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Abstract. Biextensions associated to line bundles on abelian varieties allows to rein-
terpret the usual Weil, Tate, Ate, optimal Ate, …, pairings as monodromy pairings. We
introduce a cubical arithmetic, derived from the canonical cubical torsor structure of these
line bundles, to obtain an efficient arithmetic of these biextensions.

This unifies and extends Miller’s standard algorithm to compute pairings along with
other algorithms like elliptic nets and theta functions, and allows to adapt these algorithms
to pairings on any model of abelian varieties with a polarisation Φ𝐷, as long as we have
an explicit theorem of the square for 𝐷.

In particular, we give explicit formulas for the arithmetic of the biextension (and cubical
torsor structure) associated to the divisor 𝐷 = 2(0𝐸) on an elliptic curve. We derive very
efficient pairing formulas on certain models of elliptic curves and Kummer lines. Notably
for generic pairings on Montgomery curves, our cubical biextension ladder algorithm to
compute pairings costs only 15𝑀 by bits, which as far as I know is faster than any pairing
doubling formula in the literature.

1. Introduction

Pairing based cryptography has been thoroughly optimised over the years, and the pairings
are set up via parameters and subgroups tailored for speed. For instance the Tate pairing
is restricted to 𝔾1 × 𝔾2 and the embedding degree 𝑑 is often chosen even to benefit from
denominator elimination, we have tools for Miller loop reduction like the Ate and optimal
Ate pairing on 𝔾2 × 𝔾1, and so on.

Nevertheless, pairings are important in other aspects than pairing based cryptography, in
which case we need to compute “generic pairings”. In particular, for “generic pairings”, we
cannot assume that denominator elimination is available, nor that our points 𝑃, 𝑄 ∈ 𝐸[ℓ]
are in specific eigenspaces of the Frobenius.

This is notably the case in isogeny based cryptography, where pairings are an important
tool. They are used to speed up smooth order DLPs on elliptic curves, generate canonical
basis, test the degree of an isogeny, compress messages and signatures, and so on. In these
examples the points 𝑃, 𝑄 are arbitrary points of ℓ-torsion. We refer to [Rei23] for other
examples.

By contrast to pairing based cryptography, pairings are quite slow in the generic case,
usually much slower than a curve scalar multiplication. The best formulas I have been able to
find in the literature, in [BELL10], uses 10𝑀 + 9𝑆 for doubling, and 11.5𝑀 + 3𝑆 by addition.

1.1. Efficient generic pairings on Kummer lines. In this paper, we introduce a novel
algorithm, that is much faster for generic pairings, and is potentially interesting even in the
context of pairing based cryptography. We first give a general framework for any elliptic
curves and even abelian varieties (not necessarily principally polarised).
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Then we focus on the particular case of the Montgomery model. Montgomery elliptic
curves 𝐸, or more precisely their associated Kummer lines 𝐸/ ± 1, have a very efficient scalar
multiplication in the form of the Montgomery ladder, which costs 5𝑀 + 4𝑆 + 1𝑚0 by bits.
Here we denote by 𝑀 amultiplication on the base field, 𝑆 a square, and 𝑚0 amultiplication by
a curve constant (which in the case of aMontgomery curve𝐸 ∶ 𝐵𝑦2 = 𝑥3+𝒜𝑥2+1will be the
multiplication by (𝒜 + 2)/4). We recall that if 𝑃 = (𝑥(𝑃), 𝑦(𝑃)) = (𝑋(𝑃) ∶ 𝑌(𝑃) ∶ 𝑍(𝑃))
in affine (resp. projective) Weierstrass coordinates, its representation on the Kummer line is
𝑥(𝑃) (resp. (𝑋(𝑃) ∶ 𝑍(𝑃))).

Due to their fast arithmetic (Mongomery curves are also birationally equivalent to twisted
Edwards curves, and Curve25519 is also a Montgomery curve), the Montgomery model
is usually used in isogeny based cryptography, which makes it a natural target for generic
pairing formulas.

For the Montgomery model, our pairing framework gives:

Theorem 1.1. Let 𝐸 ∶ 𝐵𝑦2 = 𝑥3 + 𝒜𝑥2 + 1 be an elliptic curve in Montgomery form over a
finite field 𝔽𝑞. Let ℓ be an integer such that 𝜇ℓ ⊂ 𝔽𝑞, 𝑃 ∈ 𝐸[ℓ](𝔽𝑞), 𝑄 ∈ 𝐸(𝔽𝑞). Let 𝜅 = 2 if
ℓ is odd, and 𝜅 = 1 if ℓ is even.

Assume that we are given 𝒜+2
4 , and the coordinates 𝑥(𝑃), 𝑥(𝑄), 𝑥(𝑃+𝑄) and their inverses.

Then one can compute a projective representation of the non reduced Tate pairing (i.e., its
numerator and denominator) to the power 𝜅, 𝑒𝑇,ℓ(𝑃, 𝑄)𝜅, via a cubical biextension ladder
which costs 8𝑀 + 6𝑆 + 1𝑚0 by bits.

A similar algorithm holds for the Weil pairing 𝑒𝑊,ℓ(𝑃, 𝑄)𝜅 when 𝑃, 𝑄 ∈ 𝐸[ℓ], using two
cubical biextension ladders rather than one; and also for the the Ate and optimal Ate pairings
(to the power 𝜅).

Special cases include:
• When ℓ = 2𝑚, or for self pairings when 𝑃 = 𝑄, the cubical biextension ladder costs

5𝑀 + 4𝑆 + 1𝑚0 by bits.
• For batch pairing computations 𝑒𝑇,ℓ(𝑃, 𝑄𝑖), with the same base point 𝑃, after the first

pairing the following ones cost 3𝑀 + 2𝑆 by bits for the ladder.

We remark that our cubical biextension ladder cost is much more in line with the cost of
the Montgomery Kummer line ladder for scalar multiplication, and that it costs less than the
doubling formulas of [BELL10] (which needs to compute additions too!).

An implementation in Sage ofTheorem 1.1 (alongwithmany other algorithms) is available
at [Rob23b].

Remark 1.2.
• Theorem 1.1 is proven in Section 5.2. We also have a variant which uses a more

standard double and add algorithm to compute a biextension exponentiation, where
each doubling costs 5𝑀 + 4𝑆 + 1𝑚0, but with much more expensive additions of
32𝑀+4𝑆+2𝑚0 (there is probably still some room for optimisation for the addition,
as evidenced by the fact that I also have a DoubleAndAdd formula which costs only
17𝑀 + 8𝑆 + 3𝑚0…). This only makes the double and add approach worthwhile
compared to a ladder when using a large enough window (or for ℓ of low Hamming
weight).

• If 𝑃, 𝑄, 𝑃 + 𝑄 are given by their projective (𝑋(𝑃) ∶ 𝑍(𝑃)) coordinates on the
Kummer line, computing 𝑥(𝑃) = 𝑋(𝑃)/𝑍(𝑃), 𝑥(𝑄) = 𝑋(𝑄)/𝑍(𝑄), 𝑥(𝑃 + 𝑄) =
𝑋(𝑃 + 𝑄)/𝑍(𝑃 + 𝑄) and their inverses only requires one inversion and several
multiplications using Montgomery’s batch inversion algorithm.
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• From 𝑥(𝑃), 𝑥(𝑄), 𝑥(𝑃 + 𝑄), one may only recover 𝑃, 𝑄 up to a common sign.
This involves a square root computation to compute (𝑃, 𝑄) and (−𝑃, −𝑄). By
bilinearity, 𝑒(𝑃, 𝑄) = 𝑒(−𝑃, −𝑄), which explains why Theorem 1.1 only needs to
know 𝑃, 𝑄, 𝑃 + 𝑄 on the Kummer line.

• If we are only given 𝑥(𝑃), 𝑥(𝑄) but not 𝑥(𝑃 + 𝑄), we can only recover the sym-
metrised pairings 𝑒(𝑃, 𝑄) + 𝑒(𝑃, 𝑄)−1. This involves doing a cubical biextension
ladder over the degree two algebra 𝔽𝑞[𝑋]/((𝑋 − 𝑥(𝑃 + 𝑄))(𝑋 − 𝑥(𝑃 − 𝑄))).
This is standard, see [GL08] for elliptic curves, [LR16] for abelian varieties, and also
Section 4.7.

• If 𝐸 is given by a twisted Edwards model, there is a birational map to a Montgomery
curve (which by [CGF08] is particularly simple at the level of the Kummer lines:
(𝑌 ∶ 𝑍) ↦ (𝑌 + 𝑍 ∶ 𝑍 − 𝑌)), so we can apply Theorem 1.1.

• During the execution of the standard Miller algorithm for pairings, intermediate
zeroes and poles are introduced, which can result in undefined values. Standard
solutions are to switch the evaluation point (this does not pose a problem in pairing
based cryptography where we have a lot of points, but can be a problem in number
theoretic applications when me might have none), or to use Taylor series expansion
along a uniformiser (see for instance [Rob21a, Lemma 3.5.3]). By contrast, our
cubical biextension ladder is complete, i.e., is always defined, as long as 𝑃, 𝑄, 𝑃+𝑄 ≠
(0 ∶ 1) (see Remark 5.3).

• We have variants of Theorem 1.1 for different models of Kummer lines. For a level 2
theta model, the complexity of the cubical biextension ladder is 7𝑀 + 7𝑆 + 2𝑚0 by
bits (there is a variant with a tradeoff of 1𝑆+2𝑚0 −1𝑀), see Section 5.3. For a short
Weierstrass model, however, the complexity is much worse, at 15𝑀 + 8𝑆 + 6𝑚0 by
bits, see Section 5.4.

1.2. Overview of the algorithm: the practical point of view. The algorithm proceeds
as follows: given the 𝑥-only coordinates 𝑥(𝑃), 𝑥(𝑄), 𝑥(𝑃 + 𝑄), we can use an extended
Montgomery ladder to compute 𝑥(𝑚𝑃), 𝑥(𝑚𝑃 + 𝑄) for any 𝑚 > 0; this costs one doubling
and two differential additions by bits.

In practice, to prevent a division at each step, we want to work with projective coordinates
(𝑋(𝑚𝑃) ∶ 𝑍(𝑚𝑃)) rather than 𝑥(𝑚𝑃). Now in the computer, these projective coordinates
are represented by affine coordinates, 𝑋(𝑚𝑃), 𝑍(𝑚𝑃), and so define a “affine point” 𝑚𝑃 =
(𝑋(𝑚𝑃), 𝑍(𝑚𝑃)) lying “above” 𝑃. We will see in Section 4.5 that 𝑚𝑃 is what we call a cubical
point, and the coordinates (𝑋(𝑚𝑃), 𝑍(𝑚𝑃)) is the affine lift representation of cubical points.
And the interesting thing is that there is a well defined cubical arithmetic, which lift the
projective arithmetic coming from the addition law on 𝐸.

So in our pairing algorithm, we compute cubical points 𝑚𝑃, ̃𝑚𝑃 + 𝑄, using variants of
the standard doubling and differential additions which are carefully tailored to give the
cubical arithmetic. We will call these variants the cubical or affine doubling and differential
additions, and the resulting ladder the cubical ladder or affine ladder.

Now we start with �̃� = (𝑥(𝑃), 1), 𝑄 = (𝑥(𝑄), 1), ̃𝑃 + 𝑄 = (𝑥(𝑃 + 𝑄), 1), and we can
use our cubical ladder to compute ̃ℓ𝑃 + 𝑄, ℓ̃𝑃. Since the cubical arithmetic lift the elliptic
curve arithmetic, and ℓ𝑃 = 0𝐸, the point ̃ℓ𝑃 + 𝑄 differs from 𝑄 by some projective factor
𝜆𝑃,1: ̃ℓ𝑃 + 𝑄 = 𝜆1,𝑃𝑄, and since 𝑄 is normalised we have 𝜆1,𝑃 = 𝑍( ̃ℓ𝑃 + 𝑄). Likewise, ℓ̃𝑃
lies above the neutral point 0𝐸 = (1 ∶ 0) so is of the form ℓ̃𝑃 = (𝑋(ℓ̃𝑃), 0) = 𝜆0,𝑃(1, 0).

An important result on cubical arithmetic is that the (square of) the non reduced Tate pair-
ing is precisely given by the monodromy: 𝑒𝑇,ℓ(𝑃, 𝑄)2 = 𝜆1,𝑃/𝜆0,𝑃 = 𝑍( ̃ℓ𝑃 + 𝑄)/𝑋(ℓ̃𝑃).
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The fact that we compute the square of the usual Tate or Weil pairing is not really a
problem in practice when ℓ is odd (after all for the reduced Tate pairing it suffices to adjust
the final exponentiation). But it loses one bit of information when ℓ is even. Luckily in this
case we can use the action of the theta group 𝐺(2(0𝐸)) on cubical points to recover the usual
Tate and Weil pairing rather than their squares.

Now when we say that we need to carefully adjust the standard doubling and differential
additions formulas on the Montgomery Kummer line to get meaningful cubical arithmetic,
as Algorithms 5.4 and 5.5 shows the usual Montgomery ladder is actually already almost the
correct cubical ladder!ThedoublingAlgorithm5.4 is exactly the same.And aminor difference
in Algorithm 5.5 is an extra factor of 4, which does not matter for pairings (it does matter
for other applications of the cubical arithmetic, like the DLP monodromy leak). The major
difference is as follows: both algorithms compute 𝑋(𝑅+𝑆)𝑋(𝑅−𝑆), 𝑍(𝑅+𝑆)𝑍(𝑅−𝑆) from
𝑋(𝑅), 𝑍(𝑅), 𝑋(𝑆), 𝑍(𝑆), 𝑋(𝑅 − 𝑆), 𝑍(𝑅 − 𝑆) using exactly the same formulas (up to this
factor 4). Now, the usual algorithm, which only cares about projective coordinates, compute
(𝑋(𝑅 + 𝑆) ∶ 𝑍(𝑅 + 𝑆)) = (𝑋(𝑅 + 𝑆)𝑋(𝑅 − 𝑆)𝑍(𝑅 − 𝑆), 𝑍(𝑅 + 𝑆)𝑍(𝑅 − 𝑆)𝑋(𝑅 − 𝑆)).
For the cubical arithmetic, we really want to use (𝑋(𝑅 + 𝑆)𝑋(𝑅 − 𝑆)/𝑋(𝑅 − 𝑆), 𝑍(𝑅 +
𝑆)𝑍(𝑅−𝑆)/𝑍(𝑅−𝑆)), i.e. use two divisions rather than twomultiplications. Luckily, during
the cubical ladder to compute ℓ̃𝑃, ̃ℓ𝑃 + 𝑄, the base points 𝑅 − 𝑆 will be 𝑃, 𝑄, or 𝑃 + 𝑄.
That’s why we need the inverses of 𝑥(𝑃), 𝑥(𝑄), 𝑥(𝑃 + 𝑄) in Theorem 1.1, which the usual
projective Montgomery ladder does not need; once these have been precomputed, the two
divisions by 𝑋(𝑅 − 𝑆) and 𝑍(𝑅 − 𝑆) only become one multiplication by 1/𝑥(𝑅 − 𝑆) (since
our cubical points �̃�, 𝑄, ̃𝑃 + 𝑄 have been normalised to have 𝑍 = 1).

1.3. Overview of the algorithm: the conceptual point of view. Now we need to explain
where this cubical arithmetic which gives pairings come from. We have seen above that our
pairings were given by some kind of monodromy information. The correct framework for
these monodromy considerations is the concept of biextension.

Biextensions were introduced by Mumford in [Mum69], and their theory thoroughly
developed in [Gro72, Exposés VII et VIII]. As mentioned above, biextensions provide the
correct theoretical framework to study pairings on abelian varieties and even abelian schemes,
and as explained by Grothendieck in [Gro72] allows to keep track of pairing informations
on a Néron model even when the special fiber degenerates to a non semi-abelian variety.
Notably, he uses biextensions to constructs a pairing between the connected components of
the special fiber of the Néron model of an abelian variety 𝐴 and the one of its dual ̂𝐴. This
pairing is the key in his proof of the semi-stability theorem that an abelian variety always
admits a semi-abelian Néron model over a finite field extension.

Now, reading through the 179 pages of abstract cohomological diagram chasing argu-
ments of [Gro72, Exposés VII et VIII] might make biextensions seem like a very abstract
theoretical concept, suitable to prove theorems but with no algorithmic applications. This
was the impression of the author until recently. Luckily, Stange in [Sta08; Sta11] showed
the algorithmic applications of biextensions (in the guise of elliptic nets), and in [Sta08,
Theorem 17.1.1] she extends Grothendieck’s monodromy interpretation of the Weil-Cartier
pairing to the case of the Tate pairing.

And in fact, a biextension is something very concrete. Let us detail the case of the biexten-
sion 𝑋(0𝐸) associated to the canonical polarisation (0𝐸) on an elliptic curve 𝐸. Let 𝐷 = (0𝐸),
a biextension element is a tuple (𝑃, 𝑄, 𝑔𝑃,𝑄) ∈ 𝑋(0𝐸) where 𝑃, 𝑄 ∈ 𝐸 and 𝑔𝑃,𝑄 is a function
with divisor 𝐷𝑃+𝑄 + 𝐷0 − 𝐷𝑃 − 𝐷𝑄. Here 𝐷𝑃 denotes the divisor (−𝑃) − (0𝐸) (so 𝐷0 = 0
and we will often drop it in the notations). The unusual convention on the signs will be
explained in Section 1.6. Modulo our non standard sign convention, the functions 𝑔𝑃,𝑄 are
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exactly like the functions 𝜇𝑃,𝑄 we use in pairing based cryptography (which are usually
normalised at infinity).

There are two partial group laws ⋆1, ⋆2 on the biextension, which can be used to compute
a product (𝑃1, 𝑄1, 𝑔𝑃1,𝑄1

) ⋆ (𝑃2, 𝑄2, 𝑔𝑃2,𝑄2
) whenever 𝑄1 = 𝑄2 for ⋆1 and whenever

𝑃1 = 𝑃2 for ⋆2. We refer to Equations (9) and (10) for the definitions. A surprising, but very
useful fact, is that the biextension 𝑋(0𝐸) is symmetric, which means that ⋆2 = 𝜄∗⋆1 where 𝜄
is the swapping of arguments.

Now in the context of the non reduced Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑄), by [Sta08] its mon-
odromy interpretation via biextensions is as follows: take any rational biextension element
(𝑃, 𝑄, 𝑔𝑃,𝑄) above (𝑃, 𝑄) and compute the biextension exponentiation (𝑃, 𝑄, 𝑔𝑃,𝑄)⋆1,ℓ =
(ℓ𝑃, 𝑄, 𝑔ℓ𝑃,𝑄). Since ℓ𝑃 = 0, 𝑔ℓ𝑃,𝑄 has for divisor 𝐷ℓ𝑃+𝑄 + 𝐷0 − 𝐷ℓ𝑃 − 𝐷𝑄 = 0 so is
a constant. This constant is precisely 𝑒𝑇,ℓ(𝑃, 𝑄), or more precisely its class in 𝔽∗

𝑞/𝔽∗,ℓ
𝑞 . In

Section 3.4 we give a monodromy interpretation of the Ate and optimal Ate pairings; this
seems to be new.

To get efficient pairing formulas, we need an efficient representation of biextension el-
ements. The function 𝑔𝑃,𝑄 is completely determined, via its divisor, from 𝑃 and 𝑄, up to
a constant; so is completely determined by its value at any base point 𝑅0. We call this the
evaluation representation, and we will see that in Section 3.3 that the biextension exponenti-
ation in the evaluation representation is precisely Miller’s algorithm. This subsumes Miller’s
algorithm in terms of biextension arithmetic.

To go further, we introduce cubical points and the cubical representation of biextension
elements. A very informal way of describing the cubical representation, which will be made
more rigorous in Section 4.5 is as follows: let (𝑚𝑃, 𝑄, 𝑔𝑚𝑃,𝑄) = (𝑃, 𝑄, 𝑔𝑃,𝑄)⋆1,𝑚. The
function 𝑅 ↦ 𝑔𝑚𝑃,𝑄(𝑅) has for divisor 𝐷𝑚𝑃+𝑄 + 𝐷0 − 𝐷𝑚𝑃 − 𝐷𝑄. We can decompose it
as a product of “cubical functions”:

𝑔𝑚𝑃,𝑄(𝑅) =
𝑍( ̃𝑚𝑃 + 𝑄 + 𝑅)𝑍(�̃�)
𝑍( ̃𝑚𝑃 + 𝑅)𝑍(𝑄 + 𝑅)

where the cubical functions �̃� ↦ 𝑍( ̃𝑚𝑃 + 𝑄 + 𝑅), �̃� ↦ 𝑍(�̃�), �̃� ↦ 𝑍( ̃𝑚𝑃 + 𝑅), �̃� ↦
𝑍(𝑄 + 𝑅), are completely determined from choices of �̃�, 𝑃 + 𝑅, 𝑄 + 𝑅, �̃�, 𝑄, ̃𝑃 + 𝑄 and
are “functions” with divisors 𝐷𝑚𝑃+𝑄, 𝐷0, 𝐷𝑚𝑃, and 𝐷𝑄 respectively. These divisors are not
principal, so these “functions” do not make sense on 𝐸, but they do make sense as cubical
functions.

And a way to represent these cubical functions is via their “evaluation” at a base point 𝑅0.
So we represent the biextension elements (𝑃, 𝑄, 𝑔𝑃,𝑄)⋆1,𝑚 by the cubical points

[ ̃𝑚𝑃 + 𝑅0, ̃𝑄 + 𝑅0; 𝑅0, ̃𝑚𝑃 + 𝑄 + 𝑅0].

In practice, we will use 𝑅0 = 0𝐸 as our base point since it is the most convenient, and our
representation will be given by [𝑚𝑃, 𝑄; ̃0, ̃𝑚𝑃 + 𝑄].

The link with the previous evaluation representation is: 𝑔𝑚𝑃,𝑄(0𝐸) = 𝑍( ̃𝑚𝑃+𝑄)𝑍(0̃)
𝑍(𝑚𝑃)𝑍(𝑄)

).
(Or more rigorously, since 0𝐸 is a zero of order 1 of both sides, this becomes an equality after
dividing both sides by the same uniformiser).

So using cubical points, we have a way to split the functions 𝑔𝑚𝑃,𝑄 as quotients of cubical
functions, and a way to split the evaluation representation 𝑔𝑚𝑃,𝑄(𝑅0) as a quotient of the
evaluation of these cubical functions at 𝑅0 (given in practice by the. value of 𝑍 on suitable
cubical points). We formalize this concept of “cubical points” in Section 4; the interesting
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things as already mentioned is that cubical points admits a cubical arithmetic (which is not
defined everywhere, nor is given by partial group laws).

This cubical arithmetic arises from the notion of cubical torsor structure, which is de-
veloped in [Bre83] and [Mor85, Chapitre 1]. In particular, Breen introduces in [Bre83] the
concept of symmetric biextension, and explains how a cubical torsor structure give sym-
metric biextensions and conversely. For a biextension 𝑋𝐷 associated to a divisor 𝐷 on an
abelian variety 𝐴 with structure sheaf 𝒪𝐴, and interpreting 𝐷 as a line bundle ℒ = 𝒪𝐴(𝐷),
i.e. as a 𝔾𝑚 torsor for the Zariski (or étale or fppf) topology; the theorem of the square
ℒ𝑎+𝑏 ⊗ ℒ ≃ ℒ𝑎 ⊗ ℒ𝑏 (where ℒ𝑎 ≔ 𝑡∗

𝑎ℒ and 𝑡𝑎 ∶ 𝐴 → 𝐴, 𝑃 ↦ 𝑎 + 𝑃 is the translation by 𝑎)
already gives a squared structure. This squared structure induces a canonical cubical torsor
structure, i.e. isomorphisms ℒ𝑎+𝑏+𝑐 ⊗ℒ−1

𝑎+𝑏 ⊗ℒ−1
𝑏+𝑐 ⊗ℒ−1

𝑎+𝑐 ⊗ℒ𝑎 ⊗ℒ𝑏 ⊗ℒ𝑐 ⊗ℒ−1 ≃ 𝒪𝐴
satisfying various natural compatibility conditions; along with higher dimensional structures
(which we won’t need). This cubical torsor structure will be used for our cubical arithmetic,
for which we give explicit formulas, and we use these explicit formulas to recover in Theo-
rem 4.16 the fact from [Bre83;Mor85, Chapitre 1] that the cubical torsor structure determines
the symmetric biextension 𝑋𝐷.

The story so far is: pairings can be interpreted as monodromy informations on biexten-
sions, this monodromy can be computed via biextension exponentiations, and cubical points
and their arithmetic provide a convenient way to compute the biextension arithmetic. This is
starting to get a bit long winded, and we still need an efficient way to describe our cubical
points and their arithmetic. Thanksfully, that’s the last step we will need for Theorem 1.1.
We will see in Section 4 that a cubical point �̃� is abstractly a rigidification of our 𝔾𝑚-torsor
(i.e. line bundle) ℒ at 𝑃. Going back to the case ℒ = 𝒪𝐸(2(0𝐸)) of Kummer lines, we have
the two sections 𝑋, 𝑍 ∈ Γ(2(0𝐸)), which give the projective coordinates (𝑋(𝑃) ∶ 𝑍(𝑃))
of a point 𝑃 ∈ 𝐸. We remark that the function 𝑥 = 𝑋/𝑍 is a well defined function on
the elliptic curve. But via our rigidification �̃� ∶ ℒ(𝑃) → 𝒪𝐸(𝑃) = 𝑘(𝑃) we can interpret
�̃� ∘ 𝑋, �̃� ∘ 𝑍 as elements of 𝑘(𝑃) and so define their “values” at 𝑃, which we will denote by
𝑋(�̃�), 𝑍(�̃�) (since the values depend on the choice of rigidification �̃� above 𝑃; changing this
rigidification �̃� to 𝜆 ⋅ �̃� changes the coordinates by a factor 𝜆: 𝑋(𝜆 ⋅ �̃�) = 𝜆 ⋅ 𝑋(�̃�)). We call
this the affine lift representation of our cubical point �̃�, indeed since 𝑥 = 𝑋/𝑍 is a genuine
function on 𝐸, we have 𝑋(�̃�)/𝑍(�̃�) = 𝑥(𝑃), so (𝑋(�̃�), 𝑍(�̃�)) is a point in 𝔸2 above the
point (𝑋(𝑃) ∶ 𝑍(𝑃)) ∈ ℙ1.

Now as an aside, for our cubical representation, since we use the level 2 coordinates
𝑋, 𝑍 ∈ Γ(2(0𝐸)), this means that we will be working with the biextension 𝑋2(0𝐸) rather
than 𝑋(0𝐸), hence compute the Tate and Weil pairings associated with the divisor 2(0𝐸), This
is where the square factor in Theorem 1.1 comes from, compared to the usual Tate and Weil
pairings associated to (0𝐸). We saw in Section 1.2 that we can still compute the standard
Tate and Weil pairing when ℓ is even even while working on 𝑋2(0𝐸), by using the natural
action of the theta group 𝐺(2(0𝐸)) on it.

1.4. Comparison with elliptic nets and the theta coordinates algorithm. We saw in
Section 1.3 that Miller’s algorithm is just a way to compute the arithmetic in biextensions via
the evaluation representation.

Elliptic nets [Sta08; Sta11] give an alternative approach to compute pairings, and yet
another approach is given through theta functions [LR10; LR15]. It was already remarked in
[Tra14] that these two approaches are very similar, and how theta functions give “abelian
varieties nets”.
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We can go further: both approaches are a way to represent cubical points and their
arithmetic. In fact the theta function approach is precisely the affine lift representation of
cubical points as defined in Section 1.3, when we use as coordinates a basis 𝜃0, … , 𝜃𝑚 of
theta functions.

For the elliptic nets approach, the idea is to work with the biextension 𝑋(0𝐸) and so
cubical points for (0𝐸). We only have (up to a scalar) one global section 𝑍1 ∈ Γ(0𝐸) (such
that in our notations of Section 1.3, 𝑍 = 𝑍2

1), but we can still define the value 𝑍1(�̃�) of a
cubical point. Given cubical points �̃�, 𝑄, ̃𝑃 + 𝑄, the cubical arithmetic allows to compute all

̃𝑚𝑃 + 𝑛𝑄 𝑚, 𝑛 ∈ ℤ, and the associated elliptic net is then 𝑍1( ̃𝑚𝑃 + 𝑛𝑄).
The main drawback of elliptic nets is that 𝑍1(�̃�) is not enough to determine 𝑃. It is

actually quite remarkable though, that thanks to the recurrence relation of elliptic nets, the
data of 𝑍1( ̃𝑚𝑃 + 𝑛𝑄) for small values of 𝑚, 𝑛 is enough to recover all of them. In Section 4.9,
we introduce another representation of cubical points �̃� for (0𝐸), which is simply given by
(𝑃, 𝑍1(�̃�)). This is enough to completely determine 𝑃 (obviously), and also �̃� except when
𝑃 = 0𝐸 because in this case 𝑍1(0𝐸) = 0. We refer to Section 4.9.5 for more details.

In Section 4.9.4, we look at cubical points for 2(0𝐸). We could represent a cubical point
�̃� by (𝑃, 𝑋(�̃�), 𝑍(�̃�)), but since (𝑋(�̃�), 𝑍(�̃�)) is already enough to recover (𝑋(𝑃) ∶ 𝑍(𝑃)),
and since (𝑋(𝑃) ∶ 𝑍(𝑃)) completely determines ±𝑃, the values 𝑋(�̃�), 𝑍(�̃�) are almost
enough to determine �̃�. Also when 𝑃 = 0𝐸, 𝑋( ̃0𝐸) ≠ 0, hence 𝑋, 𝑍 are enough to determine
̃0𝐸 too. As explained in Section 1.2, this is the representation used for Theorem 1.1.

1.5. Applications. The main goal of the paper is to give efficient generic pairing formulas.
But the tools we develop for this, notably the efficient arithmetic of the biextension and
cubical points associated to the divisor 2(0𝐸) on an elliptic curve, have applications beyond
this goal.

In Section 6 we discuss some of these further applications: pairing based cryptography,
radical isogenies, supersingularity testing, and a novel side channel attack which I call the
monodromy leak. In particular, while pairings only use the biextension arithmetic, the
monodromy leak application of Section 6.4 really needs the full power of the refined cubical
arithmetic.

1.6. Conventions and notations. I had two choices when writing this paper. First, develop
the general theory of cubical arithmetic for abelian varieties (or even abelian schemes), and
then specialize only at the end to elliptic curves. But I feared this would seem too abstract.

The second approach would have been to restrict to elliptic curves only and develop only
the biextension and cubical arithmetic associated to the divisors (0𝐸) and 2(0𝐸). But for
the applications mentioned in Section 1.5, I really wanted to develop the general theory of
cubical arithmetic over an abelian variety. Besides, isogeny based cryptography uses higher
dimensional isogenies more and more, so deriving efficient formulas in any dimension
seemed worthwhile.

In the end, I opted for a mix of the two approaches: either first describing the general
case and then specializing to elliptic curves, or only detailing the case of elliptic curves and
then quickly indicating the generalisation to abelian varieties (or let the reader work them
out). This comes at a cost of some redundancy in the exposition, but I hope it will make the
exposition more accessible.

I also tried to prove (almost) all statements using the explicit formulas given in this paper,
rather than resorting to abstract proofs. Notably, I give explicit formula based proofs that the
biextension Weil and Tate pairings are the standard Weil and Tate pairings (up to a sign),
and that the cubical arithmetic induces the biextension arithmetic.
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One particular conundrum I had in the exposition is the following. On abelian varieties, it
is much more convenient to use the language of line bundles ℒ than the language of divisors
𝐷. This is because we are almost always only interested in the isomorphism class of ℒ, and it
is much easier to work with line bundles up to isomorphisms than to work with divisors up
to linear equivalences.

On the other hand, in the case of elliptic curves, divisors have a very convenient represen-
tation as a (formal) sum of points (we don’t have such convenient representations for abelian
varieties). Since pairings on elliptic curves are my main application, I made the choice to
work (as much as possible) with divisors.

A side effect is that I need different sign conventions than usual. Indeed, given a line bundle
ℒ on an abelian variety 𝐴, the polarisation associated to ℒ is Φℒ ∶ 𝐴 → 𝐴, 𝑃 ↦ 𝑡∗

𝑃ℒ ⊗ℒ−1,
where 𝑡𝑃 is the translation by 𝑃. If ℒ is induced by a divisor 𝐷, we can rewrite Φℒ as
Φ𝐷 ∶ 𝐴 → 𝐴, 𝑃 ↦ 𝑡∗

𝑃𝐷−𝐷 = 𝑡−𝑃𝐷−𝐷 (or rather its linear equivalence class). In particular,
the canonical polarisation Φ(0𝐸) associated to 𝐸 on an elliptic curve is 𝑃 ↦ (−𝑃) − (0𝐸).
Notice the sign change compared to the usual identification of 𝐸 and �̂�! But the one we
use in this article is really the correct one according to [Con04, Example 2.5]. To mitigate
this, we introduce the following notation: 𝐷𝑃 ≔ Φ𝐷(𝑃) = 𝑡∗

𝑃𝐷 − 𝐷. This notation has the
convenient advantage that a cycle 𝑍 = ∑ 𝑛𝑖(𝑃𝑖) on an abelian variety is mapped through
Φ𝐷 to the divisor ∑ 𝑛𝑖𝐷𝑃𝑖

(we also have 𝐷0 = 0), so we can use a cycle notation for both
elliptic curves and abelian varieties.

An apology: I gave up on using the language of divisors in Section 4 to define cubical
points. Indeed a cubical point is a rigidification of the line bundle ℒ at 𝑃. This can be
rephrased in terms of a choice of a non zero local section evaluated at 𝑃, which can also be
described using the language of divisors, but the formalism of rigidifications is much more
practical, so I switched languages.

1.7. Genesis and thanks. The starting point of this research project was the wonderful
paper [CHM+23]. In this paper, the authors use self pairings to find weak instances of class
group action isogeny based cryptography.

In a nutshell: assume thatEnd(𝐸) = ℤ[√𝛼] is of discriminant Δ and 𝛼 is totally imaginary.
Then the Weil-Cartier pairing associated to 𝛼 is a non degenerate pairing 𝑒𝛼 ∶ 𝐸[𝛼]×𝐸[ ̃𝛼] →
𝜇Δ. Furthermore, 𝐸[𝛼] is cyclic (otherwise 𝛼 would be divisible by an integer), and ̃𝛼 = 𝛼 =
−𝛼, so 𝐸[𝛼] = 𝐸[ ̃𝛼]. We obtain a non degenerate self pairing 𝑒𝛼 on the cyclic group 𝐸[𝛼]
which can be used to recover torsion point informations for isogenies arising from the class
group action. (In [CHM+23] the authors mainly use the “generalised 𝛼-Tate pairing” rather
than the 𝛼-Weil-Cartier pairing, but the overall approach is the same.)

An open question in that paper is how to compute this 𝛼-Weil-Cartier pairing and the
generalised 𝛼-Tate pairing, without going back to the usual Weil and Tate pairings (which
can be costly).

At that time, I knew that the arithmetic of theta groups naturally gave rise to the Weil and
Tate pairings, so I tried to extend [CHM+23] by looking at theta group informations (not
necessarily coming from self pairings) preserved by class group isogenies. This is how I first
found the monodromy leak attack of Section 6.4, formulated at the time in term of canonical
lift of points of ℓ-torsion in the theta group rather than in terms of cubical points. I only
found out afterwards that Lauter and Stange already had very similar ideas much earlier in
[LS08], using the elliptic nets framework.

The key idea to rephrase the theta group approach in terms of biextensions (biextensions
are a convenient way to package families of theta groups) is due to Stange, who mentioned
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during a discussion last year with the authors of [CHM+23] and myself that elliptic nets
were a way to compute the biextension arithmetic, as she had proven in [Sta11, Chapter 15].

Thanks to my work with David Lubicz in [LR10; LR15] on computing pairings via theta
functions, I quickly realised that we could define “algebraic Riemann relations” (see Sec-
tion 4.1) which could also be used to compute the arithmetic of biextensions. Like in our
work where we used affine lift of theta points, I could define affine lift of points for anymodels
of abelian varieties, use the algebraic Riemann relations to encode some sort of arithmetic on
these affine points, and represent biextension elements via these affine points. Working out
the formulas, I found out this generalised not only the theta coordinates approach but also
the elliptic nets approach (see Sections 1.4 and 4.9.5), so I knew I was on the right path. I also
implemented Theorem 1.1 in Sage in September 2023, and it did indeed compute correctly
the pairings (and much faster than Sage’s default implementation)! Trying to make sense of
the corresponding arithmetic of these affine lifts of projective points, I found out, thanks to
the work of [Bre83] and [Mor85, Chapitre 1], that the correct notion was the cubical torsor
structure.Thanks to these firm existing theoretical foundations, extending the work of [Sta11;
LR10; LR15] to the general case of cubical points and cubical arithmetic was straightforward.

In summary, this paper owes a lot to Stange and her PhD on elliptic nets, and obviously to
Lubicz through our collaboration on [LR10; LR15]. I also benefited from various discussions
with Stange and the authors of [CHM+23], notably with Castryck and Vercauteren; and also
with Reijnders about [Rei23] and with Guillevic on the current state of the art on pairing
based cryptography. Notably, I had not realised before [Rei23] that generic pairings in isogeny
based cryptography were so slow; this motivatedme to writeTheorem 1.1 in theMontgomery
model.

I also thank the authors of [CLZ24] for sending me a preliminary version of their pair-
ing formulas. Lastly, special thanks are due to Giacomo Pope who converted my toy Sage
implementation from [Rob23b] to an efficient Rust implementation.

We thank Jianming Lin for pointing several typos in the formulas.

1.8. Related work. Asmentioned, the best generic pairings formula I found in the litterature
are from [BELL10]. The paper [Rei23] by Reijnders focus specifically on pairings for isogeny
based cryptography.

There has been relatively recent work in [DZZZ22; DZZ23] to optimize pairing formula for
pairing based cryptography in the odd embedding degree case, which is interesting because
this case is closer to the generic case than the even embedding degree case with denominator
elimination. This work has been applied to pairings for isogeny based cryptography in
[LWXZ23] and very recently the paper [CLZ24] gave fast generic pairing formulas for
supersingular curves over 𝔽𝑝2 via Miller’s algorithm in modified Jacobian coordinates, with
10𝑀 + 7𝑆 for a Miller doubling and 20𝑀 + 11𝑆 for a Miller double and add.

1.9. Outline. We first define the arithmetic of theta groups in Section 2, and how to recover
pairings from this arithmetic. We then move on to the theory of biextensions in Section 3,
which are a convenient way to package families of theta groups, we also reformulate pairings
in terms of monodromy on biextensions. We then introduce cubical points and the cubical
arithmetic as a refinement of the biextension arithmetic in Section 4, and we reframe yet
again pairings using cubical points. In Section 5 we specialize our formulas to the case of
pairings on Kummer lines, and prove Theorem 1.1. We briefly mention some applications in
Section 6 and give some perspectives in Section 7.

Warning: This paper was supposed to be written soon after my talk on this subject at
the Leuven Isogeny Days 4 in October 2023. However, this plan was sidetracked by the
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discovery of the Clapotis algorithm, and its applications. Meanwhile, several people have
already started using the cubical arithmetic formulas for faster pairing computations in
isogeny based cryptography. This current version of the article is a preliminary version
that I am publishing as a preprint paper because a larger diffusion of the algorithm to the
community is probably worth it. Beside I could not resist the idea of publishing a preliminary
version on April first. Beware that there are probably many typos (I mean April fool’s!) still.

Update for April 16: the paper is now complete; apart from the many remaining typos I
still need to correct.

2. Theta groups arithmetic

We first introduce theta groups of elliptic curves in Section 2.1 and how to use the theta
group arithmetic to compute the usual Weil and Tate pairings associated to the divisor (0𝐸)
on elliptic curves in Section 2.2. We briefly describe the general case of pairings on an abelian
variety with a polarisation Φ𝐷 in Section 2.3. As mentioned in Section 1, this general case
of handling non necessarily principally polarised abelian varieties will be useful even in
the context of elliptic curves, because when ℓ is even, we can use the theta group action of
𝐺(2(0𝐸)) to compute the standard Weil and Tate pairing rather than their square even while
working with the non principal polarisation 2(0𝐸).

