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Abstract. Let E be an ordinary elliptic curve over a finite field and g be a positive integer. Under
some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized
abelian varieties in the isogeny class of Eg . The varieties are first described as hermitian lattices over (not
necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point.
We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the
theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give
an algebraic computation of Serre’s obstruction for principally polarized abelian threefolds isogenous to E3

and of the Igusa modular form in dimension 4. We illustrate our algorithms with examples of curves with
many rational points over finite fields.

1. Introduction

Let g,m ≥ 1 be integers, p be a prime, q = pm and W be the isogeny class of a given dimension-g
abelian variety A over Fq. The elements of W will be the Fq-isomorphism classes of abelian varieties over
Fq which are Fq-isogenous to A. Thanks to the work of Tate [Tat66] and Honda [Hon68], one knows that
the Weil polynomial W is an invariant on W . One can also characterize the finite list S(q, g) of possible
Weil polynomials for given q and g. These finite lists have been made explicit up to genus 5 [Hal10; HS12;
Hay19]. Representing now an isogeny class W by a polynomial W ∈ S(q, g), a harder task is to describe
the finite set of elements (i.e. Fq-isomorphism classes of abelian varieties) inside W . Currently, there is no
unified nor complete way to achieve this task. To our best knowledge, one can get a full abstract description

(1) for g = 1 [Wat69];
(2) for ordinary abelian varieties [Del69; Ser85; How95; Mar19; JKP+18];
(3) for abelian varieties A ∼ Eg where E is a supersingular elliptic curve either over Fp or over Fp2 with

trace ±2p; [JKP+18];
(4) when q = p and W has no real root [CS15];
(5) for p-rank g − 1 simple abelian varieties over fields of odd characteristics [OS20].

Roughly speaking, the above descriptions functorially relate Fq-isomorphism classes of (non-polarized)
abelian varieties in W and certain finitely generated modules over orders in products of number fields
or quaternion algebras. Notice that even for g = 2, the situation is still incomplete as far as we know: there
are only partial results for supersingular and superspecial abelian surfaces [IKO86; XYY19; HNR09] and
p-rank 1 split isogeny classes seem untouched.

The situation is even more critical if one is interested in Fq-isomorphism classes of polarized abelian
varieties in W . Since the distinction is important for one of our goal (identifying Jacobians in the isogeny
class), we denote the Fq-isomorphism classes of principally polarized abelian varieties isogenous to A by W1.
Notice that there is no inclusion between the elements of W and W1 since the notions of isomorphism classes
are distinct. When the abelian varieties in W are isogenous to products of non-isogenous ordinary simple
abelian varieties, there are algorithms to enumerate the elements of W or W1 (see [Mar19]). The LMFDB
database is currently keeping track of the cardinality of these sets for small values of g and q [DKR+20].
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In the present article, we consider a different case from [Mar19], namely W is the isogeny class of the g-th
power of an ordinary elliptic curve E/Fq. Let π be the Frobenius endomorphism of E and R = Z[π, q/π] =
Z[π]. The set SE of Fq-isomorphism classes of elliptic curves {E1, . . . , Er} isogenous to E is in bijection with
the ideal class monoid ICM(R) of R. Moreover, it is always possible to identify in this set or directly construct
one elliptic curve isogenous to E with minimal endomorphism ring, i.e. equal to R (see the discussion at
the beginning of Section 3.3). We will assume from now on that this is our curve E. The functor given in
[JKP+18] which associates to any A ∈ W the finitely generated torsion-free R-module (or in short R-lattice)
Hom(A,E) of rank g is an equivalence of categories and provides an inverse denoted FE . Note that this
functor is distinct from the one used for instance in [Mar19] (it is contravariant and exact) and there is
no easy way to compare them away from projective R-modules. But both functors lead to the conclusion
that the elements in W are represented by products of elliptic curves E1, . . . , Eg in SE corresponding to a
sequence of orders R ⊂ End(E1) ⊂ . . . ⊂ End(Eg) and invertible End(Ei)-ideal classes Ii with a given fixed
product I1 · · · Ig in ICM(R) (see [Kan11, Th.1], [Mar19], [JKP+18, Th.3.2]).

Since we are interested in Fq-isomorphisms classes of polarized abelian varieties, we need to translate the
notion of polarization in the category of R-lattices through the functor Hom(A,E). We show in Theorem 3.3
and Corollary 3.6 that this can indeed be done: the elements in W1 are in correspondence with the unimodular
positive definite hermitian R-lattice (L, h) of rank g (see Section 2.1 for a review on these notions for lat-
tices). This result is no surprise to the specialists as it generalizes a similar result of Serre [Lau18, Appendix]
when R is the maximal order in Q(π) and is analogue of the result of [How95; Mar19] using a different functor.

How to enumerate the lattices (L, h)? This is part of a broader and beautiful theory which has been
developed for general orders in number fields or quaternion algebras. However, even in the case of imaginary
quadratic orders, the algorithms have been mainly implemented in the case where R is a maximal order, cf.
[Sch98; Kir19]. In Section 2.2, we recall some elements of this theory restricted to imaginary quadratic orders
and show how to adapt these algorithms when R is not maximal. This generalization comes at the price of
much slower algorithms which can be sped up if one restricts to lattices which are projective R-modules (or
equivalently to abelian varieties which are products of elliptic curves with endomorphism rings isomorphic
to R). While our method for enumerating projective R-modules is quite efficient, we believe that there is
still lot of room for improvements in the general case.

Such descriptions, though powerful, do not allow to get a real grasp on a given polarized variety (A,L ).
In particular, given an abstract description of an element in W1, one would like for instance to see if it is
the Jacobian of a curve and if so, to give an equation of the curve. For this, we have to jump back to the
algebraic geometry side and associate to the abstract description some data describing the embedding φL i ,
i ≥ 3, of A into a projective space PN . When p 6= 2, Mumford showed how to extend the classical theory
over C by using an algebraic version of the theta constants, called a theta null point. These constants are
projectively the image by φL i of 0 ∈ A for a careful choice of basis of PN . However, if this data is not
available before hand for at least one principally polarized abelian variety in W1, the only known method to
compute it is to work with a lift of A and its polarization to C, perform analytic computations with enough
precision, hopefully recognize algebraic numbers and eventually reduce the result over the finite field. When
A is simple, this is the classical setting of the Complex Multiplication methods (see for instance [CFA+06,
Chap.18]) but the output is heuristic when g > 2 [Sut11; Str14].

In our case, we will take advantage that it is easy to compute the theta null point on A0 = Eg ∈ W1 with
the product polarization L0. It boils down to computing the (projective) thetanull point on E. The formula
for their fourth power is a particular case of Thomae’s formula. We will give an elementary proof of this
result and show that one can take arbitrary fourth roots (see Lemma 4.6 and Corollary 4.8). Doing so, we
will also prepare for a ‘modular version’ of the thetanull point that we will need later and take great care of
the constant involved.

We also show how to deduce from the lattice description (L, h) of (A,L ) ∈ W1 an isogeny f : A0 → A
such that f∗L = L `

0 for a certain ` ≥ 1. This is achieved by looking for g orthogonal vectors of norm ` in
L# (a certain dual of L for h), see Section 2.3. We can then give f through an explicit maximal isotropic
kernel K in A0[`], see Section 3.3. The explicit isogeny formula developed in [CR15] allows then to transport
the thetanull point on (A0,L0) to the one on (A,L ). This leads to the following overview of our algorithm.
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Algorithm 1 Overview of the full algorithm

Input: An integer g > 1 and the Weil polynomial W of an ordinary elliptic curve over Fq (with some
technical restrictions, see the discussion below).

Output: The theta null points of all indecomposable principally polarized abelian varieties with Weil poly-
nomial W g.

1: Let R = Z[x]/(W ) and compute an elliptic curve E/Fq such that End(E) = Z[π] ' R (see Section 3.3).
2: Use Algorithm 2 (resp. 3) to get a list of all (resp. all projective) indecomposable unimodular positive

definite hermitian R-lattices (L, h) up to isometry.
3: Apply Algorithm 5 to compute a maximal isotropic kernel K of an isogeny f : Eg → FE(L) for each

(L, h).
4: return the output of Algorithm 6 on each ((E)i=1,...,g,K).

In practice, there are restrictions on the W for which this algorithm is going to work. Indeed, the current
implementation of the isogeny formula imposes several constraints on the kernel K of f . We list them below,
starting from what would require the most work if one intends to remove it. This should be taken with a
grain of salt as it is of course impossible to predict possible obstacles without an actual study.

(1) The algorithm imposes p to be odd since it uses theta structures of even level;
(2) The algorithm imposes to look for f such that f∗L = L `

0 for an integer ` > 0, whereas the strategy
would work with f∗L any completely decomposable polarization. Because of this, f does not always
exist (see Example 2.24). We give necessary and sufficient conditions for its existence in Theorem 2.16
(for instance, it does always exist is g is odd);

(3) The algorithm imposes ` to be coprime to 2p, see Remark 4.1. We work out in Section 2.3 a thorough
local analysis of the lattices which gives a refinement of Theorem 2.16. For instance, when g is odd
it is sufficient that the conductor of R is odd to find such an `;

(4) Even when ` is coprime to 2p, we have to discard cases when the kernel K from Algorithm 1 is not
isomorphic as an abstract group to (Z/`Z)g. Notice that when ` is square free, K is necessarily
isomorphic to (Z/`Z)g so the algorithm always works. We did not try to get a proof of the existence
of such a good ` and we pragmatically chose to test the group structure of a given kernel K until we
get the required abstract group isomorphism.

The full cost of the algorithm is hard to estimate: it heavily depends on the smallest good ` one can find
(when it exists) and it is an open question to find an upper bound in terms of R and g for the maximum
of the minimal ` for a given W1. Once ` is given, a lower bound for the complexity is given by the one
of Algorithm 6 which is O(`g). Be aware that this hides a large constant, since the computations have to
be performed on the extension of Fq where all `-torsion points of E are defined. Typically, the algorithm
works for a given element of W1 in reasonable time when ` is smaller than 41 (resp. 19, resp. 7) for g = 2
(resp. 3, resp. 4). Then the full cost depends also on the cardinality of W1 which can be computed by
[HK89b] for g = 2 and 3. When R = End(E) is maximal, a lower bound for this cardinality grows linearly
in (disc(R))g

2/4 for fixed g.
The restrictions above artificially increase the smallest ` we would like to consider. We therefore urge the

reader to consider Algorithm 1 as a proof of concept, allowing computations which were completely out of
reach before for various classes W1 in dimension 2, 3 and 4 with R maximal or not (see Section 5).

We finally move to one last new algorithmic result. In Section 4.3, we show how to evaluate a Siegel
modular form χ of level Sp2g(Z) and even weight1 at a principally polarized abelian variety (A,L )/Fq
when χ is defined as a homogeneous polynomial P in the theta constants with coefficients in Fq. A Siegel
modular form is a section of a power of the Hodge bundle on the universal abelian variety, so to give it a
value only makes sense once a Fq-rational basis of regular differentials on A is fixed. We show that choosing
such a basis yields a particular affine lift of the theta null point on (A,L ) which we call a modular lift (see
Definition 4.3). The coordinates of a modular lift are characterized, up to a common sign, by considering
all products of two theta coordinates as Siegel modular forms of weight 1. Evaluating χ is then computing

1when g is odd, all of them have even weight.
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the value of P in the coordinates of the modular lift. We show that a certain affine version of the isogeny
formula preserves the modular lift property (see Theorem 4.5). Since in our Thomae’s formula for elliptic
curves we took care of having such a modular lift, we can therefore carry it to (A,L ) through the isogeny
(see Algorithm 7) and perform the computation of the modular form on (A,L ).

As an application and in order to illustrate our algorithms, we consider curves over Fq with many points.
A curve C of genus g ≥ 1 over Fq has at most 1 + q + gb2√qc and when this bound is reached, we say that
C is a defect-0 curve. The best upper bounds are known only for g ≤ 2 and sparse families of g, q. If C is
a defect-0 curve, then its Jacobian JacC is isogenous to Eg where E has trace −b2√qc. If E is ordinary
(which is always the case for instance when q = pm with m = 1 or 3 and q 6= 2, 3 [Ser85, p. II.6.4]), we can
try to find JacC among the indecomposable principally polarized abelian varieties (A,L ) in the isogeny
class of Eg.

When g = 2, each such (A,L ) is automatically the Jacobian of a defect-0 curve. It is therefore enough to
know that an indecomposable principally polarized abelian surface isogenous to E2 exists which can already
be obtained on the lattice side of the picture using [Hof91] and [Ser85, Th.3.9.1]. Now, if one wants an
equation of the curve, it can be provided using Algorithm 1.

When g = 3, although each (A,L ) is geometrically the Jacobian of a unique curve C/Fq, there may be
an obstruction, called Serre’s obstruction, for C to have defect-0. Fortunately, the modular form χ18 which
is a Siegel modular form of weight 18 defined as the product of the 36 even theta constants determines this
obstruction as we shall recall in Section 5. Since we can compute algebraically the values of χ18 at all (A,L )
in the isogeny class of E3, we can compute the obstruction for each of them and check if a defect-0 genus-3
curve exists over Fq. This gives the first provable computation of this obstruction as, so far, one had only a
heuristic method using lifting and approximations over C [Rit10].

We conclude with an example in genus 4. We first show that Igusa modular form cuts the locus of
Jacobians and decomposable principally polarized abelian varieties over any algebraically closed field of
characteristic different 2 (see Theorem 5.8). We then use this to show that a certain class of isogeny does
not contain Jacobians (see Example 5.9).

The code and examples of our algorithms are available at [KNR+20]. In the future, we hope to improve
the overall speed of the algorithm (for instance by working with A0 products of distinct elliptic curves Ei
instead of Eg) and waive the technical limitations above. Notice that the method presented here may be
adapted to other cases: one could replace E ordinary with E supersingular over Fp or over Fp2 with trace
±2p; one could also replace E by a principally polarized abelian variety B for which a thetanull point is
known (with some restrictions, see [AK18] and [JKP+18, Sec.8]).

Acknowledgements. We would like to thank Andrew Sutherland who kindly provided us a fast Magma code
to check when an ordinary elliptic curve has minimal endomorphism ring and Jeroen Sijsling for helping us
using his Magma packages. We also thank Valentijn Karemaker and Stefano Marseglia for discussions about
the references in the introduction.

2. Hermitian lattices

2.1. Basic definitions and notations. Let F = Q(
√
d), where d < 0 is a squarefree negative integer. The

discriminant dF of F equals d if d ≡ 1 (mod 4) and 4d otherwise. The non-trivial Galois involution of F/Q
will be denoted by ·̄. Further, let

Nr: F → Q, x 7→ xx and Tr: F → Q, x 7→ x+ x

be the usual norm and trace of F/Q.

Definition 2.1. A hermitian space (V, h) over F is a finite dimensional vector space V over F equipped
with a sesqui-linear map h : V × V → F such that

(1) h(αv + βv′, w) = αh(v, w) + βh(v′, w) for all α, β ∈ F and all v, v′, w ∈ V .
(2) h(v, w) = h(w, v) for all v, w ∈ V .

4



The rank of a hermitian space (V, h) is the dimension of V over F . For a tuple b = (b1, . . . , br) ∈ V r we
define its Gram matrix by

Gram(b) = (h(bi, bj)) ∈ F r×r .

Every hermitian space (V, h) in this paper is assumed to be non-degenerate, i.e. if v ∈ V with h(v, w) = 0
for all w ∈ V then v = 0. This is equivalent to say that the Gram matrix of any basis b of V is invertible.

Definition 2.2. Let b be a basis of a hermitian space (V, h). Then

det(V, h) := det(Gram(b))

is called the determinant of (V, h). It is well defined when viewed as an element of Q∗/Nr(F ∗).

Definition 2.3. Two hermitian spaces (V, h) and (V ′, h′) over F are called isometric if there is an isomor-
phism ϕ : V → V ′ such that h′(ϕ(v), ϕ(w)) = h(v, w) for all v, w ∈ V . The map ϕ is then called an isometry
between (V, h) and (V ′, h′). Moreover,

U(V, h) = {ϕ : V → V | ϕ is an isometry} and SU(V, h) = {ϕ ∈ U(V, h) | det(ϕ) = 1} .
are the unitary and special unitary groups of (V, h) respectively.

Let P denote the set of prime numbers. For p ∈P ∪ {∞} let Fp := Qp ⊗Q F be the completion of F at
p. Let (V, h) be a hermitian space over F . The map h extends to Vp := Fp ⊗F V by linearity. This yields
a hermitian space (Vp, h) over Fp. If p = ∞, then Q∞ = R and (V∞, h) is a hermitian space over F∞ = C.
The signature of this complex hermitian space is called the signature of (V, h).

The following local-global principle is well known.

Theorem 2.4 (Landherr). Two hermitian spaces over F are isometric if and only if they are isometric over
every place of Q.

Hermitian spaces over C are parameterized by their signatures while hermitian spaces over Qp are pa-
rameterized by their ranks and determinants (viewed as elements of Q∗p/Nr(F ∗p )). We will only deal with
positive definite spaces, i.e. spaces with h(v, v) > 0 for all non-zero v ∈ V . For these spaces, we can make
Landherr’s theorem more explicit.

Remark 2.5. Let g be a positive integer and let Pns be the set of primes which do not split in F .
(1) Let (V, h) be a positive definite hermitian space of rank g. Since Q∗p/Nr(F ∗p ) has at most two

elements, the isometry type of (V, h) is uniquely determined by

I := {p ∈P | det(V, h) /∈ Nr(F ∗p )} ⊆Pns .

