
Biextension in Pairing-based Cryptography
Jianming Lin 1, Damien Robert 3, Chang-An Zhao1,2*, Yuhao

Zheng1

1School of Mathematics, Sun Yat-sen University, Guangzhou, 510275,
Guangdong, China.

2Guangdong Key Laboratory of Information Security, Guangzhou,
510006, Guangdong, China.

3Inria Bordeaux, Institut de Mathématiques de Bordeaux, France.

*Corresponding author(s). E-mail(s): zhaochan3@mail.sysu.edu.cn;
Contributing authors: linjm28@mail2.sysu.edu.cn;

damien.robert@inria.fr; zhengyh57@mail2.sysu.edu.cn;

Abstract
Bilinear pairings play a significant role in modern public-key cryptography, with
the improvement of Tate pairings and their variants representing a crucial area
of cryptographic research. Currently, the Miller’s algorithm stands as the most
widely adopted and efficient method for pairing computation. In this paper, we
revisit the application of the technique of biextension for pairing computation
and extend it to pairing-based cryptography. Utilizing the twisting isomorphism,
we derive explicit formulas and algorithmic frameworks for the ate pairing and
optimal ate pairing computations. Additionally, we present detailed formulas and
introduce an optimized shared cubical ladder algorithm for super-optimal ate
pairings. Through concrete computational analyses, we compare the performance
of our biextension-based methods with the Miller’s algorithm on various well-
known families of pairing-friendly elliptic curves. Our results demonstrate that
the biextension-based algorithm outperforms the Miller’s algorithm by bits in
certain specific situations, establishing its potential as an alternative for pairing
computation.

Keywords: Pairing computation super-optimal ate pairing Miller’s algorithm
biextension cubical ladder

1

1 Introduction
In recent years, bilinear pairings have emerged as a crucial part of public-key
cryptography, primarily owing to their applications in numerous protocols, such as
identity-based encryption [?], short signatures [?], and zero-knowledge proofs [?, ?, ?].
A pairing is a non-degenerate bilinear map on an elliptic curve E of the following form

e : G1 ×G2 → GT

where G1, G2 are two additive subgroups of E with prime order r, and GT is a
multiplicative subgroup of F∗

pk also with order r, where k is the embedding degree of
E.

In pairing-based cryptographic systems, the Weil and Tate pairings are commonly
employed. In the majority of scenarios, the Tate pairing demonstrates greater effi-
ciency. Consequently, a substantial amount of research have focused on optimizing
the Tate pairing. One of the research objectives is to shorten the length of the Miller
loop. Duursma and Lee [?], along with Barreto et al. [?] have successfully short-
ened the length of the Miller iteration required for the Tate pairing on supersingular
abelian varieties leveraging the ηT method. In 2006, Hess et al. [?] extended this idea
to all ordinary curves through the application of the Frobenius endomorphism and
proposed the ate pairing. Subsequently, several variants of the ate pairing [?, ?, ?]
have been successively proposed, aiming to further minimize the length of the Miller
iteration. Vercauteren introduced the notion of the optimal (ate) pairing, which
can be computed using log2 r/φ(k) basic Miller iterations, with φ the Euler function.
In certain specific cases where a curve possesses efficiently-computable endomor-
phisms distinct from powers of the Frobenius, the iteration length can be shortened to
log2 r/2φ(k) and the corresponding pairing is named super-optimal (ate) pairing.
More recently, there are many studies [?, ?, ?, ?, ?] targeting on the computation of
super-optimal ate pairing.

A significant direction of the research on accelerating the pairing computation is
focused on enhancing the performance of the Miller iteration. All the efficient algo-
rithms designed for computing the Tate pairing and its variants are based on Miller’s
algorithm [?]. Since then, a huge number of works [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]
have enhanced the efficiency of this algorithm. Up to now, the Miller’s algorithm still
stands as the most effective approach for computing pairings.

Elliptic net algorithm (ENA) first proposed by Stange [?] is another method for
computing the pairings. In 2015, Chen et al. [?] optimized it by reducing the dimen-
sion of the blocks required in the algorithm, with an extra inversion at the DoubleAdd
step. This improved variant is named IENA. Subsequently, Cai et al. [?] further
strengthened the implementation of IENA, narrowing the performance gap between
(I)ENA and Miller’s algorithm. Nevertheless, the elliptic net algorithm is significantly
less efficient compared to the Miller’s algorithm.

Robert [?] presented a novel approach by leveraging biextension [?] for pairing
computation, deriving highly efficient formulas on specific models of elliptic curves
and Kummer lines. For generic pairings on Montgomery curves, the cubical ladder
algorithm obtained costs of only 15 field multiplications [?] per bit, which is faster than

2

any pairing formula reported in the existing literature. This improvement benefits the
implementation of numerous isogeny-based cryptographic schemes that necessitate
generic pairing computations on the Montgomery model. However, there has been
a lack of relevant research that deeply investigate the utilization of biextension for
pairing computations in elliptic curve cryptography (ECC) and make concrete cost
analysis.

1.1 Contributions
In this paper, we reinvestigate the technique of biextension, applying it to pairing-
based cryptography to derive more specific and efficient formulas for implementation.
Besides, we make a detailed computational cost analysis and compare the performance
of our proposed algorithms to that of Miller’s algorithm. The key contributions of this
paper are summarized as follows:

1. By employing the twisting isomorphism, we have derived more precise formulas and
algorithms for the ate pairing and the optimal ate pairing computation through
biextension compared to those presented in [?]. Furthermore, by combining biexten-
sion with the efficiently-computable endomorphisms, we propose efficient formulas
for the super-optimal ate pairing. In addition, we present an optimized shared
cubical ladder algorithm for the implementation.

2. We conduct a meticulous efficiency analysis for the algorithms in this paper. Sub-
sequently, we compared the efficiency of our method with that of the Miller’s
algorithm on several well-known families of pairing-friendly curves. The results
illustrate that the biextension demonstrates better performance than the Miller’s
algorithm in terms of a basic iteration by bits under certain specific circumstances
(where the embedding degree k is odd and the CM discriminant is 1), making it a
competitive alternative of Miller’s algorithm in pairing-based cryptography.

1.2 Organizations of this paper
The mathematical preliminaries and definitions are presented in Section 2. The Tate
pairing and its variants used in pairing-based cryptography are recalled. Our theory
and concrete formulas of pairings using biextension are stated in Section 3. Section
4 illustrates the concrete computational cost analysis and comparison. Finally, our
conclusion are drawn in Section 5.

2 Preliminaries
In this section, we introduce the corresponding mathematical preliminaries and

fundamental descriptions required in this paper.
Let E denote an ordinary elliptic curve defined over a finite field Fp, where p is

a prime satisfying p > 5. If E is a short Weierstrass curve, then the rational points
(x, y) with x, y ∈ Fp in the group E(Fp) satisfy the following equation

E/Fp : y2 = x3 + ax+ b.

3

Define the point at infinity OE to be the neutral element of E(Fp). The j-invariant
of E is given by j(E) = 1728 · 4a3

4a3+27b2 . Denote by #E(Fp) the cardinality of E(Fp).
According to [?, Theorem 4.12], it holds that #E(Fp) = p+1− t, where t is the trace
of the p-power Frobenius endomorphism π : (x, y) 7→ (xp, yp). Assume that E is a
short Weierstrass curve in the remaining part of this paper.

Let r be a large prime divisor of the order of E(Fp). The embedding degree k
with respect to r is defined as the smallest positive integer such that r | pk − 1. The
definitions of the three pairing subgroups G1, G2, and GT with order r are presented
as follows

G1 = E[r] ∩ {P ∈ E | π(P) = P} = E(Fp)[r],

G2 = E(Fpk)[r] ∩ {P ∈ E | π(P) = [p]P},
GT = µr,

where E[r] = {P ∈ E | [r]P = OE} and µr are the r-torsion subgroup of E and
the group of the r-th roots of unity, respectively. In the following, we introduce the
definitions of the twist, endomorphism, bilinear pairing, together with biextension.

2.1 Twists and Endomorphisms of Elliptic Curves
Twisting isomorphisms and endomorphisms are two fundamental maps of ellip-
tic curves that play a significant role in pairing-based cryptography by enhancing
the implementation efficiency. In this subsection, we introduce the definitions and
properties of these two morphisms.

Denote by Aut(E) the automorphism group of an elliptic curve E. Let d =
#Aut(E) represent the order of Aut(E). If d divides the embedding degree k, then E
admits a degree-d twist E′ defined over Fpe , where e = k/d [?]. The map

ϕ : E′ → E, (x, y) 7→ (ξ2x, ξ3y)

with ξ ∈ Fpk \Fpe is called the twisting isomorphism from E′ to E, which implies that
the two curves E and E′ are isomorphic over Fpk , but not over Fpe . According to [?,
Proposition 1], all twists corresponding to D ∈ F∗

pe/(F∗
pe)d are given by

d = 2 : y2 = x3 + a/D2x+ b/D3, ϕ : E′ → E : (x, y) 7→ (Dx,D3/2y),
d = 4 : y2 = x3 + a/Dx, ϕ : E′ → E : (x, y) 7→ (D1/2x,D3/4y),
d = 3, 6 : y2 = x3 + b/D, ϕ : E′ → E : (x, y) 7→ (D1/3x,D1/2y).

By employing the twisting isomorphism, the pairing subgroup G2 ⊆ E(Fpk) can be
succinctly represented by the r-torsion subgroup of E′

G2 = E′(Fpk)[r] ∩ ker(π − [p]) ∼= E′(Fpk/d)[r].

We now consider the endomorphisms of E. DefineD to be a positive square-free integer
satisfying 4p − t2 = Dy2, where y ∈ Z. From [?, Theorem 10.6], the endomorphism

4

ring of E over a finite field is isomorphic to an order in an imaginary quadratic field
Q(
√
−D). The maximal subring of Q(

√
−D) is

OK =

{
Z
[
1+

√
−D

2

]
if D ≡ 3 (mod 4),

Z
[√
−D

]
if D ≡ 1, 2 (mod 4).

An order in Q(
√
−D) is a ring R such that Z ⊊ R ⊆ OK [?]. It can be expressed as

R = Z+ Zfδ

where f > 0 and δ = (1 +
√
−D)/2 or

√
−D. Let σ be an endomorphism of E over

Fp. Then σ can be conveniently represented as σ = a + b
√
−D, where a, b ∈ Q and

2a, 2b ∈ Z. If σ is an n-isogeny (a degree-n endomorphism), it satisfies the following
characteristic equation

σ2 − 2aσ + n = 0 (1)

as the reduced norm of σ is given by Nrd(σ) = n. These endomorphisms allow for
fast scalar multiplications via the GLV method [?]. Consequently, they are referred
to as efficiently-computable endomorphisms, or simply GLV-endomorphisms. A curve
equipped with such an endomorphism is denoted as a GLV-curve.

In the following, we introduce two well-known GLV-curves over Fp corresponding
to D = 1 and D = 3:

E1 : y2 = x3 + b, where p ≡ 1 (mod 3),

E2 : y2 = x3 + ax, where p ≡ 1 (mod 4).

There exists an endomorphism σ : (x, y) 7→ (αx, y) on E1, associated with 1+
√
−3

2 in
the endomorphism ring Endp(E1), where α is a primitive cube root of unity in F∗

p.
According to Eq. (1), it satisfies σ2 + σ + 1 = 0.

For E2, the corresponding endomorphism is σ : (x, y) 7→ (−x, βy), associated
with ±

√
−1 in Endp(E2), where β is a primitive fourth root of unity in F∗

p. This
endomorphism satisfies the characteristic equation σ2 + 1 = 0.

2.2 Bilinear Pairings
In this subsection, we introduce some typical bilinear pairings used in ECC, including
Tate pairings and their variants. With the notation as above, let E be an ordinary
curve over Fp. We first describe the definitions of the Miller function and Miller’s
algorithm.

For any point P ∈ E and integer n ∈ Z, let fn,P denote the normalized rational
function associated with the divisor

div(fn,P) = n(P)− ([n]P)− (n− 1)(OE).

5

In particular, for an r-torsion point P ∈ E[r], the corresponding divisor is

div(fr,P) = r(P)− r(OE).

For all integers i, j, there exists a relationship between fi,P , fj,P , and fi+j,P

div(fi+j,P) = div
(
fi,P · fj,P ·

ℓ[i]P,[j]P

v[i+j]P

)
, (2)

where ℓ[i]P,[j]P represents the line passing through the points [i]P and [j]P , and v[i+j]P

represents the vertical line passing through [i + j]P and [−i − j]P . A well-known
efficient method for evaluating fn,P (Q) is the Miller’s algorithm [?].