2.1. Theta groups on elliptic curves. Biextensions are families of theta groups. We first
define theta groups and explain their link with pairings, before introducing biextensions.
For much more details on theta groups we refer to Mumford [Mum70; Mum66].

Let 𝑘 be a field and 𝐸/𝑘 be an elliptic curve, and 𝐷 a divisor of degree 𝑛. There is an
associated polarisation Φ𝐷 ∶ 𝐸 → �̂�, 𝑃 ↦ 𝑡∗

𝑃𝐷 − 𝐷 = 𝑡−𝑃𝐷 − 𝐷 ≃ 𝐷 − 𝑡𝑃𝐷, whose kernel
is KerΦ𝐷 = 𝐸[𝑛]. (If 𝑛 = 0, we make the convention that 𝐸[0] = 𝐸.) The theta group
𝐺(𝐷) is an extension of 𝐸[𝑛] by 𝔾𝑚, defined as follows: its elements are given by couples
(𝑃, 𝑔𝑃) ∈ 𝐺(𝐷) where 𝑃 ∈ KerΦ𝐷 and 𝑔𝑃 is any function whose divisor is the principal
divisor 𝑡∗

𝑃𝐷 − 𝐷.
For simplicity, we will often refer to the element (𝑃, 𝑔𝑃) ∈ 𝐺(𝐷) simply by the function

𝑔𝑃. We will also say that (𝑃, 𝑔𝑃) ∈ 𝐺(𝐷)(𝑘) if 𝑃 ∈ 𝐸(𝑘) and 𝑔𝑃 is defined over 𝑘. In the
special case where 𝑃 = 0𝐸, the divisor 𝑡∗

0𝐸
𝐷 − 𝐷 is trivial, so 𝑔0𝐸

is a constant.
The (non commutative) group law is given by

(1) (𝑃, 𝑔𝑃) ⋅ (𝑄, 𝑔𝑄) = (𝑃 + 𝑄, 𝑔𝑃(⋅)𝑔𝑄(⋅ + 𝑃)).
There is also a canonical action of 𝐺(𝐷) on Γ(𝐷), given for 𝑠 ∈ Γ(𝐷) (i.e. a function such
that div 𝑠 + 𝐷 ≥ 0) by

(2) (𝑃, 𝑔𝑃) ⋅ 𝑠 = 𝑔𝑃(⋅)𝑠(⋅ + 𝑃).
Given two divisors 𝐷1, 𝐷2, and an element 𝑃 ∈ 𝜋1(𝐺(𝐷1)) ∩ 𝜋2(𝐺(𝐷2)), where

𝜋 ∶ 𝐺(𝐷) → 𝐸[deg𝐷] is the projection map (𝑃, 𝑔𝑃) ↦ 𝑃, we have a morphism:

(3) (𝑃, 𝑔1,𝑃) ∈ 𝜋−1
1 (𝑃), (𝑃, 𝑔2,𝑃) ∈ 𝜋−1

2 (𝑃) ↦ (𝑃, 𝑔1,𝑃𝑔2,𝑃) ∈ 𝐺(𝐷1 + 𝐷2).
Likewise, if 𝐷1 ∼ 𝐷2, we have an isomorphism 𝐺(𝐷1) ≃ 𝐺(𝐷2). Namely, if 𝛼 is any

function with divisor 𝐷2 − 𝐷1, this isomorphism is given by

(4) (𝑃, 𝑔𝑃) ∈ 𝐺(𝐷1) ↦ (𝑃, 𝑔𝑃(⋅)𝛼(⋅ + 𝑃)/𝛼(⋅)) ∈ 𝐺(𝐷2).
We remark that the isomorphism does not depend on the choice of 𝛼.

If 𝑐 ∈ 𝐸, we also have an isomorphism:

(5) (𝑃, 𝑔𝑃) ∈ 𝐺(𝐷) ↦ (𝑃, 𝑡∗
𝑐𝑔𝑃) ∈ 𝐺(𝑡∗

𝑐𝐷).
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Example 2.1. Let 𝐷ℓ = ℓ(0𝐸) for ℓ ∈ ℕ∗, then KerΦ𝐷 = 𝐸[ℓ]. An element (𝑃, 𝑔𝑃) ∈
𝐺(𝐷ℓ) above 𝑃 ∈ 𝐸[ℓ] is a function 𝔣ℓ,𝑃 (not necessarily normalised) with divisor ℓ(−𝑃) −
ℓ(0𝐸).

This is (up to a change of sign in 𝑃) the usual Miller function involved in the Tate and
Weil pairing. Let us explain how to recover the Weil pairing in the context of the theta group
𝐺(𝐷ℓ).

Given another element (𝑄, 𝑔𝑄) = 𝔣ℓ,𝑄 ∈ 𝐺(𝐷ℓ), the failure of the commutativity of the
group lawof𝐺(𝐷ℓ) ismeasured by the commutator [(𝑃, 𝑔𝑃), (𝑄, 𝑔𝑄)] = (𝑃, 𝑔𝑃)(𝑄, 𝑔𝑄)(𝑃, 𝑔𝑃)−1(𝑄, 𝑔𝑄)−1.
We compute (𝑔𝑃 ⋅𝑔𝑄)(𝑥) = 𝔣ℓ,𝑃(𝑥)𝔣ℓ,𝑄(𝑥+𝑃) while (𝑔𝑄 ⋅𝑔𝑃)(𝑥) = 𝔣ℓ,𝑄(𝑥)𝔣ℓ,𝑃(𝑥+𝑄). We

thus have 𝑔𝑃 ⋅ 𝑔𝑄 = 𝜆𝑔𝑄 ⋅ 𝑔𝑃 with 𝜆 = 𝔣ℓ,𝑃((𝑥)−(𝑥+𝑄)))
𝔣ℓ,𝑄((𝑥)−(𝑥+𝑃)) , for any 𝑥. Here we use the usual con-

vention for a function 𝑓 evaluated on a divisor 𝐷 = ∑ 𝑛𝑖(𝑃𝑖) of degree 0: 𝑓 (𝐷) = ∏ 𝑓 (𝑃𝑖)𝑛𝑖 .
We recover the usual formula for the Weil pairing 𝑒𝑊,ℓ (up to a sign depending on the sign
convention), which is not surprising since Mumford proves in [Mum70, p. 183] that the
commutator pairing is the Weil pairing.

2.2. Theta groups and pairings for elliptic curves. We will be mainly interested in the case
where 𝐷 is a degree zero divisor. In this case, KerΦ𝐷 = 𝐸, the commutator pairing is trivial,
so 𝐺(𝐷) is a commutative extension of 𝐸 by 𝔾𝑚.

Up to linear equivalence, we can assume that 𝐷 is of the form 𝐷 = 𝐷𝑄 ≔ Φ(0𝐸)(𝑄) =
𝑡∗
𝑄(0𝐸) − (0𝐸) = (−𝑄) − (0𝐸) ∈ �̂� ≔ Pic0(𝐸). The theta group 𝐺(𝐷𝑄) thus gives an
element of Ext1(𝐸, 𝔾𝑚), which gives an explicit isomorphism �̂� ≃ Ext1(𝐸, 𝔾𝑚), 𝐷𝑄 ↦
𝐺(𝐷𝑄). Using this isomorphism and the long exact sequence of cohomology, we obtain a
canonical isomorphism between Ker 𝑓, 𝑓 ∶ 𝐸1 → 𝐸2 an isogeny, and the Cartier dual of the
kernel Ker ̂𝑓 of the dual isogeny. This isomorphism induces the usual Weil-Cartier pairing,
and the standard Weil pairing is the Weil-Cartier pairing associated with the polarisation
Φℓ(0𝐸) = ℓΦ(0𝐸), where Φ(0𝐸) ∶ 𝑃 ↦ (−𝑃) − (0𝐸) ∼ (0𝐸) − (𝑃) is the canonical principal
polarisation.

Remark 2.2. The formula for Φ(0𝐸) might seem to be the opposite of the usual isomorphism
taken for 𝐸 ≃ �̂�, but is the correct one such that the pullback of the Poincare bundle gives
an ample line bundle (see [Con04, Example 2.5]). Since we want our arguments to apply “as
is” to abelian varieties, we will stick with this choice. Unfortunately, this means that our sign
convention on divisors will be the opposite of the usual ones taken in the pairing literature,
for instance our function 𝜇𝑃,𝑄 will be the normalised (at infinity) function with divisor
(−𝑃 − 𝑄) + (0𝐸) − (−𝑃) − (−𝑄). If 𝝁𝑃,𝑄 is the usual normalised function with divisor
(𝑃) + (𝑄) − (𝑃 + 𝑄) − (0𝐸), we have 𝜇𝑃,𝑄(𝑅) = 1/𝝁𝑃,𝑄(−𝑅).

We now explain how to recover the Weil and Tate pairing from our theta groups 𝐺(𝐷𝑄).
If 𝑃 ∈ 𝐸, we will denote by 𝑔𝑃,𝑄 ∈ 𝐺(𝐷𝑄) an element in the theta group above 𝑃; its divisor
will then be 𝑡∗

𝑃𝐷𝑄 − 𝐷𝑄 = 𝐷𝑃+𝑄 − 𝐷𝑃 − 𝐷𝑄 = (−𝑃 − 𝑄) + (0𝐸) − (−𝑃) + (−𝑄). The
function 𝑔𝑃,𝑄 then also gives an element of 𝐺(𝐷𝑃) above 𝑄.

Now, given 𝑃1, 𝑃2 ∈ 𝐸 and two functions 𝑔𝑃1,𝑄, 𝑔𝑃2,𝑄 ∈ 𝐺(𝐷𝑄) above 𝑃1, 𝑃2 respec-
tively, we have two possible group operations. The first one is given by the multiplication

(6) (𝑃1, 𝑔𝑃1,𝑄) ⋅ (𝑃2, 𝑔𝑃2,𝑄) = (𝑃1 + 𝑃2, 𝑔𝑃1,𝑄(⋅)𝑔𝑃2,𝑄(⋅ + 𝑃1))
in the theta group 𝐺(𝐷𝑄). The second one is to interpret (𝑄, 𝑔𝑃𝑖,𝑄) as an element of 𝐺(𝐷𝑃𝑖

)
above 𝑄 and use Equation (3) to get an element (𝑄, 𝑔𝑃1,𝑄(⋅)𝑔𝑃2,𝑄(⋅)) above 𝑄 in the theta
group 𝐺(𝐷𝑃1

+ 𝐷𝑃2
). Now 𝐷𝑃1

+ 𝐷𝑃2
≃ 𝐷𝑃1+𝑃2

, so if 𝑔𝑃1,𝑃2
is any function with divisor

𝐷𝑃1+𝑃2
−𝐷𝑃1

−𝐷𝑃2
= (−𝑃1−𝑃2)+(0𝐸)−(−𝑃1)−(−𝑃2) then by Equation (4)we have an
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isomorphism 𝐺(𝐷𝑃1
+ 𝐷𝑃2

) ≃ 𝐺(𝐷𝑃1+𝑃2
), (𝑄, 𝑔𝑄) ↦ (𝑄, 𝑔(⋅)𝑔𝑃1,𝑃2

(⋅ + 𝑄)/𝑔𝑃1,𝑃2
(⋅)).

Composing this isomorphism with the map above, we get an element (𝑄, 𝑔) ∈ 𝐺(𝐷𝑃1+𝑃2
)

which induces an element (𝑃1 + 𝑃2, 𝑔𝑃1+𝑃2,𝑄) ∈ 𝐺(𝐷𝑄). This gives us the second group
operation:

(7) (𝑃1, 𝑔𝑃1,𝑄) ⋅′ (𝑃2, 𝑔𝑃2,𝑄) = (𝑃1 + 𝑃2, 𝑔𝑃1,𝑄(⋅)𝑔𝑃2,𝑄(⋅)
𝑔𝑃1,𝑃2

(⋅ + 𝑄)
𝑔𝑃1,𝑃2

(⋅) ) .

It is not obvious, but Equations (6) and (7) actually give the same group law:

Proposition2.3. (𝑃1, 𝑔𝑃1,𝑄)⋅′(𝑃2, 𝑔𝑃2,𝑄) = (𝑃1, 𝑔𝑃1,𝑄)⋅(𝑃2, 𝑔𝑃2,𝑄) = (𝑃1+𝑃2, 𝑔𝑃1+𝑃2,𝑄).

Proof. This follows from the unicity of the biextension associated to the principal polarisation
Φ(0𝐸), see Proposition 3.4 and Equation (11). �

Corollary 2.4. Let (𝑃, 𝑔𝑃,𝑄) ∈ 𝐺(𝐷𝑄).Then (𝑃, 𝑔𝑃,𝑄)ℓ = (ℓ𝑃, 𝑔𝑃,𝑄(⋅)ℓ𝔣ℓ,𝑃((⋅+𝑄)−(⋅)),
where 𝔣ℓ,𝑃 is a function with divisor 𝐷ℓ𝑃 − ℓ𝐷𝑃 = −ℓ(−𝑃) + (−ℓ𝑃) + (ℓ − 1)(0𝐸).

Proof. By Proposition 2.3, we can use Equation (7) rather than Equation (6) when computing
(𝑃, 𝑔𝑃,𝑄)ℓ. We obtain (𝑃, 𝑔𝑃,𝑄)ℓ = (ℓ𝑃, 𝑔𝑃,𝑄(⋅)ℓ(𝑔𝑃,𝑃𝑔𝑃,2𝑃 ⋯ 𝑔𝑃,(ℓ−1)(𝑃))((⋅ + 𝑄) − (⋅))
and we observe that (𝑔𝑃,𝑃𝑔𝑃,2𝑃 ⋯ 𝑔𝑃,(ℓ−1)(𝑃)) has for divisor 𝐷ℓ𝑃 − ℓ𝐷𝑃. �

Corollary 2.5. If 𝑃, 𝑄 ∈ 𝐸[ℓ], take any (𝑃, 𝑔𝑃,𝑄) ∈ 𝐺(𝐷𝑃), and let 𝜆𝑃 the constant such
that (𝑃, 𝑔𝑃,𝑄)ℓ = (0𝐸, 𝜆𝑃) (alternatively, (𝑃, 𝑔𝑃,𝑄)ℓ+1 = (𝑃, 𝜆𝑃𝑔𝑃,𝑄)). Likewise, let 𝜆𝑄 be
the constant such that (𝑄, 𝑔𝑃,𝑄)ℓ = (0𝐸, 𝜆𝑄), where (𝑄, 𝑔𝑃,𝑄) ∈ 𝐺(𝐷𝑄). Then (up to a
sign), the Weil pairing 𝑒𝑊,ℓ(𝑃, 𝑄) = 𝜆𝑃/𝜆𝑄.

Assume that 𝑘 = 𝔽𝑞, 𝜇ℓ ⊂ 𝔽𝑞, and let 𝑄 ∈ 𝐸(𝔽𝑞), 𝑃 ∈ 𝐸[ℓ](𝔽𝑞). Take any (𝑃, 𝑔𝑃,𝑄) ∈
𝐺(𝐷𝑄)(𝔽𝑞). Then (𝑃, 𝑔𝑃,𝑄)ℓ = (0𝐸, 𝜆𝑃) where 𝜆𝑃 is (up to a sign) the non reduced Tate
pairing 𝑒𝑇,ℓ(𝑃, 𝑄). And (𝑃, 𝑔𝑃,𝑄)𝑞−1 = (0𝐸, 𝜆′

𝑃) (alternatively, (𝑃, 𝑔𝑃,𝑄)𝑞) = (𝑃, 𝜆′
𝑃𝑔𝑃,𝑄)),

where 𝜆′
𝑃 is the reduced Tate pairing.

Proof. This follows from Corollary 2.4 and the usual formulas for the Tate and Weil pairing.

Indeed,we have𝜆𝑃/𝜆𝑄 = 𝑔𝑃,𝑄(⋅)ℓ𝔣ℓ,𝑃((⋅+𝑄)−(⋅))
𝑔𝑃,𝑄(⋅)ℓ𝔣ℓ,𝑄((⋅+𝑃)−(⋅)) = 𝑒𝑊,ℓ(𝑃, 𝑄), and𝜆𝑃 = 𝑔𝑃,𝑄(⋅)ℓ𝔣ℓ,𝑃((⋅+

𝑄) − (⋅)) is equivalent to the non reduced Tate pairing 𝔣ℓ,𝑃((⋅ + 𝑄) − (⋅)) since 𝑔𝑃,𝑄 is
assumed to be rational.

For the last statement, we remark that (𝑃, 𝑔𝑃,𝑄)𝑞−1 = ((𝑃, 𝑔𝑃,𝑄)ℓ)(𝑞−1)/ℓ = (0𝐸, 𝜆𝑃)(𝑞−1)/ℓ =
(0𝐸, 𝜆(𝑞−1)/ℓ

𝑃 ).
As a corollary, we see that 𝜆𝑃/𝜆𝑄 does not depends on the choice of 𝑔𝑃,𝑄, and likewise

for the class of 𝜆𝑃 modulo 𝔽∗,ℓ
𝑞 . This can be directly seen as follows: changing 𝑔𝑃,𝑄 by 𝜆𝑔𝑃,𝑄

changes 𝜆𝑃 to 𝜆ℓ𝜆𝑃. �

Example 2.6 (Radical isogenies). Let 𝑃 ∈ 𝐸[ℓ] of exact order ℓ, and consider the isogeny
𝜙 ∶ 𝐸 → 𝐸′ = 𝐸/⟨𝑃⟩. By descent theory [Mum66, Proposition 1 p. 291], the divisor 𝐷𝑄
descends to 𝐸′ (i.e., there exists some rational degree 0 divisor 𝐷′ such that 𝜙∗𝐷′ = 𝐷𝑄)
if and only if the kernel Ker𝜙 lifts to a rational subgroup in the theta group 𝐺(𝐷𝑄). Since
Ker𝜙 is cyclic, this is equivalent to finding a rational element (𝑃, 𝑔𝑃) ∈ 𝐺(𝐷𝑄) above 𝑃 of
order ℓ.

Take 𝑔𝑃 ∈ 𝐺(𝐷𝑄)(𝑘) an arbitrary rational element. We have (𝑃, 𝑔𝑃)ℓ = (0𝐸, 𝜆𝑃) where
𝜆𝑃 is the non reduced Tate pairing by Corollary 2.5. And (𝑃, 𝜇𝑔𝑃)ℓ = (0𝐸, 𝜇ℓ𝜆𝑃). It follows
that we can find a rational 𝑔𝑃 of order ℓ if and only the non reduced Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑄)
is an ℓ-th power.
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Now by definition of the dual isogeny ̂𝜙, we have ̂𝜙(𝐷′) = 𝜙∗(𝐷𝑄). We have proved that
̂𝜙−1(𝐷𝑄) contains a rational point 𝐷′ if and only if the non reduced Tate pairing is an ℓ-th

power. We recover (a special case of) the geometric interpretation from [Rob23c] of the Tate
pairing as an étale torsor.

Example 2.7 (The Tate pairing as an obstruction to finding rational elements of ℓ-torsion
in the theta group). Let 𝐷 = ℓ(0𝐸) and 𝑃 ∈ 𝐸[ℓ] a point of ℓ-torsion. A natural question
is whether there is an element (𝑃, 𝑔𝑃) ∈ 𝐺(𝐷) which is both rational and still of ℓ-torsion.
(Equivalently: the group 𝐾 = ⟨𝑃⟩ admits a rational lift to 𝐺(𝐷), hence by descent theory 𝐷
descends to a rational divisor on 𝐸/𝐾.)

The divisor 𝐷 is symmetric, so we can even ask for symmetric lifts of order ℓ. If ℓ is odd,
there are two symmetric elements above 𝑃, and a unique one of order ℓ, which has to be
rational by unicity.

If ℓ is even, the symmetric elements are of order ℓ or 2ℓ; this obstruction is measured by
𝑒𝐷,⋆(ℓ/2⋅𝑃) = ±1 in the notation of [Mum66, p.307–309]. For our divisor, 𝑒𝐷,⋆(ℓ/2⋅𝑃) = 1,
so the two symmetric elements are of order ℓ. But they might live in a quadratic extension.

Let 𝑔𝑃 be an arbitrary theta group element above 𝑃. We can compute (𝑃, 𝑔𝑃)ℓ, this is
a constant 𝜆𝑃, equal to 𝑔𝑃(𝑥)𝑔𝑃(𝑥 + 𝑃)𝑔𝑃(𝑥 + 2𝑃) ⋯ 𝑔𝑃(𝑥 + (ℓ − 1)𝑃). We can correct
𝑔𝑃 by a rational projective factor 𝛼 so that (𝑃, 𝛼𝑔𝑃) is of ℓ-torsion if and only if 𝜆𝑃 ∈ 𝑘∗,ℓ.
Since 𝑔𝑃 has for divisor 𝐷𝑃 = ℓ(−𝑃) − ℓ(0𝐸), we see that the class of 𝜆𝑃 in 𝑘∗/𝑘∗,ℓ is given
by (the non reduced Tate pairing): ∏ℓ−1

𝑖=1 𝑔𝑃(𝑥 + 𝑖𝑃)/𝑔𝑃(𝑥) = ∏ℓ−1
𝑖=1 𝑒𝑇,ℓ(0𝐸)(𝑃, 𝑖𝑃) =

𝑒𝑇,ℓ(0𝐸)(𝑃, ℓ(ℓ − 1)/2𝑃).
In particular, we see that the obstruction vanishes for ℓ odd (as we already knew), and

that for ℓ even, the quadratic obstruction is given by whether the reduced Tate pairing of 𝑃
and ℓ/2 ⋅ 𝑃 is equal to 1 or −1.

We already saw 𝜆𝑃 in [RS24, § 3.1] for the case ℓ = 2, where the same obstruction
governed the possible formulas for a 2-isogeny on a Kummer line.

2.3. Theta groups and pairings for polarized abelian varieties. As explained in the intro-
duction, for simplicity we mainly work with elliptic curves, but we carefully state our results
such that they are easily adapted for any abelian varieties.

In this section, we briefly explain what happens for a general polarised abelian variety
(𝐴, Θ𝐴), with Θ𝐴 an ample divisor. Usually when working with abelian varieties, it is more
convenient to work with (isomorphisms classes of) line bundles than (linear equivalence
classes of) divisors, because unlike for elliptic curves divisor do not have a convenient
description. Here for the sake of uniformity we stick to divisors.

Fix any divisor 𝐷. There is a morphism associated to 𝐷, Φ𝐷 ∶ 𝐴 → 𝐴, 𝑃 ↦ 𝑡∗
𝑃𝐷 − 𝐷,

it only depends on the algebraic equivalence class of 𝐷. We denote by 𝐴[𝐷] its kernel. We
remark that Φ𝐷 is a polarisation when 𝐷 = Θ𝐴 is ample. If 𝐷 = 𝑛Θ𝐴, with Θ𝐴 ample
giving a principal polarisation, then 𝐴[𝐷] = 𝐴[𝑛].

For simplicity, we will use the same notation to denote Φ𝐷(𝑃) as the divisor 𝐷𝑃 ≔
𝑡∗
𝑃𝐷 − 𝐷, and as an element of 𝐴 = Pic0(𝐴), i.e. as a linear equivalence class.

An element (𝑃, 𝑔𝑃) of the theta group 𝐺(𝐷) is given by a point 𝑃 ∈ 𝐴[𝐷] and a function
with divisor 𝐷𝑃 ≔ Φ𝐷(𝑃), with group law given by Equation (1), and natural action on
sections given by Equation (2). Equations (3) and (4) also apply for abelian varieties.

2.3.1. Pairings on an abelian variety. We first introduce the Weil-Cartier pairing for an
abelian variety.

The reader can skip without harm the following paragraph, which will only serve as a
motivation for the notion of biextension in Section 3.1. Let 𝐴/𝑘 be an abelian variety, and
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𝐵𝔾𝑚 = [Spec 𝑘/𝔾𝑚] be the classifying stack associated to 𝔾𝑚 (say for the fppf topology).
Thenwe define 𝐴/𝑘 to beHom(𝐴, 𝐵𝔾𝑚), where we require themorphisms to bemorphisms
of Picard stacks. By definition of the classifying stack 𝐵𝔾𝑚, a morphism of stack 𝐴 → 𝐵𝔾𝑚
corresponds to a 𝔾𝑚-torsor, i.e. a line bundle ℒ. Requiring the morphism to be a morphism
of Picard stack imposes ℒ to be translation invariant (and rigidifies it). Since translation
invariant line bundles are the same as the ones which are algebraically equivalent to 0, this
gives an isomorphism Pic0(𝐴) = 𝐴 = Hom(𝐴, 𝐵𝔾𝑚). Now by general abstract nonsense,
we have an isomorphism Hom(𝐴, 𝐵𝔾𝑚) = Ext1(𝐴, 𝔾𝑚) as fppf sheafs. If 𝑓 ∶ 𝐴 → 𝐵 is
a morphism of abelian varieties, 𝐾 = Ker 𝑓, applying the derived functor ℛHom(⋅, 𝔾𝑚)
to the exact sequence 0 → 𝐾 → 𝐴 → 𝐵 → 0 gives a distinguished triangle in the derived
category, whose associated long exact sequence is 0 → Hom(𝐵, 𝔾𝑚) → Hom(𝐴, 𝔾𝑚) →
Hom(𝐾, 𝔾𝑚) → Ext1(𝐵, 𝔾𝑚) → Ext1(𝐴, 𝔾𝑚) → ⋯. Since Hom(𝐴, 𝔾𝑚) = 0 because
𝐴 is proper and 𝔾𝑚 affine, and Ext1(𝐵, 𝔾𝑚) → Ext1(𝐴, 𝔾𝑚) is the dual isogeny ̂𝑓 via the
identification above, we see that Ker ̂𝑓 ≃ Hom(𝐾, 𝔾𝑚) is canonically isomorphic to the
Cartier dual of 𝐾. This abstract isomorphism gives the Weil-Cartier pairing 𝑒𝑓 ∶ Ker 𝑓 ×
Ker ̂𝑓 → 𝔾𝑚, via the identification above and the canonical pairing from Cartier duality:
𝐾 × Hom(𝐾, 𝔾𝑚) → 𝔾𝑚. The standard Weil pairing is the Weil-Cartier pairing applied to
the isogeny [ℓ].

We now recall the explicit definition of the Weil and Tate pairing associated to the
polarisation ΦΘ associated to an ample divisor 𝐷 = Θ = Θ𝐴. For more details, we
refer to [Rob21b, Chapter 4; Rob21a, Chapter 3; Rob23c] and the references there. The
Weil pairing 𝑒𝑊,Θ,ℓ ∶ 𝐴[ℓΘ] × 𝐴[ℓΘ] → 𝔾𝑚 associated to ΦΘ is the Cartier Weil
pairing associated to the polarisation ℓΦΘ ∶ 𝐴 → 𝐴, and it is also the commutator
pairing on the theta group 𝐺(ℓΘ). If (𝑃, 𝑄) ∈ 𝐴[ℓ], and 𝑒𝑊,ℓ is the usual Weil pair-
ing on 𝐴[ℓ] × 𝐴[ℓ], we have 𝑒𝑊,Θ,ℓ(𝑃, 𝑄) = 𝑒ℓ(𝑃, ΦΘ(𝑄)). Likewise, the Tate pairing
𝑒𝑇,Θ,ℓ ∶ 𝐴[ℓΘ](𝑘) × 𝐴(𝑘)/(ℓΦΘ𝐴(𝑘)) → 𝐻1(𝑘, 𝜇ℓ) is the Tate-Cartier pairing associated
to the polarisation ℓΦΘ ∶ 𝐴 → 𝐴. If 𝑃 ∈ 𝐴[ℓ](𝑘), 𝑒𝑇,Θ,ℓ(𝑃, ΦΘ(𝑄)) = 𝑒𝑇,ℓ(ΦΘ(𝑃), 𝑄),
where 𝑒𝑇,ℓ is the standard Tate pairing associated to the isogeny [ℓ] ∶ 𝐴 → 𝐴. If Θ =
𝑚Θ1, and 𝑃, 𝑄 ∈ 𝐴[ℓ] (resp. 𝑃 ∈ 𝐴[ℓ](𝑘)), we have 𝑒𝑊,Θ,ℓ(𝑃, 𝑄) = 𝑒𝑊,Θ1,ℓ(𝑃, 𝑄)𝑚,
𝑒𝑇,Θ,ℓ(𝑃, 𝑄) = 𝑒𝑇,Θ1,ℓ(𝑃, 𝑄)𝑚.

Formulas are as follows: let 𝑍𝑃, 𝑍𝑄 be any degree 0 0-cycles equivalent to (𝑃) − (0)
and (𝑄) − (0), and 𝐷𝑍𝑃

, 𝐷𝑍𝑄
= ΦΘ(𝑍𝑃), ΦΘ(𝑍𝑄). Here we extend ΦΘ to cycles by

additivity; by the theorem of the square their linear equivalence class only depends on 𝑃, 𝑄.
Explicitly, if 𝑍 = ∑ 𝑛𝑖(𝑃𝑖) is of degree 0, 𝐷𝑍 ≔ ∑ 𝑛𝑖(𝑡∗

𝑃𝑖
𝐷 − 𝐷) = ∑ 𝑛𝑖𝐷𝑃𝑖

(and we
remark that 𝐷𝑃 = 𝐷(𝑃)−(0)). The divisor 𝐷𝑍 is principal if and only if 𝑠(𝑍) ≔ ∑ 𝑛𝑖𝑃𝑖 ∈
𝐴[𝐷], in which case we will write 𝑓𝑍 or 𝑓𝐷𝑍

a function with divisor 𝐷𝑍. In particular,
𝐷𝑍 ∼ 𝐷𝑠(𝑍).

We remark that if 𝑃 ∈ 𝐴[ℓΘ], then by definition ℓ𝐷𝑍𝑃
∼ ℓΦΘ(𝑃) is a principal divisor;

and by definition 𝑓ℓ𝑍𝑃
is any function with this divisor. We will evaluate it on degree 0 cycles,

so the evaluation does not depends on the choice of 𝑓ℓ𝑍𝑃
. We will also denote by 𝑓ℓ,𝑃 the

function associated to the divisor 𝐷ℓ𝑃 − ℓ𝐷𝑃 associated to the cycle (ℓ𝑃) + (ℓ − 1)0 − ℓ(𝑃).
We have

𝑒𝑇,Θ,ℓ(𝑃, 𝑄) = 𝑓ℓ𝑍𝑃
(𝑍𝑄) ∈ 𝑘∗/𝑘∗,ℓ

if 𝑄 ∈ 𝐴[ℓΘ](𝑘) and

𝑒𝑊,Θ,ℓ(𝑃, 𝑄) = 𝑓ℓ𝑍𝑃
(𝑍𝑄)/𝑓ℓ𝑍𝑄

(𝑍𝑃) ∈ 𝔾𝑚
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if 𝑃, 𝑄 ∈ 𝐴[ℓΘ]. (As the proof of Theorem 2.9 will show, we even have 𝑒𝑊,Θ,ℓ(𝑃, 𝑄) =
𝑓ℓ𝑍𝑃

(𝑡∗
𝑥𝑍𝑄)/𝑓ℓ𝑍𝑄

(𝑡∗
𝑥𝑍𝑃) as long as we translate by the same point 𝑥 ∈ 𝐴.)

Finally we remark that the formulas also holds for any divisor 𝐷 instead of an ample
divisor Θ, but in this case we won’t have non degeneracy.

Remark 2.8. Whenwe evaluate a function 𝑓 at some cycle 𝑍, it might happen that some of the
points 𝑃 in the support of 𝑍 are zeroes or poles of 𝑓. One way to still define the evaluation 𝑓 (𝑍)
is to fix a uniformiser 𝜋𝑃 at these points 𝑃, and to define 𝑓 (𝑃) as the value of (𝑓 /𝜋𝑣𝑃(𝑓 )

𝑃 )(𝑃).
We sometimes call this the extended value. We will see in the monodromy interpretation of
pairings from Section 3 that our pairings will be obtained as a quotient of two functions 𝑓1, 𝑓2
which differ by a constant 𝑐. If we represent 𝑓1, 𝑓2 by their extended value at 𝑃, as long as we
pick the same uniformizer 𝜋𝑃 both for 𝑓1, 𝑓2, this constant 𝑐 will be correctly determined by
the extended value 𝑓1(𝑃)/𝑓2(𝑃) even if 𝑃 is a pole or zero of the 𝑓𝑖.

2.3.2. Pairings via theta groups. We have seen in Section 2.2 that the map 𝐷𝑄 = (−𝑄) −
(0𝐸) ∈ Pic0(𝐸) ↦ 𝐺(𝐷𝑄) ∈ Ext1(𝐸, 𝔾𝑚) gives an explicit isomorphism �̂� ≔ Pic0(𝐸) ≃
Ext1(𝐸, 𝔾𝑚).This extends to abelian varieties: the canonical isomorphism ̂𝐴 ≃ Ext1(𝐴, 𝔾𝑚)
is given by 𝐷 ∈ Pic0(𝐴) ↦ 𝐺(𝐷). We can thus extend Corollary 2.5 to abelian varieties.

We fix 𝐷 a divisor, and recall that we denote by 𝐷𝑄 the divisor Φ𝐷(𝑄) = 𝑡∗
𝑄𝐷 − 𝐷.

The theta group 𝐺(𝐷𝑄) is an abelian extension of 𝐴 by 𝔾𝑚, whose elements are given by
(𝑃, 𝑔𝑃,𝑄) with 𝑃 ∈ 𝐴 and 𝑔𝑃,𝑄 a function with divisor 𝑡∗

𝑃𝐷𝑄 − 𝐷𝑄 = 𝑡∗
𝑃+𝑄(𝐷) + 𝐷 −

𝑡∗
𝑃𝐷−𝑡∗

𝑄𝐷 = 𝐷𝑃+𝑄 −𝐷𝑃 −𝐷𝑄. The group laws Equations (6) and (7) still hold for 𝐺(𝐷𝑄),
and they are the same because Proposition 2.3 is also valid.

The only subtlety now is that if 𝑃 ∈ 𝐴[ℓΘ] and we take (𝑃, 𝑔𝑃,𝑄) ∈ 𝐺(𝐷𝑄), then
(𝑃, 𝑔𝑃,𝑄)ℓ = (ℓ𝑃, 𝑔ℓ𝑃,𝑄) needs not be given by a constant function 𝑔ℓ𝑃,𝑄 = 𝜆𝑃, because 𝑃
is not necessarily of ℓ-torsion. However, ℓ𝑃 ∈ 𝐴[𝐷], and we are able to use the action of
theta groups on sections.

Theorem 2.9. Let 𝐷 be a divisor on an abelian variety 𝐴, 𝑄 ∈ 𝐴, and 𝐷𝑄 = Φ𝐷(𝑄). Let
(𝑃, 𝑔𝑃,𝑄) ∈ 𝐺(𝐷𝑄), with 𝑃 ∈ 𝐴[ℓ𝐷]. Let (ℓ𝑃, 𝑔ℓ𝑃) ∈ 𝐺(𝐷) be any element above ℓ𝑃. Let
𝑔ℓ𝑃,𝑄 be such that (𝑃, 𝑔𝑃,𝑄)ℓ = (ℓ𝑃, 𝑔ℓ𝑃,𝑄). Then 𝑔ℓ𝑃,𝑄𝑔ℓ𝑃((⋅) − (⋅ + 𝑄)) is a constant 𝜆𝑃.
If 𝑄 ∈ 𝐴[ℓ𝐷], the Weil pairing is (up to a sign) 𝑒𝑊,𝐷,ℓ(𝑃, 𝑄) = 𝜆𝑃/𝜆𝑄.

If 𝑃 ∈ 𝐴[ℓ𝐷](𝑘) and we take 𝑔𝑃,𝑄, 𝑔ℓ𝑃 rational, then the non reduced Tate pairing is given
by (up to a sign) 𝑒𝑇,𝐷,ℓ(𝑃, 𝑄) = 𝜆𝑃.

We remark that (𝑄, 𝑔ℓ𝑃,𝑄) ∈ 𝐺(𝐷ℓ𝑃) and that 𝑔−1
ℓ𝑃 is a section of 𝐷ℓ𝑃. By Equation (2),

the constant 𝑔ℓ𝑃,𝑄𝑔ℓ𝑃((⋅) − (⋅ + 𝑄)) is given by
(𝑄,𝑔ℓ𝑃,𝑄)⋅𝑔−1

ℓ𝑃

𝑔−1
ℓ𝑃

.

Proof. First the function 𝑔ℓ𝑃,𝑄 has for divisor 𝐷ℓ𝑃+𝑄 − 𝐷ℓ𝑃 − 𝐷𝑄, while 𝑔ℓ𝑃 has for divisor
𝐷ℓ𝑃, so 𝑔ℓ𝑃((⋅) − (⋅ + 𝑄)) has for divisor 𝐷ℓ𝑃 − (𝐷ℓ𝑃+𝑄 − 𝐷𝑄). Their multiplication has
trivial divisor, so is a constant.

Now the same proof as in Corollary 2.4 shows that 𝑔ℓ𝑃,𝑄 = 𝑔ℓ
𝑃,𝑄𝔣ℓ,𝑃((⋅ + 𝑄) − (⋅)) with

𝔣ℓ,𝑃 a function with divisor 𝐷ℓ𝑃 − ℓ𝐷𝑃. The function 𝔣ℓ,𝑃/𝑔ℓ𝑃 has for divisor −ℓ𝐷𝑃. We now
conclude as in Corollary 2.5, using the formulas for the Weil and Tate pairings associated to
𝐷. �

As a consequence of the definitions and the proof of Theorem 2.9, we have the following
result which will be useful to get algorithms to compute the Ate and optimal Ate pairings.
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Porism2.10. Let (𝑃1, 𝑔𝑃1,𝑄) ∈ 𝐺(𝐷𝑄), (𝑃2, 𝑔𝑃2,𝑄) ∈ 𝐺(𝐷𝑄), and (𝑃1+𝑃2, 𝑔𝑃1+𝑃2,𝑄 ∈
𝐺(𝐷𝑄) be their product. Let 𝑔𝑃1,𝑃2

be a function with divisor 𝐷𝑃1+𝑃2
− 𝐷𝑃1

− 𝐷𝑃2
. Then

𝑔𝑃1,𝑃2
evaluated on the cycle (𝑅 + 𝑄) − (𝑅) is given by

𝑔𝑃1+𝑃2,𝑄
𝑔𝑃1,𝑄𝑔𝑃2,𝑄

(𝑅).
For any 𝑃, 𝑄, let (𝑃, 𝑔𝑃,𝑄) ∈ 𝐺(𝐷𝑄), (𝑃, 𝑔𝑃)ℓ = (ℓ𝑃, 𝑔ℓ𝑃,𝑄), and let 𝑓ℓ,𝑃 a function with

divisor 𝐷ℓ𝑃 − ℓ𝐷𝑃. Then the function 𝑓ℓ,𝑃 evaluated on the cycle (𝑅 + 𝑄) − (𝑅) is given by
𝑔ℓ𝑃,𝑄

𝑔ℓ
𝑃,𝑄

(𝑅).

And if 𝑃 ∈ 𝐴[ℓ𝐷], 𝑓−ℓ𝐷𝑃
((𝑅 + 𝑄) − (𝑅)) = 𝑔ℓ𝑃,𝑄

𝑔ℓ
𝑃,𝑄

(𝑅)𝑔𝑙𝑃((𝑅) − (𝑅 + 𝑄)).

Remark 2.11. The reason we need to go through the trouble of explaining how to compute
the Weil and Tate pairing associated to some divisor 𝐷 on the full 𝐴[ℓ𝐷] rather than just
𝐴[ℓ] is the following.

In Section 5, to compute pairings on Kummer lines, we will use the biextension and
cubical arithmetic associated to the divisor 𝐷 = 2(0𝐸) to compute 𝑒𝑊,2(0𝐸),ℓ, 𝑒𝑇,2(0𝐸),ℓ. On
the ℓ-torsion, these are the square of the usual Weil and Tate pairings 𝑒𝑊,(0𝐸),ℓ, 𝑒𝑇,(0𝐸),ℓ. This
is not a really a problem when ℓ is odd, but this lose one bit of information when ℓ is even.