The product formula for Hasse’s norm residue symbols shows that I is a finite set of even cardinality.
(2) Let I ⊆ Pns be a finite subset of even cardinality. There exists a positive definite hermitian space

(V, h) of rank g such that

I = {p ∈P | det(V, h) /∈ Nr(F ∗p )} .
Moreover, this space admits the Gram matrix

diag(1, . . . , 1, a)

with some positive integer a whose prime divisor are in I∪{q} for some prime q. This gives a method
to construct a positive definite hermitian space of rank g with given determinant, see [Kir16, Section
3.4] for details.

For the remainder of this section, let (V, h) be a hermitian space over F of rank g. Further let R be an
order in F , that is a subring of F which is a free Z-module of rank 2. The ring of integers O of F is an order
and it contains every other order R of F . Thus the index f := [O : R] is finite and it is called the conductor
of R in F . Note that R is the unique quadratic order of discriminant f2dF . Moreover,

O = Z[ω] and R = Z[fω] where ω =
dF +

√
dF

2
.

A fractional R-ideal a is an R-submodule of F which has rank 2 over Z. It is said to be an invertible R-ideal
if there exists a fractional R-ideal b such that ab = R. Given two fractional R-ideals a, b we can define the
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fractional R-ideal (a : b) = {x ∈ F, xb ⊆ a} called the colon-quotient of a and b. The particular case (a : a)
is called the multiplicator ring of a. It is the unique order in F for which a is invertible.

Definition 2.6. An R-lattice of rank r is a finitely generated R-submodule of V such that FL := L⊗R F
has dimension r. If r = g we call L a full R-lattice in V .

The following result is due to Borevich and Faddeev [BF60].

Proposition 2.7. Let L be a full R-lattice in V . Then there exist a basis (x1, . . . , xg) of V , some fractional
ideals a1, . . . , ag of R and a chain of orders R ⊆ R1 ⊆ · · · ⊆ Rg such that ai is an invertible Ri-ideal and

L = a1x1 ⊕ · · · ⊕ agxg .

The list of pairs (ai, xi)i=1,...,g is called a pseudo-basis of L.

In the implementation of our algorithms we represent an R-lattice either via a pseudo basis or a Z-basis
and we use the results of [BF60] to switch between these two types of representations.

Definition 2.8. Let L be an R-lattice in V .
(1) The dual lattice of L is

L# = {x ∈ V | h(x, L) ⊆ R} .
(2) The lattice L is called integral if L ⊆ L# and unimodular if L = L#.
(3) An integral R-lattice L is called even, if h(x, x) ∈ 2Z for all x ∈ L; otherwise it is called odd.
(4) The lattice L is called decomposable if there exists two non-trivial R-submodules L1, L2 of L such

that L = L1 ⊕ L2 and h(x1, x2) = 0 for all xi ∈ Li. If this is the case, we write L = L1 ⊥ L2.
(5) If L is a free R-lattice with basis b, then det(L) := det(Gram(b)) is the determinant of L. It is a

well defined element in Q∗/Nr(R∗).
(6) Given a1, . . . , ag ∈ Q∗, we denote by

〈a1, . . . , ag〉
the free hermitian R-lattice (L′, h′) of rank g having an orthogonal basis (b1, . . . , bg) such that
h′(bi, bi) = ai for all 1 ≤ i ≤ g.

Let L be an R-lattice with pseudo-basis (ai, xi). Denote by (x#
i ) the dual basis (xi), i.e. the basis of V

such that h(xi, x
#
i ) = δi,j for all 1 ≤ i, j ≤ g. Then

L# =

g⊕
i=1

(R : ai)x
#
i .

From this fact and the relation (R : (R : a)) = a it is easy to see that (L#)# = L.

Lemma 2.9. Let L be an R-lattice in (V, h) and let L1, . . . , Ln be Z-submodules of L. For a ∈ F let

fa : V × V → Q, (x, y) 7→ Tr(ah(x, y)) .

The following are equivalent:
(1) L = L1 ⊥ . . . ⊥ Ln is an orthogonal decomposition into R-lattices.
(2) L =

⊕
i Li and f1(Li, Lj) = f√d(Li, Lj) = {0} for all i 6= j.

Proof. We only need to prove that (2) implies (1). Let x ∈ Li and y ∈
⊕

j 6=i Lj . Then f1(x, y) = f√d(x, y) =

0 and thus Tr(ah(x, y)) = 0 for all a ∈ F . Since F/Q is separable, it follows that h(x, y) = 0. Let r ∈ R.
Then h(rx, y) = 0 and thus fa(rx, y) = 0 for all a ∈ F . Hence rx ∈ QLi ∩ L = Li. So Li is indeed an
R-module. �

If (V, h) is positive definite, then so is the rational bilinear map f1 from above. In this case, a well known
result of Kneser shows that there exists a unique decomposition of L as in Lemma 2.9 (2) into minimal
Z-submodules. It can be computed as in [HV98, Algorithm 4.5]. Hence the previous lemma shows that any
positive definite hermitian R-lattice L has a unique decomposition into indecomposable sublattices and it
yields a method to compute these sublattices.

For a prime p ∈P let Rp := Zp ⊗Z R and Lp := Rp ⊗R L be the completions of R and L at p. Then Lp
is an Rp-lattice in (Vp, h). The introduced notion for R-lattices carries over to Rp-lattices. For example we
call an R2-lattice L even, if h(x, x) ∈ 2Z2 for all x ∈ L.
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2.2. Enumeration of positive definite unimodular hermitian lattices. Let R = Z[ωf ] be the order
of conductor f in F . In this section, we present an algorithm to enumerate all positive definite unimodular
R-lattices of a given rank.

Definition 2.10. Let L and L′ be full R-lattices in the hermitian spaces (V, h) and (V ′, h′). The lattices L
and L′ are said to be isometric, if there exists an isometry ϕ from (V, h) to (V ′, h′) such that ϕ(L) = L′. In
this case, we write L ∼= L′. Further let

cls(L) = {ϕ(L) | ϕ ∈ U(V, h)} and Aut(L) = {ϕ ∈ U(V, h) | ϕ(L) = L}
be the isometry class and the automorphism group of L. Similarly one defines isometries between the
completions Lp and L′p at a prime p. The genus of L is

gen(L) := {L′ ⊂ V | L′ is an R-lattice such that Lp ∼= L′p for all p ∈P} .

When R is the maximal order, the following remark shows how to find a lattice in a given genus.

Remark 2.11. Every Op-lattice Lp admits an orthogonal decomposition

Lp = L1 ⊥ . . . ⊥ Lr such that psiL#
i = Li

for some integers s1 < . . . < sr. Jacobowitz [Jac62] shows that (s1, . . . , sr) together with the ranks and
determinants of the lattices Li uniquely describe the isometry class of Lp unless p = 2 and F2/Q2 is ramified.
For the remaining case, he shows that some additional invariants are needed.
Let G be a genus of hermitian O-lattices. Suppose that for each prime p, we are given the p-adic local
invariants of the lattices in G. Then we can construct an O-lattice in G as follows.

(1) Since the local invariants yield the determinant of Lp, we can construct a hermitian space (V, h) over
F that contains this genus using Remark 2.5.

(2) Fix any O-lattice L in V . Then the set of all primes p where Lp has the wrong invariants is finite.
(3) If Lp has the wrong invariants, let X be any O-lattice in some hermitian space (V ′, h′) over F such

that Xp has the correct invariants. Approximate an isometry between (V ′p , h
′) and (Vp, h) by some

F -linear map ϕ : V ′ → V . If the approximation is good enough, then ϕ(X)p has the same invariants
as Xp. Then there exists a, b ∈ Z such that

paLp ⊆ ϕ(X)p ⊆ pbLp .
Now the lattice (ϕ(X) + paL) ∩ pbL coincides with L at all places different from p and it has the
correct invariants at p. So if we iterate this step, we end up with an O-lattice in G.

A different approach is suggested in [Kir16, Section 3.5].

Let L be an R-lattice in a positive definite hermitian space over F . The analogue of Landherr’s theorem
does not hold for hermitian R-lattices, i.e. the genus of L does not necessarily consist of a single isometry
class. However, the genus of L is a disjoint union of finitely many isometry classes

(1) gen(L) =

h(L)⊎
i=1

cls(Li) .

The number of classes h(L) is called the class number of (the genus of) L. There are only very few partial
results like [HK89a; HK89b] on how to deduce the class number from local invariants and these only deal
with O-lattices.

Thus an important problem is to work out the class number h(L) or more generally to make the de-
composition in Equation (1) explicit. This can be done by Kneser’s neighbour method. It is explained in
great detail in [Sch98] for O-lattices. Note that this is all we need, since we will reduce the case that R is
non-maximal to this special case in Algorithm 2.

The basic idea of Kneser’s method the following: Let p be a prime ideal of O over p > 2 such that Lp is
unimodular. An O-lattice L′ in V is called a p-neighbour of L if L/(L∩L′) ∼= O/p and L′/(L∩L′) ∼= O/p. Any
p-neighbour of L lies in gen(L) and the p-neighbours of L can be enumerated quickly. Strong approximation
yields a finite set S of unramified prime ideals of O such that given L′ ∈ gen(L), there exists a sequence of
O-lattices L = L0, L1, . . . , Lr ∼= L′ such that Li is a pi-neighbour of Li−1 for some pi ∈ S. In fact, Shimura
[Shi64, Theorem 5.24 and its proof 5.28] shows how to choose such a set S. Note that if g is even, his
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description makes use of the groups {det(g) | g ∈ Aut(Lp)} at primes p that ramify in F . These groups have
recently been worked out in [Kir19]. So the isometry classes in gen(L) are found by repeatedly computing
p-neighbours for some p ∈ S.

Note that this procedure can be sped up considerably by using Siegel’s mass formula as a stopping
condition: Since isometric lattices have isomorphic automorphism groups, the mass of L

Mass(L) := Mass(gen(L)) =

h(L)∑
i=1

1

# Aut(Li)

is a well-defined positive rational number, which only depends on the genus of L. It can be computed a
priori using Siegel’s mass formula, which expresses Mass(L) in terms of special values of L-series and local
factors that depend on the genus of L. The local factors have been worked out by Gan and Yu [GY00] for
all primes p, except if p = 2 ramifies in F . In this exceptional case the local factors can be worked out as
explained in [Kir16, Sections 4.3 and 4.5].

So if R = O is maximal, we can construct lattices in a given genus and enumerate the isometry classes
in this genus. We will now extend these methods to enumerate the isometry classes of positive definite
unimodular R-lattices. Note that these lattices might lie in non-isometric hermitian spaces.

Lemma 2.12. Let L be a unimodular hermitian R-lattice. Then M := OL is an integral O-lattice and

fM#,O ⊆ L ⊆M .

Proof. The fact that M is integral and the inclusion L ⊆ M are clear. Suppose now z ∈ fM#,O . Hence
h(z/f,M) ⊆ O. This implies h(z, L) ⊆ fO ⊆ R. So z ∈ L#,R = L. �

Algorithm 2 Enumeration of unimodular positive definite hermitian R-lattices of rank g.
Input: An order R of conductor f in an imaginary quadratic number field F and an integer g ≥ 1.
Output: A set L of R-lattices representing the isometry classes of positive definite, unimodular hermitian

R-lattices of rank g.
1: L ← ∅.
2: Let p1, . . . , ps be the prime divisors of fdF that do not split in F .
3: for all subsets I ⊆ {p1, . . . , ps} of even cardinality do
4: Using Remark 2.5 construct some positive definite hermitian form h : F g × F g → F such that

{p ∈P | det(F g, h) /∈ Nr(F ∗p )} = I .

5: Using Remark 2.11 find O-lattices G1, . . . , Gr representing the genera of all integral O-lattices M in
(F g, h) such that fM#,O ⊆M .

6: for 1 ≤ i ≤ r do
7: Let M1, . . . ,Ms represent the isometry classes of O-lattices in gen(Gi) using Kneser’s method.
8: if R = O then
9: L ← L ∪ {M1, . . . ,Ms}.

10: else
11: for 1 ≤ j ≤ s do
12: Let L1, . . . , Lt be orbit representatives of the action of Aut(Mj) on

{L ⊆Mj | L a unimodular R-lattice containing fM#,O
j with OL = Mj} .

13: L ← L ∪ {L1, . . . , Lt}.
14: end for
15: end if
16: end for
17: end for
18: return L .
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Proposition 2.13. Algorithm 2 which takes as input an order R of conductor f in an imaginary quadratic
field and an integer g ≥ 1 outputs the list of R-lattices representing the isometry classes of positive definite,
unimodular hermitian R-lattices of rank g.

Proof. Let L be a unimodular, full R-lattice in a positive definite hermitian space (V, h′) of rank g. We
first show that the set L returned by the algorithm contains a lattice isometric to L. Let p be a prime
not dividing fdF . Then Lp is a unimodular Op-lattice. If p splits in F , then det(Vp, h

′) ∈ Q∗p = Nr(F ∗p ).
Suppose now p is non-split. By [Jac62, Proposition 4.4] Lp admits an orthogonal basis. Hence det(Vp, h

′)
has a representative in Z∗p ⊆ Nr(F ∗p ). So Landherr’s theorem implies that (V, h′) is isometric to one of the
spaces (F g, h) the algorithm considers. After replacing L by an isometric copy, we may therefore assume
that M := OL is one of the lattices Mj in line 7. Proposition 2.12 shows fM#,O

j ⊆ L ⊆ Mj . Thus L
contains an R-lattice isometric to L.
Next we show that L does not represent any isometry class twice. Suppose L1, L2 ∈ L are isometric. This
isometry extends to an isometry between OL1 and OL2. By construction, this implies OL1 = OL2. Hence
L1 and L2 are in the same orbit under Aut(OL1). This shows L1 = L2. �

If we restrict ourselfs to projective unimodular R-lattices, we can speed up Algorithm 2 considerably. To
this end, let L be a full, projective R-lattice in a positive definite hermitian space (V, h) over F and set
M = OL. The R-lattice L has a pseudo-basis

L =

g⊕
i=1

aixi

with invertible fractional ideals a1, . . . , ag of R since L is a projective R-module. Let (x#
1 , . . . , x

#
g ) denote

the dual basis of (x1, . . . , xg). Then

M =

g⊕
i=1

Oaixi, L#,R =

g⊕
i=1

(R : ai)x
#
i and M#,O =

g⊕
i=1

(O : Oai)x
#
i = OL#,R .

Since (R : ai) is an invertible R-ideal, we see that L#,R is projective as well.

Proposition 2.14. Let L be a full, projective R-lattice in a hermitian space (V, h) and let M = OL. Let Φ
be the bilinear map defined by

(2) Φ: M/fM ×M/fM → O/R ∼= Z/fZ, (x, y) 7→ h(x, y) +R .

Then the following hold.

(1) If L is a unimodular R-lattice, then M is a unimodular O-lattice.
(2) If M is a unimodular O-lattice, then the following are equivalent:

(a) L is a unimodular R-lattice.
(b) L is an integral R-lattice.
(c) L/fM is an isotropic subspace of (M/fM,Φ), i.e. Φ(x, y) = 0 for all x, y ∈ L/fM .

Proof. (1) The discussion before the proposition shows that L = L#,R implies M = M#,O . (2b) =⇒ (2a):
We have L ⊆ L#,R by assumption. Equality follows from the fact that the projective R-modules L and L#,R

both have index fg in M = M#,O = OL#,R. The implications (2a) =⇒ (2b) ⇐⇒ (2c) are clear. �
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Algorithm 3 Enumeration of projective unimodular R-lattices of rank g.
Input: An integer g ≥ 2 and an order R in F .
Output: A set of representatives of the isometry classes of projective, positive definite, unimodular hermit-

ian R-lattices of rank g.
1: Fix a chain of minimal overorders R = O(0) ( O(1) ( . . . ( O(r) = O.
2: Using Algorithm 2 compute a set S of representatives of isometry classes of unimodular hermitian O-

lattices of rank g.
3: for i = r, . . . , 1 do
4: Let p be the index of O(i−1) in O(i).
5: T ← ∅.
6: for M ∈ S do
7: Let V represent the orbits of all g-dimensional isotropic subspaces of (M/pM,Φ) under the action

of Aut(M) where Φ is chosen as in Equation (2).
8: for V ∈ V do
9: Let L be the full preimage of V under the canonical epimorphism M →M/pM .

10: If L is an integral O(i−1)-lattice with O(i)L = M then include L to the set T .
11: end for
12: end for
13: S ← T .
14: end for
15: return S .

Proposition 2.15. Algorithm 3 which takes as input an order R in an imaginary quadratic field and an
integer g ≥ 2 outputs the list of R-lattices representing the isometry classes of positive definite, unimodular,
projective hermitian R-lattices of rank g.

