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Abstract. Pairing is a fundamental tool in public key cryptography and
has been studied for several decades. It plays a crucial role in various
cryptographic applications, including identity-based encryption (IBE),
Joux’s one round protocol for tripartite Diffie–Hellman, and zero-knowle-
dge proofs. Recently, Damien Robert proposed novel cubical arithmetic
to compute pairings via biextensions, which significantly improves pair-
ing computation efficiency in isogeny-based schemes such as SQIsign and
CSIDH. However, when applied to classical pairing-based cryptography,
the biextension technique has not yet achieved satisfactory performance.
Especially, the biextension technique outperforms Miller’s algorithm only
for specific families with the lack of twists.
This paper aims to enhance the practicality of the biextension tech-
nique combined with cubical arithmetic. Since Montgomery curves al-
low for efficient cubical arithmetic, we establish the connections between
the pairing-friendly curves in the literature and Montgomery model. For
curves with the lack of twists, we propose an effective approach to deter-
mine whether they can be translated to Montgomery forms. As for the
curves admitting degree-d twists, it is suffices to require their twists to
be converted to Montgomery model. To this end, we also provide new
decision theorems for this circumstance.
Building on these theoretical results, we can identify which pairing-
friendly curves—or their twists—from the literature admit such a con-
version. By selecting suitable parameters, we optimize pairing computa-
tions on these curves using cubical arithmetic on the Montgomery model.
The cost analysis demonstrates that the biextension technique integrated
with Montgomery model outperforms Miller’s algorithm by bit on curves
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admitting degree-d twists (d ≤ 3). Specifically, our optimized method ap-
proximately reduces 50.3%, 45.3%, 10.9%, 6.3% and 6.4% multiplications
over finite fields Fp in terms of Miller loops on pairing-friendly curves
CP5-663, CP7-512, BW14-382, BLS15-383 and BLS21-511, respectively.

Keywords: Pairing Montgomery curves Biextension Cubical arithmetic

1 Introduction

Bilinear pairings play a significant role in pulic key cryptography, enabling
applications such as identity-based encryption (IBE) [5], one-round tripartite
Diffie–Hellman key agreement [27], and zero-knowledge proofs [17,18]. Currently,
the predominant and most efficient method for computing pairings in pairing-
based cryptography is Miller’s algorithm [30]. Alternative approaches have also
been explored, such as the elliptic net algorithm (ENA) [35] and its variants
[10,7]. However, ENA and its variants have seen limited adoption in practice
due to their comparatively lower computational efficiency.

Biextensions as an algorithmic tool to compute the Weil and Tate pairings
was first investigated by Stange in her PhD thesis [35], where she proved that
elliptic nets compute the Poincaré biextension cocycle. In 2024, the third au-
thor [33] pioneered the use of cubical arithmetic to improve the biextension arith-
metic compared to elliptic nets. The core idea involves utilizing level 2 cubical
arithmetic, which employs fast cubical x-only operations on Montgomery curves.
These improvements benefit pairing computations in isogeny-based schemes [32],
including the compact digital signature scheme SQIsign [16] and the non-interactive
key exchange protocol CSIDH [9]. The biextension technique has also been ex-
tended to the ate pairing, optimal ate pairing, and super-optimal pairing [29].
However, its performance in general settings remains unsatisfactory. As shown
in [29, Table 4], the biextension technique outperforms Miller’s algorithm only
for specific curves that lack twists. The main bottleneck is that most pairing-
friendly curves in the literature are defined in short Weierstrass form, which
admits inefficient cubical arithmetic. Specifically, the cubical ladder algorithm
requires only 15 field multiplications per bit on Montgomery models [33], com-
pared to 29 on short Weierstrass curves [33, Section 5.4].

Motivated by this gap, we aim to broaden the applicability of the biextension
approach in pairing-based cryptography by leveraging the Montgomery model.
Although several works [31,12] have investigated the conversion between short
Weierstrass and Montgomery forms, there remains a lack of research that system-
atically establishes the relationships between pairing-friendly curves in the liter-
ature and Montgomery models to make them more compatible with the biexten-
sion method. Comprehensively determining which pairing-friendly curves admit
such a transformation is non-trivial. Directly applying the results from [31,12]
is not effective, as they are general and not tailored to the specific properties
of most pairing-friendly curves. This paper proposes more compact and effec-
tive theorems for determining whether a pairing-friendly curve can be converted
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to a Montgomery model. Specifically, for curves E that lack twists, we ensure
that they can be transformed into Montgomery form over the ground field Fp
to maximize the efficiency of the biextension approach. To this end, we propose
a new approach (see Theorem 4 in Section 3) for effective determination that
relies only on the trace t of the p-power Frobenius endomorphism π, avoiding
the need to find rational 2-torsion points or compute quadratic residue symbols,
unlike the propositions in [12]. For curves admitting degree-d twists E′, the cu-
bical arithmetic can be carried out entirely on E′ defined over the finite field
Fpk/d by leveraging morphism properties of bilinear pairings to accelerate the
biextension approach, where k denotes the embedding degree. Hence, it suffices
to require that E′ is Fpk/d -isomorphic to the Montgomery model, making it more
suitable for the biextension technique. Based on the former case, we also derive
corresponding effective decision approaches by utilizing the algebraic properties
of twists, which are summarized in Lemma 1 and Theorem 5.

1.1 Contributions

This paper explores how to adapt the biextension technique proposed in [33]
to exploit the Montgomery model for pairing computations on a wider range of
pairing-friendly curves. The main contributions are as follows:

1. We investigate the intrinsic connections between Weierstrass and Mont-
gomery curves, establishing necessary and sufficient conditions for converting
an ordinary short Weierstrass curve E over a finite field Fq of characteristic
p into a Montgomery curve EA,B when E has CM-discriminant 1 or 3. In
particular, for curves that do not admit twists, we ensure that they are Fp-
isomorphic to Montgomery curves. For curves admitting degree-d twists E′,
it suffices to require that E′ is Fpk/d -isomorphic to the Montgomery model.
We also generalize the aforementioned conditions and propose effective de-
cision theorems for the latter situation.

2. We revisit pairing-friendly curves in the literature and apply our proposed
theorems to identify those that can be transformed into Montgomery models.
To the best of our knowledge, this is the first systematic work to investigate
the relationships between pairing-friendly curves and Montgomery curves.
For curves that can be converted to Montgomery form, we present explicit
formulas derived via level 2 biextensions to compute pairings efficiently. Fur-
thermore, we provide concrete parameters for selected curves admitting such
transformations at the 128- or 192-bit security level.

3. We employ efficient cubical arithmetic on Montgomery curves and provide
a concrete cost analysis. The results demonstrate that:

– For curves admitting degree-d twists (d ≤ 3), the biextension technique
implemented on the Montgomery model outperforms Miller’s algorithm
in doubling iterations, especially for curves that lack twists. This shows
that our method significantly enhances the competitiveness of the biex-
tension technique in pairing-based cryptography.
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– For Miller loops on the exTNFS-resistant Cocks-Pinch curves CP5-663
and CP7-512 with small target finite fields [25], our approach reduces
the number of Fp-multiplications by 50.3% and 45.3%, respectively, com-
pared to Miller’s algorithm.

– For the curve BW14-382, which admits a quadratic twist [13], we pro-
pose a mixed and shared ladder to accelerate the super-optimal pair-
ing via biextension, achieving an approximate 10.9% reduction in Fp-
multiplications within the Miller loop.

– For the curves BLS15-383 and BLS21-511, which admit cubic twists [1,24],
we save approximately 6.3% and 6.4% of Fp-multiplications in the Miller
loops, respectively.

1.2 Organization of This Paper

The mathematical preliminaries and definitions are presented in Section 2, which
recalls the concepts of Montgomery curves and biextensions. Section 3 presents
the main theorems and lemmas for the conversion between short Weierstrass and
Montgomery forms. The pairing-friendly curves and the corresponding formulas
via biextensions compatible with our optimized approach are provided in Sec-
tion 4. We illustrate the cost analysis and comparison in Section 5. Finally, our
conclusions and future work are discussed in Section 6.

2 Preliminaries

This section introduces the mathematical preliminaries required for this paper,
including twists of elliptic curves, Montgomery curves, and biextensions.

Let E be a short Weierstrass curve defined over a finite field Fq of character-
istic p, with equation:

E/Fq : y2 = x3 + ax+ b,

where a, b ∈ Fq. Let OE denote the point at infinity. The order of the additive
abelian group E(Fq) is given by #E(Fq) = q + 1− t [36, Theorem 4.12], where
t is the trace of the q-power Frobenius endomorphism π : (x, y) 7→ (xq, yq).

The curve E is called supersingular if t ≡ 0 mod p, and ordinary otherwise.
Let r be a prime divisor of #E(Fq). The embedding degree k of E with respect
to r is the smallest positive integer such that r | qk − 1. The n-torsion subgroup
is defined as:

E[n] = {P ∈ E | [n]P = OE}.

For efficient pairing computation, the following two r-torsion groups are typ-
ically used as inputs:

G1 = E(Fq)[r] = E[r] ∩ {P ∈ E | π(P ) = P},
G2 = E[r] ∩ {P ∈ E | π(P ) = [q]P}.
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The j-invariant of E is defined as j(E) = 1728 · 4a3

4a3+27b2 . Additionally, the
curves with j(E) = 0 (resp. j(E) = 1728) possess efficiently computable auto-
morphisms σ, described as follows:

E : y2 = x3 + b, with j(E) = 0 and σ : (x, y) 7→ (wx, y),

E : y2 = x3 + ax, with j(E) = 1728 and σ : (x, y) 7→ (−x, iy),

where w and i are primitive cubic and quartic roots of unity in F∗
q , respectively.

2.1 Twists of Elliptic Curves

Let E and E′ be elliptic curves over a finite field Fq of characteristic p. Then E′

is a degree-d twist (d > 1) of E if there exists an isomorphism ϕ between E and
E′ defined over Fqd , with d minimal. The map ϕ is called the degree-d twisting
isomorphism.

The following proposition characterizes all possible twists. We refer to ap-
pendix B for a much more detailed overview.

Proposition 1. [26, Proposition 1] Let p ≥ 5 be a prime. The set of twists of
E is canonically isomorphic to F∗

q/(F∗
q)
d, where d = 2 if j(E) ̸= 0, 1728; d = 4

if j(E) = 1728; and d = 3, 6 if j(E) = 0. Specifically, twists corresponding to
ζ ∈ F∗

qe/(F∗
qe)

d are given by:

d = 2 : y2 = x3 + a/ζ2x+ b/ζ3, ϕ : E′ → E : (x, y) 7→ (ζx, ζ3/2y),
d = 4 : y2 = x3 + a/ζx, ϕ : E′ → E : (x, y) 7→ (ζ1/2x, ζ3/4y),
d = 3, 6 : y2 = x3 + b/ζ, ϕ : E′ → E : (x, y) 7→ (ζ1/3x, ζ1/2y).

Quadratic twists can also be represented as:

d = 2 : ζy2 = x3 + ax+ b, ϕ : E′ → E : (x, y) 7→ (x, ζ1/2y).

For ordinary curves, the group order of E′(Fq) can be determined as follows.

Proposition 2. [26, Proposition 2] Let E be an ordinary curve over Fq admit-
ting a degree-d twist E′, with #E(Fq) = q + 1 − t. Then the orders of E′(Fq)
are:

d = 2 : #E′(Fq) = q + 1 + t,
d = 3 : #E′(Fq) = q + 1− (±3f − t)/2 with t2 − 4q = −3f2,
d = 4 : #E′(Fq) = q + 1± f with t2 − 4q = −f2,
d = 6 : #E′(Fq) = q + 1− (±3f + t)/2 with t2 − 4q = −3f2.

In pairing-based cryptography, we often consider a curve E over Fp with
small embedding degree k, admitting a degree-d twist E′ over Fpk/d . In this case,
d = gcd(#Aut(E), k), and the pairing subgroup G2 can be efficiently represented
as G2 = E′(Fpk/d)[r].
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2.2 Montgomery Curves

A Montgomery curve over Fq is defined by the equation:

EA,B/Fq : By2 = x3 +Ax2 + x,

where A,B ∈ Fq satisfy B ̸= 0 and A2 − 4 ̸= 0.
A Montgomery curve EA,B can be transformed into short Weierstrass form.

The converse transformation is possible under the following conditions.

Proposition 3. [31, Proposition 1] A short Weierstrass curve E : y2 = x3 +
ax+ b can be transformed into a Montgomery curve EA,B : By2 = x3 +Ax2 + x
over Fq if and only if:

1. E has an Fq-rational 2-torsion point (α, 0), and
2.
(

3α2+a
q

)
2
= 1,

where
( ·
·
)
2

denotes the quadratic residue symbol modulo q.
The isomorphism between these curves is defined by:

ψ : E → EA,B ,

(x, y) 7→
(
x− α
β

,
y

β

)
,

where A = 3α/β, B = 1/β, and β is a square root of 3α2 + a over Fq.

