +Q.
1: XP , YP , ZP ,WP ← H ◦ S(xP , yP , zP , wP ) (▷)Cost: 4S
2: XQ, YQ, ZQ,WQ ← H ◦ S(xQ, yQ, zQ, wQ) (▷)Cost: 4S
3: Xf(P )f(Q) ← XP ·XQ

4: Yf(P )f(Q) ← λ̃1 · YP · YQ

5: Zf(P )f(Q) ← λ̃2 · ZP · ZQ

6: Wf(P )f(Q) ← λ̃3 ·WP ·WQ

7: XPQ, YPQ, ZPQ,WPQ ← H(Xf(P )f(Q), Yf(P )f(Q), Zf(P )f(Q),Wf(P )f(Q))
8: xyP−Q ← xP−Q · yP−Q

9: ztP−Q ← zP−Q · tP−Q

10: xP+Q ← XPQ · ztP−Q · yP−Q

11: yP+Q ← YPQ · ztP−Q · xP−Q

12: zP+Q ← ZPQ · xyP−Q · wP−Q

13: wP+Q ←WPQ · xyP−Q · zP−Q

14: return xP+Q, yP+Q, zP+Q, wP+Q (▷)Total cost: 8S + 17M

To obtain an algorithm to double a point P ∈ A, we proceed as before with the
only difference that we only need (a/b, a/c, a/d). We provide a detailed description of
the doubling in Algorithm 4.

Remark 6. In practice, we will always be in the case that α ·β ·γ · δ ̸= 0. We may incur
in such an exception when we are working on a product of elliptic curves but with a
non-product theta structure (see [43, Ch. 7, § 16.4]): this is due to how we construct
the theta structure on the elliptic product in Section 2.3. In this case we do not have
to worry since we could perform arithmetic on the elliptic curves and then convert to
the theta model afterwards. However, if one wants to deal with this case in the theta
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Algorithm 4 Doubling
Input: The theta coordinates of P and (λ̃1, λ̃2, λ̃3) = (α2/β2, α2/γ2, α2/δ2) and (λ1, λ2, λ3) =

(a/b, a/c, a/d).
Output: The theta coordinates [2]P .
1: XP , YP , ZP ,WP ← H ◦ S(xP , yP , zP , wP ) (▷)Cost: 4S
2: X ′

f(P ), Y
′
f(P ), Z

′
f(P ),W

′
f(P ) ← S(XP , YP , ZP ,WP ) (▷)Cost: 4S

3: Y ′
f(P ) ← λ̃1 · Y ′

f(P )

4: Z′
f(P ) ← λ̃2 · Z′

f(P )

5: W ′
f(P ) ← λ̃3 ·W ′

f(P )

6: X ′
P , Y ′

P , Z′
P , W

′
P ← H(X ′

f(P ), Y
′
f(P ), Z

′
f(P ),W

′
f(P ))

7: Y ′
P , Z′

P , W
′
P ← λ1 · Y ′

P , λ2 · Z′
P , λ3 ·W ′

P

8: return X ′
P , Y ′

P , Z′
P , W

′
P (▷)Total cost: 8S + 6M

model, one may first act with a symplectic automorphism ψ sending the dual theta-null
point to an all-non-zero one, use the addition formulae and eventually switch back to
the former theta structure acting by ψ−1.

To compute (2n, 2n)-isogenies, we will only use doublings. Algorithm 4 works only
if a · b · c · d ̸= 0. The case a · b · c · d = 0 can happen only if the codomain B is a
product of elliptic curves with non product theta structure by [43, Ch. 7, § 16.4]. In
this case, we can use the same solution as above, by using ψ = H as our symplectic
transformation.

4 The Isogeny Formula

In this section, we explain how to derive an isogeny formula for (2, 2)-isogenies from
Section 2.2. Ultimately, we focus on chains of isogenies between products of two elliptic
curves. However, we first show how to compute isogenies when we have an abelian
surface already endowed with a theta structure compatible with the kernel of the (2, 2)-
isogeny we want to compute.

Let A be an abelian surface defined over a perfect field k endowed with a k-rational
theta structure of level two, and let (S1, S2, T1, T2) be the canonical symplectic basis
associated with the symplectic decomposition A[2] = K1⊕K2; to be more specific,K1 =
⟨S1, S2⟩ and K2 = ⟨T1, T2⟩. Let us recall that a theta-null point is fixed by a k-rational
symplectic basis of the four-torsion [29, Remark 4, p. 319], and let (S′

1, S
′
2, T

′
1, T

′
2) be

such a basis; in particular 2S′
i = Si and 2T ′

i = Ti. Our goal is to compute a (2, 2)-
isogeny f : A→ B. As explained in Section 2.3, in our case, we will always be working
with ker(f) = K2.

Before outlining the explicit procedure, let us assume that we have k-rational points
T ′′
1 , T

′′
2 such that ⟨T ′′

1 , T
′′
2 ⟩[4] = ⟨T ′

1, T
′
2⟩, 2T ′′

i = T ′
i and their Weil pairing e8(T ′′

1 , T
′′
2 ) =

1.10 These conditions are not restrictive since they are naturally satisfied for chains of
(2, 2)-isogenies, which are our end goal. In particular, (f(T ′′

1 ), f(T
′′
2 )) are two of the

four-torsion points inducing the theta-null point on B lying above the two two-torsion

10 Recall that such a subgroup ⟨T ′′
1 , T

′′
2 ⟩ is said to be isotropic.
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points in K2. Hence, the points (f(T ′′
1 ), f(T

′′
2 )) lay above the canonical points in K1

for the dual coordinates.
Let us remark that f(T ′′

i ) + 2f(T ′′
i ) = −f(T ′′

i ). So, as highlighted in Equation 1
and since we are on the Kummer, we have(

θ̃B00(f(T
′′
1 )) : θ̃

B
10(f(T

′′
1 )) : θ̃

B
01(f(T

′′
1 )) : θ̃

B
11(f(T

′′
1 ))

)
=(

θ̃B10(f(T
′′
1 )) : θ̃

B
00(f(T

′′
1 )) : θ̃

B
11(f(T

′′
1 )) : θ̃

B
01(f(T

′′
1 ))

)
,

and (
θ̃B00(f(T

′′
2 )) : θ̃

B
10(f(T

′′
2 )) : θ̃

B
01(f(T

′′
2 )) : θ̃

B
11(f(T

′′
2 ))

)
=(

θ̃B01(f(T
′′
2 )) : θ̃

B
11(f(T

′′
2 )) : θ̃

B
00(f(T

′′
2 )) : θ̃

B
10(f(T

′′
2 ))

)
.

Define (α : β : γ : δ) to be the dual theta-null point of B, i.e.(
θ̃B00(0) : θ̃

B
10(0) : θ̃

B
01(0) : θ̃

B
11(0)

)
= (α : β : γ : δ).