Proof. After line 2, S is a set of representatives of the isometry classes of projective, unimodular hermitian
O(r)-lattices. Let L be a projective unimodular hermitian O(r−1)-lattice. Then M := O(r)L is a projective
unimodular hermitian O(r)-lattice. So without loss of generality M ∈ S . Thus Proposition 2.14 shows that
the set T in line 13 contains an O(r−1)-lattice isometric to L. Suppose it contains two such lattices L1

and L2. Then there is an isometry σ : L1 → L2 which induces an isometry O(r)L1 → O(r)L2. But then
O(r)L1 = M = O(r)L2 and σ ∈ Aut(M). Hence L1 and L2 are in the same Aut(M)-orbit. This shows that
L1 = L2. Hence after line 13, S is a set of representatives of the isometry classes of projective, unimodular
hermitian O(r−1)-lattices. By induction it follows that after r iterations, S represents the isometry classes
of projective, unimodular hermitian R-lattices. �

Note that Algorithm 3 calls Algorithm 2. But if R = O is maximal, the expensive steps 11–14 of
Algorithm 2 are skipped. They are replaced by a much more refined descent in lines 3–13 of Algorithm 3,
which is based on Proposition 2.14.

Also note that in Algorithm 3 it would be possible to go from O-lattices to R-lattices directly. But then
it would be much more difficult to find the desired (projective) R-lattices between fM and M .

2.3. Orthogonal families inside a lattice. Let (V, h) be a positive definite hermitian space over F of
rank g. Let R be the order in F of conductor f .

In this section, we give necessary and sufficient conditions for a unimodular hermitian R-lattice to contain
a free R-sublattice isometric to 〈`, . . . , `〉 for some ` ∈ N, which we may require to be odd. Such a free
sublattice will be needed in Section 3.3, where we provide an algorithm for finding a good isogeny from
our target principally polarized abelian variety to a totally decomposable one. But we also think that this
problem arises naturally and should deserve more investigations around the smallest values of ` that can be
obtained.

We will prove the following result.

Theorem 2.16. Let L be a full R-lattice in (V, h). Then the following hold:
(1) There exists an orthogonal basis (b1, . . . , bg) ∈ Lg of V .
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(2) There exists an integer ` and a free R-sublattice L′ of L such that L′ ∼= 〈`, . . . , `〉 if and only if g is
odd or det(V, h) ∈ Nr(F ∗).

(3) Let L be unimodular and let a ∈ Z \ {0}. Suppose g is odd or det(V, h) ∈ Nr(F ∗). There exists some
positive integer ` coprime to a and a free R-sublattice L′ of L such that L′ ∼= 〈`, . . . , `〉 if and only if
the following conditions hold.
(a) For all primes p | a the module Lp is free over Rp.
(b) If a is even then there exists some `2 ∈ Z∗2 such that L2

∼= 〈`2, . . . , `2〉.
(c) If g is even, then det(Lp, h) ∈ Nr(R∗p) for all odd primes p such that p | gcd(a, f).

Remark 2.23 below shows how to check the conditions (a)–(c) in part 3 of Theorem 2.16. Let L be an
R-lattice L in V . Then we can find an orthogonal basis of V in L as follows. For any positive rational
number ` the map

q` : V → Q, v 7→ Tr(h(v, v)/`)

is a positive definite quadratic form on the Q-space V and

{v ∈ L | h(v, v) = `} ⊆ {v ∈ L | q`(v) = 2} .

Note that the right hand side is finite and it can be enumerated using the Fincke-Pohst algorithm [FP85].
This allows us to compute the set of vectors in (L, h) of norm `.

It is now clear how to find an orthogonal basis as in Theorem 2.16. For part (1), we use the usual Gram-
Schmidt process. For parts (2) and (3), we apply Algorithm 4 to ` = 1, 2, 3, . . . until we find a suitable basis.
As all our algorithms, its complexity is at least exponential in the rank g. We could not find in the literature
any result about a possible upper bound on ` when it exists.

Algorithm 4 Computation of an orthogonal family of g vectors of norm `

Input: A full R-lattice L in V and a rational number ` > 0.
Output: An orthogonal basis of V consisting of vectors in L of norm ` if possible; otherwise ∅.
1: function BackTrack(F , S)
2: if #F = g then return F end if
3: if #F + dim〈S〉 < g then return ∅ end if
4: Pick some v ∈ S.
5: if h(v, f) = 0 for all f ∈ F then
6: T ← BackTrack(F ∪ {v}, {w ∈ S | h(v, w) = 0})).
7: if T 6= ∅ then return T end if
8: end if
9: return BackTrack(F , S \ {v}).

10: end function
11: if `g · det(V, h) /∈ Nr(F ∗) then return ∅ end if
12: S ← {v ∈ L | h(v, v) = `}.
13: return BackTrack(∅, S).

The remainder of this section gives a proof of Theorem 2.16. We start by giving a classification of all
free unimodular hermitian Rp-lattices which admit an orthogonal basis. If Rp is maximal, this follows from
Jacobowitz classification of local hermitian lattices [Jac62].

Proposition 2.17. Let L be a free, unimodular hermitian Rp-lattice of rank g. Then

L = L1 ⊥ . . . ⊥ Lr
for some free unimodular hermitian Rp-sublattices Li of rank at most 2. If one of p, g or L is odd, then all
Li can be chosen to have rank 1.

Proof. Let (b1, . . . , bg) be a basis of L. Suppose first that h(bi, bi) ∈ Z∗p for some i. Then L = Rpbi ⊥∑
j 6=iRp(bj −

h(bj ,bi)
h(bi,bi)

bi). Suppose now that such an index i does not exist. Since L is free and unimodular,
there exist 1 ≤ i < j ≤ g such that h(bi, bj) ∈ R∗p. If p 6= 2, we can replace bi with b′i := bi + 1/(2h(bj , bi))bj .
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Then h(b′i, b
′
i) ∈ Z∗p and we obtain a splitting L = Rb′i ⊥ L′ as before. If p = 2, we may assume that

h(bi, bj) = 1. Then L = (Rpbi ⊕Rpbj) ⊥ L′ where

L′ =
⊕
k 6=i,j

Rp(bk −
h(bj , bj)h(bk, bi)− h(bk, bj)

h(bi, bi)h(bj , bj)− 1
bi −

h(bi, bi)h(bk, bj)− h(bk, bi)

h(bi, bi)h(bj , bj)− 1
bj) .

So in any case, we obtain a decomposition L = L1 ⊥ L′ with free, unimodular lattices L1 and L′ such that
the rank of L1 is at most 2. The first assertion now follows by induction on the rank g and we have also
seen that we can choose all Li of rank 1 when p is odd.
Suppose now p = 2 and also suppose that g or L is odd. If L is odd, we can choose the vector b1 in our
original basis such that h(b1, b1) ∈ Z∗2. If g is odd, then one of the Li must have rank 1. So in both cases,
there exists a summand Li = R2x1 of rank 1. Suppose Lj = R2x2 ⊕ R2x3 is binary. If h(x2, x2) ∈ Z∗2 or
h(x3, x3) ∈ Z∗2, we can split Lj just as before. So suppose h(x2, x2), h(x3, x3) ∈ 2Z2. Let x′2 := x2 + x1.
Then as before Li ⊕ Lj = (R2x

′
2 ⊕ R2x3) ⊥ R2x

′
1 for some x′1 ∈ Li ⊕ Lj . But now h(x′2, x

′
2) ∈ Z∗2 and thus

Li ⊕ Lj has an orthogonal basis. Iterating this argument shows that L has an orthogonal basis. �

Remark 2.18. Let L be a free unimodular hermitian Rp-lattice.
(1) If p = 2 and the rank of L is odd, then L is odd.
(2) L has an orthogonal basis if and only if p > 2 or L is odd.

The classification of all free unimodular hermitian Rp-lattices which have an orthogonal basis more or less
boils down to a description of the norm group Nr(R∗p). To this end, let

Z∗2p = {u2 | u ∈ Z∗p} = {Nr(u) | u ∈ Z∗p}
be group of squares in Z∗p.

Lemma 2.19. If p is odd, then

Nr(R∗p) =

{
Z∗p if p - fdF ,
Z∗2p if p | fdF

and

Nr(R∗2) =


Z∗2 if 2 - dF and 4 - f,
Z∗22 ] (1− dF

4 )Z∗22 if 8 | dF and 2 - f,
Z∗22 if 25 | f2dF ,

Z∗22 ] 5Z∗22 otherwise.

Proof. We have Z∗2p ⊆ Nr(R∗p) ⊆ Z∗p and the structure of Z∗p/Z∗2p is well known. In particular, the square
classes can be distinguished modulo 4p. Any unit u ∈ Rp = Zp[fω] is of the form u = x+yfω with x, y ∈ Zp
and

Nr(u) = (x+ yfω)(x+ yfω) = x2 + xyfdF + y2f2 d
2
F − dF

4
∈ Z∗p .

The result now follows by a case by case discussion of the possible p-adic valuations of f and dF . �

Corollary 2.20. Let L be a free unimodular hermitian Rp-lattice of rank g. Let u ∈ Z∗p be a representative
of det(L) ∈ Z∗p/Nr(R∗p). If p > 2, then L ∼= 〈1, . . . , 1, u〉.

Proof. Let ε ∈ Z∗p be a non-square. Proposition 2.17 shows that L ∼= 〈u1, . . . , ug〉 with ui ∈ {1, ε}. It is well
known that there exists some U ∈ GL2(Zp) such that tU diag(1, 1)U = diag(ε, ε). Hence 〈1, 1〉 ∼= 〈ε, ε〉 and
thus we can assume that u1 = . . . = ug−1 = 1. �

Proposition 2.21. Let L be a free, odd, unimodular hermitian R2-lattice of rank g ≥ 2. Let u ∈ Z∗2 be a
representative of det(L) ∈ Z∗2/Nr(R∗2).

(1) If R2 is maximal or 3 ∈ Nr(R∗2) or 7 ∈ Nr(R∗2), then L ∼= 〈1, . . . , 1, u〉.
(2) If g > 2 and the conditions in (1) are not satisfied then either

L ∼= 〈1, . . . , 1, u〉 or L ∼= 〈1, . . . , 1, 3, 3, u〉
but not both.
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(3) If g = 2 and the conditions in (1) are not satisfied then either L ∼= 〈1, u〉 or u ≡ 1, 5 (mod Nr(R∗2))
and L ∼= 〈3, 3u〉.

Proof. If R2 is maximal, the result follows from [Jac62, Theorem 7.1 and Proposition 10.4]. Suppose now R2

is not maximal. Proposition 2.17 shows that L ∼= 〈u1, . . . , ug〉 with ui ∈ Z∗2. If 3 ∈ Nr(R∗2) or 7 ∈ Nr(R∗2) we
may assume that ui ∈ {1, 5} for all i. As in the proof of Corollary 2.20 we conclude that u1 = · · · = ug−1 = 1.
The first assertion follows.
Suppose now 3, 7 /∈ Nr(R∗2) and g ≥ 3. [O’M63, Theorem 93:16] yields some T ∈ GLg(Z2) and e ∈ {1, 3}
such that

tT diag(u1, . . . , ug)T = diag(1, . . . , 1, e, e,
∏
i

ui) .

Hence L ∼= 〈1, . . . , 1, e, e, u〉. It remains to show that M := 〈1, . . . , 1, 1, 1, u〉 and N := 〈1, . . . , 1, 3, 3, u〉
are not isometric. Let V be the ambient hermitian space of M and N . Let X and Y be the Z2-lattices
M and N equipped with the bilinear form V × V → Q2, (x, y) 7→ Tr(h(x, y)/2). Lemma 2.19 shows that
R2 = Z2⊕αZ2 for some α ∈ R2 with Tr(α) = 0 and n := Nr(α) ∈ 4Z2. Hence X = X0 ⊥ X1 where X0 and
X1 are free with Gram matrices diag(1, . . . , 1, u) and diag(n, . . . , n, un). Similarly Y = Y0 ⊥ Y1 where Y0

and Y1 are free with Gram matrices diag(1, . . . , 1, 3, 3, u) and diag(n, . . . , n, 3n, 3n, un). Suppose M and N
are isometric hermitian R2-lattices. Then X and Y are isometric bilinear Z2-lattices. By [O’M63, Theorem
93:29 (ii)], this implies that X0 is isometric to Y0, which is impossible since the two ambient quadratic spaces
have different Hasse-Witt invariants. The case g = 2 follows along the same lines. �

The above proof shows that the possible cases in part (2) and (3) of Proposition 2.21 can be distinguished
as follows.

Remark 2.22. Let L ∼= 〈u1, . . . , ug〉 where ui ∈ Z∗2 and g ≥ 2. Write u =
∏
i ui. Suppose that R2 is not

maximal and that 3, 7 /∈ Nr(R∗2). Then L ∼= 〈1, . . . , 1, u〉 if and only if
∏
i<j(ui, uj)2 = 1 where (_,_)2

denotes the Hilbert-Symbol of Q2.

We are now ready to prove the main result of this section.

Proof of Theorem 2.16. The first assertion is the Gram-Schmidt process. For the remainder let µ ∈ N be a
representative of det(V, h) ∈ Q∗/Nr(F ∗). Let (V ′, h′) be a hermitian space over F with Gram matrix µ · Ig.
If g is odd or det(V, h) ∈ Nr(F ∗), then (V, h) and (V ′, h′) have the same rank, the same determinant and
the same signature. Hence they are isometric by Landherr’s Theorem. Thus (V, h) contains a free R-lattice
M ∼= 〈µ, . . . , µ〉. Let m ∈ N such that L′ := mM ⊆ L. Then L′ ∼= 〈`, . . . , `〉 where ` = m2µ. Conversely, if
such a lattice L′ exists and g is even, then det(V, h) = `g ∈ Nr(F ∗). This proves the second assertion.
Suppose now L has a sublattice L′ as in (3). For any prime divisor p of a, we have

L′p ⊆ Lp ⊆ L#
p ⊆ (L′p)

# = L′p .

Hence Lp = L′p
∼= 〈`, . . . , `〉 and if g is even, then det(Lp, h) = `g ∈ Nr(R∗p). Finally suppose that the three

conditions of part (3) hold. If g is even and a is odd, set r = 1. If g and a are both even let r ∈ N such
that r/`2 ∈ Nr(R∗2). If g is odd, we also choose some integer r, but much more carefully. For all p | a
the assumption that Lp is free and unimodular implies det(Lp, h) ∈ Z∗p. Hence we may assume that the
representative µ ∈ N of det(V, h) from above is coprime to a. Dirichlet’s theorem on primes in arithmetic
progressions yields some prime r such that

r ≡ `2 (mod Nr(R∗2)) if 2 | a,
r ≡ µ (mod Nr(R∗p)) for all 2 6= p | a,
r ≡ µ (mod Nr(F ∗p )) for all p | µdF and p - a.

Notice that if 2 | a, then `2 ≡ `g2 ≡ µ (mod Nr(F ∗2 )) and for p - raµdF we have r/µ ∈ Z∗p ⊆ Nr(F ∗p ). Hence
r/µ ∈ Nr(F ∗p ) for all primes p 6= r. The product formula for norm symbols and Hasse’s norm theorem imply
that r/µ ∈ Nr(F ∗).
So whether g is even or odd, we have rg/µ ∈ Nr(F ∗). As in part (2) it follows that (V, h) has a Gram matrix
r · Ig. Thus (V, h) contains a full R-lattice M ∼= 〈r, . . . , r〉. Corollary 2.20, condition (3c) and the choice
of r show that for p | a there exists some local isometry σp : Mp → Lp. Since M has an orthogonal basis,
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we may assume that det(σp) = 1. Strong approximation yields some σ ∈ SU(V, h) such that σ(M)p = Lp
for all p | a, cf. [Kne66]. Hence there exists an integer b coprime to a such that bσ(M) ⊆ L. Then
L′ := bσ(M) ∼= 〈`, . . . , `〉 with ` = b2r. This proves the third assertion. �

Remark 2.23. Let L be a unimodular R-lattice in (V, h) given by a pseudo basis L =
⊕g

i=1 aixi. Then the
conditions in part (3) of Theorem 2.16 can be checked as follows.

(1) The Rp-module Lp is free if and only aiRp is principal for all i. Since R is Gorenstein, the latter
condition holds if and only if the conductor of R and the conductors of the multiplicator rings of all
ai have the same p-adic valuation. In particular, this holds if Rp is maximal.

(2) Let p > 2 be a prime such that p | gcd(a, f) and suppose Lp is free. For 1 ≤ i ≤ g pick some ai ∈ ai
such that aiRp = aiRp. Then Lp =

⊕
iRpbi with bi = aixi and thus det(Lp, h) = det(Gram(b)).

This can be used to check the condition (3c) as the norm group Nr(R∗p) has been worked out in
Lemma 2.19.

(3) Suppose 2 | a, L2 is free and g is odd. The existence of `2 is guaranteed whenever R2 is maximal or
3 ∈ Nr(R∗2) or 7 ∈ Nr(R∗2) since in these cases all free unimodular R2-lattices in (Vp, h) of determinant
det(Lp, h) are isometric, cf. Proposition 2.21. So suppose we are not in this case. Since the square
classes of Z∗2 are represented by {1, 3, 5, 7}, there are at most 4 possibilities for `2. As before we
obtain an R2-basis of L2. The proof of Proposition 2.17 yields an orthogonal basis of L2 and thus
u1, . . . , ug ∈ {1, 3, 5, 7} such that L2

∼= 〈u1, . . . , ug〉. By Remark 2.22 we have L2
∼= 〈`2, . . . , `2〉 if

and only if `2 ≡
∏
i ui (mod Nr(R∗2)) and

∏
i<j(ui, uj)2 = (`2, `2)

(g−1)/2
2 . This gives an effective

method to find the element `2 or to show that it does not exist.
(4) Suppose 2 | a, L2 is free and g is even. If 2 - fdF then L2

∼= 〈1, . . . , 1〉 by [Jac62, Proposition 10.4]. So
we may assume that 2 | fdF and we compute a Gram matrix G of L2. The existence of `2 implies that
det(G) ∈ Nr(R∗2) and L2 is odd. The first condition is readily checked and the second holds if and only
if some diagonal entry of G lies in Z∗2. Suppose these conditions both hold. As in in the case of odd
ranks, the existence of `2 is now guaranteed whenever R2 is maximal or 3 ∈ Nr(R∗2) or 7 ∈ Nr(R∗2).
In the other cases, the proof of Proposition 2.17 shows how to compute u1, . . . , ug ∈ {1, 3, 5, 7} such
that L2

∼= 〈u1, . . . , ug〉. Then L2
∼= 〈`2, . . . , `2〉 if and only if

∏
i<j(ui, uj)2 = (`2, `2)

g/2
2 . This again

yields an effective method to decide if `2 ∈ {1, 3, 5, 7} exists.