2.2.1 Tate pairing and its variants

Now we present the definitions of the Tate pairing and its variants. Let P ∈ E(Fpk)[r]
and Q ∈ E(Fpk). The reduced Tate pairing is a non-degenerate bilinear map defined
as follows

er : E(Fpk)[r]× E(Fpk)/rE(Fpk)→ µr, (P,Q) 7→ fr,P (Q)
pk−1

r .

By leveraging the efficiently-computable endomorphisms of E, one can reduce the
length of the Miller loop. The ate pairing, as defined in [?], is an optimized variant
of the Tate pairing on G2 × G1 and achieves a shorter Miller loop by employing
the p-power Frobenius endomorphism π. Let P and Q be two points in G1 and G2,
respectively. Denote by λ and m the two integers such that λ ≡ p mod r and m =
λk−1

r . The reduced ate pairing is presented as

aλ : G2 ×G1 → µr, (Q,P) 7→ fλ,Q(P)
pk−1

r ,

which constitutes a non-degenerate bilinear map if r ∤ m. Several research [?, ?]
have sought to further shorten the length of the Miller loop through multiplying or
dividing the ate pairings.

Vercauteren [?] proposed an algorithm to construct optimal ate pairings, which
can be computed in log2(r)/φ(k) basic Miller iterations, where φ(k) denotes the Euler
function. Let λ = mr such that r ∤ m. By Minkowski’s theorem [?], there exists a
short vector V = (c0, · · · , cφ(k)−1), with |ci| ≤ r1/φ(k), satisfying λ =

∑φ(k)−1
i=0 cip

i.
For points P ∈ G1 and Q ∈ G2, the optimal ate pairing [?] on E is defined as follows

opt : G2 ×G1 → µr,

(Q,P) 7→

(
l∏

i=0

fp
i

ci,Q
(P) ·

l−1∏
i=0

ℓ[si+1]Q,[cipi]Q(P)

v[si]Q(P)

)(pk−1)/r

, (3)

where si =
∑l

j=i cjp
j . This bilinear map is non-degenerate if

mkpk−1 ̸≡ pk − 1

r
·

l∑
i=0

icip
i−1 (mod r).

6

For specific families of pairing-friendly curves, the number of basic Miller iterations can
be further reduced to log2(r)/2φ(k). This type of pairing is named super-optimal
ate pairings [?, ?, ?]. Such pairings [?, ?, ?, ?, ?, ?, ?] are constructed by compositing
the power of Frobenius endomorphism and the GLV-endomorphism.

2.3 Biextensions
Biextensions were first introduced by Mumford in [?]. As mentioned in [?], biextensions
provide a framework for studying pairings on abelian varieties. In this subsection, we
focus primarily on biextensions associated with ordinary elliptic curves, and present
the corresponding definitions, properties and the arithmetic.

Let D = (OE) denote the polar divisor on an elliptic curve E, where OE is the
point at infinity. The biextension associated with this divisor, denoted by XD, can be
defined as follows.
Definition 1 ([?]). Let DP denote the divisor (−P) − (OE). A biextension element
is a tuple (P,Q, gP,Q) ∈ XD where P,Q ∈ E, and gP,Q is a rational function with the
divisor DP+Q +DOE

−DP −DQ. Specifically,

div(gP,Q) = (−P −Q) + (OE)− (−P)− (−Q).

The function gP,Q is analogous to the line function (normalized at infinity) ℓP,Q

that passes through points P and Q, as used in Miller iterations. For simplicity,
we often omit P and Q and refer to an element of XD simply as gP,Q ∈ XD. The
biextension XD is equipped with two group laws, denoted by ⋆1 and ⋆2, which allow for
the group addition law of elements. These operations are defined explicitly as follows

gP1,Q ⋆1 gP2,Q = gP1+P2,Q = gP1,Q(·)gP2,Q(·+ P1),

gP,Q1 ⋆2 gP,Q2 = gP,Q1+Q2 = gP,Q1(·)gP,Q2(·)
gQ1,Q2(·+ P)

gQ1,Q2(·)
.

These definitions ensure that the group laws respect the structure of the biextension
and allow for a rich arithmetic framework. Since XD is a symmetric function, we also
have

gP1,Q ⋆1 gP2,Q = gP1+P2,Q = gP1,Q(·)gP2,Q(·)
gP1,P2(·+Q)

gP1,P2(·)
.

In accordance with the aforementioned additive group laws, we can formally define
the inversion operation.
Definition 2 ([?]). The inverse element g⋆1,−1

P,Q is formulated as

g⋆1,−1
P,Q = g−P,Q =

1

gP,Q
· g−P,P

g−P,P (·+Q)
. (4)

We note that the RHS does not depend on the choice of representative for g−P,P .
As per Definition 1 and Eq. (4), we deduce the following lemma, which elucidates

the connection between gP,Q and the Miller function fr,P . For further elaboration,
refer to [?, Porism 3.10].

7

Lemma 1 ([?]). Let gP,Q ∈ XD and suppose that P ∈ E[r]. Then, the Miller function
fr,−P operates on the cycle (·)− (·+Q) as given by g[r]P,Q(·)

gr
P,Q(·) .

From the point of view of 1, as explained by Grothendieck in [?], the biextension
XD is the intrinsic geometric object which encodes pairings (as monodromy in the
biextension). The Miller functions fr,P are a way to compute the biextension arith-
metic. But, like there are several ways to choose coordinates for an elliptic point to do
the arithmetic, we can also look at different representations of biextension elements
for the biextension arithmetic.

In this paper, for the function gP,Q, we will look at the cubical representation as
outlined in [?, Section 4.5]. An element gP,Q ∈ XD can be represented as

(P,Q, gP,Q) = [P̃ , Q̃; ÕE , P̃ +Q],

where the first and last two components denote the poles and zeros of gP,Q,
respectively.

Here, P̃ is a cubical point (of level 1) represented by the cubical coordinate Z1(P̃).
The biextension function gP,Q is then represented as a quotient of cubical functions

gP,Q(R) =
Z1(˜R+ P +Q)Z1(R̃)

Z1(R̃+ P)Z1(R̃+Q)
,

where Z1 is a choice of section of the divisor D = (0E).
Here, the point Z1(˜R+ P +Q) is evaluated via the cubical arithmetic, using the

cube 0, P,Q,R,Q+R,P +R,P +Q,P +Q+R:

Z1(˜P +Q+R)Z1(P̃)Z1(Q̃)Z1(R̃)

Z1(0̃E)Z1(Q̃+R)Z1(P̃ +R)Z1(P̃ +Q)
= gP,Q(R)/gP,Q(0E).

We remark that the RHS does not depend on the choice of biextension function gP,Q

above (P,Q).
For our algorithms, it will be convenient to switch to cubical points of level 2.

We let Z = Z2
1 , this is a section of 2D = 2(0E), and X another section such that

x = X/Z. A level 2 cubical point P̃ is then determined by P̃ = (X(P̃), Z(P̃))); for ease
of notations we will drop the tilde and use the notations XP , ZP . Working with level 2
cubical points mean that we encode level 2 biextension functions, that is elements of
the biextension X2D associated to 2D. The biextension arithmetic will thus compute
the square of the usual pairings.

If R = OE , direct evaluation of gP,Q at R is inadvisable since the point at infinity
constitutes a zero of gP,Q. According to [?, Remark 2.8], an extended value is required
for this special case. By defining the uniformizer as uOE

= Z
X , we can express Z as

uOE
· X. Therefore, the extended value of Z at OE becomes XOE

, leading to the

8

evaluation of gP,Q at OE being

gP,Q(OE) =
ZP+Q ·XOE

ZP · ZQ
. (5)

Hereafter, we will simply denote gP,Q(OE) as gP,Q. On this basis, if P is an r-
torsion point, the evaluation of Z at [r]P yields X[r]P . Thus, it follows that

g[r]P,Q =
Z[r]P+Q ·XOE

X[r]P · ZQ
.

Without loss of generality, the projective x-coordinate of OE is taken as XOE
= 1,

and we will typically drop it from our notation. Given that X[r]P+Q

XQ
=

Z[r]P+Q

ZQ
, the

function g[r]P,Q can be expressed alternatively as

g[r]P,Q =
X[r]P+Q

X[r]P ·XQ
.

The coordinate valuesX[r]P+Q andX[r]P can be efficiently computed using the cubical
ladder algorithm described in [?, Algorithm 4.2].

2.4 Biextension arithmetic
In this section, we look more closely at the biextension, which we will use for pairings.
We work in level 1 for now, going to level 2 simply involves taking squares everywhere.

First, a biextension element gP,Q has for divisor (−P −Q)+(OE)− (−P)− (−Q),
so one can pick gP,Q =

vP+Q

l−P,−Q
; this is the unique biextension element normalised at

OE with respect to the uniformiser x/y. In the special case where Q = −P , we instead
take gP,−P = 1/vP .

Therefore, Eq. (4) can be rewritten as

g−P,Q(·) := gP,Q(·)⋆1,−1 =
1

gP,Q(·)
· g−P,P (·)
g−P,P (·+Q)

=
1

gP,Q(·)
·

1
vP (·)

1
vP (Q+·)

=
1

gP,Q(·)
· vP (·+Q)

vP (·)
.

Similarly, we can obtain

gP,−Q(·) =
1

gP,Q
(·) · vQ(·+ P)

vQ(·)
.

9

It follows that

g−P,−Q(·) = gP,Q(·)
vP ((·+Q)− (·))
vQ(·+ P)− (·))

.

We can also rewrite lemma 1 as

fr,P ((·+Q)− (·)) =
g[r]P,Q(·)
grP,Q(·)

· v
r
P

v[r]P
((·+Q)− (·)). (6)

In case of a final exponentiation, when P,Q,R all live in Fpk , this further simplifies to

fr,P ((R+Q)− (R))(p
k−1)/r =

(
g[r]P,Q(R)

vrP ((R)− (R+Q))

)(pk−1)/r

.

As explained in section 2.1 we will use twists, hence isomorphisms defined over
some extension of Fp, to speed up pairing computations. Biextension behave well with
respect to isomorphisms.
Proposition 1. Let ϕ : E1 → E2 be an isomorphism of elliptic curves. Then gP,Q 7→
gϕ−1(P),ϕ−1(Q) = ϕ∗gP,Q := gP,Q ◦ ϕ is an isomorphism from the biextension on E2

associated to (0E1) to the biextension on E1 associated to (0E1).

Proof. This follows from the functoriality of biextensions. This can also be directly
seen as follows: let P ′ = ϕ−1(P), Q′ = ϕ−1(Q), then ϕ∗gP,Q has for divisor (−P ′ −
Q′) + (0E1) − (P ′) − (Q′) so is a biextension element above (P ′, Q′). Furthermore it
is immediate from their definition that ϕ∗ is compatible with the biextension laws ⋆1
and ⋆2.

Using proposition 1, one can use the isomorphism ϕ to do a biextension expo-
nentiation in E1 rather than E2: go from gP,Q to gP ′,Q′ using ϕ∗, do the biextension
exponentiation in E1, and go back to E2 using ϕ−1,∗.

2.5 Cubical arithmetic for biextensions
In this section, we look at how to perform the biextension arithmetic, in particular
biextension exponentiation, using the cubical arithmetic.

Suppose that we have a cubical representation of the biexten-
sion elements gP1,Q = [P̃1, Q̃, 0̃E , P̃1 +Q], gP2,Q = [P̃2, Q̃, 0̃E , P̃2 +Q],
gP1−P2,Q = [P̃1 − P2, Q̃, 0̃E , ˜P1 − P2 +Q], then we can compute gP1+P2,Q =

[P̃1 + P2, Q̃, 0̃E , ˜P1 + P2 +Q], via P̃1 + P2 = xAdd(P̃1, P̃2, P̃1 − P2) and
˜P1 + P2 +Q = xAdd(P̃1 +Q, P̃2, ˜P1 − P2 +Q) where xAdd denotes a cubical dif-

ferential addition. We refer to section A for explicit formulas for cubical points of
level 2.

We remark that we only really need P̃2 from the cubical representation of gP2,Q to
perform the necessary operations. Furthermore, since the same cubical point P̃2 is used
to compute P̃1 + P2 and ˜P1 + P2 +Q, we only require P2: the resulting biextension
element gP1+P2,Q does not depend on the choice of P̃2 above P2.

10

This means that there are two strategies to compute a biextension exponentiation
gP,Q 7→ grP,Q. Either we use a cubical ladder, computing nP̃ , (n + 1)P̃ , nP̃ + Q̃ at
each step. The ladder uses one cubical doubling and two cubical differential additions
at each step.