In appendix B we investigate when an elliptic curve has a twist that can be
put in a Montgomery form.

2.3 Biextensions and Bilinear Pairings

Biextensions [33] provide a framework for computing bilinear pairings on abelian
varieties. This subsection introduces biextensions and their connection to pair-
ings; see [29,32] for further details.

Let D = (OE) be the polar divisor on an elliptic curve E. The biextension
XD associated with D is defined as follows.

Definition 1 ([33]). Let DP denote the divisor (−P ) − (OE). A biextension
element is a tuple (P,Q, gP,Q) ∈ XD, where P,Q ∈ E and gP,Q is a rational
function with divisor:

div(gP,Q) = (−P −Q) + (OE)− (−P )− (−Q).

From this definition, we can derive the connection between gP,Q and the
Miller function fr,P [30], which satisfies div(fr,P ) = r(P )− ([r]P )− (r−1)(OE):

fr,−P ((·)− (·+Q)) =
g[r]P,Q(·)
gP,Q(·)r

. (1)
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It is preferable to work at level 2 for efficiency. Let X and Z be two sections
of 2D = 2(OE) such that x = X/Z. A level 2 cubical point P̃ is given by
P̃ = (X(P̃ ), Z(P̃ )). For simplicity, we drop the tilde and denote P = (XP , ZP ).
Note that the sections X,Z at level 2 correspond to the projective coordinates
of the Kummer line E/⟨±1⟩.

When R = OE , an extended value is required to evaluate gP,Q at R [33,
Remark 2.8]. The level 2 biextension function evaluated at OE [29, Equation
(11)] is given by

g2D,P,Q(OE) = gP,Q(OE)2 =
ZP+Q ·XOE

ZP · ZQ
.

If P is an r-torsion point, then Z evaluated at [r]P yields X[r]P . Thus

g2D,[r]P,Q() = g[r]P,Q(OE)2 =
Z[r]P+Q ·XOE

X[r]P · ZQ
. (2)

In the following, we use gP,Q to represent the level 2 biextension element.
Based on Equations (1) and (2), the formula for the Tate pairing via cubical
arithmetic [32, Appendix A.10, Theorem 5] can be derived. If P ∈ E(Fq)[r] and
Q ∈ E(Fq), then the square of the non-reduced Tate pairing is

er(P,Q)2 =
Z[r]P+Q ·XOE

ZQ ·X[r]P
.

Pairing-based cryptography often uses G2 ×G1 as input subgroups, leading
to variants of the Tate pairing with shorter Miller loops, such as ate pairings, op-
timal ate pairings, and super-optimal ate pairings. These can also be computed
via biextensions [29, Section 3], as cubical arithmetic behaves well with isomor-
phisms on elliptic curves. Explicit formulas for these pairings via biextensions
are summarized in [29, Table 1].

The coordinates Z[n]Q+P and Z[n]Q (for n ∈ Z) can be computed using
cubical or double-and-add ladder algorithms. Cubical arithmetic for pairing-
friendly curves with j-invariants 0 or 1728, and for supersingular Montgomery
curves with embedding degree 2, are detailed in [29, Section 4] and [32, Section
4], respectively.

3 Characterization of Weierstrass-Montgomery Curve
Conversion

As mentioned in Section 1, Montgomery curves admit fast cubical arithmetic,
which is highly compatible with pairing computations via biextensions. Thus,
we aim to transform existing pairing-friendly curves into Montgomery form, and
try to broaden the applications of biextensions for pairing computations. In this
section, we introduce the framework of our method and propose propositions to
effectively determine whether short Weierstrass curves or their degree-d twists
can be converted to Montgomery form.
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Let E denote a pairing-friendly curve admitting short Weierstrass form over
Fp with embedding degree k, where p is an odd prime. According to [14], pairing-
friendly curves can be divided into two classes: curves admitting degree-d twists
and curves without twists.

In general, the pairing computation on E is executed over the input subgroups
G2×G1 (e.g., in the ate pairing, optimal pairing, and super-optimal ate pairing)
to achieve a short Miller loop. For curves without twists, the subgroup G2 should
be expressed by G2 = E(Fpk)[r] ∩ ker(π − [p]) since no twists are available. For
those that can be translated into Montgomery model, the pairing computations
are performed as follows:

e(ψ(P ), ψ(Q)) = e(P,Q)deg(ψ) = e(P,Q), P ∈ G1, Q ∈ G2,

where ψ represents the isomorphism between E and EA,B . To maximize the
efficiency, we expect that E is Fp-isomorphic to Montgomery model.

We provide an effective way to handle this circumstance. For ordinary short
Weierstrass curves with CM-discriminant 1 or 3 over a finite field Fq, Proposi-
tion 4 presents the condition under which these curves are Fq-isomorphic to the
Montgomery form.

Proposition 4. Let Fq be a finite field with characteristic p ≥ 5. Let E denote
an ordinary short Weierstrass curve with CM−discriminant D = 1 or 3 over
Fq. Define t to be the trace of the q-power Frobenius endomorphism. Then E is
Fq-isomorphic to a Montgomery curve EA,B if and only if t ≡ 2 (mod 4).

Proof. We prove this proposition for the two cases D = 1 and D = 3.
(1) The short Weierstrass curve with CM-discriminant 1 has j(E) = 1728, and
the curve is of the form

E/Fq : y2 = x3 + ax.

Since E is ordinary, from the proof of [34, Chapter V.4, Theorem 4.1] we have
p ≡ 1 (mod 4), and thus −1 is a quadratic residue modulo p. It follows that

q ≡ pm ≡ 1 (mod 4),

(
−1
q

)
2

=

(
−1
p

)m
2

= 1,

where
( ·
·
)
2

denotes the Legendre or Jacobi residue symbol.
We first prove the sufficiency. Obviously, (0, 0) ∈ E[2]. By Proposition 3, we

need to show (
3 · 02 + a

q

)
2

=

(
a

q

)
2

=

(
−1
q

)
2

·
(
−a
q

)
2

= 1,

i.e., −a is a quadratic residue modulo q. From t ≡ 2 (mod 4), we obtain

#E(Fq) = q + 1− t ≡ 0 (mod 4).

Since j(E) = 1728, by [15, Corollary 1] we deduce that E[2] ⊆ E(Fq). Con-
sequently, E(Fq)[2] = {(0, 0), (±α, 0),OE} for some α ∈ Fq. This implies that
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−a is a square in F∗
q . Therefore, the curve with D = 1 can be converted to the

Montgomery form.
We now consider the necessity. Since E is Fq-isomorphic to a Montgomery

curve EA,B , by [22, Lemma 9.12.9] we have

q + 1− t ≡ 0 (mod 4).

It follows from q ≡ 1 (mod 4) that t ≡ 2 (mod 4), which completes the proof of
necessity.
(2) If E has CM-discriminant 3, then it satisfies the equation

E/Fq : y2 = x3 + b,

and j(E) = 0. From the assumption that E is ordinary and [34, Chapter V.4,
Theorem 4.1] we have p ≡ 1 (mod 3), which implies that

q ≡ pm ≡ 1 (mod 3),

(
q

3

)
2

=

(
p

3

)m
2

= 1.

We now prove the sufficiency. From t ≡ 2 (mod 4), it follows that

q + 1− t ≡ 0 (mod 2).

Thus, there exists an Fq-rational 2-torsion point (α, 0) on E. Note that(
3α2 + a

q

)
2

=

(
3α2

q

)
2

=

(
3

q

)
2

,

since a = 0 for this curve. By Proposition 3, it remains to prove that 3 is a
quadratic residue modulo q. Since q ≡ 1 (mod 3), there exists a primitive cube
root of unity ω ∈ Fq such that αω and αω2 are also roots of

x3 + b ≡ 0 (mod q),

i.e., (αω, 0), (αω2, 0) ∈ E(Fq). This implies that E[2] ⊆ E(Fq), and hence

q + 1− t ≡ 0 (mod 4).

Given t ≡ 2 (mod 4), we have q ≡ 1 (mod 4). By the quadratic reciprocity law,(
3

q

)
2

·
(
q

3

)
2

= (−1)
q−1
2 = 1,

which implies that (
3

q

)
2

= 1 =

(
q

3

)
2

.

Therefore, the curve E with D = 3 is Fq-isomorphic to a Montgomery curve by
Proposition 3.
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The following proves the necessity. From Proposition 3, we deduce that(
3α2 + a

q

)
2

=

(
3

q

)
2

= 1,

where (α, 0) is a rational 2-torsion point in E(Fq). This implies that(
3

q

)
2

·
(
q

3

)
2

= 1 = (−1)
q−1
2 .

Then q ≡ 1 (mod 4), which implies that t ≡ 2 (mod 4). This completes the proof.
⊓⊔

Once we have Proposition 4, it is sufficient to verify the condition t ≡ 2
(mod 4), where t is the trace of p-power Frobenius endomorphism to determine
whether E can be switched to Montgomery model over Fp.

For curves admitting twists, the subgroup G2
∼= E′(Fpk/d)[r], where E′ is the

degree-d twist of E and ϕ : E′/Fpk/d → E/Fp the twisting isomorphism over
Fpk . Moreover, it follows from [26, Section 5] that

ê(P,Q) = e(P, ϕ(Q)) = e(ϕ−1(P ), Q), P ∈ G1 = E(Fp)[r], Q ∈ E′(Fpk/d)[r]

also defines a bilinear pairing. Hence, some computations can be operated over
the subfield Fpk/d to enhance efficiency. By [4, Theorem IX.10],

e(ψ ◦ ϕ−1(P ), ψ(Q)) = e(ϕ−1(P ), Q)deg(ψ) = e(P, ϕ(Q)),

where ψ denotes the isomorphism between E′ and a Montgomery curve E′
A,B . By

imposing this requirement, we can leverage the twist technique on Montgomery
curves to optimize pairing computation.

Remark 1. Note that for curves E admitting degree-d twists E′, we do not re-
quire that E itself is isomorphic to a Montgomery model, as the entire compu-
tation can be executed on the Montgomery curve E′

A,B derived from E′.

In this context, we require that E′ is Fpk/d -isomorphic to E′
A,B , and investi-

gate to obtain propositions to effectively determine whether a degree-d twist of a
pairing-friendly curve can be translated to Montgomery model over the subfield
Fpk/d . Proposition 4 can be extended to determine whether a degree-d twist E′

of E with j(E) = 0 or 1728 is Fq-isomorphic to a Montgomery curve, as stated
in Corollary 1.

Corollary 1. With the notation as in Theorem 4, let E′ denote a degree-d twist
of E over Fq. Define t′ as the trace of σ′ ◦ π′

q such that #E′(Fq) = q + 1 − t′,
where σ′ and π′

q are the automorphism and the q-power Frobenius endomorphism
on E′, respectively. Then E′ is Fq-isomorphic to a Montgomery curve E′

A,B if
and only if t′ ≡ 2 (mod 4).

Proof. The proof follows directly by applying the same reasoning as in Proposi-
tion 4, replacing t with t′. ⊓⊔
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In the following, we focus on the curve E with embedding degree k over Fq,
admitting a quadratic twist E′ over Fqk/2 . The following lemma illustrates the
relationship between E′ and the quadratic twist E′

A,B of a Montgomery curve
EA,B .

Lemma 1. Let E denote a short Weierstrass curve E : y2 = x3 + ax + b over
Fq of embedding degree k with respect to r. Assume that E admits a quadratic
twist E′ over Fqk/2 . Then E is Fq-isomorphic to a Montgomery curve EA,B if
and only if E′ is Fqk/2-isomorphic to a Montgomery curve E′

A,B.

Proof. We first prove the necessity. Let φ denote the Fq-isomorphism from E to
EA,B . We need to prove that there exists an isomorphism between E′ and E′

A,B

defined over Fqk/2 .
From [22, Lemma 9.12.12], EA,B has a unique quadratic twist E′

A,B . Assume
that ζ is a non-square in F∗

qk/2 . Then by Proposition 1,

ϕ : E′ → E, (x, y) 7→ (ζx, ζ3/2y)

and
ϕ′ : E′

A,B → EA,B , (x, y) 7→ (x, ζ1/2y)

are the corresponding twisting isomorphisms.
Additionally, from Proposition 3, the isomorphism ψ is of the form

ψ : E → EA,B , (x, y) 7→
(
x− α
β

,
y

β

)
.

where α, β ∈ Fq. Define ψ′ = ϕ′−1 ◦ ψ ◦ ϕ. It is clear that

ψ′ : E′ → E′
A,B , (x, y) 7→

(
ζx− α
β

,
ζy

β

)
.

is an isomorphism over Fqk/2 . This completes the proof of the necessity.
We now consider the sufficiency. Since E′ : y2 = x3 + a/ζ2x+ b/ζ3 is Fpk/2-

isomorphic to Montgomery model, we have(
3(α/ζ)2 + a/ζ2

qk/2

)
2

=

(
3α2 + a

q

)k/2
2

= 1,

where α is an Fp-rational 2-torsion point on E. One can show that k/2 is odd
since the degree d = gcd(k,#Aut(E)) is 2, yielding

(
3α2+a
q

)
2
= 1. This ends

the proof of sufficiency. ⊓⊔

Lemma 1 provides an effective criterion for determining whether a quadratic
twist of an ordinary short Weierstrass curve E is Fqk/2 -isomorphic to a Mont-
gomery curve. For curves admitting degree-d twists (d ≥ 3), we present Propo-
sition 5.
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Proposition 5. Let E be an ordinary short Weierstrass curve E : y2 = x3 +
ax + b over Fq of embedding degree k with respect to r. Suppose E admits a
degree-d twist E′ over Fqk/d for d ≥ 3. Let t denote the trace of the q-power
Frobenius endomorphism, and let tn denote the trace of the qn-power Frobenius
endomorphism.