Example 2.24. Let F = Q(
√
−10) and let p be the (non-principal) prime ideal of O over 2. Equip F 2 with

the hermitian form h induced by diag(1, 2). Then

L := p · (2, 0)⊕ 1

4
O · (
√
−10 + 2, 1)

is a unimodular (and projective) O-lattice in (F 2, h) but det(F 2, h) = 2 is not a norm in F .

Example 2.25. Let R = Z[2i] be the order of conductor 2 in Q(i). Let L be the free hermitian R-lattice with
Gram matrix

G =

 3 2i 2i− 1
−2i 3 2i+ 1
−2i− 1 −2i+ 1 3

 ∈ R3×3 .

The determinant of G is 1, so L is unimodular. We find that L2
∼= 〈1, 3, 3〉 and Nr(R∗) = Z∗22 ] 5Z∗22 . Now

(1, 3)2
2 · (3, 3)2 = −1 but (1, 1)3

2 = (5, 5)3
2 = +1. Hence L2 6∼= 〈`2, `2, `2〉 for any `2 ∈ Z∗2. In particular, L does

not contain a free R-sublattice L′ ∼= 〈`, `, `〉 for any odd integer `.

3. The description of polarized abelian varieties in terms of lattices

We set up the essential tools to introduce the equivalence of categories which allows us to interpret certain
polarized abelian varieties as hermitian lattices.

3.1. The equivalence of categories. Let C be an abelian category, let E be an object of C and let R be
a ring. Fix a morphism ρ : R→ End(E). Let L be a finitely presented left R-module and let

Rm
ϕ−→ Rn → L→ 0
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be a finite presentation. We identity the map ϕ ∈ Mn,m(R) with its image in Mn,m(End(E)) by the map
induced by ρ, where Mn,m(R) denotes the ring of matrices with n rows and m columns with coefficients in
R. It defines a morphism

En
tϕ−→ Em.

The object ker(tϕ) does not depend on the presentation of L and [Ser85, III.Sec.8.1] uses this to define the
functor FE as FE(L) = ker(tϕ) on objects. Let us look now on what FE does on arrows. Let f : L1 → L2

be a morphism of R-modules. Given finite presentations Rmi ϕi−→ Rni → Li → 0 of Li we can lift f to a
commutative diagram of R-modules as follows.

Rm1
ϕ1 //

G

��

Rn1

F

��

// L1

f

��

// 0

Rm2
ϕ2 // Rn2 // L2

// 0.

We can define FE(f) as the map induced by tF by restriction to ker(tϕ2)→ ker(tϕ1)

Em2

tG

��

En2
tϕ2

oo

tF

��

ker(tϕ2)

FE(f)

��

oo 0oo

Em1 En1
tϕ1

oo ker(tϕ1)oo 0.oo

We now focus on the case where C is the category of group schemes over Fq (with Fq-morphisms), E/Fq is an
ordinary elliptic curve and R = End(E). The ring R is an order in an imaginary quadratic field F = FracR.
Denote by π ∈ R the Frobenius endomorphism of E. Let R −Modf.p be the category of finitely presented
torsion-free left R-modules (this is the category of R-lattices from Section 2) and AbE be the sub-category
of C of abelian varieties Fq-isogenous to a power of E.

Theorem 3.1. Let E be an ordinary elliptic curve over Fq. Then FE defines an equivalence of categories
between (R−Modf.p)opp, the opposite category of R−Modf.p, and AbE if, and only if, R = Z[π]. Moreover
the functor FE is exact.

The reader can refer to [JKP+18, Theorem 7.6] and [JKP+18, Theorem 4.4] for proofs.

Remark 3.2. Serre also introduces another functor M 7→ M ⊗ E : = Cokerϕ which is further studied in
[Lau18, Appendice], [JKP+18, section 8] or [AK18]. This functor is covariant but not exact. We also prefer
to use FE since the theory is settled for an arbitrary order R whereas Serre only develops it for the maximal
order. In general there is no easy way to compare the two functors if the R-module is not projective. Notice
that the image of a projective R-module L ∈ (R −Modf.p)opp by FE is an abelian variety A isomorphic to
a product of elliptic curves Ei ∼ E such that End(Ei) = R for all 1 ≤ i ≤ g. Indeed, for an R-ideal Ii such
that Ei = FE(Ii), End(Ei) ' (Ii : Ii) and since R is Gorenstein, Ii is invertible if and only if (Ii : Ii) = R
[Mar19, Prop.2.1].

Notice that if E is such that R = End(E) ⊃ Z[π] then the image of FE consists of the abelian varieties
isomorphic to products of elliptic curves Ei such that the conductor of End(Ei) divides the conductor of
End(E), as subrings of the maximal order of F = Frac(R) (see [JKP+18, Theorem 7.5]). However, if
R 6= End(E), it may occur that FE(L) is not even an abelian variety (see [JKP+18, Remark 4.6]).

Notice that, given an ordinary elliptic curve E/Fq with Frobenius endomorphism π, for each order R
containing Z[π], there exists an elliptic curve over Fq, isogenous to E, with endomorphism ring isomor-
phic to R (see [Wat69, Theorem 4.2]). Hence, in what follows, we will always assume that the assumption
R = Z[π] = End(E) is satisfied. Also notice that the main result of [JKP+18] is more general and can also
deal with certain supersingular elliptic curves.
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3.2. Polarizations. Let A be an abelian variety over Fq isogenous to a power of an elliptic curve E such
that R = End(E) = Z[π]. Let us recall that a polarization is an isogeny φL : A→ Â with L an ample line
bundle. Let L be a R-lattice. As in [JKP+18, Sec.4.3], we denote L∗ the R-lattice HomR(L,R) with the
action of r ∈ R on α ∈ L∗ given by r.α(x) = α(r̄x). We want to translate polarizations in the category of
R-lattices.

Theorem 3.3. Let E/Fq be an ordinary elliptic curve with R = End(E) = Z[π] where π is the Frobenius
endomorphism of E. Let F = Frac(R). The functor FE defines an equivalence of categories between polarized
abelian varieties A which are isogenous to Eg and positive definite hermitian R-lattices (L, h) of rank g where
h(x, y) = Λ(x)(y) with Λ : L ⊗ F = V → V ∗ a linear map such that Λ−1(L∗) ⊂ L. Moreover the degree of
the polarization is equal to [L : Λ−1(L∗)].

Notice also that, since FE is exact, a hermitian lattice (L, h) is indecomposable (see Definition 2.8) if and
only if the corresponding polarized abelian variety (A, a) is indecomposable (i.e. (A, a) is not the product of
two non-trivial polarized abelian sub-varieties).

Remark 3.4. In [Ser85, Chap.III.Sec.8], Serre uses the functor M → M ⊗ E to get Theorem 3.3 under the
hypothesis that R is the maximal order. In another direction, [AK18, Th.A] gets a similar result for arbitrary
R (not necessarily quadratic) but only for projective modules.

Before giving various lemmas which will culminate in the proof of Theorem 3.3, in order to stick with the
terminology of Section 2 and to lead to an algorithmic version of the theorem, we now give its translation in
terms of the dual lattice L# = {x ∈ V, h(x, L) ⊆ R}.

Lemma 3.5. With the notation above, λ := Λ−1 is an isomorphism between the R-modules L# and L∗.

Proof. Notice that x ∈ V belongs to Imλ if and only if Λ(x) ∈ L∗ which is the case if and only if ∀y ∈
L, h(x, y) = Λ(x)(y) ∈ R. This means, by definition, x ∈ L#. Hence, L# = Imλ. �

Under this isomorphism, one obtains a more natural functor as follows.

Corollary 3.6. Let E/Fq be an ordinary elliptic curve with R = End(E) = Z[π] where π is the Frobenius
endomorphism of E. There is an equivalence of categories between polarized abelian varieties A which are
isogenous to Eg and positive definite hermitian R-lattices (L, h) of rank g such that L# is integral. Moreover,
the degree of the polarization is equal to [L : L#].

Hence, the isomorphism classes of principally polarized abelian varieties in the isogeny class Eg correspond
to the isometry classes of unimodular positive definite hermitian R-lattices.

The rest of the section is devoted to the proof of Theorem 3.3, which will use several lemmas.

In [JKP+18, Th.4.7], it is shown that the dual of A = FE(L) is functorially isomorphic to FE(L∗).
Hence we can relate polarizations and injective morphisms from L∗ → L. Now, a morphism λ : L∗ → L also
induces a sesquilinear form

Hλ : L∗ × L∗ → R, (α, β) 7→ αλβ.

We first prove the following lemma.

Lemma 3.7. The form Hλ is hermitian if and only if there exists a line bundle L on A = FE(L) such
that FE(λ) = φL .

Proof. Let f : Eg → A be an isogeny induced by an inclusion ι : L → N ' Rg. Observe that the isogeny
a = FE(λ) is of the form φL if and only if a′ = f̂af is of the form φL ′ for a line bundle L ′ on Eg. The
direct implication is obvious since f̂af = φf∗L . As for the other direction, let ` be any prime distinct from
the characteristic of Fq. By [Mum08, Th.2, p.188], the form e`(x, a

′y) is skew-symmetric and therefore the
form e`(x, ay) is as well. Still using [Mum08, Th.2], we then have that there exists a line bundle M such
that 2a = φM and [Mum08, Th.3, p.231] shows that there exists L such that M ' L 2 hence a = φL .

Now, denote λ′ = ιλι∗ so that FE(λ′) = a′. Similarly, the form Hλ is hermitian if and only if the form Hλ′

is. This equivalence can be checked on the F -vector spaces FL and FN where ι is an isomorphism. There
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we have that Hλ′(α
′, β′) = α′(ιλι∗)β′ = Hλ(α′ι, β′ι), so it is only a change of basis and the equivalence is

clear.
We can therefore assume that A = FE(Rg) = Eg. Let λ0 : R∗ → R be the isomorphism defined by

α 7→ α(1). Since the dual of E is only defined up to isomorphisms, we can assume by composing with an
isomorphism that FE(λ0) : E → Ê is the unique principal polarization P 7→ O([O] − [P ]) on E. Then the
product polarization a0 = FE(Λ0) where Λ0 : (Rg)∗ → Rg is defined by (α1, . . . , αg) 7→ (α1(1), . . . , αg(1)).
Now let M = λΛ−1

0 ∈ End(Rg) = Mg(R). Since Λ0M
∗Λ−1

0 = tM̄ , the Rosati involution † induced by a0 on
End(Eg) = Mg(R) is M 7→ tM̄ . Hence, tM̄ = M if and only if (a−1

0 a)† = (a−1
0 a) i.e. a = φL by [Mil86,

Prop.17.2]. On the other hand, the form Hλ is hermitian if and only if tM̄ = M . �

Lemma 3.8. Let L be a R-lattice of rank g and λ : L∗ → L injective such that Hλ is hermitian. Then
there exists a free over-lattice L

ι
↪−→ N =

⊕g
i=1Rei and integers (`i)1≤i≤g such that if λ′ = ιλι∗, then

Hλ′ : N∗ ×N∗ → R satisfies Hλ′(e
∗
i , e
∗
j ) = `iδij.

Proof. Since λ is injective, the hermitian form Hλ is non-degenerate. As in Theorem 2.16(1), we can find
a basis (αi) of V ∗ = FL∗ of vectors of L∗ which is orthogonal for Hλ, i.e., αiλαj = `iδij with `i ∈ Z.
Consider N ′ =

⊕g
i=1Rαi ⊆ L∗ and then N = N

′∗ ⊇ L∗∗ ' L, the last isomorphism being the evaluation
map ev : L → L∗∗. Denote by ι : L → N the injection and (ei) the dual basis of (αi). Noticing that
α∗∗i = αi ◦ ev−1, we get that

Hλ′(e
∗
i , e
∗
j ) = α∗∗i (ιλι∗)α∗∗j = αiλαj = `iδij .

�

Lemma 3.9. Let f : A → B be an isogeny and L be an invertible line bundle on B. Then L is ample if
and only if f∗L is ample.

Proof. An isogeny is a finite faithfully flat morphism. So ampleness ascends along the isogeny, since it is
finite, by [GD64, p. II.5.1.12], and descends since it is faithfully flat [GD64, p. IV.2.7.2] (the proof holds for
relative ampleness but it is easy to adapt it for ampleness, see also [Liu02, Exercise 5.1.29]). �

Lemma 3.10. Let L be a R-lattice and A = FE(L) be the corresponding abelian variety. Let λ : L→ L∗ be
such that Hλ is hermitian and a = FE(λ) : A→ Â be the corresponding isogeny. Then there exists an isogeny
f : Eg → A, integers (`i)1≤i≤g, a map D ∈ End(Eg) : (x1, . . . , xg) 7→ (`1x1, . . . , `gxg) and a commutative
diagram

A
a // Â

f̂
��

Eg

f

OO

a0◦D // Êg

Figure 1. Fundamental diagram

where a0 is the product polarization on Eg. Moreover a is a polarization if and only if `i > 0 for all i, or
equivalently if and only if Hλ is positive definite on FL∗.

Proof. Let ι : L ↪→ N =
⊕g

i=1Rei and λ
′ = ιλι∗ be as in Lemma 3.8. Consider the isomorphism u : N

∼−→ Rg

given by the basis (ei) of N. Hence we have

L∗
λ // L

ι

��
(Rg)∗

∼
Λ0

// Rg
∼
u∗
// N∗

ι∗

OO

λ′ // N
∼
u
// Rg.
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We obtain the desired diagram by composing this diagram by FE and taking f = FE(uι).
Since Hλ is hermitian, there exists a line bundle L on A such that a = φL . Since a0D is the pullback of a
by f the isogeny a is a polarization if and only a0D is a polarization by Lemma 3.9 below. Moreover, a0D
is a polarization of Eg if and only if `i > 0 for all i. As in the first part of Lemma 3.7, we can conclude
that Hλ is positive definite if and only if Hλ′ = diag(`1, . . . , `g) is, and we have the final equivalence of the
lemma. �

Remark 3.11. The fact that Hλ is a hermitian form on L∗ and not on L is a bit cumbersome. Since λ is
injective, it induces an isomorphism Λ := (λ ⊗R IdF )−1 : L ⊗ F = V → V ∗. This defines a hermitian form
on V given by

h : V × V → F, (x, y) 7→ Λ(x)(y)

which makes (L, h) a hermitian R-lattice.

Proof of Theorem 3.3. Simply combine Lemmas 3.7 and 3.10 with Remark 3.11 to get h on L×L instead of
Hλ on L∗ × L∗. The final statement about the degree of the polarization is easily obtained using [JKP+18,
Theorem 4.4] which computes the degree of an isogeny corresponding to an inclusion of lattices with equal
rank ι : L→M by deg FE(ι) = [M : ι(L)]. �

3.3. Description of the abelian variety as a quotient of Eg. Let (L, h) be a hermitian lattice with L#

integral. The goal of this section is to compute the kernel of the isogeny f : Eg → A = FE(L) of Corollary
3.10 obtained by the inclusion L ↪→ Rg induced by ι in Lemma 3.8 after identification of N =

⊕
Rei with

Rg.
As a first step, to apply Corollary 3.6, we need to start with an explicit elliptic curve E/Fq with ring of

endomorphism Z[π]. If q is small, it is efficient to use an algorithm which determines the endomorphism
ring of an ordinary elliptic curve [EL10] or [BS11]. In the package implemented, we consider a version of
the latter kindly provided by Sutherland and apply it to the list of elliptic curves with a given trace (which
can be naively obtained from the list of all elliptic curves by computing the trace on each of them). If the
discriminant of Z[π] is small, the best way to obtain E is to compute a root j over Fq of the Hilbert class
polynomial of Z[π] and find among the elliptic curves with j-invariant j the one with the right trace. We
refer to [Eng09; Sut11] for algorithms to compute this class polynomial. Note that the complexity of the rest
of the algorithm strongly depends on the discriminant of Z[π], so choosing this second method, this step is
never the bottleneck of the whole algorithm.

Given an inclusion of equal rank g R-lattices ι : L1 → L2 and surjective morphisms Ti : Rmi → Li we can
lift ι to P ∈Mm2,m1

(R)

Rm1
T1 //

P

��

L1

ι

��
Rm2

T2 // L2

by computing the image of the canonical basis of Rm1 by ι ◦ T1 and taking any preimages by T2. Since
the morphisms Ti are surjective, FE(Ti) are injective and the kernel of the corresponding isogeny FE(ι) =
f : FE(L2)→ FE(L1) can be computed by ker f = FE(T2)−1 ker tP.