Or we use a double and add approach, keeping only nP̃ , nP̃ + Q̃ at each step.
When the current bit is 0, we do a biextension doubling by computing 2nP̃ , 2nP̃ + Q̃,
this costs one cubical doubling and one cubical differential addition. When the current
bit is 1, we first recover (n+ 1)P = cAdd(nP, P, nP +Q,P −Q) using a compatible
addition, and then we compute (2n+ 1)P̃ , (2n+ 1)P̃ + Q̃ via two cubical differential
additions. It is straightforward to extend the double and add method to incorporate
windows and NAF. The compatible addition was introduced in [?], and we refer to
section A for explicit formulas. We note also that once we have recovered (n + 1)P
via the compatible addition, we can switch to the ladder approach, and conversely we
can forget about (n + 1)P̃ in the ladder approach and switch to the double and add
approach. This allows to switch dynamically between the two approaches, depending
on whether the upcoming bits are successive 0s or not.

Like biextensions, the cubical arithmetic behaves well with respect to isomor-
phisms.
Proposition 2. Let ϕ : E1 → E2 be an isomorphism of elliptic curves. Let ϕ̃ be the
unique lift of ϕ to cubical points that sends 0̃E1 to 0̃E2 . Then ϕ̃ is compatible with the
cubical arithmetic.

Proof. This follows from the unicity of the cubical torsor structure associated to a
divisor on an elliptic curve. This can also be checked directly: let Z2 = Z1 ◦ ϕ̃, where
ϕ̃ is for now an arbitrary lift of ϕ. Then given a cube 0, P,Q,R,Q + R,P + R,P +
Q,P +Q+R in E2, so that we have:

Z2(˜P +Q+R)Z2(P̃)Z2(Q̃)Z2(R̃)

Z2(0̃E2)Z2(Q̃+R)Z2(P̃ +R)Z2(P̃ +Q)
= gP,Q(R)/gP,Q(0E2),

then if we let P̃ ′ = ϕ̃−1(P̃), . . . and gP ′,Q′ = ϕ∗gP,Q we find that we also have a cube
on E1:

Z1(˜P ′ +Q′ +R′)Z1(P̃ ′)Z1(Q̃′)Z1(R̃′)

Z1(ϕ̃−1(0̃E2))Z1(Q̃′ +R′)Z1(P̃ ′ +R′)Z1(P̃ ′ +Q′)
= gP ′,Q′(R′)/gP ′,Q′(0E1).

And so the two cubical laws are compatible as long as ϕ̃−1(0̃E2) = 0̃E1 .

Example 1 (Level 2 cubical isomorphisms). In section 2.1 the twisting isomorphisms
ϕ : E′ → E are of the form x 7→ ξ2x. Since we fix our level 2 neutral cubical point to
be 0̃E = (1, 0), we have that ϕ̃(X,Z) = (X,Z/ξ2) is a cubical isomorphism.

11

3 Main Results
In this section, we present a comprehensive framework to derive precise formulas for
the ate pairing, optimal ate pairing, and super-optimal ate pairing by leveraging the
technique of biextensions. For each type of pairing, we delineate the corresponding
computational procedures and provide illustrative examples. Assume that we operate
on the Kummer lineK = E/⟨±1⟩ of an elliptic curve E associated with the biextension
X2(OE) with sections (X,Z) throughout the remainder of this paper.

3.1 Biextension for the Tate pairing
As a warm up, we first look at the Tate pairing and on how to exploit twisting
isomorphisms.

Let P ∈ E(Fpk)[r] and Q ∈ E(Fpk). Then the reduced Tate pairing is given
by er(P,Q) = fr,P (Q)(p

k−1)/r = fr,P ((Q + R) − (R))(p
k−1)/r for any rational point

R ∈ E(Fpk). By lemma 1, we have (up to a sign): er(P,Q) =
g[r]P,Q

gr
P,Q

(R)(p
k−1)/r =

g[r]P,Q(R)
(pk−1)/r, where the last equality assumes that gP,Q is chosen to be rational

(e.g., the one normalised at 0E). Since [r]P = 0E , g[r]P,Q is actually a constant
function. So we have g[r]P,Q(R)

(pk−1)/r = g[pk−1]P,Q(R).
There is a more intrinsic reformulation that does not depend on any rational

choice. Let q = pk, and denote by πq · g = πq ◦ g ◦ π−1
q the action on a function g

by Galois conjugation. Then observe that g[q]P,Q and πq · gP,Q have both the same
divisor, hence they differ by a constant c. Furthermore, this constant does not depends
on the choice of representative for gP,Q, even non rational. So we may assume that
gP,Q is rational to determine c, and the computation above shows that g[q]P,Q(R) =
cgP,Q(R) = (g[pk−1]P,Q ⋆1 gP,Q)(R) = er(P,Q)gP,Q)(R). So c = er(P,Q). In summary:

er(P,Q) =
g[q]P,Q

πq · gP,Q
(7)

Now let ϕ : E′ → E be a twisting isomorphism. Then by proposition 1, we have
g[q]P ′,Q′ = ϕ∗g[q]P,Q, so we can work on E′ to compute the biextension exponentiation.

One needs to be careful that in general, even if we start with a rational (over
Fpk) biextension function gP,Q, then gP ′,Q′ may not be rational. Reformulating: if we
compute the constant function g[r]P ′,Q′ on E′, starting with gP ′,Q′ normalised at 0E′

for ease of computation, then gP ′,Q′ = ϕ∗gP,Q for some gP,Q that may not be rational.
So in general, g[r]P ′,Q′(R′)(p

k−1)/r will not give the Tate pairing er(P,Q). Instead, we
need to use eq. (7) to adjust the result to get the correct Tate pairing. However, in
our applications, we will always use a twisting isomorphism ϕ that is defined over Fpk

rather than an extension, so the problem is moot.
In fact, we will see a similar phenomena for the other pairings we consider: the

twists we use are actually always in a strict subfield of Fpk , and so the adjusting factor
when going to the twist will always be killed by the final exponentiation by (pk−1)/r.

One last remark: we can use eq. (7) to relate the twisting correcting factor with
the automorphism α inducing the twist E′, i.e. such that ϕπϕ−1 = απ′. Indeed, we

12

have ϕ∗g[q]P,Q = g[q]P ′,Q′ . However, ϕ∗(πq · gP,Q) differ from π′
q · gP ′,Q′ in general.

Indeed unraveling the formulas we get that ϕ∗(πq · gP,Q) = (π′
q · gP ′,Q′) ◦ α−1.

A similar reasoning holds using the cubical arithmetic and proposition 2. The

Tate pairing is given by er(P,Q) =
(

Z(rP+Q)Z(0)
Z(Q)Z(rP)

)(qk−1)/r

, as long as we start with

rational cubical points P̃ , Q̃, P̃ +Q, e.g. normalised to have Z = 1. But by example 1,
if Z(P̃) = 1, then Z(P̃ ′) ̸= 1. So conversely, if we want to use cubical arithmetic

on E′, and we start with normalised points P̃ ′, Q̃′, P̃ +Q
′

to speed up the cubical
arithmetic, it means that going back to E we were doing cubical arithmetic with non
normalised points, potentially even non rational cubical points. So we need to adjust
by a suitable power of the conversion factor ξ2 in the end. In practice, for the twisting
isomorphism we consider, ξ2 lives in a strict subfield, so will be killed by the final
exponentiation anyway.

3.2 Biextension for Ate Pairing
As discussed in Section 2.1, the ate pairing is a variant of the Tate pairing that employs
the p-power Frobenius endomorphism π to reduce the length of the Miller loop. Using
the same notation, the reduced ate pairing on E is defined as

aλ(P,Q) = (fλ,Q(P))
pk−1

r

where P ∈ G1 and Q ∈ G2. Given that λ ≡ p mod r, we have λ = t − 1, with t the
trace of the Frobenius endomorphism.

By setting ZP = ZQ = ZP+Q = 1, it follows from [?, Section 5.1] and Eq. (5) that
the square of the reduced ate pairing can be expressed as

aλ(P,Q)2 =

(
g[t−1]Q,P

gpQ,P

) pk−1
r

=

(
Z[t−1]Q+P

Z[t−1]Q

) pk−1
r

.

In practical applications, most of the curves utilized in pairing-based cryptography
admit twists. Therefore, it is essential to employ the twisting isomorphism ϕ to
enhance the efficiency of ate pairing. According to [?], for elliptic curves admitting
twists, the pairing subgroup G2 can be represented as

G2
∼= E′(Fpk/d)[r].

We now elucidate how to exploit the technique of twists to compute the ate pairing
on the Kummer line K = E/⟨±1⟩ via biextension.
Theorem 1. With the aforementioned notations, let P ∈ G1 and Q′ ∈ E′(Fpk/d)[r]
such that Q = ϕ(Q′) ∈ G2, where ϕ is the degree-d twisting isomorphism. Then the
reduced ate pairing on K = E/⟨±1⟩ corresponding to the biextension X2(OE) with

13

sections (X,Z) can be computed as

ab(P,Q) = aλ(P,Q)2 = Z
pk−1

r

[t−1]Q′+ϕ−1(P).

Proof. The ate pairing is given by the monodromy g[t−1]Q,P = g⋆,t−1
Q,P = a · π(gQ,P)

[?, Remark 3.22], where the result of the pairing a does not rely on whether gQ,P is
rational. On the twist E′, we consider the pullback ϕ∗ and obtain a function

ϕ∗(gQ,P (·)) = gQ,P ◦ ϕ(·) = gQ′,ϕ−1(P)(·) ∈ X2(OE′).

The corresponding monodromy is

g⋆,t−1
Q′,ϕ−1(P) = g[t−1]Q′,ϕ−1(P) = a′ · π′(gQ′,ϕ−1(P)).

By ϕ ◦ π′ = π, we have

g⋆,t−1
Q,P = ϕ(g⋆,t−1

Q′,ϕ−1(P)) = a′ · (ϕ ◦ π′)(gQ′,ϕ−1(P)) = a′ · π(gQ,P),

hence
a = a′ =

g[t−1]Q′,ϕ−1(P)

π′(gQ′,ϕ−1(P))
.

Given that Zϕ−1(P) = ZQ′ = Zϕ−1(P)+Q′ = 1 and Xϕ−1(OE) = 1/ξ2, the reduced ate
pairing on K can be computed as

ft−1,Q(P)
2(pk−1)

r = a′
pk−1

r =

(
g[t−1]Q′,ϕ−1(P)

π′(gQ′,ϕ−1(P))

) pk−1
r

=

(
Z[t−1]Q′+ϕ−1(P)

Z[t−1]Q′ · ξ2

) pk−1
r

.

Since Z[t−1]Q′ and ξ2 lie in the subfield Fpk/d , they vanish in the final exponentiation.
Thus, it suffices to compute

ab(P,Q) = aλ(P,Q)2 = Z
pk−1

r

[t−1]Q′+ϕ−1(P),

which completes the proof.

By utilizing the twisting isomorphism, part of the computations can be performed
in the smaller field Fpk/d . The coordinate Z[t−1]Q′+ϕ−1(P) can be obtained via the
cubical ladder algorithm. The detailed computational procedures for the ate pairing
through biextension are presented in Section 4.1. For some specific families of pairing-
friendly curves, such as BN12 and BLS12, the number of basic Miller iterations of
ate pairings is exactly log2(r)/φ(k). In other words, for several curves the ate pairing
itself is optimal. We provide the following example for illustration.

14

Example 2 (BLS12 Family). The BLS12 family, with an embedding degree k = 12
and CM-discriminant D = 3, is popular in pairing-based cryptography. Notable
pairing-friendly curves such as BLS12-377, BLS12-381, and BLS12-446 have been
employed in numerous cryptographic schemes. The parameters r, t, and p are
parametrized as follows

r(z) = z4 − z2 + 1,

t(z) = z + 1,

p(z) =
(z2 − 2z + 1)(z4 − z2 + 1)

3
+ z.

It is worth noting that t(z)− 1 = z, which is close to r(z)1/4 = r(z)1/φ(k). Therefore,
the ate pairings on these curves are indeed optimal ate pairings. Additionally, there
exists a sextic twist E′ for a BLS12 curve E. As mentioned in Section 2.3, the twisting
isomorphism is ϕ : E′ → E, (x, y) 7→ (D

1
3x,D

1
2 y) with D ∈ F∗

p2 mod (F∗
p2)6. By

Theorem 1, the ate pairing on E/⟨±1⟩ via biextension can be computed as

ab(P,Q) = Z
p12−1

r

[z]Q′+ϕ−1(P).