(1) If d = 4, then E′ is Fqk/d-isomorphic to a Montgomery curve if and only if

t ≡ 0 (mod 4) and
k

d
≡ 1 (mod 2).

(2) If d = 3 or 6, then E′ is Fqk/d-isomorphic to a Montgomery curve if and
only if

d = 3, t ≡ 1 (mod 2),
k

d
̸≡ 0 (mod 3), tk/d ≡ ±f (mod r), and tk/d ≡ ∓f (mod 8),

or

d = 6, t ≡ 1 (mod 2),
k

d
̸≡ 0 (mod 3), tk/d ≡ ±3f (mod r), and tk/d ≡ ±f (mod 8),

where f is a positive integer such that 3f2 = 4qk/d − t2k/d.

To prove this proposition, we use the following lemma characterizing the rela-
tionship between t and tn.

Lemma 2. Using the above notation, the following holds:

(1) tn is odd if and only if t is odd and n ̸≡ 0 (mod 3).
(2) If t ̸≡ 2 (mod 4) and q ≡ 1 (mod 4), then tn ≡ 0 (mod 4) if and only if

t ≡ 0 (mod 4) and n is odd.

Proof. It follows from [36, Lemma 4.13] that

tn+1 = t · tn − q · tn−1, with t0 = 2, t1 = t.

(1) We first prove the sufficiency and claim that

tn ≡ 0 (mod 2), tn+1 ≡ tn+2 ≡ 1 (mod 2), for n = 3l, l ∈ N. (3)

For l = 0, we have

t0 ≡ 0 (mod 2), t1 = t ≡ 1 (mod 2), t2 = t2 − 2q ≡ 1 (mod 2).

Assume that Equation (3) holds for l ≤ m. Then

t3m ≡ 0 (mod 2), t3m+1 ≡ t3m+2 ≡ 1 (mod 2).

For l = m+ 1, we compute:

t3m+3 = t · t3m+2 − q · t3m+1 ≡ 1− 1 ≡ 0 (mod 2),

t3m+4 = t · t3m+3 − q · t3m+2 ≡ 0− 1 ≡ 1 (mod 2),

t3m+5 = t · t3m+4 − q · t3m+3 ≡ 1− 0 ≡ 1 (mod 2).
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By induction, the sufficiency is proved.
We now prove the necessity. From the sufficiency proof, it remains to show

that t is odd. Suppose, for contradiction, that t is even, and let m be the minimal
positive integer such that tm is odd. Since t2 = t2 − 2q ≡ 0 (mod 2), we have
m > 2 and

tm = t · tm−1 − q · tm−2.

By the minimality of m, we have tm−1 ≡ tm−2 ≡ 0 (mod 2), which implies

tm ≡ 0 (mod 2),

a contradiction.
(2) We first prove the sufficiency. Since t ≡ 0 (mod 4) and q ≡ 1 (mod 4), we
have

tn+1 ≡ −tn−1 ≡ 3tn−1 (mod 4).

Note that t1 = t ≡ 0 (mod 4). Assume tn ≡ 0 (mod 4) for all odd integers
n ≤ m. Then

tm+2 ≡ 3tm ≡ 0 (mod 4).

By induction, the sufficiency is proved.
To prove the necessity, first note that t cannot be odd. Assume t ≡ 1 (mod 4),

and let m be the minimal positive integer such that tm ≡ 0 (mod 4). Since

t0 ≡ 2 (mod 4), t1 ≡ 1 (mod 4), t2 ≡ 3 (mod 4), t3 ≡ 2 (mod 4),

we have m > 3 and

tm ≡ t·tm−1−q·tm−2 ≡ tm−1−tm−2 ≡ (tm−2−tm−3)−tm−2 ≡ −tm−3 (mod 4).

This implies tm−3 ≡ 0 (mod 4), contradicting the minimality of m. A similar
contradiction arises for t ≡ 3 (mod 4). Hence, t ≡ 0 (mod 4).

It remains to prove that n is odd. Suppose n is even. Then

tn ≡ t · tn−1 − q · tn−2 ≡ 3tn−2 ≡ 0 (mod 4).

By induction, this would imply tn ≡ 0 (mod 4) for all even n, contradicting
t0 ≡ 2 (mod 4).

The following is the proof of Proposition 5.

Proof of Proposition 5. (1) Since d = 4, Proposition 1 implies j(E) = j(E′) =
1728. Since E is ordinary, we have q ≡ 1 (mod 4), and

4qk/d ≡ 4 (mod 16).

We first prove the necessity. From the proof of Lemma 1, if E′ is Fqk/d -
isomorphic to a Montgomery curve E′

A,B , then E cannot be Fq-isomorphic to
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a Montgomery curve EA,B . Otherwise, one could construct a degree-4 twist-
ing isomorphism between E′

A,B and EA,B , contradicting [22, Lemma 9.12.12].
Consequently, by Theorem 4 and Corollary 1, we have

t′k/d ≡ 2 (mod 4), tk/d ̸≡ 2 (mod 4), and t ̸≡ 2 (mod 4).

Then, by Proposition 2,

t2k/d ≡ 4qk/d − t′2k/d ≡ 0 (mod 16),

implying tk/d ≡ 0 (mod 4). By Lemma 2(2), the necessity follows.
For sufficiency, Lemma 2(2) implies tk/d ≡ 0 (mod 4). Then

t′2k/d ≡ 4qk/d − t2k/d ≡ 4 (mod 16),

so t′k/d ≡ 2 (mod 4). By Corollary 1, E′ is Fqk/d -isomorphic to a Montgomery
curve.
(2) By Proposition 1, curves admitting degree-3 or 6 twists have j(E) = j(E′) =
0. By Proposition 2,

t′k/d =


±3f − tk/d

2
, if d = 3,

±3f + tk/d

2
, if d = 6,

(4)

where 3f2 = 4qk/d−t2k/d. Note that tk/d and f have the same parity. For brevity,
we only consider the case d = 3; the case d = 6 is similar.

We first prove the necessity. Assume t′k/d = (3f − tk/d)/2. Since qk/d + 1 −
tk/d ≡ 0 (mod r), we derive

3f − tk/d
2

≡ tk/d (mod r),

equivalent to tk/d ≡ f (mod r). As before, E cannot be Fq-isomorphic to a
Montgomery curve. By Theorem 4 and Corollary 1,

t′k/d ≡ 2 (mod 4), tk/d ̸≡ 2 (mod 4), and t ̸≡ 2 (mod 4).

Thus,
3f − tk/d ≡ 2t′k/d ≡ 4 (mod 8).

If tk/d were even, then f would also be even. Write tk/d = 2a, f = 2b for a, b ∈ Z.
Then

a− 3b ≡ 2 (mod 4).

Since tk/d ̸≡ 2 (mod 4), we have tk/d ≡ 0 (mod 4), so a is even. Then b must be
even. However, from 3f2 = 4qk/d − t2k/d,

12b2 ≡ 4b2 ≡ 4qk/d − 4a2 ≡ 4qk/d (mod 8),
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implying b2 ≡ qk/d (mod 2), a contradiction. Hence, tk/d is odd. By Lemma 2(1),
t ≡ 1 (mod 2) and k/d ̸≡ 0 (mod 3). Moreover, f is odd, and t2k/d ≡ f2 ≡ 1

(mod 8). From 3f − tk/d ≡ 4 (mod 8), we deduce

tk/d ≡ −f (mod 8).

The case t′k/d = (−3f − tk/d)/2 is similar, yielding

t ≡ 1 (mod 2),
k

d
̸≡ 0 (mod 3), tk/d ≡ −f (mod r), and tk/d ≡ f (mod 8).

We now prove sufficiency. Suppose

t ≡ 1 (mod 2),
k

d
̸≡ 0 (mod 3), tk/d ≡ f (mod r), and tk/d ≡ −f (mod 8).

By Lemma 2(1), tk/d is odd, so f is odd. From tk/d ≡ f (mod r) and the twist
order, we have

t′k/d =
3f − tk/d

2
.

Since tk/d ≡ −f (mod 8),

3f − tk/d ≡ 4 (mod 8),

so t′k/d ≡ (3f − tk/d)/2 ≡ 2 (mod 4). By Corollary 1, E′ is Fqk/d -isomorphic to
a Montgomery curve. ⊓⊔

4 Pairing-friendly Curves Admitting Conversions to
Montgomery Model

In this section, we utilize the results in Section 3 to determine the pairing-friendly
curves or their twists that can be converted to the Montgomery model, as found
in the literature, and provide appropriate parameters at the 128-bit or 192-bit
security level. Note that all the curves considered in the remaining part of this
paper are ordinary.

According to the construction method, the prevalent pairing-friendly curves
can be roughly classified as follows.

- Cocks-Pinch curves [11,25].
- Cyclotomic families, including Barreto-Lynn-Scott (BLS) [3], Brezing-Weng

(BW) [6], Freeman-Scott-Teske (FST) [21] and Fotiadis-Martindale (FM)
[20].

- Subfield families, including Kachisa-Schaefer-Scott (KSS) [28] and Gasnier-
Guillevic (GG) [23].

In the following, we review these three types of pairing-friendly curves mentioned
above and select those curves or their twists that can be converted into the
Montgomery model.
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4.1 Cocks-Pinch curves

In [25], Guillevic, Masson and Thomé generated four Cocks-Pinch [11] curves
with embedding degrees 5 to 8 at the 128-bit security level, see [25, Section 6.1]
for more details. To distinguish them by embedding degrees, we name these four
short Weierstrass curves as CP5 to CP8, respectively.

For CP8 admitting a quartic twist over Fp2 , it holds that k/d = 2 ≡ 0 mod 2,
where d denotes the degree of twist. Then, by Proposition 5, this twist cannot
be translated to Montgomery form over Fp2 . While CP6 has a sextic twist over
Fp. It can be verified through the parameters of CP6 in [25, Section 6.1] that the
trace of p-power Frobenius endomorphism t ≡ 0 mod 2. Thus, it follows from
Proposition 5 that this sextic twist cannot be Fp-isomorphic to Montgomery
model. Consequently, our acceleration approach in Section 3 is not applicable to
CP6 and CP8.

It remains to determine whether CP5 and CP7, which do not have suitable
twists, can be converted to the Montgomery model over Fp. According to the
parameters in [25, Section 6.1], there exists an Fp-rational 2-torsion point (α, 0)
on CP5 (resp. CP7) such that

(
3α2+a
p

)
2
= 1. By Proposition 3, these two curves

can be converted to Montgomery form over Fp. Consequently, CP5 and CP7 are
preferred for pairing optimization.

4.2 Cyclotomic families

Cyclotomic families are constructed using the BLS [3] and BW [6] methods along
with their variants [21,1,20]. For efficiency reasons, this paper only considers
families with embedding degrees ranging from 9 to 28 and CM-discriminants of
1 or 3.

Before proceeding with the selection, we first exclude some families. For
families with k = 9, 18, 27 and CM-discriminant 3 that admit cubic or sextic
twists, we have k/d ≡ 0 mod 3. Furthermore, for families with k = 16 and CM-
discriminant 1 that admit quartic twists, we have k/d ≡ 0 mod 2. Then, by
Proposition 5, the twists of these families cannot be converted to Montgomery
form over Fpk/d . Consequently, they are not compatible with the optimization
approach described in Section 3. Moreover, we are not interested in families
with k = 17, 19, 22, 23, 25, and 26 because they simultaneously exhibit relatively
high embedding degrees and small-degree twists (or lack twists), resulting in
inefficient pairing computations. This is the reason why such families are not
discussed in this paper.