Instead, in this case we will write ℓ = 2𝑚, and use the fact that since 𝑚Φ2(0𝐸) = ℓΦ(0𝐸),
then by the standard compatibility between pairings and isogenies, we have 𝑒𝑊,2(0𝐸),𝑚 =
𝑒𝑊,(0𝐸),ℓ, 𝑒𝑇,2(0𝐸),𝑚 = 𝑒𝑇,(0𝐸),ℓ. But 𝐸[𝑚] is a strict subset of 𝐸[ℓ] = 𝐸[𝑚(2(0𝐸))], so we
need the full generality of Theorem 2.9 to handle this case properly.

One needs to be careful with the Tate pairing, because of its arithmetic nature (by contrast
of the geometric nature of the Weil pairing). Let us assume that 𝐷 = 𝑚𝐷1, 𝐷1 a divisor
associated to a principal polarisation. In Theorem 2.9, for the Weil pairing, when 𝑃, 𝑄 ∈
𝐴[ℓ𝐷] = 𝐴[ℓ𝑚], we correctly compute 𝑒𝑊,ℓ𝐷(𝑃, 𝑄) = 𝑒𝑊,ℓ𝑚𝐷1

(𝑃, 𝑄) ∈ 𝜇ℓ𝑚 via the
monodromy.

However, the non reduced Tate pairing 𝑒𝑇,ℓ𝐷(𝑃, 𝑄) ∈ 𝑘∗/𝑘∗,ℓ is computed in a smaller
group than 𝑒𝑇,ℓ𝑚𝐷1

(𝑃, 𝑄) ∈ 𝑘∗/𝑘∗,ℓ𝑚.
Looking at the formula from Theorem 2.9 and Porism 2.10, we see that to get a value

in 𝑘∗/𝑘∗,ℓ𝑚 when using the divisor 𝐷, we need to also keep track of 𝑔ℓ
𝑃,𝑄; the monodromy

information 𝜆𝑃 is not enough (it only gives the information in 𝑘∗/𝑘∗,ℓ).
More precisely, we have 𝑒𝑇,ℓ𝑚𝐷1

(𝑃, 𝑄) = 𝑓−ℓ𝐷𝑃
((𝑅 + 𝑄) − (𝑅)) = 𝑔ℓ𝑃,𝑄

𝑔ℓ
𝑃,𝑄

(𝑅)𝑔𝑙𝑃((𝑅) −

(𝑅 + 𝑄)) ∈ 𝑘∗/𝑘∗,ℓ𝑚 (for any 𝑅 ∈ 𝐴(𝑘)), where 𝑔ℓ𝑃,𝑄(𝑅)𝑔𝑙𝑃((𝑅) − (𝑅 + 𝑄)) is the
monodromy constant 𝜆𝑃, and 1

𝑔ℓ
𝑃,𝑄

(𝑅) is the correcting factor to have the pairing in 𝑘∗/𝑘∗,ℓ𝑚.

There is a special case where we can compute the correct value in 𝑘∗/𝑘∗,ℓ𝑚 just from the
monodromy information.We have amap 𝐺(𝐷1,𝑄) → 𝐺(𝐷𝑄) given by 𝑔𝑃,𝑄 ↦ 𝑔⊗𝑚

𝑃,𝑄, where
the tensor product 𝑔⊗𝑚

𝑃,𝑄 is simply given by the function product: 𝑔⊗𝑚
𝑃,𝑄(𝑥) = 𝑔𝑃,𝑄(𝑥)𝑚. If,

when applying Theorem 2.9, our 𝑔𝑃,𝑄 ∈ 𝐺(𝐷𝑄) comes from the 𝑚-th tensor product of
a rational theta group element in 𝐺(𝐷1,𝑄), then the monodromy 𝜆𝑃 naturally gives the
correct value of the Tate pairing 𝑘∗/𝑘∗,ℓ), because 𝑔ℓ

𝑃,𝑄(𝑅) is then already in 𝑘∗,ℓ𝑚.
One last subtlety about the Tate pairing. For the Weil pairing 𝑒𝑊,ℓ𝐷, replacing 𝐷 by an

equivalent divisor 𝐷′ still give the correct value 𝑒𝑊,ℓ𝑚𝐷1
, not only on 𝐴[ℓ] but even on

𝐴[ℓ𝐷]. However, for the Tate pairing, for this to be the case, we need that 𝐷′ = 𝑚𝐷′
1,

with 𝐷′
1 a rational divisor. (In particular, the class of 𝐷′

1 − 𝐷1 ∈ Pic0(𝐴) is a point of
𝑚-torsion.) Indeed, when this is the case, we have 𝑓ℓ𝐷𝑃

((𝑄) − (0))/𝑓ℓ𝐷′
𝑃
((𝑄) − (0)) =

𝑓ℓ𝑚(𝐷1−𝐷′
1)𝑃

((𝑄) − (0)), and since 𝐷1 is algebraically equivalent to 𝐷′
1, 𝐷1,𝑃 is linearly
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equivalent to 𝐷′
1,𝑃, so 𝑓ℓ𝑚(𝐷1−𝐷′

1)𝑃
is a 𝑚ℓ-th power. So we get the same value for the non

reduced Tate pairing by using 𝐷 or 𝐷′. 𝑘(𝐴)).

3. Biextensions arithmetic

We define biextensions in Section 3.1, and interpret the Weil and Tate pairing as mon-
odromy pairings in Section 3.2 (as already shown by Grothendieck and Stange respectively).
We explain how to recover Miller’s standard algorithm in terms of biextensions in Section 3.3,
and we give a monodromy interpretation of the Ate and optimal Ate pairings in Section 3.4.

3.1. Biextensions. Biextensions were introduced by Mumford in [Mum69]. For a complete
(but quite dry) reference, we refer to [Gro72, Exposés VII et VIII]. Beware of some sign
errors in [Gro72, pp. VIII 2.3.10], corrected in [BBM79, § 5.1].

Let us first give an informal motivation for the notion of biextension. Pairings are bilinear
maps. When working with modules, it is much more convenient to interpret a bilinear
map 𝐵 ∶ 𝐺1 × 𝐺2 → 𝐺3 as an element of Hom(𝐺1 ⊗ 𝐺2, 𝐺3) than as an element of
Hom(𝐺1,Hom(𝐺2, 𝐺3)). In other words: we want the decurryfication of the map 𝐺1 →
𝐺2 → 𝐺3, 𝑔1 ↦ 𝐵(𝑔1, ⋅). A biextension is an analogue to a categorified decurryfication of
the map 𝐴 ↦ ̂𝐴 = Hom(𝐴, 𝐵𝔾𝑚) ≃ Ext1(𝐴, 𝔾𝑚).

We first begin with some abstract definitions and results before moving to much more
concrete formulas. Given some abelian groups 𝐺1, 𝐺2, 𝐺3 (over some topos), a biextension
𝑋 of 𝐺1 × 𝐺2 by 𝐺3 is an element of the topos with projection maps 𝜋1, 𝜋2 to 𝐺1, 𝐺2
and an action of 𝐺3 on 𝑋, such that for all 𝑃1 ∈ 𝐺1, 𝑋𝑃1

≔ 𝜋−1
1 (𝑃1) is an extension

of 𝐺2 by 𝐺3, and for all 𝑃2 ∈ 𝐺2, 𝑋𝑃2
≔ 𝜋−1

2 (𝑃2) is an extension of 𝐺1 by 𝐺3. This
defines two partial group structure ⋆2, ⋆1 on 𝑋, and we further require that they satisfy
some “obvious compatibility relations”. The biextensions of (𝐺1, 𝐺2) by 𝐺3 form a category
BiExt(𝐺1, 𝐺2; 𝐺3).

More concretely, (working in the internal logic of the topos), an element 𝑥 ∈ 𝑋 is said to
be above (𝑔1, 𝑔2) if 𝜋𝑖(𝑥) = 𝑔𝑖. All other elements 𝑥′ above (𝑔1, 𝑔2) are of the form 𝑔3 ⋅ 𝑥
for a unique 𝑔3 ∈ 𝐺3: they form a torsor under 𝐺3. We will often use the notation 𝑥𝑔1,𝑔2
to say that 𝑥 is above (𝑔1, 𝑔2). The biextension structure induces two partial group law. The
first one 𝑥𝑔1,𝑔2

⋆1 𝑦𝑔′
1,𝑔2

= 𝑧𝑔1+𝑔′
1,𝑔2

is valid whenever 𝜋2(𝑥) = 𝜋2(𝑦). The second one
𝑥𝑔1,𝑔2

⋆2 𝑦𝑔1,𝑔′
2

= 𝑧𝑔1,𝑔2+𝑔′
2
is valid whenever 𝜋1(𝑥) = 𝜋1(𝑦). The “obvious compatibility

relations” requires that given 𝑥𝑔1,𝑔2
, 𝑥𝑔1,𝑔′

2
, 𝑥𝑔′

1,𝑔2
, 𝑥𝑔′

2,𝑔′
2
, we have

(8) (𝑥𝑔1,𝑔2
⋆1 𝑥𝑔′

1,𝑔2
) ⋆2 (𝑥𝑔1,𝑔′

2
⋆1 𝑥𝑔1,𝑔′

2
) = (𝑥𝑔1,𝑔2

⋆2 𝑥𝑔1,𝑔′
2
) ⋆1 (𝑥𝑔′

1,𝑔2
⋆2 𝑥𝑔′

1,𝑔2
).

For an description of the compatibility relations Equation (8) as a commutative diagram in
the external logic, see [Gro72, VII Définition 2.1].

We summarize the main results of [Gro72] on biextensions (which we state for com-
pleteness, we won’t need to use these results, but instead we will rely on down to earth
computations with explicit formulas). The functor BiExt is triadditive [Gro72, VII.(2.6.1)],
covariant and cofibrant in 𝐺3, and contravariant and fibrant in 𝐺1, 𝐺2 [Gro72, VII § 2], and
left exact in each argument [Gro72, VII Proposition 3.7.6].The categoryBiExt(𝐺1, 𝐺2; 𝐺3) is
a stack [Gro72, VII § 2.8], whose homotopical invariants are given by BiExt(𝐺1, 𝐺2; 𝐺3)0 ≔
𝜋1(BiExt(𝐺1, 𝐺2; 𝐺3)) = group of endomorphisms of any biextension 𝑋 ≃ Hom(𝐺1 ⊗
𝐺2, 𝐺3) [Gro72,VII § 2.5]; and furthermoreBiExt(𝐺1, 𝐺2; 𝐺3)1 ≔ 𝜋0(BiExt(𝐺1, 𝐺2; 𝐺3)),
the set of isomorphism classes of biextensions, has a natural group structure defined in [Gro72,
VII § 2.5] and such that BiExt(𝐺1, 𝐺2; 𝐺3)1 ≃ Ext1(𝐺1

𝐿⊗ 𝐺2, 𝐺3) [Gro72, VII (3.6.5)].
This isomorphism is the main result of [Gro72, p. VII], and is used in [Gro72, p. VIII] to
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define a pairing associated to a biextension [Gro72, VIII § 2]. This construction is extended
in [Sta08, Theorem 17.1.1] to a Tate like pairing associated to a biextension.

Now we specialize these results to the case of abelian varieties (and then elliptic curves),
where 𝐺1, 𝐺2 = 𝐴, 𝐵 are abelian varieties, and 𝐺3 = 𝔾𝑚 is the multiplicative group. This is
the main case of interest of [Gro72, pp. VII, VIII], and Grothendieck proves:

Theorem 3.1 (Grothendieck). Let 𝐴, 𝐵 be abelian schemes. Then we have canonical isomor-
phisms (in the fppf topos)BiExt(𝐴, 𝐵; 𝔾𝑚) ≃ BiRigidifiedTorsors(𝐴, 𝐵; 𝔾𝑚) ≃ Correspondances(𝐴, 𝐵) ≃
Hom(𝐴, �̂�) ≃ Hom(𝐵, 𝐴).

Notably, given a morphism 𝑓 ∶ 𝐴 → 𝐵, there is a unique biextension 𝑋𝑓 associated to it, and
if 𝑓 is an isogeny, the pairing associated to this biextension is the Weil-Cartier pairing 𝑒𝑓.

Proof. The first statement is [Gro72, VII Exemple 2.9.5 et Remarque 2.9.6], and the second
is [Gro72, pp. VIII 2.3]. (It is stated to be the opposite of the Weil-Cartier pairing there, but
there was a sign mistake corrected in [BBM79, § 5.1].) �

Example 3.2. For instance, applying Theorem 3.1 to the identity morphism 𝐴 → 𝐴, we
obtain the (birigidified) Poincaré line bundle and the Poincaré biextension.

Let 𝐴 be an abelian variety and 𝐷 be an ample divisor, and Φ𝐷 ∶ 𝐴 → 𝐴 be the associated
polarisation. By Theorem 3.1, there is a unique biextension 𝑋𝐷 associated to Φ𝐷 (which
uniquely depends on the polarisation, hence on the algebraic equivalence class of 𝐷). Since

̂̂𝐴 ≃ 𝐴 by biduality, 𝑋𝐷 is a biextension of 𝐴 × 𝐴 by 𝔾𝑚, and the corresponding birigidified
torsor is the pullback of the Poincaré line bundle by Id×Φ𝐷, and suitably rigidified along
𝐴 × 0 and 0 × 𝐴.

Remark 3.3. The fact that the biextension pairing corresponds to the Weil-Cartier pairing
for abelian schemes follows from abstract diagram chasings in [Gro72, pp. VIII 2.3]. A more
elementary proof for elliptic curves is given by Stange in [Sta08, Theorem 17.1.2]; where it
is also proven that her Tate like pairing associated to a biextension is indeed the usual Tate
pairing for elliptic curves.

We will only need the unicity part of Theorem 3.1, and we will reprove below in Theo-
rem 3.11 that the biextension pairings are the Weil and Tate pairings.

We have a canonical isomorphism 𝜄 ∶ BiExt(𝐺1, 𝐺2; 𝐺3) ≃ BiExt(𝐺2, 𝐺1; 𝐺3) which
consists in permuting the groups 𝐺1, 𝐺2 and the partial laws ⋆1, ⋆2. From the unicity part
of Theorem 3.1 it follows that if 𝑓 ∶ 𝐴 → 𝐵 is a morphism of abelian schemes and 𝑋𝑓 the
associated biextension, we have 𝜄(𝑋𝑓) = 𝑋 ̂𝑓. Now if we apply this to our polarisation Φ𝐷,
since it is autodual we obtain the following symmetry formula:

Proposition 3.4. Let 𝐴 be an abelian variety, Φ𝐷 ∶ 𝐴 → ̂𝐴 a polarisation associated to an
ample divisor, and 𝑋𝐷 the associated biextension of 𝐴 × 𝐴 by 𝔾𝑚. Then 𝑋𝐷 is symmetric: if
𝜄(𝑥𝑎1,𝑎2

) = 𝜄(𝑥)𝑎2,𝑎1
denotes the same element seen above (𝑎2, 𝑎1) rather than (𝑎1, 𝑎2) (via

the isomorphism (𝑎1, 𝑎2) ↦ (𝑎2, 𝑎1)), then 𝑥𝑎1,𝑏 ⋆1 𝑥𝑎2,𝑏 = 𝜄(𝑥)𝑏,𝑎1
⋆2 𝜄(𝑥)𝑏,𝑎2

.

Proof. The unicity argument above shows that the biextension laws are the same, up to a
global automorphism of biextension. But a biextension of abelian varieties by 𝔾𝑚 only has
trivial automorphisms. �

Remark 3.5. We even have the stronger statement that the biextension 𝑋𝐷 is symmetric
in the sense of Breen [Bre83, § 1] (i.e. the symmetry above is compatible with the various
natural structures on the biextension), owing to the fact that (the line bundle associated to
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𝐷) is a cubical torsor (see [Bre83, S 2] and [Mor85, Chapitre 1, § 2, 3]). We will come back
to this in Section 4.

We are now ready to state explicit formulas for the biextension associated to a polarisation
Φ𝐷 on an abelian variety or an elliptic curve. Since the polarisation Φ𝐷 depends only on
the algebraic equivalence class of 𝐷 (which for an elliptic curve is determined by deg𝐷), for
an elliptic curve we can assume that 𝐷 = 𝐷𝑛 ≔ 𝑛(0𝐸).

Theorem 3.6. Let 𝐴 be an abelian variety, 𝐷 a divisor, and Φ𝐷 ∶ 𝐴 → 𝐴 the associated
morphism. The biextension 𝑋𝐷 of 𝐴 × 𝐴 by 𝔾𝑚 associated to 𝐷 can be described as follows.

Its elements are tuples (𝑃, 𝑄, 𝑔𝑃,𝑄) such that the function 𝑔𝑃,𝑄 on𝐴 has for divisor 𝑡∗
𝑃𝐷𝑄 −

𝐷𝑄 = 𝐷𝑃+𝑄−𝐷𝑃−𝐷𝑄, where𝐷𝑄 = Φ𝐷(𝑄) = 𝑡∗
𝑄𝐷−𝐷.The projection𝜋 ∶ 𝑋𝐷 → 𝐴×𝐴

sends (𝑃, 𝑄, 𝑔𝑃,𝑄) to (𝑃, 𝑄). We will often drop (𝑃, 𝑄)when referring to a biextension element
𝑔𝑃,𝑄 ∈ 𝑋𝐷.

The divisors determine 𝑔𝑃,𝑄 up to some invertible constants, so the preimage of 𝜋 is indeed
a torsor under 𝔾𝑚. Since the divisor is invariant under permutation by 𝑃, 𝑄, the function
𝑔𝑃,𝑄 can also be interpreted as an element 𝜄(𝑔)𝑄,𝑃 above (𝑄, 𝑃).

Fixing 𝑄, the group law on 𝜋−1
2 (𝑄) is equal to the group law (see Equations (1) and (6))

on the theta group 𝐺(𝐷𝑄). Fixing 𝑃, the group law on 𝜋−1
1 (𝑃) is equal to the one defined in

Equation (7) via Equations (3) and (4).
Explicitly we have, if 𝑔𝑄1,𝑄2

is any function with divisor 𝐷𝑄1+𝑄2
− 𝐷𝑄1

− 𝐷𝑄2
:

𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 = 𝑔𝑃1+𝑃2,𝑄 ≔ 𝑔𝑃1,𝑄(⋅)𝑔𝑃2,𝑄(⋅ + 𝑃1))(9)

𝑔𝑃,𝑄1
⋆2 𝑔𝑃,𝑄2

= 𝑔𝑃,𝑄1+𝑄2
≔ 𝑔𝑃,𝑄1

(⋅)𝑔𝑃,𝑄2
(⋅)

𝑔𝑄1,𝑄2
(⋅ + 𝑃)

𝑔𝑄1,𝑄2
(⋅) .(10)

And since 𝑋𝐷 is a symmetric biextension:

𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 = 𝜄(𝑔)𝑄,𝑃1
⋆2 𝜄(𝑔)𝑄,𝑃2

,(11)

therefore we also have:

𝑔𝑃1,𝑄 ⋆1 𝑔𝑃1,𝑄 = 𝑔𝑃1+𝑃2,𝑄 = 𝑔𝑃1,𝑄(⋅)𝑔𝑃2,𝑄(⋅)
𝑔𝑃1,𝑃2

(⋅ + 𝑄)
𝑔𝑃1,𝑃2

(⋅)

Proof. We saw in Section 2.3 that Equations (6) and (7) are still valid for an abelian variety.
We now check that the formulas in Theorem 3.6 define a structure of biextension on 𝑋𝑛.

By definition of the theta groups, the group structures on 𝜋−1
1 (𝑃) and 𝜋−1

2 (𝑄) we use do
give extensions of 𝐴 by 𝔾𝑚 as expected. An immediate computation also shows that the
partial laws ⋆1, ⋆2 satisfy the compatibility relations of Equation (8), so 𝑋𝐷 is a biextension.

By Theorem 3.1, 𝑋𝐷 is the biextension associated to some morphism Φ ∶ 𝐴 → ̂𝐴. We
let to the reader the fun diagram chasing exercice to unravel the definitions of [Gro72,
p. VII] and check that this Φ is the polarisation Φ𝐷 we started with. (This diagram chasing
becomes easier when using the fact that the symmetric biextension 𝑋𝐷 is associated to the
explicit cubical structure on (the line bundle associated to) 𝐷, see [Bre83; Mor85, Chapitre 1].
Alternatively, it is shown in [Gro72, VIII § 2] that the pairing associated to the biextension
associated to Φ is the Weil pairing associated to Φ, and we will see in Theorem 3.11 that the
pairing associated to our 𝑋𝐷 is Φ𝐷, so Φ = Φ𝐷.)

Equation (11) follows from Proposition 3.4. �
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Example 3.7. The inversion 𝑔⋆1,−1
𝑃,𝑄 is given by

𝑔−𝑃,𝑄 =
1

𝑔𝑃,𝑄

𝑔𝑃,−𝑃
𝑔𝑃,−𝑃(⋅ + 𝑄) .

Remark 3.8. The biextension 𝑋𝐷 only depends on the polarisation Φ𝐷, so if 𝐷 is ample only
on its algebraic equivalence class. Explicit isomorphisms can be given as follows: if 𝐷1 ∼ 𝐷2
and 𝛼 is any function with divisor 𝐷2 − 𝐷1, then 𝑡∗

𝑄𝛼/𝛼 has for divisor 𝐷2,𝑄 − 𝐷1,𝑄 hence
by Equation (4) the isomorphism is given by

(𝑃, 𝑔𝑃,𝑄) ∈ 𝐺(𝐷1,𝑄) ⊂ 𝑋𝐷1
↦ (𝑃, 𝑔𝑃(⋅)

𝛼(⋅ + 𝑃 + 𝑄)𝛼(⋅)
𝛼(⋅ + 𝑃)𝛼(⋅ + 𝑄)) ∈ 𝐺(𝐷2,𝑄) ⊂ 𝑋𝐷2

.

And if 𝐷2 = 𝑡∗
𝑐𝐷1, then 𝐷2,𝑄 = 𝑡∗

𝑐𝐷1,𝑄 so by Equation (5) the isomorphism is:

(𝑃, 𝑔𝑃,𝑄) ∈ 𝐺(𝐷1,𝑄) ⊂ 𝑋𝐷1
↦ (𝑃, 𝑡∗

𝑐𝑔𝑃) ∈ 𝐺(𝐷2,𝑄) ⊂ 𝑋𝐷2
.

3.2. Monodromy and pairings in biextensions. In Section 2, we saw how the exponentia-
tion in theta groups 𝐺(𝐷𝑄) naturally gave rise to the Weil and Tate pairings on an elliptic
curve 𝐸 or abelian variety, but we often had to juggle and switch between different theta
groups. In Section 3 and Theorem 3.6, we saw that the biextension 𝑋 associated to the divisor
(0𝐸) is a convenient way to package all the theta groups 𝐺(𝐷𝑄) together. We will now, fol-
lowing [Gro72, p. VIII] and [Sta08, Theorem 17.1.1], reinterpret the Weil and Tate pairings
as monodromy information on the biextension.

We first look at the case of an elliptic cruve 𝐸. The monodromy is as follows: let 𝑃 ∈ 𝐸[ℓ]
and 𝑔𝑃,𝑄 ∈ 𝑋 be an element in the biextension associated to (0𝐸), 𝑔𝑃,𝑄 is a function with
divisor 𝐷𝑃+𝑄 − 𝐷𝑃 − 𝐷𝑄 = (−𝑃 − 𝑄) + (0𝐸) − (−𝑃) − (−𝑄)− by Theorem 3.6. Since
ℓ𝑃 = 0𝐸, we have 𝑔⋆1,ℓ

𝑃,𝑄 is an element above (0𝐸, 𝑄), so a function with trivial divisor, so
a constant 𝜆𝑃. However, even through 𝑃 is of order ℓ, 𝑔𝑃,𝑄 need not be, so we may have
𝜆𝑃 ≠ 1. We do have 𝑔⋆1,ℓ𝑚

𝑃,𝑄 = 𝜆𝑚
𝑃 , so if 𝑘 = 𝔽𝑞 is a finite field and 𝑔𝑃,𝑄 is rational, 𝑔𝑃,𝑄

is at most of order ℓ(𝑞 − 1). We call 𝜆𝑃 the monodromy associated to 𝑔𝑃,𝑄 (beware of the
notation, it also depends on 𝑄).

We remark that changing 𝑔𝑃,𝑄 to𝜇𝑔𝑃,𝑄, we have (𝜇𝑔𝑃,𝑄)⋆1,ℓ = 𝜇ℓ𝜆𝑃, so the class of𝜆𝑃 in
𝑘∗/𝑘∗,ℓ only depends on (𝑃, 𝑄), not on 𝑔𝑃,𝑄. Also, if 𝑘 = 𝔽𝑞 and ℓ ∣ 𝑞−1, 𝜆(𝑞−1)/ℓ

𝑃 = 𝑔⋆1,𝑞−1
𝑃,𝑄

is a ℓ-th root of unity which does not depend on the choice of the (rational) 𝑔𝑃,𝑄 but only
on (𝑃, 𝑄).

As expected, this monodromy 𝜆𝑃 will give pairings. We will also see in Section 3.4
how the Ate and optimal Ate pairings can also be interpreted as monodromy associated to
endomorphisms of the form ∑ 𝑐𝑖𝜋𝑖

𝑞.
In this article, we will need to be able to compute pairings associated with non principal

polarisation. Reusing the notations of Section 2.3, if 𝐷 is a divisor on 𝐴, 𝑋𝐷 the associated
biextension, and 𝑔𝑃,𝑄 ∈ 𝑋𝐷 where 𝑃 ∈ 𝐴[ℓ𝐷], we may not have ℓ𝑃 = 0, so 𝑔ℓ

𝑃,𝑄 may not
be a constant. We had the same problem for Theorem 2.9, and we will use the same solution.

Recall that a biextension element 𝑔𝑃,𝑄 has for divisor 𝐷𝑃+𝑄 + 𝐷0 − 𝐷𝑃 − 𝐷𝑄, which is
principal because it is associated to the cycle (𝑃+𝑄)+(0)−(𝑃)−(0) (with our conventions
𝐷0 = 0 so we often omit it). But when 𝑃 ∈ 𝐴[𝐷], 𝐷𝑃 is already principal, so we may take
an associated function 𝑔𝑃 (we remark that (𝑃, 𝑔𝑃) is an element of the theta group 𝐺(𝐷)).
The function 𝑔𝑃(⋅ + 𝑄)/𝑔𝑃 has for divisor 𝐷𝑃+𝑄 − 𝐷𝑃 − 𝐷𝑄, so is an element of 𝑋𝐷 above
(𝑃, 𝑄). We remark that it does not depend on our choice of 𝑔𝑃.
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Lemma 3.9. Fix 𝑄 ∈ 𝐴. We let (𝑋𝐷,𝑄, ⋆1) be the group of all biextension elements above
(𝑃′, 𝑄) for some 𝑃′. The map 𝑠𝑄 ∶ 𝐴[𝐷] → 𝑋𝐷,𝑄, 𝑃 ↦ 𝑠𝑃,𝑄 ≔ 𝑔𝑃(⋅ + 𝑄)/𝑔𝑃 is a group
morphism. This induces a group action 𝑃 ⋅ 𝑔𝑃′,𝑄 ≔ 𝑠𝑄(𝑃) ⋆1 𝑔𝑃′,𝑄 of 𝐴[𝐷] on 𝑋𝐷.

Proof.
𝑔𝑃1

(⋅+𝑄)
𝑔𝑃1

⋆1 𝑔𝑃2
(⋅ + 𝑄)𝑔𝑃2

=
𝑔𝑃1

(⋅+𝑄)𝑔𝑃2(⋅+𝑃1+𝑄)
𝑔𝑃1

𝑔𝑃2(⋅+𝑃1) =
𝑔𝑃1+𝑃2(⋅+𝑄)

𝑔𝑃1+𝑃2
where 𝑔𝑃1+𝑃2

=
𝑔𝑃1

𝑔𝑃2
(⋅+𝑃1) is the element of𝐺(𝐷) above𝑃1+𝑃2 coming from the composition (𝑃1, 𝑔𝑃1

)⋅
(𝑃2, 𝑔𝑃2

). �

By Theorem 3.6, the reformulation of Porism 2.10 in terms of biextension is:

Porism 3.10. Let 𝑔𝑃,𝑄 ∈ 𝑋𝐷 and let 𝑔ℓ𝑃,𝑄 = 𝑔⋆1,ℓ
𝑃,𝑄. Then the function 𝑓ℓ,𝑃 evaluated on the

cycle (𝑥 + 𝑄) − (𝑥) is given by
𝑔ℓ𝑃,𝑄

𝑔ℓ
𝑃,𝑄

.

If furthermore 𝑃 ∈ 𝐴[ℓ𝐷], 𝑓−ℓ𝐷𝑃
((𝑅 + 𝑄) − (𝑅)) = (−ℓ𝑃)⋅𝑔ℓ𝑃,𝑄

𝑔ℓ
𝑃,𝑄

(𝑅).

Theorem 3.11 (Monodromy pairings). Let 𝑋𝐷 be the biextension associated to a divisor
𝐷 on an abelian variety 𝐴. Let (𝑃, 𝑄, 𝑔𝑃,𝑄) ∈ 𝑋𝐷 be a biextension element above (𝑃, 𝑄).
If 𝑃 ∈ 𝐴[ℓ𝐷], we let 𝑔ℓ𝑃,𝑄 = 𝑔⋆1,ℓ

𝑃,𝑄 is above (ℓ𝑃, 𝑄). Furthermore, ℓ𝑃 ∈ 𝐴[𝐷], so by
Lemma 3.9 there is a canonical biextension element (ℓ𝑃, 𝑄, 𝑠ℓ𝑃,𝑄) above (ℓ𝑃, 𝑄). The element
𝑔ℓ𝑃,𝑄 ⋆1 𝑠⋆1,−1

ℓ𝑃,𝑄 = 𝑔ℓ𝑃,𝑄 ⋆1 𝑠−ℓ𝑃,𝑄 = (−ℓ𝑃) ⋅ 𝑔ℓ𝑃,𝑄 is above (0, 𝑄) so is a constant 𝜆𝑃. We
say that 𝜆𝑃 is the ℓ-monodromy associated to (𝑃, 𝑄, 𝑔𝑃,𝑄).

If 𝑄 ∈ 𝐴[ℓ𝐷], the Weil pairing is given (up to a sign) by: 𝑒𝑊,𝐷,ℓ(𝑃, 𝑄) = 𝜆𝑃/𝜆𝑄
If 𝑃 ∈ 𝐴[ℓ𝐷](𝑘), and (𝑃, 𝑄, 𝑔𝑃,𝑄) ∈ 𝑋𝐷(𝑘), i.e. 𝑔𝑃,𝑄 is chosen to be rational, then the

non reduced Tate pairing is given by: 𝑒𝑇,𝐷,ℓ(𝑃, 𝑄) = 𝜆𝑃.

Proof. This is a translation of Theorem 2.9 in terms of the biextension formulas from Theo-
rem 3.6. �

The exact same remark as in Remark 2.11 applies for the extended Tate pairing computed
through biextensions. If 𝐷 = 𝑚𝐷1 with 𝐷1 associated to a principal polarisation, and
𝑃 ∈ 𝐴[𝑚𝐷1], and we want to compute the Tate pairing as an element of 𝑘∗/𝑘∗,ℓ𝑚, we need
to keep track of the function 𝑔ℓ

𝑃,𝑄. There is a tensor map 𝑋𝐷1
→ 𝑋𝐷, 𝑔𝑃,𝑄 ↦ 𝑔𝑚

𝑃,𝑄, and if
our starting biextension element 𝑔𝑃,𝑄 is in the image of this map (on a rational element),
then 𝑔ℓ

𝑃,𝑄(𝑥) lies in 𝑘∗,ℓ𝑚 for 𝑥 rational so we can express the extended Tate pairing purely
in terms of the monodromy 𝜆𝑃. But we stress that one needs to be careful that, starting
with a general biextension element 𝑔𝑃,𝑄 (which won’t be a 𝑚-fold tensor in general), we
cannot compute the Tate pairing for ℓ𝑚𝐷1 while working on the biextension 𝑋𝐷 purely
from monodromy information, we need to keep track of a corrective factor.

Corollary 3.12. Let 𝑋Θ be the biextension associated to an ample divisor Θ on an abelian
variety 𝐴.

Fix any biextension element (𝑃, 𝑄, 𝑔𝑃,𝑄) above 𝑃, 𝑄, we can also see it as an element of
the group (𝑋Θ,𝑄, ⋆1). If 𝑃 ∈ 𝐴[ℓ], the exponentiation 𝑔⋆1,ℓ

𝑃,𝑄 is a constant 𝜆𝑃, which is the

ℓ-monodromy associated to (𝑃, 𝑄, 𝑔𝑃,𝑄). Alternatively, we have 𝑔⋆1,ℓ+1
𝑃,𝑄 = 𝜆𝑃𝑔𝑃,𝑄.

If 𝑃, 𝑄 ∈ 𝐴[ℓ], the Weil pairing 𝑒𝑊,Θ,ℓ is (up to a sign) 𝜆𝑃/𝜆𝑄. If 𝑃 ∈ 𝐴[ℓ](𝑘), assuming
that 𝑔𝑃,𝑄 is rational, the non reduced Tate pairing is (up to a sign) 𝑒𝑇,Θ,ℓ = 𝜆𝑃. If 𝑘 = 𝔽𝑞 is a
finite field and 𝜇ℓ ⊂ 𝔽𝑞, we can also define 𝜆′

𝑃 as the constant 𝑔⋆1,𝑞−1
𝑃,𝑄 . Alternatively, we have

𝑔⋆1,𝑞
𝑃,𝑄 = 𝜆′

𝑃𝑔𝑃,𝑄. Then the reduced Tate pairing is (up to a sign) is given by 𝜆′
𝑃.
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Proof. This is a direct application of Theorem 3.11, using the fact that if ℓ𝑃 = 0, 𝑠0,𝑄 = 1.
See also Corollary 2.5. �

Remark 3.13. Let 𝑔𝑃,𝑄 be as in Corollary 3.12, and 𝜆𝑃 the monodromy: 𝑔⋆1,ℓ
𝑃,𝑄 = 𝜆𝑃. Then

if 𝑛2 = 𝑚ℓ + 𝑛1, 𝑛1, 𝑛2, 𝑚 ∈ ℤ, then 𝑔⋆1,𝑛2
𝑃,𝑄 = 𝜆𝑚

𝑃 𝑔⋆1,𝑛1
𝑃,𝑄 . In particular, we have 𝑔⋆1,ℓ+1

𝑃,𝑄 =
𝜆𝑃𝑔𝑃,𝑄 and 𝑔⋆1,ℓ−1

𝑃,𝑄 = 𝜆𝑃𝑔⋆1,−1
𝑃,𝑄 . Sometimes, it is easier to compute the monodromy 𝜆𝑃

using these relations.

Remark 3.14 (Refined bilinearity for the Tate pairing). The (non reduced) Tate pairing is
only bilinear when we consider its value in 𝑘∗/𝑘∗,ℓ. However, by Remark 3.13 we have a
refined version of bilinearity: assume we take 𝑔𝑃,𝑄 to compute the Tate pairing 𝑒ℓ(𝑃, 𝑄) via
the monodromy relation 𝑔⋆1,ℓ

𝑃,𝑄 = 𝜆𝑃 ∈ 𝑘∗.
Now assume that to compute the Tate pairing 𝑒ℓ(𝑖𝑃, 𝑄), we take 𝑔𝑖𝑃,𝑄 = 𝑔⋆1,𝑖

𝑃,𝑄 rather

than an arbitrary element. Then we have 𝑔⋆1,ℓ
𝑖𝑃,𝑄 = 𝑔⋆1,𝑖ℓ

𝑃,𝑄 = 𝜆𝑖
𝑃 ∈ 𝑘∗.

Likewise, for the Tate pairing 𝑒ℓ(𝑃, 𝑖𝑄), if we take 𝑔𝑃,𝑖𝑄 = 𝑔⋆2,𝑖
𝑃,𝑄, we have 𝑔⋆1,ℓ

𝑃,𝑖𝑄 =
(𝑔⋆1,ℓ

𝑃,𝑄)⋆2,𝑖 = 𝜆𝑖
𝑃 ∈ 𝑘∗ by the compatibility between ⋆1 and ⋆2.

Of course, there is a priori no canonical choice of 𝑔𝑖𝑃,𝑄 for all 𝑖, depending only on 𝑖𝑃,
such that 𝑔𝑖𝑃,𝑄 = 𝑔⋆1,𝑖

𝑃,𝑄 (at least without computing a DLP of 𝑖𝑃 with respect to 𝑃), so no
way to exploit this refined bilinearity. But see Remark 4.20 for a partial choice.

3.3. The arithmetic of biextensions on elliptic curves: the evaluation representation. To
exploit Theorem 3.11 for computing the Weil and Tate pairings, we need to develop efficient
arithmetic on biextensions. In particular, by Corollary 3.12, to compute the polarised Weil
and Tate pairing efficiently on an abelian variety (𝐴, Θ), we need a fast exponentiation in the
group (𝑋Θ,𝑄, ⋆1) induced by the biextension 𝑋Θ. In particular we can apply all well known
techniques for group exponentiation: double and add, windowing, slidings windows, NAF,
combings…These tools are of course well known in the pairing literature. But beware that
the context is different for pairings than for scalar multiplication: in the ECC context, the
same base point 𝑃 is multiplied by different scalars, whereas in the pairing context different
biextension elements 𝑔𝑃,𝑄 are multiplied by the same scalar ℓ.

For simplicity, we go back to the case of elliptic curves, but as usual everything holds
for general abelian varieties. It remains to do the basic group operations, using ⋆1 or ⋆2
since it gives the same result by Proposition 3.4. For an elliptic curve 𝐸, taking 𝐷 = (0𝐸)
the canonical principal polarisation, an element 𝑔𝑃,𝑄 of the biextension 𝑋0𝐸

, since it is a
function with divisor 𝐷𝑃+𝑄 − 𝐷𝑃 − 𝐷𝑄 = (−𝑃 − 𝑄) + (0) − (−𝑃) − (−𝑄) is (in the
generic case) of the form

(12) 𝑔𝑃,𝑄(𝑥, 𝑦) = 𝑐
𝑥 − 𝑥𝑃+𝑄

𝑦 − 𝑦𝑃 − 𝛼(𝑥 − 𝑥𝑃)
where 𝛼 is the slope of the line 𝑙𝑃,𝑄 going through 𝑃 and 𝑄. To compute the biextension law
𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 it suffices to plug in the formula Equation (10) (using the elliptic group law),
and then reduce modulo the elliptic curve equation to obtain an equation of 𝑔𝑃1+𝑃2,𝑄 of the
form above. However, this is not very efficient. We will instead try to find a more efficient
representation of biextension elements.

First, we remark that 𝑔𝑃,𝑄 is completely determined, up to a constant, from (𝑃, 𝑄) (which
gives its divisor 𝐷𝑃+𝑄 − 𝐷𝑃 − 𝐷𝑄. Using the full function form of 𝑔𝑃,𝑄 to determine
this function is thus overkill; a more efficient representation is to simply use its evaluation
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𝑔𝑃,𝑄(𝑅0) at some base point 𝑅0 The biextension element is then represented by (𝑃, 𝑄, 𝑐 ≔
𝑔𝑃,𝑄(𝑅0)), we call this the evaluation representation.