In the present situation, L1 = L,L2 = N =
⊕
Rei,m2 = g and T2 = Id. It remains to make T1 and

the (ei) explicit. Consider a pseudo-basis L = a1x1 ⊕ · · · ⊕ agxg. Since the ai are fractional R-ideals they
have at most 2 generators. Hence, L is generated by g ≤ r ≤ 2g generators. So, T1 is the surjective
morphism Rr � L sending the canonical basis of Rr on the generators of L. Applying the functor FE to
the composition leads to the commutative diagram

Er A? _
FE(T1)oo

Eg

tP

OO

f

77

and ker f = ker(FE(T1) ◦ f) = ker tP. By Figure 1, one sees that ker f ⊆ kerD =
∏g
i=1E[`i] ⊆ E[`]g with

` = lcm(`i) and D the map of Lemma 3.10. Thus, it is enough to compute the action of tP on a basis
18



of the `-torsion of Eg to have the whole kernel. To go on, we will assume that ` is prime to charFq so
E[`] ' (Z/`Z)

2 is étale and we can work with geometric points.
Let clarify how to compute the family (ei)1≤i≤g. Let us recall that we defined it as the dual basis of an

orthogonal family of L∗ so they satisfy e∗i λ′e∗j = `iδij . This means that λ′(e∗i ) = `iei and then h(ei, ei) = 1
`i

(see proof of Lemma 3.5). Consider an orthogonal family (ui)1≤i≤g of vectors of L# of norm (`i)1≤i≤g and
let ei = 1

`i
ui. By the inclusion

⊕g
i=1Rui ⊆ L# we have

L ⊆
(
⊥

1≤i≤g
Rui

)#

= ⊥
1≤i≤g

(Rui)
# = ⊥

1≤i≤g
Rei.

Hence, if we find an orthogonal family (ui)1≤i≤g of L# with norm (`i)1≤i≤g then (ei)1≤i≤g = (1/`i ·ui)1≤i≤g
is an orthogonal family of norm (1/`i)1≤i≤g suited for the inclusion ι : L→

⊕g
i=1Rei.

We summarize these computations in Algorithm 5.

Algorithm 5 Computation of the kernel of an isogeny Eg → A

Input: A R-lattice (L, h) and E an elliptic curve over Fq with End(E) = Z[π] ' R.
Output: A basis of the kernel of an isogeny f : Eg → FE(L) such that the polarization a on L induced by

h satisfies f̂af is a completely decomposable polarization.
1: Compute an orthogonal family (ui)1≤i≤g of L# of norms `i ∈ Z using the Gram-Schmidt process (when
`1 = . . . = `g, use Algorithm 4). Define ei = ui/`i, ` = lcm(`i), N =

⊕g
i=1Rei and ι the inclusion of L

in N .
2: Compute a pseudo-basis L = a1x1 ⊕ · · · ⊕ agxg given by 1 ≤ r ≤ 2g generators. Let T1 : Rr → L be a

surjective morphism that sends the canonical basis of Rr on the generators of L.
3: Let P be the matrix of the morphism ι ◦ T1 : Rr → N in the canonical basis of Rr and the basis (ei) of
N .

4: Compute a basis (b0, b1) of E[`]. This allows us to identify E[`] with (Z/`Z)2 and let µ : E[`]2g →
(Z/`Z)2g be the isomorphism induced by the identification.

5: Compute the action of the Frobenius π on (b0, b1) as a matrix Π ∈M2(Z/`Z).
6: Create a matrix Q ∈M2r,2g(Z/`Z) by replacing each entry a+ bπ of tP by aI2 + bΠ.
7: Compute a basis B of kerQ ∈ (Z/`Z)2g.
8: return µ−1(B) .

We will use this algorithm with the additional condition `1 = . . . = `g. Indeed, in Section 4, we need
more specific properties about the kernel K of the isogeny in order to be able to compute the theta null
point on A using the current algorithms. We first require that ` = `1 = . . . = `g is odd and prime to q
(see Remark 4.1 for the condition ` odd). We have discussed in Theorem 2.16, when this can be achieved.
By [Mil86, Prop.16.8], K is a maximal isotropic subgroup of E[`]g for the Weil pairing on Eg induced by
the product polarization. However for the algorithms we also need K to be of rank g, that is isomorphic
as a group to (Z/`Z)g. We call such a K a totally isotropic subgroup. Equivalently, for an abelian variety
A0, K ⊂ A0[`] is a totally isotropic subgroup of level ` if it is isotropic, and one can find a symplectic
decomposition A0[`] = K ⊕ K ′. If K is maximal isotropic, it is always totally isotropic when ` is square
free, but this can fail if ` has a square factor (for instance A0[`] is maximal isotropic in A0[`2]). We adopt a
pragmatic approach here and test that a given K has indeed the right group structure. In every computation
we made, when an odd ` exists, we always found one for which K was totally isotropic.

4. Theta structures and a modular interpretation of the isogeny formula

In this section, k is any field of characteristic p 6= 2. We will first recall in Section 4.1 how to use
the so-called isogeny formula to derive the theta null point on a target abelian variety from a (well-chosen)
isogenous one. Then, in Section 4.2, we will show that the isogeny formula is actually valid over the universal
abelian scheme. Although the proof basically follows the same lines as the proof over a field, this result, and
the notation introduced there, will be useful in Section 4.3, where we will derive a precise affine version of
the isogeny formula. More precisely, we introduce a particular choice of affine lifts of the theta null points
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which we call modular, since they are derived from interpreting the theta constants as modular forms, and
we show in Theorem 4.5 that the isogeny formula respects the modular lifts. In Section 4.4, we explain how
to compute k-rational modular lifts for a product of elliptic curves with a product polarization. Combining
the ‘modular’ isogeny formula and these initial modular lifts allow us in Section 4.5 to compute values of
Siegel modular forms of even weight given as polynomials in the theta constants with coefficients in k on the
span of the isogeny class (see Theorem 4.9 and Algorithm 7).

4.1. Input for the isogeny formula over k. Let (A,L ,ΘL )/k be a principally polarized abelian variety
of dimension g with a totally symmetric theta structure ΘL of level n on L . This implies that n is even
which we assume from now on (until the end of this section). Let K be a k-rational totally isotropic subgroup
for the Weil pairing of L `, with ` prime to np or to n if p = 0.

In [CR15; LR15], an algorithm (which we call the isogeny formula and implemented in the package
Avisogenies [BCR10]) is given to compute the isogeny f : (A,L ,ΘL ) → (B,M ,ΘM ) where B = A/K,
f∗M = L ` and ΘM is the unique symmetric theta structure of level n on M compatible with ΘL (the
unicity comes from the fact that ` is prime to n). More precisely the algorithm takes as input the (projective)
theta null point θA(0) :=

(
θAi∈Z(n)(0)

)
∈ P(k̄)n

g−1 of A, where Z(n) = (Z/nZ)g, along with the theta
coordinates of the geometric points of K (or suitable equations giving the kernel K) and outputs the theta
null point θB(0) :=

(
θBi∈Z(n)(0)

)
of B along with the equations for the isogeny f . We usually take n = 4

(since this is the smallest even n which gives an embedding of the variety into projective space) and the
theta null point completely characterizes (B,M ) up to k̄-isomorphism. We will describe in more details (a
generalisation of) this algorithm in Section 4.2. In this section we explain how to compute the inputs for
the isogeny formula in our situation.

Let E/k be an elliptic curve. If (B,M ) is isogenous to Eg, we show how to compute θB(0) of level 4
by applying the algorithm with A =

∏g
i=1Ei where Ei are elliptic curves over k isogenous to E and L the

principal product polarization on A. For this, we need three elements as inputs for the algorithm:

• compute a totally isotropic kernel K such that B = A/K. When k is a finite field and E = E1 =
. . . = Eg is ordinary, we have seen in Section 3.3 how to do this effectively;
• compute the theta null point θA(0) of level 4 on (A,L ). As we deal with the product polarization,

the coordinate θAi1,...,ig (0) of θA(0) is equal to
∏

1≤j≤g θ
Ej
ij

(0). Getting the theta null point on an
elliptic curve (over a field of odd characteristic) is a classical result. In Corollary 4.8, we give an even
more precise version of this to which we refer now and that we use in Step 1 and 2 of Algorithm 6.

• compute the theta coordinates of the points in the kernel K. Likewise since we have a product polar-
ization, θAi1,...,ig (x1, . . . , xg) =

∏
1≤j≤g θ

Ej
ij

(xj). Computing the theta coordinates
(
θEij (xi)

)
j∈Z/4Z

is

also classical [Mum07b], [Cos11, Chapter 5], and is implemented in Avisogenies [BCR10].

We therefore get the following algorithm 6.
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Algorithm 6 Computation of the theta null point of level 4 on the quotient variety

Input: Elliptic curves Ei/k with equation y2 = (x − e1i)(x − e2i)(x − e3i) where k is of characteristic p
different from 2, a k-rational totally isotropic subgroup K of A =

∏
iEi of order prime to 2p (or just

prime to 2 if p = 0).
Output: The theta null point θB(0) of level 4 on B = A/K with M the polarization induced by the product

polarization on A.
1: For all 1 ≤ i ≤ g, define θ′Ei0 = 4

√
e1i − e3i, θ

′Ei
1 = 4

√
e1i − e2i, θ

′Ei
2 = 4

√
e2i − e3i for arbitrary choices of

the roots.
2: Compute θEi0 (0) = θ′Ei0 + θ′Ei1 , θEi2 (0) = θ′Ei0 − θ′Ei1 and θEi1 (0) = θEi3 (0) = θ′Ei2 for all 1 ≤ i ≤ g.
3: Compute θA(i1,...,ig)(0) = θE1

i1
(0) · · · θEgig (0) for all (i1, . . . , ig) ∈ Z(4).

4: For all 1 ≤ i ≤ g and for all x = (x1, . . . , xg) ∈ K \ {0}, compute the theta coordinates
(
θEij (xi)

)
j∈Z/4Z

,

using [Cos11, Chapter 5],
5: Compute for all j = (j1, . . . , jg) ∈ Z(4) and for all x = (x1, . . . , xg) ∈ K\{0} θAj (x) = θE1

j1
(x1) · · · θEgjg (xg).

6: Use [CR15]taking as input θA(0) and the theta coordinates of the points of K and output θB(0).
7: return θB(0) ∈ P(k̄)4g−1.

Remark 4.1. Some remarks on the code:

• The original version of Avisogenies assumed ` to be a prime. The only modification to the code
we had to make is on how to construct a matrix F ∈ Matr(Z) such that tFF = `Id used by
Koizumi’s formula Eq. (6). The integer r depends on ` being a square (hence r = 1), ` being a sum
of two positive squares (hence r = 2) or a sum of four positive square (hence r = 4). Adapting the
construction of F to ` odd non prime is straightforward by multiplicativity of the complex norm (if
r = 2) or of the quaternionic norm (if r = 4).

• The restriction ` odd is not necessary in theory if some great care is taken. First the lift from level n
to level `n is more complicated since we cannot work only on the points in the kernel K. We first
need to compute a basis of points Pi such that nPi is a basis of K (this was given to us for free
before by the CRT). Furthermore this basis has to be compatible with the level n structure on A, so
this may require first to act by an automorphism of the theta structure to make the level n structure
on A compatible with K[n]. Secondly, if ` is not odd, then there may be several symmetric theta
structures on B compatible with the one on A. So the isogeny formula in this case yields several
solutions. This has not yet been implemented in [BCR10].

4.2. The isogeny formula on the universal abelian scheme. In this section we reformulate the isogeny
formulae from [CR15] to show that the formulae are polynomials with coefficients in Z[ 1

`n ] in the coordinates
of the points of K. Since the fine moduli scheme (or stack if n ≤ 2) Ag,n of abelian varieties with a symmetric
theta structure of level n is smooth (or by rigidity [MFK94, § 6]), the isogeny formula is thus valid on the
universal abelian variety defined over Z[ 1

`n ]. Though well known to experts, this is not completely obvious
in the formulation of [CR15] since the authors only work with fields and implicitly use divisions in their
equations.

We first give some motivations for this result. In Section 4.3 we give an algebraic modular interpretation
of the isogeny formula by first considering the analytic modular interpretation over C. It is then possible, by
standard lifting arguments to extend this result to ordinary abelian varieties over a finite field. But, while
possible, this is a bit painful to do properly since we want to control the lifts of the endomorphisms along
with the differentials, and then give an algebraic meaning to the reduction of the period matrix modulo p. By
contrast, showing that the isogeny formula is actually defined over Z[ 1

` ] yields a much simpler proof that the
analytic interpretation holds algebraically. Indeed, by smoothness, the modular interpretation is ultimately
a statement about the equality of two multivariate polynomials defined over Z[ 1

` ]. But this equality holds
when it holds over C. In addition, this proof holds for all abelian varieties rather than just the ordinary
ones. The notations introduced in this section will also be useful in Section 4.3 where we keep track of each
modular factor at each step of the algorithm.

21



In order to avoid heavy notation, we will often let the theta structure ΘL (and eventually the polarization
L ) be implicit, along with the coordinate group Z(n).

Assume from now on that n is (even and) greater or equal to 4 and ` prime to n. Mumford constructs
in [Mum67] the universal abelian variety Xg,n → Ag,n with a totally symmetric normalized relatively ample
line bundle2 and a symmetric theta structure of level n over Z[1/n] 3 as a quasi-projective scheme. Moreover
Mumford uses Riemann’s relations [Mum67, p. 83] to define a projective scheme X g,n → A g,n (where
the equations of A g,n are given by evaluating the Riemann’s relations on the zero section, together with
the symmetry relations θi(0) = θ−i(0)) and an embedding of Xg,n → Ag,n into X g,n → A g,n (so that
Xg,n is the pullback of X g,n to Ag,n). We denote (θi)i∈Z(n) the theta coordinates on either Xg,n or
X g,n and (θi(0))i∈Z(n) the theta null point coordinates on either Ag,n or A g,n coming from the section
s : A g,n →X g,n (which restricted to Ag,n corresponds to the zero section).

On X g,n, we have an explicit action λ of the Heisenberg group H(n) on LX g,n
[Mum67, Step 1, p. 84].

Writing H(n) = Gm × Z(n)× Ẑ(n) where Ẑ(n) ' ⊕gi=1µn is the Cartier dual of Z(n), this canonical action
is given by λ(i).θj = θi+j for i ∈ Z(n) and λ(i).θj =< i, j > θj for i ∈ Ẑ(n) where < i, j > is the canonical
pairing between Z(n) and its Cartier dual Ẑ(n). Acting on the zero section s gives a canonical basis of
n-torsion.

Mumford’s isogeny theorem [Mum66] then describes the universal isogeny (with a descent of level of the
theta structure)

(3) π1 : Xg,`n →Xg,n, (θi)i∈Z(`n) 7→ (θi)i∈Z(n)⊂Z(`n).

On Xg,`n the level `n theta structure induces a symplectic basis of the `n-torsion, and in particular a sym-
plectic decompositionK1⊕K2 of the `-torsion. Concretely over a field k, K1 = {(< i, j > θj(0))j∈Z(`n)}i∈Ẑ(`)

is the kernel of π1, while K2 = {(θi+j(0))j∈Z(`n)}i∈Z(`) is such that π1(K2) = {(θi+j(0))j∈Z(n)}i∈Z(`) is the
kernel of the contragredient isogeny π̃1.

Using π1, we can now describe the isogeny formula in three steps.
Step 1. Denote Π1 : Xg,`n → X `g

g,n, (θi)i∈Z(`n) 7→
(
π1(λ(i)(θj))j∈Z(`n)

)
i∈Z(l)

, where λ is the action of the

Heisenberg group H(`n) described above. For j ∈ Z(`) the component Πj
1 of Π1 is given by

(4) Πj
1

∗
(θ

Xg,n

i ) = θ
Xg,`n

i+j , i ∈ Z(n).

The image of the restriction of Π1 to Ag,`n (seen as the zero section of Xg,`n) then describes the moduli
scheme Tg,n,` of abelian varieties with a level n symmetric theta structure together with the points of an
isotropic kernel of the `-torsion.

It is easy to see that π1 extends to a morphism π1 : X g,`n → X g,n. Since the action λ is defined on
X g,`n, we can also extend Π1 to a morphism Π1 : X g,`n → X

`g

g,n. Let T be the image of A g,`n. By
construction Tg,n,` embeds into T and since we have explicit equations for A g,`n we have equations for T .

By construction, given a k-point (A0,K0) of Tg,n,`, geometric points of Π−1
1 (A0,K0)→ Ag,`n corresponds

to abelian varieties B0,k ∈ Ag,`n(k) with a level `n symmetric theta structure such that the universal isogeny
π1 restricted to B0 is the contragredient isogeny of A0,k → A0,k/K0,k. In particular, starting with our
abelian variety (A,L )/k, if k′ is an étale extension of k such that all points of K are defined, then fixing an
isomorphism Z(`) → K over k′ yields a k′-point of Tg,n,`. A k”-point in Π−1

1 (A,K) then correspond to a
theta structure on (B,M `) defined over k” such that the contragredient isogeny f̃ : B → A is given by the
pullback of π1 to B.

The discussions in [LR16, Corollary 3.6, Proposition 3.7], [Rob10, Algorithm 4.4.10]), [CR15, § 4.1],
[LR12b] can then be reinterpreted as a way to use Riemann relations to give explicit equations for Π

−1

1 (A,K)
and Π−1

1 (A,K).