3.3 Biextension for Optimal Ate Pairing
In this subsection, we derive the formulas for optimal ate pairings through biextension
by utilizing the technique of twists. From Section 2.2, we consider the multiple λ =

mr =
∑l

i=0 cip
i, where the short vector (c0, c1, . . . , cl) satisfies |ci| ≈ r

1
φ(k) . According

to [?, Section 3.4], the formula for the optimal ate pairing in Eq. (3) on G2 × G1

through biextension can be expressed as

opt(P,Q) =
(
g[c0]Q,P ⋆1 π(g[c1]Q,P) ⋆1 · · · ⋆1 πl(g[cl]Q,P)

) pk−1
r

=

 l∏
⋆1,i=0

πi(g[ci]Q,P)


pk−1

r

.

Similar to the ate pairing, the technique of twists can also be employed to enhance
computational efficiency. We now present the following theorem to illustrate the for-
mulas for optimal ate pairings on Kummer lines through biextensions by exploiting
twists.
Theorem 2. Using the above notations, let P ∈ G1 and Q′ ∈ E′(Fpk/d)[r] such that
Q = ϕ(Q′) ∈ G2. The optimal ate pairing on K = E/⟨±1⟩ corresponding to the
biextension X2(OE) can be computed as

optb(P,Q) = opt(P,Q)2 =

 l∏
⋆1,i=0

πi(g([ci]Q′),P)


pk−1

r

15

=

(
Z∑l

i=0 πi([ci]Q′+ϕ−1(P))

Z∑l
i=0 πi([ci]Q′)

) pk−1
r

.

Proof. For any i, j ∈ Z, i ̸= j, the following two equations hold

g[cipi]Q,P ⋆1 g[cjpj]Q,P = g[cipi]Q,P (·)g[cjpj]Q,P (·)
g[cipi]Q,[cjpj]Q(P + ·)
g[cipi]Q,[cjpj]Q(·)

gp
i

[ci]Q,P ⋆1 g
pj

[cj]Q,P = gp
i

[ci]Q,P (·)g
pj

[cj]Q,P (·)
g[ci]πi(Q),[cj]πj(Q)(P + ·)
g[ci]πi(Q),[cj]πj(Q)(·)

,

which implies that

g[cipi]Q,P ⋆1 g[cjpj]Q,P =
(
gp

i

[ci]Q,P ⋆1 g
pj

[cj]Q,P

)
· ai · aj ,

where ai =
g[cipi]Q,P (·)

gpi

[ci]Q,P
(·)

, aj =
g[cjpj]Q,P (·)

gpj

[cj]Q,P
(·)

give two atei pairings [?]. By induction, we

deduce that the monodromy of the optimal pairing is

l∏
⋆1,i=0

g[cipi]Q,P =
l∏

⋆1,i=0

gp
i

[ci]Q,P (·) ·

(
l∏

i=0

ai

)
= C ·

(
l∏

i=0

ai

)
,

where ai are a series of atei pairings, and C corresponds to the optimal ate pairing.
Now we consider the twist E′, the corresponding biextension functions on E′ are given
as follows

ϕ∗(g[cipi]Q,P) = g[cipi]Q′,ϕ−1(P), ϕ
∗
(
gp

i

[ci]Q,P

)
= gp

i

[ci]Q′,ϕ−1(P).

Thus the monodromy on the biextension X2(OE′) is

l∏
⋆1,i=0

g[cipi]Q′,ϕ−1(P) =

l∏
⋆1,i=0

gp
i

[ci]Q′,ϕ−1(P)(·) ·

(
l∏

i=0

a′i

)
= C ′ ·

(
l∏

i=0

a′i

)
.

Since
∏l

⋆1,i=0 g[cipi]Q′,ϕ−1(P) = g[mr]Q′,ϕ−1(P) gives a Tate pairing, it follows from [?,
Remark 3.22] that

l∏
⋆1,i=0

g[cipi]Q′,ϕ−1(P) =
l∏

⋆1,i=0

g[cipi]Q,P .

Besides, by Theorem 1 we obtain a′i = ai. We deduce that

l∏
⋆1,i=0

gp
i

[ci]Q,P (·) =
l∏

⋆1,i=0

gp
i

[ci]Q′,ϕ−1(P)(·) =
l∏

⋆1,i=0

πi(g[ci]Q′,ϕ−1(P)(·)),

16

which completes the proof.

From the above proof, we require the computation of the following coordinates

Zπi([ci]Q′+ϕ−1(P)) and Zπi([ci]Q′), i = 0, . . . , l,

which can be achieved through the following steps

1. Compute Z[ci]Q′ and Z[ci]Q′+ϕ−1(P) for i = 0, . . . , l using the cubical ladder
algorithm.

2. Apply the morphisms πi separately to the points [ci]Q
′ and [ci]Q

′ + ϕ−1(P) to
obtain Zπi([ci]Q′) and Zπi([ci]Q′+ϕ−1(P)).

3. Compute Z∑l
i=0 πi([ci]Q′) and Z∑l

i=0 πi([ci]Q′+ϕ−1(P)) from the points Zπi([ci]Q′) and
Zπi([ci]Q′+ϕ−1(P)) using the three-way addition algorithm [?].

The most computationally expensive step is the calculation of Z[ci]Q′ and
Z[ci]Q′+ϕ−1(P). By employing the technique of twists, part of the computation can
be performed over the smaller field Fpk/d , compared to the original approach in [?].
Detailed algorithms and cost analysis are provided in Section 4.2. In the following, we
present the AFG16 family as a concrete example.
Example 3 (AFG16 Family). The AFG16 family, with an embedding degree k = 16
and CM-discriminant D = 1, is known for efficient pairing computation and hashing,
making it competitive in pairing-based cryptography. The parametrized polynomials
r(z), t(z), and p(z) are given by:

r(z) = Φ16(z) = z8 + 1,

t(z) = r(z) + z5 + 1 = z8 + z5 + 2,

p(z) =
z16 + 2z13 + z10 + 5z8 + 6z5 + z2 + 4

4
.

There exists a quartic twist E′ for an AFG16 curve E. From Section 2.3, the twist-
ing isomorphism is defined as ϕ : E′ → E, (x, y) 7→ (D

1
2x,D

3
4 y) with D ∈ F∗

p4

mod (F∗
p4)4. Additionally, it holds that z + p5 ≡ 0 mod r on the AFG16 family. By

Theorem 2, the optimal ate pairing on AFG16 can be computed through biextension as:

optb(P,Q) =
(
g[z]Q′,ϕ−1(P) ⋆1 gπ5(Q′),ϕ−1(P)

) p16−1
r

=

(
Z[z]Q′+π5(Q′)+ϕ−1(P)

Z[z]Q′+π5(Q′)

) p16−1
r

.

In practice, this formula can be further simplified, and the corresponding details
are provided in Section 4.2.

17

3.4 Biextension for Super-optimal Ate Pairing
The super-optimal pairings are meticulously constructed on specific families of
pairing-friendly curves by using GLV-endomorphisms. To enhance the efficiency, auto-
morphisms are frequently employed to derive the formulas of super-optimal pairings
on curves with j-invariants j = 0 or 1728. In this subsection, we primarily focus on
deriving the formulas for super-optimal pairings on such GLV-curves endowed with
efficiently computable automorphisms, including curves that admit twists and those
that with the lack of twists, through the framework of biextensions.

3.4.1 The Super-optimal Ate Pairing on Curves Admitting Twists

Using the notation as above, let ϕ denote a degree-d twist. Our objective is to derive
the super-optimal pairings on the following two types of GLV-curves, E1 and E2, as
described in Section 2.1:

E1 : y2 = x3 + b, j(E1) = 0,

E2 : y2 = x3 + ax, j(E2) = 1728.

Assume that the embedding degree k satisfies gcd(k, d) ̸= 1. Let Φ = ϕ−1 ◦ σ ◦ ϕ
and ψ = ϕ−1 ◦ π ◦ ϕ denote the two endomorphisms on E′

i (i = 1, 2), where σ and
π represent the efficiently-computable automorphism and Frobenius map on Ei (i =
1, 2), respectively. Recalled from Section 2, the pairing subgroup G2 in Ei (i = 1, 2)
can be represented as

G2
∼= E′

i(Fpk/d).

According to [?, ?], E1 (resp. E2) precisely to a pairing-friendly curve in the Cyclo
(6.6) family (resp. Cyclo (6.3), (6.4), or (6.5)) parametrized by (p(z), t(z), r(z)) in [?].
Additionally, as noted in [?], for any Q ∈ G2 ⊆ Ei(Fpk) and Q = ϕ(Q′), there exists
a positive integer j (1 ≤ j < k) such that

ψj ◦ Φ(Q′) = [z]Q′.

If the embedding degree k satisfies ord(σ) ∤ k, it enables us to reduce the number
of Miller iterations to approximately log2(r)/2φ(k) and construct the corresponding
super-optimal ate pairings. Our results are presented in the following theorem.
Theorem 3. Using the notation above, let (p(z), r(z), t(z)) represent a family of GLV
curves with embedding degree k and an efficiently-computable automorphism σ such
that ord(σ) ∤ k. Let Ei (i = 1, 2) be a curve in this family with a degree-d twist E′

i

such that there exists a positive integer j (1 ≤ j < k) satisfying

ψj ◦ Φ(Q′) = [z]Q′

for any Q′ ∈ E′
i(Fpk/d)[r]. Assume that P ∈ Ei(Fp)[r]. Then, the super-optimal ate

pairing on Ki = Ei/ ⟨±1⟩ (i = 1, 2) corresponding to the biextension X2(OE) with
sections (X,Z) can be executed as follows

1. If we are on K1 = E1/ ⟨±1⟩ with j(E1) = 0, then the formula for the super-optimal
ate pairing is

18

soptb(Q,P) = sopt(Q,P)2 =

Zz+2pj

[z]Q′+ϕ−1(P) · Z
pj

[z]Q′+σ−1◦ϕ−1(P)

Zpj

πj(Q)+[z]Q+P


pk−1

r

,

2. If we are on K2 = E2/ ⟨±1⟩ with j(E2) = 1728, then the formula for the super-
optimal ate pairing is

soptb(P,Q) = sopt(P,Q)2 =
(
Zz
[z]Q′+ϕ−1(P) · Z

pj

[z]Q′+σ−1◦ϕ−1(P)

) pk−1
r

.

Proof. For simplicity, we prove the first case. The formulas for the super-optimal ate
pairing on E2 can be derived similarly. Define τ as the composition of the maps ψj

and Φ on E′
i (i = 1, 2). Let ζk denote the k-th roots of unity. By the characteristic

equations of Φ = ϕ−1 ◦σ ◦ϕ and ψ = ϕ−1 ◦π ◦ϕ, we observe that Φ and ψ correspond
to −1±

√
−3

2 and ζk in End(E′
1), respectively. Consequently, we obtain

τ2 + τpj + p2j = τ2 + τ · ζj + ζ2j

= ζ2j ·

((
−1±

√
−3

2

)2

+
−1±

√
−3

2
+ 1

)
= 0.

By τ(Q′) = [z]Q′, we have

z2 + zpj + p2j ≡ 0 mod r. (8)

By Eq. (3) and ϕ(Q′) = Q, we can derive a super-optimal ate pairing

sopt(Q,P) =
(
fz2,Q(P) · fp

j

z,Q(P) · ℓ[p2j]Q,[zpj]Q(P)
) pk−1

r

=
(
fz+pj

z,Q (P) · fp
j

z,Q(σ
−1(P)) · ℓ[p2j]Q,[zpj]Q(P)

) pk−1
r

.

To construct the formulas utilizing biextension, we require the following lemma to
establish the relationship between the rational function fn,P evaluated on the divisor
(·+Q)− (·) and g[n]P,Q(·) for any n ∈ N+.

Lemma 2. Let the notations be as above. For any positive integer n and (P,Q) ∈
E(Fpk)[r]× E(Fpk)/rE(Fpk), it holds that

g[n]P,Q(·)
gnP,Q(·)

= f2n,P ((·+Q)− (·)) ·
v2[n]P ((·+Q)− (·))
v2nP ((·+Q)− (·))

, (9)

where vP is the vertical line passing through P and −P .

19

Proof. According to [?, Eq. (14)], in level 1 it follows that

g⋆1,nP,Q = g[n]P,Q(·) = gnP,Q(·) · fn,P ((Q+ ·)− (·)).

Going to level 2, it can be rewritten as

g[n]P,Q(·)
gnP,Q(·)

=
f2n,−P (·)

f2n,−P (·+Q)
.