Note that if 𝑅0 is a pole or zero of 𝑅0, we can use the standard trick of fixing a uniformizer
𝜋𝑅0

at 𝑅0, and “defining” 𝑔𝑃,𝑄(𝑅0) to be the first coefficient of the Laurent series expansion
of 𝑔𝑃,𝑄 along 𝜋𝑅0

(we called this the extended value oin Remark 2.8).
It is customary to take 𝑅0 = 0𝐸; if

𝜇𝑃,𝑄(𝑥, 𝑦) =
𝑥 − 𝑥𝑃+𝑄

𝑦 − 𝑦𝑃 − 𝛼(𝑥 − 𝑥𝑃)
is the “usual” (recall that we use a somewhat non standard sign convention, see Remark 2.2)
normalised Miller function with divisor (−𝑃 − 𝑄) + (0𝐸) − (−𝑃) − (−𝑄) and 𝑔𝑃,𝑄 is as in
Equation (12), then 𝑔𝑃,𝑄 = 𝑐𝜇𝑃,𝑄 so 𝑔𝑃,𝑄(0𝐸) = 𝑐 (the extended value for the uniformiser
𝜋0𝐸

= 𝑥/𝑦).
The biextension formulas (using either law ⋆ = ⋆1, ⋆2) then gives:

(13) (𝑃1, 𝑄, 𝑐1) ⋆ (𝑃2, 𝑄, 𝑐2) = 𝑐1𝑐2
𝑔𝑃1,𝑃2

(𝑅0 + 𝑄)
𝑔𝑃1,𝑃2

(𝑅0)

from which it follows that

(14) 𝑔⋆1,ℓ
𝑃,𝑄 = 𝑔𝑃,𝑄(𝑅0)ℓ𝑓ℓ,𝑃((𝑅0 + 𝑄) − (𝑅0))

where div 𝑓ℓ,𝑃 = 𝐷ℓ𝑃 − ℓ𝐷𝑃 = (−ℓ𝑃) + (ℓ − 1)(0𝐸) − ℓ(𝑃).
Thus, the biextension arithmetic and exponentiation in the evaluation representation

gives exactly the usual Miller algorithm, modulo our different sign conventions.
Going through all the theory of biextensions only to recover the standardMiller algorithm

might seem overkill. We will be rewarded in later sections when using other biextension
representations.

There are still some useful information we can glean from the biextension interpretation
of Miller’s algorithm. First, as mentioned above, it is well known in the pairing literature that
Miller’s formula form a group law, to which we can apply the standard group exponentiation
algorithms. The biextension gives a geometric interpretation of this group law. In particular,
it gives a geometric interpretation of the various relations on the functions 𝑓ℓ,𝑃 used to define
the ate and optimal ate pairings (we will go back to this in Section 3.4). For instance, by
Corollary 3.12 the reduced Tate pairing is given by 𝑓𝑞−1,𝑃((𝑅0 + 𝑄) − (𝑅0)); of course
since the field arithmetic is faster than the biextension arithmetic, it is more efficient to first
compute the reduced Tate pairing via 𝑓ℓ,𝑃((𝑅0 + 𝑄) − (𝑅0)) and then proceed via the final
exponentiation by field arithmetic (equivalently: working on the biextension over (0, 𝑄)).

Secondly, it shows that the values 𝑓ℓ,𝑃((𝑅0 + 𝑄) − (𝑅0)) we compute during Miller’s
algorithm are simply a convenient representations of the functions 𝑔ℓ𝑃,𝑄 coming from the
biextension. During the execution of Miller’s algorithm, it can happen that we need to
evaluate our intermediate Miller functions on a pole or zero. The standard solution is to
use a uniformiser, explicit formulas are given in [Rob21a, Lemma 3.5.3]. Another solution
is to change the evaluation point 𝑅0 to a new point 𝑅′

0. But rather than restarting Miller’s
algorithm from scratch, we can change the evaluation point on the fly, by going from the
evaluation representation on 𝑅0 back to the function representation back to the evaluation
representation on 𝑅′

0. Explicitly, if we have the representation (𝑃, 𝑄, 𝑔𝑃,𝑄(𝑅0)), we can
compute any function (eg the normalised one) 𝜇𝑃,𝑄 with divisor 𝐷𝑃+𝑄 − 𝐷𝑃 − 𝐷𝑄, and
then use 𝑔𝑃,𝑄(𝑅′

0) = 𝜇𝑃,𝑄(𝑅′
0)𝑔𝑃,𝑄(𝑅0)/𝜇𝑃,𝑄(𝑅0).

Thirdly, the symmetry relation 𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 = 𝑔𝑄,𝑃1
⋆2 𝑔𝑄,𝑃2

from Proposition 3.4
gives the following relation on the normalised functions 𝜇𝑃,𝑄:
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Lemma 3.15. 𝜇𝑃1,𝑃2
(𝑃3) = 𝜇𝑃2,𝑃3

(𝑃1) = 𝜇𝑃3,𝑃1
(𝑃2).

Proof. By Theorem 3.6, we have 𝜇𝑃1,𝑄 ⋆1 𝜇𝑃2,𝑄 = 𝜇𝑃1,𝑄(⋅)𝜇𝑃2,𝑄(⋅ + 𝑃1)), while 𝜇𝑃,𝑄1
⋆2

𝜇𝑃2,𝑄 = 𝜇𝑃1,𝑄(⋅)𝜇𝑃2,𝑄(⋅)
𝜇𝑃1,𝑃2(⋅+𝑄)

𝜇𝑃1,𝑃2(⋅) . It follows that 𝜇𝑃2,𝑄𝜇𝑃1,𝑃2
(⋅ + 𝑄) = 𝜇𝑃2,𝑄(⋅ +

𝑃1)𝜇𝑃1,𝑃2
. Evaluating this equaliting on 0𝐸 (multiplying both members by the appropriate

uniformiser to that the evaluation is well defined) gives 𝜇𝑃1,𝑃2
(𝑄) = 𝜇𝑃2,𝑄(𝑃1), from

which the lemma follows by a change of variable. �

Remark 3.16. Recall from Remark 2.2 that we use a different sign convention than usual.
In this remark only, we go back to the standard sign convention, and let 𝝁𝑃,𝑄 be the

standard normalised Miller function with divisor (𝑃) + (𝑄) − (𝑃 + 𝑄) − (0𝐸), and 𝐟ℓ,𝑃 the
standard normalisedMiller functionwith divisor ℓ(𝑃)−(ℓ𝑃)−(ℓ−1)(0𝐸).ThenLemma3.15
becomes on these standard functions: 𝝁𝑃1,𝑃2

(−𝑃3) = 𝝁𝑃2,𝑃3
(−𝑃1) = 𝝁𝑃3,𝑃1

(−𝑃2).
We leave as an exercice to the reader to prove this fact (and its generalisation to abelian

varieties) without the theory of biextensions.
This gives the following interesting tweaks on Miller’s algorithm: for the Miller addition,

we have 𝐟ℓ+1,𝑃(𝑄) = 𝐟ℓ,𝑃(𝑄)𝝁ℓ𝑃,𝑃(𝑄) = 𝐟ℓ,𝑃(𝑄)𝝁𝑃,−𝑄(−ℓ𝑃). In other words, rather than
evaluating the different Miller functions 𝝁ℓ𝑃,𝑃 on the same point, we could evaluate the same
(precomputed) Miller function 𝝁𝑃,−𝑄 on the different points −ℓ𝑃.

Likewise, for theMiller doubling: 𝐟ℓ+ℓ,𝑃(𝑄) = 𝐟ℓ,𝑃(𝑄)2𝝁ℓ𝑃,ℓ𝑃(𝑄) = 𝐟ℓ,𝑃(𝑄)2𝝁ℓ𝑃,−𝑄(−ℓ𝑃).
The numerator of 𝝁ℓ𝑃,−𝑄 is 𝑦 − 𝑦(ℓ𝑃) − 𝛼(𝑥 − 𝑥(ℓ𝑃)), which evaluated on −ℓ𝑃 is given by
the simple formula −2𝑦(ℓ𝑃). However, the evaluated denominator is 𝑥(ℓ𝑃) − 𝑥(ℓ𝑃 − 𝑄),
which requires to compute ℓ𝑃 − 𝑄. This will be a recurring theme in our latter algorithm
than in our pairing algorithms we will compute arithmetic informations both from ℓ𝑃 and
±𝑄 + ℓ𝑃.

We remark that faster formulas for the standard Miller’s algorithm have been obtained by
slightly tweaking the Miller functions. In [DZZZ22] the authors introduce functions with
divisors ℓ(𝑃) + (−ℓ𝑃) − (ℓ + 1)(0) which give a streamlined double and add formula. In
[BELL10], the following formula is used: 𝐟ℓ1+ℓ2,𝑃 = 1

𝐟−ℓ1,𝑃𝐟−ℓ2,𝑃𝑙−ℓ1𝑃,−ℓ2𝑃
, instead of the stan-

dard formula: 𝐟ℓ1+ℓ2,𝑃 = 𝐟ℓ1,𝑃𝐟ℓ2,𝑃𝜇ℓ1𝑃,ℓ2𝑃. We let open the question of whether combining
these tweaks with Lemma 3.15 could give further speed ups.

3.4. TheAte and optimal Ate pairings as monodromy pairings. We also can give a mon-
odromy interpretation of the Ate pairing.

If 𝑋𝐷 is a biextension associated to an abelian variety (𝐴, 𝐷) over a field 𝑘, and 𝑘/𝑘0 is a
Galoisian extension, the Galoisian action can be be described as follows. Let (𝑃, 𝑄, 𝑔𝑃,𝑄) ∈
𝑋𝐷 and 𝜎 ∈ Gal(𝑘/𝑘0), then 𝜎(𝑃, 𝑄, 𝑔𝑃,𝑄) = (𝜎(𝑃), 𝜎(𝑄), 𝑔𝜎

𝑃,𝑄) where 𝑔𝜎
𝑃,𝑄 is the

function with divisor 𝐷𝜎(𝑃+𝑄) − 𝐷𝜎(𝑃) − 𝐷𝜎(𝑄) such that 𝑔𝜎
𝑃,𝑄(𝜎(𝑅)) = 𝜎(𝑔𝑃,𝑄(𝑅)).

Now assume for simplicity that (𝐴, 𝐷) is an elliptic curve (𝐸, (0𝐸)) over a finite field 𝔽𝑞; as
usual our formulaswill still be valid for a general abelian variety over𝔽𝑞 (for a definition of the
Ate and optimal Ate pairings for abelian varieties, see [LR15]). For the Ate pairing situation,
we assume that 𝐸[ℓ](𝔽𝑞) is not empty but that the embedding degree 𝑑 is greater than 1,
thus the full ℓ-torsion is defined over 𝔽𝑞𝑑 , and 𝐸[ℓ] = 𝔾1 ⊕ 𝔾2 where 𝔾1 = 𝐸[ℓ](𝔽𝑞) is
the eigenspace of 𝜋𝑞 for its eigenvalue 1, and 𝔾2 = {𝑄 ∈ 𝐸[ℓ](𝔽𝑞) ∣ 𝜋𝑞𝑄 = 𝑞𝑄} is the
eigenspace for the eigenvalue 𝑞.

In pairing based cryptography, we consider the (non reduced) Tate pairing as restricted
to 𝔾1 × 𝔾2 → 𝔽∗

𝑞𝑑/𝔽∗,ℓ
𝑞𝑑 , while the (reduced) Ate pairing 𝑎𝜆,ℓ ∶ 𝔾2 × 𝔾1 → 𝔽∗

𝑞𝑑/𝔽∗,ℓ
𝑞𝑑

is given by 𝑎𝜆,ℓ(𝑃, 𝑄) = 𝑓𝜆,𝑃((𝑄) − (0)) for any 𝜆 ≡ 𝑞 mod ℓ. In the special case when
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𝜆 = 𝑞, the Ate pairing 𝑎𝑇,𝑞 is already reduced, otherwise the reduced Ate pairing is given by
𝑓𝜆,𝑃((𝑄) − (0))(𝑞𝑑−1)/ℓ ∈ 𝜇ℓ.

Now let 𝑔 = (𝑃, 𝑄, 𝑔𝑃,𝑄) be a biextension element with 𝑃 ∈ 𝔾2 and 𝑄 ∈ 𝔾1. Then
𝜋𝑞(𝑔) = (𝑞𝑃, 𝑄, 𝑔𝜋𝑞

𝑃,𝑄) and 𝑔⋆1,𝜆 are both biextension elements above (𝑞𝑃, 𝑄). They need
not be equal, and in fact the monodromy between them is precisely the 𝜆-Ate pairing.

Proposition 3.17. Let 𝑃 ∈ 𝔾2, 𝑄 ∈ 𝔾1, 𝑔𝑃,𝑄 any biextension element in 𝔽𝑞𝑑 above (𝑃, 𝑄),
and let 𝑐 be the monodromy such that 𝑔⋆1,𝜆

𝑃,𝑄 = 𝑐𝜋𝑞(𝑔𝑃,𝑄). Then 𝑐 gives the 𝜆-Ate pairing:
𝑎𝜆,ℓ(𝑃, 𝑄) = 𝑐.
Proof. Immediate from the definitions and Porism 3.10. �

Remark 3.18 (Optimal Ate). Write ℓ = ∑ 𝑐𝑖𝑞𝑖. Then rather than computing 𝑔⋆1,ℓ
𝑃,𝑄 as

∏⋆1,𝑖 (𝑔⋆1,𝑐𝑖
𝑃,𝑄 )

⋆1,𝑞𝑖

= 𝑒𝑇,ℓ(𝑃, 𝑄) (the non reducedTate pairing), we can compute∏⋆1,𝑖(𝜋𝑖
𝑞)(𝑔⋆1,𝑐𝑖

𝑃,𝑄 ) =
𝐶. By Proposition 3.17, this will differ from the Tate pairing by a bunch of Ate pairings; and
by Porism 3.10 this is exactly the optimal Ate pairing.

We leave to the reader themonodromy interpretation of the twisted Ate and the Eil pairing
when given an automorphism 𝛼 of order dividing 𝑑.
Corollary 3.19 (Explicit formulas). Using the evaluation representation (𝑃, 𝑄, 𝑔𝑃,𝑄(𝑅0)) of
biextension elements, the Ate pairing on 𝔾2 × 𝔾1 is computed as follows: if 𝑔𝑃,𝑄 is represented
by (𝑃, 𝑄, 𝑐), and 𝑔⋆1,𝜆

𝑃,𝑄 = (𝑞𝑃, 𝑄, 𝑐′) then 𝑎𝜆,ℓ(𝑃, 𝑄) = 𝑐′/𝑐𝑞.
If ℓ = ∑ 𝑎𝑖𝑞𝑖, and 𝑔⋆1,𝑎𝑖

𝑃,𝑄 = (𝑎𝑖𝑃, 𝑄, 𝑐𝑖), then the optimal Ate pairing is given by the constant

∏⋆1,𝑖(𝑞𝑖𝑎𝑖𝑃, 𝑄, 𝑐𝑞𝑖

𝑖 ).

Remark 3.20 (The reduced Ate and Tate pairings). When computing the 𝜆-ate pairing,
changing the representative 𝑔𝑃,𝑄 by 𝑢 ⋅ 𝑔𝑃,𝑄 for some 𝑢 ∈ 𝔽∗

𝑞 changes the value of the
𝜆-Ate pairing by 𝑔⋆1,𝜆

𝑃,𝑄 /𝜋𝑞(𝑔𝑃,𝑄) = 𝑢𝜆−𝑞. Hence we recover the fact that the 𝑞-Ate pairing
is already reduced, and does not depends on the choice of representative.

As an aside, since 𝜇ℓ ⊂ 𝔽𝑞𝑑 , we saw that the reduced Tate pairingwas given by 𝑔⋆1,𝑞𝑑

𝑃,𝑄 /𝑔𝑃,𝑄
for any 𝑔𝑃,𝑄 defined over 𝔽𝑞𝑑 . The true definition of the reduced Tate pairing should actually

be as the monodromy 𝑔⋆1,𝑞𝑑

𝑃,𝑄 /𝜋𝑞𝑑(𝑔𝑃,𝑄). In this case, it does not depends on the choice of
representative for 𝑔𝑃,𝑄 either, even a non rational one, and reduces to the definition given
above when 𝑔𝑃,𝑄 is defined over 𝔽𝑞𝑑 .

Remark 3.21 (The Ate and Tate pairings as Weil-Cartier pairings). It is well known that the
reduced Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑄) is induced by the Weil-Cartier pairing 𝑒𝜋𝑑

𝑞−1 ∶ 𝐸[𝜋𝑑
𝑞 − 1] ×

𝐸[ ̂𝜋𝑞
𝑑 − 1] → 𝔾𝑚. Furthermore, ̂𝜋𝑞

𝑑 = 𝜋𝑑
𝑞 when restricted to 𝐸[ℓ], by definition of the

embedding degree.
It is maybe less known, but the 𝑞-Ate pairing can also be interpreted as a Weil-Cartier

pairing:
(15) 𝑎𝑞,ℓ(𝑃, 𝑄) = 𝑒𝜋𝑞−1(𝑃, 𝑄)𝑞 = 𝑒𝜋𝑞−1(𝑃, 𝑞𝑄) = 𝑒𝜋𝑞−1(𝜋𝑞𝑃, 𝜋𝑞𝑄).

We remark that by definition, 𝔾1 ⊂ Ker𝜋𝑞 − 1 and 𝔾2 ⊂ Ker �̂�𝑞 − 1. Equation (15) can
be proven using the relationship between the Ate and Tate pairings (see [Ver10]), and the
relationship between theWeil-Cartier pairings of𝜋𝑞−1 and𝜋𝑑

𝑞 −1 = (𝜋𝑞−1)(1+⋯+𝜋𝑑−1
𝑞 )

coming from the compatibility of the Weil-Cartier pairings with isogenies.
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We will use this to give a monodromy interpretation of theWeil-Cartier pairing associated
to 𝜋𝑑

𝑞 − 1 and 𝜋𝑞 − 1.
First as a warm-up, let us recall the monodromy interpretation of the Weil pairing: we

take 𝑃, 𝑄 ∈ 𝐸[ℓ], a 𝑔𝑃,𝑄 in the biextension above them, and compute the monodromy
𝑔⋆1,ℓ

𝑃,𝑄 = 𝑐1 ⋅ 𝑔𝑃,𝑄, 𝑔⋆2,ℓ
𝑃,𝑄 = 𝑐2 ⋅ 𝑔𝑃,𝑄 to get the Weil pairing 𝑒𝑊,ℓ(𝑃, 𝑄) = 𝑐1/𝑐2. An

alternative way is to compute the monodromy (𝑔⋆1,ℓ
𝑃,𝑄)⋆2,ℓ = 𝑐(𝑔⋆2,ℓ

𝑃,𝑄)⋆1,ℓ, a quick calculation
gives 𝑐 = 𝑐1/𝑐2(𝑐2/𝑐1)ℓ = 𝑐1/𝑐2 (using that 𝑒𝑊,ℓ(𝑃, 𝑄) ∈ 𝜇ℓ) so this also gives the Weil
pairing (and we recover the commutator interpretation of Example 2.1).

For the 𝛼-Weil-Cartier pairing, 𝛼 an endomorphism, to compute 𝑒𝛼(𝑃, 𝑄) when 𝑃 ∈
Ker 𝛼 and 𝑄 ∈ Ker ̂𝛼, it is natural to see if a possible strategy to compute 𝑒𝛼 is to take the
quotient of themonodromy of the action of 𝛼 on 𝑔𝑃,𝑄 (any biextension element above (𝑃, 𝑄))
with respect to ⋆1, and the action of ̂𝛼 on 𝑔𝑃,𝑄 with respect to ⋆2. Using Proposition 3.17
and the interpretation of the reduced Tate and Ate pairings as Weil-Cartier pairings above,
we’ll see that an analogous strategy does hold for 𝛼 = 𝜋𝑞 − 1 and 𝛼 = 𝜋𝑑

𝑞 − 1..
We first start with the Weil-Cartier pairing for 𝜋𝑑

𝑞 − 1. We first want to compute the
action of 𝜋𝑑

𝑞 − 1 on 𝑔𝑃,𝑄 with respect to ⋆1 and compare it with 1; it will be easier to
compute 𝜋𝑑

𝑞 on 𝑔𝑃,𝑄 and compare it with 𝑔𝑃,𝑄: 𝜋𝑑
𝑞 (𝑔𝑃,𝑄) = 𝑐1 ⋅ 𝑔𝑃,𝑄. Likewise, rather

than computing the action of �̂�𝑑
𝑞 − 1 on 𝑔𝑃,𝑄 with respect to ⋆2 and compare it with 1, we

will compute the action of �̂�𝑑
𝑞 on 𝑔𝑃,𝑄 and compare it with 𝑔𝑃,𝑄. Now �̂�𝑑

𝑞 = 𝑞𝑑𝜋−𝑑
𝑞 . We

have 𝜋−𝑑
𝑞 (𝑔𝑃,𝑄) = 1/𝜋−𝑑

𝑞 (𝑐1) ⋅ 𝑔𝑃,𝑄, and (𝑞𝑑𝜋−𝑑
𝑞 ) ⋅⋆2

(𝑔𝑃,𝑄) = (1/𝜋−𝑑
𝑞 (𝑐1)𝑞𝑑𝑔⋆2,𝑞𝑑

𝑃,𝑄 =

1/𝑐1𝑔⋆2,𝑞𝑑

𝑃,𝑄 . So the monodromy quotient is given by 𝑔⋆2,𝑞𝑑

𝑃,𝑄 /𝜋𝑑
𝑞 (𝑔𝑃,𝑄) which is precisely the

formula from Remark 3.20 for the reduced Tate pairing. Hence we do have a correct formula
for the Weil-Cartier pairing of 𝜋𝑑

𝑞 − 1.
Now we try to find a monodromy approach to compute the Weil-Cartier pairing for

𝜋𝑞 − 1 on 𝜋𝑞(𝑃), 𝜋𝑞(𝑄), with 𝜋𝑞(𝑃) ∈ 𝔾1, 𝜋𝑞(𝑄) ∈ 𝔾2 (beware that we switched
arguments compared to Proposition 3.17). We can assume that we are given an element
of the form 𝑔𝜋(𝑃),𝜋(𝑄) = 𝜋𝑞(𝑔𝑃,𝑄) above (𝜋𝑞(𝑃), 𝜋𝑞(𝑄)). We want to first compute the
quotient of the action (with respect to ⋆2) of �̂�𝑞 = 𝑞𝜋−1

𝑞 on 𝜋𝑞(𝑔𝑃,𝑄) and 𝜋𝑞(𝑔𝑃,𝑄). By
the same computation as above, the result is precisely the monodromy 𝑔⋆2,𝑞

𝑃,𝑄/𝜋𝑞(𝑔𝑃,𝑄), i.e.,
the 𝑞-Ate pairing (using the symmetry ⋆2 = ⋆1 and the fact that we switched the side of the
arguments). Strangely, in this case we do not need to compute a monodromy action of 𝜋𝑞 on
𝑔𝜋(𝑃),𝜋(𝑄) with respect to ⋆1 and compare it to 𝑔𝜋(𝑃),𝜋(𝑄).

Remark 3.22 (Twists and automorphisms). Let 𝜓 ∶ 𝐴′ → 𝐴 be an isomorphism, and let
𝐷′ = 𝜓∗𝐷. Then we have an isomorphism of biextensions 𝑋𝐷 → 𝑋𝐷′ , 𝑔𝑃,𝑄 ↦ 𝜓∗𝑔𝑃,𝑄 =
𝑔𝑃,𝑄 ∘ 𝜓 = 𝑔𝑃′,𝑄′ where 𝑃′ = 𝜓−1(𝑃) and 𝑄′ = 𝜓−1(𝑄).

In particular, any monodromy information computed from 𝑔𝑃,𝑄 via the biextension
arithmetic on 𝑋𝐷, can also be recovered via 𝑔𝑃′,𝑄′ and the biextension arithmetic on 𝑋𝐷′ .
This generalises [CLN10] to abelian varieties.

Indeed, in that article, the authors explain that if 𝐸/𝔽𝑞 is an elliptic curve admitting a twist
of degree 𝑓, and we want to do pairings over 𝐸/𝔽𝑞𝑑 with 𝑓 ∣ 𝑑, then we can consider the twist
𝐸′/𝔽𝑞𝑑/𝑓 of 𝐸/𝔽𝑞𝑑/𝑓, which becomes isomorphic via 𝜓 ∶ 𝐸′ → 𝐸 over 𝔽𝑞𝑑. Working with
𝑃′, 𝑄′ over 𝐸′ rather than with 𝑃, 𝑄 over 𝐸 can be helpful in term of the field of definitions
of their coordinates (see the paper for more details).
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Aword of warning: if we start with 𝑔𝑃,𝑄 normalised with respect to some uniformiser 𝜋0𝐸
for 0𝐸 (typically 𝜋0𝐸

= ±𝑥/𝑦), then 𝜓∗𝑔𝑃,𝑄 will be normalised for 𝜋∗𝜋0𝐸
, which may not

be ±𝑥′/𝑦′. For instance in the situation of [CLN10, Theorem 1], we have 𝜋∗𝑥/𝑦 = 𝜔𝑥′/𝑦′,
which explains precisely the factor 𝜔 found from the explicit computations in the proof
of that Theorem. The biextension point of view thus gives a more conceptual proof of that
result (since we have seen above that Miller’s algorithm is a particular way of computing the
biextension arithmetic).

Let us give more details for the general case of an abelian variety. Recall that a twist 𝐴′

of 𝐴 over 𝑘 corresponds to an element 𝜉 ∈ 𝐻1(Gal(𝑘/𝑘),Aut(𝐴)(𝑘)). If 𝑘 = 𝔽𝑞 is a finite
field, this 𝐻1 is isomorphic to Aut(𝐴)(𝔽𝑞)/(𝜋𝑞 − 1). Let us assume that Aut(𝐴)(𝔽𝑞) =
Aut(𝐴)(𝔽𝑞) for simplicity, so that the 𝐻1 is isomorphic toAut(𝐴). Take 𝛼 ∈ Aut(𝐴), and let
𝐴′ = 𝐴𝛼 be the twist corresponding to 𝛼. Let 𝜙 ∶ 𝐴 → 𝐴′ be an isomorphism (which will be
defined over the extension of 𝔽𝑞 of degree 𝑒 the order of 𝛼).We then have 𝜙−1 ∘𝜋𝑞 ∘𝜙 = 𝛼𝜋𝑞.

Now for theWeil pairing 𝑒𝑊,ℓ(𝑃, 𝑄), we can take any biextension element 𝑔𝑃,𝑄 above𝑃, 𝑄,
and compute the Weil pairing through monodromy information. By the argument above,
using the isomorphism 𝑋𝐴 → 𝑋𝐴′, 𝑔𝑃,𝑄 ↦ 𝑔′

𝑃′,𝑄′ = 𝜙∗𝑔𝑃,𝑄, we see that 𝑒𝑊,ℓ(𝑃, 𝑄) =
𝑒𝑊,ℓ(𝑃′, 𝑄′) for 𝑃′ = 𝜙(𝑃), 𝑄′ = 𝜙(𝑄), because the pullback of a constant function 𝜆 by
𝜙 is still 𝜆.

For the (reduced) Tate pairing, say over 𝔽𝑞𝑑 , things are more subtle: we recover it from

the monodromy information 𝑔⋆1,𝑞𝑑

𝑃,𝑄 = 𝜆 only if we take 𝑔𝑃,𝑄 rational over 𝔽𝑞𝑑 . But in that
case, 𝑔′

𝑃′,𝑄′ might not be, so the two Tate pairing could differ. However, if 𝑒 ∣ 𝑑 (as is usually
the case when using twists in pairing based cryptography), then since the isomorphism
𝑋𝐴 → 𝑋𝐴′ is defined over 𝔽𝑞𝑒 then 𝑔′

𝑃′,𝑄′ will be rational.
Another way to see that is to use Remark 3.20: the Tate pairing is given by the monodromy

𝑔⋆1,𝑞𝑑

𝑃,𝑄 = 𝜆𝜋𝑞𝑑(𝑔𝑃,𝑄), where this time the result does not depend on the fact that 𝑔𝑃,𝑄

is rational. Computing the monodromy on the twist, we get 𝑔′
𝑃′,𝑄′

⋆1,𝑞𝑑
= 𝜆′𝜋′

𝑞𝑑(𝑔′
𝑃′,𝑄′),

where 𝜆′ might be different from 𝜆 because of the relation 𝜙−1 ∘ 𝜋𝑞 ∘ 𝜙 = 𝛼𝜋𝑞, which
implies that 𝜙−1 ∘ 𝜋𝑞𝑑 ∘ 𝜙 = 𝛼𝑑𝜋𝑞. We recover that when 𝑒 ∣ 𝑑, 𝜙−1 ∘ 𝜋′

𝑞𝑑∘ = 𝜋𝑞𝑑, hence
𝜆′ = 𝜆. In the general case, if [𝜙] is the determinant action of 𝜙 on the differentials (i.e., its
action on Λ𝑔Ω1

𝐴/𝔽𝑞
) (this depends on the choice of [𝜙], not only on the choice of twist 𝐴′),

then 𝜆′ = [𝜙]𝑞𝑑−1𝜆.
The same reasoning hold for the ate pairing, where this time we use the monodromy:

𝑔⋆1,𝑞
𝑃,𝑄 = 𝜆𝜋𝑞(𝑔𝑃,𝑄), hence the same considerations as for the Tate pairing above apply with

𝜋𝑞 instead of 𝜋𝑞𝑑 .

4. Cubical arithmetic

In this section, we introduce the cubical representation of biextension elements, from
which we will derive efficient biextension arithmetic on Kummer lines.

We refer to [Bre83; Mor85, Chapitre 1] for the concept of cubical torsors, and notably
to [Bre83, Introduction; Mor85, Chapitre 1, § 2, 3] for illuminating discussions on the
relationship between squared torsor structures, theta groups, cubical torsor structures and
symmetric biextensions (notably: on an abelian variety line bundles admit squared and
cubical structures, the cubical structure being induced by the squared one; and theta groups
correspond to the squared structures, and symmetric biextensions to the cubical structures).
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We first introduce the algebraic Riemann formulas in Section 4.1, which we use in Sec-
tion 4.2 to define cubical points and an arithmetic on cubical points. We show in Section 4.3
that the cubical arithmetic is a refinement of the biextension arithmetic, and can thus be used
to get a representation of biextension elements. We reframe in Section 4.4 pairings in terms
of cubical points. In Section 4.5 we introduce the affine lift representation of cubical point,
and compare it with the evaluation representation of Section 3.3. We show in Section 4.7
that with small tweaks, these affine lifts also give a good representation of cubical point on a
Kummer variety 𝐴/ ± 1. In Section 4.8, for a complex abelian variety 𝐴/ℂ = ℂ𝑔/Λ, we
make explicit the link between the cubical arithmetic and the transcendental/analytic group
law on ℂ𝑔. We then specialize our formulas to the case of elliptic curves in Section 4.9.

4.1. The algebraic Riemann formulas. Let 𝐷 be an ample divisor on an abelian variety. We
will assume that 𝐷 is symmetric up to linear equivalence, ie [−1]∗𝐷 ∼ 𝐷. Upon changing
𝐷 in its algebraic equivalence class, which does not changes the associated polarisation, we
can always assume this is the case (possibly over a field extension). Changing 𝐷 in its linear
equivalence class (possibly over a field extension again), we could even assume that 𝐷 is
symmetric.

Proposition 4.1. Let 𝑃1, 𝑃2, 𝑃3, 𝑃4 ∈ 𝐴, 2𝑅 = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4, and 𝑄1 = 𝑅 − 𝑃1,
𝑄2 = 𝑅 − 𝑃2, 𝑄3 = 𝑅 − 𝑃3, 𝑄4 = 𝑅 − 𝑃4 (we remark that 2𝑅 = 𝑄1 + 𝑄2 + 𝑄3 + 𝑄4
and 𝑃𝑖 = 𝑅 − 𝑄𝑖 so the situation is symmetric in the 𝑃𝑖, 𝑄𝑖). There is a canonical function 𝛾
whose divisor is 𝐷𝑃1

+ 𝐷𝑃2
+ 𝐷𝑃3

+ 𝐷𝑃4
− 𝐷𝑄1

− 𝐷𝑄2
− 𝐷𝑄3

− 𝐷𝑄4
.

It is convenient to reframe this in terms of line bundles: let ℒ = 𝑂(𝐷) be the associated
symmetric line bundle. Denote by ℒ𝑃 the translate 𝑡∗

𝑃ℒ. Then there is a canonical isomorphism

(16) ℒ𝑃1
⊗ ℒ𝑃2

⊗ ℒ𝑃3
⊗ ℒ𝑃4

≃ ℒ𝑄1
⊗ ℒ𝑄2

⊗ ℒ𝑄3
⊗ ℒ𝑄4

Wecall this isomorphisman algebraic Riemann relation, and use the notation [𝑃1, 𝑃2, 𝑃3, 𝑃4; 𝑄1, 𝑄2, 𝑄3, 𝑄4]
to denote that the points 𝑃𝑖, 𝑄𝑖 are in Riemann form.

Proof. We have 𝐷𝑄3
+ 𝐷𝑄4

= 2𝐷𝑅 − 𝐷𝑃3
− 𝐷𝑃4 = 𝐷𝑃1

+ 𝐷𝑃2
. Hence, there exists some

(non canonical) function 𝛼 with divisor 𝐷𝑃1
+𝐷𝑃2

−𝐷𝑄3
−𝐷𝑄4

. Now [−1]∗𝛼 has for divisor
([−1]∗𝐷)−𝑃1

+([−1]∗𝐷)−𝑃2
−([−1]∗𝐷)−𝑄3

−([−1]∗𝐷)−𝑄4
, so 𝑡∗

𝑅[−1]∗𝛼 = 𝛼(𝑅−(⋅))
has for divisor ([−1]∗𝐷)𝑅−𝑃1

+ ([−1]∗𝐷)𝑅−𝑃2
− ([−1]∗𝐷)𝑅−𝑄3

− ([−1]∗𝐷)𝑅−𝑄4
=

([−1]∗𝐷)𝑄1
+ ([−1]∗𝐷)𝑄2

− ([−1]∗𝐷)𝑃3
− ([−1]∗𝐷)𝑃4

.
Since 𝐷 is linearly equivalent to [−1]∗𝐷, there exists some function 𝛽 with divisor

[−1]∗𝐷−𝐷. It follows that𝛼(𝑅−(⋅))𝛽(⋅+𝑄1)𝛽(⋅+𝑄2)
𝛽(⋅+𝑃3)𝛽(⋅+𝑄4) has for divisor𝐷𝑄1

+𝐷𝑄2
−𝐷𝑃3

−𝐷𝑃4
.

Hence the function
𝛾 =

𝛼(⋅)
𝛼(𝑅 − (⋅))

𝛽(⋅ + 𝑄1)𝛽(⋅ + 𝑄2)
𝛽(⋅ + 𝑃3)𝛽(⋅ + 𝑄4)

has for divisor 𝐷𝑃1
+ 𝐷𝑃2

− 𝐷𝑄3
− 𝐷𝑄4

− 𝐷𝑄1
− 𝐷𝑄2

+ 𝐷𝑃3
+ 𝐷𝑃4

as wanted, and it
does not depend on our choice of 𝛼, 𝛽.

Using the language of line bundles, the proof simplifies as follows: fix an arbitrary iso-
morphism 𝛼 ∶ ℒ𝑃1

⊗ ℒ𝑃2
→ ℒ𝑄3

⊗ ℒ𝑄4
and use 𝑡∗

𝑅[−1]∗𝛼 along with any isomorphism
𝛿 ∶ [−1]∗ℒ ≃ ℒ (in practice it will be convenient to use the canonical one rigidified at 0)
to obtain an isomorphism 𝛼2 ∶ ℒ𝑄1

⊗ ℒ𝑄2
→ ℒ𝑃3

⊗ ℒ𝑃4
. We then have an isomorphism

𝛾 = 𝛼 ⊗ 𝛼−1
2 ∶ ℒ𝑃1

⊗ ℒ𝑃2
⊗ ℒ𝑃3

⊗ ℒ𝑃4
≃ ℒ𝑄1

⊗ ℒ𝑄2
⊗ ℒ𝑄3

⊗ ℒ𝑄4
which does not

depend on the choice of 𝛼. �

Remark 4.2. We remark that if 𝐷 is symmetric, we can take 𝛽 = 1 and the function 𝛾
simplifies to 𝛾 = 𝛼(⋅)

𝛼(𝑅−(⋅)) .
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For instance, this is the case if 𝐴 = 𝐸 is an elliptic curve and 𝐷 = (0𝐸); we recall that 𝛼 is
any function with divisor 𝐷𝑃1

+𝐷𝑃2
−𝐷𝑄3

−𝐷𝑄4
. An explicit construction of 𝛼 is as follows:

recall that 𝑄3 + 𝑄4 = 𝑅 − 𝑃3 + 𝑅 − 𝑃4 = 𝑃1 + 𝑃2. Let 𝑔𝑃1,𝑃2
be any function with divisor

𝐷𝑃1+𝑃2
− 𝐷𝑃1

− 𝐷𝑃2
and 𝑔𝑄3,𝑄4

be any function with divisor 𝐷𝑄3+𝑄4
− 𝐷𝑄3

− 𝐷𝑄4
, then

𝛼 = 𝑔𝑄3,𝑄4
/𝑔𝑃1,𝑃2

has the correct divisor, and we obtain

𝛾(𝑋) =
𝑔𝑄3,𝑄4

(𝑋)𝑔𝑃1,𝑃2
(𝑅 − 𝑋)

𝑔𝑃1,𝑃2
(𝑋)𝑔𝑄3,𝑄4

(𝑅 − 𝑋).

We also remark that 𝛾 is constructed from 𝛼, whose existence comes from the theorem
of the square. On an abelian variety a line bundle has a canonical squared structure which
induces the canonical cubical structure.

Example 4.3. We have the following important squared and cubical relations (compare
with [Mor85, § I.2.3] and [Mor85, I.(2.4.1)] respectively) as special cases of Proposition 4.1
and Remark 4.2:

• [𝑃 + 𝑄, 𝑃 − 𝑄, 0, 0; −𝑄, 𝑄, 𝑃, 𝑃].If 𝐷 is symmetric, the function 𝛾 associated to
[𝑃 + 𝑄, 𝑃 − 𝑄, 0, 0; −𝑄, 𝑄, 𝑃, 𝑃] is 𝛾 = 𝑔𝑄,−𝑄(𝑃−(⋅))

𝑔𝑄,−𝑄(⋅) , with 𝑔𝑄,−𝑄 a function with
divisor 𝐷𝑄 + 𝐷−𝑄.

• [𝑃 + 𝑄 + 𝑅, 𝑃, 𝑄, 𝑅; 0, 𝑄 + 𝑅, 𝑃 + 𝑅, 𝑃 + 𝑄]. If 𝐷 is symmetric, the function 𝛾
associated to [𝑃 + 𝑄 + 𝑅, 𝑃, 𝑄, 𝑅; 0, 𝑄 + 𝑅, 𝑃 + 𝑅, 𝑃 + 𝑄] is 𝛾 = 𝑔𝑄,𝑅(𝑃+𝑄+𝑅−(⋅))

𝑔𝑄,𝑅(⋅)
with 𝑔𝑄,𝑅 a function with divisor 𝐷𝑄+𝑅 − 𝐷𝑄 − 𝐷𝑅.

A trick to find 𝛾 in practice is to remark that 𝛾 has for divisor 𝐷𝑃+𝑄 + 𝐷𝑃−𝑄 − 𝐷−𝑄 −
𝐷𝑄 − 2𝐷𝑃 and 𝐷𝑃+𝑄+𝑅 + 𝐷𝑃 + 𝐷𝑄 + 𝐷𝑅 − 𝐷𝑄+𝑅 − 𝐷𝑃+𝑅 − 𝐷𝑃+𝑄 respectively, and
satisfy the equation 𝛾(⋅)𝛾(𝑇 − ⋅) = 1 where 𝑇 = 𝑃 and 𝑇 = 𝑃 + 𝑄 + 𝑅 respectively. (More
generally, if [𝑃1, 𝑃2, 𝑃3, 𝑃4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] are in Riemann positions, 𝛾 has for divisor
𝐷𝑃1

+ 𝐷𝑃2
+ 𝐷𝑃3

+ 𝐷𝑃4
− 𝐷𝑄1

− 𝐷𝑄2
− 𝐷𝑄3

− 𝐷𝑄4
and 2𝑇 = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4.) In

particular, if 𝑇 = 2𝑇′, 𝛾(𝑇′)2 = 1, so 𝛾 is determined up to a sign from its divisor and this
equation.

4.2. Cubical structure and cubical arithmetic. We can use Proposition 4.1 to define a
“cubical arithmetic”.

4.2.1. Normalised symmetric isomorphism. Let ℒ be a symmetric line bundle on 𝐴, and
𝛼 ∶ ℒ ≃ [−1]∗ℒ an isomorphism.

Then if 𝑃 ∈ 𝐴, 𝛼 induces 𝛼(𝑃) ∶ ℒ(𝑃) ≃ ([−1]∗ℒ)(𝑃) = ℒ(−𝑃).
Following [Mum66, § 2], we call 𝛼 normalised if 𝛼(0𝐴) is the identity map; such an

isomorphism always exist.