Then, combining Equation 2 with the above observations, we have

H ◦ S(θA00(T ′′
1 ), θ

A
10(T

′′
1 ), θ

A
01(T

′′
1 ), θ

A
11(T

′′
1 )) = (xα, xβ, yγ, yδ),

H ◦ S(θA00(T ′′
2 ), θ

A
10(T

′′
2 ), θ

A
01(T

′′
2 ), θ

A
11(T

′′
2 )) = (zα,wβ, zγ, wδ),

for some unknown x, y, z, t. Hence, we can recover the dual theta-null point (α : β : γ :
δ) for B, and in turn its theta-null point H(α : β : γ : δ).

Remark 7 (Technical Remark). It is possible to prove that all x, y, z, t must be different
from zero. If it had not been the case, we would have ended up with a theta-null point
with at least two zero coordinates. This is a contradiction since it implies we have more
than a zero even theta-null coordinate of level (2, 2) – see Section “Gluing Isogeny” for
the definition of level-(2, 2) theta coordinates.

In general, the dual theta-null point (α : β : γ : δ) has all coordinates different from
zero. The only exceptions can be found for certain cases of the gluing isogeny – we will
discuss how to handle this case in Section 4.1.

Once we have computed (α : β : γ : δ), we can evaluate the isogeny f at any point
P using (again) Equation 2. To compute the image, we first compute (x′, y′, z′, w′) =
H ◦ S

(
(θAi (P ))i

)
. Then we find (θBi (f(P )))i = H(α−1x′, β−1y′, γ−1z′, δ−1w′) using

(α−1 : β−1 : γ−1 : δ−1) as input to the evaluation algorithm which can be computed
at a one-time cost during the codomain computation.

We give a detailed description of both the codomain and evaluation computations
in Algorithms 5 and 6. We note that the cost in parentheses for Algorithm 5 is the cost
of the computation of (α−1 : β−1 : γ−1 : δ−1) which is required as input to Algorithm 6.

Remark 8. As we explained in Section 3, the inverse squared dual theta-null point
(α2/β2, α2/γ2, α2/δ2) are also needed for the addition and doubling formulae. If such
a quantity has already been precomputed at a cost of 4S + 15M + 1I, we can use



An Algorithmic Approach to (2, 2)-isogenies in the Theta Model 15

Algorithm 5 Codomain
Input: Theta coordinates of T ′′

1 and T ′′
2 , where T ′′

i is a 8-torsion point lying above the K2

part of the symplectic four-torsion basis inducing the theta-null point.
Output: Dual theta-null point (1 : β : γ : δ), the inverse of the dual theta-null point (1 :

β−1 : γ−1 : δ−1) and the theta-null point (a′ : b′ : c′ : d′) on B. (▷)Case β · γ · δ ̸= 0
1: (xα, xβ, yγ, yδ)← H ◦ S(xT ′′

1
, yT ′′

1
, zT ′′

1
, wT ′′

1
) (▷)Cost: 4S

2: (zα,wβ, zγ, wδ)← H ◦ S(xT ′′
2
, yT ′′

2
, zT ′′

2
, wT ′′

2
) (▷)Cost: 4S

3: Invert (xα, xβ, zα,wβ, zγ, wδ) using batched inversions. (▷)Cost: 15M + 1I
4: β ← xβ · (xα)−1

5: γ ← zγ · (zα)−1

6: δ ← wδ · (wβ)−1 · β
7: β−1 ← xα · (xβ)−1

8: γ−1 ← zα · (zγ)−1

9: δ−1 ← wβ · (wδ)−1 · β−1

10: (a′, b′, c′, d′)← H(1, β, γ, δ)
11: return (1, β, γ, δ), (1, β−1, γ−1, δ−1), (a′, b′, c′, d′) (▷)Total cost: 8S + 10M + 1I + (13M)

Algorithm 6 Evaluation
Input: Theta coordinates of P and the dual theta-null point (1 : β−1 : γ−1 : δ−1) on B.
Output: Theta coordinates f(P ). (▷)Case β · γ · δ ̸= 0
1: (XP , YP , ZP ,WP )← H ◦ S(xP , yP , zP , wP ) (▷)Cost: 4S
2: (X ′

f(P ), Y
′
f(P ), Z

′
f(P ),W

′
f(P ))← (XP , β

−1 · YP , γ
−1 · ZP , δ

−1 ·WP )
3: (xf(P ), yf(P ), zf(P ), wf(P ))← H(X ′

f(P ), Y
′
f(P ), Z

′
f(P ),W

′
f(P ))

4: return (xf(P ), yf(P ), zf(P ), wf(P )) (▷)Total cost: 4S+ 3M

it to lower down the cost in Algorithm 5. In line 3, we need only to invert three
elements, namely xα, zα,wβ. Then, to obtain (β−1, γ−1, δ−1), we can simply multiply
component-wise (α2/β2, α2/γ2, α2/δ2) by (β, γ, δ). The total cost in this optimised case
is 8S + 10M + 1I + (4M).

Projective Algorithms. In Algorithm 5, we use batched inversions to recover (1 :
β : γ : δ) and (1 : β−1 : γ−1 : δ−1). This choice allows us to reduce the number of
operations when doubling a point and evaluating an isogeny. However, we can remove
the inversion in Algorithm 5 by working projectively at a cost of only a few extra
multiplications. We describe a projective version of Algorithm 5 in Algorithm 7, where
the cost in parentheses is associated to the computing the input (α−1 : β−1 : γ−1 : δ−1)
used for the evaluation of theta points under the action of f .

Evaluating the isogeny and doubling a point when the dual theta-null point is not
normalised at (1 : β : γ : δ) induces an extra cost of one multiplication for evaluations
and two multiplications for doubling. Additionally, the arithmetic precomputation re-
quires 5S+14M to precompute eight field elements. Note that if these arithmetic pre-
computations are available when computing the codomain, we can reduce the stated
cost to 8S+7M+(4M). Understanding whether to work projectively or using batched
inversions with normalised null points boils down to the specifics of the chain length,
number of evaluations and the cost of inversion in the base field. In the rest of paper,
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Algorithm 7 Projective Codomain
Input: Theta coordinates of T ′′

1 and T ′′
2 , where T ′′

i is a 8-torsion point lying above the K2

part of the symplectic four-torsion basis inducing the theta-null point.
Output: Dual theta-null point (α : β : γ : δ), the inverse of the dual theta-null point

(α−1 : β−1 : γ−1 : δ−1) and the theta-null point (a′ : b′ : c′ : d′) on B. (▷)Case α·β ·γ ·δ ̸= 0
1: (xα, xβ, yγ, yδ)← H ◦ S(xT ′′

1
, yT ′′

1
, zT ′′

1
, wT ′′

1
) (▷)Cost: 4S

2: (zα,wβ, zγ, wδ)← H ◦ S(xT ′′
2
, yT ′′

2
, zT ′′

2
, wT ′′

2
) (▷)Cost: 4S

3: zαwβ ← zα · wβ
4: α← xα · zαwβ
5: β ← xβ · zαwβ
6: γ ← zγ · xα · wβ
7: δ ← wδ · xβ · zα
8: αβ, γδ ← α · β, γ · δ
9: α−1 ← γδ · β

10: β−1 ← γδ · α
11: γ−1 ← αβ · δ
12: δ−1 ← αβ · γ
13: (a′, b′, c′, d′)← H(α, β, γ, δ)
14: return (α, β, γ, δ), (α−1, β−1, γ−1, δ−1), (a′, b′, c′, d′) (▷)Total cost: 8S + 7M + (6M)

we will work using the normalised implementation for clarity but point out that it is
always possible to use projective arithmetic to save inversions at the cost of slightly
more expensive doubling and evaluations.