Furthermore, it can be deduced that

div
(
fn,P (·)2 · fn,−P (·)2

)
= 2n((P) + (−P)− 2(OE))− 2(([n]P) + ([−n]P)− 2(OE))

= div

(
v2nP (·)
v2[n]P (·)

)
.

Thus it yields that

fn,P (·)2 · fn,−P (·)2 = λ · v
2n
P (·)

v2[n]P (·)
, λ ∈ Fpk is a constant.

The constant λ vanishes while evaluating on the divisor (Q+ ·)− (·)

fn,P ((Q+ ·)− (·))2 · fn,−P ((Q+ ·)− (·))2 =
λ · v2n

P ((Q+·))
v2
[n]P

((Q+·))

λ · v2n
P ((·))

v2
[n]P

((·))

=
v2nP ((Q+ ·)− (·))
v2[n]P ((Q+ ·)− (·))

.

Consequently, we obtain

g[n]P,Q(·)
gnP,Q(·)

=
f2n,−P (·)

f2n,−P (·+Q)

= f2n,P ((·+Q)− (·)) ·
v2[n]P ((·+Q)− (·))
v2nP ((·+Q)− (·))

,

which completes the proof.

It is worth noting that Lemma 2 can be regarded as the generalization of Lemma
1 for any n ∈ N+ besides n = r. Additionally, Eq. (9) can be simply written as

g[n]P,Q

gnP,Q

= f2n,P (Q) ·
v2[n]P (Q)

v2nP (Q)

20

while evaluating on the point Q. Since we are working with the curve admitting with
a twist, the evaluation of the vertical function v2[n]P /v

2n
P lies in Fpk/d . Thus it vanishes

while performing the final exponentiation. We suffice to compute

g[n]P,Q

gnP,Q

= f2n,P (Q). (10)

Additionally, according to [?, Section 3.3], it holds that

div(gP,Q(·)) = div

(
v2P+Q(·)
ℓ2−P,−Q(·)

)
, (11)

which implies that gP,Q(·) = λ · v2
P+Q(·)

ℓ2−P,−Q(·) , where λ is a constant. Therefore, Eq. (4)
can be rewritten as

g−P,Q(·) =
1

gP,Q(·)
· g−P,P (·)
g−P,P (·+Q)

=
1

gP,Q(·)
·
λ · 1

v2
P (·)

λ · 1
v2
P (Q+·)

=
1

gP,Q(·)
· v

2
P (·+Q)

v2P (·)
.

Similarly, we can obtain

gP,−Q =
1

gP,Q
·
v2Q(·+ P)

v2Q(·)
.

As the evaluations of the vertical functions vanish in the process of the final
exponentiation, we deduce that

(gP,Q)
pk−1

r =

(
1

ℓ2−P,−Q(·)

) pk−1
r

,

(g−P,−Q)
pk−1

r =

(
1

gP,−Q
· v

2
P (· −Q)

v2P (·)

) pk−1
r

=

(
gP,Q ·

v2Q(·)
v2Q(·+ P)

) pk−1
r

= (gP,Q)
pk−1

r

By Eqs. (8), (10), (11) and the definition of gP,Q, the square of the above super-optimal
pairing can be derived as

sopt(Q,P)2 =
(
fz+pj

z,Q (P) · fp
j

z,Q(σ
−1(P)) · ℓ[p2j]Q,[zpj]Q(P)

) 2(pk−1)
r

=

gz+pj

[z]Q,P · g
pi

[z]Q,σ−1(P)

gz
2+zpj

Q,P · gzpj

Q,σ−1(P)

· ℓ2[p2j]Q,[zpj]Q(P)


pk−1

r

21

=

gz+pj

[z]Q,P · g
pj

[z]Q,σ−1(P) · g
p2j

Q,P

gz
2+zpj+p2j

Q,P · gzpj

Q,σ−1(P)

· ℓ2[p2j]Q,[zpj]Q(P)


pk−1

r

=

 g[z]Q,P

gp
j

Q,σ−1(P)

z

·
(
g[z]Q,P · g[z]Q,σ−1(P) · gp

j

Q,P

)pj

· ℓ2[p2j]Q,[zpj]Q(P)


pk−1

r

=

Zz
[z]Q+P

Zz
[z]Q

·
(Z[z]Q+P · Z[z]Q+σ−1(P))

pj

Z2pj

[z]Q

·
(Zπj(Q)+P · Z[z]Q+P)

pj

Zpj

πj(Q)+[z]Q+P


pk−1

r

.

Due to the fact that Z[z]Q ∈ Fpk/d and it vanishes during the final exponentiation, the
above formula for the super-optimal ate pairing through biextension can be simplified
as

soptb(Q,P) = sopt(Q,P)2 =

Zz
[z]Q+P · Z

pj

[z]Q+σ−1(P) · Z
2pj

[z]Q+P

Zpj

πj(Q)+[z]Q+P


pk−1

r

.

It remains to exploit the twisting isomorphism to further enhance the efficiency of this
pairing. By Theorem 2, the super-optimal ate pairing can be computed as follows

 g[z]Q,P

gp
j

Q,σ−1(P)

z

·
(
g[z]Q,P · g[z]Q,σ−1(P) · gp

j

Q,P

)pj

· ℓ2[p2j]Q,[zpj]Q(P)

=

 g[z]Q′,ϕ−1(P)

gp
j

Q′,σ−1◦ϕ−1(P)

z

·
(
g[z]Q′,ϕ−1(P) · g[z]Q′,σ−1◦ϕ−1(P) · gp

j

Q′,ϕ−1(P)

)pj

· ℓ2[p2j]Q′,[zpj]Q′(ϕ−1(P))

=

Zz+2pj

[z]Q′+ϕ−1(P) · Z
pj

[z]Q′+σ−1◦ϕ−1(P)

Zpj

πj(Q)+[z]Q+P

 ,

which completes the proof.

From the above theorem, the most costly part of computing the super-optimal
pairing through biextension is to obtain the two coordinates Z[z]Q′+ϕ−1(P) and
Z[z]Q′+σ−1◦ϕ−1(P). This can be done by utilizing the cubical ladder [?]. It is worth not-
ing that the calculation of the coordinate Z[z]Q′ is over the subfield Fpk/d and can be
shared during the computations of Z[z]Q′+ϕ−1(P) and Z[z]Q′+σ−1◦ϕ−1(P). The detailed
computational procedure is presented in Section 4.3. In the following we provide an
example for illustration.
Example 4 (BW14 family). As mentioned in [?], the BW family with embedding
degree k = 14 allows computing the pairing in log2(r)/2φ(k) basic Miller iterations,

22

which makes it a strong candidate in pairing-based cryptography. If CM-discriminant
D = 1, the corresponding parametrized polynomials r(z), t(z) and p(z) are stated as

r(z) = Φ28(z),

t(z) = z2 + 1,

p(x) =
1

4
(z18 − 2z16 + z14 + z4 + 2z2 + 1).

There exists a quadratic twist E′ for a BW14 curve E. From Section 2.3, the twist-
ing isomorphism is defined as ϕ : E′ → E, (x, y) 7→ (Dx,D

3
2 y) with D ∈ F∗

p7

mod (F∗
p7)2. Additionally, it is satisfied that z2 − p ≡ 0 mod r and π4 ◦ σ(Q) = [z]Q

for Q ∈ G2 on BW14 family. By Theorem 3 the super-optimal ate pairing on BW14
can be obtained through biextension as

soptb(P,Q) = sopt(P,Q)2 =
(
Zz
[z]Q′+ϕ−1(P) · Z

p4

[z]Q′+σ−1◦ϕ−1(P)

) p14−1
r

.

3.4.2 The super-optimal pairing on the curves with the lack of
twists

For the pairing-friendly curves with the lack of twists, the subgroup G2 can only be
represented as G2 = E(Fpk)[r] ∩ ker(π − [p]). Consequently, the techniques of twist
and denominator elimination can not be utilized. In other words, all the vertical line
functions can not vanish in the final exponentiation, and more operations need to
be performed in the whole extension field Fpk . We also consider the pairing-friendly
curves E1 and E2.

Based on the above analysis, the embedding degree k must be odd. The curve
E1 (resp. E2) corresponds to a pairing-friendly curve in Cyclo (6.6) (resp. Cyclo
(6.3) or (6.4) or (6.5)), which is parametrized by (p(z), t(z), r(z)) [?]. Similarly, for
Q ∈ G2 ⊆ Ei(Fpk) there is a positive integer j (1 ≤ j < k) such that

πj ◦ σ(Q) = [z]Q.

If ord(σ) ∤ k, it is equipped with the super-optimal ate pairing. The corresponding
formula is presented in Theorem 4.
Theorem 4. Using the notation as above, let (p(z), r(z), t(z)) represent a family of
GLV-curves with the lack of twist equipped with embedding degree k and efficiently-
computable automorphism σ such that ord(σ) ∤ k. Let Ei (i = 1, 2) be a curve in this
family such that there exist a positive integer j (1 ≤ j < k) satisfying

πj ◦ σ(Q) = [z]Q

for any Q ∈ Ei(Fpk)[r] ∩ ker(π − [p]). Assume that P ∈ Ei(Fp)[r]. Then the super-
optimal ate pairing on Ki = Ei/ ⟨±1⟩ (i = 1, 2) corresponding to biextension X2(OE)

with sections (X,Z) can be executed as follows.

23

1. If we are on K1 = E1/ ⟨±1⟩ with j(E1) = 0, then the formula for the super-optimal
ate pairing is

soptb(Q,P) =

 Zz+2pj

[−z]Q · ℓ
2
[p2j]Q,[zpj]Q(P)

Zz+pj

[−z]Q+P · Z
pj

[−z]Q+σ−1(P)


pk−1

r

,

2. If we are on K2 = E2/ ⟨±1⟩ with j(E2) = 1728, then the formula for the super-
optimal ate pairing is

soptb(P,Q) =

 Zz+pj

[−z]Q · vQ(P)
2p2j

Zz
[−z]Q+P · Z

pj

[−z]Q+σ−1(P)


pk−1

r

.

Proof. We only provide the proof of the formula on K1 = E1/ ⟨±1⟩ for simplicity. By
Eqs. (3) and (8), the super-optimal pairing on E1 is

sopt(Q,P) =
(
fz+pj

z,Q (P) · fp
j

z,Q(σ
−1(P)) · ℓ[p2j]Q,[zpj]Q(P)

) pk−1
r

.

Furthermore, from Lemma 2 we know that

div
(
f2z,Q(P)

)
= div

(
gz−Q,P

g[−z]Q,P

)
.

By the definition of the function gQ,P , the square of the pairing can be represented as

sopt(Q,P)2

=

 gz
2+zpj

−Q,P

gz+pj

[−z]Q,P

·
gzp

j

−Q,σ−1(P)

gp
j

[−z]Q,σ−1(P)

· ℓ2[p2j]Q,[zpj]Q(P)


pk−1

r

=

 ℓ2[p2j]Q,[zpj]Q(P)

gz+pj

[−z]Q,P · g
pj

[−z]Q,σ−1(P)


pk−1

r

=

 Zz+2pj

[−z]Q · ℓ
2
[p2j]Q,[zpj]Q(P)

Zz+pj

[−z]Q+P · Z
pj

[−z]Q+σ−1(P)


pk−1

r

which completes the whole proof.

According to the above analysis, we mainly need to compute the coordinates
Z[z]Q, Z[z]Q+P and Z[z]Q+σ−1(P). This can also done by the cubical ladder. Now we
present the following family BW13 for description.

24

Example 5 (BW13 family). From [?], the BW13 family allows computing super-
optimal ate pairing. Besides, it is relevant for the ETNFS attack. Consequently, this
family is also an alternative consideration in pairing-based cryptography. If the CM
discriminant D = 1, the parametrized polynomials r(z), t(z) and p(z) of BW13 are
(see Cyclo (6.2) in [?] for more details)

r(z) = Φ52(z),

t(z) = −z2 + 1,

p(x) =
1

4
(z30 + 2z28 + z26 + z4 − 2z2 + 1).

Additionally, it is satisfied that z2+p ≡ 0 mod r and π7◦σ(Q) = [z]Q for Q ∈ G2. By
Theorem 4 the super-optimal ate pairing on the above family can be obtained through
biextension as

soptb(P,Q) =

 Zz+p7

[−z]Q · vQ(P)
2p

Zz
[−z]Q+P · Z

p7

[−z]Q+σ−1(P)


p13−1

r

.

As for D = 3, the following three polynomials parameterize a family of pairing-friendly
curves with embedding degree k = 13 (see Cyclo (6.6) [?] for more details)

r(z) = Φ78(z),

t(z) = −z14 + z + 1,

p(x) =
1

3
(z + 1)2(z26 − z13 + 1)− z27.