Most of the well-known complete cyclotomic families with embedding degrees
10-15, 20, 21, 24, and 28 found in the literature are summarized in [24, Table 5],
[21, Section 6], and [20, Appendix C]. By applying the propositions in Section
3, we can identify which curves (or their degree-d twists) from these cyclotomic
families can be converted to Montgomery form over Fp (or Fpk/d , respectively).
Additionally, we provide the results for our selection. Assume that the polynomi-
als p(x), t(x), and r(x) parameterize the characteristic p, the trace t of p-power
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Frobenius map π, and the large prime factor r of #E(Fp), respectively. Denote
by Cyclok,D,e a cyclotomic family with embedding degree k, CM-discriminant
D, and an integer e such that t(x) ≡ xme+1 mod r(x), where m = 4/ gcd(4, k)
(resp. m = 3/ gcd(3, k)) for D = 1 (resp. D = 3).
Curves without twists. The families without twists mentioned above have
embedding degrees k = 11 and 13. By Proposition 4, the curves in Cyclo11,1,1
and Cyclo13,1,1 (see [24, Table 5] for more details) are Fp-isomorphic to the
Montgomery model for the families with CM-discriminant 1. As for those with
CM discriminant 3, we deduce that the curves in Cyclo11,3,1 and Cyclo13,3,1
can be converted to the Montgomery model over Fp if the parameter seed x ≡
1 mod 12.
Curves admitting quadratic twists. We now consider the families that admit
quadratic twists with embedding degrees k = 10 and 14, as shown in [24, Table
5] and [13, Table 4]. Under this circumstance, Lemma 1 demonstrates that the
twists of curves in Cyclo10,1,1, Cyclo10,1,9, and Cyclo14,1,1 are Fpk/2-isomorphic
to Montgomery curves. Besides, if the parameter seed x ≡ 1 mod 12, then the
twists of the curves in Cyclo10,3,1 can be converted to the Montgomery model
over Fpk/2 .
Curves admitting quartic twists. For the families admitting quartic twists
with embedding degrees k = 20 and 28 illustrated in [24, Table 5], it follows from
Proposition 5 that the quartic twists of these two families can be translated to
the Montgomery model over Fpk/4 if x ≡ 3 mod 4.
Curves admitting cubic and sextic twists. Finally, we focus on the families
admitting cubic or sextic twists with embedding degrees k = 12, 15, 21, and 24
in [24, Table 5]. Proposition 5 shows that if x ≡ 4 mod 6, then the sextic (resp.
cubic) twists of the curves in Cyclo24,3,1 (resp. Cyclo21,3,1) can be transformed to
Montgomery model over Fpk/6 (resp. Fpk/3). While the cubic twists of the curves
in Cyclo15,3,11 can be converted to Montgomery form over Fpk/3 if x ≡ 5 mod 6.

4.3 Subfield families

The subfield families are primarily divided into two categories: KSS [28] and GG
[23]. By utilizing Proposition 5, the quartic (resp. sextic) twists of the curves
with embedding degree 16 (resp. 18) and CM-discriminant 1 (resp. 3) cannot
be transformed into Montgomery form over Fp4 (resp. Fp3). Therefore, families
KSS16 and KSS18 are incompatible with our optimization techniques. On the
other hand, we explore that families GG20b and GG28 (see [23, Examples 5.2 and
5.3] for more details) admitting quartic twists are suitable for the acceleration
approach proposed in Section 3.

5 Cost Analysis and Comparison

In this section, we describe the cubical arithmetic for pairing computations via
biextensions on curves that admit a Montgomery model, including those with
twists and those without twists. Additionally, we provide concrete computational
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costs for an iteration of the cubical or double-and-add ladder on Montgomery
curves, as well as for a basic Miller iteration on short Weierstrass curves. Finally,
we present a cost comparison for the Miller loops on selected curves from Table
2. The notations for computational costs used in the remainder of this paper are
introduced as follows.
Notations. Let m, s, and i denote the computational costs of multiplication,
squaring, and inversion in Fp, respectively, where p is an odd prime. Let mk, sk,
ik, and fk represent the costs of multiplication, squaring, inversion, and Frobenius
endomorphism in Fpk , respectively. Denote by m0 the cost of multiplication by
a constant.

According to Section 2.3, pairing computations via biextension require up-
dating the coordinates Z[n]Q+P and Z[n]Q, where P ∈ G1 and Q ∈ G2. For
this purpose, we employ the cubical and double-and-add ladders, shown in Al-
gorithms 5 and 6, respectively. Further details can be found in Appendix A.

5.1 Cubical arithmetic on Montgomery model

The computational procedures for cubical point doubling, differential addition,
and compatible addition on a Montgomery curve EA,B are summarized in Algo-
rithms 1, 2, and 3, respectively.

Algorithm 1 Cubical point doubling [32, Algorithm 1].
Input: A cubical point P = (XP , ZP ) over Fpk , The parameter A24 = (A + 2)/4,

where A is the coefficient of a Montgomery curve EA,B .
Output: The cubical point [2]P = (X[2]P , Z[2]P ).
1: t0 ← (XP + ZP )

2, t1 ← (XP − ZP )
2

2: X[2]P ← t0 · t1
3: t2 ← t0 − t1
4: t0 ← A24 · t2
5: Z[2]P ← t2 · (t0 + t1)
6: return X[2]P , Z[2]P

Algorithm 2 Cubical differential addition [32, Algorithm 2].
Input: The cubical points P = (XP , ZP ), Q = (XQ, ZQ) over Fpk , and the inverse

coordinates (X−1
P−Q, 1) of the normalized difference P −Q.

Output: The cubical point (XP+Q, ZP+Q).
1: t0 ← (XP − ZP ) · (XQ + ZQ), t1 ← (XP + ZP ) · (XQ − ZQ)
2: XP+Q ← X−1

P−Q · (t0 + t1)
2

3: ZP+Q ← (t0 − t1)2
4: return XP+Q, ZP+Q
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In Algorithm 2, we assume that ZP−Q = 1 since the point P − Q involved
in the cubical or double-and-add ladder for pairing computations is always nor-
malized. Unlike [32, Algorithm 4], we omit the final division by 4 because curves
with embedding degree one are outside the scope of this paper, and the cofactor
4 will be eliminated by the final exponentiation.

Algorithm 3 Cubical compatible addition.
Input: The cubical points P1 = (XP1 , 1), P2 = (XP2 , ZP2), P1 − Q = (XP1−Q, 1)

and P2 +Q = (XP2+Q, ZP2+Q) over Fpk . The coefficient A of a Montgomery curve
EA,B .

Output: The cubical point (XP1+P2 , ZP1+P2).
1: t1 ← XP1 ·XP2

2: t2 ← XP1 · ZP2

3: t3 ← (t1 − ZP2)
2

4: t4 ← 2(t1 + ZP2) · (t2 +XP2) + 2A · t1 · ZP2

5: t5 ← XP1−Q ·XP2+Q

6: t6 ← XP1−Q · ZP2+Q

7: t7 ← (t5 − ZP2+Q)
2

8: t8 ← 2(t5 + ZP2+Q) · (t6 +XP2+Q) + 2A · t5 · ZP2+Q

9: XP1+P2 ← t3 · t8 − t4 · t7
10: t9 ← (t1 − ZP2) · (t5 − ZP2+Q)
11: t10 ← (t2 −XP2) · (t6 −XP2+Q)
12: ZP1+P2 ← (t9 + t10) · (t9 − t10)
13: return XP1+P2 , ZP1+P2

In Algorithm 3, we set ZP1
= ZP1−Q = 1 since both P1 and P1 − Q are

always normalized in practice. If A = 0, the cost of this algorithm reduces to
11mk + 2sk.

5.2 Computational Cost Analysis and Comparison per Iteration

In this subsection, we analyze the computational cost per iteration of the cu-
bical and double-and-add ladders on Montgomery curves converted from short
Weierstrass curves or their twists.

For a short Weierstrass curve E without twists over Fp, we convert it to
a Montgomery curve EA,B over Fp as described in Section 3. Thus, the input
points for the cubical or double-and-add ladder are P ∈ EA,B(Fp)[r] and Q ∈
EA,B(Fpk)[r] ∩ ker(π − [p]). Since EA,B is defined over Fp, we have A24 = (A+
2)/4 ∈ Fp.

We first analyze the computational cost per bit for the cubical ladder. If the
current bit is zero, the algorithm performs one cubical point doubling (Line 5 of
Algorithm 5) along with two differential additions (Lines 3 and 5 of Algorithm
5) relative to point differences P and Q. Otherwise, it executes one cubical point
doubling (Line 7 of Algorithm 5) together with two differential additions (Lines
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3 and 7 of Algorithm 5) relative to Q and Q − P . The cost of multiplying two
elements in Fp and Fpk can be estimated as km.

Given that A24, XP ∈ Fp, XQ, XQ−P ∈ Fpk , and following Algorithms 1 and
2, the cost per iteration of the cubical ladder is:

Costcub0 = Costdbl + CostdiffP
+ CostdiffQ

= 7mk + 6sk + 2km,

Costcub1 = Costdbl + CostdiffQ
+ CostdiffQ−P

= 8mk + 6sk + km. (5)

Similarly, the cost per step of the double-and-add ladder can be derived as
follows:

Costdadd0
= Costdbl + CostdiffP

= 4mk + 4sk + 2km,

Costdadd1
= CostdiffQ

+ CostdiffQ−P
+ Costadd = 19mk + 6sk + 2km. (6)

The case of curves admitting twists is slightly more complex. According to Sec-
tion 3, the Montgomery curve EA,B is obtained by converting a degree-d twist
E′ of a short Weierstrass curve E defined over Fpk/d . Therefore, the input points
for the cubical arithmetic satisfy P ∈ ψ ◦ϕ−1(E(Fp)[r]) and Q ∈ EA,B(Fpk/d)[r],
where ψ : E′ → EA,B and ϕ : E′ → E denote the Fpk/d -isomorphisms between
E′ and EA,B , and the twisting isomorphism, respectively. More precisely, by
selecting appropriate parameters and field constructions, we can simplify the
forms of A and xP , which is summarized in the following proposition. To ensure
the applicability of our method, k/d should meet the conditions in Theorem 5 if
d ≥ 3.

Proposition 6. With the notation as above, and let E be a short Weierstrass
curve over Fp admitting a degree-d twist E′ over Fpk/d . Define EA,B to be a
Montgomery curve Fpk/d-isomorphic to E′. Let P ∈ ψ ◦ ϕ−1(P0), P0 ∈ E(Fp)[r].
Then there exist the following four cases.

(1) Case d = 2 : if j(E) = 1728, then A = 0 and xP ∈ Fp. If j(E) = 0, then
A, xP ∈ F∗

p when p ≡ 1 mod 4.
(2) Case d = 3 : if k/d ≡ 1 mod 3 (resp. k/d ≡ 2 mod 3), then we have

A ∈ F∗
p, xP = m1ξ

2k/d+1
3 v − m2 (resp. xP = m1ξ

2k/d+2
3 − m2) when p ≡

1 mod 4, where mi (i = 1, 2) ∈ F∗
p and Fpk/d = Fp[ξ]/

〈
ξk/d − n

〉
,Fpk =

Fpk/d [v]/
〈
v3 − ξ

〉
.

(3) Case d = 4 : we have A ∈ Fp, xP = mξ
k/d+1

2 v2, where m ∈ Fp and Fpk/d =

Fp[ξ]/
〈
ξk/d − n

〉
,Fp4k/d = Fpk [v]/

〈
v4 − ξ

〉
.

(4) Case d = 6 : if k/d ≡ 1 mod 3 (resp. k/d ≡ 2 mod 3), then we have
A ∈ F∗

p, xP = m1ξ
2k/d+1

3 v2 − m2 (resp. xP = m1ξ
2k/d+2

3 − m2) when
p ≡ 1 mod 4, where mi (i = 1, 2) ∈ F∗

p and Fpk/d = Fp[ξ]/
〈
ξk/d − n

〉
,Fpk =

Fpk/d [v]/
〈
v6 − ξ

〉
.

Proof. This can be proven by composing the degree-d twisting isomorphisms ϕ
with the isomorphisms ψ between short Weierstrass and Montgomery curves,
and applying the construction methods of extension fields.
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From Proposition 6, we observe that multiplying xP by an element in Fpk can be
estimated as km for d = 2, 4 and 2km for d = 3, 6. This is because multiplying
ξivj by an element in Fpk can be implemented using shift operations.

The computational process for the cubical or double-and-add ladder on a
curve E admitting a degree-d twist is similar to the case without twists. The
key difference is that some computations are performed in the subfield Fpk/d ,
such as Lines 4 and 8 of Algorithm 6. Additionally, some multiplications and
squarings over Fpk in the compatible addition (Line 7 of Algorithm 6) are sparse.
Specifically, only the coefficients a0, b0 ∈ Fpk/d of the final results X[n+1]Q =∑d
i=1 aiv

i−1 and Z[n+1]Q =
∑d
i=1 biv

i−1 ∈ Fpk are needed. This sparsity arises
from employing an Fpk/d -linear form to ensure these cubical coordinates remain
in Fpk/d (see [29, Remark 2] for details).