2See [Mum67, Definition p.78] for the definition of these terms.
3The irreducible components are defined over Z[1/n, ζn] since over this ring all points of the level n Heisenberg group H(n)

are defined.
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Step 2. Now let r = 1 if ` is a square, r = 2 if ` is a sum of two squares and r = 4 otherwise (the reason of
our choice of r will appear in Step 3). On Ag,`n the Segre embedding yields a map π2 : Ag,1 → Arg,`n, which
sends the universal abelian variety Xg,`n to X r

g,`n with its product theta structure [Mum66, Lemma 1, p.
323]. Concretely,

(5) π∗2(θ
Xrg,`n

i1,...,ir
) = θ

Xg,`n

i1
· · · · · θXg,`n

ir

In particular, π2 sends the theta null point of level `n of (B,M `) to the theta null point of (Br,M ` ?
· · · ?M `) 4.
Step 3. Let F be an r× r matrix with integral coefficients such that tFF = `Id (see Remark 4.1). Then the
Koizumi-Kempf formula [Koi76; Kem89] yields a map π3 : Arg,`n → Arg,n which corresponds to the isogeny
F : X r

g,`n → X r
g,`n along with the descent of product theta structure from level `n to level n. The formula

is given, for (i1, . . . , ir) ∈ Z(n)r, by

(6) π∗3(θ
Xrg,n

i1,...,ig
) = F ∗(θ

Xg,n

i1
· · · · · θXg,n

ir
) =

∑
(j1,...,jr)∈Z(`n)

r

F (j1,...,jr)=(i1,...,ir)

θ
Xg,`n

j1
· · · · · θXg,`n

jr
.

Since Eq. (6) is homogeneous, this is well defined for projective coordinates.
In particular, π3 uses F to send (Br,M ` ? · · · ? M `) to (Br,M ? · · · ? M ), from which (B,M ) can be

recovered by projecting to one of the factor.
The isogeny formula is then the composition π3 ◦ π2 ◦Π−1

1 .

Theorem 4.2. Let n be an even integer greater or equal to 4 and ` be an integer prime to n. The image of
Π1 × π3 ◦ π2 : Ag,`n → Tg,n,` ×Ag,n induces a modular correspondence defined over Z[ 1

`n ].
Let k be a field of characteristic prime to `n. If (A,K) is a k-point of Tg,n,`, then π3 ◦ π2 ◦ Π−1

1 (A,K)

only has a single k-point (with multiplicity `g and which is actually defined over k), corresponding to A/K.
This point can be computed in O(`gmax(1,r/2)) operations in k where, by assumption, k contains the field

of definition of the geometric points of K.

Proof. The first part follows from the steps above. For the statement over a field k, by construction, each
geometric point in Π−1

1 (A,K) corresponds to B = A/K with a level `n structure compatible with the level
n structure on A. Descending the product level `n structure via F then induce the same level n structure
on B.

For the complexity estimate, writing equations for Π−1
1 is in O(`g) operations, the Segre embedding only

depends on n so is absorbed by the big O notation, and computing π3 requires O(`r/2) operations, hence
the total complexity. We refer to [CR15] for more details. �

4.3. Modular interpretation. Consider again the algorithm from Theorem 4.2 but suppose now that we
would like to apply it to an affine lift of a theta null point of (A,L ,ΘL ). Notice that the choice of an
affine lift is induced by the choice of a trivialization of L since the θAi are sections of a power of L . Since
π1, π2 and π3 are well defined as affine morphisms (using the exact same equations), we can also interpret
the isogeny formula π3 ◦ π2 ◦Π−1

1 as an affine isogeny formula, yielding an affine lift of the theta null point
of B = A/K.

In this section, we want to achieve two goals: give the precise relation between affine lifts on A and B
through the affine isogeny formula (Theorem 4.5) and also show that we can compute Siegel modular forms
constructed as polynomials in the theta constants.

For both purposes, we will need modularity and we therefore start with some classical notions on Siegel
modular forms (see for instance [Cha86; DM69; FC90; BGH+08]). As before, let g ≥ 1, n even and greater
or equal to 4. Let π : Xg,n → Ag,n be the universal abelian variety with a totally symmetric normalized
relatively ample line bundle and a symmetric theta structure of level n over Z[ 1

n ] and s : Ag,n → Xg,n be
the zero section. We denote H = ∧g(s∗ΩXg,n

) = ∧g(π∗ΩXg,n
) the Hodge line bundle.

4If L1 is a line bundle on A1 and L2 is a line bundle on A2 we use the notation L1?L2 to denote the line bundle p∗1L1⊗p∗2L2

where pi is the projection A1 ×A2 → Ai.
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Let R be a commutative ring with all residue fields k of characteristic p = 0 or prime to n. Recall that a
(scalar) Siegel modular form χ of integral weight ρ ≥ 1 and level n 5 over R is a section of Hρ on Ag,n⊗R 6.
For a given (A,L ,ΘL ) ∈ Ag,n(k) and wA a basis of k-rational regular differentials on A, it can also be seen
as a function χ : (A,L ,ΘL , wA) 7→ k, such that χ(A,L ,ΘL , λwA) = (detλ)ρ · χ(A,L ,ΘL , wA) for any
λ ∈ GLg(k). Likewise, a Siegel modular form χ of weight ρ and level 1 7 is a section of Hρ on the algebraic
stack Ag,1 of principally polarized abelian schemes. In that case, we simply write χ(A,L , wA).

Let LXg,n
be the totally symmetric normalized relatively ample line bundle on Xg,n as in Section 4.2.

Let ι : Spec k → Ag,n
s→ Xg,n corresponding to a closed point (A,L ,ΘA) ∈ Ag,n(k). We have that

ι∗θXg,n(0) = θA(0), as projective coordinates. In the special case where k = C, let Ω be a Riemann
matrix in the Siegel upper half-space Hg and let us denote ϑ [ x1

x2
] (0,Ω), the value at 0 of the classical theta

function with characteristic (x1, x2) ∈ Q2g [Mum07a, p.192]. We will refer to these complex values as theta
constants (in contrast with the theta coordinates when speaking about the θAi (0)). Following [Mum07c,
Prop. 5.11] (see also loc. cit. Definition. 5.8 and p. 36), if (A,L ,ΘA) = Cg/(Zg + ΩZg), with its associated
polarization induced by ImΩ−1 and associated canonical symmetric level structure induced by the canonical
symplectic basis on the lattice, then (θAi (0))i∈Z(n) is projectively equal to (ϑ

[
0
i/n

]
(0,Ω/n)) for arbitrary lifts

of i ∈ Z(n) to Zg. In fact Mumford shows this equality for the adically defined theta functions. For the level n
algebraic theta functions, it suffices to remark that both the algebraic θi(z) and analytic ϑ

[
0
i/n

]
(z,Ω/n)

theta functions satisfy the canonical irreducible representation of the Heisenberg group of level n [Mum66,
Theorem 2 and definition p. 297].

We will use this projective equality to fix a particular choice of affine lifts over any field in the following
way. Because of the transformation formula [Mum07a, Cor.5.11], if we define for any i, j ∈ Z(n),

(7) χij(A,L ,ΘA, (2iπdz1, . . . , 2iπdzg)) = ϑ
[

0
i/n

]
(0,Ω/n) · ϑ

[
0
j/n

]
(0,Ω/n)

we get Siegel modular forms of weight 1 and level n over C. Since the Fourier coefficients of the theta
constants belong to Z, by the q-expansion principle [FC90, p.140], this definition can be extended to a
section of H over Z[ 1

n ] and therefore over R. Since the sections (χij)i,j∈Z(n) and (θ
Xg,n

i (0)θ
Xg,n

j (0))i,j∈Z(n)

are equal up to a constant over C, for any (A,L ,ΘA) ∈ Xg,n(k) and wA a basis of k-rational regular
differentials on A, χij(A,L ,ΘA, wA) is an affine lift of θAi (0) · θAj (0). This allows the following definition.

Definition 4.3. Let (A,L ,ΘL ) ∈ Ag,n(k) and wA a basis of regular differentials on A. A modular lift,
denoted θA(0,

√
wA) = (θAi (0,

√
wA))i∈Z(n), is an affine lift of θA(0) such that for all i, j ∈ Z(n), θAi (0,

√
wA) ·

θAj (0,
√
wA) = χij(A,L ,ΘL , wA). Notice that the modular lift is unique up to a common sign.

Remark 4.4. We consider the two by two products because they give modular forms of weight one. The
θA(0,

√
wA) themselves would be modular forms of weight one half. But the line bundle LAg,n

does not
descend on Ag,1, only to a µ2-gerbe of Ag,1 [Can16]. Since we only need to compute modular forms of
integral weight, this ad hoc definition is sufficient and requires less abstract material. Notice also that as a
consequence of [Mum67, p. 82] and [Can16, Th. 4.2.1], L 2

Ag,n
' H, which gives another purely algebraic

proof of the modularity of s∗(θXg,n

i · θXg,n

j ). In particular, a choice of basis of regular differentials gives a
trivialization of H, so a trivialization of L 2

Ag,n
and corresponding affine lifts for the χij .

If we start with a principally polarized abelian variety (A,L ) over a field k with a k-rational basis of
regular differentials wA, we may need to go to an extension to build the level n structure ΘL on A. Hence
the θAi (0,

√
wA) are not necessarily defined over k. However, consider a Siegel modular form χ of level 1

and of integral weight ρ ≥ 1, written as a homogeneous polynomial P of degree 2ρ in the theta constants
of level ΘL and with coefficients in k. As 2ρ is even, we can express P as polynomial Q in pairs of theta
constants, and therefore P (θA(0,

√
wA)) = Q((χij(A,L ,ΘL , wA))) = χ(A,L , wA) ∈ k. This is important

for our application to the modular form χ18 in dimension g = 3 (see Section 5.2).

5Here by level n we mean the level group Γg(n, 2n) of matrices γ ∈ Sp2g(Z) such that γ =

[
A B

C D

]
≡ Id (mod n) and 2n

divides the diagonals of B and C.
6At least when g > 1. When g = 1 we also need to check that the modular form stays bounded at infinity, or algebraically

that the evaluation on the Tate curve is given by a Laurent series in q with no negative terms.
7Meaning the full level group Γg = Sp2g(Z) and not Γ1(1, 2).
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Theorem 4.5. Let (A,L ,ΘL ) ∈ Ag,n(k). Let ` be an integer prime to np (or to n if p = 0). Let K be a
k-rational totally isotropic subgroup for the Weil pairing of L `. Let f : (A,L ,ΘL ) → (B,M ,ΘM ) where
B = A/K, f∗M = L ` and ΘM be the unique symmetric theta structure of level n on M compatible with
ΘL . Let wA be a basis of k-rational regular differentials on A and (θAi (0,

√
wA))i∈Z(n) be a modular lift.

Finally, let r = 1, 2 or 4 depending on ` being a square, a sum of two square or not. Then the affine isogeny
formula π3 ◦π2 ◦Π−1

1 yields the products (θBi1(0,
√
wB)× · · ·× θBir (0,

√
wB))i1,...,ir∈Z(n) where wB is such that

f∗wB = wA. Note that the product is uniquely defined except if r = 1 in which case we get all constants up
to a common sign.

Proof. Using the results of Section 4.2, the statement of this theorem makes sense over Z[ 1
n` ]. We will thus

prove this theorem for Xg,n → Ag,n over Z[ 1
n` ], the result will then be valid for any field of characteristic

prime to n`.
We note that the theta coordinates computed by the isogeny formula give sections of the very ample line

bundle LArg,n
of Arg,n over Br. Thus the si can also be interpreted as sections of L r

Ag,n
over B. We are thus

trying to prove the equality of two sections of L r
Ag,n

, i.e. that for any i1, . . . , ir the corresponding theta null
point of coordinates (i1, . . . , ir) computed by the isogeny formula is equal to (θBi1(0,

√
wB) · · · θBir (0,

√
wB)).

Since Ag,n is smooth, LAg,n is without torsion, so we only need to check this equality over C. The abelian
variety A/C is isomorphic to a torus A ' Cg/(Zg ⊕ ΩZg). First it is easy to check that if we change our
affine lift by multiplying it by λ ∈ C, then the result of the isogeny formula is multiplied by λr. Indeed in
Step 1 (in affine coordinates), the affine lift of the points of K are normalized with respect to the affine lifts
of the theta null point. Multiplying the theta null point by λ multiply the points Q ∈ Π−1

1 (A,K) by λ. Then
applying the Segre embedding multiply the theta null point by λr, and Koizumi’s formula does not change
this constant.

Changing the basis of regular differentials by a matrix M ∈ GLg(C) changes the value of a modular lift
by λ =

√
det(M) for a fixed choice of the square root, since their pair products are weight 1 modular forms.

This changes both the modular forms (θBi1(0,
√
wB) · · · θBir (0,

√
wB)) and the result of the isogeny formula by

a factor λr. So we may fix the differentials on A to be wA = (2iπdz1, . . . , 2iπdzg) of Cg.
By Eq. (7), the corresponding modular lift of the theta null point on A is then given by the analytic theta

constants θAi = ϑ
[

0
i/n

]
(0,Ω/n) (where we do a slight abuse of notations in identifying i ∈ Z(n) to a fixed

lift to Zg).
We can then keep track of the constants in each of the three steps of the isogeny formula of Section 4.2.
Step 1: we compute an affine lift of a theta null point of level `n on B, such that the isogeny theorem

applied to f̃ gives our theta null point on A. From our hypothesis, K corresponds to the subgroup 1
`Z

g/Zg,
so B = Cg/(Zg ⊕ `ΩZg) and f : z 7→ `z. The contragredient isogeny f̃ : B → A is then given by
f̃ : B → A, z 7→ z. So we see that one possible lift for the theta null point of level `n on B is given by
ϑ
[

0
i
`n

]
(0, `Ω`n ). By plugging any i divisible by ` we see that the constant involved in Step 1 is 1. Indeed, the

isogeny theorem (the pullback f̃ of π1 to B) is simply given in terms of analytic theta coordinates by(
ϑ
[

0
i
`n

]
(z,

`Ω

`n
)

)
i∈Z(`n)

7→
(
ϑ
[

0
i
`n

]
(z,

Ω

n
)

)
i∈Z(`n),`|i

=

(
ϑ
[

0
i
n

]
(z,

Ω

n
)

)
i∈Z(n)

.

Algebraically, this means that we are computing (θB,M
`

i (0,
√
w′B))i∈Z(`n) where w

′
B is such that f̃∗wA = w′B .

By definition of the contragredient isogeny, we have that w′B = wB/` (as seen analytically by the fact that
the map f above acts by ` on the tangent space).

Step 2: the Segre embedding simply consists on taking the sections induced by the basis of regular
differentials on Br given by the pullbacks of the differentials w′B by the projections on each factor. Notice
that the theta constants on Br are then easily related to the ones on B since ϑ

[
0 0
b1b2

]
(0, `diag(Ω,Ω)) =

ϑ
[

0
b1

]
(0, `Ω)ϑ

[
0
b2

]
(0, `Ω).

Step 3: For this step, we need a version of Equation (6) taking into account the possible multiplicative
constant. This is given for instance in [Cos11, Théorème 7.2.1]

(8) c · ϑ
[

0
i1

]
(Y1, `Ω/n) · · ·ϑ

[
0
ir

]
(Yr, `Ω/n) =

∑
[t1,...,tr]∈Matr×g(Z)F−1/Matr×g(Z)

ϑ
[

0
j1

]
(X1 + t1,Ω/n) · · ·ϑ

[
0
jr

]
(Xr + tr,Ω/n),
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where F ∈Mr(Z) is such that tFF = `Id, Y in (Cg)r, X = Y F−1 ∈ (Cg)r, i ∈ Qr, j = iF−1 and

c = [Matr×g(Z)F−1 : Matr×g(Z)] = [Matr×g(Z) : Matr×g(Z)F ] = `gr/2.

Taking into account that F−1 = 1
`
tF , that the kernel of F in Z(`)r is exactly the image of tF , and taking

Yi = 0, we can rewrite Eq. (8) in terms of modular lifts

c · θB,Mi1
(0,
√
w′B) · · · θB,Mir

(0,
√
w′B) =

∑
(j1,...,jr)∈Z(`n)

r

F (j1,...,jr)=(i1,...,ir)

θB,M
`

j1
(0,
√
w′B) · · · θB,M

`

jr
(0,
√
w′B).

Since w′B = wB/` we have θB(0,
√
w′B) = `−1/2 · θB(0,

√
wB). This kills the constant c and we get the result

(up to a fixed sign if r = 1 because there is no way to choose a canonical square root of ` in a field k in
general). �

This theorem shows that, given a Siegel modular form χ of even weight as a polynomial P in the theta
constants with coefficients in k, we can compute the value χ(B,M ,ΘB , wB) from the corresponding modular
lift on (A,L ). In practice [BCR10] does not compute all products (θBi1(0,

√
wB) · · · · · θBir (0,

√
wB))i∈Z(n) but

only the products ti := (θBi (0,
√
wB) · θB0 (0,

√
wB) · · · · θB0 (0,

√
wB))i∈Z(n), since this is enough for isogenies.

It is also enough in our case: the weight being even means that each monomials of P in the theta constants
has a degree multiple of 4 (and hence of r). We then get

χ(B,M ,ΘM , wB) = P (θBi (0,
√
wB)) = t

− (r−1)ρ
r

0 · P (ti).