4.2.2. Rigidifications. When ℒ is a line bundle on an abelian variety 𝐴, we recall that a
rigidification of ℒ at a point 𝑃 ∈ 𝐴 is the choice of an isomorphism 𝒪𝐴(𝑃) → ℒ(𝑃) ≔
ℒ ⊗ 𝒪𝐴(𝑃) (we will take our rigidifications to be rational). The rigidifications at 𝑃 form a
torsor under 𝔾𝑚.

We remark that a line bundle is locally trivial for the Zariski topology, so we can always find
a local trivialisation around 𝑃 given by an isomorphism 𝒪𝐴,𝑃 → ℒ ⊗ 𝒪𝐴,𝑃. A trivialisation
𝜙𝑃 ∶ 𝒪𝐴,𝑃 ≃ ℒ ⊗ 𝒪𝐴,𝑃 induces an isomorphism on the residual fibers: 𝜙𝑃 ∶ 𝑘(𝑃) ≃
ℒ(𝑃) ≔ ℒ ⊗ 𝑘(𝑃), so a rigidification at 𝑃.

Conversely, a rigidification, i.e. an isomorphism on the fibers always lift (non uniquely)
to a local trivialisation. Looking at the image of 1 ∈ 𝒪 under a trivialisation, we see that a
choice of trivialisation is the same as a choice of local section 𝑠 of ℒ at 𝑃 which generates
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ℒ locally at 𝑃, or equivalently 𝑠(𝑃) ≠ 0 (the value of 𝑠 at 𝑃 is not well defined, but the fact
that it is zero or not is). Reformulated in terms of a divisor 𝐷 associated to ℒ, a local section
𝑠 is a function such that div(𝑠) + 𝐷 has no poles at 𝑃, and 𝑠 generates ℒ locally at 𝑃 if for
all other local sections 𝑡, the function 𝑡/𝑠 does not have a pole at 𝑃. Trivialisations are more
conveniently expressed in terms of line bundles, which is why we have started to switch to
this language in Section 4.1. Two local trivialisations, induced by local sections 𝑠1, 𝑠2, give
the same rigidification at 𝑃 iff (𝑠1/𝑠2)(𝑃) = 1.

Furthermore if ℒ ≃ ℳ, then since 𝐴/𝑘 is proper and integral,Hom(ℒ, ℳ) ≃ Γ(𝐴) ≃ 𝑘.
So a rigidification of ℒ, ℳ at 𝑃 is enough to fix uniquely a global isomorphism ℒ → ℳ.

4.2.3. Cubical torsor structure. Let ℳ ∈ Pic0(𝐴), 𝑚 ∶ 𝐴 × 𝐴 → 𝐴 be given by the addition
map, and 𝜋1, 𝜋2 the two projections. Consider the line bundle Λℳ = 𝑚∗ℳ ⊗ 𝜋∗

1ℳ−1 ⊗
𝜋∗

2ℳ−1. Since ℳ is algebraically equivalent to 0, it is translation invariant, so Λℳ is fiberwise
trivial, hence is trivial by the seesaw theorem; it is completely rigidified by a rigidification of ℳ
at 0𝐴. In particular, once a rigidification at 0𝐴 of ℳ is fixed, we have canonical isomorphisms
ℳ(𝑄1 + 𝑄2) → ℳ(𝑄1) ⊗ ℳ(𝑄2), satisfying various natural compatibility relations on
𝐴 × 𝐴 × 𝐴. This is the squared structure associated to a line bundle algebraically equivalent
to 0.

Now if ℒ is a line bundle, then ℳ𝑃 ≔ 𝑡∗
𝑃ℒ ⊗ ℒ−1 is algebraically equivalent to 0.

Fixing a rigidification of ℒ at 0𝐴, we obtain canonical isomorphisms ℒ(𝑃 + 𝑄1 + 𝑄2) ⊗
ℒ(𝑄1) ⊗ ℒ(𝑄2) ≃ ℒ(𝑃 + 𝑄1) ⊗ ℒ(𝑃 + 𝑄2) ⊗ ℒ(𝑄1 + 𝑄2), which depends on a
choice of rigidification of ℳ𝑃 at 0𝐴. These isomorphisms are subsumed as follows: let 𝑚123 ∶
𝐴×𝐴×𝐴 → 𝐴, (𝑃1, 𝑃2, 𝑃3) → 𝑃1 +𝑃2 +𝑃3, 𝑚𝑖𝑗 ∶ 𝐴×𝐴×𝐴 → 𝐴, (𝑃1, 𝑃2, 𝑃3) → 𝑃𝑖 +𝑃𝑗
and 𝑚𝑖 = 𝜋𝑖 the projection map. Consider the line bundle 𝑚∗

123ℒ ⊗ 𝑚∗
12ℒ−1 ⊗ 𝑚∗

23ℒ−1 ⊗
𝑚∗

13ℒ−1 ⊗ 𝑚∗
1ℒ ⊗ 𝑚∗

2ℒ ⊗ 𝑚∗
3ℒ. Then the theorem of the cube implies that this torsor

is trivial, and globally rigidified by a rigidification of ℒ at 0𝐴. This is the cubical structure
associated to a line bundle ℒ; by the discussion above this cubical structure can be recovered
from the squared structures on the ℳ𝑃.

4.2.4. Cubical arithmetic. On an abelian variety 𝐴, fixing a rigidification of ℒ at 𝑃 is the same
as fixing a rigidification of ℒ𝑃 ≔ 𝑡∗

𝑃 at 0𝐴: a local isomorphism 𝜙 ∶ 𝒪𝐴(0𝐴) → ℒ𝑃(0𝐴) at
0𝐴 induces by pullback a local isomorphism 𝑡∗

𝑃𝜙 ∶ 𝒪𝐴(𝑃) → ℒ(𝑃) at 𝑃.
Given 𝑃 ∈ 𝐴, we will denote by �̃� the choice of a rigidification 𝜙�̃� of ℒ𝑃 (implicitly at

0𝐴). If 𝜆 ∈ 𝔾𝑚, we will denote by 𝜆�̃� the rigidification 𝜆𝜙�̃�. We will call �̃� a cubical point;
the reason for the terminology and the notation will become clear in Section 4.5 where we
introduce a convenient way to represent 𝜙�̃�: a cubical point �̃� is a “point” lying above the
projective point 𝑃, with a cubical arithmetic induced from Section 4.2.3.

The cubical arithmetic may be defined as follow: if we have fixed a rigidification of ℒ at
0𝐴 and rigidifications of ℒ at 𝑃1, 𝑃2, 𝑃3, 𝑃1 + 𝑃2, 𝑃1 + 𝑃3, 𝑃2 + 𝑃3, then by the cubical
structure, using the canonical isomorphism ℒ(𝑃1+𝑃2+𝑃3)⊗ℒ(𝑃1)⊗ℒ(𝑃2)⊗ℒ(𝑃3) ≃
ℒ(𝑃1 + 𝑃2) ⊗ ℒ(𝑃1 + 𝑃3) ⊗ ℒ(𝑃2 + 𝑃3), we have a canonical rigidification of ℒ at
𝑃1 + 𝑃2 + 𝑃3.

More generally, we canuse the algebraic Riemann relations. Let [𝑃1, 𝑃2, 𝑃3, 𝑃4; 𝑄1, 𝑄2, 𝑄3, 𝑄4]
be points in Riemann position. By Proposition 4.1, given a rigidification 𝑃𝑖, 𝑄𝑖 on seven out
of our eight points 𝑃𝑖, 𝑄𝑖, there is a canonical rigidification associated to the last one. We
call the corresponding rigidification the one induced by the cubical arithmetic. We then say
that the cubical points [�̃�1, �̃�2, �̃�3, �̃�4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] are in Riemann position.
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Example 4.4. By Example 4.3, we have the following special cases of cubical arithmetic. We
fix once and for all a choice for 0̃𝐴.

• Given �̃�, 𝑄, ̃𝑃 − 𝑄, we have a canonical rigidification ̃𝑃 + 𝑄, which we call a cubical
differential addition. We denote ̃𝑃 + 𝑄 = DiffAdd(�̃�, 𝑄, ̃𝑃 − 𝑄). As a special case
where �̃� = 𝑄 and ̃𝑃 − 𝑄 = 0̃𝐴, we have a cubical doubling 2�̃� = Double(�̃�).

• Given �̃�, 𝑄, �̃�, ̃𝑃 + 𝑄, 𝑃 + 𝑅, 𝑄 + 𝑅, we have a canonical rigidification ̃𝑃 + 𝑄 + 𝑅,
whichwe call a cubical threeway add.Wedenote ̃𝑃 + 𝑄 + 𝑅 = ThreeWayAdd(�̃�, 𝑄, �̃�, ̃𝑃 + 𝑄, 𝑃 + 𝑅, 𝑄 + 𝑅).

• More generally, given points 𝑃𝑖 and their two by two sums ̃𝑃𝑖 + 𝑃𝑗, we can compute
a multi way addition ̃𝑃1 + ⋯ + 𝑃𝑚 by iterating multiple three way additions.

In particular, given �̃� we can use a ladder cubical differential additions and doublings to
compute a cubical scalar multiplication ℓ�̃�. Likewise, given ̃𝑃 + 𝑄, �̃�, 𝑄, we can compute

̃ℓ𝑃 + 𝑄 though a ladder. We will denote ̃ℓ𝑃 + 𝑄 = ScalarMult(ℓ, ̃𝑃 + 𝑄, �̃�, 𝑄) and ℓ�̃� =
ScalarMult(ℓ, �̃�).

We can also define the opposite of a point as follows. Since ℒ is symmetric, we take
the normalised isomorphism 𝛼 ∶ [−1]∗ℒ ≃ ℒ. If �̃� is a rigidification of ℒ at 𝑃, [−1]∗�̃�
is a rigidification of [−1]∗ℒ at −𝑃, and we can use the isomorphism above to obtain a
rigidification of ℒ at −𝑃, which we denote by −�̃�. Since we use the normalised symmetric
isomorphism, we have −0̃𝐴 = 0̃𝐴.

The cubical arithmetic is homogeneous with respect to the action by 𝔾𝑚. (We recall that
if �̃� is a cubical point corresponding to an isomorphism 𝒪𝐴(𝑃) → ℒ(𝑃), 𝜆�̃� is the cubical
point corresponding to this isomorphism multiplied by 𝜆.) More precisely, we have:

Lemma 4.5.
• If [�̃�1, �̃�2, �̃�3, �̃�4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] are inRiemann position, then so are [𝜆𝑃,1�̃�1, 𝜆𝑃,2�̃�2, 𝜆𝑃,3�̃�3, 𝜆𝑃,4�̃�4; 𝜆𝑄,1𝑄1, 𝜆𝑄,2𝑄2, 𝜆𝑄,3𝑄3, 𝜆𝑄,4𝑄4]

whenever 𝜆𝑃,1𝜆𝑃,2𝜆𝑃,3𝜆𝑃,4 = 𝜆𝑄,1𝜆𝑄,2𝜆𝑄,3𝜆𝑄,4;
• −(𝜆�̃�) = 𝜆(−�̃�)
• DiffAdd(𝜆𝑃�̃�, 𝜆𝑄𝑄, 𝜆𝑃𝑄 ̃𝑃 − 𝑄, 𝜆0 ̃0) =

𝜆2
𝑃𝜆2

𝑄

𝜆𝑃𝑄𝜆2
0
DiffAdd(�̃�, 𝑄, ̃𝑃 − 𝑄, ̃0);

• ThreeWayAdd(𝜆𝑃1
𝑃1, 𝜆𝑃2

𝑃2, 𝜆𝑃3
𝑃3, 𝜆𝑃2+𝑃3

̃𝑃2 + 𝑃3, 𝜆𝑃1+𝑃3
̃𝑃1 + 𝑃3, 𝜆𝑃1+𝑃2

̃𝑃1 + 𝑃2, 𝜆0 ̃0) =
𝜆𝑃1+𝑃2𝜆𝑃2+𝑃3𝜆𝑃1+𝑃3𝜆0

𝜆𝑃1
𝜆𝑃2𝜆𝑃3

ThreeWayAdd(𝑃1, 𝑃2, 𝑃3, ̃𝑃2 + 𝑃3, ̃𝑃1 + 𝑃3, ̃𝑃1 + 𝑃2, ̃0)

• ScalarMult(ℓ, 𝜆𝑃𝑄 ̃𝑃 + 𝑄, 𝜆𝑃�̃�, 𝜆𝑄𝑄, 𝜆0 ̃0) = 𝜆ℓ
𝑃𝑄𝜆ℓ(ℓ−1)

𝑃 𝜆−(ℓ−1)
𝑄 𝜆−ℓ(ℓ−1)

0 𝜆ℓ2
𝑃 ScalarMult(ℓ, ̃𝑃 + 𝑄, �̃�, 𝑄, ̃0)

We warn that the cubical arithmetic defined in Example 4.4 does not form a group struc-
ture (unlike biextensions which do induce compatible groups structures on subsets). The
cubical arithmetic shares many analogy with the arithmetic of a Kummer variety. Further-
more, using [Mor85, § I.5], all expected natural relations do hold in the cubical arithmetic.
We note also that if 𝑃 is a point of ℓ-torsion and we fix a rigidification �̃�, then ℓ�̃� is a rigidifi-
cation of ℒ at 0𝐴 so differ from our global choice of ̃0𝐴𝑘

by some constant 𝜆: ℓ�̃� = 𝜆 ̃0𝐴𝑘
.

In general, we will have 𝜆 ≠ 1 (i.e., �̃� will not be of ℓ-torsion), in fact constants like 𝜆 will
provide us exactly the monodromy informations which gives the Weil and Tate pairings.

4.2.5. Cubical nets. Assume that we are given 𝑟 points 𝑃𝑖 ∈ 𝐴, and that we have fixed
cubical points 𝑃𝑖 and ̃𝑃𝑖 + 𝑃𝑗 for all 𝑖 ≠ 𝑗. Then for each 𝑛 = (𝑛1, … , 𝑛𝑟) ∈ ℤ𝑟, the cubical
arithmetic determines a cubical point ∑ 𝑛𝑖�̃�𝑖 ≔ ∑̃ 𝑛𝑖𝑃𝑖. (For the link with elliptic nets, we
refer to Section 4.9.5).

The compatibility relations for the cubical torsor structure show that we can use whichever
Riemann relations to arrive at the end result, they all give the same cubical points. For instance,
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we can compute ̃2𝑃1 + 2𝑃2 asDouble( ̃𝑃1 + 𝑃2), or by computing successively via doublings
and differential additions 2̃𝑃1, ̃2𝑃1 + 𝑃2, ̃2𝑃1 + 2𝑃2, or doing it the other way around: 2̃𝑃2,

̃2𝑃2 + 𝑃1, ̃2𝑃1 + 2𝑃2. The end result is the same.

Remark4.6. One should be careful that if𝑃1 is a point of ℓ1 torsion, ∑̃ 𝑛𝑖𝑃𝑖 and ̃ℓ1𝑃1 + ∑ 𝑛𝑖𝑃𝑖
will not give the same cubical point in general; they differ by some projective factor 𝜆𝑃1

. This
is the whole point of the cubical arithmetic; this monodromy will give pairings.

We can extend Lemma 4.5 by recurrence on the rank 𝑟 (compare with [Sta08, Proposi-
tion 5.1.2, Theorem 6.2.3, Theorem 10.1.1]):

Lemma 4.7. If we change 𝑃𝑖 into 𝜆𝑖𝑃𝑖, and ̃𝑃𝑖 + 𝑃𝑗 into 𝜆𝑖𝑗 ̃𝑃𝑖 + 𝑃𝑗, then ∑̃ 𝑛𝑖𝑃𝑖 is changed
into

∏
𝑖

𝜆𝑛2
𝑖

𝑖 ∏
𝑖<𝑗

⎛⎜
⎝

𝜆𝑖𝑗

𝜆𝑖𝜆𝑗
⎞⎟
⎠

𝑛𝑖𝑛𝑗

∑̃ 𝑛𝑖𝑃𝑖.

A convenient way to remember Lemma 4.7, which I learnt from [Sta08, § 10.3], is to write
𝜆′

𝑖𝑖 = 𝜆𝑖, 𝜆𝑖𝑗 = (𝜆′
𝑖𝑗)2𝜆𝑖𝜆𝑗 (we will see that the choice of square root for 𝜆′

𝑖𝑗 does not matter).
Then if we write a formal square (∑ 𝑛𝑖𝑥𝑖)2 = ∑𝑖 𝑛2

𝑖 𝑥2
𝑖 + ∑𝑖<𝑗 2𝑛𝑖𝑛𝑗𝑥𝑖𝑥𝑗 = ∑𝑖≤𝑗 𝑐𝑖𝑗𝑥𝑖𝑥𝑗,

we see that ∑̃ 𝑛𝑖𝑃𝑖 is changed into ∏𝑖≤𝑗 𝜆′
𝑖𝑗

𝑐𝑖𝑗∑̃ 𝑛𝑖𝑃𝑖.

Lemma 4.8 (Periodicity). Let Γ ⊂ ℤ𝑟 be the lattice of relations on the 𝑃𝑖: for all 𝛾 =
(𝛾1, … , 𝛾𝑟) ∈ Γ, ∑ 𝛾𝑖𝑃𝑖 = 0.

Then for all 𝑛 ∈ ℤ𝑟, 𝛾 ∈ Γ, the two cubical points ∑ 𝑛𝑖�̃�𝑖 and ∑(𝑛𝑖 + 𝛾𝑖)�̃�𝑖 lie over the
same point ∑ 𝑛𝑖𝑃𝑖, so differ by a projective factor 𝜆(𝛾, 𝑛): ∑(𝑛𝑖 + 𝛾𝑖)�̃�𝑖 = 𝜆(𝛾, 𝑛)∑̃ 𝑛𝑖𝑃𝑖.

Then 𝜆 is quadratic, and affine linear in 𝑛: for 𝛾1, 𝛾2, 𝛾3 ∈ Γ, 𝑛1, 𝑛2, 𝑛3 ∈ ℤ𝑟,
𝜆(𝛾1 + 𝛾2 + 𝛾3, 𝑛1 + 𝑛2 + 𝑛3)𝜆(𝛾1, 𝑛1)𝜆(𝛾2, 𝑛2)𝜆(𝛾3, 𝑛3) = 𝜆(𝛾1 + 𝛾2, 𝑛1 + 𝑛2)𝜆(𝛾2 + 𝛾3, 𝑛2 + 𝑛3)𝜆(𝛾1 + 𝛾3, 𝑛1 + 𝑛3)

𝜆(𝛾, 𝑛1 + 𝑛2 + 𝑛3)𝜆(𝛾, 𝑛3) = 𝜆(𝛾, 𝑛1 + 𝑛3)𝜆(𝛾, 𝑛2 + 𝑛3).

Proof. Using Lemma 4.7, the proof is the same as in [Sta08, Theorem 10.2.3] (except that
our 𝜆 is well defined everywhere, so this simplifies a bit the proof). �

Example 4.9. If 𝑃 is a point of ℓ-torsion and we fix a cubical point �̃�, then writing ℓ�̃� = 𝜆0 ̃0,
(ℓ + 1)�̃� = 𝜆1�̃�, with 𝜆1 = 𝜆0𝜆′

1, we have (𝑢ℓ + 𝑣)�̃� = 𝜆𝑢2
0 𝜆′

1
𝑢𝑣𝑣�̃�, and writing 2ℓ�̃� =

ℓ�̃� + ℓ�̃�, we obtain 𝜆2
0 = 𝜆′

1
ℓ, as in [Sta08, Theorem 10.2.2]. So if we let 𝛼, 𝛽 ∈ 𝑘 such that1

𝛽ℓ = 𝜆0, 𝛽2 = 𝜆′
1 𝛼ℓ = 𝛽, we have (𝑢ℓ + 𝑣)�̃� = 𝛽ℓ𝑢2+2𝑢𝑣𝑣�̃� = 𝛼(𝑢ℓ+𝑣)2−𝑣2𝑣�̃�. (There is a

small typo in [Sta08, Theorem 10.2.2], the 𝛼 defined there is our 𝛽, but the formula is only
correct using the 𝛼 we define here.)

We will see in Section 4.4 that 𝜆′
1 is the self Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑃). Furthermore, if

ℓ = 2ℓ′ +1 is odd, then (ℓ′ +1)�̃� = 𝛽⋅−ℓ′�̃�, and if ℓ = 2ℓ′ +2 is even, (ℓ′ +2)�̃� = 𝛽2 ⋅−ℓ′�̃�.

Example 4.10. If ℓ1𝑃+ℓ2𝑄 = 0, andwefix �̃�, 𝑄, ̃𝑃 + 𝑄, we have ̃(𝑢ℓ1 + 𝑣1)𝑃 + (𝑢ℓ2 + 𝑣2)𝑄 =
𝜆′

𝑃
𝑢𝑣1𝜆′

𝑄
𝑢𝑣2𝜆𝑃𝑄

𝑢2 ̃𝑣1𝑃 + 𝑣2𝑄 where ̃2𝑃 + (ℓ1𝑃 + ℓ2𝑄) = 𝜆′
𝑃2̃𝑃, ̃2𝑄 + (ℓ1𝑃 + ℓ2𝑄) =

𝜆′
𝑄2̃𝑄, ̃𝑃 + 𝑄 + (ℓ1𝑃 + ℓ2𝑄) = 𝜆′

𝑃𝜆′
𝑄𝜆𝑃𝑄 ̃𝑃 + 𝑄. Compare with [Sta08, Lemma 10.2.5].

Using that 𝜆 is defined everywhere, we can also recover these projective factors as follows:
̃ℓ1𝑃 + ℓ2𝑄 = 𝜆𝑃𝑄 ̃0, ̃𝑃 + ℓ1𝑃 + ℓ2𝑄 = 𝜆′

𝑃𝜆𝑃𝑄�̃�, ̃𝑄 + ℓ1𝑃 + ℓ2𝑄 = 𝜆′
𝑄𝜆𝑃𝑄𝑄.

1This is always possible if ℓ is odd; if ℓ is even we will see in Section 6.2.2 that this is possible if and only if
𝑒𝐷,⋆(ℓ/2𝑃) = 1.
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Example 4.11. Suppose that 𝑃𝑖 is of order ℓ𝑖 and that we have fixed 𝑃𝑖, ̃𝑃𝑖 + 𝑃𝑗. Then,
letting 𝜆𝑖 = 𝜆𝑖,𝑖, 𝜆′

𝑖 = 𝜆′
𝑖,𝑖 and 𝜆𝑖,𝑗 = 𝜆𝑗,𝑖 for symmetry, we have ̃∑𝑖(𝑢𝑖ℓ𝑖 + 𝑣𝑖)𝑃𝑖 =

∏𝑖,𝑗 𝜆𝑖,𝑗
𝑢𝑖𝑢𝑗𝜆′

𝑖,𝑗
𝑢𝑖𝑣𝑗(∑̃𝑖 𝑣𝑖𝑃𝑖).

We can recover the projective coefficients as follows: ℓ̃𝑖𝑃𝑖 = 𝜆𝑖𝑖 ̃0, ̃ℓ𝑖𝑃𝑖 + ℓ𝑗𝑃𝑗 = 𝜆𝑖𝜆𝑗𝜆2
𝑖,𝑗 ̃0,

̃ℓ𝑖𝑃𝑖 + 𝑃𝑗 = 𝜆′
𝑖,𝑗𝜆𝑖𝑃𝑗 (we remark that 𝜆2

𝑖,𝑗 and 𝜆𝑖,𝑖 are in the base field). More over, we have

𝜆2
𝑖 = 𝜆′

𝑖
ℓ𝑖 and 𝜆2

𝑖,𝑗 = 𝜆′
𝑖,𝑗

ℓ𝑗 = 𝜆′
𝑗,𝑖

ℓ𝑖 .
If we change 𝑃𝑖 and ̃𝑃𝑖 + 𝑃𝑗 by projective factors 𝜇𝑖, 𝜇𝑖𝜇𝑗𝜇𝑖,𝑗, then we change 𝜆𝑖, 𝜆2

𝑖,𝑗 into

𝜆𝑖𝜇
ℓ2
𝑖

𝑖 , 𝜆2
𝑖,𝑗𝜇

ℓ𝑖ℓ𝑗
𝑖,𝑗 , and 𝜆′

𝑖,𝑗 into 𝜆′
𝑖,𝑗𝜇

ℓ𝑖
𝑖,𝑗.

We will see that 𝜆′
𝑖,𝑗 gives the non reduced Tate pairing 𝑒𝑇,ℓ𝑖

(𝑃𝑖, 𝑃𝑗), and that if ℓ = 𝑑𝑖ℓ𝑖 =
𝑑𝑗ℓ𝑗, the Weil pairing is given by 𝑒𝑊,ℓ(𝑃𝑖, 𝑃𝑗) = 𝜆′

𝑖,𝑗
𝑑𝑖/𝜆′

𝑗,𝑖
𝑑𝑗 .

4.2.6. Action of the theta group on cubical points. There is an action of the theta group 𝐺(𝐷)
on cubical points. Let 𝑇 ∈ 𝐴[𝐷], and (𝑇, 𝑔𝑇) ∈ 𝐺(𝐷) an element of the theta group. By
definition, this is the same as a choice of a global isomorphism 𝜙𝑇 ∶ ℒ → 𝑡∗

𝑇ℒ. In particular,
this isomorphism is completely determined by a rigidification of 𝑡∗

𝑇ℒ at 0, hence a cubical
point 𝑇 (recall that we have fixed once and for all a cubical point ̃0).

In other words, 𝑔𝑇 is completely determined by 𝑇, and conversely, and by definition of the
cubical arithmetic and the arithmetic of the theta group, cubical points above 𝐴[𝐷] with their
arithmetic are isomorphic to the theta group 𝐺(𝐷) (or to reformulate: the cubical arithmetic
become trivial over 𝐴[𝐷]). In particular, given cubical points 𝑇1, 𝑇2 where 𝑇1, 𝑇2 ∈ 𝐴[𝐷],

̃𝑇1 + 𝑇2 is well defined.
Now, given a cubical point �̃�, i.e a rigidification of ℒ at 𝑃, we can use 𝜙𝑇 to obtain a

rigidification of ℒ𝑇 at 𝑃, which we call 𝑔𝑇 ⋅ �̃� or �̃� + 𝑇 ≔ 𝑃 + 𝑇 = 𝑔𝑇 ⋅ �̃�.

Lemma 4.12. If the cubical points [�̃�1, �̃�2, �̃�3, �̃�4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] are in Riemann po-
sition, and [ ̃𝑆1, ̃𝑆2, ̃𝑆3, ̃𝑆4; 𝑇1, 𝑇2, 𝑇3, 𝑇4] are too, with each 𝑆𝑖, 𝑇𝑖 ∈ 𝐴[𝐷], then so are
[ ̃𝑃1 + 𝑆1, ̃𝑃2 + 𝑆2, ̃𝑃3 + 𝑆3, ̃𝑃4 + 𝑆4; ̃𝑄1 + 𝑇1, ̃𝑄2 + 𝑇2, ̃𝑄3 + 𝑇3, ̃𝑄4 + 𝑇4].

Proof. This follows by unraveling the definitions. Anticipating Section 4.8, an analytic proof
is also given in [LR22a, Lemma 3.5]. �

Corollary 4.13. Given cubical points 𝑃𝑖 and ̃𝑃𝑖 + 𝑃𝑗, and cubical points 𝑇𝑖 where 𝑇𝑖 ∈ 𝐴[𝐷],
we have ∑ 𝑛𝑖(𝑃𝑖 + 𝑇𝑖) = ∑ 𝑛𝑖𝑃𝑖 + ∑ 𝑛𝑖𝑇𝑖.

4.2.7. Functions associated to cubical cycles. Let 𝐷 be a divisor on 𝐴, 𝑍 = ∑ 𝑛𝑖(𝑃𝑖) be a
cycle on 𝐴 such that 𝑠(𝑍) = ∑ 𝑛𝑖𝑃𝑖 = 0, then there exists a rational function 𝑓𝑍 with divisor
∑ 𝑛𝑖𝐷𝑃𝑖

.
Switching to the language of line bundles, if we are given cubical points �̃�𝑖 above each 𝑃𝑖

(as a shortcut we could say we have a cubical cycle 𝑍 = ∑ 𝑛𝑖(𝑃𝑖) above 𝑍), then since the line
bundle ⊗𝑖ℒ

⊗𝑛𝑖
𝑃𝑖

is globally trivial, and each rigidification �̃�𝑖 on ℒ𝑃𝑖
induce a rigidification

of ⊗𝑖ℒ
⊗𝑛𝑖
𝑃𝑖

, the cubical cycle 𝑍 induces a well defined global isomorphism 𝒪𝐴 ≃ ⊗𝑖ℒ
⊗𝑛𝑖
𝑃𝑖

.
There is thus a well defined function 𝑓𝑍 with divisor ∑ 𝑛𝑖𝐷𝑃𝑖

.
More generally, if 𝑠(𝑍) ∈ 𝐴[𝐷], then there also exists a rational function 𝑓𝑍 with divisor

∑ 𝑛𝑖𝐷𝑃𝑖
. This rational function is completely determined by 𝑍, and by the choice of a theta

group element (𝑠(𝑍), 𝑔𝑠(𝑍)) ∈ 𝐺(𝐷), which by Section 4.2.6 is the same as the choice of a
cubical point 𝑠(𝑍) (along with the choice of ̃0).

We will pursue this construction in Sections 4.5.2 and 4.6.
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4.3. The cubical representation of the biextension. We can now define the cubical rep-
resentation of a biextension element 𝑔𝑃,𝑄 ∈ 𝑋𝐷. Recall that the function 𝑔𝑃,𝑄 has for
divisor 𝐷𝑃+𝑄 + 𝐷 − 𝐷𝑃 − 𝐷𝑄; in terms of line bundles it corresponds to an isomorphism
ℒ𝑃 ⊗ ℒ𝑄 ≃ ℒ𝑃+𝑄 ⊗ ℒ where ℒ = 𝒪(𝐷) is the line bundle associated to 𝐷.

We can proceed as in Section 4.2.7 for the cycle 𝑍 = (𝑃 + 𝑄) + (0) − (𝑃) − (𝑄). Namely
assume that we are given local rigidifications at 0, ̃0, �̃�, 𝑄, ̃𝑃 + 𝑄, of ℒ, ℒ𝑃, ℒ𝑄, ℒ𝑃𝑄 re-
spectively. These give a local isomorphism ℒ𝑃 ⊗ ℒ𝑄 → ℒ𝑃+𝑄 ⊗ ℒ at 0. Since these line
bundles are globally isomorphic, this local isomorphism lift to a unique global isomorphism,
hence defines a biextension element which we denote by (𝑃, 𝑄, 𝑔𝑃,𝑄) = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄].
(We will often assume ̃0 has been fixed once and for all and drop it from our notations).
We call this the cubical representation of the biextension. It is convenient to also use a two
dimensional notation:

(𝑃, 𝑄, 𝑔𝑃,𝑄) = (
̃0 �̃�

𝑄 ̃𝑃 + 𝑄) .

Recall that �̃� is a notation for a rigidification 𝜙�̃� ∶ 𝒪𝐴(0) → ℒ𝑃(0) at 0, so by abuse of

notations we denote by ̃𝑃 + 𝑄 ⊗ ̃0 ⊗ �̃�−1 ⊗ 𝑄−1 ( or even 𝑃+𝑄0̃
�̃�𝑄

) the corresponding tensor

product of rigidifications 𝒪𝐴(0) → ℒ𝑃+𝑄(0) ⊗ ℒ(0) ⊗ ℒ−1
𝑃 (0) ⊗ ℒ−1

𝑄 (0). The rigidifi-

cation 𝑃+𝑄0̃
�̃�𝑄

lift to a global trivialisation, which is associated precisely to the biextension
function 𝑔𝑃,𝑄 given by the cubical representation.

Remark 4.14. This representation is quite similar to the evaluation representation; instead
of representing 𝑔𝑃,𝑄 through its extended value at 0, we use a rigidification of ℒ𝑃+𝑄 ⊗ ℒ ⊗
ℒ−1

𝑃 ⊗ℒ−1
𝑄 at 0. We refer to Section 4.5 for the relationship between the two representations.

The advantage of the latter representation is that it can be further refined though local
rigidifications of ℒ𝑃+𝑄, ℒ𝑃, ℒ𝑄 ⋯ at 0 (which do not come from global functions evaluated
at 0 since these line bundles are not trivial individually).

In the evaluation representation we could change our evaluation point from 0 to 𝑅0;
likewise here we could use instead a representation of the form

(𝑃, 𝑄, 𝑔𝑃,𝑄) = ( �̃�0 ̃𝑃 + 𝑅0
̃𝑄 + 𝑅0 ̃𝑃 + 𝑄 + 𝑅0

) .

We could even use the cubical three way add introduced below to change the base point
𝑅0 of our representation on the fly; but on the following we will stick to using 𝑅0 = 0 for
simplicity.

We remark that this representation is redundant: the possible choices of 𝑔𝑃,𝑄 form a
𝔾𝑚-torsor, while the choice on the right hand choice consist of four 𝔾𝑚-torsors. From the
definition, we have:

Lemma 4.15. Given 𝜆0, 𝜆𝑃, 𝜆𝑄, 𝜆𝑃𝑄 ∈ 𝔾𝑚, we have

[𝜆𝑃�̃�, 𝜆𝑄𝑄; 𝜆0 ̃0, 𝜆𝑃𝑄 ̃𝑃 + 𝑄] =
𝜆𝑃𝑄𝜆0
𝜆𝑃𝜆𝑄

[�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄],

so they define the same biextension element if and only if 𝜆𝑃𝑄𝜆0 = 𝜆𝑃𝜆𝑄.

We will see that although it is redundant, the cubical representation give a fast biextension
arithmetic. An analogy is using the redundant modified Jacobian coordinates (𝑋, 𝑌, 𝑍, 𝑇)
to compute the scalar multiplication of an elliptic curve.
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Now we explain how to recover the biextension arithmetic in term of our cubical rep-
resentation and the cubical arithmetic. There are actually several possibilities (the cubical
arithmetic is a refinement of the biextension arithmetic), and we will focus on two specific
formulas.

Theorem 4.16. Fix ̃0, and let 𝑃1, 𝑃2, ̃𝑃1 + 𝑄, ̃𝑃2 + 𝑄 be cubical points, and let 𝑔𝑃1,𝑄 =
[𝑃1, 𝑄; ̃0, ̃𝑃1 + 𝑄], 𝑔𝑃2,𝑄 = [𝑃1, 𝑄; ̃0, ̃𝑃2 + 𝑄] the associated biextension elements. (We can
always use Lemma 4.15 to ensure that our representation use the same 𝑄).

Take ̃𝑃1 + 𝑃2 an arbitrary cubical point above 𝑃1 + 𝑃2 and let
̃𝑃1 + 𝑃2 + 𝑄 = ThreeWayAdd(𝑃1, 𝑃2, 𝑄, ̃𝑃2 + 𝑄, ̃𝑃1 + 𝑄, ̃𝑃1 + 𝑃2).

Then 𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 = [ ̃𝑃1 + 𝑃2, 𝑄; ̃0, ̃𝑃1 + 𝑃2 + 𝑄]. We call this a (cubical) biextension
standard addition.

Alternatively, assume that [ ̃𝑃1 − 𝑃2, 𝑄; ̃0, ̃𝑃1 − 𝑃2 + 𝑄] is a cubical representation of
𝑔𝑃1−𝑃2,𝑄 = 𝑔𝑃1,𝑄⋆1𝑔⋆1,−1

𝑃2,𝑄 . Let ̃𝑃1 + 𝑃2 = DiffAdd(𝑃1, 𝑃2, ̃𝑃1 − 𝑃2) and ̃𝑃1 + 𝑃2 + 𝑄 =
DiffAdd( ̃𝑃1 + 𝑄, 𝑃2, ̃𝑃1 − 𝑃2 + 𝑄).Then 𝑔𝑃1,𝑄⋆1𝑔𝑃2,𝑄 = [ ̃𝑃1 + 𝑃2, 𝑄; ̃0, ̃𝑃1 + 𝑃2 + 𝑄].
We call this a (cubical) biextension differential addition.

As a particular case, when 𝑃1 = 𝑃2 = 𝑃, and we have 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄], we can
take 𝑔0,𝑄 = 1 = [ ̃0, 𝑄; ̃0, ̃0], so if we let 2�̃� = Double(�̃�) and ̃2𝑃 + 𝑄 = DiffAdd( ̃𝑃 + 𝑄, �̃�, 𝑄),
we have: 𝑔𝑃,𝑄 ⋆1 𝑔𝑃,𝑄 = [2�̃�, 𝑄; ̃0, ̃2𝑃 + 𝑄]. We call this a (cubical) biextension differential
doubling.

Proof. This is a translation of the fact, explained in [Bre83; Mor85, Chapitre 1], that the
cubical structure induce a symmetric biextension, and the various natural compatibilities of
the cubical arithmetic, to which we refer to [Mor85, § I.5]. We will also give an analytical
argument in Section 4.8.

For the reader who does not like abstract proofs, we will prove the first statement using
the explicit formulas of Proposition 4.1 and leave the second as an exercice.

By definition of the cubical representation [𝑃𝑖, 𝑄; ̃0, ̃𝑃𝑖 + 𝑄], the rigidification ̃𝑃𝑖 + 𝑄 ⊗
̃0 ⊗ 𝑃𝑖

−1 ⊗ 𝑄−1 globalises to a global trivialisation, which from the divisor point of view
corresponds to a function 𝑔𝑃𝑖,𝑄 with divisor 𝐷𝑃𝑖+𝑄 − 𝐷𝑃𝑖

− 𝐷𝑄.
We will assume 𝐷 symmetric by simplicity. By Example 4.3, the point ̃𝑃1 + 𝑃2 + 𝑄

computed through the cubical arithmetic is such that ̃𝑃1 + 𝑃2 + 𝑄 ⊗ 𝑃1 ⊗ 𝑃2 ⊗ 𝑄 ⊗ ̃0−1 ⊗
̃𝑃2 + 𝑄−1 ⊗ ̃𝑃1 + 𝑄−1 ⊗ 𝑄−1 corresponds to a global trivialisation induced by the function

𝑔𝑃1,𝑃2
(𝑃1 + 𝑃2 + 𝑄 − ⋅)/𝑔𝑃1,𝑃2

(⋅).
It follows that the function associated to the cubical representation [ ̃𝑃1 + 𝑃2, 𝑄; ̃0, ̃𝑃1 + 𝑃2 + 𝑄],

is equal to
𝑔𝑃1,𝑃2(𝑃1+𝑃2+𝑄−⋅)

𝑔𝑃1,𝑃2(⋅) 𝑔𝑃1,𝑄𝑔𝑃2,𝑄. Comparing with Equation (10), we need to check
that 𝑔𝑃1,𝑃2

(𝑃1 + 𝑃2 + 𝑄 − ⋅) = 𝑔𝑃1,𝑃2
(𝑄 + ⋅). These two functions have the same divisor

(using our assumption that 𝐷 is symmetric), and their evaluation at a point 𝑇 such that
2𝑇 = 𝑃1 + 𝑃2 yield the same value 𝑔𝑃1,𝑃2

(𝑄 + 𝑇), hence they are equal. We leave the case
where 𝐷 is only linearly symmetric to the reader (we could also invoke flat descent to reduce
to the symmetric case). �

Example 4.17. If 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄], then 𝑔⋆1,−1
𝑃,𝑄 = [−�̃�, 𝑄; ̃0, ̃−𝑃 + 𝑄], where

̃−𝑃 + 𝑄 = DiffAdd(−�̃�, 𝑄, ̃𝑃 + 𝑄).
If we have a cubical representation of 𝑔𝑃1,𝑄, 𝑔𝑃2,𝑄 as above, and also a cubical repre-

sentation of 𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄: 𝑔𝑃1+𝑃2,𝑄 = [ ̃𝑃1 + 𝑃2, 𝑄; ̃0, ̃𝑃1 + 𝑃2 + 𝑄], then 𝑔𝑃1−𝑃2,𝑄 =
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Input: a biextension element 𝑔𝑃,𝑄 = [�̃�, 𝑄, ̃0, ̃𝑃 + 𝑄] represented by cubical points
Output: cubical points ℓ�̃�, ̃ℓ𝑃 + 𝑄 such that 𝑔⋆1,ℓ

𝑃,𝑄 = [ℓ�̃�, 𝑄, ̃0, ̃ℓ𝑃 + 𝑄]
: For each bit 𝑏𝑖 of ℓ from left to right (skipping the first one), given a cubical representation

𝑛𝑃, ̃𝑛𝑃 + 𝑄, of 𝑔⋆1,𝑛
𝑃,𝑄 , where 𝑛 is the current truncation of ℓ on the leftmost bits, do a

cubical biextension double:
a. ̃2𝑛𝑃 + 𝑄 = DiffAdd( ̃𝑛𝑃 + 𝑄, 𝑛𝑃, 𝑄);
b. 2̃𝑛𝑃 = Double(𝑛𝑃);
And if 𝑏𝑖 = 1, also do a cubical biextension addition:
a. Compute (2𝑛 + 1)𝑃 = 2(𝑛𝑃) + 𝑃 and take an arbitrary cubical lift ̃(2𝑛 + 1)𝑃 of

(2𝑛 + 1)𝑃.
b. ̃(2𝑛 + 1)𝑃 + 𝑄 = ThreeWayAdd(2̃𝑛𝑃, �̃�, 𝑄, ̃𝑃 + 𝑄, ̃2𝑛𝑃 + 𝑄, ̃(2𝑛 + 1)𝑃);

Algorithm 4.1. Biextension exponentiation via cubical double and add

[ ̃𝑃1 − 𝑃2, 𝑄; ̃0, ̃𝑃1 − 𝑃2 + 𝑄], is a cubical representation of 𝑔𝑃1,𝑄⋆1𝑔⋆1,−1
𝑃2,𝑄 , where ̃𝑃1 − 𝑃2 =

DiffAdd(𝑃1, −𝑃2, ̃𝑃1 + 𝑃2) and ̃𝑃1 − 𝑃2 + 𝑄 = DiffAdd( ̃𝑃1 + 𝑄, −𝑃2, ̃𝑃1 + 𝑃2 + 𝑄).