Let ms and ss denote the costs of sparse multiplication and squaring over Fpk ,
respectively. Based on the cost analysis for the cubical ladder and Algorithms
1-3, the cost per iteration of the cubical or double-and-add ladder is

Costcub0
=

2sk + (2d+ 5)mk/d + 4sk/d +
k(d+1)

d m, d = 2, 4,

2sk + (2d+ 5)mk/d + 4sk/d +
k(2d+1)

d m, d = 3, 6,

Costcub1
= mk + 2sk + (2d+ 5)mk/d + 4sk/d +

k

d
m,

Costdadd0
=

2sk + (2d+ 2)mk/d + 2sk/d +
k(d+1)

d m, d = 2, 4,

2sk + (2d+ 2)mk/d + 2sk/d +
k(2d+1)

d m, d = 3, 6,

Costdadd1
=


3mk + 2sk + 2ms + ss + (4d+ 6)mk/d + 3sk/d + 2k

d m, d = 2, 4, D = 1,

3mk + 2sk + 3ms + ss + (4d+ 7)mk/d + 3sk/d + 4k
d m, d = 2, D = 3,

3mk + 2sk + 3ms + ss + (4d+ 7)mk/d + 3sk/d + 6k
d m, d = 3, 6,

(7)

where ms (resp. ss) in the compatible addition can be estimated as 2mk/d

(resp. 2sk/d), 3mk/d (resp. mk/d+ sk/d), 4mk/d (resp. mk/d+2sk/d) and 6mk/d

(2mk/d + 2sk/d) when d = 2, 3, 4 and 6.

Remark 2. The double-and-add ladder can be combined with non-adjacent form
(NAF) representation to further reduce computational costs. Additionally, the
cubical and double-and-add ladders can be hybridized to maximize efficiency.

In pairing-based cryptography, the Miller loop typically has low Hamming
weight. Consequently, the double-and-add ladder is generally more practical for
implementation. Based on the above cost analysis, we compare the computa-
tional costs of the biextension approach (using cubical arithmetic) on Mont-
gomery curves with Miller’s algorithm. Table 1 presents the costs per basic it-
eration for the double-and-add ladder on Montgomery curves and for Miller’s
algorithm on short Weierstrass curves.
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Table 1. Computational costs for a basic Miller iteration (including doubling and double-and-add steps) by employing
biextension approach (double-and-add ladder) on Montgomery curves and Miller’s algorithm on short Weierstrass curves.
The cost calculations for Miller’s algorithm are referred to [1, Table 7] and [24, Table 7].

Curve
This work Miller’s algorithm

Doubling step Doubling step
Double-and-add step Double-and-add step

j = 0 4mk + 4sk + 2km 9mk + 7sk + 3km
without twist 19mk + 6sk + 2km 23mk + 10sk + 3km

j ̸= 0, 1728 4mk + 4sk + 2km 9mk + 8sk + 3km
without twist 19mk + 6sk + 2km 23mk + 11sk + 3km

j = 0 2sk + 6mk/2 + 2sk/2 +
5k
2 m mk + sk + 2mk/2 + 7sk/2 + km

quadratic twist 3mk + 2sk + 21mk/2 + 5sk/2 + 2km 2mk + sk + 12mk/2 + 9sk/2 + 2km

j = 1728 2sk + 6mk/2 + 2sk/2 +
3k
2 m mk + sk + 2mk/2 + 8sk/2 + km

quadratic twist 3mk + 2sk + 18mk/2 + 5sk/2 + km 2mk + sk + 11mk/2 + 13sk/2 + 2km

j = 0 2sk + 8mk/3 + 2sk/3 +
7k
3 m mk + sk + 6mk/3 + 7sk/3 + km

cubic twist 3mk + 2sk + 29mk/3 + 4sk/3 + 2km 2mk + sk + 19mk/3 + 12sk/3 + 2km

j = 1728 2sk + 10mk/4 + 2sk/4 +
5k
4 m mk + sk + 2mk/4 + 8sk/4 +

k
2m

quartic twist 3mk + 2sk + 30mk/4 + 5sk/4 +
k
2m 2mk + sk + 11mk/4 + 13mk/4 + km

j = 0 2sk + 14mk/6 + 2sk/6 +
13k
6 m mk + sk + 2mk/6 + 7sk/6 +

k
3m

sextic twist 3mk + 2sk + 51mk/6 + 5sk/6 + km 2mk + sk + 12mk/6 + 9sk/6 +
2k
3 m

Table 1 shows that the biextension approach using the Montgomery model
is more efficient than Miller’s algorithm for the basic doubling step on curves
admitting degree-d twists (d ≤ 3), particularly for curves without twists. For
curves with quartic twists, the cost per doubling step using our approach is
comparable to Miller’s algorithm. Compared to [29], adopting the Montgomery
form allows the biextension technique to outperform Miller’s algorithm on a
wider range of curves; the approach in [29] only slightly outperforms Miller’s
algorithm for curves without twists.

5.3 Cost Analysis for Pairing Computations on Our Selected
Curves

In this subsection, we select appropriate parameters for pairing-friendly curves
equipped with degree-d (d ≤ 3) twists admitting conversions to Montgomery
model, and make concrete cost analysis for the corresponding pairing computa-
tions via biextensions.

To maximize efficiency, we aim to minimize the bit-lengths of the character-
istic p, the parameterized seed x, as well as the Hamming weight of x. Based on
the determinations in Section 4 and the security estimates in [1, Table 5] and
[24, Table 5], the parameters for pairing-friendly curves compatible with our op-
timization framework (i.e. admitting conversions to Montgomery form) at the
128- or 192-bit security level are presented in Table 2.

We now derive pairing formulas via biextensions for the curves in Table
2, working directly with the Montgomery model obtained from these curves or
their degree-d twists. According to [29, Table 1], we can derive the corresponding
level-2 pairing formulas using cubical arithmetic, which are summarized in Table
3.
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Table 2. The parameters for our selected pairing-friendly curves at the 128 or 192-
bit security level. We distinguish them by the constructions, embedding degrees and
characteristics. The notation |x| represents the absolute value of the parametrized seed.

Curve Construction p bits pk bits r bits |x| or |t− 1|

CP5-663 Cocks-Pinch 663 3318 256 264 − 261 + 215 + 1

CP7-512 Cocks-Pinch 512 3584 256 243 − 241 − 0x47dfdb8+ 1

BW14-382 Cyclo14,1,1 382 5338 256 221 + 219 − 216 + 213 + 210 + 1

BLS15-383 Cyclo15,3,11 383 5737 257 232 + 216 + 212 + 22 + 1

BLS21-511 Cyclo21,3,1 671 10715 384 232 − 225 − 26 − 1

Table 3. The level 2 pairing formulas via cubical arithmetic on Montgomery model
translated from the curves (or their degree-d twists) in Table 2. Define π′ = ϕ−1 ◦π ◦ϕ,
σ′ = ϕ−1 ◦ σ ◦ ϕ, and τ ′ = σ′ ◦ π′j on E′ to be the pullbacks of the q-power Frobenius
endomorphism π, the efficiently computable endomorphism σ, and the composed map
τ = σ ◦ πj (j ∈ N∗), respectively, where ϕ is the degree-d twisting isomorphism. Let ψ
denote an Fp (resp. Fpk/d)-isomorphism between E (resp. E′) and a Montgomery curve
EA,B for a curve E without twists (resp. admitting a degree-d twist E′). To simplify the
notation, for the curves E with the lack of twists we define P ∈ ψ(G1) = EA,B(Fp)[r]
and Q ∈ ψ(G2) = EA,B(Fpk )[r]∩ker(π−[p]). And we denote by P ′ and Q′ the points in
ψ◦ϕ−1(G1) = EA,B(Fpk )[r] and ψ◦ϕ−1(G2) = EA,B(Fpk/d)[r] for the curves admitting
degree-d twists E′. Assume that the coordinates ZP , ZQ, ZP+Q or ZP ′ , ZQ′ , ZP ′+Q′

are normalized.

curve modular equality pairing formula

CP5-663 p+ 1− t ≡ 0 mod r
(

Z[t−1]Q+P

Z[t−1]Q

) p5−1
r

CP7-512 p+ 1− t ≡ 0 mod r
(

Z[t−1]Q+P

Z[t−1]Q

) p7−1
r

BW14-382 x2 + p8 ≡ 0 mod r
(
Zxp10

[x]Q′+P ′ · Z[x]Q′+σ′−1(P ′)

) p14−1
r

BLS15-383 x+ p11 ≡ 0 mod r Z
p15−1

r
[x]Q′+P ′

BLS21-511 x− p ≡ 0 mod r Z
p21−1

r
[x]Q′+P ′

The computational costs for finite field arithmetic are derived from [19, Ta-
bles 3 and 11], [1, Table 9], and [13, Table 7]. For simplicity, we omit modular
reductions and adopt the assumption from [13, Table 7] that mu = m. The
resulting costs of arithmetic operations in Fpk for k = 5, 7, 14, 15 and 21 are
presented in Table 4.
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Table 4. The costs of multiplication, squaring in extension field Fpk assuming p ≡ 1 mod k for
fast Frobenius endomorphism fk.

k mk sk fk

5 9m [19, Tab. 3] 9m [19, Tab. 3] 4m [1, Tab. 9]
7 13m [19, Tab. 11] 13m [19, Tab. 11] 6m [1, Tab. 9]
14 3m7 [13, Tab. 8] = 39m 2m7 [13, Tab. 8] = 26m 12m [13, Tab. 8]
15 6m5 [1, Tab. 9] = 54m 2m5 + 3s5 [1, Tab. 9] = 45m 14m [1, Tab. 9]
21 6m7 [1, Tab. 9] = 78m 2m7 + 3s7 [1, Tab. 9] = 65m 20m [1, Tab. 9]

Following the formulas in Table 3, we provide a detailed cost analysis for
Miller loops on Montgomery models EA,B converted from the pairing-friendly
curves (or their degree-d twists) in Table 2. In more detail, we neglect the cost
calculations for the building blocks with relatively low overhead, such as curve
transformations, and primarily concentrate on the (cubical or double-and-add)
ladder itself. Several techniques are also employed to make further optimizations.

We consider optimizing the last iterations for cubical or double-and-add lad-
ders on Montgomery curves EA,B . Let the notations be the same as Table 3.
In the last iteration, it only requires to update Z-coordinates, and thus the op-
erations to derive X-coordinates can be eliminated. It is worth noting that we
do not need Z[n]Q′ ∈ Fpk/d for curves admitting degree-d twists, since it can be
killed by the final exponentiation. Furthermore, the computations for [n + 1]Q
or [n + 1]Q′ in cubical ladders can also be removed. We discuss two situations
where the bits are 0 and 1, respectively.

We first consider the former case. Based on Algorithms 1, 2, 5 and 6 we can
figure out the corresponding computational costs for the last steps of cubical
and double-and-add ladders as

Costcublast0/Costdaddlast0 =


3mk + 3sk, curves with the lack of twists, A = 0,

3mk + 3sk + km, curves with the lack of twists, A ̸= 0,

sk + 2dmk/d, curves admitting degree-d twists.

(8)

If the last bit is 1, then it follows from Algorithms 1, 2 and 5 that the cost
for this iteration in a cubical ladder is

Costcublast1 =

4mk + 2sk, curves with the lack of twists,

sk + 2dmk/d, curves admitting degree-d twists.
(9)

Nevertheless, we always need to employ double-and-add ladders since the
Hamming-weights of Miller loops are relatively low. When the last bit is 1, it is
unavoidable to perform a time-consuming compatible addition. Inspired by [37],
we can utilize the trick of combining (level 2) cubical coordinates with (level
1) line functions to avoid performing this compatible addition and significantly
improve the efficiency for curves admitting twists. We now present the compu-
tational process.

During this iteration, we aim to derive Z[n]Q′+P ′ = Z[2m+1]Q′+P ′ from [m]Q′+
P ′ and [m]Q′. Since P ′, Q′, Q′ + P ′ and Q′ − P ′ have been normalized, we have
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gP ′,Q′ = 1, where gP ′,Q′ ∈ X2(OEA,B
) is the level 2 biextension element. From

[29, Eq. (8)] and since we are on level 2, it yields that

g
pk−1

r

[n]Q′,P ′ = Z
pk−1

r

[n]Q′+P ′

= fn,Q′(P ′)
2(pk−1)

r

=
(
f2m,Q′(P ′) · l[−n]Q′,Q′(P ′)

) 2(pk−1)
r

=
(
g[2m]Q′,P ′ · l[−n]Q′,Q′(P ′)2

) pk−1
r

=
(
Z[2m]Q′+P ′ · l[−n]Q′,Q′(P ′)2

) pk−1
r .