The modular forms we will consider are written as polynomials in the theta constants with half char-
acteristics and not in the algebraic theta of level 4. However it is easy to convert one into the other: see
Remark 4.7

4.4. An algebraic version of Thomae’s formula. If E : y2 = F (x) is an elliptic curve defined over k,
we would like to compute the modular lift of the theta null point of level 4 with respect to the k-rational
differential w = dx/y. Over k ⊂ C, the expression of the fourth powers of theta constants can be seen as
an elementary case of Thomae’s formula [Mum07b, p.121] for hyperelliptic curves (although a sign remains
unspecified). For dimension 1, one could also use σ functions as in [Akh90, p.55], but one still only gets
expression for the fourth powers of the theta constants. We will reprove these formulas in the following
lemma and show that one can take arbitrary fourth roots. This will be useful for the computation of Siegel
modular forms of even weight at (B,M , wB) in the isogeny class of Eg.

Lemma 4.6 (Analytic form of Thomae’s formula). Let E be an elliptic curve with Weierstrass equation
y2 = F (x) defined over over C. Let e1, e2, e3 be the roots of F . Fix arbitrarily three fourth roots a1, a2, a3

of ei − ej for (i, j) ∈ ((2, 3), (1, 2), (1, 3)). There exists a basis δ1, δ2 of H1(E,Z) such that if we denote
[ω1, ω2] = [

∫
δ1
dx/y,

∫
δ2
dx/y] then τ = ω2/ω1 ∈ H1 and

√
c · ϑ [ 0

0 ] (τ) = a3,
√
c · ϑ

[
1/2
0

]
(τ) = a2,

√
c · ϑ

[
0

1/2

]
(τ) = a1

with c = 2iπ
w1

for an arbitrary fixed square root of c.

Proof. Let τ ∈ H1 and denote

ϑ00(z) = ϑ [ 0
0 ] (z, τ), ϑ10(z) = ϑ

[
1/2
0

]
(z, τ), ϑ01(z) = ϑ

[
0

1/2

]
(z, τ),

and ϑ11(z) = ϑ
[

1/2
1/2

]
(z, τ). When z does not appear, it denotes the corresponding value at z = 0. As in

[FK01, p.125], let us consider the map φ : C→ P2 given by

(ϑ2
00(z)ϑ11(z) : ϑ00(z)ϑ01(z)ϑ10(z) : ϑ3

11(z)).

Using the divisors of these sections, one can prove that the image by φ of C/(Z+ τZ) is the elliptic curve

E2 : Y 2
2 Z2 = X2(βX2 − αZ2)(αX2 + βZ2)

where α = ϑ2
10ϑ

2
00 and β = ϑ2

01ϑ
2
00. Letting Y2 = Y1ϑ10ϑ01/ϑ

2
00, X2 = X1 and Z2 = Z1, we can transform

further in
E1 : Y 2

1 Z1 = X1(X1 − α/βZ1)(X1 + β/αZ1).
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Then letting Z1 = (ϑ2
01ϑ

2
10)Z0 and finally Y1 = Y0/(ϑ01ϑ10) and X1 = X0 one gets

E0 : Y 2
0 Z0 = X0(X0 − ϑ4

10(0)Z0)(X0 + ϑ4
01(0)Z0)

Let us study the regular differential w0 = d(X0/Z0)/(Y0/Z0) = 1
ϑ2
00
· d(X2/Z2)/(Y2/Z2) on E0. Since

w2 = d(X2/Z2)/(Y2/Z2) is regular, φ∗(w2) is a constant multiple of dz. Now

φ∗w2 = 2 · ϑ00(z)′ϑ11(z)− ϑ11(z)′ϑ00(z)

ϑ10(z)ϑ01(z)

= −2
ϑ′11(0)ϑ00(0)

ϑ10(0)ϑ01(0)
(evaluating at z = 0)

= 2π
ϑ00ϑ10ϑ01ϑ00

ϑ10ϑ01
(Jacobi identity ϑ′11 = −πϑ00ϑ01ϑ10)

= 2πϑ2
00.

Hence if ψ0 : C/(Z + τZ) → E0 is the isomorphism composed from φ and the changes of variables we get
that ψ∗0w0 = 2πdz (notice that this is not the natural 2iπdz we chose before but we will take care of the
extra factor i when we choose the fourth root).

Now, let us start with E : y2 = F (x). If we make the change of variable X = x − e2, Y = y, then we
get E′ : Y 2 = X(X − (e1 − e2)Z)(X + (e2 − e3)Z). If we integrate w = d(X/Z)/(Y/Z) along a basis of
the homology of E′, we get a torus C/(ω1Z + ω2Z) and up to a change of the order in the basis, we can
assume that τ = ω2/ω1 ∈ H1 and ψ : C/(ω1Z + ω2Z) → E′ an isomorphism such that ψ∗w = dz. Let
s : C/(ω1Z+ ω2Z)

∼→ C/(Z+ τZ) such that z 7→ z/ω1. The composition

C/(ω1Z+ ω2Z)

s

��

E′
ψ−1

oo

µ

��
C/(Z+ τZ)

ψ0

// E0

defines an isomorphism µ : E′ → E0 such that (X : Y : Z) → (a2X : a3Y : Z) with a ∈ C∗. After a
possible change in the generators of the homology of E′ (by a lift to SL2(Z) of a change of basis of E′[2]),
we can even assume that µ maps the roots 0 to 0, e1 − e2 to ϑ4

10/a
2 and e2 − e3 to ϑ4

01/a
2. Note that

e1 − e3 = (ϑ4
10 + ϑ4

01)/a2 = ϑ4
00/a

2. Now µ∗w0 = w/a = (ψ−1)∗ ◦ s∗ ◦ ψ∗0 w0 = 2π/ω1 · w. Hence a = ω1/2π.
This means that we have the equalities

a4
2 = e1 − e2 = −c2ϑ4

10, a4
1 = e2 − e3 = −c2ϑ01, a4

3 = e1 − e3 = −c2ϑ00.

To conclude, we must show that we can choose the basis of homology for E in order to choose the
fourth root of unity arbitrarily and get the correct result up to a common fourth root of unity. As the
two-torsion points are now fixed, this boils down to find some matrices in SL2(Z) which are congruent to

the identity modulo 2. If we call S =

(
1 1
0 1

)
and T =

(
0 1
−1 0

)
, let H =< S2, T 2, (ST )3, (STS)2 > and

(α1, α2, α3) = (i
√
cϑ01, i

√
cϑ10, i

√
cϑ00). Notice that the αis do depend on τ but also on ω1. The actions of

S and T on the lattice induce actions on the αi which can be computed through the classical transformation
formula [Mum07a, Th.7.1]. Namely

S.α1 = α3,
S.α2 = eiπ/4α2,
S.α3 = α1,

and


T.α1 =

√
−iα2,

T.α2 =
√
−iα1,

T.α3 =
√
−iα3.

Hence we get  S2.α1 = α1,
S2.α2 = iα2,
S2.α3 = α3,

,

 T 2.α1 = −iα1,
T 2.α2 = −iα2,
T 2.α3 = −iα3,
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and  (ST )3.α1 = iα1,
(ST )3.α2 = iα2,
(ST )3.α3 = iα3,

,

 (STS)2.α1 = −iα1,
(STS)2.α2 = −α2,
(STS)2.α3 = −α3.

The group µ3
4 has generators u1 := (i, 1, 1), u2 := (1, i, 1), u3 := (1, 1, i). The expressions above show that

g1 = (ST )3(STS)2 (resp. g2 = S2, resp. g3 = g3
1g

3
2(ST )3) acts on (α1, α2, α3) as u1 (resp. u2, resp. u3).

Starting from (a1, a2, a3) it is therefore possible to find a τ such that (a1, a2, a3) = (
√
cϑ01,

√
cϑ10,

√
cϑ00). �

Remark 4.7. The algebraic theta functions of level 4, (θ1, θ2, θ3, θ4) analytically correspond to the theta
functions (ϑ

[
0
i/4

]
(z,Ω/4))i∈Z/4Z. Going to these functions from the standard level (2, 2) analytic theta

ϑ
[
a/2
b/z

]
(2z,Ω) is given by a change of variables [Mum07a], [Cos11, p. 38]

(9)
θ0(z) = ϑ [ 0

0 ] (z,Ω) + ϑ
[

1/2
0

]
(z,Ω), θ1(z) = ϑ

[
0

1/2

]
(z,Ω) + ϑ

[
1/2
1/2

]
(z,Ω),

θ2(z) = ϑ [ 0
0 ] (z,Ω)− ϑ

[
1/2
0

]
(z,Ω), θ3(z) = ϑ

[
0

1/2

]
(z,Ω)− ϑ

[
1/2
1/2

]
(z,Ω),

where θi(z) = ϑ
[

0
i/4

]
(z,Ω/4).

The functions ϑ
[
a/2
b/2

]
(2z,Ω) also have algebraic analogues as partial Fourier transforms over Z(2) of the

functions θi as explained in [Mum66, p. 334] and [Rob10, Exemple 4.4.9]. If θi is a theta function of level n,
the partial Fourier transform is given for α ∈ Ẑ(2) by

(10) θ [ αi ] =
∑

j∈Z(2)

α(j)θi+j .

Analytically, θ [ αi ] (z) = ϑ
[
α/2
2i/n

]
(2z, 2Ω/n), so if n = 4 we do recover the theta functions of level (2, 2).

All these expressions for the theta constants over C are true over k. Indeed, pairing them will give modular
forms with integral Fourier expansion, so we get similar expression for the modular lift, up to a common
sign which can be swallowed in the choice of the fourth root.

Corollary 4.8 (Algebraic form of Thomae’s formula). Let E be an elliptic curve with Weierstrass equation
y2 = F (x) defined over a field k of characteristic p 6= 2. Let e1, e2, e3 be the roots of F in k̄. Fix arbitrarily
three fourth roots a1, a2, a3 of ei− ej for (i, j) ∈ ((2, 3), (1, 2), (1, 3)). Then there is a level 4 symmetric theta
structure on E, such that a modular lift of the theta null point on E with respect to the regular differential
dx/y is

(11)
θE0 (0E ,

√
dx/y) = a2 + a3, θE1 (0E ,

√
dx/y) = a1,

θE2 (0E ,
√
dx/y) = −a2 + a3, θE3 (0E ,

√
dx/y) = a1.

Proof. Define θ [ 0
0 ] (0E) = a3, θ

[
1/2
0

]
(0E) = a2, θ

[
0

1/2

]
(0E) = a1. First we note that the first part of

Lemma 4.6 is valid algebraically: we just need to replace the argument involving divisors by the algebraic
Riemann relations instead. Indeed it is easy to check that the theta null point defined satisfy the Riemann
relation θ [ 0

0 ] (0E)4 = θ
[

1/2
0

]
(0E)4 + θ

[
0

1/2

]
(0E)4 (this is the standard Jacobi relation to which Riemann

relations reduce to in genus 1 [Mum66, p. 353]). Since we also have that θ [ 0
0 ] (0E)θ

[
1/2
0

]
(0E)θ

[
0

1/2

]
(0E) =

a1a2a3 6= 0, the theta null point we compute is valid projectively by [Mum66, p. 353]. This also proves that
each choice of fourth root is valid.8

It remains to check that the affine lift given by Eq. (11) corresponds to the trivialization coming from
the differential w = dx/y. Since the construction is valid over the universal elliptic curve with a level 4
symmetric theta structure, whose moduli space is defined over Z[1/2], by considering the pullback to C we
may assume that E is defined over C, as in the proof of Theorem 4.5. Looking at the proof of Lemma 4.6,

8Alternatively, the affine modular action of Γ/Γ(4, 8) induces a projective action [Cos11, Lemme 6.2.1] which holds true
algebraically, as automorphisms of the Heisenberg group of level 4. So the same generators g1, g2 and g3 as in the end of
Lemma 4.6 acts by fourth-root of unity projectively.
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we see that the isomorphism between E and E′ does not change the differential w, while the one from E′ to
E0 acts by a = 2π/ω1. Correcting for this last factor yields

(12) θ [ 0
0 ] (0E ,

√
dx/y) = a3, θ

[
1/2
0

]
(0E ,

√
dx/y) = a2, θ

[
0

1/2

]
(0E ,

√
dx/y) = a1.

Applying the linear change of variable Eq. (9) to Eq. (12) yields Eq. (11). �

4.5. Computing a Siegel modular form on the isogenous variety. Combining Corollary 4.8 with
Theorems 4.2 and Theorem 4.5 gives the following theorem and Algorithm 7.

Theorem 4.9. Let g be a positive integer, (Ei/k)1≤i≤g be elliptic curves, K be a k-rational totally isotropic
subgroup of

∏
iEi of order `

g prime to 2p (or just prime to 2 if p = 0). Let B = (E1 × · · · × Eg)/K with
the principal polarization induced by the product polarization on E1 × · · · ×Eg and let f :

∏
iEi → B be the

quotient isogeny. Finally define wB such that f∗wB = (p∗1dx1/y1, . . . , p
∗
gdxg/yg) where pi : E1×· · ·×Eg → Ei

is the canonical projection. Let r = 1, 2 or 4 depending on ` being a square, a sum of two squares or not.
Algorithm 7 computes the products θBi1(0,

√
wB) · · · θBir (0,

√
wB) of any r modular lifts in time O(`gmax(1,r/2))

operations in the field of definition of the points of K. Given a Siegel modular form χ of even weight as a
polynomial P in the theta constants with coefficients in k, Algorithm 7 also computes the value χ(B,M , wB) ∈
k.

Remark 4.10. We can make several comments about this result.

• Note that during the execution of the algorithm, we only need to take care to compute the modular lift
of the theta null point. Indeed, apart from the theta null point, we only need to compute projective
coordinates for the points in the kernel, the computation of Π−1

1 will take care of normalizing these
coordinates with respect to our choice of affine lift of the theta null point.

• We only require χ to be of even weight w if r = 4. Otherwise given the r-fold products

θBi1(0,
√
wB) · · · θBir (0,

√
wB)

we can evaluate a modular form of odd weight.
• We do not need to evaluate all the r-fold products, but only the ones of the form

ti = θBi (0,
√
wB) · · · θBi (0,

√
wB)

(provided θB0 (0,
√
wB) 6= 0). If χ is of weight w, it can then be evaluated as χ(B,M , wB) =

P (ti)/t
w(r−1)/2
0 .

• If the modular form χ that can be written as a polynomial with respect to the level 2 theta constants,
we can do the whole isogeny computation in level 2. This gains a factor 2g in the number of
coordinates to compute.

29



Algorithm 7 Algebraic computation of the theta null point and a Siegel modular form of even weight

Input: Elliptic curves Ei/k with equation y2 = (x − e1i)(x − e2i)(x − e3i) where k is of characteristic p
different from 2, a k-rational totally isotropic subgroup K of A =

∏
iEi of order `

g prime to 2p (or just
prime to 2 if p = 0). A Siegel modular form χ of even weight as a polynomial P in the theta constants
with coefficients in k.

Output: The theta null point of level 4 and the value χ(B,M , wB) where B = A/K with M the polarization
induced by the product polarization on A and wB such that f∗wB = (p∗1dx1/y1, . . . , p

∗
gdxg/yg) where

f : A→ B is the quotient isogeny and pi : E1 × · · · × Eg → Ei is the canonical projection.
1: For all 1 ≤ i ≤ g, define θ′Ei0 = 4

√
e1i − e3i, θ

′Ei
1 = 4

√
e1i − e2i, θ

′Ei
2 = 4

√
e2i − e3i for arbitrary choices of

the roots.
2: Compute θEi0 (0,

√
dxi/yi) = θ′Ei0 + θ′Ei1 , θEi2 (0,

√
dxi/yi) = θ′Ei0 − θ′Ei1 and θEi1 (0,

√
dxi/yi) =

θEi3 (0,
√
dxi/yi) = θ′Ei2 for all 1 ≤ i ≤ g.

3: Compute all θA(i1,...,ig)(0,
√
wA) = θE1

i1
(0,
√
dx1/y1) · · · θEgig (0,

√
dxn/yn) for all (i1, . . . , ig) ∈ Z(4).

4: For all 1 ≤ i ≤ g and for all x = (x1, . . . , xg) ∈ K \ {0}, compute the theta coordinates
(
θEij (xi)

)
j∈Z/4Z

.

5: Compute for all j = (j1, . . . , jg) ∈ Z(4) and for all x = (x1, . . . , xg) ∈ K\{0} θAj (x) = θE1
j1

(x1) · · · θEgjg (xg).
6: Use the affine version of the isogeny formula to compute ti = θBi (0,

√
wB) · θB0 (0,

√
wB) · · · θB0 (0,

√
wB)

which is a product of r factors with r = 1 if ` is a square, r = 2 if ` is the sum of two positive squares
and r = 4 otherwise.

7: return (ti)i∈Z(4) and t−
(r−1)ρ
r

0 · P (ti).

5. Application to defect-0 curves of genus at most 4

Let C be a curve of genus g > 0 over Fq with q = pm. The Hasse-Weil-Serre bound asserts that
#C(Fq) ≤ 1 + q + gm where m = b2√qc. A curve which number of rational points reaches with bound
is called a defect-0 curve. When g > 2, it is not known in general for a given field Fq whether a defect-0
curve C/Fq of genus g exists. If it does, JacC is isogenous to the g-power of an elliptic curve E with trace
−m. In order to see if such a curve exists, we therefore start by enumerating the indecomposable principally
polarized abelian varieties (Ai,Li) of dimension g in the isogeny class of Eg. When m is prime to q and
hence E is ordinary, we have seen in Section 3.3 how to describe all of them as a quotients of Eg by given
maximal isotropic subgroups K ⊂ E[`1]× · · · ×E[`g]. When we can moreover choose ` = `1 = . . . = `g odd,
prime to the characteristic of Fq (see the condition in Theorem 2.16) and K totally isotropic, we can use
Algorithm 6 to compute the theta null point of level 4 for each (Ai,Li).