4.1 Computing (2n, 2n)-isogenies between Elliptic Products

Now, we specialise to the case of a (2n, 2n)-isogeny f : E1 × E2 → E′
1 × E′

2 between
elliptic products defined over a perfect field k, which will be computed as a chain of
(2, 2)-isogenies. Let K be the kernel of this isogeny and suppose that we have two
k-rational points of order 2n+2 on E1 × E2 above K forming an isotropic group. To
apply the formulae we described above, we need to be sure that K[4] is in “the right
position”. Given K[4], we apply Algorithm 2 to obtain a theta-null point induced by
the symplectic four-torsion decomposition ⟨S′

1, S
′
2⟩ ⊕ ⟨T ′

1, T
′
2⟩, where K[4] = ⟨T ′

1, T
′
2⟩

If n > 2, we have that K[8] = ⟨T ′′
1 , T

′′
2 ⟩ is the isotropic 8-torsion above K[4]. This

means we could apply Algorithms 5 and 6 to compute the first step of the isogeny f ,
i.e. the isogeny f1 : E1 × E2 → A1 with kernel K[2]. However, we should be careful
as on the product structure, one of the coordinates of the dual theta-null point on A1

may be equal to zero. We explain why this happens and how to bypass this obstacle in
the Section “Gluing Isogeny” below.

After the first step, we also end up with a complete description of the theta structure
on A1; let A1[2] = K1 ⊕K2. The points f1(T ′′

1 ) and f1(T ′′
2 ) are two of the four-torsion

elements describing the theta-null point on A1. If n > 3, we can use f1(K)[8] to describe
the 8-torsion above ⟨f1(T ′′

1 ), f1(T
′′
2 )⟩ and iterate the process.

Once we reach the second last step fn−1 : An−2 → An−1, we cannot inherit the
8-torsion above the K2 part of the An−2 anymore. However, thanks to the assumption
that we have to two points of order 2n+2 on E1 × E2 above K forming an isotropic
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group, we can use the same exact strategy using the images of such points. We explain
how to relax this condition in Section 4.2.

In the last step fn : An−1 → E′
1×E′

2, we map onto an elliptic product. Even though
we can reuse the same computational strategies when we stay in the theta model, for
most of the cryptographic applications we have to explicitly recover the equations of
the curves E′

1 and E′
2, and we also have to have map points onto these curves. We

describe how to do so in the Section “Splitting Isogeny”.

Gluing Isogeny In this section, we focus on the first step of the isogeny chain,
an isogeny originating from an elliptic product; let f : E1 × E2 → A be such an
isogeny. Theta structures on elliptic products E1×E2 satisfy some additional properties
with respect to level-two theta coordinates. We refer to Dupont’s PhD thesis [16] for
background material. For the case at hand, we briefly recall some fundamental facts.

Theta coordinates of level (2, 2) are indexed by a pair of elements in K(2). A level-
two theta coordinate Ui,j is said to be even if i · jT = 0 (mod 2); otherwise it is said to
be odd. Moreover, at most one of the even indices (i, j) satisfies Ui,j(0) = 0, and there
is exactly one zero even index if and only if the theta structure is associated with a
product of two elliptic curves.

Given level-two theta coordinates (θi(P ))i, we can compute the square of its level-
(2, 2) theta coordinates as

U2
i,j(P ) =

∑
t

(−1)i·t
T

θt(P )θt+j(P ).

In [16, Proposition 6.5], Dupont shows that a theta-null point (θi(0))i comes from the
product theta structure of two elliptic curves if and only if U11,11(0) = 0. This means
that if we are working on a product structure, all the coordinates of the dual theta-null
point (α : β : γ : δ) are non-zero since (U00,00(0) : U10,00(0) : U01,00(0) : U11,00(0)) =
(α : β : γ : δ). However, when we perform a change of basis, we might move the zero
even index of the level-(2, 2) theta-null point around, and potentially we might have
one of the dual theta-null coordinates equal to zero.

In fact, unless A is a product of elliptic curves (which would be the case if the kernel
is a product kernel), then we know that one of α, β, γ, δ is zero. If it were not the case,
we could compute f(P ) from P . But since we work with theta coordinates of level
two, on the product E1 ×E2 we are really working with the product of Kummer lines
E1/±1×E2/±1. The automorphism group by which we quotient is thus Z/2Z×Z/2Z
compared to Z/2Z when working on the Kummer surface A/± 1 of an abelian surface
with a non product principal polarisation. Thus, when going from P to f(P ), there
is an ambiguity coming from an action of Z/2Z, which can only be resolved by either
taking a square root, or as we will explain next, by using extra information coming
from the arithmetic of E1 × E2 (rather than E1/± 1× E2/± 1).

Let us handle the case where one of the coordinates of the dual theta-null point
(α : β : γ : δ) is zero; let us first analyse the case α = 0. In Algorithm 5, we normalised
everything with respect to δ. This actually simplifies the codomain computation. We
explain how to do so in Algorithm 8.
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Algorithm 8 Special Codomain, α = 0

Input: Theta coordinates of T ′′
1 and T ′′

2 , where T ′′
i is a 8-torsion point lying above the K2

part of the symplectic four-torsion basis inducing the theta-null point.
Output: Dual theta-null point (0 : β : γ : 1), the “inverse” of the dual theta-null point

(0 : β−1 : γ−1 : 1) and the theta-null point (a′ : b′ : c′ : d′) on A. (▷)Case α = 0
1: (0, xβ, yγ, yδ)← H ◦ S(xT ′′

1
, yT ′′

1
, zT ′′

1
, wT ′′

1
) (▷)Cost: 4S

2: (0, wβ, zγ, wδ)← H ◦ S(xT ′′
2
, yT ′′

2
, zT ′′

2
, wT ′′

2
) (▷)Cost: 4S

3: Compute the inverse of (yγ, wβ, yδ, wδ) using batched inversions. (▷)Cost: 9M + 1I
4: β ← wβ · (wδ)−1

5: γ ← yγ · (yδ)−1

6: β−1 ← wδ · (wβ)−1

7: γ−1 ← yδ · (yγ)−1

8: (a′, b′, c′, d′)← H(0, β, γ, 1)
9: return (0, β, γ, 1), (0, β−1, γ−1, 1), (a′, b′, c′, d′) (▷)Total cost: 8S + 13M + 1I

As explained above, mapping points under this isogeny requires extra care. If we
simply use Algorithm 6, we cannot retrieve the first coordinate of a point. To be precise,
if we want to evaluate f at the point (θE1×E2

i (P ))i, we have

H ◦ S((θE1×E2
i (P ))i) = (0, βθ̃A10(f(P )), γθ̃

A
01(f(P )), δθ̃

A
11(f(P ))). (4)

Multiplying by β−1, γ−1 and δ−1 the components βθ̃A10(f(P )), γθ̃A01(f(P )), δθ̃A11(f(P )),
we retrieve all the dual components but θ̃A00(f(P )).