ByTheorem 4.16, we have two algorithms to compute the biextension exponentiation 𝑔⋆1,ℓ
𝑃,𝑄

in the cubical representation 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄]. The first one, given in Algorithm 4.1
is a standard double and add algorithm, using standard (cubical) biextension addition,
each biextension addition involving one abelian variety addition and one cubical three way
addition. We note that by Theorem 4.16, we actually have two ways to compute biextension
doubling in a double and add ladder: either we use a biextension normal addition of 𝑔𝑃,𝑄
with itself, or we use a cubical biextension differential doubling. In Algorithm 4.1 we use the
second method, because it is the faster one for Kummer lines.

The second one is to do a differential ladder, using a cubical differential ladder to compute
ℓ̃𝑃, ̃ℓ𝑃 + 𝑄 from 𝑔𝑃,𝑄. Namely at each step we have 𝑔𝑚

𝑃,𝑄, 𝑔𝑚+1
𝑃,𝑄 , represented via the cubical

points 𝑚𝑃, ̃𝑚𝑃 + 𝑄, ̃(𝑚 + 1)𝑃 (in theory we would also need ̃𝑄 + (𝑚 + 1)𝑃 to represent
𝑔𝑚+1

𝑃,𝑄 , but wewill see wewon’t need it in the algorithm; and in any case it could be recomputed
on the fly through a three way addition). In other words, we use a biextension ladder, each
step involving a cubical biextension differential addition and a cubical biextension doubling
(here using a normal cubical biextension doubling would not be correct). Each step of this
biextension differential ladder then involves a cubical doubling and two cubical differential
additions. (It should involve three cubical differential additions but from the remark above
the one to compute the ̃𝑄 + (𝑚 + 1)𝑃 is not used).

In Algorithm 4.2 we present such a ladder algorithm, except we use a ladder of the form
𝑔𝑚−1

𝑃,𝑄 , 𝑔𝑚
𝑃,𝑄 represented by the points ̃(𝑚 − 1)𝑃, ̃𝑚𝑃 + 𝑄, 𝑚𝑃 instead.

We also need to explain how to work out the action of 𝐴[𝐷] on the biextension 𝑋𝐷 from
Lemma 3.9 via cubical arithmetic. Recall from Section 4.2.6 that we have an action of the
theta group 𝐺(𝐷) on cubical points.

Lemma 4.18. If 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄] and 𝑇 ∈ 𝐴[𝐷], then letting 𝑔𝑇 be any function
such that (𝑇, 𝑔𝑇) ∈ 𝐺(𝐷),𝑇⋅𝑔𝑃,𝑄 = [𝑔𝑇 ⋅�̃�, 𝑄; ̃0, 𝑔𝑇 ⋅ ̃𝑃 + 𝑄] = [𝑃 + 𝑇, 𝑄; ̃0, ̃𝑃 + 𝑄 + 𝑇].
4.4. Pairings via the cubical representation. Using Section 4.3 to represent biextension
elements, by Theorems 3.11 and 4.16 we get the following formulas for pairings:
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Input: a biextension element 𝑔𝑃,𝑄 = [�̃�, 𝑄, ̃0, ̃𝑃 + 𝑄] represented by cubical points
Output: cubical points ℓ�̃�, ̃ℓ𝑃 + 𝑄 such that 𝑔⋆1,ℓ

𝑃,𝑄 = [ℓ�̃�, 𝑄, ̃0, ̃ℓ𝑃 + 𝑄]
: Compute 2̃𝑃 = Double(�̃�), ̃2𝑃 + 𝑄 = DiffAdd( ̃𝑃 + 𝑄, �̃�, 𝑄) to get a representation of

𝑔⋆1,2
𝑃,𝑄 .

: For each bit 𝑏𝑖 of ℓ − 1 from left to right (skipping the first one), given a cubical represen-
tation 𝑛𝑃, ̃(𝑛 + 1)𝑃, ̃(𝑛 + 1)𝑃 + 𝑄 of 𝑔⋆1,𝑛

𝑃,𝑄 , 𝑔⋆1,𝑛+1
𝑃,𝑄 where 𝑛 is the current truncation of

ℓ − 1 on the leftmost bits, compute:
a. If 𝑏𝑖 = 0:

• ̃(2𝑛 + 1)𝑃 + 𝑄 = DiffAdd( ̃(𝑛 + 1)𝑃 + 𝑄, 𝑛𝑃, ̃𝑃 + 𝑄);
• ̃(2𝑛 + 1)𝑃 = DiffAdd( ̃(𝑛 + 1)𝑃, 𝑛𝑃, �̃�);
• 2̃𝑛𝑃 = Double(𝑛𝑃);

b. If 𝑏𝑖 = 1:
• ̃2(𝑛 + 1)𝑃 + 𝑄 = DiffAdd( ̃(𝑛 + 1)𝑃 + 𝑄, ̃(𝑛 + 1)𝑃, 𝑄);
• ̃2(𝑛 + 1)𝑃 = Double( ̃(𝑛 + 1)𝑃);
• ̃(2𝑛 + 1)𝑃 = DiffAdd( ̃(𝑛 + 1)𝑃, 𝑛𝑃, �̃�);

Algorithm 4.2. Biextension exponentiation via a cubical ladder

Theorem 4.19. Let 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄], and use any of the two cubical biextension
exponentiation to get a representation 𝑔⋆1,ℓ

𝑃,𝑄 = [ℓ̃𝑃, 𝑄; ̃0, ̃ℓ𝑃 + 𝑄].
Assume that 𝑃 ∈ 𝐴[ℓ𝐷], we can then use the action of −ℓ𝑃 from Lemma 4.18 to compute

−ℓ𝑃⋅𝑔⋆1,ℓ
𝑃,𝑄 = [−ℓ𝑃⋅ℓ̃𝑃, 𝑄; ̃0, −ℓ𝑃⋅ ̃ℓ𝑃 + 𝑄].Then−ℓ𝑃⋅ℓ̃𝑃 = 𝜆0,𝑃 ̃0,−ℓ𝑃⋅ ̃ℓ𝑃 + 𝑄 = 𝜆1,𝑃𝑄,

so −ℓ𝑃 ⋅ 𝑔⋆1,ℓ
𝑃,𝑄 = 𝜆𝑃 with 𝜆𝑃 = 𝜆1,𝑃/𝜆0,𝑃. We will also denote 𝜆𝑃 =

̃(−ℓ𝑃)⋅ ̃ℓ𝑃+𝑄
𝑄

0̃
̃(−ℓ𝑃)⋅ℓ̃𝑃

.
If 𝑄 ∈ 𝐴[ℓ𝐷] too, then the Weil pairing is (up to a sign) 𝑒𝑊,𝐷,ℓ(𝑃, 𝑄) = 𝜆𝑃/𝜆𝑄. If

𝑃 ∈ 𝐴[ℓ𝐷](𝑘), 𝑄 ∈ 𝐴(𝑘) and our cubical points are rational, the non reduced Tate pairing
is (up to a sign) 𝑒𝑇,𝐷,ℓ(𝑃, 𝑄) = 𝜆𝑃.

If 𝑘 = 𝔽𝑞, 𝜇ℓ ⊂ 𝔽𝑞, and 𝑃 ∈ 𝐴[ℓ], we can also recover the reduced Tate pairing by
computing 𝜆′

𝑃 such that 𝑔⋆1,𝑞−1
𝑃,𝑄 = 𝜆′

𝑃, or alternatively such that 𝑔⋆1,𝑞
𝑃,𝑄 = 𝜆′

𝑃𝑔𝑃,𝑄. We have

𝜆′
𝑃 =

̃(𝑞−1)𝑃+𝑄
𝑄

0̃
̃(𝑞−1)𝑃

=
̃𝑞𝑃+𝑄

𝑃+𝑄
𝑄
𝑞𝑃

.

The same remark as in Remark 2.11 still applies.

Remark 4.20 (Refined bilinearity). We can extend Remark 3.14 as follows. Lets assume for
simplicity that we are computing the Tate pairing on 𝔾1 = 𝐸[ℓ](𝔽𝑞) × 𝔾2 ⊂ 𝐸[ℓ](𝔽𝑞𝑑),
and that ℓ is prime to 𝑞 − 1, so that 𝑑 > 1 where 𝑑 is the embedding degree.

Then given 𝑃 ∈ 𝔾1, by Section 4.2.5 there is a unique 𝔽𝑞-rational cubical lift �̃� which
is ℓ-periodic, i.e., such that (𝑎ℓ + 𝑏)�̃� = 𝑏�̃� for all 𝑎, 𝑏 ∈ ℤ (we will come back to these
canonical cubical points of ℓ-torsion in Sections 6.2 and 6.4.

To compute the Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑄) with 𝑄 ∈ 𝔾2 (or even any point in 𝐸[ℓ](𝔽𝑞𝑑), we
can start with �̃� as above and an arbitrary choice of 𝑄, ̃𝑃 + 𝑄. Since ℓ�̃� = ̃0, the (non reduced)
Tate pairing is given by the monodromy 𝑒𝑇,ℓ(𝑃, 𝑄) = 𝜆𝑃 ∈ 𝔽∗

𝑞𝑑 with ̃ℓ𝑃 + 𝑄 = 𝜆𝑃𝑄. If we

look at the associated biextension elements, we have 𝑔⋆1,ℓ
𝑃,𝑄 = 𝜆𝑃, so 𝑔⋆1,ℓ+1

𝑃,𝑄 = 𝜆𝑃𝑔𝑃,𝑄, hence
since ̃ℓ𝑃 + 𝑃 = �̃� by assumption on �̃�, we can also recover 𝜆𝑃 as ̃ℓ𝑃 + 𝑃 + 𝑄 = 𝜆𝑃 ̃𝑃 + 𝑄.
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Now by Example 4.10 (beware of the change of notations), we have ̃ℓ𝑢0𝑃 + 𝑢1𝑃 + 𝑣𝑄 =
𝜆𝑢0𝑣

𝑃
̃𝑢1𝑃 + 𝑣𝑄. In particular, to compute the Tate pairing 𝑒𝑇,ℓ(𝑖𝑃, 𝑄) (resp. 𝑒𝑇,ℓ(𝑃, 𝑖𝑄)), if

we start with 𝑄, ̃𝑖𝑃 + 𝑄 (resp. 𝑖𝑄, ̃𝑃 + 𝑖𝑄) as computed from �̃�, 𝑄, ̃𝑃 + 𝑄 by the cubical
arithmetic, then we have ̃ℓ𝑖𝑃 + 𝑄 = 𝜆𝑖

𝑃𝑄 (resp. ̃ℓ𝑃 + 𝑖𝑄 = 𝜆𝑖
𝑃𝑖𝑖𝑄).

As in Porisms 2.10 and 3.10 we get:

Porism 4.21. Let 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄], and use any of the two cubical biextension
exponentiation to get a representation 𝑔⋆1,ℓ

𝑃,𝑄 = [ℓ̃𝑃, 𝑄; ̃0, ̃ℓ𝑃 + 𝑄].
Then the function 𝑓ℓ,𝑃 evaluated on the cycle (𝑥 + 𝑄) − (𝑥) is given by

𝑔ℓ𝑃,𝑄

𝑔ℓ
𝑃,𝑄

.

If furthermore 𝑃 ∈ 𝐴[ℓ𝐷],then 𝑓−ℓ𝐷𝑃
((𝑅 + 𝑄) − (𝑅)) =

̃(−ℓ𝑃)⋅ ̃ℓ𝑃+𝑄+𝑅�̃�
̃(−ℓ𝑃)⋅ ̃ℓ𝑃+𝑅𝑄+𝑅

(𝑃+𝑅𝑄+𝑅
̃𝑃+𝑄+𝑅�̃�

)
ℓ
.

Here 𝑃+𝑅𝑄+𝑅
̃𝑃+𝑄+𝑅�̃�

is not amonodromy information but a notation for the theta group function

𝑔𝑃,𝑄 represented by �̃�, 𝑄 evaluated at 𝑅; we refer to Section 4.5.2 and Equation (17) for
more details.

We have a natural Galois action on cubical points: if 𝜎 is a Galois group element, 𝜎(�̃�) is
the rigidification of our rational line bundleℒ at𝜎(𝑃) given by applying𝜎 to the rigidification
of ℒ at 𝑃.

In the context of the Ate and optimal Ate pairings, Proposition 3.17 and Corollary 3.19
then become:

Proposition 4.22 (Ate and optimal Ate pairings in the cubical representation). Let 𝐴/𝔽𝑞
be an abelian variety with embedding degree 𝑑 > 1 with respect to ℓ: 𝜇ℓ ⊂ 𝔽𝑞𝑑. Let 𝔾1, 𝔾2
denotes the subspace of 𝐴[ℓ] where the Frobenius 𝜋𝑞 has eigenvalues 1 and 𝑞 respectively.
Let 𝑃 ∈ 𝔾2 and 𝑄 ∈ 𝔾1. Take any cubical biextension representation (𝑃, 𝑄, 𝑔𝑃,𝑄) =
[�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄]. Let 𝜆 ≡ 𝑞 mod ℓ.

Then (𝑃, 𝑄, 𝑔𝑃,𝑄)⋆1,𝜆 = [𝜆�̃�, 𝑄; ̃0, ̃𝜆𝑃 + 𝑄] and𝜋𝑞((𝑃, 𝑄, 𝑔𝑃,𝑄)) = [𝜋𝑞(�̃�), 𝜋𝑞(𝑄); 𝜋𝑞( ̃0), 𝜋𝑞( ̃𝑃 + 𝑄)]
both represent biextension elements above (𝑞𝑃, 𝑄). They differ by a monodromy constant which
gives the (non reduced, except if 𝜆 = 𝑞) 𝜆-Ate pairing.

Explicitly, assuming that 𝑄, ̃0 are chosen to be 𝔽𝑞-rational for simplicity,

𝑎𝜆,ℓ(𝑃, 𝑄) =
̃𝑞𝑃 + 𝑄

𝜋𝑞( ̃𝑃 + 𝑄)

𝜋𝑞(�̃�)
𝑞𝑃

.

If ℓ = ∑ 𝑐𝑖𝑞𝑖, we can compute two cubical points ̃ℓ𝑃 + 𝑄, ℓ̃𝑃 as follows:
(1) Compute the ̃𝑐𝑖𝑃 + 𝑄, 𝑐𝑖𝑃 via a cubical biextension exponentiation;
(2) Compute ̃𝑐𝑖𝑞𝑖𝑃 + 𝑄, 𝑐𝑖𝑞𝑖𝑃 by applying 𝜋𝑖

𝑞 to ̃𝑐𝑖𝑃 + 𝑄, 𝑐𝑖𝑃;
(3) Compute iteratively ̃𝑄 + 𝑐𝑖𝑞𝑖𝑃 + ∑𝑗 𝑐𝑗𝑞𝑗𝑃, ̃𝑐𝑖𝑞𝑖𝑃 + ∑𝑗 𝑐𝑗𝑞𝑗𝑃 by taking an arbitrary

choice for ̃𝑐𝑖𝑞𝑖𝑃 + ∑𝑗 𝑐𝑗𝑞𝑗𝑃 and then using a cubical three way addition to compute
̃𝑄 + 𝑐𝑖𝑞𝑖𝑃 + ∑𝑗 𝑐𝑗𝑞𝑗𝑃 from𝑄, 𝑐𝑖𝑞𝑖𝑃, ̃∑𝑗 𝑐𝑗𝑞𝑗𝑃 and the two by two sums ̃𝑐𝑖𝑞𝑖𝑃 + ∑𝑗 𝑐𝑗𝑞𝑗𝑃,

̃𝑄 + 𝑐𝑖𝑞𝑖𝑃, ̃𝑄 + ∑𝑗 𝑐𝑗𝑞𝑗𝑃.

Then [ℓ̃𝑃, 𝑄; ̃0, ̃ℓ𝑃 + 𝑄] is a biextension element above (0, 𝑄), hence represents a constant
equal to

̃ℓ𝑃+𝑄
0̃

𝑄
ℓ̃𝑃

which is the optimal Ate pairing.
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Remark 4.23 (Cubical arithmetic versus biextension arithmetic). The cubical arithmetic is
a refinement of the biextension arithmetic, since we can recover the biextension arithmetic
from it. On the other hand, since for pairings we only need the biextension arithmetic,
and different cubical points can represent the same biextension points by Lemma 4.15, we
have some leeways: even if we don’t compute the correct cubical arithmetic, as long as the
underlying biextension arithmetic is still correct, our pairings will be correct.

We have seen an example already when using the cubical biextension double and add to
compute 𝑔⋆1,ℓ

𝑃,𝑄. The points ℓ̃𝑃, ̃ℓ𝑃 + 𝑄 we obtain in this way are not the correct one from the
cubical point of view, but they differ from the correct ones by the same factor 𝜆, which mean
that the associated biextension element is still the correct one by Lemma 4.15.

An important example of the difference between the two arithmetic is with respect
to the multiplication by elements 𝜆 ∈ 𝑘. In the biextension (or theta groups), we have
(𝜆 ⋅ 𝑔𝑃,𝑄)⋆1,ℓ = 𝜆ℓ ⋅ 𝑔⋆1,ℓ

𝑃,𝑄. By contrast, we have ℓ(𝜆 ⋅ �̃�) = 𝜆ℓ2�̃�.
One can use Lemma 4.5 to check directly that the Weil pairing and the class of the non

reduced Tate pairing as computed in Theorem 4.19 does not depends on the choice of
�̃�, 𝑄, ̃𝑃 + 𝑄. We can also use that 𝜆 ⋅ [�̃�, 𝑄; ̃𝑃 + 𝑄] = [�̃�, 𝑄; ̃0, 𝜆 ̃𝑃 + 𝑄] to recover that
𝑔⋆1,ℓ

𝑃,𝑄 = 𝜆ℓ ⋅ 𝑔⋆1,ℓ
𝑃,𝑄.

Finally we remark that there are two special cases where we can do a biextension expo-
nentiation faster using the cubical arithmetic.

The first one is when ℓ = 2𝑚, in which case the biextension exponentiation consists
entirely of biextension doublings, so we can use a cubical biextension ladder consisting
entirely of cubical biextension doublings, i.e. a cubical doubling and a cubical differential
addition at each step.

The other more subtle case is for self pairings, i.e. when we want to compute 𝑔⋆1,ℓ
𝑃,𝑃 . Since

we are allowed to choose any 𝑔𝑃,𝑃 above (𝑃, 𝑃) for pairings, we will take one of special form,
given by [�̃�, �̃�, ̃0, 2�̃�]. In other words, we take for 2̃𝑃 the cubical doubling 2�̃� rather than an
arbitrary cubical points. Changing �̃� to 𝜆 ⋅ �̃� changes 2�̃� to 𝜆4 ⋅ 2�̃�, hence 𝑔𝑃,𝑃 to 𝜆2 ⋅ 𝑔𝑃,𝑃.
In other words, these special 𝑔𝑃,𝑃 form a torsor under the squared action of 𝔾𝑚 rather than
under 𝔾𝑚.Thenwe can compute ℓ�̃�, (ℓ+1)�̃� via a cubical ladder, which involves one cubical
doubling and one cubical differential addition by step, to get 𝑔⋆1,ℓ

𝑃,𝑃 = [�̃�, ℓ�̃�, ̃0, (ℓ + 1)�̃�].
Here it is important to use the cubical arithmetic.

A last remark is that when using the cubical representation to compute different pairings
𝑒(𝑃, 𝑄𝑖) with the same base point 𝑃, i.e. biextension exponentiation of elements of the form
𝑔𝑃,𝑄𝑖

= [�̃�, 𝑄𝑖; ̃0, ̃𝑃 + 𝑄𝑖], then for the representation of each 𝑔⋆1,ℓ
𝑃,𝑄𝑖

= [ℓ�̃�, 𝑄𝑖; ̃0, ̃ℓ𝑃 + 𝑄𝑖],
we can of course use the same ℓ�̃� and share the computation.This is also a well known pairing
trick.

4.5. The affine lift representation of cubical points. To use the cubical arithmetic in order
to obtain the biextension arithmetic in order to obtain our pairings, we need to find a
convenient representation of our cubical points �̃�.

4.5.1. Cubical coordinates. In this sectionwe introduce cubical coordinates for cubical points,
which we also call the affine coordinates representation (or affine representation for short)
because it lifts the projective representation of abelian varieties points. Fix 𝑋1, … , 𝑋𝑚 ∈
Γ(ℒ) global sections of ℒ = 𝒪𝐴(𝐷). We have a partial map 𝜑 ∶ 𝐴 → ℙ𝑚−1, 𝑃 ↦ (𝑋1(𝑃) ∶
⋯ , 𝑋𝑚(𝑃)), which is not defined at the base points of ℒ.
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The element 𝑋𝑖(𝑃) is in the fiber ℒ(𝑃) of the line bundle ℒ, and �̃� gives a rigidification
𝒪𝐴(𝑃) = 𝜅(𝑃) → ℒ(𝑃). Using this isomorphism, we obtain an element 𝑋𝑖(�̃�) ∈ 𝜅(𝑃).
This allows to interpret 𝑋𝑖 as an affine coordinate on cubical points.

More explicitly, our cubical point �̃� can be lifted to a local trivialisation 𝜙𝑃 of ℒ at 𝑃,
which is the same as a choice of a local generator 𝑠 at 𝑃. So we can write 𝑋𝑖 = 𝑠𝑖 ⋅ 𝑠, for
some 𝑠𝑖 ∈ 𝒪𝐴. We define the affine representation of our cubical point to be 𝜑(�̃�) =
(𝑋1(�̃�), 𝑋𝑚(�̃�)) ≔ (𝑠1(𝑃), … , 𝑠𝑚(𝑃)) ∈ 𝔸𝑚; it is easy to check that it depends only on
�̃�. If 𝑃 is not a base point, 𝜙(�̃�) is an affine point lying above the projective point 𝜑(𝑃).
Furthermore, in this case not all 𝑠𝑖(𝑃) are 0, and our local section 𝑠 is completely determined
from any non zero coordinate of 𝜙(�̃�): �̃� is completely determined by (𝑃, 𝜑(�̃�)), or even
by (𝑃, 𝑋𝑖(�̃�)) for any 𝑖 such that 𝑠𝑖(𝑃) ≠ 0. If furthermore ℒ is very ample, 𝑃 is completely
determined by 𝜙(𝑃), so �̃� is completely determined by 𝜑(�̃�), in which case we will often
denote it by �̃� too.

We thus obtain a convenient representation as affine points of the cubical points. For
instance, in Theorem 4.19, the value 𝜆1,𝑃 is simply given as 𝜆1,𝑃 = 𝑋𝑖( ̃ℓ𝑃 + 𝑄)/𝑋𝑖(𝑄)
for any 𝑖 such that 𝑋𝑖(𝑄) ≠ 0. Furthermore, if �̃� is represented by (𝑋1(�̃�), … , 𝑋𝑚(�̃�)),
the Galois action 𝜎(�̃�) of a Galois element 𝜎 on the rigidification �̃� of ℒ at 𝑃 is given by
𝜎(�̃�) = (𝜎(𝑋1(�̃�)), … , 𝜎(𝑋𝑚(�̃�))). If 𝑃 ∈ 𝐴[ℒ], and (𝑃, 𝑔𝑃) ∈ 𝐺(ℒ) is an element of
the theta group above 𝑃, then the action of the theta group element 𝑔𝑃 on �̃� is given by
𝑔𝑃 ⋅ �̃� = ((𝑔𝑃 ⋅ 𝑋1)(�̃�), … , (𝑔𝑃 ⋅ 𝑋𝑚)(�̃�)) where 𝑔𝑃 ⋅ 𝑋𝑖 is the natural action of 𝐺(ℒ) on
sections 𝑋𝑖 ∈ Γ(ℒ) from Equation (2).

We will call the cubical doublings, differential additions and three way additions in the
affine lift representation of cubical points the affine doublings, affine differential additions
and affine three way additions respectively.

Remark 4.24. There is a global 𝔾𝑚-ambiguity when using affine coordinates 𝑋𝑖 to represent
cubical points. We’ll illustrate this in the case of an elliptic curve: take a short Weierstrass
equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, with associated Weierstrass coordinates 𝑥, 𝑦. The projective
equation is 𝑌2𝑍 = 𝑋3 + 𝑎𝑋𝑍2 + 𝑏𝑍3, and fixing the coordinate 𝑍 ∈ Γ(3(0𝐸)) fixes 𝑋, 𝑌
via 𝑋 = 𝑥𝑍, 𝑌 = 𝑦𝑍. However, the projective curve equation does not change if we replace 𝑍
by 𝜆𝑍, so we could also work with 𝜆𝑋, 𝜆𝑌, 𝜆𝑍. Now, via the affine representation of cubical
points by the coordiantes 𝑋, 𝑌, 𝑍, there is no difference between keeping the same cubical
points and changing the coordinates 𝑋, 𝑌, 𝑍 to 𝜆𝑋, 𝜆𝑌, 𝜆𝑍, or keeping the same coordinates
𝑋, 𝑌, 𝑍 and changing all cubical points �̃� into 𝜆�̃�.

Let ℒ = 𝒪𝐸((0𝐸)) be the line bundle associated to the canonical principal polarisation
on 𝐸. We will often say that we normalize ̃0 so that (𝑍/(𝑥/𝑦))( ̃0) = 1. This means that if we
lift ̃0 to a local trivialisation of ℒ at 0𝐸, i.e. a local choice of section 𝑠; the section 𝑍 ∈ Γ(ℒ)
can then be written locally as 𝑍 = 𝑔𝑠 for some function 𝑔 ∈ 𝑘(𝐸), and we require that
(𝑔/(𝑥/𝑦))(0) = 1. We can thus interpret this normalisation condition in two different ways:
the first one is to fix a global section 𝑍, and then ask to take ̃0 such that (𝑍/(𝑥/𝑦))( ̃0) = 1;
the second one is to fix ̃0 first and then take 𝑍 such that we have this same equality.

4.5.2. Cubical functions for pairings computations. Let [�̃�1, �̃�2, �̃�3, �̃�4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] be
cubical points in Riemann relation. By definition and Proposition 4.1 they define a canonical
function 𝛾, which only depends on [𝑃1, 𝑃2, 𝑃3, 𝑃4; 𝑄1, 𝑄2, 𝑄3, 𝑄4].

We can recover 𝛾 in terms of the affine coordinates 𝑋𝑖 as follows. Let 𝐷𝑖 be the divisor of ze-
roes of 𝑋𝑖; since 𝑋𝑖 ∈ Γ(ℒ) is a global section, the associated line bundle 𝒪𝐴(𝐷𝑖) is isomor-
phic toℒ and all the𝐷𝑖 are linearly equivalent. Since the points [𝑃1, 𝑃2, 𝑃3, 𝑃4; 𝑄1, 𝑄2, 𝑄3, 𝑄4].
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are in Riemann position, they define canonical functions 𝛾𝑖 for each 𝑖. And we have, by
definition of the affine coordinates, 𝛾𝑖(0) = 𝑋𝑖(�̃�1)𝑋𝑖(�̃�2)𝑋𝑖(�̃�3)𝑋𝑖(�̃�4)

𝑋𝑖(𝑄1)𝑋𝑖(𝑄2)𝑋𝑖(𝑄3)𝑋𝑖(𝑄4)
.

Take 𝑅 ∈ 𝐴, and consider the points [𝑃1+𝑅, 𝑃2+𝑅, 𝑃3+𝑅, 𝑃4+𝑅; 𝑄1+𝑅, 𝑄2+𝑅, 𝑄3+
𝑅, 𝑄4 + 𝑅], they are still in Riemann position, and the associated function is simply 𝑡∗

𝑅𝛾𝑖.
So if [ ̃𝑃1 + 𝑅, ̃𝑃2 + 𝑅, ̃𝑃3 + 𝑅, ̃𝑃4 + 𝑅; ̃𝑄1 + 𝑅, ̃𝑄2 + 𝑅, ̃𝑄3 + 𝑅, ̃𝑄4 + 𝑅] are in Riemann
position, we obtain:

𝛾𝑖(𝑅) =
𝑋𝑖( ̃𝑃1 + 𝑅)𝑋𝑖( ̃𝑃2 + 𝑅)𝑋𝑖( ̃𝑃3 + 𝑅)𝑋𝑖( ̃𝑃4 + 𝑅)

𝑋𝑖( ̃𝑄1 + 𝑅)𝑋𝑖( ̃𝑄2 + 𝑅)𝑋𝑖( ̃𝑄3 + 𝑅)𝑋𝑖( ̃𝑄4 + 𝑅)
.

We can go further: fix cubical points ̃0, �̃�, 𝑄, ̃𝑃 + 𝑄, since the cycle 𝑍 = (𝑃 + 𝑄) +
(0) − (𝑃) − (𝑄) satisfy 𝑠(𝑍) = 0, these cubical points defines uniquely a function 𝑓𝑍 as
in Section 4.2.7, which in this case is a biextension element 𝑔𝑃,𝑄 ∈ 𝑋ℒ in the biextension
associated to ℒ.

To each coordinate 𝑋𝑖, with zero divisor 𝐷𝑖, we let 𝑔𝑖,𝑃,𝑄 be the function with divisor
𝐷𝑖,𝑃+𝑄 − 𝐷𝑖,𝑃 − 𝐷𝑖,𝑄 associated to 𝑔𝑃,𝑄 via the isomorphism 𝑋ℒ ≃ 𝑋𝐷𝑖

.
If 𝑅 ∈ 𝐴, we can fix arbitrary cubical points �̃�, 𝑅 + 𝑃, ̃𝑅 + 𝑄, and look at the unique cubi-

cal point ̃𝑅 + 𝑃 + 𝑄 given by the threeway addition, i.e. such that [ ̃𝑅 + 𝑃 + 𝑄, �̃�, �̃�, 𝑄; ̃0, ̃𝑃 + 𝑄, ̃𝑅 + 𝑄, ̃𝑃 + 𝑄]
are in Riemann position. By Theorem 4.16 combined with the same reasoning as above, we
have

(17) 𝑔𝑖,𝑃,𝑄(𝑅) =
𝑋𝑖( ̃𝑃 + 𝑄 + 𝑅)𝑋𝑖(�̃�)
𝑋𝑖(𝑃 + 𝑅)𝑋𝑖(𝑄 + 𝑅),

,

and so

𝑔𝑖,𝑃,𝑄((𝑅) − (0)) =
𝑋𝑖( ̃𝑃 + 𝑄 + 𝑅)𝑋𝑖(�̃�)𝑋𝑖(�̃�)𝑋𝑖(𝑄)

𝑋𝑖(𝑃 + 𝑅)𝑋𝑖(𝑄 + 𝑅)𝑋𝑖( ̃𝑃 + 𝑄)𝑋𝑖( ̃0)
.

In particular, 𝑔𝑖,𝑃,𝑄 does not depend on the choice of �̃�, 𝑅 + 𝑃, ̃𝑅 + 𝑄, as long as ̃𝑅 + 𝑃 + 𝑄
is computed through a three way addition, as can be checked directly by homogeneity.

This allows to write the genuine function 𝑔𝑖,𝑃,𝑄 as a product of “cubical functions”.
If 𝑇 ∈ 𝐴[𝐷𝑖], we have also seen in Section 4.2 how a choice of cubical point 𝑇 gives a

canonical theta group element (𝑇, 𝑔𝑖,𝑇) ∈ 𝐺(𝐷𝑖). It can be described as follows: if 𝑅 ∈ 𝐴,
take an arbitrary cubical point �̃�, and let 𝑅 + 𝑇 be given by the action of 𝑇 on �̃�. Then by
definition of this action, 𝑔𝑖,𝑇(𝑅) = 𝑋𝑖(𝑅 + 𝑇)/𝑋𝑖(�̃�).

For a degree 0 cycle 𝑍 such that 𝑠(𝑍) ∈ KerΦℒ, and a cubical lift 𝑍 of 𝑍, we can combine
the two methods to iteratively reduce 𝑍 to a cycle 𝑠(𝑍) − ̃0 and express the function 𝑓𝑍 as
product of cubical functions.

4.5.3. The affine cubical biextension representation as evaluation of cubical functions. Let
(𝑃, 𝑄, 𝑔𝑃,𝑄) ∈ 𝑋𝐷 be a biextension element. In the evaluation representation, we represent
𝑔𝑃,𝑄 via (the extended value) 𝑔𝑃,𝑄(0) at the base point 0. Let 𝑋1, … , 𝑋𝑚 ∈ Γ(𝐷), and
assume that 𝑋1 has 𝐷 for divisor of zeroes, 𝑋𝑖 has 𝐷𝑖 for divisor of zeroes, with 𝐷𝑖 =
𝐷+div(𝑋𝑖/𝑋1). We have a function 𝑔𝑖,𝑃,𝑄 = 𝑔𝑃,𝑄

𝑋𝑖
𝑋1

((⋅+𝑃+𝑄)+(⋅)−(⋅+𝑃)−(⋅+𝑄))
coming from the biextension isomorphism 𝑋𝐷 ≃ 𝑋𝐷𝑖

(see Remark 3.8). We can then define
a multievaluation representation, representing 𝑔𝑃,𝑄 via the (extended) evaluations 𝑔𝑖,𝑃,𝑄(0).
It is often the case that the functions 𝑋𝑖 are determined from 𝑋1 via translation by some
elements of torsion 𝑇 (or more precisely via the action of some (𝑇, 𝑔𝑇) ∈ 𝐺(𝐷) on 𝑋1 in the
theta group). This is for instance the case for theta functions of level 𝑛 (where the 𝑇 are points
of 𝑛-torsion), or for the Montgomery model of the Kummer line where 𝑇 = (0 ∶ 1) and
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𝑔𝑇 ⋅ (𝑋, 𝑍) = (𝑍, 𝑋). In this case the multievaluation representation is simply the evaluation
of 𝑔𝑃,𝑄 not only at the base point 𝑅0 = 0, but also at the points 𝑅0 + 𝑇.

Now assume that we are given a cubical representation 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄]. By Sec-
tion 4.5.2, given 𝑅 ∈ 𝐴, and any choice of �̃� above 𝑅, 𝑅 + 𝑃, ̃𝑅 + 𝑄, computing ̃𝑃 + 𝑄 + 𝑅
via a cubical three way add, we have

(18) 𝑔𝑖,𝑃,𝑄 ∶ 𝑅 ↦
𝑋𝑖( ̃𝑃 + 𝑄 + 𝑅)𝑋𝑖(�̃�)
𝑋𝑖(𝑃 + 𝑅)𝑋𝑖(𝑄 + 𝑅)

.

Now, although the function 𝑔𝑖,𝑃,𝑄 is a genuine function on our abelian variety, its indi-
vidual members �̃� ↦ 𝑋𝑖( ̃𝑃 + 𝑄 + 𝑅), 𝑋𝑖(�̃�), 𝑋𝑖(𝑃 + 𝑅), 𝑋𝑖(𝑄 + 𝑅) only make sense as
virtual cubical functions, whose associated divisor of zeroes are 𝑡∗

𝑃+𝑄𝐷𝑖, 𝐷𝑖, 𝑡∗
𝑃𝐷𝑖 and 𝑡∗

𝑄𝐷𝑖
respectively. And the affine cubical representation is precisely the evaluation of these virtual
functions at 0.

When doing a biextension exponentiation to compute 𝑔⋆1,ℓ
𝑃,𝑄, in the multievaluation repre-

sentation we obtain functions 𝑔𝑖,ℓ𝑃,𝑄 such that by Porism 3.10 𝑔𝑖,ℓ𝑃,𝑄/𝑔ℓ
𝑖,𝑃,𝑄 is the function

𝑓𝑖,ℓ,𝑃 evaluated on the cycle (𝑥+𝑄)−(𝑥), where 𝑓𝑖,ℓ,𝑃 has for divisor 𝐷𝑖,ℓ𝑃+(ℓ−1)𝐷𝑖−ℓ𝐷𝑖,𝑃.
The multievaluation representation is given by the evaluation of the functions 𝑔𝑖,ℓ𝑃,𝑄 at 0,
and so 𝑔𝑖,ℓ𝑃,𝑄(0)/𝑔ℓ

𝑖,𝑃,𝑄(0) is the value of 𝑓𝑖,ℓ,𝑃 at the cycle (𝑄) − (0).
Now, the cubical representation also allows to write

(19) 𝑔𝑖,ℓ𝑃,𝑄(𝑅) =
𝑋𝑖( ̃ℓ𝑃 + 𝑄 + 𝑅)𝑋𝑖(�̃�)
𝑋𝑖( ̃ℓ𝑃 + 𝑅)𝑋𝑖(𝑄 + 𝑅)

.

In particular, we have that the evaluation of 𝑓𝑖,ℓ,𝑃 at the cycle (𝑅 + 𝑄) − (𝑅) is given by

(20)
𝑋𝑖( ̃ℓ𝑃 + 𝑄 + 𝑅)𝑋𝑖(�̃�)
𝑋𝑖( ̃ℓ𝑃 + 𝑅)𝑋𝑖(𝑄 + 𝑅)

⎛⎜
⎝

𝑋𝑖(𝑃 + 𝑅)𝑋𝑖(𝑄 + 𝑅)
𝑋𝑖( ̃𝑃 + 𝑄 + 𝑅)𝑋𝑖(�̃�)

⎞⎟
⎠

ℓ

,

(compare with Example 4.29) and if 𝑃 ∈ 𝐴[ℓ𝐷], and ℓ̃𝑃 is an arbitrary cubical point above
ℓ𝑃,

(21) 𝑓ℓ𝐷𝑖,𝑃
((𝑅+𝑄)−(𝑅)) =

𝑋𝑖(−ℓ̃𝑃 ⋅ ̃ℓ𝑃 + 𝑄 + 𝑅)𝑋𝑖(�̃�)
𝑋𝑖(−ℓ̃𝑃 ⋅ ̃ℓ𝑃 + 𝑅)𝑋𝑖(𝑄 + 𝑅)

⎛⎜
⎝

𝑋𝑖(𝑃 + 𝑅)𝑋𝑖(𝑄 + 𝑅)
𝑋𝑖( ̃𝑃 + 𝑄 + 𝑅)𝑋𝑖(�̃�)

⎞⎟
⎠

ℓ

.