It can be deduced that for Q ∈ G2, we have z2+zp+p2 ≡ 0 mod r and π◦σ(Q) = [z]Q.
From Theorem 4, the formula of the super-optimal on this family is

soptb(Q,P) =

(
Zz+2p
[−z]Q · ℓ

2
[p2]Q,[zp]Q(P)

Zz+p
[−z]Q+P · Z

p
[−z]Q+σ−1(P)

) p13−1
r

.

4 Computational procedure and cost analysis
In this subsection, we provide the details for the implementation of pairing com-
putations through biextension on different families including BLS12, AFG16, BW14
and BW13. A concrete cost analysis is also presented. Moreover, we compare the
corresponding computational costs by employing our implement algorithms to the
approaches in [?] and the classical Miller’s algorithm. According to the analysis in
Section 3, we give the formulas of the pairing computation by utilizing biextension,
for some well-known families of pairing-friendly curves in Table 1.

25

Table 1 The pairing formulas by exploiting biextension with respect to divisor
2(OE). The scalar z and the map ϕ are the parametrized seed and the twisting
isomorphism of the family of the pairing-friendly curves, respectively.

k Curve Pairing formula through biextension

12 BLS12, D = 3 Z
p12−1

r

[z]Q′+ϕ−1(P)

16 AFG16, D = 1
(

Z[z]Q′+π5(Q′)+ϕ−1(P)

Z[z]Q′+π5(Q′)

) p16−1
r

14 BW14, D = 1
(
Zz
[z]Q′+ϕ−1(P) · Z

p4

[z]Q′+σ−1◦ϕ−1(P)

) p14−1
r

14 BW14, D = 3

(
Zz+2p

[z]Q′+ϕ−1(P)
·Zp

[z]Q′+σ−1◦ϕ−1(P)

Zp
π(Q)+[z]Q+P

) p14−1
r

13 BW13, D = 1

(
Zz+p7

[−z]Q
·vQ(P)2p

Zz
[−z]Q+P

·Zp7

[−z]Q+σ−1(P)

) p13−1
r

13 BW13, D = 3

(
Zz+2p

[−z]Q
·ℓ2

[p2]Q,[zp]Q
(P)

Zz+p
[−z]Q+P

·Zp

[−z]Q+σ−1(P)

) p13−1
r

In the following, we provide the detailed computational procedure and cost analysis
for the formulas above.
Notations. Let m, s, and i denote the costs of multiplication, squaring and inversion
in Fp, respectively. Let mk, sk, ik and fk represent the costs of addition, multiplication,
squaring, inversion and Frobenius endomorphism in Fpk , respectively. Denote by m0

the cost of multiplication by a constant. We omit the calculation of the additions over
finite fields for simplicity.

4.1 Computational procedure and cost analysis for ate pairing
on BLS12 family

In this subsection, we focus on the computation process for the Miller’s function
evaluation of the ate pairing on BLS12 family with D = 3. The extension field Fp12

can be constructed as follows

Fp ⇒ Fp2 = Fp[u]/(u
2 − α)⇒ Fp6 = Fp2 [v]/(v3 − u)⇒ Fp12 = Fp6 [w]/(w2 − v),

where α ∈ Fp. From Table 1 we can see that it suffices to compute

ab(P,Q) = Z
p12−1

r

[z]Q′+ϕ−1(P),

26

where ϕ is a degree-6 twist isomorphism

ϕ : E′ → E, (x, y) 7→ (xv, yvw).

The equations of E and E′ are y2 = x3 + b and y2 = x3 + b/u, respectively. As
mentioned in Section 3.2, we can employ the cubical Montgomery ladder (See [?,
Algorithm 4.2]) to derive Z[z]Q′+ϕ−1(P). Additionally, the double-and-add ladder can
also be utilized to compute this coordinate. Compared to the cubical ladder, the
double-and-add ladder allows for one less differential addition calculation in each
doubling step, with an expensive compatible addition in the double-and-add step.
Since the Hamming weight of the parametrized seed z is relatively small, we prefer
the double-and-add ladder for efficiency purpose.

Denote by xDBL(P), xDIFF(P,Q, P − Q) and xADD(P1, P2, P1 + Q,P2 − Q) the
algorithms of x-only point doubling, differential addition and compatible addition
(See Algorithms 5, 6 and 9 for more details) on the Kummer line K = E/ ⟨±1⟩ with
j(E) = 0, respectively. The detailed computational procedure are given in Algorithm
1.

Algorithm 1 The double-and-add ladder to compute Z[n]Q′+ϕ−1(P)

Input: The points Q′ = (XQ′ : ZQ′), ϕ−1(P) = (Xϕ−1(P) : Zϕ−1(P)), Q
′+ϕ−1(P) =

(XQ′+ϕ−1(P) : ZQ′+ϕ−1(P)) ∈ E′. The inverses of the X-coordinates of Q′, ϕ−1(P)
and Q′ − ϕ−1(P): iXQ′ , iXϕ−1(P), iXQ′−ϕ−1(P). The scalar n (n > 2) that needs
to be performed. Assume that n =

∑N
i=0 ni2

i.
Output: The point [n]Q′ + ϕ−1(P) = (X[n]Q′+ϕ−1(P) : Z[n]Q′+ϕ−1(P))

1: R← Q′, S ← Q′ + ϕ−1(P)
2: for i = N − 1 to 0 do ▷ R = [k]Q′, S = [k]Q′ + ϕ−1(P)
3: if ni = 0 then
4: R← xDBL(R)
5: S ← xDIFF(S,R, iXϕ−1(P))
6: else
7: T ← xADD(R,Q′, S,Q′ − ϕ−1(P)) ▷ T = [k + 1]Q′

8: R← xDIFF(T,R, iXQ′)
9: S ← xDIFF(T, S, iXQ′−ϕ−1(P))

10: end if
11: end for
12: return S

Now we analyze the cost for each basic iteration step during the computation of
Z[z]Q′+ϕ−1(P). According to Algorithm 1, we know that it takes a point doubling and a
differential addition to execute in the doubling step (the bit is 0). More precisely, the
point doubling (Line 4 in Algorithm 1) are performed in E′(Fp2), while the differential
addition (Line 5 in Algorithm 1) is executed over the whole extension field Fp12 .

Note that in the phase of the xDBL over Fp2 , the coefficient of E′ is b′ = b/u. If
b is small, multiplying an element in Fp2 by b′ can be roughly regarded as a shifting

27

operation, whose cost is negligible. According to Algorithm 5, the corresponding cost
is

Costdbl = 4m2 + 2s2.
Additionally, if the bit is 0, the multiplication by 1/Xϕ−1(P) can also be regarded as a
shifting operation in xDIFF over Fp12 . Besides, the cost of the operation for multiplying
two elements in Fp2 and Fp12 can be estimated as 6m2. From Algorithm 6 the cost of
Line 5 in Algorithm 1 is

Costdiffbit0 = m12 + 2s12 + 4 · 6m2.

Hence, the cost for a doubling step is

Costbit0 = Costdbl + Costdiffbit0 = m12 + 2s12 + 28m2 + 2s2.

As for the double-and-add step (the bit is 1), it requires one compatible addition,
and two differential additions. One of the differential addition (Line 8 in Algorithm
1) is executed over Fp2 , while the other (Line 9 in Algorithm 1) is over Fp12 . The
corresponding costs are

CostdiffFp2
= 6m2 + 2s2, Costdiffbit1 = 2m12 + 2s12 + 4 · 6m2.

It is worth noting that part of the computation of the compatible addition is carried
out over the extension field Fp12 . From Algorithm 9 we can calculate the cost as follows

Costadd = 4m12 + 3s12 + 28m2 + 3s2.

Based on the above analysis, the computational cost for a double-and-add iteration
step is

Costbit1 = CostdiffFp2
+ Costdiffbit1 + Costadd = 6m12 + 5s12 + 58m2 + 5s2.

Remark 1. The compatible addition makes the coordinates of (XT : ZT) lie in the
full extension field Fp12 . We consider constructing a linear form f : Fp12 → Fp2 (Note
that Fp12 can be regarded as a linear space of Fp2) that fixes the elements in Fp2 . By
acting f on (XT : ZT), we have

(f(XT) : f(ZT)) = (
XT

ZT
· f(ZT) : f(ZT)),

which is over Fp2 since xT = XT

ZT
∈ Fp2 . Through this adjustment, the subsequent

operations can be performed within the subfield Fp2 .

4.2 Computational procedure and cost analysis for optimal
ate pairing on AFG16 family

In this subsection, we explore to derive the concrete computational procedure and
cost analysis for the optimal ate pairing on family AFG16 with D = 1. The field Fp16

28

can be constructed as

Fp ⇒ Fp4 = Fp[u]/(u
4 − α)⇒ Fp8 = Fp4 [v]/(v2 − u)⇒ Fp16 = Fp8 [w]/(w2 − v),

where α ∈ Fp. From Table 1 we can see that it suffices to compute Z[z]Q′+ϕ−1(P),
where ϕ is a degree-4 twist isomorphism

ϕ : E′ → E, (x, y) 7→ (xv, yvw).

The curve E and its twist E′ are y2 = x3 + ax and y2 = x3 + a/u · x, respectively.
Recalled from Table 1 and Example 3, we can deduce that z2 + p5 ≡ 0 mod r, and
the optimal pairing on AFG16 family through biextension can be derived as

optb(P,Q) =

(
Z[z]Q′+π5(Q′)+ϕ−1(P)

Z[z]Q′+π5(Q′)

) p16−1
r

.

In fact, the above formula can be further simplified. By Eq. (3), the optimal pairing
on this curve can be obtained as opt(P,Q) = fz,Q(P)

p16−1
r . Consequently, by utilizing

Eq. (10) it yields that

optb(P,Q) =

(
g[z]Q,P

gzQ,P

) p16−1
r

=

g[z]Q,P · gp
5

Q,P

gz+p5

Q,P


p16−1

r

= Z
p16−1

r

[z]Q′+ϕ−1(P).

Hence, it requires to compute Z[z]Q′+ϕ−1(P), which can also be done by exploiting
Algorithm 1. Additionally, the cost for multiplying two elements in Fp4 and Fp16 can
be estimated as 4m4. In the doubling step, it requires a point doubling over Fp4 and a
differential addition over Fp16 . From Algorithms 7 and 8, the costs for xDBL and xDIFF
on Kummer line K = E′/ ⟨±1⟩ with j(E′) = 1728 over Fp4 and Fp16 respectively are

Costdbl = 2m4 + 3s4, Costdiffbit0 = 2s16 + 3 · 4m4.

Hence, the computational cost for a doubling step is

Costbit0 = Costdbl + Costdiffbit0 = 2s16 + 14m4 + 3s4.

As for the double-and-add step, we need to execute two differential additions (over
Fp4 and Fp16) and a compatible addition. According to Algorithms 8 and 9 the
corresponding costs are

CostdiffFp4
= 4m4 + 2s4, Costdiffbit1 = m16 + 2s16 + 3 · 4m4

Costadd = 4m16 + s16 + 19m4 + s4

29

On this basis, the computational cost for a double-and-add step is

Costbit1 = CostdiffFp4
+ Costdiffbit1 + Costadd = 5m16 + 3s16 + 35m4 + 3s4.

4.3 Implementation detail and cost analysis for super-optimal
ate pairing on BW family

We investigate the concrete computational processes for the super-optimal ate pair-
ings on families BW14 and BW13 through biextension. Besides, we also present the
computational cost analysis. For simplicity, we only provide the technical details for
the pairing-friendly curves with CM-discriminant D = 1.

4.3.1 Super-optimal ate pairings on BW14 family

In this subsection, we first explore to derive the algorithm for the super-optimal ate
pairing on family BW14 with D = 1 utilizing biextension. The field Fp14 can be
constructed as

Fp ⇒ Fp7 = Fp[u]/(u
7 − α)⇒ Fp14 = Fp7 [v]/(v2 − u),

where α ∈ Fp. According to Table 1, the super-optimal ate pairing on BW14 family
with D = 1 through biextension can be derived as

(
Zz
[z]Q′+ϕ−1(P) · Z

p4

[z]Q′+σ−1◦ϕ−1(P)

) p14−1
r

,

where ϕ is a degree-2 twist isomorphism

ϕ : E′ → E, (x, y) 7→ (xu, yuv).