The component θ̃A00(f(P )) can be computed using the additional information coming
from the theta structure. Let T ′

1 be the point above T1 ∈ K2 as in the previous section.
Then,

H ◦ S((θE1×E2
i (P + T ′

1))i) = (0, βθ̃A00(f(P )), γθ̃
A
11(f(P )), δθ̃

A
01(f(P ))). (5)

However, multiplying the component βθ̃A00(f(P )) by β−1 is not enough since we are
working up to projective factors.

Once we recover θ̃A10(f(P )), θ̃A01(f(P )), θ̃A11(f(P )) from Equation 4, we can compute
λθ̃A01(f(P )) from Equation 5 for some projective factor λ: we simply multiply the last
component of H ◦ S((θE1×E2

i (P + T ′
1))i) by δ−1. If θ̃A01(f(P )) ̸= 0, we can actually

compute the inverse of the projective factor by θ̃A01(f(P ))/(λθ̃A01(f(P ))). Otherwise, we
repeat the same process with the second last component of H ◦ S((θE1×E2

i (P + T ′
1))i).

Once we have λ, we extract θ̃A00(f(P )) from the second component of H◦S((θE1×E2
i

(P+T ′
1))i): we multiply the second component of H◦S((θE1×E2

i (P+T ′
1))i) by λ−1 ·β−1.

Finally, we obtain the image of the point P under f via

H(θ̃A00(f(P )), θ̃
A
10(f(P )), θ̃

A
01(f(P )), θ̃

A
11(f(P ))).

We summarise everything in Algorithm 9. Note that for both Algorithm 8 and 9, the
case for β, γ or δ = 0 follows almost identically, see the implementation for a concrete
example of how all cases can be considered concisely. We note that Algorithm 9 requires
the knowledge not only of the theta coordinates of P , but also of P + T ′

1. From the
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knowledge of the (θi(P )) and (θi(T
′
1)), we may only recover (θi(P ±T ′

1)), hence extract
(θi(P + T ′

1)) via a square root, consistent with the fact that in a gluing isogeny we
have an ambiguity for images coming from an action by Z/2Z. Luckily we can compute
this addition on each elliptic curve separately, using Weierstrass coordinates, before
switching to the level-two theta coordinates on the surface E1 × E2.

Algorithm 9 Special Evaluation, α = 0

Input: Theta coordinates of P and P + T ′
1 and the “inverse" of the dual theta-null point

(0 : β−1 : γ−1 : 1) on A.
Output: Theta coordinates of f(P ). (▷)Case α = 0
1: (0, YP , ZP ,WP )← H ◦ S(xP , yP , zP , wP ) (▷)Cost: 4S
2: (0, YP+T1 , ZP+T1 ,WP+T1)← H ◦ S(xP+T1 : yP+T1 : zP+T1 : wP+T1) (▷)Cost: 4S
3: (Y ′

f(P ), Z
′
f(P ),W

′
f(P ))← (β−1 · YP , γ

−1 · ZP ,WP )
4: if Z′

f(P ) ̸= 0 then
5: λ−1 ← Z′

f(P )/WP+T1

6: else
7: Z′

f(P+T1)
← γ−1 · ZP+T1

8: λ−1 ←W ′
f(P )/Z

′
P+T1

9: X ′
f(P ) ← λ−1 · β−1 · YP+T1

10: (xf(P ), yf(P ), zf(P ), wf(P ))← H(X ′
f(P ), Y

′
f(P ), Z

′
f(P ),W

′
f(P ))

11: return (xf(P ), yf(P ), zf(P ), wf(P )) (▷)Total cost: 8S+ 5M + 1I

Splitting Isogeny In this last step of the isogeny chain, we need to compute an
isogeny f : A→ E′

1×E′
2 mapping onto an elliptic product. We can compute the theta-

null point of E′
1×E′

2 and mapping points under f using Algorithms 5 and 6. However,
we still need to retrieve the explicit equations for the curves E′

1 and E′
2. This can be

done using level-(2, 2) theta coordinates Ui,j .
Since the theta structure on the image surface underlies an elliptic product, we

know that one of the even indices – say (i, j) – of the level-(2, 2) theta-null point is
equal to zero. Also, we know that if we compute a symplectic automorphism ψ mapping
(i, j) onto (11, 11), the action of ψ on the theta-null point obtained via Algorithm 5
gives back a theta-null point associated with the product theta structure.

From the above, it can be seen that there are ten distinct even indices. For each of
these indices, we computed a symplectic automorphism sending this index to (11, 11).
For efficiency reasons, we hard-coded the action of each of the symplectic automor-
phisms onto theta coordinates of level two in the reference implementation. These
symplectic automorphisms and their actions have been derived from [39, p. 28] using
the following sequential steps.

Let (i, j) be the even index such that Ui,j(0) = 0, and, for ease of notation, let
(a00 : a10 : a01 : a11) be the underlying theta-null point.
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1. If i = j = 00, we act by the symplectic automorphism with matrix form
1 0 2 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We then obtain the theta-null point (a00 :
√
−1 ·a10 : a01 :

√
−1 ·a11), which means

that U10,00(0) = 0.
2. If j = 00 and i ̸= 00, we act by H, which swaps the roles of i and j. We can now

assume that j ̸= 00.
3. Let A be any invertible matrix such that A · jT = 11T . Then, the action of the

symplectic automorphism with matrix(
A 0

0 AT−1

)
maps the theta-null point (a00 : a10 : a01 : a11) to (a00 : a10·AT : a01·AT : a11·AT ).
This means that Ui′,j′(0) = 0, where i′ = i · A and j′ = 11. We can now assume
that j = 11.

4. Now, either i = 00 or i = 11. If i = 11, we are done. Otherwise, we act by the
symplectic automorphism with matrix form

1 0 2 0
0 1 0 2
0 0 1 0
0 0 0 1

 .

We then obtain the theta-null point (a00 :
√
−1 ·a10 :

√
−1 ·a01 : a11), which means

that U11,11(0) = 0.

Thus, we can assume we are now working on the product theta structure.
If (a : b : c : d) is a theta-null point on E1 × E2, from Proposition 3, it follows

that (a : b) is a theta-null point for E1 and (b : d) is a theta-null point for E2. Also,
if f(P ) = (P1, P2) ∈ E1 × E2 is represented in theta coordinates as (x : y : z : w), we
have that (x : y) is the representation of P1 in theta coordinates for E1 and (y : w)
is the representation of P2 in theta coordinates for E2. Finally, to convert from theta
coordinates to the Montgomery model we can use the formulae in [43, Ch. 7, Appendix
A.1], also rederived in Example 4.