And, although the function 𝑔𝑖,ℓ𝑃,𝑄 is a genuine function on our abelian variety, its in-
dividual members (�̃�, 𝑃 + 𝑅, 𝑄 + 𝑅) ↦ 𝑋𝑖( ̃ℓ𝑃 + 𝑄 + 𝑅), 𝑋𝑖(�̃�), 𝑋𝑖( ̃ℓ𝑃 + 𝑅), 𝑋𝑖(𝑄 + 𝑅)
only make sense as cubical functions, with divisors of zeroes given by 𝑡∗

ℓ𝑃+𝑄𝐷𝑖, 𝐷𝑖, 𝑡∗
ℓ𝑃𝐷𝑖

and 𝑡∗
𝑄𝐷𝑖 respectively.

Thus the cubical representation is a way to decompose the functions 𝑔𝑖,ℓ𝑃,𝑄 as a product
of cubical functions, and the affine lift representation is simply the evaluation of these cubical
functions at the cubical point ̃0, hence is a way to decompose the functions evaluations
𝑔𝑖,ℓ𝑃,𝑄(0) as a product of cubical evaluations.

And Porism 4.21 shows that the cubical arithmetic is an efficient way to embed the Miller
functions 𝑓ℓ,𝑃 in the affine coordinates of ℓ̃𝑃, ̃ℓ𝑃 + 𝑄. Explicitly, evaluating Equations (20)
and (21) at ̃0:

Porism 4.25. Let 𝐷𝑖 be the divisor of zeroes of 𝑋𝑖 (since 𝑋𝑖 is a section of 𝐷, 𝐷𝑖 ∼ 𝐷).
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Let 𝑓𝑖,ℓ,𝑃 be a function with divisor 𝐷𝑖,ℓ𝑃 − ℓ𝐷𝑖,𝑃. Then the function 𝑓𝑖,ℓ,𝑃 evaluated on the

cycle (𝑄) − (0) is given by 𝑋𝑖( ̃ℓ𝑃+𝑄)𝑋𝑖(0̃)
𝑋𝑖(ℓ̃𝑃)𝑋𝑖(𝑄)

( 𝑋𝑖(�̃�)𝑋𝑖(𝑄)
𝑋𝑖(𝑃+𝑄)𝑋𝑖(0̃)

)
ℓ
.

If 𝑃 ∈ 𝐴[ℓ𝐷], 𝑓ℓ𝐷𝑖,𝑃
((𝑄) − (0)) = 𝑋𝑖(−ℓ̃𝑃⋅ ̃ℓ𝑃+𝑄)𝑋𝑖(0̃)

𝑋𝑖(−ℓ̃𝑃⋅ℓ̃𝑃)𝑋𝑖(𝑄)
( 𝑋𝑖(�̃�)𝑋𝑖(𝑄)

𝑋𝑖(𝑃+𝑄)𝑋𝑖(0̃)
)

ℓ
.

Remark 4.26 (Cubical coordinates for monodromy). In Theorem 4.19, we compute 𝜆𝑃 =
̃(−ℓ𝑃)⋅ ̃ℓ𝑃+𝑄

𝑄
0̃

̃(−ℓ𝑃)⋅ℓ̃𝑃
, which is a quotient of two monodromy information: −̃ℓ𝑃 ⋅ ℓ̃𝑃 = 𝜆0,𝑃 ̃0,

−̃ℓ𝑃 ⋅ ̃ℓ𝑃 + 𝑄 = 𝜆1,𝑃𝑄, 𝜆𝑃 = 𝜆1,𝑃/𝜆0,𝑃.
We can use different cubical coordinates to compute these two monodromy informations;

if for instance 𝑋0(0) ≠ 0 and 𝑋1(𝑄) ≠ 0, we have:

𝜆𝑃 =
𝑋1( ̃(−ℓ𝑃) ⋅ ̃ℓ𝑃 + 𝑄)

𝑋1(𝑄)
𝑋0( ̃0)

𝑋0( ̃(−ℓ𝑃) ⋅ ℓ̃𝑃)
.

Remark 4.27. When using Porism 4.25 and Theorem 4.19 to evaluate the extended Tate
pairing as in Remark 2.11 when 𝐷 = 𝑚𝐷1, one need to be careful about the choice of the
coordinate 𝑋𝑖.

Indeed, using 𝑋𝑖 amount to computing the extended Tate pairing associated to 𝐷𝑖, but we
have seen in Remark 2.11 that for the extended Tate pairing we need to be sure to choose 𝐷𝑖
such that 𝐷𝑖 = 𝑚𝐷′

1, with 𝐷′
1 rational. This won’t be the case in general for the zero divisor

𝐷′ of an arbitrary section 𝑋 ∈ Γ(𝒪𝐴(𝐷)).
On the other hand, if 𝑋1 has zero divisor 𝐷 = 𝑚𝐷1, then we have seen in Remark 2.11

that we do not need to use the correcting factor 𝑔ℓ
𝑃,𝑄 to correct the monodromy information

𝜆𝑃 when 𝑔𝑃,𝑄 comes from a 𝑚-th tensor power of a rational biextension element in 𝑋𝐷1
. An

easy way to ensure this is to start with 𝑔𝑃,𝑄 = [�̃�, 𝑄, ̃0, ̃𝑃 + 𝑄] where the cubical points are
normalised via 𝑋1(�̃�) = 𝑋1(𝑄) = 𝑋1( ̃0) = 𝑋1( ̃𝑃 + 𝑄) = 1. Indeed, if 𝑌1 is a section of
𝒪𝐴(𝐷′

1), then 𝑋′
1 = 𝑌𝑚

1 is a 𝑚-th power. Our 𝑋1 is of the form 𝜇𝑋1 for some scalar factor,
but this scalar factor gives the same 𝑔𝑃,𝑄 by Lemma 4.15.

For the convenience of the reader, let us summarise the whole discussion and reformulate
Theorem 4.19 using Porism 4.25; this is our last reformulation. We remark that, compared to
Theorem4.19, this the cubical function approach of pairings hides somewhat themonodromy
interpretation, but by Remark 4.26 this monodromy interpretation is still useful to change
cubical coordinate on the fly.

Theorem 4.28. Let ℒ be a symmetric line bundle, and 𝑋 ∈ Γ(ℒ) a section with zero divisor
𝐷.

We fix a cubical point ̃0 above 0𝐴 once and for all, and for 𝑃, 𝑄, 𝑅 ∈ 𝐴, we fix cubical
points �̃�, 𝑄, �̃�, ̃𝑃 + 𝑄, 𝑃 + 𝑅, 𝑄 + 𝑅. Then if 𝑔𝑃,𝑄 ∈ 𝑋𝐷 is the biextension function with
divisor 𝐷𝑃+𝑄 − 𝐷𝑃 − 𝐷𝑄 encoded by [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄], we have

𝑔𝑃,𝑄(𝑅) =
𝑋( ̃𝑃 + 𝑄 + 𝑅)𝑋(�̃�)
𝑋(𝑃 + 𝑅)𝑋(𝑄 + 𝑅)

,

where ̃𝑃 + 𝑄 + 𝑅 is given by the cubical three way addition.
Using the cubical arithmetic to compute ℓ�̃�, ̃ℓ𝑃 + 𝑄 + 𝑅, ̃ℓ𝑃 + 𝑅, if 𝑔ℓ𝑃,𝑄 = 𝑔⋆1,ℓ

𝑃,𝑄, we also
have

𝑔ℓ𝑃,𝑄(𝑅) =
𝑋( ̃ℓ𝑃 + 𝑄 + 𝑅)𝑋(�̃�)
𝑋( ̃ℓ𝑃 + 𝑅)𝑋(𝑄 + 𝑅)

.
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Input: 𝑃, 𝑄 ∈ 𝐴[ℓ𝐷]
Output: The Weil pairing 𝑒𝑊,ℓ𝐷(𝑃, 𝑄)
: Take arbitrary affine cubical lifts �̃�, 𝑄, ̃𝑃 + 𝑄 of 𝑃, 𝑄, 𝑃 + 𝑄 (along with a choice of ̃0).
: Use Algorithm 4.2 or Algorithm 4.1 to compute ̃ℓ𝑃 + 𝑄, ℓ̃𝑃.
: Take an arbitrary lift −̃ℓ𝑃, and compute the theta group action −̃ℓ𝑃 ⋅ ̃ℓ𝑃 + 𝑄, −̃ℓ𝑃 ⋅ ℓ̃𝑃.
: Compute the monodromy −̃ℓ𝑃 ⋅ ̃ℓ𝑃 + 𝑄 = 𝜆1,𝑃𝑄, −̃ℓ𝑃 ⋅ ℓ̃𝑃 = 𝜆0,𝑃 ̃0.
: Similarly, compute the monodromy −̃ℓ𝑄 ⋅ ̃ℓ𝑄 + 𝑃 = 𝜆1,𝑄�̃�, −̃ℓ𝑄 ⋅ ℓ̃𝑄 = 𝜆0,𝑄 ̃0.
: Return 𝑒ℓ𝐷(𝑃, 𝑄) = 𝜆1,𝑃

𝜆0,𝑃

𝜆0,𝑄
𝜆1,𝑄

Algorithm 4.3. Weil pairing via cubical arithmetic

And the function

𝑓ℓ,𝑃(𝑅) =
𝑋( ̃ℓ𝑃 + 𝑅)𝑋(�̃�)ℓ−1

𝑋(𝑃 + 𝑅)ℓ

has for divisor 𝐷ℓ𝑃 − ℓ𝐷𝑃.
All these functions only depend on �̃�, 𝑄, ̃𝑃 + 𝑄, not on the choices of �̃�, 𝑃 + 𝑅, 𝑄 + 𝑅.
If 𝑃 ∈ 𝐴[ℓ𝐷] and 𝑓ℓ𝐷𝑃

is any function with divisor ℓ𝐷𝑃, fixing a cubical point −̃ℓ𝑃, we
have

𝑓ℓ𝐷𝑃
((𝑄+𝑅)−(𝑅)) =

𝑋(−̃ℓ𝑃 ⋅ ̃ℓ𝑃 + 𝑄 + 𝑅)
𝑋(𝑄 + 𝑅)

𝑋(�̃�)
𝑋(−̃ℓ𝑃 ⋅ ̃ℓ𝑃 + 𝑅)

⎛⎜
⎝

𝑋(�̃�)𝑋(𝑄)
𝑋( ̃𝑃 + 𝑄 + 𝑅)𝑋(�̃�)

⎞⎟
⎠

ℓ

;

this does not depend on any choice of cubical points.
If 𝐷 = 𝑚𝐷1, 𝑃 ∈ 𝐴[ℓ𝐷](𝔽𝑞), 𝑄 ∈ 𝐴(𝔽𝑞), the Tate pairing is given by 𝑒𝑇,ℓ𝑚𝐷1

(𝑃, 𝑄) =
𝑓ℓ𝐷𝑃

((𝑄 + 𝑅) − (𝑅)) for any 𝑅 ∈ 𝐴(𝔽𝑞).

If𝐷 = 𝑚𝐷1,𝑃, 𝑄 ∈ 𝐴[ℓ𝐷], the Tate pairing is given by 𝑒𝑊,ℓ𝑚𝐷1
(𝑃, 𝑄) =

𝑓ℓ𝐷𝑃((𝑄+𝑅)−(𝑅))
𝑓ℓ𝐷𝑄

((𝑄+𝑅)−(𝑅))

for any 𝑅 ∈ 𝐴.

Theorem 4.28 give Algorithms 4.3 to 4.6 for the Weil pairing, the Tate pairing, the Ate
pairing and the optimal Ate pairing respectively.

For the Weil and Tate pairing we treat the general case on how, when 𝐷 = 𝑚𝐷1, we can
use the theta group action of 𝐺(𝐷) to recover the pairings of level ℓ𝑚 with respect to 𝐷1
while working with the cubical arithmetic for 𝐷1.

For the Ate and optimal Ate pairing we describe the easier case 𝑃 ∈ 𝔾2 ⊂ 𝐴[ℓ]; but we
could use the functions constructed in Theorem 4.28 to treat the general case too. In practice
the Ate and optimal Ate pairings are usuall for ℓ odd, and for pairings in the Montgomery
model we have 𝐷 = 2(0𝐸) so 𝑚 = 2 is prime to ℓ, so there is no need to treat this general
case.

4.5.4. The naturality of cubical arithmetic. We can give the following philosophical moti-
vation for using the affine representation to compute pairings. By Theorem 4.19, we need
to compute cubical points of the form ℓ̃𝑃, ̃ℓ𝑃 + 𝑄. In particular, we need to compute the
standard points ℓ𝑃, ℓ𝑃 + 𝑄. For this last computation, we want to use projective coordinates
to avoid divisions. But for the algorithm, the way we represent the projective coordinates
(𝑋1 ∶ … ∶ 𝑋𝑚) is via affine coordinates (𝑋1, … , 𝑋𝑚) anyway. If the way we do the projective
arithmetic in terms of affine coordinates is already close to the cubical arithmetic, we can
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Input: 𝑃 ∈ 𝐴[ℓ𝐷](𝔽𝑞), 𝑄 ∈ 𝐴(𝔽𝑞), 𝑋 ∈ Γ(𝐷) with divisor of zeroes equal to 𝑚𝐷1
Output: The non reduced Tate pairing of level ℓ𝑚 𝑒𝑇,ℓ𝑚𝐷1

(𝑃, 𝑄)
: Take arbitrary rational affine cubical lifts �̃�, 𝑄, ̃𝑃 + 𝑄 of 𝑃, 𝑄, 𝑃 + 𝑄 (along with a choice

of ̃0).
: Use Algorithm 4.2 or Algorithm 4.1 to compute ̃ℓ𝑃 + 𝑄, ℓ̃𝑃.
: Take an arbitrary lift −̃ℓ𝑃, and compute the theta group action −̃ℓ𝑃 ⋅ ̃ℓ𝑃 + 𝑄, −̃ℓ𝑃 ⋅ ℓ̃𝑃.
: Compute the monodromy −̃ℓ𝑃 ⋅ ̃ℓ𝑃 + 𝑄 = 𝜆1,𝑃𝑄, −̃ℓ𝑃 ⋅ ℓ̃𝑃 = 𝜆0,𝑃 ̃0.
: Return 𝑒ℓ𝑚𝐷1

(𝑃, 𝑄) = 𝑋(�̃�)𝑋(𝑄)
𝑋(0̃)𝑋(𝑃+𝑄)

𝜆1,𝑃
𝜆0,𝑃

Algorithm 4.4. Tate pairing via cubical arithmetic

Input: 𝑃 ∈ 𝔾2, 𝑄 ∈ 𝔾1, 𝜆 ≡ 𝑞 mod ℓ
Output: The non reduced Ate pairing (of level 𝑚) 𝑎𝜆,ℓ(𝑃, 𝑄)
: Take arbitrary rational affine cubical lifts of level 𝑚 �̃�, 𝑄, ̃𝑃 + 𝑄 of 𝑃, 𝑄, 𝑃 + 𝑄 (along

with a choice of ̃0).
: Use Algorithm 4.2 or Algorithm 4.1 to compute ̃𝜆𝑃 + 𝑄, 𝜆𝑃.
: Compute the monodromy ̃𝜆𝑃 + 𝑄 = 𝜆1,𝑃𝜋𝑞( ̃𝑃 + 𝑄), 𝜆𝑃 = 𝜆0,𝑃𝜋𝑞(�̃�).
: Return 𝑎𝜆,ℓ(𝑃, 𝑄) = 𝜆1,𝑃

𝜆0,𝑃

Algorithm 4.5. Ate pairing via cubical arithmetic

Input: 𝑃 ∈ 𝔾2, 𝑄 ∈ 𝔾1, ℓ = ∑ 𝑐𝑖𝑞𝑖

Output: The optimal Ate pairing (of level 𝑚) 𝑎∑ 𝑐𝑖𝑞𝑖(𝑃, 𝑄)
: Take arbitrary rational affine cubical lifts of level 𝑚 �̃�, 𝑄, ̃𝑃 + 𝑄 of 𝑃, 𝑄, 𝑃 + 𝑄 (along

with a choice of ̃0).
: Use Algorithm 4.2 or Algorithm 4.1 to compute the ̃𝑐𝑖𝑃 + 𝑄, 𝑐𝑖𝑃.
: Apply Frobenius to compute the 𝜋𝑖

𝑞( ̃𝑐𝑖𝑃 + 𝑄), 𝜋𝑖
𝑞(𝑐𝑖𝑃).

: Use cubical Three Way Additions to compute the ∑ 𝜋𝑖
𝑞( ̃𝑐𝑖𝑃 + 𝑄), ∑ 𝜋𝑖

𝑞(𝑐𝑖𝑃).
: Compute the monodromy ∑ 𝜋𝑖

𝑞( ̃𝑐𝑖𝑃 + 𝑄) = 𝜆1,𝑃𝑄, ∑ 𝜋𝑖
𝑞(𝑐𝑖𝑃) = 𝜆0,𝑃 ̃0.

: Return 𝑎∑ 𝑐𝑖𝑞𝑖(𝑃, 𝑄) = 𝜆1,𝑃
𝜆0,𝑃

Algorithm 4.6. Optimal ate pairing via cubical arithmetic

easily correct our algorithm to do a cubical exponentiation rather than a projective point
exponentiation. Our exponentiation ℓ𝑃, ℓ𝑃 + 𝑄, then gives “for free” our cubical points
ℓ̃𝑃, ̃ℓ𝑃 + 𝑄, hence our pairings. Now in principle, there is no reason that the random affine
arithmetic we use when computing ℓ𝑃, ℓ𝑃 + 𝑄 has any reason to be close to the cubical arith-
metic; after all at each step we could multiply all our coordinates by some random constant
since this does not change the projective point. But in practice, we use efficient algorithms
(which do not involve doing random multiplications at each step). And the amazing thing is



46 DAMIEN ROBERT

that the ladder algorithms we already use, for the Theta, Montgomery, and short Weierstrass
models, are already (almost) the correct cubical ones already, as we will see in Section 5. One
explanation for this is the unicity of biextensions from Theorem 3.1, it appears that efficient
formulas are sufficiently functorial in nature to satisfy the biextension arithmetic, or are close
to.

In particular, in Section 5, we will look at the cubical representation on a Kummer line
𝐸/ ± 1 resulting from affine lifts of sections 𝑋, 𝑍 ∈ Γ(2(0𝐸)). A biextension element will
be given by [�̃�, 𝑄, ̃0, ̃𝑃 + 𝑄] and the biextension exponentiation will be determined by ℓ�̃�,

̃ℓ𝑃 + 𝑄 which are both described by two affine coordinates.
In Miller standard algorithm, one also compute the multiples ℓ𝑃 of 𝑃 (projectively, so

with two projective coordinates (𝑋(ℓ𝑃) ∶ 𝑍(ℓ𝑃)) if 𝑃 ∈ 𝐸/ ± 1 is a Kummer point), and
store the Miller evaluations 𝑓ℓ,𝑃(𝑄) as a numerator and denominator separately, i.e., as an
element of ℙ1.

In fine, the affine lift representation is very similar: we store 𝑋(ℓ�̃�), 𝑍(ℓ�̃�), 𝑋( ̃ℓ𝑃 + 𝑄),
𝑍( ̃ℓ𝑃 + 𝑄) as affine coordinates, in a way such that 𝑓2(0𝐸),ℓ,𝑃 is encoded by (see Porism 4.25)

𝑓2(0𝐸),ℓ,𝑃((𝑄) − (0)) = 𝑍( ̃ℓ𝑃+𝑄)𝑍(0̃)
𝑍(ℓ̃𝑃)𝑍(𝑄)

( 𝑍(�̃�)𝑍(𝑄)
𝑍(𝑃+𝑄)𝑍(0̃)

)
ℓ
. A word on how to interpret this last

equality.The function 𝑓2(0𝐸),ℓ,𝑃 has for divisor 2(ℓ𝑃)+2(ℓ−1)(0𝐸)−2ℓ(𝑃), so its evaluation
on the cycle (𝑄) − (0) gives a pole of order 2(ℓ − 1) at 0. On the other hand 0𝐸 = (1 ∶ 0) so
𝑍(0𝐸) = 0 is a zero of order two, and the right hand side also gives a pole of order 2(ℓ − 1)
at 0. The equality above makes sense by dividing both sides by 𝜋2(ℓ−1)

0𝐸
for any uniformizer

𝜋0𝐸
at 0𝐸; for instance divide both members by 𝑍ℓ−1.

4.6. Cubical functions. Although we won’t need this for pairings, we can generalize the
construction of the cubical functions from Section 4.5.2 as follows, using the strategy of
[Sta08, § 10.3].

Recall from Section 4.2.7 that if 𝑍 = ∑ 𝑛𝑖(𝑄𝑖) is a degree zero cycle such that 𝑠(𝑍) =
∑ 𝑛𝑖𝑄𝑖 = 0, then the choice of a cubical cycle 𝑍 = ∑ 𝑛𝑖(𝑄𝑖) is enough to competlely
determine a function 𝑓𝑍 with divisor ∑ 𝑛𝑖𝐷𝑄𝑖

.
A way to specify 𝑍 is as follows: we consider a cycle of cycles: 𝒵 = ∑ 𝑛𝑖(𝑍𝑖), where

𝑍𝑖 = ∑𝑗 𝑛𝑖𝑗(𝑃𝑖𝑗), and we will explain how to construct a cubical cycle 𝑍 above the cycle
𝑍 = ∑ 𝑛𝑖𝑍𝑖 = ∑𝑖,𝑗 𝑛𝑖𝑛𝑖𝑗(𝑃𝑖𝑗), provided that 𝑍 is of degree 0 with 𝑠(𝑍) = 0 (in fact we will
need a stronger condition 𝑆(𝑍) = 0 to be introduced below).

We suppose that we have fixed once and for all cubical points 𝑃𝑖𝑗, ̃𝑃𝑖𝑗 + 𝑃𝑖′𝑗′. By Sec-
tion 4.2.5, this completely determines cubical points ∑ 𝑛𝑖𝑗𝑃𝑖𝑗, hence cubical points 𝑄𝑖 where
𝑄𝑖 = 𝑠(𝑍𝑖), hence a cubical cycle 𝑍 = ∑ 𝑛𝑖𝑄𝑖. Hence we have a well defined function 𝑓𝑍,
which depends on the choices of 𝑃𝑖𝑗, ̃𝑃𝑖𝑗 + 𝑃𝑖′𝑗′ above. (Thewhole discussion could extends to
when 𝑠(𝑍) ∈ 𝐴[𝐷] provided we have fixed 𝑠(𝑍); as a notation we could use 𝒵 = ∑ 𝑛𝑖𝑇𝑖 ⋅𝑍𝑖
to encode the cycle 𝑍 = ∑ 𝑛𝑖𝑇𝑖 ⋅ 𝑄𝑖.)

We have 𝑠(𝑍) = ∑ 𝑛𝑖𝑄𝑖 = ∑𝑖,𝑗 𝑛𝑖𝑛𝑖,𝑗𝑃𝑖,𝑗 ∈ 𝐴. We let 𝑆(𝒵) = ∑𝑖,𝑗 𝑛𝑖𝑛𝑖,𝑗𝑃𝑖,𝑗 as seen in
the free abelian group generated by the 𝑃𝑖,𝑗. We have of course 𝑆(𝑍) = 0 ⇒ 𝑠(𝑍) = 0.

When 𝒵 is of degree 0 with 𝑆(𝒵) = 0, we can compute the function associated to 𝑍 as
follows. For a point 𝑅, take any cubical point �̃�, ̃𝑅 + 𝑃𝑖𝑗. These choices completely determine
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̃𝑅 + ∑𝑗 𝑛𝑖𝑗𝑃𝑖𝑗, hence cubical points ̃𝑅 + 𝑄𝑖. We have:

𝑓𝐷𝑚,𝑍(𝑅) = ∏
𝑖

𝑋𝑚( ̃𝑅 + ∑
𝑗

𝑛𝑖𝑗𝑃𝑖𝑗)𝑛𝑖.

As a reformulation, 𝑓𝐷𝑚,𝑍(𝑅) is given by the coordinate 𝑋𝑚 evaluated on the cubical cycle
𝑍𝑅 encoded by 𝑡𝑅,∗𝒵 = ∑𝑖 𝑛𝑖(𝑅 + ∑𝑗 𝑛𝑖,𝑗𝑃𝑖,𝑗).

Since 𝒵 is a cycle of degree 0 with 𝑆(𝑍) = 0, by Section 4.2.5, the value 𝑓𝐷𝑚,𝑍(𝑅) only
depends on 𝑃𝑖𝑗, ̃𝑃𝑖𝑗 + 𝑃𝑖′𝑗′ , but not on the choices of �̃�, ̃𝑅 + 𝑃𝑖𝑗.

More generally, let 𝑌 = ∑𝑙 𝑚𝑙(𝑅𝑙) be a cycle. Then we can consider the cycle of cycles
𝑡𝑌∗𝒵 = ∑𝑖,𝑙 𝑛𝑖𝑚𝑙(𝑅𝑙 + 𝑍𝑖), and apply the same strategy to obtain:

𝑓𝐷𝑚,𝑍(𝑌) = ∏
𝑖,𝑙

𝑋𝑚( ̃𝑅𝑙 + ∑
𝑗

𝑛𝑖𝑗𝑃𝑖𝑗)𝑛𝑖𝑚𝑙.

This only depends on the choice of 𝑃𝑖𝑗, ̃𝑃𝑖𝑗 + 𝑃𝑖′𝑗′, but not on the choices of 𝑅𝑙, ̃𝑅𝑙 + 𝑃𝑖𝑗.
And by Lemma 4.7, if deg(𝑌) = 0 then this does not depend on any choices.

Example 4.29. Let 𝑋 be a section of ℒ with divisor 𝐷.
• The functions 𝑔𝑃,𝑄 with divisor 𝐷𝑃+𝑄 − 𝐷𝑃 − 𝐷𝑄 from Section 4.5.3 corresponds

to 𝒵 = ((𝑃) + (𝑄)) + ((0)) − ((𝑃)) − ((𝑄)).
• We can also build functions 𝑔ℓ𝑃,𝑄 with divisors 𝐷ℓ𝑃+𝑄 − 𝐷ℓ𝑃 − 𝐷𝑄 by considering

𝒵 = (ℓ(𝑃) + (𝑄))) + ((0)) − (ℓ(𝑃)) − ((𝑄)), we have seen in Section 4.5.3 that
this is exactly 𝑔⋆1,ℓ

𝑖,𝑃,𝑄.
• The cycle of cycles 𝒵 = (ℓ(𝑃))+(ℓ−1)((0))−ℓ((𝑃)) gives a function with divisor

𝐷ℓ𝑃 − ℓ𝐷𝑃.
If 𝑃 ∈ 𝐴[ℓ𝐷], then fixing a cubical point ℓ̃𝑃 gives a function 𝑔ℓ𝑃 with divisor

𝐷ℓ𝑃, such that 𝑔ℓ𝑃(𝑅) = 𝑋( ℓ̃𝑃+�̃�
�̃�

) (by the definition of the action of 𝐺(𝐷) on
cubical points), and we could say that 𝒵 = (ℓ(𝑃)) + (ℓ − 1)((0)) − ℓ((𝑃)) − (ℓ̃𝑃)
gives a function with divisor −ℓ𝐷𝑃.

• If 𝑃 ∈ 𝐴[ℓ], 𝒵 = ℓ((𝑃)) − ℓ((0)) encodes a cubical cycle 𝑍 = ℓ�̃� − ℓ ̃0, but while
𝑠(𝑍) = 0, 𝑆(𝒵) = ℓ𝑃 ≠ 0 in the free group generated by 𝑃, so we cannot simply
construct the associated function as 𝑋(𝑅 + 𝑃)ℓ/𝑋(�̃�)ℓ; this would depend on the
choices of �̃� and 𝑅 + 𝑃.

We really need to encode the fact that 𝑃 is of ℓ-torsion in 𝒵 itself, i.e. to rewrite it
as 𝒵 = (ℓ(𝑃)) + (ℓ − 1)((0)) − ℓ((𝑃)), as above.

Example 4.30. Sometimes, the function 𝑓𝒵 does not even depend on the choices of 𝑃𝑖𝑗,
̃𝑃𝑖𝑗 + 𝑃𝑖′𝑗′ , and we can use Section 4.2.5 to conveniently check if that is the case.

• Lets consider 𝒵 = ((𝑃) + (𝑄)) + ((0)) − ((𝑃)) − ((𝑄)) from Example 4.29 again.
We have (𝑥𝑃 + 𝑥𝑄)2 − 𝑥2

𝑃 − 𝑥2
𝑄 = 2𝑥𝑃𝑥𝑄, so changing �̃� to 𝜆𝑃�̃�, 𝑄 to 𝜆𝑄𝑄, ̃𝑃 + 𝑄

to 𝜆𝑃𝜆𝑄𝜆′
𝑃𝑄

̃𝑃 + 𝑄, changes the resulting function 𝑓𝒵 by a factor 𝜆′
𝑃𝑄. In fact we saw

in Example 4.29 that we recover exactly the way to associate a biextension function
𝑔𝑃,𝑄 to our cubical points �̃�, 𝑄, ̃𝑃 + 𝑄.

• If 𝒵 = ((𝑃) + (𝑄) + (𝑅)) + ((𝑃)) + ((𝑄)) + ((𝑅)) − ((𝑃) + (𝑄)) − ((𝑃) +
(𝑅)) − ((𝑄) + (𝑅)), then we have (𝑥𝑃 + 𝑥𝑄 + 𝑥𝑅)2 + 𝑥2

𝑃 + 𝑥2
𝑄 + 𝑥2

𝑅 − (𝑥𝑃 +
𝑥𝑄)2 − (𝑥𝑃 + 𝑥𝑅)2 − (𝑥𝑄 + 𝑥𝑅)2 = 0, so 𝑓𝒵 does not depend on our choice of
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cubical points. In fact, this is precisely the function associated to cubical three way
addition.

• If𝒵 = ((𝑃)+(𝑄))+((𝑃)−(𝑄))+((0))+((0))−(−(𝑄))−((𝑄))−((𝑃))−((𝑃)),
then since (𝑥𝑃 + 𝑥𝑄)2 + (𝑥𝑃 − 𝑥𝑄)2 − (−𝑥𝑄)2 − (𝑥𝑄)2 − (𝑥𝑃)2 − (𝑥𝑃)2, then 𝑓𝒵
also does not depend on the choice of cubical points; this is the function associated
to differential additions.

• If [𝑃1, 𝑃2, 𝑃3, 𝑃4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] are in Riemann position, so that 𝑄𝑖 = 𝑇 − 𝑃𝑖
with 2𝑇 = 𝑃1 + 𝑃2 + 𝑃3 + 𝑃4, we can always find (possibly over a field extension)
points 𝑃′

𝑖 such that 2𝑃′
𝑖 = 𝑃𝑖 and 𝑇 = 𝑃′

1 + 𝑃′
2 + 𝑃′

3 + 𝑃′
4, so that 𝑄1 = −𝑃′

1 +
𝑃′

2 + 𝑃′
3 + 𝑃′

4 and so on.
Consider 𝒵 = (2(𝑃′

1)) + (2(𝑃′
2)) + (2(𝑃′

3)) + (2(𝑃′
4)) − (−(𝑃′

1) + (𝑃′
2) +

(𝑃′
3) + (𝑃′

4)) − ((𝑃′
1) − (𝑃′

2) + (𝑃′
3) + (𝑃′

4)) − ((𝑃′
1) + (𝑃′

2) − (𝑃′
3) + (𝑃′

4)) −
((𝑃′

1)+(𝑃′
2)+(𝑃′

3)−(𝑃′
4)). Then 𝑓𝒵 also does not depend on the choice of cubical

points, and actually gives the general Riemann relation on cubical points, because
(2𝑥𝑃′

1
)2 + (2𝑥𝑃′

2
)2 + (2𝑥𝑃′

3
)2 + (2𝑥𝑃′

4
)2 + (−𝑥𝑃′

1
+ 𝑥𝑃′

2
+ 𝑥𝑃′

3
+ 𝑥𝑃′

4
)2 − (𝑥𝑃′

1
−

𝑥𝑃′
2

+ 𝑥𝑃′
3

+ 𝑥𝑃′
4
)2 − (𝑥𝑃′

1
+ 𝑥𝑃′

2
− 𝑥𝑃′

3
+ 𝑥𝑃′

4
)2 − (𝑥𝑃′

1
+ 𝑥𝑃′

2
+ 𝑥𝑃′

3
− 𝑥𝑃′

4
)2 = 0.

The remarkable fact about the Riemann relations is that since the divisor of 𝑓𝒵 only
involves 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑄1, 𝑄2, 𝑄3, 𝑄4, we can compute it without involving the 𝑃′

𝑖
(hence a field extension).We can reframe the previous invariance under the choice of
cubical points as the computation (𝑥𝑃1

)2+(𝑥𝑃2
)2+(𝑥𝑃3

)2+(𝑥𝑃4
)2−(𝑥𝑇−𝑥𝑃1

)2−
(𝑥𝑇−𝑥𝑃2

)2−(𝑥𝑇−𝑥𝑃3
)2−(𝑥𝑇−𝑥𝑃4

)2 = 0 where 𝑥𝑇 ≔ 1
2(𝑥𝑃1

+𝑥𝑃2
+𝑥𝑃3

+𝑥𝑃4
).

• Consider 𝒵 = (3(𝑃)) − 9((𝑃)) (this example comes from [Sta08, Equation 10.13]).
We have (3𝑥𝑃)2 − 9𝑥2

𝑃 = 0, and indeed 𝑋(3�̃�)/𝑋(�̃�)9 does not depend ont he
choice of �̃�. However, 𝑠(𝒵) = 3𝑃 − 9𝑃 = −6𝑃 ≠ 0, so 𝒵 is not associated to a
function: we can check that (𝑥𝑅 + 3𝑥𝑃)2 − 9(𝑥𝑅 + 𝑥𝑃)2 = −8𝑥2

𝑅 − 12𝑥𝑃𝑥𝑅, hence
the value of 𝑋(�̃� + 3�̃�)/𝑋(�̃� + �̃�)9 does depends on the choices of �̃� and 𝑅 + 𝑃.
In particular, replacing �̃� by 𝜆𝑅�̃�, and 𝑅 + 𝑃 by 𝜆𝑅𝜆′

𝑅𝑃𝑅 + 𝑃 changes this value
by 𝜆−8

𝑅 𝜆′
𝑅𝑃

−6.

In summary, using a cycle of cycles 𝒵 = ∑ 𝑛𝑖(∑ 𝑛𝑖,𝑗𝑃𝑖,𝑗) we can describe a cubical
function �̃� ↦ 𝑋(𝑡𝑅,∗𝒵) = ∏𝑖 𝑋( ̃𝑅 + ∑ 𝑛𝑖,𝑗𝑃𝑖,𝑗)𝑛𝑖 ; which in general depend not only on
the choices of the 𝑃𝑖, ̃𝑃𝑖 + 𝑃𝑗, but also on the choice of �̃�, ̃𝑅 + 𝑃𝑖.

When 𝒵 is of degree 0 and 𝑠(𝒵) = 0, 𝒵 encodes a genuine function which descends on
the abelian variety. But to compute it in practice as the evaluation of some coordinate 𝑋 on
the cycle 𝑡𝑅,∗𝒵 we need the stronger condition that 𝑆(𝒵) = 0. In this case, the function only
depends on the choices of 𝑃𝑖, ̃𝑃𝑖 + 𝑃𝑗. This makes it very practical to build functions with
prescribed divisors, such as the ones used in Theorem 4.28.

Finally, for certain well chosen cycles of cycles (e.g., coming from the algebraic Riemann
relations), the function is canonical and does not depend on the choice of any cubical points.
These canonical functions can then be used to compute the cubical arithmetic.

Example 4.31. Let 𝜙 ∶ 𝐸1 → 𝐸2 be an isogeny of odd degree ℓ with kernel 𝐾 = ⟨𝑃⟩ between
Montgomery Kummer lines. We assume furthermore that if 𝑇 = (0 ∶ 1) on 𝐸1, 𝑇′ = (0 ∶ 1)
on𝐸2, we have𝜑(𝑇) = 𝑇′.The coordinate 𝑥′ on𝐸2 has for divisor 2(𝑇′)−2(0𝐸2

) hence𝜙∗𝑥′

has for divisor ∑ℓ−1
𝑖=0 (2(𝑇 + 𝑖𝑃) − 2(𝑖𝑃)). Since 𝑍 has for zero divisor 2(0𝐸), for a 𝑅 ∈ 𝐸1,

making arbitrary choices for �̃�, 𝑅 + 𝑃, we consider the following product of cubical functions:
Φ(𝑅) = ∏ℓ−1

𝑖=0 𝑍( ̃𝑅 + 𝑖𝑃 + 𝑇)𝑍( ̃𝑅 + 𝑖𝑃)−1. If we take 𝑇 such that the induced theta group
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action is 𝑇 ⋅(𝑋, 𝑍) = (𝑍, 𝑋), we obtain Φ(𝑅) = ∏ℓ−1
𝑖=0

𝑋(𝑅+𝑖𝑃)
𝑍(𝑅+𝑖𝑃)

= ∏ℓ−1
𝑖=0 𝑥(𝑅+𝑖𝑃), which

indeed has the correct divisor and evidently does not depend on any choice of cubical points.

4.7. Cubical arithmetic and pairings on Kummer varieties.

4.7.1. Biextension additions on Kummer varieties. Let (𝐴, ℒ) be a principally polarised
abelian variety, if ℒ is indecomposable then ℒ2 gives an embedding of the Kummer variety
𝐴/ ± 1.

Let (𝑋1, … , 𝑋𝑚) ∈ Γ(ℒ) be the global sections of ℒ (we will call these level 2 coordi-
nates). We then have by Section 4.5 the affine lift representation �̃� = (𝑋1(�̃�), … , 𝑋𝑚(�̃�)).
The projective coordinates (𝑋1(𝑃) ∶ … ∶ 𝑋𝑚(𝑃)) only allows to recover ±𝑃, so in this case
our affine lift representation for �̃� only recovers ±�̃�.

However, when using the affine lift representation for the cubical points in the cubical
biextension representation 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄], then by [LR16] the points 𝑃, 𝑄 are
determined up to the same sign. The reason is that, if 𝑄 is not of 2-torsion, the map 𝐴 →
𝐴/ ± 1 × 𝐴/ ± 1, 𝑃 ↦ (±𝑃, ±(𝑃 + 𝑄)) is an embedding (and if both 𝑃, 𝑄 are of 2-torsion
we can use the action of the theta group 𝐺(ℒ2) instead). Since pairings are bilinear, this
representation of 𝑔𝑃,𝑄 is enough to recover the pairings 𝑒(𝑃, 𝑄) exactly.

We just need to explain how to do a cubical biextension exponentiation using affine
coordinates of level 2. The cubical ladder from Algorithm 4.2 works as is; we just need affine
doublings and differential additions that lift the standard doublings and differential additions
on the Kummer variety to the cubical arithmetic. However, for the cubical double and add
algorithm from Algorithm 4.1, the algorithm requires a cubical biextension addition, which
requires to lift an abelian variety standard addition.

We cannot do a standard addition on a Kummer variety. However, in the context of a
cubical biextension addition, we are given representations 𝑔𝑃1,𝑄 = [𝑃1, 𝑄; ̃0, ̃𝑃1 + 𝑄] and
𝑔𝑃2,𝑄 = [𝑃2, 𝑄; ̃0, ̃𝑃2 + 𝑄] and we want to compute a representation 𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 =
[ ̃𝑃1 + 𝑃2, 𝑄; ̃0, ̃𝑃1 + 𝑃2 + 𝑄]. We note that our affine lift representation, when interpreted
as projective coordinates, give us the coordinate of ±𝑃1, ±𝑃2, ±𝑄, ±(𝑃1 + 𝑄), ±(𝑃2 + 𝑄)
on the Kummer variety. This data is enough to compute a compatible addition ±(𝑃1 +𝑃2) =
CompatibleAdd(±𝑃1, ±𝑃2; ±𝑄, ±(𝑃1 + 𝑄), ±(𝑃2 + 𝑄)) as explained in [LR16]. Take any
affine lift ̃𝑃1 + 𝑃2 of ±(𝑃1 + 𝑃2), and then proceed to compute ̃𝑃1 + 𝑃2 + 𝑄 via a three
way addition like in the usual case. This gives Algorithm 4.7.