Therefore, we can first execute a cubical differential addition to derive Z[2m]Q′+P ′ ,
and then multiply it by l[−n]Q′,Q′(P ′)2 to obtain Z[n]Q′+P ′ . By the definition of
line function and the formula for cubical differential addition, we deduce that

Z
pk−1

r

[n]Q′+P ′ =

(
Z[2m]Q′+P ′ · (yP ′ − yQ′ −

y[−n]Q′ − yQ′

x[−n]Q′ − xQ′
(xP ′ − xQ′))2

) pk−1
r

.

=
((
X[m]Q′+P ′ · Z[m]Q′ −X[m]Q′ · Z[m]Q′+P ′

)
·M
) 2(pk−1)

r , (10)

where M = (yP ′ − yQ′)(x[n]Q′ − xQ′)− (−y[n]Q′ − yQ′)(xP ′ − xQ′). We drop the
denominator xP ′ − xQ′ ∈ Fpk/d as it vanishes in the final exponentiation.

In practice, the level 1 curve coordinates x[−n]Q′ , y[−n]Q′ can be efficiently
computed. Recalled from Table 3, [−n]Q′ can be represented as −π′(Q′) for
ate pairings, or −σ′ ◦ π′j(Q′) for super-optimal ate pairings, whose cost can be
neglected. On this basis, the computational costs for the last double-and-add
step for curves admitting degree-d twists can be estimated as

Costdaddlast1 = sk + (3d+ 2)mk/d. (11)

Furthermore, we need to obtain values of form λn ·Z[n]Q+P , λ ∈ F∗
q for Miller

loops of super-optimal pairings. For instance, the value Zxp
10

[x]Q′+P ′ ·Z[x]Q′+σ′−1(P ′)

should be computed for BW14-382 according to Table 3. A direct approach is to
compute Z[x]Q′+P ′ and Z[x]Q′+σ′−1(P ′) separately, and then execute an exponen-
tiation x, a Frobenius endomorphism together with a multiplication to derive
this value. However, since Z[x]Q′+P ′ lies in the full extension field Fpk , perform-
ing this exponentiation results in a huge number of multiplications over Fpk ,
which is relatively expensive. We provide a method simultaneously accomplish-
ing this exponentiation and the computation of Z[x]Q′+P ′ . Our approach relies
on the following lemma in [32], showing that different choices scale the resulting
cubical point by a projective factor λ ∈ F∗

q .

Lemma 3. [32, Lemma 2] Let P̃i
′
, P̃i + Pj

′
be other choices of cubical points

above P̃i, P̃i + Pj. Define Z1(P̃ ) to be the level 1 cubical coordinate of P̃ , where
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Z1 is a section in biextension X(OE). If λi, λi,j ∈ F∗
q are such that Z1(P̃i

′
) =

λi · Z1(P̃i) and Z1(P̃i + Pj
′
) = λiλjλi,j · Z1(P̃i + Pj), then

Z1

(
m∑
i=1

[ni]P̃i
′
)

= λ · Z1

(
m∑
i=1

[ni]P̃i

)
,

where λ :=
∏m
i=1 λ

n2
i
i ·

∏
1≤i≤m λ

ninj

i,j .

It follows from Lemma 3 that if we take m = 2, n1 = x, n2 = 1, λ1 = λ2 =

1, λ12 = Z1( ˜[x]Q′ + P ′)p
10

, P̃1 = Q̃′ and P̃2 = ˜σ′−1(P ′), then

Z1( ˜[x]Q′ + σ′−1(P ′)
′
) = Z1( ˜[x]Q′ + P ′)xp

10

· Z1( ˜[x]Q′ + σ′−1(P ′)).

We now switch to level 2 with sections X and Z = Z2
1 . Since Lemma 3 works

for every level, after scaling both XQ′+σ′−1(P ′) and ZQ′+σ′−1(P ′) by Zp
10

[x]Q′+P ′ we

can derive Zxp
10

[x]Q′+P ′ ·Z[x]Q′+σ′−1(P ′). This gives an improvement insight. We can
first compute Z[x]Q′+P ′ and store the shared cubical coordinates of [m]Q′ in each
iteration which are also required for the computation of Z[x]Q′+σ′−1(P ′). Then we
multiply XQ′+σ′−1(P ′), ZQ′+σ′−1(P ′) by Zp

10

[x]Q′+P ′ and execute the second ladder
utilizing the coordinates of [m]Q′ stored before to obtain the final result.

Recalled from Remark 2, we can mix the cubical and double-and-add lad-
der to speed up the iteration. According to the binary representation of the
parametrized seed

x = [1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1︸ ︷︷ ︸
cubical

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1︸ ︷︷ ︸
dadd

]2, (12)

of BW14-382, we can exploit cubical ladder for the first 12 bits, and then switch
to double-and-add ladder as the upcoming bits are successive 0s.

Combining the improvement for the last bit, we present Algorithm 4 to il-
lustrate explicit computational procedure of super-optimal pairing on a Mont-
gomery curve EA,B translated from the quadratic twist of BW14-382 as an
example. We use tab1 and tab2 to store the X,Z-coordinates of cubical points
[m]Q′ and [m+ 1]Q′ (m ∈ N∗) in every iteration, respectively.

Remark 3. (1) Lines 13 and 14 of Algorithm 4 handle the last iteration before
switching to double-and-add ladder. Since we do not keep track of the cubical
point [m+1]Q′ during the double-and-add ladder, the cubical point doubling
to obtain [m+ 1]Q′ need not be performed.

(2) Line 21 of Algorithm 4 corresponds to our key optimization idea in this
subsection. In contrast to Lemma 3, it is further necessary for us to scale
the cubical point ˜Q′ − σ′−1(P ′), since the final result also relies on it. Conse-
quently, compared with normal (cubical) differential addition, the differential
addition with respect to ˜Q′ − σ′−1(P ′) (Line 26 of Algorithm 4) involves one
extra mk.
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Algorithm 4 Mixed and shared ladder for super-optimal pairing for BW14-382
Input: The normalized cubical points Q′ = (xQ′ , 1), P ′ = (xP ′ , 1), Q′ + P ′ =

(xQ′+P ′ , 1), Q′ + σ′−1(P ′) = (xQ′+σ′−1(P ′), 1), the y-coordinates of P ′ and Q′,
together with the inverse coordinates (x−1

Q′−P ′ , 1) and (x−1
Q′−σ′−1(P ′)

, 1) of Q′ − P ′

and Q′ − σ′−1(P ′). The parametrized seed x =
∑N

i=0 ni2
i.

Output: The value Zxp10

[x]Q′+P ′ · Z[x]Q′+σ′−1(P ′).
1: tab1[0]← cDBL(Q′), tab2[0]← cDIFF(tab1[0], Q

′, Q′), T ← cDIFF(Q′ + P ′, Q′, P ′)
2: for i = N − 2 to N − 10 do
3: if ni = 0 then
4: T ← cDIFF(T, tab1[N − 2− i], P ′)
5: tab1[N − 1− i]← cDBL(tab1[N − 2− i])
6: tab2[N − 1− i]← cDIFF(tab1[N − 1− i], tab1[N − 2− i], Q′)
7: else
8: T ← cDIFF(tab2[N − 2− i], T,Q′ − P ′)
9: tab1[N − 1− i]← cDIFF(tab2[N − 2− i], tab1[N − 2− i], Q′)

10: tab2[N − 1− i]← cDBL(tab2[N − 2− i])
11: end if
12: end for
13: T ← cDIFF(tab2[N − 1− i], T,Q′ − P ′)
14: tab1[N − i]← cDIFF(tab2[N − 1− i], tab1[N − 1− i], Q′)
15: for i = N − 12 to 1 do
16: T ← cDIFF(T, tab1[N − 1− i], P ′), tab1[N − i]← cDBL(tab1[N − 1− i])
17: end for
18: M ← (yP ′ − yQ′) · (xσ′◦π′4(Q′) − xQ′) + (yσ′◦π′4(Q′) + yQ′) · (xP ′ − xQ′)

19: M ←
(
M ·

(
XT · Ztab1[N−1] −Xtab1[N−1] · ZT

))2, λ←Mp10

20: T ← cDIFF(Q′ + σ′−1(P ′), Q′, σ′−1(P ′))
21: T ← (λ ·XT , λ · ZT ), (X−1

Q′−σ′−1(P ′)
, Z−1

Q′−σ′−1(P ′)
)← (λ · x−1

Q′−σ′−1(P ′)
, λ)

22: for i = N − 2 to N − 11 do
23: if ni = 0 then
24: T ← cDIFF(T, tab1[N − 2− i], σ′−1(P ′))
25: else
26: T ← cDIFF(tab2[N − 2− i], T,Q′ − σ−1(P ′))
27: end if
28: end for
29: for i = N − 12 to 1 do
30: T ← cDIFF(T, tab1[N − 1− i], σ′−1(P ′))
31: end for
32: M ′ ← (yσ′−1(P ′) − yQ′) · (xπ′4(Q′) − xQ′) + (yπ′4(Q′) + yQ′) · (xσ′−1(P ′) − xQ′)

33: M ′ =
(
M ′ ·

(
XT · Ztab1[N−1] −Xtab1[N−1] · ZT

))2
34: λ← λ ·M ′

35: return λ

(3) Note that we scale ˜[2]Q′ + σ′−1(Q′) rather than ˜Q′ + σ−1(Q′) by λ (Line 21
of Algorithm 4) since we want to first derive λ

x−1
2 ·Z[x−1]Q′+σ−1(P ′) ·M ′ and
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then execute a squaring on it (Line 33 of Algorithm 4). Such an adjustment
allows us to eliminate one squaring.

(4) For a Montgomery curve EA,B switched from the quadratic twist of BW14-
382, it holds that σ′ ◦ π′4(Q′) = [x]Q′, Q′ ∈ EA,B(Fpk/d)[r], leading to a
speedup for the last iterations (Lines 18 and 32 of Algorithm 4).

Finally, following by Equations (5)-(11) and the cost estimates in Tables 1,
3 and 4, we can derive the computational costs for Miller loops on CP5-663,
CP7-512, BW14-382, BLS15-383 and BLS21-511 via biextension technique on
Montgomery model switched from these curves or their twists. For simplicity, we
only provide the explicit cost calculation for BW14-382, the calculation processes
for other curves are similar.
BW14-382. From the parametrized seed x = 221+218+217+216+213+210+1,
Equations (7), (8) and (12), as well as Algorithm 4, we have

CostMiller = Costcubinit + 3m7 + 2s7︸ ︷︷ ︸
Line 1 of Alg. 4

+5Costcub0
+ 5Costcub1

− (2m7 + 2s7) + 9Costdadd0︸ ︷︷ ︸
Lines 2-17 of Alg. 4

+ Costdaddlast1 + f14︸ ︷︷ ︸
Lines 18-19 of Alg. 4

+2s14 + 4m7 + 14m+ 3m14︸ ︷︷ ︸
Lines 20-21 of Alg. 4

+ 5(2s14 + 4m7 + 14m) + 5(2m14 + 2s14 + 4m7) + 9(2s14 + 4m7 + 14m)︸ ︷︷ ︸
Lines 22-31 of Alg. 4

+ Costdaddlast1 +m14︸ ︷︷ ︸
Lines 32-34 of Alg. 4

= 7127m.

Table 5 summarizes the computational costs for Miller loops on the selected
pairing-friendly curves above by utilizing our method (biextension approach on
Montgomery models translated from selected curves or their twists) and Miller’s
algorithm. For the cost estimations of Miller’s algorithm, we refer to [25, Eq.
(1)] for curves CP5-663/CP7-512/BLS15-383/BLS21-511, and [13, Eq. (6)] for
BW14-382, respectively.

Table 5. Cost comparisons in terms of Fp-multiplications for Miller loops on curves CP5-
663, CP7-512, BW14-382, BW15-383 and BLS21-511 by leveraging our method (biextension
approach on Montgomery model converted from these selected curves or their twists) and
Miller’s algorithm. We fix m = s for estimation. The fourth column illustrates the ratios of
computational costs between our approach and Miller’s algorithm.

Curve This work Miller’s algorithm Ratio

CP5-663 [25, Sec. 6.1] 5499m 11058m 49.7%
CP7-512 [25, Sec. 6.1] 6535m 11953m 54.7%
BW14-382 [13, Tab. 4] 7127m 7998m 89.1%
BLS15-383 [24, Tab. 5] 7791m 8316m 93.7%
BLS21-511 [1, Tab. 5] 10911m 11655m 93.6%

Table 5 shows that our proposed method consistently outperforms Miller’s
algorithm across all evaluated curves. Specifically, we achieve savings of approx-
imately 50.3% and 45.3% in Fp-multiplications for the Miller loop on CP5-663
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and CP7-512, respectively, compared to the results by Guillevic et al. [25]. For
BW14-382, which admits a quadratic twist, the improvement reaches 10.9% over
the approach of Dai et al. [13]. Even on curves with cubic twists, BLS15-383
and BLS21-511—our method still reduces Fp-multiplications by 6.3% and 6.4%
compared to the Miller’s algorithm-based implementations in [24] and [1], respec-
tively. Moreover, the biextension technique is highly amenable to parallelization,
as many of its computational modules operate independently. Implementing the
cubical arithmetic in a multi-threaded environment can thus further enhance
its efficiency. As a result, our work significantly broadens the applicability
of the biextension approach, strengthening its competitiveness in pairing-based
cryptography.