4.2 Computing Isogenies without Extra Isotropic Information

In this section, we relax the condition on the two points of order 2n+2 on E1×E2 above
K forming an isotropic group. This does not represent a problem when computing a
(2n, 2n)-isogeny, except for the two last steps. We discuss two cases: when we can work
with 2n+2-torsion, and when we cannot.11

11 For instance, it is preferable not to work with the 2n+2-torsion when it is defined over a
field extension of the base field k.
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Let us discuss the former case. Let K = ⟨P1, P2⟩ ⊂ E1 ×E2. To apply the previous
algorithm, we would like to have an isotropic ⟨P ′′

1 , P
′′
2 ⟩ above K such that Pi = [4]P ′′

i .
However, it suffices to pick any Q′′

1 , Q
′′
2 , not necessarily isotropic, as long as Pi = [4]Q′′

i .
Indeed, one can check that applying the algorithm of Section 4.1 on these Q′′

i gives a
theta-null point that differs from the one given by isotropic P ′′

i by an automorphism
of the theta group (see Section 2.1) induced by a symplectic automorphism. Hence, it
still corresponds to the correct codomain, but with a different theta structure. We refer
to [43, Ch. 7, Example B.4]. for more details.

In the latter case, we cannot use the 2n+2-torsion at all. A way to circumvent this
problem is to use square roots to compute the codomains for the last two steps. Once
we have the codomain, the image evaluation is unaffected. There is no way to avoid
the square root computations: the theta-null point requires a theta structure of level
two, so in particular a full basis of the two-torsion and some extra information on the
four-torsion. If we do not have the 2n+2-torsion at the beginning, we miss the necessary
information on the four-torsion at the penultimate step and on the two-torsion on the
last step. To reconstruct this information requires making choices, hence taking square
roots.

At the penultimate step f : A → B, we have T ′
1 and T ′

2 of four-torsion but not
the 8-torsion points T ′′

1 and T ′′
2 anymore. This means that on the codomain, we only

have the two-torsion determined. We have several choices of possible compatible theta
structure, but we still want to use the information at hand.

Let (α : β : γ : δ) be the dual theta-null point on B. Applying Equation 2 to the
theta-null point (a : b : c : d), we have

H ◦ S(a : b : c : d) = (α2 : β2 : γ2 : δ2). (6)

Also, since f(T ′
1) is in K1 for the dual theta structure, we have(

θ̃Bi (f(T ′
1))

)
i
= (β : α : δ : γ).

Therefore, from Equation 2,

H ◦ S(
(
θAi (T

′
1)
)
i
) = (αβ, αβ, γδ, γδ). (7)

Fix α = 1. From Equation 6, we can compute any square root of β2 for β and any
square root of γ2 for γ. From Equation 7 and β we can recover the correct lifting of
γδ, and in turn, we can recover δ. The four choices we can make on the square roots of
γ2 and δ2 describe different theta structures underlying the same abelian surface since
they differ by the action of a symplectic automorphism [43, Ch. 7, Example B.3].

At the last step, we only have T1 and T2. As a result, we can only recover the
squares (α2 : β2 : γ2 : δ2) of the dual theta-null point (α : β : γ : δ). We can fix
α = 1 and compute β, γ, δ via three square roots. Once again, we can check that these
8 choices all come from a valid theta structure [43, Ch. 7, Example B.3].

To sum up, if the 2n+2-torsion is available, we need no square root. If the 2n+1-
torsion is available, we need two square roots. If only the 2n-torsion is available, we
need 2 + 3 = 5 square roots.
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5 Implementation

We have implemented the computation of an isogeny between elliptic products in the
theta model using both the programming language Rust and the computer algebra sys-
tem SageMath version 10.2. The SageMath implementation has been designed to follow
the API of isogenies between elliptic curves and is intended to be a tool in both ex-
perimentation and in constructing proof-of-concept implementations of isogeny-based
cryptographic primitives. For those who have previously relied on the SageMath im-
plementation of [34], the function EllipticProductIsogeny(kernel, n) has been de-
signed to be a drop-in replacement for the (2n, 2n)-isogeny computed using the Richelot
correspondence and the algorithms presented in [45].

The Rust implementation has been designed with constructive cryptographic imple-
mentations in mind, and in particular, it has been written to be constant time.12 The
finite field arithmetic and certain elliptic curve functions have been adapted from the
crrl library [35] maintained by Thomas Pornin as well as other ongoing collaborations.
An effort has been made to ensure the code is (reasonably) flexible so that without
too much tweaking, this work can be ported to other Rust projects. As an example of
this flexibility, we show timings of isogenies of various lengths between elliptic products
over three distinct base fields.

Both the SageMath and Rust implementations are made available via the following
GitHub repository: https://github.com/ThetaIsogenies/two-isogenies.

5.1 Performance

In this section, we include the performance of our algorithm for three distinct isogeny
chains between elliptic products over a range of base fields. We include the timings for
both the constant-time Rust implementation as well as the proof-of-concept SageMath
implementation, together with a comparison to previous work on isogenies between
elliptic products in the Mumford model [34] using the optimisations introduced in the
implementation of [2].

This triplet of comparisons has a twofold advantage. Firstly, the Rust implemen-
tation we present is the first (to our knowledge) constant time implementation of di-
mension two isogenies between elliptic products. By including the timings of both our
Rust implementation and the SageMath implementation, we hope that researchers
can estimate a performance gain if they were to write efficient and cryptographically
minded implementations following the proof-of-concept scripts which currently exist in
the higher-dimensional isogeny-based cryptography literature.

Secondly, our SageMath implementation allows an honest comparison of the isoge-
nies in the theta model to the Richelot isogenies in the Mumford model. We compare
against the implementation of [34] together with the additional optimisations intro-
duced for the proof-of-concept of [2] which offered more than a two times speed up by
optimising both the arithmetic on Jacobians as well as the isogenies themselves.
12 The implementation assumes the kernel generators are good with respect to them generating

an isogeny between elliptic products. Designing the algorithm to run in constant time with
malformed input extends beyond the goals of this paper but may be necessary for protection
against side-channel attacks against schemes which rely on this algorithm.

https://github.com/ThetaIsogenies/two-isogenies
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Table 2. Running times of computing the codomain and evaluating a (2n, 2n)-isogeny between
elliptic products over the base field Fp2 . Times were recorded on an Intel Core i7-9750H CPU
with a clock-speed of 2.6 GHz with turbo-boost disabled.

Codomain Evaluation

Theta Theta Richelot Theta Theta Richelot
log p n Rust SageMath SageMath [34] Rust SageMath SageMath [34]

254 126 2.13 ms 108 ms 1028 ms 161 µs 5.43 ms 114 ms
381 208 9.05 ms 201 ms 1998 ms 411 µs 8.68 ms 208 ms
1293 632 463 ms 1225 ms 12840 ms 17.8 ms 40.8 ms 1203 ms

The run-times displayed in Table 2 were captured on an Intel Core i7-9750H CPU
with a clock-speed of 2.6 GHz with turbo-boost disabled for stable measurements.
The Rust code was compiled with the Rust compiler version 1.80.0-nightly with
the flag -C target-cpu=native to allow the compiler to use CPU specific opcodes
(specifically, mulx for the finite field arithmetic). The arithmetic is written using Rust,
rather than optimised assembly for each base field; the inclusion of which would allow
dramatically faster results, especially for base fields with large characteristic. This form
of optimisation is better suited to particular protocols, and we would expect to see this
in optimised implementations of isogeny-based cryptographic primitives.