The curve E and its twist E′ are y2 = x3 + ax and y2 = x3 + a/u · x, respectively.
Moreover, as mentioned in Section 2.1, E is equipped with an efficiently-computable
automorphism σ : (x, y) 7→ (−x, βy), where β ∈ Fp satisfies β2 = −1. From the
above formula, we need to obtain two coordinates Z[z]Q′+ϕ−1(P) and Z[z]Q′+σ−1◦ϕ−1(P).
An intuitive approach is to separately compute them by Algorithm 1. Nevertheless,
part of the computational modules can be shared. In the following, we state how to
share the information as far as possible during the computations of Z[z]Q′+ϕ−1(P) and
Z[z]Q′+σ−1◦ϕ−1(P) and provide optimized algorithms for description.

In each iteration of the double-and-add ladder in Algorithm 1, the (X : Z)-
coordinates of [k]Q′ are both required in the phase of deriving Z[z]Q′+ϕ−1(P) and
Z[z]Q′+σ−1◦ϕ−1(P). Consequently, we can accomplish the computation of these two
coordinates in the same ladder, which is presented in Algorithm 2.

After calculating Z[z]Q′+ϕ−1(P) and Z[z]Q′+σ−1◦ϕ−1(P), we execute an exponen-
tiation of z and a Frobenius endomorphism over Fp14 to derive the final result
Zz
[z]Q′+ϕ−1(P) · Z

p4

[z]Q′+σ−1◦ϕ−1(P). In fact, this exponentiation can be simultaneously

30

Algorithm 2 The shared double-and-add ladder
Input: The points Q′ = (XQ′ : ZQ′), ϕ−1(P) = (Xϕ−1(P) : Zϕ−1(P)), Q′ +

ϕ−1(P) = (XQ′+ϕ−1(P) : ZQ′+ϕ−1(P)) and Q′+σ−1 ◦ϕ−1(P) = (XQ′+σ−1◦ϕ−1(P) :
ZQ′+σ−1◦ϕ−1(P)) ∈ E′. The inverses of the X-coordinates of Q′, ϕ−1(P), Q′ −
ϕ−1(P) andQ′−σ−1◦ϕ−1(P): iXQ′ , iXϕ−1(P), iXQ′−ϕ−1(P) and iXQ′−σ−1◦ϕ−1(P).
The scalar n(n > 2) that needs to be performed. Assume that n =

∑N
i=0 ni2

i.
Output: The points [n]Q′ + ϕ−1(P) = (X[n]Q′+ϕ−1(P) : Z[n]Q′+ϕ−1(P)) and [n]Q′ +

σ−1 ◦ ϕ−1(P) = (X[n]Q′+σ−1◦ϕ−1(P) : Z[n]Q′+σ−1◦ϕ−1(P)).
1: R← Q′, S1 ← Q′ + ϕ−1(P), S2 ← Q′ + σ−1 ◦ ϕ−1(P)
2: for i = N − 1 to 0 do
3: if ni = 0 then ▷ R = [k]Q′, S1 = [k]Q′ + ϕ−1(P), S2 = [k]Q′ + σ ◦ ϕ−1(P)
4: R← xDBL(R)
5: S1 ← xDIFF(S1, R,−iXϕ−1(P))
6: S2 ← xDIFF(S2, R,−iXσ−1◦ϕ−1(P))
7: else
8: T ← xADD(R,Q′, S1, Q

′ − ϕ−1(P))
9: R← xDIFF(T,R, iXQ′)

10: S1 ← xDIFF(T, S1, iXQ′−ϕ−1(P))
11: S2 ← xDIFF(T, S2, iXQ′−σ◦ϕ−1(P))
12: end if
13: end for
14: return S1, S2

performed while executing the second ladder by utilizing the idea in [?, ?]. Now we
describe how to generalize this method to our shared cubical ladder.

According to Algorithm 8, we can figure out the relationship between the points
P1, P2 and P1 − P2:

XP1+P2 ·XP1−P2 = (XP1 ·XP2 − aZP1 · ZP2)
2,

ZP1+P2 · ZP1−P2 = (XP1 · ZP2 −XP2 · ZP1)
2.

On this basis, in a iteration we can update X[k]Q′ , Z[k]Q′ , cX[k]Q′+ϕ−1(P) and
cZ[k]Q′+ϕ−1(P) as

X[2k]Q′ , Z[2k]Q′ ← xDBL([k]Q′),

c2X[2k]Q′+ϕ−1(P) = (X[k]Q′ · cX[k]Q′+ϕ−1(P) − aZ[k]Q′ · cZ[k]Q′+ϕ−1(P))
2/Xϕ−1(P),

c2Z[2k]Q′+ϕ−1(P) = (X[k]Q′ · cZ[k]Q′+ϕ−1(P) − cX[k]Q′+ϕ−1(P) · Z[k]Q′)2

if the bit is 0. The case where the bit is 1 follows a similar pattern. By acting a
Frobenius endomorphism of power p10 on the formula for the super-optimal ate pairing
on BW14 family, we deduce that

(
Zz
[z]Q′+ϕ−1(P) · Z

p4

[z]Q′+σ−1◦ϕ−1(P)

) p10(p14−1)
r

=
(
Zzp10

[z]Q′+ϕ−1(P) · Z[z]Q′+σ−1◦ϕ−1(P)

) p14−1
r

31

also defines a bilinear pairing. Consequently, after finishing the first ladder
to obtain Z[z]Q′+ϕ−1(P) we store the information that is also required for
computing Z[z]Q′+σ−1◦ϕ−1(P). Moreover, we initialize T2 = (XT2 : ZT2) as(
Z2p10

[z]Q′+ϕ−1(P) ·XQ′+σ−1◦ϕ−1(P) : Z
2p10

[z]Q′+ϕ−1(P)

)
to execute the second ladder. The

detailed procedure is presented in Algorithm 3. By employing this technique, we
can save almost an exponentiation of z during the computation of Zzp10

[z]Q′+ϕ−1(P) ·
Z[z]Q′+σ−1◦ϕ−1(P).

Algorithm 3 The optimized shared cubical ladder for computing Zzp10

[z]Q′+ϕ−1(P) ·
Z[z]Q′+σ−1◦ϕ−1(P) on BW14 family

Input: The points Q′ = (XQ′ : ZQ′), ϕ−1(P) = (Xϕ−1(P) : Zϕ−1(P)), Q′ +
ϕ−1(P) = (XQ′+ϕ−1(P) : ZQ′+ϕ−1(P)) and Q′+σ−1 ◦ϕ−1(P) = (XQ′+σ−1◦ϕ−1(P) :
ZQ′+σ−1◦ϕ−1(P)) ∈ E′. The inverses of the X-coordinates of Q′, ϕ−1(P), Q′ −
ϕ−1(P) andQ′−σ−1◦ϕ−1(P): iXQ′ , iXϕ−1(P), iXQ′−ϕ−1(P) and iXQ′−σ−1◦ϕ−1(P).
The scalar z > 2 that needs to be performed. Assume that z =

∑N
i=0 ni2

i.
Output: The value Zzp10

[z]Q′+ϕ−1(P) · Z[z]Q′+σ−1◦ϕ−1(P)

1: R← Q′, S1 ← Q′ + ϕ−1(P)
2: tab1 ← [], j ← 0
3: for i = N − 1 to 0 do
4: if ni = 0 then
5: R← xDBL(R), S1 ← xDIFF(S1, R, iXϕ−1(P))
6: tab1[j]← R, j ← j + 1
7: else
8: T ← xADD(R,Q′, S1, Q

′ − ϕ−1(P)), R← xDIFF(T,R, iXQ′)
9: S1 ← xDIFF(T, S1, iXQ−ϕ−1(P)), tab1[j]← T, j ← j + 1

10: end if
11: end for ▷ R = [z]Q′, S1 = [z]Q′ + ϕ−1(P)

12: j ← 0, c← Zp10

S1
, S2 ←

(
c ·XQ′+σ−1◦ϕ−1(P) : c

)
13: for i = N − 1 to 0 do
14: if ni = 0 then
15: S2 ← xDIFF(S2, tab1[j],−iXϕ−1(P)), j ← j + 1
16: else
17: S2 ← xDIFF(tab1[j], S2, c · iXQ′−σ−1◦ϕ−1(P)), j ← j + 1
18: end if
19: end for ▷ S2 = [−z]Q′ + σ−1 ◦ ϕ−1(P)
20: return c · ZS2

Now we make a cost analysis for each iteration step. From Algorithm 3, it needs
a point doubling over Fp7 and a two differential additions over Fp14 in the doubling
step. From Algorithms 7 and 8, the corresponding costs are

Costdbl = 2m7 + 3s7, Costdiffbit0 = 2s14 + 3 · 2m7.

32

Thus the cost of a doubling step is

Costbit0 = Costdbl + 2Costdiffbit0 = 4s14 + 14m7 + 3s7.

As for the double-and-add step, we need to execute three differential additions
and a compatible addition. By Algorithms 8,9 and the analysis in Section 3.3, the
corresponding costs are

CostdiffFp4
= 4m7 + 2s7, Costdiffbit1 = m14 + 2s14 + 3 · 2m7

Costadd = 4m14 + s14 + 11m7 + s7

On this basis, the computational cost for a double-and-add step is

Costbit1 = CostdiffFp4
+ 2Costdiffbit1 + Costadd = 6m14 + 5s14 + 27m4 + 3s7.

4.3.2 The super-optimal ate pairing on BW13 family

In this subsection, we provide the algorithm for the computation of super-optimal ate
pairing on family BW13 with D = 1 exploiting biextension. The field Fp13 can be
constructed as

Fp ⇒ Fp13 = Fp[u]/(u
13 − α),

where α ∈ Fp. Different from the pairing-friendly curves discussed before, there exists
no twist on BW13 since the embedding degree is a prime. From Table 1 we know that
the super-optimal ate pairing on BW13 family with CM-discriminant D = 1 through
biextension can be obtained as

 Zz+p7

[−z]Q · vQ(P)
2p

Zz
[−z]Q+P · Z

p7

[−z]Q+σ−1(P)


p13−1

r

,

where σ is an automorphism

σ : E → E, (x, y) 7→ (−x, βy) with β2 + 1 = 0.

From [?], the double-and-add ladder can also be employed to compute Z[−z]Q+P and
Z[−z]Q+σ−1(P). During the whole ladder, we keep track on the following three values

Z[n]Q, Z[n]Q+P , Z[n]Q+σ−1(P).

In the doubling step (bit = 0), we perform a point doubling and two differential
additions to derive [2n]Q, [2n]Q+P, [2n]Q+σ−1(P) from [n]Q, [n]Q+P and [n]Q+
σ−1(P). While in the double-and-add step (bit ̸= 0), we first execute a compatible
addition (See Algorithm 9 for more details) to obtain [n+1]Q from [n]Q, P, [n]Q+P
and Q−P , then we perform three differential additions to derive [2n+1]Q, [2n+1]Q+
P and [2n+ 1]Q+ σ−1(P). Compared to the cubical ladder, this algorithm executes

33

one less differential addition in each doubling step, but with an expensive double-
and-add step instead. In practical applications, the Hamming weight of the seed is
relatively small. In practical applications, the Hamming weight of the parametrized
seed is relatively small, making the double-and-add algorithm more efficient.

Similarly, by acting p7 on two sides of the above equation, the following formula

 Zzp6+1
[−z]Q · vQ(P)

2p8

Zzp6

[−z]Q+P · Z[−z]Q+σ−1(P)


p13−1

r

also gives a bilinear pairing. The idea in Algorithm 3 can also be leveraged to

obtain the value
(

Z[−z]Q

Z[−z]Q+P

)zp6

· Z[−z]Q+σ−1(P). The computational process is stated
in Algorithm 4. Denote by xADD the function of compatible addition.

According to Algorithm 4, we can see that it requires to perform one point doubling
and two differential additions in a doubling iteration step. All these operations are
performed in Fp13 . It follows from Algorithms 7 and 8 that the costs for xDBL and
xDIFF on K = E/ ⟨±1⟩ over Fp13 are

Costdbl = 2m13 + 3s13, Costdiff = 4m13 + 2s13.

More precisely, some of the differential additions (Lines 5 and 15 in Algorithm 4)
involve the operation of multiplying two elements in Fp and Fp13 , whose cost can be
taken as 13m. Consequently, according to Algorithm 8 the corresponding cost for this
type of differential addition is Costdiffbit0 = 3m13 + 2s13 + 13m.

As for the double-and-add step, we need to execute one compatible addition,
together with three differential additions over Fp13 . Since the coefficient a is small,
from Algorithm 9 the cost of xADD is about

Costadd = 11m13 + 2s13.

On this basis, the computational cost for a basic iteration is

Costcubicbit0 = Costdbl + 2Costdiffbit0 = 8m13 + 7s13 + 26m,

Costcubicbit1 = Costadd + 3Costdiff = 23m13 + 8s13.