6 Conclusion and Future Work

In this paper, we first established the systematic clarity of the technical frame-
work, and then characterized the conversion between short Weierstrass curves
and Montgomery curves. New theorems and lemmas were also proposed for effec-
tively determine whether a short Weierstrass curve or its degree-d twist can be
translated to Montgomery model. Then we considered and discussed most of the
pairing-friendly curves in the literature and determined those were compatible
with our acceleration (those or their twists that can be transformed to Mont-
gomery curves). Finally we selected five curves and made concrete cost analysis.
The results illustrated that our optimized approach derived savings of 50.3%,
45.3%, 10.9%, 6.3% and 6.4% in terms of Fp-multiplications for Miller loops on
curves CP5-663, CP7-512, BW14-382, BLS15-383 and BLS21-511, respectively.
In conclusion, our method significantly extends the practicality of biextension
technique to a wider range of pairing-friendly curves, substantially narrowing the
gap between this technique and Miller’s algorithm, and thereby enhancing its
competitiveness as an alternative in elliptic curve cryptography. Implementing
the biextension method in parallel may make it outperform Miller’s algorithm
on more pairing-friendly curves such as the well-known family BLS24. We leave
it as future work.
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A Cubical and double-and-add ladders

In this section, we present cubical and double-and-add ladders for computing
the cubical coordinates Z[n]Q and Z[n]Q+P . Define cDBL, cDIFF and cADD to
be the functions of cubical point doubling, differential addition and compatible
addition, respectively.

Algorithm 5 Cubical ladder
Input: The normalized cubical points Q = (xQ, 1), P = (xP , 1), Q+ P = (xQ+P , 1).

The scalar n =
∑N

i=0 ni2
i.

Output: The cubical points [n]Q = (X[n]Q, Z[n]Q) and [n]Q+P = (X[n]Q+P , Z[n]Q+P ).

1: R← Q, S ← cDBL(Q), T ← cDIFF(P +Q,Q, P )
2: for i = N − 1 to 0 do
3: U ← cDIFF(S,R,Q)
4: if ni = 0 then
5: T ← cDIFF(T,R, P ), R← cDBL(R), S ← U
6: else
7: T ← cDIFF(S, T,Q− P ), S ← cDBL(S), R← U
8: end if
9: end for

10: return R, T

B Twists of elliptic curves and the Montgomery model

In this section we investigate when twists of elliptic curves have a Montgomery
model. For simplicity we assume that the characteristic is either 0 or greater
than 3 throughout.

B.1 Montgomery models

Our main tool is given by the following well known result which, in view of
lemma 4, is a reformulation of proposition 3 (see also [31, Proposition 1], or [2,
Corollary 6.3] for many more equivalent conditions):

Proposition 7. Let E/k be an elliptic curve (over an arbitrary field k of char-
acteristic different from 2), and let P ∈ E[2]. Then E admit a Montgomery
model By2 = x3 + Ax2 + x with P sent to (0, 0) if and only if the self Tate
pairing eT,2(P, P ) is trivial. (We say that P is of Montgomery type.)
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Algorithm 6 Double-and-add ladder
Input: The normalized cubical points Q = (xQ : 1), P = (xP : 1), Q− P = (xQ−P :

1). The scalar n =
∑N

i=0 ni2
i.

Output: [n]Q = (X[n]Q : Z[n]Q) and [n]Q+ P = (X[n]Q+P : Z[n]Q+P )
1: R← Q, S ← cDIFF(Q,P,Q− P )
2: for i = N − 1 to 0 do
3: if ni = 0 then
4: R← cDBL(R)
5: S ← cDIFF(S,R, P )
6: else
7: T ← cADD(R,Q,Q− P, S)
8: R← cDIFF(T,R,Q)
9: S ← cDIFF(T, S,Q− P )

10: end if
11: end for
12: return R, S

Lemma 4. Let E/k : By2 = x3 + a2x
2 + a4x + a6 be an elliptic curve, and

P = (xP , 0) ∈ E[2](k) be a 2-torsion point. Then a representative of the non
reduced self Tate pairing in k∗/k∗,2 is given by h′(xP ) = 3x2P + 2a2xP + a4.

Proof. A normalised function with divisor 2(P )−2(0E) is given by x−x(P )
B . Since

we want to evaluate it on the point P , which is a zero, we need to adjust it by
a rational uniformiser πP at P , we pick πP = y. So we evaluate x−x(P )

By2 at P ,
which gives the value 1/h′(xP ) where h(x) = x3 + a2x

2 + a4x + a6 for the non
reduced self Tate pairing. Since h′(xP ) is in the same class as 1/h′(xP ) module
squares, this concludes the proof.

Corollary 2. Let E/k be an elliptic curve with a rational 2-torsion point P . If
E admit a Montgomery model over a field extension k′/k of odd degree d, then
E already admits a Montgomery model over k.

Proof. If E admit a Montgomery model over k′, there is a 2-torsion point P ′

whose self Tate pairing is a square in k′. This point P ′ is already rational in k,
because d is odd and E has at least one rational 2-torsion point P , which means
the other 2-torsion points are either defined over k already or over an extension
of even degree. Likewise, the self Tate pairing of P ′ is also a square in k because
d is odd. So E admits a Montgomery model over k.

If we don’t suppose that E has a rational point of 2-torsion, an easy adapta-
tion of the proof above shows that the Corollary remains true if d is prime
to 6. More conceptually, this is also because the Montgomery model corre-
sponds to a rational level Γ 0(4) structure, and the map of stacky modular curves
X(Γ 0(4)) → X(1) is finite étale of degree 6 over Z[1/2]. This also shows that
E/k always admit a Montgomery model over an extension k′/k of degree at
most 6. If E : By2 = x3 + a2x

2 + a4x + a6, one can construct k′ explicitly as
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follows: first take k1 a field extension (of degree at most 3) that contains a root
α of x3 + a2x

2 + a4x+ a6, and then take k′ of degree at most 2 over k1 the field
that contains a square root of the self Tate pairing of P = (α, 0).

Definition 2. Over a finite field k = Fq, if the self Tate pairing eT,2(P, P )
is non trivial, we say that P is of anti-Montgomery type, and we obtain a
Montgomery- model (as introduced in [8]): E : By2 = x3 + Ax2 + cx where
c is any fixed non quadratic residue in Fq (for instance one can take for c the
non reduced self Tate pairing eT,2(P, P ) [2, Theorem 6.1]).

TODO: give cubical formulas for Montgomery- model somewhere.

B.2 Twists of elliptic curves

In this section we expand on section 2.1 to give a more detailed overview on how
twists of elliptic curves are built.

If E/k is an elliptic curve, and k is not of characteristic 2, 3, its automorphism
group is given by Aut(E) = Autk(E) = µn where n = 2, 4 or 6. The later cases
can happen iff j(E) = 1728 for n = 4 and j(E) = 0 for n = 6. The twists of
E are then classified by étale µn-torsors and we recall that the Kummer exact
sequence combined with Hilbert 90 shows that H1(k, µn) ≃ k∗/k∗,n where the
isomorphism sends ξ ∈ k∗/k∗,n to the cocycle σ ∈ Gal(k/k) 7→ σ(ξ′)

ξ′ ∈ µn, where
ξ′ is a choice of n-th root of ξ. If k = Fq is a finite field, evaluating the cocycle
at the Frobenius πq gives an isomorphism H1(Fq, µn) ≃ µn(Fq)/(πq − 1)µn(Fq).

If E′ is a twist of E, and γ : E′ → E is an isomorphism, defined over a
field extension k′/k where k′ is the trivialising field of the associated µn-torsor,
then the cocycle associate to the twist E′ is given by σ 7→ ξσ ∈ µn ≃ Aut(E),
where ξσ is the automorphism of E given by σγσ−1γ−1. More concretely, let
E : By2 = x3 + a2x + a4x + a6 be a Weierstrass equation for E, such that the
isomorphism Aut(E) ≃ µn is given by ζ ∈ µn 7→

(
(x, y) 7→ (ζ2x, ζ3y)

)
∈ Aut(E).

In particular, this means that a2 = a6 = 0 if n = 4 and a2 = a4 = 0 if
n = 6. Let ξ ∈ k∗/k∗,n, and ξ′ ∈ k′ be such that ξ′n = ξ. Then we can define
E′ : By2 = x3+ a2

ξ x
2+ a4

ξ2 x+
a6
ξ3 and γ : E′ → E, (x, y) 7→ (ξ′

2
x, ξ′

3
y). Then the

cocycle associated to the twist E′ is precisely the cocycle associated to ξ via the
isomorphism H1(k, µn) ≃ k∗/k∗,n above. As a special case, if k = Fq, we have
γπE′γ−1 = [π(ξ′)/ξ′]πE , where π is the Frobenius.

We use a slightly non standard definition for a degree d twist

Definition 3. A twist E′ of E is said to be of degree d | n if it is induced by
a µd-torsor via the natural map H1(k, µd) → H1(k, µn) given by the inclusion
µd ⊂ µn. We say that E′ is of primitive (or non trivial) degree d when it is not
induced by a µd′-torsor for d′ < d, d′ | d. When speaking of degree d torsor, we
often implicitly assume that it is primitive, as will be clear from context.

Remark 4. If µn(k) = µn(k), the maps H1(k, µd) → H1(k, µn) are injective for
d | n. In that case a degree d twist E′ of E becomes isomorphic over an extension
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k′/k of degree d (the extension k′ that trivialize the associated µd-torsor), and
if E′ is primivie it is not isomorphic to E in any extension of smaller degree.

Note however that if k does not contains µn, these maps may no longer be
injective. See for instance remark 5 for an example where if µ4(Fq) = ±1, then
the non trivial µ2-torsor over Fq induces a trivial µ4-torsor, hence we have a
quadratic twist E′ of E which is isomorphic to E already over Fq. See also ??.

B.3 Quadratic twists

We can also build quadratic twists as follows. If E : By2 = x3 + a2x+ a4x+ a6
and E′ : B′y2 = x3+ a2x+ a4x+ a6 are two elliptic curves over a field k, E′ is a
quadratic twist whenever B′/B is not a square in k. Let β ∈ k′ be a square root of
B, then E′ is isomorphic to E via γ : E′ → E, (x, y) 7→ (x, βy). We remark that
E is isomorphic to E0 : y2 = x3+ a2

B x+
a4
B2x+a6 via (x, y) ∈ E0 7→ (Bx,By) ∈ E,

so this is just a variant of the construction above. If k = Fq, we have one non
trivial quadratic twist that satisfies γπE′γ−1 = −πE , so in particular tE′ = −tE
where t denotes the trace. where πE is the Frobenius

From proposition 7 we immediately get:

Corollary 3. If E/k admit a Montgomery model, then any quadratic twist ad-
mits a Montgomery model, and conversely.

Proof. This is immediate from the equation of the Montgomery model and the
construction of the quadratic twist given above. We can also check this using
proposition 7 as follows. A quadratic twist do not change the rationality of a
2-torsion point P , and lemma 4 shows that it does not change the self Tate
pairing too, since the value does not depend on B.

From definition 2, the same result hold for Montgomery- models.
It remain to investigate what happens for curves with j-invariant 0 and 1728

that admit non-quadratic twists.

B.4 Elliptic curves with j = 1728

An elliptic curve E/k with j-invariant j(E) = 1728 is of the form Ea : y2 =
x3 − ax. Let i be a square root of −1 (possibly over a quadratic extension k′ of
k). The curve E has complex multiplication (over k) by Z[i], of discriminant −4,
hence it admits an automorphism [i] : (x, y) 7→ (−x,−iy). If k = Fp, we remark
that Ea is ordinary iff −1 is a square, i.e. iff p ≡ 1 (mod 4), iff µ4 ⊂ AutFp

(E).
Let a1, a2 ∈ k, then Ea2 is the twist of Ea1 corresponding to the class a1

a2
∈

k∗/k∗,4. Let α be a fourth root of a1/a2, then γ : Ea2 → Ea1 : (x, y) 7→ (α2x, α3y)
is an isomorphism. If a1/a2 is a fourth power then both curves are isomorphic,
if a1/a2 is a square both curves are quadratic twists, and lastly if a1/a2 is not a
square both curves are quartic twists. We note that there are two quartic twists,
which are quadratic twists of each others.

If k = Fq and E′ is the quartic twist of E such that γπE′γ−1 = [i]πE , then
π′ = γπE′γ−1 corresponds to iπ in End(E). Writing π = a+ fi, where f is the
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conductor of Z[π] in Z[i] (so that t2 − 4q = −4f2), and the trace of E is given
by t = 2a, then iπ = ia− f has trace −2f . Likewise, the trace associated to the
twist corresponding to [−i] is 2f (see also [26, Proposition 2]).