Comparing our SageMath implementation (version 10.2) to the isogeny chain in
the Mumford model, we find that the codomain computation is consistently faster by
a factor of ten, while the image computation is more than twenty times faster. For the
smaller characteristics studied, the Rust implementation is approximately forty times
faster than the same algorithm written in SageMath, but this gap closes significantly
for larger primes. For example, the FESTA sized parameters run only 2.5 times faster
than the SageMath code. Note that the Rust implementation has been written to run
in constant time and so the underlying arithmetic between these two implementations
is incomparable.13

We note here that an alternative and faster implementation of (2, 2)-isogenies in
the Mumford model is available in [19]. In this work, Kunzweiler uses Jacobians of hy-
perelliptic curves in specific models which allows (2, 2)-isogeny chains to be computed
particularly efficiently. In the initial treatment of this work, isogenies between elliptic
products were not considered, leading to FESTA [2] and other projects to rely on [34].
However, Kunzweiler’s work can be adapted to the case of isogenies between elliptic
products. Additionally, Kunzweiler also has an unpublished SageMath implementation
of (2, 2)-isogenies using Kummer surfaces in the Mumford model rather than in the

13 It is not surprising to see this gap close though, as we expect for very large characteristic
that the SageMath overhead becomes negligible compared to the cost of the arithmetic. As
such, the comparisons of the two run-times boil down to comparing the Rust finite field
arithmetic against the SageMath calls to the optimised arithmetic of the C libraries it is
built upon.
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Jacobian model that she kindly provided us.14 Comparing our results to the computa-
tions of Kummer surfaces in the Mumford model is a fairer comparison as we work with
level-two theta coordinates, which are also on Kummer surfaces. Comparing against
this implementation, the codomain computation in the theta model is around four
times faster than in the Mumford model, and evaluations are around four times faster.
We give detailed comparison timings in Table 3.

Table 3. Comparison of the SageMath running times for a (2n, 2n)-isogeny between elliptic
products in the theta model against Kunzweiler’s implementation in the Mumford model using
both Jacobians and Kummer surfaces [20]. Times were recorded on an Intel Core i7-9750H
CPU with a clock-speed of 2.6 GHz with turbo-boost disabled.

Codomain Evaluation

log p n Theta Jacobian Kummer Theta Jacobian Kummer

254 126 108 ms 760 ms 467 ms 5.43 ms 66.7 ms 18.4 ms
381 208 201 ms 1478 ms 858 ms 8.68 ms 119 ms 31.4 ms
1293 632 1225 ms 9196 ms 5150 ms 40.8 ms 593 ms 170 ms

Although theta coordinates are faster, working in the Mumford model is interesting
when the level-two theta coordinates are not rational, which would require using theta
coordinates on a field extension. Since our domain is a product of elliptic curves, the
theta coordinates are rational when each elliptic curve is described by rational theta
coordinates. Following the discussion in Section 2.3, an elliptic curve E has rational
theta coordinates when E[4] is rational.

Comparison with Dimension One In Table 4, we provide a timing comparison
using SageMath between a 2n-isogeny in dimension one using the efficient formulae of
[36] to our formulae in dimension two over the same base field. The dimension two
isogeny has degree 22n so is expected to be slower. Our timings show a consistent
factor-two slow down both for the codomain and image computations in dimension
two compared to dimension one. This is essentially the best we could hope given the
degrees, and actually better than expected.

The dominating costs of a 2n-isogeny are the intermediate doublings and images.
In the following we consider the more costly doublings and images in dimension two
which arise from avoiding inversion when computing the codomain. First of all, we have
around twice as many doublings and images in dimension two than in dimension one
because the kernel is of rank two. The cost of doubling in dimension one is 4M + 2S
compared to 8M+8S in dimension two, and an image is 4M compared to 4M+4S in
dimension two. Thus, while images are twice slower, doublings are around 2.5× slower,
and the intermediate codomain computations are also slower. Furthermore, a lot of

14 Kunzweiler’s isogenies between elliptic products using both Jacobians and Kummer surfaces
are now available via GitHub [20]
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doublings are done on the first step of the chain to get the first kernel, so on the elliptic
product.

While it might seem at first glance that these doublings would only incur a twofold
slowdown, in practice, for the gluing images, we need to compute these points in affine
(x, y) coordinates rather than x-only coordinates to allow access to addition laws.15

So, all in all, we should expect a slowdown around 4× for perfect implementations.
Our benchmarks show a slowdown slightly less than 2×, making two-dimensional iso-
genies perform better than expected (by contrast, the 2× slowdown for images is con-
sistent with the theory). This is probably due to SageMath overhead and the fact that
the dimension one implementation has been designed to allow arbitrary degree rather
than only chains of two isogenies and is missing some optimisations. A final caveat is
that in dimension one, it is faster to split the 2n-isogeny using the fast four-isogenies
from [11] rather than using two-isogenies – we did not do that in our comparison be-
cause we do not have efficient four-isogeny formulae in dimension two yet. Still, taking
into account the degrees of the respective isogenies, this shows that our dimension two
formulae are quite competitive with the best dimension one formulae.

Table 4. Comparison of the running times for a 2n-isogeny in dimension one and dimension
two over the same base field. Times were recorded on an Intel Core i7-9750H CPU with a
clock-speed of 2.6 GHz with turbo-boost disabled.

Codomain Evaluation

log p n Montgomery Theta Montgomery Theta

254 126 63 ms 108 ms 2.24 ms 5.43 ms
381 208 136 ms 201 ms 4.4 ms 8.68 ms
1293 632 727 ms 1225 ms 20 ms 40.8 ms

5.2 Implementation details

In this section, we explain two optimisations we applied in the implementation. The first
one is a direct consequence of Remark 8, where we describe how to lower the complexity
of the codomain computation by reusing some constants. The second optimisation
consists in the application of optimal strategies [14] to our case.

Reduce, Reuse, Recycle A simple and obvious optimisation is to reuse as many
computations as possible throughout the isogeny chain. As mentioned in Remark 8, for
each step on the isogeny chain, we precompute six field elements for doubling with a
normalised null point at a cost of 4S + 21M + 1I or eight field elements at a cost of
6S+ 16M for the projective null point. Knowledge of these values allows the doubling

15 We could also use differential additions to compute [m]P, [m]P +T ′
1, but this would be more

expensive than just doubling in the affine model.
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of any theta point on the corresponding theta structure to have a cost of 8S+6M and
8S+ 8M respectively, but it also allows the following evaluation precomputation cost
to be lowered from 13M and 6M to 4M for both cases.

For the gluing isogeny, the basis change is determined from the kernel and so cannot
be precomputed. However, the last step at the end of the isogeny chain requires to find
a symplectic transformation that maps the zero even index to the position (11, 11). As
there are only ten even indices, we can precompute ten symplectic transforms which
map any given zero even index to (11, 11). Computing the basis change is then only a
matter of finding the the current zero index and from this, selecting the precomputed
matrix and applying the transformation.