Now, we need to single out the ones which are Jacobians of curves of genus g over Fq. By [OU73], we know
that any indecomposable principally polarized abelian variety (A,L ) of dimension g ≤ 3 is the Jacobian
of a curve C0 of genus g over F̄q. When g = 4, this is not the case, but we will be able to distinguished
them computing a certain Siegel modular form using Algorithm 7, see Section 5.3. However if (A,L ) is a
Jacobian of dimension 4 over F̄q there is currently no way to check if it is also a Jacobian over Fq. As for
g ≤ 3, notice that there is a big difference between the genus 2 and genus 3 case when dealing with the
existence of C over Fq. For the genus 2, this is automatic: the existence of an indecomposable principally
polarized abelian surface over Fq in the class of E2 is enough to ensure the existence of the curve C. For
genus 3 curves though, there may be an arithmetic obstruction as we shall recall in Section 5.2. As we shall
see this obstruction can be computed from the value of a Siegel modular form.

For g = 2 or 3, we can even get an equation for the curve C when it exists. In genus 2, the construction
of such a curve from its theta null point is classical and we refer for instance to [CR15] ; in genus 3, the
formulae depend on the curve being hyperelliptic or not, which can be distinguished by exactly one of the
36 even theta coordinates being 0 or none. In the hyperelliptic case, one can use [Wen01]9 to construct first
a model C1 over F̄q. Then one computes Shioda invariants10 and then reconstruct via [LR12a] when p > 7.

9[BIL+16] noticed that there are some mistakes in this article of Weng and [LSV21, Appendix] gives a correct implementation
(see also [Sij20]). However, we did not try to implement the reconstruction in the genus 3 hyperelliptic case.

10or computes them directly from the theta constants using for instance [Lor19] and overpass the difficulties mentioned
above.
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In the non-hyperelliptic case, one can use Weber’s formulae ([Web76, p.108], see also [Fio16]) to get first
a curve C1 over an extension Fqe of Fq (p 6= 2). To get an equation of C0 over Fq, we implemented an
explicit Galois descent taking advantage of the fact that C1, being given with its full level-2 structure, has
all its bitangents defined over Fqn . Hence, all isomorphisms between C1 and its Galois conjugates over Fe
are defined over Fqe as well.

It may still be that JacC0 is not isomorphic over Fq to the chosen (A,L ) as C0 may be a twist of the right
curve C. If the geometric automorphism group of C is trivial (which can be read from the automorphism
group of the lattice), then the curve has no automorphism, hence no non-trivial twist and C0 ' C. Otherwise,
one has to compute the list of all twists: in the hyperelliptic case see [LR12a, Sec.4.6] (implemented in Magma),
and in the non-hyperelliptic case see [LRR+14, Sec.4].

To conclude, it is then enough to check among the twists which ones are defect-0 curves over Fq, which
can be achieved through naive point counting algorithms. Hence for g = 2 and 3 our algorithms provide an
explicit list of all isomorphism classes of defect-0 curves over Fq.

Remark 5.1. A different way to do so is to pick a random Fq-rational divisor D ∈ JacC ′(Fq), and check if
(1+q−Trace(E))gD = 0. A better way would be to select the right Galois descent directly by keeping track
of the Galois action on the two torsion points of Eg through the isogeny. This could actually be achieved
since a more general isogeny formula exists which can also be applied to an arbitrary torsion point of Eg.
We did not implement this method yet.

5.1. Curves of genus 2. Let us give some examples to illustrate our algorithms. We start with a very
simple one.

Example 5.2. Let E/F61 : y2 = x3 + 11x + 17 be an elliptic curve such that R := Z[π] = Z[w] with
w = 1+

√
−19

2 . When g = 2, the algorithm developed in Section 2 shows that there is only one indecomposable

unimodular positive definite R-lattice of rank 2, namely R2 with the hermitian form h =

[
2 −w̄
−w 3

]
(this

can alternatively be seen from Schiemann’s tables [Sch]). Hence A = FE(R2) = E2 with the polarization
L induced by h is the only Jacobian inside the isogeny class of E2. Using Algorithm 5 one can check that
there is a polarized isogeny f from A0 = E2 with the product polarization to (A,L ) with kernel K ⊂ A[`]
with ` = 3. Explicitly K is generated by the two affine points of E2

((51a3 + 39a2 + 36a+ 13, 59a3 + 43a2 + 48a+ 35), (3a3 + 31a2 + 38a+ 4, 44a3 + 22a2 + 19a+ 11)),

((58a3 + 30a2 + 23a+ 36, 14a3 + 55a2 + 47a+ 45), (51a3 + 39a2 + 36a+ 13, 2a3 + 18a2 + 13a+ 26))

where a ∈ F614 has minimal polynomial x4 + 3x2 + 40x+ 2. We can also compute the theta null point which
we express in the classical basis of theta constants characteristics. For instance θB00(0) = ϑ [ 00

00 ] (0) is equal
to

43b11 + 34b10 + 28b9 + 11b8 + 6b7 + 19b6 + 30b5 + 27b4 + 27b3 + b2 + 30b+ 59

where b ∈ F6112 with minimal polynomial x12 + 2x8 + 42x7 + 33x6 + 8x5 + 38x4 + 14x3 +x2 + 15x+ 2. Using
the reconstruction method explained above, we find C : y2 = 45x6 + 13x5 + 25x4 + 23x3 + 3x2 + 20x+ 13.

Consider the complex expression χ5(τ) =
∏
ε even ϑ[ε](τ). Then χ10 = χ2

5 is a Siegel modular form of
weight 10 and level Γ2 defined over Z. Using Algorithm 7, we find that χ10(A,L , wA) = 22 where wA is the
basis of differentials constructed in Theorem 4.9. There is a well-known relation with between χ10 and the
discriminant of C : y2 = f(x) (which is 28 times the discriminant of f) up to the choices of bases of regular
differentials. One must have that χ10(A,L , wA)/(212 · Disc(C)) is a 10th power of the determinant of the
change of bases, hence a 10th power in Fq. This is indeed the case.

Example 5.3. In a similar way, we can work out an example over k = F53 with a non-maximal order
of discriminant −24. In that case there is a unique defect-0 curve of genus 2 over k, namely C : y2 =
3x6 + 3x4 + 3x2 + 3.

Example 5.4. Let us consider now the case k = F271 with a non-maximal order of discriminant −60. In
that case, there are 9 indecomposable principally polarized abelian surfaces in the isogeny class. For only
two of them, there exists an odd ` (` = 5) and one can write down the corresponding curves, namely
y2 = 65x6 +167x5 +63x4 +49x3 +63x2 +167x+65 and y2 = 89x6 +224x5 +155x4 +16x3 +155x2 +224x+89.
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For the seven other cases, such an ` does not exist: Theorem 2.16 shows that either there is no orthogonal
basis with the same odd norm for two of them, or no orthogonal basis with the same norm for the last 5 of
them.

5.2. Curves of genus 3. In his lectures at Harvard in 1985, Serre found that a principally polarized abelian
variety (A,L ) of dimension g > 2 defined over a perfect field k, which is geometrically a Jacobian, is not
necessarily a Jacobian over k (unlike in dimension 1 or 2). The obstruction is given by a quadratic character
of Gal(k̄/k) and is called Serre’s obstruction. This obstruction is always trivial for hyperelliptic curves.
When k ⊂ C and g = 3, this character can be computed in terms of the value of the modular form defined
over C by χ18(τ) = − 1

228 ·
∏
ε ϑ[ε](τ), where the product is over the 36 even theta constants ([Ser85], [LR08],

[Mea08], [LRZ10]). Using lifting techniques, one can thus get the obstruction for certain (A,L ) when k is a
finite field of characteristic different from 2 and therefore address the question of maximal number of points
of genus 3 curves (see for instance [Rit10]). However, the numerical approximations during the computation
of the value of the modular form lead to heuristic results only.

The techniques developed in Section 4.3 allows us to directly work out these computations over an (exten-
sion) of the finite field. In [Igu67], it is proved that χ18 is a modular form of degree 18 and level 1 and therefore
it induces an element of Γ(A3,1(C),H18). Then [Ich96, Prop.3.4] proved that actually χ18 ∈ Γ(A3,1(Z),H18).
In [LRZ10, Th.1.3.3], over a number field, and in Proposition [Rit10, Prop.2.3], over a field k of character-
istic different from 2, it is proved for a principally polarized abelian threefold (A,L )/k and any choice
of k-rational basis of regular differentials wA on A, that χ18(A,L , wA) is a non-zero square in k if and
only if (A,L ) is the Jacobian of a non-hyperelliptic curve of genus 3 over k. Using Algorithm 7, we can
compute this value and check whether (A,L ) is the Jacobian of a non-hyperelliptic genus 3 curve over k
without computing the equation of the curve. Note that as we started with (A,L )/Fq indecomposable, if
χ18(A,L , wA) = 0, then (A,L ) is the Jacobian of a hyperelliptic genus 3 curve over Fq.

Example 5.5 (A unique defect-0 curve without non-trivial automorphism). Let consider the question of the
existence of defect-0 curve of genus 3 over Fq with q = 10313. If there is such a curve C/Fq then JacC ∼ E3

with E of trace −m = −203. The curve E has therefore complex multiplication by the maximal order
O = Z[ω] of Q(ω) where ω = 1+

√
−43

2 . As O has class number 1, there is a unique (non-polarized) abelian
variety in the class of E3 up to isomorphism, namely E3 itself. Moreover using Algorithm 3 (see also [Sch98]),
we find 5 isomorphism classes of indecomposable positive definite unimodular hermitian O-lattices (L, hi)
leading to 5 indecomposable principally polarized abelian threefolds (E3, ai). In Table 1, we give h by its
Gram matrix in the canonical basis of O3. For each lattice (L, hi), we also give the smallest odd ` determined
by Algorithm 4. Recall that it determines the degree `3 of the isogeny we will compute using the Algorithm 7.
We also display in Table 1 the order of the automorphism group of (L, hi), and if χ := χ18(E3, ai, wE3) = 0
or if it is a square in Fq.

We see that only a1 leads to a non-trivial obstruction and therefore to a non-hyperelliptic defect-0 curve.
This result agrees with the heuristic result which can be deduced from [Rit10, Table 2]. An equation of C is

x4 + 7780x3y + 8862x3 + 456x2y2 + 2118x2y + 1846x2 + 5713xy3 + 10064xy2 + 7494xy

+ 6469x+ 7559y4 + 9490y3 + 7458y2 + 214y + 6746 = 0.

Moreover by Torelli theorem [Mat58, p.790-792], since Aut(E3, a1) ' Aut(L, h1) ' {±1} and C is non-
hyperelliptic, the automorphism group of C is trivial. As far as we know, this is the first example of a
finite field for which one can ensure that the defect-0 curves have no extra-automorphism. As recalled in
[Rit11], most of the methods developed to find curves of genus 3 with many points use the existence of
extra-automorphisms. The question of existence of a defect-0 curve over F10313 could not have been solved
in this way.

Example 5.6. Let q = 131. As previously, the existence of a defect-0 curve of genus 3 over Fq leads to
consider indecomposable unimodular positive definite O-lattices Li of rank 3, where O has discriminant
−40. The class number of O is 2 and we find 12 Li, out of which 6 are not free and the largest ` we have to
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Case Gram matrix of hi ` #Aut(L, hi) Is χ = 0? Is χ a square?

1

 3 1 1− ω
1 4 2

1− w 2 5

 11 2 no yes

2

 3 1 + ω 2− ω
1 + w 5 −2− ω
2− w −2− w 5

 9 12 no no

3

 2 −1 1
−1 4 1− ω
1 1− w 4

 9 4 no no

4

 3 1 −1− ω
1 3 −1

−1− w −1 5

 11 4 no no

5

 3 −1 −1− ω
−1 3 0

−1− w 0 5

 11 4 no no

Table 1. Example 5.5.

consider is 19. We get 11 defect-0 curves of genus 3 over Fq up to Fq-isomorphism, for instance

x4 + 72x3y + 111x3z + 55x2y2 + 99x2yz + 47x2z2 + 8xy3 + 95xy2z

+ 74xyz2 + 30xz3 + 39y4 + 53y3z + 58y2z2 + 40yz3 + 59z4 = 0

which has an automorphism group of order 2.

Example 5.7. Let q = 97. As previously, the existence of a defect-0 curve of genus 3 over Fq leads to consider
indecomposable unimodular positive definite R-lattices of rank 3, where R has discriminant−27 and therefore
is not the maximal order of Frac(R). Our algorithms finds 4 indecomposable unimodular positive definite
R-lattices and there is one lattice which is not projective, namely R2 ⊕ O. This leads to 4 indecomposable
principally polarized abelian threefolds over Fq isogenous to E3 where E/Fq : y2 = x3 + 92x + 10. For
three of them, Serre’s obstruction is trivial, so we get exactly three defect-0 curves of genus 3 over Fq up to
Fq-isomorphism for instance

x4 + 63x3y + 28x3z + 10x2y2 + 81x2yz + 43x2z2 + 89xy3 + 10xy2z + 70xyz2 + 45xz3

+ 24y4 + 55y3z + 77y2z2 + 35yz3 + 54z4 = 0

with an automorphism group of order 6.

5.3. Curves of genus 4. Jacobians of curves of genus 4 are not dense in the moduli space A4,1. They
form a codimension-1 variety which we shall characterize thanks to the Igusa modular form J of level 1
and weight 8. The modular form J is defined over C as a homogeneous polynomial of degree 16 in the
theta constants with integer coefficients, see for instance [Igu81a, p.538] or in [Igu81b] (with the choice of
characteristics from [CKS19]). It is therefore an element of Γ(A4,1(Z),H8) and its values can be computed
using Algorithm 7. We will also need the following result below. In [BG92], the first term in the Fourier
expansion of J is computed and its constant coefficient is −216. This means that the Siegel modular form J
does not vanish identically on A4,1 ⊗ k for any algebraically closed field k of characteristic different from 2.

Igusa proves that the Igusa modular form is related to the classical Schottky modular form by

J =
1

26 · 32 · 5 · 7
·
((∑

ϑ[ε](τ)8
)2

− 24
∑

ϑ[ε](τ)16

)
the sums being over all even characteristics. Hence, over C, this form is zero precisely on the locus of
principally polarized abelian varieties of dimension 4 which are decomposable or a Jacobian. Following the
same lines as [Rit10, Prop.2.3], this can be extended to any field of characteristic different from 2.

Theorem 5.8. Let (A,L ) be an indecomposable principally polarized abelian variety of dimension 4 over
an algebraically closed field k of characteristic different from 2 and wA a basis of regular differentials. Then
J(A,L , wA) = 0 if and only if (A,L ) is the Jacobian of a curve of genus 4 over k.
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Proof. Let A4,1 be the moduli stack of principally polarized abelian schemes of relative dimension 4 and let
us denote by T the Torelli locus (the image of the moduli stack of genus 4 curves of compact type). Following
[MO13, p.554], it is a reduced and closed substack of A4,1. Moreover for any algebraically closed field k,
T (k) coincides with the disjoint union of the set of Jacobians of genus 4 curves and the set of decomposable
principally polarized abelian varieties of dimension 4 defined over k.

Over C, T (C) = (J = 0)red(C). This shows that T ⊗ Q = (J = 0)red ⊗ Q. Taking the schematic
closure over Z[ 1

2 ] we get T ⊃ T ⊗Q = (J = 0)red ⊗Q ⊂ (J = 0)red in A4,1 We need to prove that the
two inclusions are equalities, i.e. that none of the loci T or (J = 0)red has a vertical component. For
(J = 0)red this is the case since the modular form J ∈ Γ(A4,1 ⊗ Z[ 1

2 ],H⊗8) is primitive and the fibers of
A4,1 are irreducible (see for instance the proof of [FC90, Lemma 3.2, p. 163]). Similarly, for T , this is true
because we can lift any genus 4 curve in a special fiber to characteristic 0.

From this we deduce that J(A,L , wA) = 0 if and only if (A,L ) ∈ T ⊗ k. Since we have assumed that
the polarization L is indecomposable, this is the case if and only if (A,L ) is a Jacobian. �

As we only need to check if the value of J is zero or not, we can work with any affine lift of the theta null
point. However, if it is zero and (A,L ) is therefore a Jacobian over the algebraic closure, there is currently
no way to ensure that it is also a Jacobian over the ground field.

Example 5.9. Let us consider the case of defect-0 genus 4 curves C over F59. The Jacobian of C would be
isogenous to E4 with E an elliptic curve with End(E) of discriminant −11. There are three indecomposable
principally polarized abelian varieties in the class of E4. We can check (using for the three of them the value
` = 3) that for none of them the Igusa form is 0. Hence there is no defect-0 curve of genus 4 over F59 as it
is confirmed in the manYPoints tables [GHL+09] or [Zay16, Th.1.1].

It would be more interesting to look at one unknown entry of these tables, like for instance q = 89. However
in this case the discriminant of the associated elliptic curve is 32 and our algorithms are not efficient enough
to work it out yet.
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