4.4 Cost comparison
Building upon the analyses presented in Sections 4.1, 4.2 and 4.3, we make a con-
crete cost comparison for each basic iteration step within the pairing computation
between utilizing Miller’s algorithm and biextension. The cost calculations encompass
the Miller iterations on families BLS12, AFG16, BW14 and BW13. Table 2 illustrates
the computational costs of each step of the Miller loop using biextension on these fam-
ilies, which are carefully measured and presented, taking into account the properties
of each family in the previous subsections.

34

Algorithm 4 The optimized shared double-and-add ladder for computing(
Z[−z]Q

Z[−z]Q+P

)zp6

· Z[−z]Q+σ−1(P) on BW13 family

Input: The points −Q = (XQ : ZQ), P = (XP : ZP), −Q + P = (X−Q+P :
Z−Q+P), −Q + σ−1(P) = (X−Q+σ−1(P) : Z−Q+σ−1(P)), −Q − P = (X−Q−P :
Z−Q−P) and −Q− σ−1(P) = (X−Q−σ−1(P) : Z−Q−σ−1(P)) ∈ E. The inverses of
the X-coordinates of −Q,P , −Q − P and −Q − σ−1(P): iX−Q, iXP , iX−Q−P

and iX−Q−σ−1(P). The scalar z > 2 that needs to be performed. Assume that
z =

∑N
i=0 ni2

i, where ni ∈ {0, 1}.

Output: The value
(

Z[−z]Q

Z[−z]Q+P

)zp6

· Z[−z]Q+σ−1(P)

1: R← −Q, S1 ← −Q+ P
2: tab1 ← [], j ← 0
3: for i = N − 1 to 0 do
4: if ni = 0 then
5: R← xDBL(R), S1 ← xDIFF(S1, R, iXP)
6: tab1[j]← R, j ← j + 1
7: else
8: T ← xADD(R,−Q,S1,−Q− P), R← xDIFF(T,R, iX−Q)
9: S1 ← xDIFF(T, S1, iX−Q−P), tab1[j]← T, j ← j + 1

10: end if
11: end for ▷ R = [−z]Q, S1 = [−z]Q+ P

12: j ← 0, c← (ZR/ZS1)
p6

, S2 ←
(
c ·X−Q+σ−1(P) : c

)
13: for i = N − 1 to 0 do
14: if ni = 0 then
15: S2 ← xDIFF(S2, tab1[j],−iXP), j ← j + 1
16: else
17: S2 ← xDIFF(tab1[j], S2, c · iX−Q−σ−1(P)), j ← j + 1
18: end if
19: end for ▷ S2 = [−z]Q+ σ−1(P)
20: return c · ZS2

Table 2 The computational costs of each iteration step of the Miller loop using
biextension on families BLS12, AFG16, BW14 and BW13. There are two situations in
each iteration step: bit = 0 and bit = 1.

Family bit = 0 bit = 1

BLS12, D = 3 m12 + 2s12 + 28m2 + 2s2 6m12 + 5s12 + 58m2 + 5s2

AFG16, D = 1 2s16 + 14m4 + 3s4 5m16 + 3s16 + 35m4 + 3s4

BW14, D = 1 4s14 + 14m7 + 3s7 6m14 + 5s14 + 27m7 + 3s7

BW13, D = 1 8m13 + 7s13 + 26m 23m13 + 8s13

35

The corresponding relationships between the cost of multiplications and squarings
over each extension field Fpk (k > 1) and those over the base field Fp are illustrated
in Table 3.

Table 3 Computational costs of multiplication and squaring in the finite
field Fpk ([?, Table 9] and [?, Table 7]).

k mk sk

1 m s
2 3m 2m
4 9m 2m2 = 6m
6 18m 2m2 + 3s2 = 12m
7 24m 24s
8 27m 2m4 = 18m
12 54m 2m6 = 36m
13 66m 66s
14 3m7 = 72m 2m7 = 48m
16 81m 2m8 = 54m

By taking s = m in Table 3, we are able to estimate the computational cost required
for each iteration within the Miller loop. The corresponding cost comparison mea-
sured by Fp-multiplications between employing Miller’s algorithm and biextension on
families BLS12, AFG16, BW14 and BW13 is presented in Table 4. As for the cost of
exploiting the Miller’s algorithm, we refer to [?, Table 7] and [?, Table 7] for estimation.

Table 4 The comparison of the corresponding costs of a basic iteration in Miller loop
measured by Fp-multiplications between employing Miller’s algorithm and biextension on
families BLS12, AFG16, BW14 and BW13. Among them, the scenarios in which the
biextension is proved to be more efficient are marked in red.

Family Approach doubling doule-and-add

BLS12, D = 3
biextension 214m 688m

Miller 99m 170m

AFG16, D = 1 [?] biextension 252m 900m
Miller 200m 382m

BW14, D = 1 [?] biextension 600m 1392m
Miller 480m 954m

BW13, D = 1 [?] biextension 1016m 2046m
Miller 1636m 3220m

It follows from Table 4 that for the majority of situations, computing pairings by
utilizing biextension is less efficient than the Miller’s algorithm. Nevertheless, for
some specific cases, particularly where the embedding degree is odd and the CM
discriminant is 1, the computation of pairings by leveraging biextension will be more

36

efficient. Consequently, the utilization of biextension for pairing computation holds
practical application value in certain cryptographic scenarios.

5 Conclusion
In this work, we gave a detailed research for applying biextension to the pairing-
based cryptography. The technique of biextension can be exploited to compute Tate
pairing together with its variants. Overall, the efficiency of computing pairings using
biextension is comparable to that of the Miller algorithm. In some specific cases,
utilizing biextension is even more efficient. Moreover, compared to the Miller’s algo-
rithm, cubical arithmetic is also more suitable for parallel computing. We expect that
upon further optimization of the biextension algorithm, it will emerge as a competi-
tive alternative to the Miller algorithm. The theory of biextension is also expected to
have other applications in pairing-based cryptography.

Acknowledgments
This work is supported by the National Natural Science Foundation of China (No.
12441107) and Guangdong Major Project of Basic and Applied Basic Research (No.
2019B030302008).

References

Appendix A The related algorithms
In this appendix, we present some associated algorithms required in the pairing com-
putation through biextension, including x-only point doubling, differential addition
and compatible addition algorithms on Kummer line K = E/ ⟨±1⟩ over Fpk , with
j(E) = 0 or j(E) = 1728.

Algorithm 5 x-only cubical point doubling on the curve E : y2 = x3 + b

Input: A point P = (XP : ZP) in E(Fpk).
Output: The coordinates (X[2]P : Z[2]P) of the double of P .

1: t1 ← X2
P

2: t2 ← t1 ·XP

3: t3 ← Z2
P

4: t4 ← t3 · ZP

5: t5 ← t2 − 2 · 4b · t4
6: t6 ← 4 · t2 + 4b · t4
7: X[2]P ← XP · t5
8: Z[2]P ← ZP · t6
9: return X[2]P , Z[2]P ▷ Total cost: 4mk + 2sk + 1m0

37

Algorithm 6 x-only cubical differential addition on the curve E : y2 = x3 + b

Input: Two points P = (XP : ZP), Q = (XQ : ZQ) ∈ E(Fpk). The inverse of the
X-coordinate of the differential of P and Q: iXP−Q.

Output: The coordinate (XP+Q : ZP+Q)
1: t1 ← XP + ZP

2: t2 ← XP − ZP

3: t3 ← XQ + ZQ

4: t4 ← XP ·XQ

5: t5 ← ZP · ZQ

6: t6 ← t1 · t3 − t4 − t5
7: t7 ← t2 · t3 − t4 + t5
8: XP+Q ← (−4b · t5 · t6 + t24) · iXP−Q

9: ZP+Q ← t27
10: return XP+Q, ZP+Q ▷ Total cost: 6mk + 2sk + 1m0

Algorithm 7 x-only cubical point doubling on the curve E : y2 = x3 + ax

Input: A point P = (XP : ZP) in E(Fpk).
Output: The coordinates (X[2]P : Z[2]P) of the double of P .

1: t1 ← X2
P

2: t2 ← Z2
P

3: t3 ← a · t2
4: X[2]P ← (t1 − t3)2
5: t4 ← 4XP · ZP

6: Z[2]P ← t4 · (t1 + t3)
7: return X[2]P , Z[2]P ▷ Total cost: 2mk + 3sk + 1m0

Algorithm 8 x-only cubical differential addition on the curve E : y2 = x3 + ax

Input: Two points P = (XP : ZP), Q = (XQ : ZQ) ∈ E(Fpk) with ZP−Q = 1. The
inverse of the X-coordinate of the differential of P and Q: iXP−Q.

Output: The coordinate (XP+Q : ZP+Q)
1: t1 ← XP · ZQ

2: t2 ← XQ · ZP

3: t3 ← (XP + ZP) · (XQ − a · ZQ)− t2 + a · t1
4: t4 ← t23
5: t5 ← (t1 − t2)2
6: XP+Q ← t4 · iXP−Q

7: ZP+Q ← t5
8: return XP+Q, ZP+Q ▷ Total cost: 4mk + 2sk + 2m0

38

Algorithm 9 Compatible addition on the curve E : y2 = x3 + b

Input: Four points P1 = (XP1 : ZP1), P2 = (XP2 : ZP2), P1 + Q = (XP1+Q :
ZP1+Q), P2 −Q = (XP2−Q : ZP2−Q) ∈ E(Fpk) with ZP2 = ZP2−Q = 1.

Output: The coordinate (XP1+P2 : ZP1+P2)
1: t1 ← (XP1 −XP2 · ZP1)

2

2: t2 ← XP2 · ZP1 +XP1

3: t3 ← XP1 ·XP2

4: t4 ← −4b · ZP1 · t2 + t23
5: t5 ← 2(2b · Z2

P1
+ t2 · t3)

6: t6 ← (XP1+Q −XP2−Q · ZP1+Q)
2

7: t7 ← XP2−Q · ZP1+Q +XP1+Q

8: t8 ← XP1+Q ·XP2−Q

9: t9 ← −4b · ZP1+Q · t7 + t28
10: t10 ← 2(2b · Z2

P1+Q + t7 · t8)
11: XP1+P2 ← t4 · t10 − t5 · t9
12: ZP1+P2 ← t4 · t6 − t1 · t9
13: return XP1+P2 , ZP1+P2 ▷ Total cost: 12mk + 6sk + 4m0

Algorithm 10 Compatible addition on the curve E : y2 = x3 + ax

Input: Four points P1 = (XP1 : ZP1), P2 = (XP2 : ZP2), P1 + Q = (XP1+Q :
ZP1+Q), P2 −Q = (XP2−Q : ZP2−Q) ∈ E(Fpk) with ZP2 = ZP2−Q = 1.

Output: The coordinate (XP1+P2 : ZP1+P2)
1: t1 ← XP2 · ZP1

2: t2 ← XP2 ·XP1

3: t3 ← XP2−Q · ZP1+Q

4: t4 ← XP2−Q ·XP1+Q

5: t5 ← (t2 − a · ZP1)
2

6: t6 ← (t4 − a · ZP1+Q)
2

7: t7 ← 2(t3 +XP1+Q) · (t4 + a · ZP1+Q) · t5
8: t8 ← 2(t1 +XP1) · (t2 + a · ZP1) · t6
9: XP1+P2 ← t7 − t8

10: t9 ← (t3 −XP1+Q) · (t2 − a · ZP1)
11: t10 ← (t1 −XP1) · (t4 − a · ZP1+Q)
12: ZP1+P2 ← (t9 + t10) · (t9 − t10)
13: return XP1+P2 , ZP1+P2 ▷ Total cost: 11mk + 2sk + 4m0

39

	Introduction
	Contributions
	Organizations of this paper

	Preliminaries
	Twists and Endomorphisms of Elliptic Curves
	Bilinear Pairings
	Tate pairing and its variants

	Biextensions
	Biextension arithmetic
	Cubical arithmetic for biextensions

	Main Results
	Biextension for the Tate pairing
	Biextension for Ate Pairing
	Biextension for Optimal Ate Pairing
	Biextension for Super-optimal Ate Pairing
	The Super-optimal Ate Pairing on Curves Admitting Twists
	The super-optimal pairing on the curves with the lack of twists

	Computational procedure and cost analysis
	Computational procedure and cost analysis for ate pairing on BLS12 family
	Computational procedure and cost analysis for optimal ate pairing on AFG16 family
	Implementation detail and cost analysis for super-optimal ate pairing on BW family
	Super-optimal ate pairings on BW14 family
	The super-optimal ate pairing on BW13 family

	Cost comparison

	Conclusion
	The related algorithms