On Inversions At each step of the isogeny chain, we compute one inversion for the
intermediate codomain. This inversion allows us to reduce the cost of doublings on this
codomain from 8M+8S to 6M+8S and the cost of images from 4M+4S to 3M+4S.
However, at the end of the isogeny chain, there remain fewer doublings and images to
compute, so it would be more efficient to skip this inversion and occur the higher cost.
The precise cutoff point would depend on the relative cost of the inversion compared
to a multiplication and the number of doublings and evaluations required at each step
along the chain. This optimisation has not yet been implemented in our code, where
we work with projective null points along the whole chain for simplicity.

On Square Roots As explained in Section 4.2, when we do not have the 2n+2-torsion
available, we need to compute some square roots at the end of the chain (five square
roots in total). This only changes the computation cost of the last two codomains, and
do not affect the images computations. The longer the isogeny chain, the less impactful
these square roots will be. With our SageMath implementation, we observed that the
impact of these five square roots is completely negligible for the chains we consider.

Optimal Strategies As is now standard with computing long isogeny chains, we
can reduce the complexity of isogeny chains from a quadratic number of edges in the
graph of doublings and evaluations to quasi-linear following the “optimal strategies”
introduced in [14]. Essentially, the saving comes from reducing the total number of
doublings when computing the kernel for each step in the chain by pushing through
intermediate points encountered in the repeated doubling. For isogenies in the theta
model, the cost of images is half that of doubling, and so shifting the cost in this way
is particularly useful in optimisations.

Although this strategy was first discussed in dimension one for the case of isogenies
between elliptic curves, using it in dimension two is a natural generalisation — see for
instance [5]. For the dimension one case, the strategy is computed from balancing the
costs of doubling and evaluating the kernel generator through the chain. In dimension
two, the (2, 2)-isogeny is generated by a pair of elements which means twice the number
of evaluations, but as the pair of elements must also be doubled to obtain the kernel for
each step, essentially nothing changes. The cost weighting for the optimal strategies is
a ratio between doublings and evaluations, which means we can naively use an identical
method as described in [14] to compute a strategy for our isogeny chain.
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Implementing the strategy with the weighting of doublings and images at a cost of
(2 : 1), we find an approximate ten times speed up in comparison to an implementation
with no strategy. Concretely, for the Rust implementation of the isogeny chain of length
n = 208, we see a speed up from 107 ms to 11.4 ms.

However, unlike the isogeny chains between elliptic curves, the isogeny chain be-
tween elliptic products in our implementation does not have the same costs for every
step. For steps in the chain between generic theta structures, the cost weighting is in-
deed (2 : 1). However, for the first gluing isogeny, doubling an element on the product
structure has a cost of 12S+12M while the cost for the image is much more expensive.

To compute the image of a point P ∈ E1×E2 one must first compute the shift P+T ′
1

for a cost of 10S+32M to projectively add a pair of points. Then, for each of these two
points on the product, there is a cost of 4M to compute the corresponding theta point
from elliptic curve coordinates, and an additional 16M required perform the matrix
multiplication for the basis change to ensure a compatible representation. Altogether,
this precomputation costs 10S+72M. Given the theta point corresponding to the pair
of points on the product structure, there is still then the final cost of 8S + 5M + 1I
for the special image itself. Furthermore, for this to be implemented in constant time,
both branches depending on whether a coordinate is zero or not must be evaluated,
raising the practical cost to 8S+ 10M + 1I.

On the whole, a gluing image costs 18S+82M+1I, making it approximately seven
times the cost of the doubling for this first step and fourteen times the cost of a regular
image. Visualising the graph of doublings and images as in [14, Figure 2], this means
we must weigh the cost of moving down the left most branch with the product doubling
and the first step right from the leftmost branch with this high-cost gluing image.

Taking this into account, an optimised strategy for the isogeny between elliptic
products for our formula must be tweaked from the original case to find the right
balance of doublings and expensive images from this left branch. Applying this modi-
fication, we are able to find the “proper” optimised strategy, which further reduces the
run-time of the isogeny chain computation by approximately 2%.16 For the same chain
as above, we see a computation time improve from 11.4ms to 11.2ms. For an explicit
description for computing the optimised strategy with a different costs on the left-most
branch, see the implementation.

5.3 An Application: FESTA

As an explicit, cryptographic example of the new isogeny formula, we can take our
implementation and use it to compute the isogeny between elliptic products which is
required within the decryption algorithm of the isogeny-based public key encryption
protocol FESTA-128 [2]. Concretely, this requires computing an isogeny of length n =
632, where the base field has a characteristic with log p = 1293 bits, and the evaluation
of a pair of points on the elliptic product L1 = (R1, R2) and L2 = (S1, S2), Li ∈ E1×E2.

16 As an aside, in the original discussion of the optimised costings, it is shown that a 2-3%
improvement is gained by moving from a balanced to optimised strategy. Seeing a similar
saving from the naive (2 : 1) weighted optimisation to one carefully handling the cost of
the gluing step is then within our expectations.
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A direct swap from the isogeny chain derived from the Richelot correspondence
used in the FESTA proof-of-concept would require using Section 4.2 to compute the
final two steps without the eight-torsion above the kernel. An implementation of this
is available in SageMath, but for the purpose of FESTA, we instead propose to tweak
the 128-bit parameter set to instead allow for the additional torsion information to
be known, allowing the isogeny chain to be computed as fast as possible while only
including an additional two bits in the masked torsion data.17

We find that our SageMath implementation of the codomain computation has a
ten times speed up compared to the proof-of-concept code accompanying [2], and eval-
uating the pair of points is now thirty times faster. As a hint to what approximate
running times may be for FESTA, computing the codomain and both images using
our Rust implementation takes only 563ms, a 2.5 times speed up over the SageMath
implementation. Note that these computation are precisely that of the final row of
Table 2. Optimisations of the finite field arithmetic could offer substantial speed ups,
as seen in the optimised assembly implementations for large characteristic SIDH [18,
Table 2.1] and the efficient algorithms of [22].

In SageMath, the novel algorithms we present here offer a four times speed up
in decryption, with run-times for FESTA-128 being reduced from 20.7s to only 5.4s.
When computing the dimension two isogeny in the theta model, the time spent for
the (2n, 2n)-isogeny shrinks from 70% of the run-time to only 25%, with the remaining
computation time spent in dimension one, computing various discrete logarithms and
Weil pairings to complete the decryption routine.

6 Conclusions

In this paper, we have described and implemented formulae to compute (2n, 2n)-
isogenies between elliptic products in the theta model. The main goal was to provide
a comprehensive and self-contained treatment of the theta model, specialising to the
two-dimensional case.

Our algorithm significantly outperforms the previous method in [34,2]: in SageMath,
the codomain computation is ten times faster, while the isogeny evaluation is more than
twenty times faster. The implementation in Rust has been written to run in constant
time, with cryptographic implementations in mind. It runs up to forty times faster
than the same algorithm written in SageMath.