Since we are interested in ordinary curves over finite fields in this paper, in
the reminder of this section we assume that −1 is a square in Fq.

Theorem 1. Assume that −1 is a square in Fq (i.e. q ≡ 1 (mod 4)). Let Ea :
y2 = x3−ax be an elliptic curve over Fq. Then Ea admits a Montgomery model
iff a is a square in Fq, iff all points of 2-torsion are rational, iff 4 | #Ea(Fq), iff
t ≡ 2 (mod 4) where t is the trace of the Frobenius.

Proof. The point P = (0, 0) is of 2-torsion and its non reduced self pairing is
eT,2(P, P ) = −a. Since −1 is a square, this self pairing is trivial iff a is a square,
if all points of 2-torsion are rational. This implies that 4 | #Ea(Fq). Conversely,
if 4 | #Ea(Fq) then either all points of 2-torsion are rational, or there is a 4-
torsion point P ′ above P . In both case this imply that the self Tate pairing of
P is trivial, hence P is of Montgomery type. The last equivalence comes from
the fact that #Ea(Fq) = q + 1− t and that 4 | q − 1 since −1 is a square.

Since Ea always admit a point of 2-torsion P = (0, 0), it always admit either
a Montgomery or a Montgomery- model. Note that if P is of Montgomery type,
or equivalently if a = α2 is a square in Fq, then the other 2-torsion points
(±α, 0) have non reduced self Tate pairing 3α2 − a = 2a. These two points are
of Montgomery type iff 2 is a square in Fq (i.e. iff q ≡ 1, 7 (mod 8)).

Corollary 4. Let Ea′ be a quartic twist of Ea. Then Ea′ admits a Montgomery
model iff Ea does not. And if Ea has a Montgomery model, then Ea′ has a
Montgomery- model, and the converse holds if 2 is a square in Fq.

Proof. Indeed, by construction of the quartic twist, a′ is a square iff a is not a
square.

Corollary 5. The elliptic curve E : y2 = x3 − ax/Fq with trace t has a quartic
twist E′ over Fqk which admits a Montgomery model iff t ≡ 0 (mod 4) and k is
odd.

Proof. By theorem 1 E′ has a Montgomery model iff a is not a square in Fqk ,
which is equivalent to k being odd and a not a square in Fq, and the later
condition is equivalent to t ≡ 0 (mod 4).

Remark 5. If−1 is not a square in Fq, one needs to be careful that since πqi = −i,
we have H1(Fq, µ4) ≃ µ4/{±1}. In particular the quadratic twist E′ of E is
isomorphic to E over Fq. Another way to see that is that if γ : E′ → E is the
twisting isomorphism over Fq2 , then [i] ◦ γ is rational, because the Frobenius
conjugation acts by −1 on both. Likewise, both quartic twists are isomorphic
over Fq (but are still non isomorphic quadratic twists over Fq2).

The point P = (0, 0) ∈ Ea is of Montgomery type iff a is not a square in Fq.
If a = α2 is a square, Ea has for other two torsion points (±α, 0), whose non
reduced self Tate pairing is 3α2 − a = 2a. So in that case Ea has a Montgomery
model iff 2 is a square in Fq.
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Remark 6. The results of this section are mostly an immediate consequence of
the following description of the full stacky Kummer line [E/µ4] (we distinguish
the full Kummer line from the standard Kummer line [E/µ2]). Here [E/µ4]
denotes the stacky quotient, while E/µ4 denotes the geometric scheme quotient,
this is also the coarse space associated to [E/µ4]. Indeed, the map E → Spec k
induces a map [E/µ4]→ Bµ4 where Bµ4 = [Spec k/µ4] is the classifying torsor.
Now the universal torsor i : Spec k → Bµ4 allows to recover E by pullback
E = [E/µ4] ×Bµ4

Spec k. By definition, a µ4-torsor then corresponds to a map
i′ : Spec k → Bµ4, and the pullback of [E/µ4] by i′ then give the associated
twist E′. See [2, Appendix A]) for more details. In particular, the Galois action
on the points of E′ is completely characteristed by the Galois action on [E/µ4]
and the map to Bµ4 associated to E′.

The projection map E → [E/µ4] factorizes as E → [E/µ2] → [E/µ4] and
the automorphism group µ4 descends to the automorphism group µ2 on the
standard Kummer line [E/µ2], at the level of coarse spaces the automorphism
[i] on E induces x 7→ −x on K = E/ ± 1 ≃ P1, and the map E/µ2 → E/µ4 is
given by x 7→ x2. In particular the Kummer line admits quadratic twists (which
lifts to quartic twists of E). The action of µ2 on K is free except at x = 0,∞, so
[K/µ2] is the stacky projective line where all points are standard (representable),
except the point x = 0,∞ who have Bµ2 as residual gerbe. Since [E/µ2] is a
stacky projective line whose stacky points (with associated residual gerbe Bµ2)
are given by the x-coordinates of the point of 2-torsion (and 0E), it is easy to see
that when E = Ea, [Ea/µ4] is then the stacky projective line with stacky points
given by x = 0,∞, whose residual gerbes are Bµ4, and x = a, whose residual
gerbe is Bµ2.

B.5 Elliptic curves with j = 0

An elliptic curve E/k with j-invariant j(E) = 0 is of the form Eb : y
2 = x3 − b.

Let j be a third root of 1 (possibly over a cubic extension k′ of k). The curve E
has complex multiplication (over k) by Z[j], of discriminant −3, hence it admits
an automorphism [−j] : (x, y) 7→ (j2x,−y). If k = Fp, we remark that Eb is
ordinary iff 1 is a non trivial cube, i.e. iff p ≡ 1 (mod 3), iff µ6 ⊂ AutFp(E).

Let b1, b2 ∈ k, then Eb2 is the twist of Eb1 corresponding to the class b1
b2
∈

k∗/k∗,6. Let β be a sixth root of b1/b2, then γ : Eb2 → Eb1 : (x, y) 7→ (β2x, β3y)
is an isomorphism, and if k = Fq, γπEb2

γ−1 = [π(β)/β]πEa1
. If b1/b2 is a sixth

power then both curves are isomorphic, if b1/b2 is a cube (but not a square) both
curves are quadratic twists, if b1/b2 is a square (but not a cube) both curves are
cubic twists, and lastly if b1/b2 is neither both curves are sextic twists. We note
that the two sextic twists of E are quadratic twists of the two cubic twists of E.

If k = Fq and E′ is the cubic twist of E such that γπE′γ−1 = [j]πE , then
π′ = γπE′γ−1 corresponds to jπ in End(E). Writing π = a + fj, where f is
the conductor of Z[π] in Z[j] (so that t2 − 4q = −3f2), then the trace of E
is given by t = 2a − f , and jπ = ja + fj2 has trace −a − f = (−t − 3f)/2.
Likewise, the traces associated to the twists corresponding to [j2], [−j], [−j2] is
(−t+ 3f)/2, (t− 3f)/2, (t+ 3f)/2 respectively (see also [26, Proposition 2]).
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In the reminder of this section we assume that 1 is a non trivial cube in Fq.

Theorem 2. Assume that 1 is a non trivial cube in Fq (i.e. q ≡ 1 (mod 3)).
Let Eb : y2 = x3− b be an elliptic curve over Fq. Then Eb admits a Montgomery
model iff b is a cube and 3 is a square in Fq, iff t ≡ 2 (mod 4) where t is the
trace of the Frobenius.

Proof. The curve Eb admits a point of 2-torsion iff b = β3 is a cube in Fq. Then
P = (β, 0) has for non reduced self Tate pairing 3β2, which is a square iff 3
is a square in Fq (equivalently by quadratic reciprocity, q ≡ 1 (mod 4); recall
that we assume that q ≡ 1 (mod 3) already). If both conditions are satisfied,
then 4 | #E(Fq) = q + 1 − t since the 2-torsion is rational, and this implies
t ≡ 2 (mod 4). Conversely, if t ≡ 2 (mod 4), then 2 | #E(Fq) = q + 1 − t, so
there is a rational point of 2-torsion, so all points of 2-torsion are rational, so
4 | #E(Fq) = q + 1− t, and q ≡ 1 (mod 4).

Recall that we assume that 1 is a non trivial cube in Fq.

Corollary 6. If 3 is not a square in Fq, none of the twists of Eb admit a Mont-
gomery model. If 3 is a square in Fq, then Eb admits a Montgomery model iff b
is a cube, iff all the other cubic (or sextic) twists do not admit a Montgomery
model.

If 3 is not a square in Fq, Eb admits a Montgomery- model iff b is a cube,
iff all the other cubic (or sextic) twists do not admit a Montgomery- model. If 3
is not a square in Fq, none of the twists of Eb admit a Montgomery- model.

Proof. If 3 is a square, Eb admits a Montgomery model iff the 2-torsion is rational
iff b is a cube. But among the three cubic twists Eb, Eb′ , Eb” of Eb, exactly one
of them satisfy this condition. The proof for the case of the Montgomery- model
is similar.

Corollary 7. The elliptic curve E : y2 = x3 − b/Fq with trace t has a (non
trivial) cubic twist E′ over Fqk which admits a Montgomery model iff t ≡ 1
(mod 2), k ̸≡ 0 (mod 3) and tk ≡ ±fk (mod 8) where tk is the trace of the
Frobenius πk of E over Fqk and fk = t2k − 4qk is the conductor of Z[πk] in Z[j].

In this case #E′(Fqk) = qk +1− t′k = qk +1+ (tk ± 3f)/2, and its quadratic
twist E′ (a sextic twist of E) satisfies #E”(Fqk) = qk + 1 + t′k = qk + 1 −
(tk ± 3f)/2. In particular, if r > 3 is a prime dividing #E(Fqk), it also divides
#E′(Fqk) (resp. #E”(Fqk)) iff tk ≡ ±f (mod r) (resp. tk ≡ ∓3f (mod r)).

Proof. If tk is even, then E has a rational 2-torsion point over Fqk , hence the full
2-torsion is rational over Fqk . Likewise if k ≡ 0 (mod 3), b is a cube over Fqk and
E has full rational 2-torsion over Fqk . In both case, either 3 is a square in Fqk
so E has a Montgomery model by theorem 2, and then none of its (non trivial)
cubic twist have a Montgomery model; or 3 is not a square and then no twists
can have a Montgomery model. So if E′ has a Montgomery model. tk is odd and
k ̸≡ 0 (mod 3). This implies that t is odd, because if 2 | #E(Fq), 2 | #E(Fqk).



Biextension Approach on Montgomery Curves 39

By theorem 2, t′k, the trace of E′ over Fqk satisfies t′k ≡ 2 (mod 4). Assume
that E′ is the twist corresponding to [j]. Then we know that t′k = (−tk − 3f)/2,
where −3f2 = t2k − 4qk, so −tk − 3f ≡ 4 (mod 8). Since tk is odd, f is odd, so
−4f − 4 ≡ 0 (mod 8) and tk ≡ f (mod 8). A similar computation shows that if
E′ corresponds to [−j], then tk ≡ −f (mod 8).

Conversely if t is odd and k ̸≡ 0 (mod 3), then b is not a cube in Fq and
neither in Fqk , so tk is odd, f is odd, and then tk ≡ ±f (mod 8) implies t′k ≡ 2
(mod 8) for E′ the cubic twist corresponding to [±j].

The corresponding result for sextic twists follows by corollary 3 since they
are quadratic twists of the cubic twists.

Remark 7. If 1 is not a (non trivial) cube in Fq, then b admits a unique rational
root b = β3 in Fq, and Eb has a Montgomery model over Fq iff 3 is a square. In
this case all twists of E have a Montgomery model. This is because H1(Fq, µ6) =
µ6/(j) (see also remark 5), so the cubic twists are actually isomorphic to E over
Fq, and the sextic twists are isomorphic to the quadratic twist of E over Fq.

Remark 8. As in remark 6, we can build the stacky general Kummer line [E/µ6].
The automorphism group µ6 descends to the automorphism group µ3 on [E/µ2],
where the automorphism [−j] on E induces x 7→ j2x on the coarse space K =
E/µ2 ≃ P1, and the map E/µ2 → E/µ4 is given by x 7→ x3. In particular the
Kummer line has cubic twists, and [K/µ3] has for stacky points x = 0,∞ with
residual gerbe Bµ3, and if E = Eb, [Eb/µ6] has for stacky points x = ∞ with
residual gerbe Bµ6, x = 0 with residual gerbe Bµ3, and x = b with residual
gerbe Bµ2. (We remark that the pullback of x = 0 to E corresponds to the orbit
under µ6 of the only two points ±P invariant by [j], and that P is of 3-torsion
on E, because [j]P = P implies that 3P = 0.)


	Efficient Pairing Computations via Biextensions on Montgomery Curves