We tested our algorithm on the proof-of-concept implementation in [2] and showed
a fourfold speed up in decryption, highlighting that the slowest part is now given by
the computations in dimension one. Furthermore, our SageMath implementation has
been designed to allow protocols whose implementation relies on the previous proof-
of-concept in [2] to be easily upgradeable, allowing the theta model code to be used in
many more projects without too much work. Ultimately, the aim is to provide a new
tool to facilitate research in higher-dimensional isogeny-based cryptography, allowing us
to better understand the practical role of higher-dimensional isogenies in constructive
applications.

17 SageMath benchmark of FESTA isogeny

https://github.com/ThetaIsogenies/two-isogenies/blob/main/Theta-SageMath/benchmarks/benchmark_paper.py#L177
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A The General Case

In this section, we briefly explain how to compute a general (2n, 2n)-isogeny between
Kummer surfaces (with decomposable or indecomposable polarisations).

In theory, using the theta model would give an uniform approach to handle both
Jacobian of hyperelliptic curves of genus two and product of elliptic curves. However,
in order to achieve the best performance, we rely on a theta model of level two rather
than higher level n > 2 (since in level n we have ng theta coordinates), which yields
the following technical difficulty.

Let A be a principally polarised abelian surface. If A corresponds to a Jacobian,
then the level-two theta coordinates give an embedding of the Kummer surface A/±1.
However, as explained in the main text, if A = E1 × E2 is a product of two elliptic
curves (with their product polarisation), then the level-two theta coordinates give an
embedding of the product of Kummer lines (E1/± 1)× (E2/± 1). In particular, we do
not get an embedding of (E1 × E2)/± 1 but of a further quotient.

As a consequence, for a gluing image (E1/ ± 1) × (E2/ ± 1) → A/ ± 1, knowing a
point P = (±P1,±P2) is not enough to determine its image in A: we need extra data.
This is why we had to use a special algorithm for the gluing isogeny in Section 4. In
practice, the gluing case can be detected when some of our intermediate theta constants
are zero. As mentioned above, if we were working in level n > 2, we would always have
enough non-zero theta constants to compute images in all cases (by [29]), but we need
an alternative strategy for n = 2.

We now explain how to deal with all cases for a (2n, 2n)-isogeny A → B in level
two with kernel K. In the main text, we already dealt with the case where both A,B
are product of elliptic curves, but none of the intermediate abelian surfaces are.

1. When the codomain B is not a product. In this case we proceed as in the
main algorithm, except we do not need to find a product theta structure in the end.
If needed, to recover B as a Jacobian and to convert between theta coordinates and
Mumford coordinates, we can use Thomae’s formula and the conversion formula
from [32], see also [47,8,9].

2. When the domain A is not a product. If A and the kernel are already described
by theta coordinates, we first need to do a symplectic change of theta coordinate
to make the kernel compatible with our theta structure. To compute this change
of basis, we can proceed as in Section 2.3 by taking suitable traces under the
symmetric elements of the theta group induced by K[4]. For the case of a product
of elliptic curves, we had to give the explicit action of the symmetric theta group
element corresponding to a couple of points of four-torsion of elliptic curves on
the product of coordinates. In our case, since we already have theta coordinates,
this action is already encoded by our theta structure. We refer to the change of
coordinates formulae provided in [12, Theorem 12].
If A, which is a Jacobian Jac(C) under our hypothesis, is described by the curve
C and the kernel K has its generators given in Mumford coordinates, we first need
to convert into theta coordinates, using the formulae of [32,47,8,9] as above. In
that case, Kunzweiler has formulae18 for how to take the fourth-roots in Thomae’s

18 Private communication.
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formula that directly give the theta constants compatible with the kernel; this
allows to bypass the change of basis step once we have the theta coordinates.

3. When the first step is between elliptic products. If the chain begins with a
(2, 2)-isogeny between products Φ : E1×E2 → E′

1×E′
2, the isogeny Φ is a diagonal

isogeny, i.e. Φ =

(
ϕ1 0
0 ϕ2

)
, where ϕi : Ei → E′

i is a one-dimensional isogeny. This

cases reduces to first computing the one-dimensional isogenies ϕi’s to encode the
first step and then resuming from the resulting elliptic product.
The only other possibility is that we have an isogeny diamond (i.e., a Kani square)
with isogenies of degree one (i.e., isomorphisms). Then Kani’s lemma give a (2, 2)-
isogeny Φ. For instance if we take E1 = E2 = E′

1 = E′
2 = E and we consider

the automorphisms Id : Ei → Ei; then we obtain the two-isogeny Φ : (P,Q) 7→
(P +Q,P −Q), and whose kernel is {(T, T ) | T ∈ E[2]}. All other (2, 2)-isogenies
E × E → E × E which are not given by diagonal two-isogenies in dimension one
are variant of this Φ where we apply some automorphisms to P or Q before. (This
only gives a different kernel when j(E) = 0 or j(E) = 1728 and we have non trivial
automorphisms, i.e. different from ±1.)

4. An intermediate abelian surface is a product. In that case, the easiest so-
lution would be to restart the computation using level n = 4 (which requires 16
coordinates rather than four), or the representation from [23] (which requires eight
coordinates), because they give embeddings of the abelian surfaces in both the
product and non product case, and allow to treat both cases uniformly.
Another solution is to switch to the representation from [23] on the fly. Let us
treat the case of a gluing directly followed by a splitting: A→ E1 ×E2 → B, with
Φ1 : A→ E1 × E2 and Φ2 : E1 × E2 → B.
The splitting step can be handled as in the main text, where we had to compute
a splitting as the last step; namely we can compute a product theta structure on
E1 × E2. The difference is that now, we are not at the last step anymore, so we
still need to compute a gluing image afterwards.
For reasons explained above, knowing Φ1(P ) in level-two theta coordinates is not
enough to compute the gluing Φ2 ◦ Φ1(P ). As in Section 4, for the gluing we need
Φ1(P ) and Φ1(P ) + T ′ in level-two coordinates, for T ′ a point of four-torsion in
E1 × E2.
One way to obtain these point is to take T ′′ ∈ A a point of 8-torsion in A, above
kerΦ2 ◦ Φ1. We compute a representation of the set {P ± T ′′} using the formulae
of [23], and we compute Φ1(P ), {Φ1(P ± T ′′)} in level-two coordinates. From our
choice of T ′′ we have that T ′ = Φ1(T

′′) is a point of four-torsion in E1 × E2. We
do not quite have Φ1(P ), Φ1(P ) + T ′, but only Φ1(P ) ± T ′. However, from our
choice of T ′′ we have that Φ2(T

′) is a point of two-torsion, hence the two points
Φ2 ◦Φ1(P )±Φ2(T

′) are the same. This means that we can use our gluing algorithm
as before.
The case where we have m several successive product A→ E1 ×E2 → E′

1 ×E′
2 →

· · · → B can be treated in a similar way, by taking a point T ′′ of 2m+2-torsion
above the kernel of A → B, pushing P, P ± T ′′ through the splitting isogeny and
the intermediate isogenies, then taking a final gluing isogeny.
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