We obtain the following algorithm to compute the pairings associated to ℒ2 on an abelian
variety 𝐴. Let 𝑃, 𝑄 ∈ 𝐴, compute 𝑃 + 𝑄 ∈ 𝐴, and then compute the projective coordinates
𝑋𝑖(𝑃), 𝑋𝑖(𝑄), 𝑋𝑖(𝑃 + 𝑄) to get the points ±𝑃, ±𝑄, ±(𝑃 + 𝑄) on 𝐴/ ± 1. Take arbitrary
lifts of these projective coordinates to get a representation of 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄].

The pairings then requires to compute biextension exponentiations which can be done
usingAlgorithms 4.2 and 4.7, and eventually the action of the theta group 𝐺(ℒ2) (to compute
pairings with ℓ even) or the action of 𝜋𝑞 (for the optimal Ate and optimal Ate pairings) which
can be expressed naturally as in Section 4.5 on the level 2 affine coordinates 𝑋𝑖.

4.7.2. Pairings on Kummer varieties. The computation of ±(𝑃 + 𝑄) (via its coordinates
𝑋𝑖(±(𝑃 + 𝑄))) requires to start with 𝑃, 𝑄 ∈ 𝐴. If we want to compute pairings which
genuinely lie on the Kummer variety, we then have only ±𝑃, ±𝑄. The best we can compute
from these points is the degree two étale subscheme ±(𝑃 ± 𝑄) of 𝐴/ ± 1. This subscheme is
isomorphic to Spec𝑅, with 𝑅 = 𝑘[𝑋]/𝔓(𝑋), 𝔓 a polynomial of degree 2. Typically, if 𝑋1
is a separating coordinate, we can take 𝔓(𝑋) = (𝑋 − 𝑋1(𝑃 + 𝑄))(𝑋 − 𝑋1(𝑃 − 𝑄)) and
express the isomorphism between Spec𝑅 and ±(𝑃 ± 𝑄) by giving linear relations between
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Input: a biextension element 𝑔𝑃,𝑄 = [�̃�, 𝑄, ̃0, ̃𝑃 + 𝑄] represented by cubical points
Output: cubical points ℓ�̃�, ̃ℓ𝑃 + 𝑄 such that 𝑔⋆1,ℓ

𝑃,𝑄 = [ℓ�̃�, 𝑄, ̃0, ̃ℓ𝑃 + 𝑄]
: For each bit 𝑏𝑖 of ℓ from left to right (skipping the first one), given a cubical representation

𝑛𝑃, ̃𝑛𝑃 + 𝑄, of 𝑔⋆1,𝑛
𝑃,𝑄 , where 𝑛 is the current truncation of ℓ on the leftmost bits, do a

cubical biextension double:
a. ̃2𝑛𝑃 + 𝑄 = DiffAdd( ̃𝑛𝑃 + 𝑄, 𝑛𝑃, 𝑄);
b. 2̃𝑛𝑃 = Double(𝑛𝑃);
And if 𝑏𝑖 = 1, also do a cubical biextension addition:
a. Compute (2𝑛+1)𝑃 = CompatibleAdd(2𝑛𝑃, 𝑃; 2𝑛𝑃+𝑄, 𝑃+𝑄) and take an arbitrary

cubical lift ̃(2𝑛 + 1)𝑃 of (2𝑛 + 1)𝑃.
b. ̃(2𝑛 + 1)𝑃 + 𝑄 = ThreeWayAdd(2̃𝑛𝑃, �̃�, 𝑄, ̃𝑃 + 𝑄, ̃2𝑛𝑃 + 𝑄, ̃(2𝑛 + 1)𝑃);

Algorithm 4.7. Biextension exponentiation on Kummer varieties via
cubical double and add

𝑋𝑖(𝑃 ± 𝑄) and 𝑋1(𝑃 ± 𝑄). One can then consider the abelian and Kummer schemes
𝐴𝑅/𝑅, (𝐴𝑅/ ± 1)/𝑅 over 𝑅. The coordinate 𝑋 mod 𝔓 encodes 𝑃 + 𝑄 and 𝑃 − 𝑄. More
formally, we have a canonical 𝑅 point Spec𝑅 → 𝐴𝑅/ ± 1, and as, eventually over a degree 2
extension 𝑘′ of 𝑘, 𝑅 splits as 𝑅𝑘′ = 𝑘′ ⊕ 𝑘′, the isomorphism Spec𝑅 ≃ ±(𝑃 ± 𝑄) splits as
Spec 𝑘′ ⊕ Spec 𝑘′ ≃ ±(𝑃 + 𝑄) × ±(𝑃 − 𝑄), so the canonical 𝑅 point splits as the point
±(𝑃 + 𝑄) and the point ±(𝑃 − 𝑄). Anyway, working over 𝑅 rather than over 𝑘, we can do
our pairing computations as before, except that in the end we obtain a representation of the
degree two scheme 𝑒(𝑃, 𝑄)±1 of 𝔾𝑚. Typically this representation is given by a degree two
polynomial 𝔔(𝑋) = (𝑋 − 𝑒(𝑃, 𝑄))(𝑋 − 𝑒(𝑃, 𝑄)−1) = 𝑋2 − (𝑒(𝑃, 𝑄) + 𝑒(𝑃, 𝑄)−1)𝑋 + 1,
and so we can recover the trace (𝑒(𝑃, 𝑄) + 𝑒(𝑃, 𝑄)−1), which we will call the symmetric
pairing of 𝑃, 𝑄.

Alternatively we can see 𝑒(𝑃, 𝑄)±1 as a point of 𝔾𝑚/ ± 1, and if 𝑥±1 ∈ 𝔾𝑚/ ± 1, the
trace 𝑥±1 ↦ 𝑥 + 1/𝑥 is a convenient representation of 𝑥±1. We can still do arithmetic
on 𝔾𝑚/ ± 1 (see [Rob21a, § 2.12.2]), notably compute exponentiation via squarings and
differential multiplications. This allows us to compute reduced symmetric pairings from non
reduced symmetric pairings. This strategy to compute pairings is well known, see [GL08] for
Kummer lines and [LR15] for the case of Kummer varieties in the theta model.

4.8. Analytic cubical points and analytic theta functions. Our goal is now to find formulas
for the cubical arithmetic using the affine lift representation. It will be convenient to work
out formulas over ℂ.

Since we know that the cubical arithmetic is algebraic, working over the universal abelian
scheme there certainly exists algebraic formulas over ℂ. By standard arguments (see [Rob21b,
§ 2.3.6]), if we find through analytic means algebraic formulas defiend over ℚ, we know that
they give the correct arithmetic formula over any field 𝑘 of characteristic 𝑝, as long as the
formulas have good reduction modulo 𝑝.

Now, from the algebraic Riemann relations on line bundles from Proposition 4.1, taking
sections 𝑠𝑖 of ℒ we know that there should exists linear realations between suitable translated
tensor products of the 𝑠𝑖, i.e. Riemann relations on sections. These have been worked out in
the case where the 𝑠𝑖 are the algebraic theta functions by Mumford in [Mum66, p. 333–335].

Now let 𝐴/ℂ be an abelian variety, it is known that it is a (polarisable) torus 𝐴 = 𝑉/Λ
with 𝑉 a ℂ-vector space of dimension 𝑔, and that the analytic addition law on 𝑉 ≃ ℂ𝑔
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induces the algebraic addition law on 𝐴. Fix a very ample line bundle ℒ on 𝐴. It is also
known that there is a theory of analytic theta functions on 𝐴 with respect to ℒ, which are
given by analytic functions on 𝑉 [Mum83; Mum84].

Given these theta functions 𝜃𝑖, we have two representations of a point 𝑃 ∈ 𝐴. First we
have the projective representation: take any 𝑧𝑃 ∈ 𝑉 above 𝑃, and let 𝜃(𝑃) = (𝜃1(𝑧𝑃) ∶ … ∶
𝜃𝑚(𝑧𝑃)). The theta functions are automorphic with respect to Λ (with the same factor of
automorphy), so changing 𝑧𝑃 does not change the projective point 𝜃(𝑃). But we also have an
affine representation 𝜃(𝑧𝑃) = (𝜃1(𝑧𝑃), … , 𝜃𝑚(𝑧𝑃)), which is an affine point above 𝜃(𝑃).

We remark the similarity with the discussion of Section 4.5. In fact, since 𝑉 is simply
connected, the pullback of any line bundle ℒ on 𝐴 to 𝑉 is trivial, so essentially the choice of
𝑧𝑃 above 𝑃 induces a choice of rigidification of ℒ at 𝑃.

If we know the projective points 𝜃(𝑃), 𝜃(𝑄), we can compute 𝜃(𝑃 + 𝑄). However, if we
know 𝜃(𝑧𝑃), 𝜃(𝑧𝑄), we cannot recover the analytic addition 𝜃(𝑧𝑃+𝑧𝑄). However, we can use
the analytic Riemann relations [Mum83], so thatwheneverwe have [𝑧1, 𝑧2, 𝑧3, 𝑧4; 𝑧′

1, 𝑧′
2, 𝑧′

3, 𝑧′
4]

in Riemann position, and we know all but one of the 𝜃(𝑧𝑖) we can recover exactly the last
one. In particular, as in Example 4.3, we can do analytic differential additions and analytic
three way additions.

Now the analytic Riemann relations on analytic theta functions are exactly the same as
the algebraic Riemann relations on algebraic theta functions. Since the analytic Riemann
relations are induced by the analytic group law on 𝑉 on one hand, and the algebraic Riemann
relations give the cubical structure, we deduce that the analytic addition law on 𝑉 induces the
cubical algebraic structure. See also [Bre83, p. 41, 42]. In fact Breen uses the algebraic cubical
theory to give an alternative definition of algebraic theta functions compared to Mumford
(which uses the Heisenberg group representation and a choice of isomorphism between the
Heisenberg group and a theta group).

In summary, the cubical arithmetic encodes the algebraic information which can be
extracted from the analytic group law of 𝑉 above the algebraic group law of 𝐴. Analytically,
a cubical point �̃� corresponds to an analytic point 𝑧𝑃 above 𝑃, and cubical arithmetic like

̃𝑚𝑃 + 𝑛𝑄 (when we have enough information to compute it) corresponds to the analytic
point 𝑚𝑧𝑃 + 𝑛𝑧𝑄. This allows us to naturally check the various compatibility relations on
the cubical arithmetic by checking it through the analytic group law.

The first consequence, is that the affine version of the theta Riemann relations, since they
are over ℂ given by the analytic theta Riemann relations coming from the analytic group
law, give explicit formulas for the cubical arithmetic expressed in terms of affine lifts of
theta points. In particular, all the arithmetic on affine lift of theta points as developed in
[LR16; LR10; LR15], was actually a cubical arithmetic in disguise, as should be clear when
comparing Theorem 4.19 with [LR16; LR15]. This explain how to do the cubical arithmetic
in theta models of abelian varieties. This allows to have a nice intuition on the operations
allowed under the cubical arithmetic: any algebraic relations that can be derived from the
transcendantal addition law 𝑧𝑖 + 𝑧𝑗 + ⋯ + 𝑧𝑘 via the analytic theta functions (so for instance:
we cannot recover the 𝜃𝑖(𝑧1 + 𝑧2) from the 𝜃𝑖(𝑧1), 𝜃𝑖(𝑧2), but we can is we also know the
𝜃𝑖(𝑧1 − 𝑧2)) can be rewritten as some cubical operation.

Furthermore, the automorphic factor associated to theta functions gives an explicit trivi-
alisation of the theta groups on 𝐴 = 𝑉/Λ pulled back to 𝑉, and of biextensions on 𝐴 × 𝐴
pulled back to 𝑉 × 𝑉. This allows to give an analytic proof of the link between cubical points
and biextensions.

We conclude this section by an example of how the analytic interpretation of the cubical
law makes it very easy to prove certain of its properties:
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Lemma 4.32. Let 𝑀 be an 8 × 8 matrix of cubical points. Assume that all lines give cubical
points in Riemann position, and 7 out of 8 columns also give cubical points in Riemann position.
Then the last column also gives cubical poitns in Riemann position.

Proof. Let [�̃�1, �̃�2, �̃�3, �̃�4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] be analytic cubical points in Riemann position.
This means that we have an affine representation via analytic coordinates �̃�𝑖 = (𝜃𝑗(𝑧𝑖)),
𝑄𝑖 = (𝜃𝑗(𝑧′

𝑖)), where 𝑧𝑖, 𝑧′
𝑖 ∈ ℂ𝑔 and [𝑧1, 𝑧2, 𝑧3, 𝑧4; 𝑧′1, 𝑧′

2, 𝑧′
3, 𝑧′

4] are analytic points in
Riemann position.

To our matrix 𝑀 of cubical points, corresponds a matrix 𝑀𝑧 of elements 𝑧𝑖𝑗 ∈ ℂ𝑔, such
that each line and 7 out of 8 columns are in Riemann position. Then by linear algebra the
last column has to be in Riemann position too.

In other words: going from the �̃�𝑖 to the analytic 𝑧𝑖 is a way to trivialize the cubical
arithmetic; for an algebraic proof, we can use [Mor85, § I.5] instead. �

Corollary 4.33. If [�̃�1, �̃�2, �̃�3, �̃�4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] are cubical points in Riemann position,
so are [𝑚�̃�1, 𝑚�̃�2, 𝑚�̃�3, 𝑚�̃�4; 𝑚𝑄1, 𝑚𝑄2, 𝑚𝑄3, 𝑚𝑄4] for any 𝑚 ∈ ℤ.

4.9. Cubical arithmetic on elliptic curves and Kummer lines. In this section, we give
explicit formulas for the arithmetic of cubical elliptic points in Sections 4.9.1 to 4.9.3, and
for cubical points on elliptic Kummer lines in Section 4.9.4. Finally in Section 4.9.5 we make
the link between elliptic nets and cubical points.

4.9.1. Weierstrass coordinates. We will use Section 4.8 to derive the cubical arithmetic of an
elliptic curve (𝐸, (0𝐸)) in Weierstrass equation 𝑦2 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6.

It is well known by Riemann Roch that the line bundle ℒ associated to (0𝐸) has one
global section 𝑍1. The line bundle ℒ2 has two sections, 𝑋2, 𝑍2 with 𝑍2 = 𝑍2

1. And finally
the line bundle ℒ3 has three sections 𝑋3, 𝑌3, 𝑍3, with 𝑋3 = 𝑋2𝑍1, 𝑍 = 𝑍3

1.
To simplify notations, we let 𝑋, 𝑌, 𝑍 = 𝑋3, 𝑌3, 𝑍3. We can work on the elliptic curve

via the projective coordinates (𝑋 ∶ 𝑌 ∶ 𝑍), or via the affine coordinates 𝑥 = 𝑋/𝑍 =
𝑋2/𝑍2, 𝑦 = 𝑌/𝑍 which are defined everywhere except at 0𝐸. (It is also standard in elliptic
curve cryptography to use Jacobian coordinates which are given by (𝑋2 ∶ 𝑌3 ∶ 𝑍1), with
projective weights (2 ∶ 3 ∶ 1).)

Since 0𝐸 is of multiplicity 1 in the divisor (0𝐸), by the proof of [Mum66, Proposi-
tion 2 p.307], we have that 𝑍1(−�̃�) = −𝑍1(�̃�). So 𝑍1 is odd, and since 𝑥 is odd and 𝑦
even, 𝑋 is even and 𝑌 is even.

The affine representation of a cubical point �̃� above 𝑃 = (𝑋(𝑃) ∶ 𝑌(𝑃) ∶ 𝑍(𝑃)),
with respect to the divisor 𝐷 = 3(0𝐸), then corresponds to a choice of affine lift �̃� =
(𝑋(�̃�), 𝑌(�̃�), 𝑍(�̃�)) above the projective point 𝑃.

If we want to work with the cubical arithmetic associated to (0𝐸) (hence a principal
polarisation), since it is not very ample, to represent a cubical point �̃�, we need to fix both a
representation of 𝑃 itself, e.g. via the Weierstrass coordinates (𝑋(𝑃) ∶ 𝑌(𝑃) ∶ 𝑍(𝑃)) and a
choice of 𝑍1(𝑃), which we will denote by 𝑍1(�̃�). Our representation is thus �̃� = (𝑃, 𝑍1(�̃�)).
It is well defined except when 𝑃 = 0𝐸 because the neutral point is a base point of (0𝐸) and
𝑍1(0𝐸) = 0.

Remark4.34. Asdiscussed inRemark 4.24, wewant to normalize ̃0 such that (𝑍1/(𝑥/𝑦))( ̃0) =
1.With this normalisation,we have𝑋2( ̃0) = (𝑋2/(𝑍1/(𝑥/𝑦))2)( ̃0) = (𝑋2𝑥2/(𝑍2

1𝑦2))( ̃0) =
(𝑥3/𝑦2)( ̃0) = 1, and𝑌3( ̃0) = (𝑌3/(𝑍1/(𝑥/𝑦))3)( ̃0) = (𝑌3𝑥3/(𝑍3

1𝑦3))( ̃0) = (𝑥3/𝑦2)( ̃0) =
1.
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We will call sections of the divisor 𝑛(0𝐸) coordinates of level 𝑛, so for instance 𝑍1 is of
level 1, 𝑋2, 𝑍2 of level 2, and 𝑋3, 𝑌3, 𝑍3 of level 3. To specify a cubical point �̃� with respect
to the divisor 𝑛(0𝐸), we need to specify 𝑃 using some projective coordinates of level 𝑚:
(𝑋𝑚,𝑖(𝑃)), and one or several affine coordinates of level 𝑛: 𝑋𝑛,𝑖(�̃�). If 𝑚 = 𝑛, then the
projective coordinates are subsumed by the affine coordinates, but we can take 𝑚 different
from 𝑛.

For instance the representation �̃� = (𝑋(�̃�), 𝑌(�̃�), 𝑍(�̃�)) uses level 3 affine coordinates
(so gives cubical points associated to 3(0𝐸)); and our normalisation of the neutral point
is ̃0 = (0, 1, 0). The representation �̃� = ((𝑋(𝑃) ∶ 𝑌(𝑃) ∶ 𝑍(𝑃)), 𝑍1(�̃�)) uses level 3
projective coordinates with a level 1 affine coordinate (so cubical points associated to (0𝐸)).
This times, 𝑍1(0𝐸) = 0 so to define our neutral point we need to add the extra condition
that (𝑍1/(𝑥/𝑦))( ̃0) = 1.

In Section 4.9.4 we will use level 2 affine coordinates �̃� = (𝑋2(�̃�), 𝑍2(�̃�)). Projectively,
these only allow to recover (𝑋2(𝑃) ∶ 𝑍2(𝑃)), i.e. 𝑥(𝑃), so they cannot distinguish between
𝑃 and −𝑃. Our neutral point is ̃0 = (1, 0).

On a twisted Edwards curve, the completed Edward coordinates are given by {(𝑋 ∶
𝑍), (𝑌 ∶ 𝑇) ∈ ℙ1 × ℙ1 ∣ 𝑎𝑋2𝑇2 + 𝑌2𝑍2 = 𝑍2𝑇2 + 𝑑𝑋2𝑌2}, and the Segre embedding
ℙ1 × ℙ1 → ℙ3, (𝑋 ∶ 𝑍), (𝑌 ∶ 𝑇) ↦ (𝑋𝑇 ∶ 𝑌𝑍 ∶ 𝑍𝑇 ∶ 𝑋𝑌) gives the extended Edwards
coordinates (which are of level 4) [BBLP13, § 2.7]. Let 𝑀 be the Montgomery model which
is birationnally equivalent to 𝐸, and 𝑋𝑀, 𝑍𝑀 its level two coordinates, and 𝑇 = (1 ∶ 0) the
canonical point of 4 torsion on the Kummer line. Then up to a linear change of variable, the
completed Edwards coordinates correspond precisely to the embedding 𝑀 → ℙ1 ×ℙ1, 𝑃 ↦
((𝑋𝑀(𝑃) ∶ 𝑍𝑀(𝑃)), (𝑋𝑀(𝑃 + 𝑇) ∶ 𝑍𝑀(𝑃 + 𝑇))). This was first remarked (implicitly)
in [Koh11b; Koh11a, §8.1]; see also [FK22, § 3] and [LR16] for generalisations to higher
dimension. This means we could use a mix of affine level 2 and projective level 4 coordinates
to describe cubical points of level 2 in 𝔸2 × ℙ1 via �̃� = ((𝑋𝑀(�̃�), 𝑍𝑀(�̃�)), (𝑋𝑀(𝑃 + 𝑇) ∶
𝑍𝑀(𝑃 + 𝑇))), and compute pairings using a mix of Kummer line cubical arithmetic as in
Section 5 and Edwards additions. We leave that for future work.

More generally, on an abelian variety 𝐴, with projective embedding 𝐴 → ℙ𝑁 given by a
very ample divisor 𝐸, and a divisor 𝐷, we just need an explicit version of the theorem of the
square for 𝐷, i.e., for 𝑃, 𝑄 ∈ 𝐴, represented by their projective coordinates 𝑋𝑖(𝑃), 𝑋𝑖(𝑄),
𝑋𝑖 ∈ Γ(𝐸), build a function 𝑔𝑃,𝑄 with divisor 𝐷𝑃+𝑄 − 𝐷𝑃 − 𝐷𝑄, such that we are able to
evaluate it on 𝑅 = (𝑋𝑖(𝑅)), to be able to work out the cubical arithmetic, hence biextension
arithmetic, associated to 𝐷, while working in the model associated to 𝐸. It is not required to
choose 𝐸 = 𝐷.

4.9.2. Analytic cubical elliptic points. Analytically, the Weierstrass sigma function 𝜎 is a theta
function (up to some exponential factor) which has zeroes of order 1 exactly at the lattice Λ,
it can thus play the role of our 𝑍1 (see Remark 4.35). It is also well known that analytically,
𝑥 = ℘, 𝑦 = ℘′.
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The cubical arithmetic with respect to 𝜎 is then given by the Frobenius Stickelberger
relations (see [Sta08, Lemma 5.1.3; Sil86, Exercice 6.3; Bre83, Eq.(3.13.4) p 42]):

𝜎(𝑧 + 𝑤)𝜎(𝑧 − 𝑤)
𝜎(𝑧)2𝜎(𝑤)2 = 𝜌(𝑤) − 𝜌(𝑧)

𝜎(2𝑧)
𝜎(𝑧)4 = −𝜌′(𝑧)

𝜎(𝑥 + 𝑦 + 𝑧)𝜎(𝑥)𝜎(𝑦)𝜎(𝑧)
𝜎(𝑥 + 𝑦)𝜎(𝑦 + 𝑧)𝜎(𝑥 + 𝑧) =

−1
2

∣∣∣∣∣

1 ℘(𝑥) ℘′(𝑥)
1 ℘(𝑦) ℘′(𝑦)
1 ℘(𝑧) ℘′(𝑧)

∣∣∣∣∣

1
(℘(𝑥) − ℘(𝑦))(℘(𝑦) − ℘(𝑧))(℘(𝑧) − ℘(𝑥)) .

These allows to compute the cubical doubling, cubical differential additions and cubical three
way additions on a Weierstrass model. There also exists Frobenius–Stickelberger relations
for multiway relations (which allows to compute them directly rather than through three
way additions), but we won’t need them.

Remark 4.35 (The normalised neutral point). Our cubical analytic neutral point ̃0 is the one
corresponding to 0 ∈ ℂ.The normalisation is given by (𝜎/(℘/℘′))(0) = −2 by [OKUO11,
Lemma 1]. Indeed (℘𝜎2)(0) = 1 and (℘′𝜎3)(0) = −2. But the Weierstrass equation is
℘′2 = ℘3 − 𝑔2℘ − 𝑔3, so for a Weierstrass equation of the form 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, via
𝑥 = ℘, 𝑦 = ℘′/2, ̃0 corresponds to the normalisation (𝜎/(−𝑥/𝑦))(0) = 1, which is the
opposite of the normalisation we use in Remark 4.24 (alternatively: 𝜎 = −𝑍1).

4.9.3. Algebraic elliptic cubical points. Our analytic cubical laws translate in the following
algebraic law (taking into account the change of variable from Remark 4.35 between analytic
Weierstrass coordinates and algebraicWeierstrass coordinates): given �̃� = (𝑥(𝑃), 𝑦(𝑃), 𝑍1(�̃�)),
𝑄 = (𝑥(𝑄), 𝑦(𝑄), 𝑍1(𝑄)) and ̃𝑃 − 𝑄 = (𝑥(𝑃 − 𝑄), 𝑦(𝑃 − 𝑄), 𝑍1( ̃𝑃 − 𝑄)), we have the
cubical doubling

2̃𝑃 = (𝑥(2𝑃), 𝑦(2𝑃), 𝑍1(�̃�)42𝑦(𝑃)),

and the cubical differential addition is ̃𝑃 + 𝑄 = (𝑥(𝑃 + 𝑄), 𝑦(𝑃 + 𝑄), 𝑍1( ̃𝑃 + 𝑄)) with

𝑍( ̃𝑃 + 𝑄)𝑍( ̃𝑃 − 𝑄) = 𝑍1(�̃�)2𝑍1(𝑄)2(𝑥(𝑄) − 𝑥(𝑃)).

And the three way addition reads:

𝑍1( ̃𝑃 + 𝑄 + 𝑅)𝑍1(�̃�)𝑍1(𝑄)𝑍1(�̃�)
𝑍1( ̃𝑃 + 𝑄)𝑍1(𝑄 + 𝑅)𝑍1(𝑃 + 𝑅)

=
∣∣∣∣∣

1 𝑥(𝑃) 𝑦(𝑃)
1 𝑥(𝑄) 𝑦(𝑄)
1 𝑥(𝑅) 𝑦(𝑅)

∣∣∣∣∣

1
(𝑥(𝑄) − 𝑥(𝑃))(𝑥(𝑅) − 𝑥(𝑃))(𝑥(𝑅) − 𝑥(𝑄))

=
𝑙𝑃,𝑄(𝑅)

(𝑥(𝑅) − 𝑥(𝑃))(𝑥(𝑅) − 𝑥(𝑄)) ,

where 𝑙𝑃,𝑄 ∶ 𝑦 − 𝛼𝑥 − 𝛽 is the equation of the line going through 𝑃 and 𝑄.
Finally, for general cubical points in Riemann position [�̃�1, �̃�2, �̃�3, �̃�4; 𝑄1, 𝑄2, 𝑄3, 𝑄4],

if we let 𝑃1 = 𝑃′
1 + 𝑃′

2, 𝑃2 = 𝑃′
1 − 𝑃′

2, 𝑃3 = 𝑃′
3 + 𝑃′

4, 𝑃4 = 𝑃′
3 − 𝑃′

4, then 2𝑃′
1 = 𝑃1 + 𝑃2,

2𝑃′
2 = 𝑃1 −𝑃2, 2𝑃′

3 = 𝑃3 +𝑃4, 2𝑃′
4 = 𝑃3 −𝑃4, and we have: 𝑄1 = 𝑃′

3 −𝑃′
2, 𝑄2 = 𝑃′

3 +𝑃′
2,

𝑄3 = 𝑃′
1 − 𝑃′

4, 𝑄4 = 𝑃′
1 + 𝑃′

4. We can then use the cubical differential additions above to
obtain

𝑍1(𝑃1)𝑍1(𝑃2)𝑍1(𝑃3)𝑍1(𝑃4)
𝑍1(𝑄1)𝑍1(𝑄2)𝑍1(𝑄3)𝑍1(𝑄4)

=
(𝑥(𝑃′

2) − 𝑥(𝑃′
1))(𝑥(𝑃′

4) − 𝑥(𝑃′
3))

(𝑥(𝑃′
2) − 𝑥(𝑃′

3))(𝑥(𝑃′
4) − 𝑥(𝑃′

1)) .
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For the reader who do not like analytic arguments, let us give a purely algebraic proof of
the cubical arithmetic for elliptic curves in Weierstrass form. Recall from Remark 4.24 that
for an elliptic curve in Weierstrass form 𝑦2 = 𝑥3 +𝑎2𝑥2 +𝑎4𝑥 +𝑎6, we take ̃0 corresponding
to the uniformiser 𝜋0𝐸

= 𝑥/𝑦, i.e. (𝑍1/(𝑥/𝑦))( ̃0) = 1

ByExample 4.3 and Section 4.5.2, for a differential addition,we have 𝑍1( ̃𝑃+𝑄+𝑅)𝑍1( ̃𝑃−𝑄+𝑅)𝑍1(�̃�)𝑍1( ̃(𝑅)
𝑍1( ̃−𝑄+𝑅)𝑍1(𝑄+𝑅)𝑍1(𝑃+𝑅)𝑍1(𝑃+𝑅)

=

𝛾(𝑅). Here by Example 4.3, 𝛾 = 𝑔𝑄,−𝑄(⋅)
𝑔𝑄,−𝑄(𝑃−(⋅)) .

For a generic 𝑄, we can take 𝑔𝑄,−𝑄 = 𝑥 − 𝑥(𝑄) and so 𝛾(𝑅) = 𝑥(𝑃−𝑅)−𝑥(𝑄)
𝑥(𝑅)−𝑥(𝑄) . We also

have 𝑍1(−𝑄) = −𝑍1(𝑄) and even 𝑍1(−𝑄) = −𝑍1(𝑄).
Since our choice of base point evaluation to represent cubical functions is ̃0, we have

𝑍1( ̃𝑃 + 𝑄)𝑍1( ̃𝑃 − 𝑄) = 𝑍1(�̃�)2𝑍1(𝑄)𝑍1(−𝑄)𝑍1( ̃0)−2𝛾(0𝐸).
And since 𝑍1/(𝑥/𝑦)( ̃0) = 1, we have (𝛾/𝑍2

1)( ̃0) = (𝛾𝑦2/𝑥2)(0𝐸). Hence, we have
𝑍1( ̃𝑃 + 𝑄)𝑍1( ̃𝑃 − 𝑄) = 𝑍1(�̃�)2𝑍1(𝑄)2 ⋅ −(𝛾𝑦2/𝑥2)(0𝐸).

The numerator of 𝛾 evaluated at 𝑅 = 0𝐸 gives 𝑥(𝑃) − 𝑥(𝑄). The denominator of 𝛾 multi-
plied by (𝑥/𝑦)2 is 𝑥(𝑅)3/𝑦(𝑅)2 − 𝑥(𝑅)2𝑥(𝑄)/𝑦(𝑅)2. The term 𝑥(𝑅)3/𝑦(𝑅)2 is equal to 1
at 𝑅 = 0𝐸 because of the curve equation, while the second term gives 0. So (𝛾𝑦2/𝑥2)(0𝐸) =
𝑥(𝑃)−𝑥(𝑄). In the end, we have 𝑍1( ̃𝑃 + 𝑄)𝑍1( ̃𝑃 − 𝑄) = (𝑥(𝑄)−𝑥(𝑃))𝑍1(�̃�)2𝑍1(𝑄)2,
as expected.

We let the reader work out the case of doublings and three way additions.

4.9.4. Cubical arithmetic on Kummer lines. We could use 𝑍2 = 𝑍2
1 to compute the cubical

arithmeticwith respect to the divisor𝐷 = 2(0𝐸): wewould represent �̃� by (𝑥(𝑃), 𝑦(𝑃), 𝑍2
1(𝑃)).

This combines level 3 projective coordinates with one level 2 affine coordinates.
Instead, we will use level 2 affine coordinates only, at the cost of moving to the Kummer

line. The projective coordinates with respect to 2(0𝐸) are (𝑋2 ∶ 𝑍2), and so the associated
affine representation from Section 4.5 is �̃� = (𝑋2(�̃�), 𝑍2(�̃�)) = (𝑥(𝑃)𝑍2(�̃�), 𝑍2(�̃�)). It
is enough to recover 𝑃 up to a sign, hence we can interpret this latter representation as a
cubical representation over the Kummer line.

The cubical arithmetic in this affine representation then becomes, for cubical doublings,
2̃𝑃 = (𝑥(2𝑃)𝑍2(2̃𝑃), 𝑍2(2̃𝑃)) with 𝑍2(2̃𝑃) = 4𝑦(𝑃)2𝑍(�̃�)4, and we can use the Weier-
strass equation to express 𝑦(𝑃)2 in terms of 𝑥(𝑃). And the cubical differential addition is
̃𝑃 + 𝑄 = (𝑥(𝑃+𝑄)𝑍2( ̃𝑃 + 𝑄), 𝑍2( ̃𝑃 + 𝑄))with𝑍2( ̃𝑃 + 𝑄)𝑍2( ̃𝑃 − 𝑄) = 𝑍2(�̃�)2𝑍2(𝑄)2(𝑥(𝑄)−

𝑥(𝑃))2.
The three way addition is more complex. First from 𝑥(𝑃1), 𝑥(𝑃2), 𝑥(𝑃1 + 𝑄), 𝑥(𝑃2 +

𝑄) we can use a compatible addition to recover 𝑥(𝑃1 − 𝑃2) or 𝑥(𝑃1 + 𝑃2 + 𝑄), and
then use a projective differential addition to recover 𝑥(𝑃1 + 𝑃2). Now we can combine
the level 1 cubical differential additions formulas for 𝑍1( ̃𝑃1 + 𝑃2 + 𝑄)𝑍1( ̃𝑃1 − 𝑃2 + 𝑄),
𝑍1( ̃𝑃1 + 𝑃2 + 𝑄)𝑍1( ̃𝑃2 − 𝑃1 + 𝑄),𝑍1( ̃𝑃1 − 𝑃2 + 𝑄)𝑍1( ̃𝑃2 − 𝑃1 + 𝑄), and𝑍1( ̃𝑃1 + 𝑃2)𝑍1( ̃𝑃1 − 𝑃2),
to obtain:

𝑍2( ̃𝑃1 + 𝑃2 + 𝑄) =
𝑍2( ̃𝑃1 + 𝑄)𝑍2( ̃𝑃2 + 𝑄)𝑍2(𝑃1)𝑍2(𝑃2)

𝑍2( ̃𝑃1 − 𝑃2)𝑍2(𝑄)
(𝑥(𝑃2) − 𝑥(𝑃1 + 𝑄))(𝑥(𝑃1) − 𝑥(𝑃2 + 𝑄))

(𝑥(𝑃1 − 𝑃2) − 𝑥(𝑄))

=
(𝑋2(𝑃2)𝑍2( ̃𝑃1 + 𝑄) − 𝑋2( ̃𝑃1 + 𝑄)𝑍2(𝑃2))(𝑋2(𝑃1)𝑍2( ̃𝑃2 + 𝑄) − 𝑋2( ̃𝑃2 + 𝑄)𝑍2(𝑃1))

(𝑋2( ̃𝑃1 − 𝑃2)𝑍2(𝑄) − 𝑍2( ̃𝑃1 − 𝑃2)𝑋2(𝑄))
.

Since compatible additions give 𝑥(𝑃1 + 𝑃2 + 𝑄), knowing 𝑍2( ̃𝑃1 + 𝑃2 + 𝑄) is enough
to recover 𝑋2( ̃𝑃1 + 𝑃2 + 𝑄), hence ̃𝑃1 + 𝑃2 + 𝑄. (We will see a more direct formula
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for 𝑋2( ̃𝑃1 + 𝑃2 + 𝑄) in the Montgomery model in Section 5.2). Likewise, we can com-
pute ̃𝑃1 + 𝑃2 = DiffAdd(𝑃1, 𝑃2, ̃𝑃1 − 𝑃2), then the biextension element corresponding to
[ ̃𝑃1 + 𝑃2, 𝑄; ̃0, ̃𝑃1 + 𝑃2 + 𝑄 is equal to 𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄.

For the compatible additions, let𝜅00 = 𝑋(𝑃1+𝑃2)𝑋(𝑃1−𝑃2),𝜅01 = 𝑋(𝑃1+𝑃2)𝑍(𝑃1−
𝑃2)+𝑋(𝑃1 −𝑃2)𝑍(𝑃1 +𝑃2), 𝜅11 = 𝑍(𝑃1 +𝑃2)𝑍(𝑃1 −𝑃2), so that (𝑋(𝑃1 +𝑃2) ∶ 𝑍(𝑃1 +
𝑃2)), (𝑋(𝑃1 − 𝑃2) ∶ 𝑍(𝑃1 − 𝑃2)) are solutions of the homogeneous system 𝑃(𝑋, 𝑍) =
𝜅11𝑋2 − 𝜅01𝑋𝑍 + 𝜅00𝑍2 = 0. By symmetry, we can always write the 𝜅 as biquadratic
polynomials in (𝑋(𝑃1) ∶ 𝑍(𝑃1)), (𝑋(𝑃2) ∶ 𝑍(𝑃2)). Define similarly 𝜅′ for 𝑃′

1 = 𝑃1 + 𝑄,
𝑃′

2 = 𝑃2+𝑄 to obtain a polynomial 𝑃′(𝑋, 𝑍).The point (𝑋(𝑃1−𝑃2) ∶ 𝑍(𝑃1−𝑃2)) is a root
of both 𝑃(𝑋, 𝑍) and 𝑃′(𝑋, 𝑍), and can be written as (𝜅′

01𝜅00 − 𝜅01𝜅′
00 ∶ 𝜅′

11𝜅00 − 𝜅11𝜅′
00).

We can use the 𝔾𝑚-action from Lemma 4.15 to get rid of divisions: the cubical points
[𝜆 ⋅ ̃𝑃1 + 𝑃2, 𝑄; ̃0, 𝜆 ⋅ ̃𝑃1 + 𝑃2 + 𝑄] and [ ̃𝑃1 + 𝑃2, 𝑄; ̃0, ̃𝑃1 + 𝑃2 + 𝑄] represent the same
biextension elements. This allows to replace divisions by multiplication.

We recall that a biextension point is then represented via 𝑔𝑃,𝑄 = [�̃�, 𝑄; ̃0, ̃𝑃 + 𝑄]. We
could imagine a mix of the 𝑍2 = 𝑍2

1 representation and the affine lift representation: when
computing 𝑔⋆1,ℓ

𝑃,𝑄 = [ℓ�̃�, 𝑄; ̃0, ̃ℓ𝑃 + 𝑄], compute (𝑋2(ℓ�̃�), 𝑍2(ℓ�̃�)) via a cubical biextension
ladder to represent ℓ�̃�, and use 𝑍2( ̃ℓ𝑃 + 𝑄) = 𝑍2( ̃ℓ𝑃 + 𝑄) to represent ̃ℓ𝑃 + 𝑄. Indeed,
to recover 𝑋2( ̃ℓ𝑃 + 𝑄), given 𝑍2( ̃ℓ𝑃 + 𝑄) (and provided it is not zero), we just need to
compute 𝑥2(ℓ𝑃 + 𝑄). Since we are doing a ladder, we have (ℓ − 1)𝑃 and ℓ𝑃, and we can
recover ℓ𝑃 + 𝑄 via a compatible addition CompatibleAdd(ℓ𝑃, 𝑄; (ℓ − 1)𝑃, 𝑃 + 𝑄).

So 𝑍2( ̃ℓ𝑃 + 𝑄) is enough to compute the cubical arithmetic. Can we find fast formu-
las using 𝑍2 only without recovering 𝑋2? This is related to the question of denominator
elimination in Section 6.1.

4.9.5. Elliptic nets. Elliptic nets are another way to compute the cubical arithmetic of an
elliptic curve (or abelian variety), associated to the principal polarisation (0𝐸). In elliptic
nets, the cubical point �̃� = (𝑃, 𝜎(�̃�)) is only represented through 𝜎(�̃�). This is not enough
to determine �̃� let alone do cubical arithmetic.

The key insight of Stange is the following: while 𝜎(�̃�) alone is not enough, the data of
𝜎(𝑚�̃�) for small values of 𝑚 is enough to recover any 𝜎(𝑛�̃�) through a recurrence formula.
Likewise, the values of 𝜎( ̃𝑛𝑃 + 𝑚𝑄) for small values of 𝑛, 𝑚 allow to compute all values
𝜎( ̃ℓ1𝑃 + ℓ2𝑄) through a more complicated recurrence formula.

The resulting recurrence formulas allows to build iteratively the so called elliptic nets.
Since elliptic nets compute the cubical arithmetic, they can be used to compute pairings:
compare [Sta08, Theorems 17.2.1, 17.2.2] with Theorem 4.19 and [OKUO11, Theorems 4, 5]
with Proposition 4.22. A somewhat annoying thing with the elliptic net representation is
that it cannot represent 0̃𝐸 since 𝜎(0𝐸) = 0, so when using it to compute pairings through
the bixtension monodromy, it requires to compare 𝑔ℓ+1

𝑃,𝑄 with 𝑔𝑃,𝑄 rather than 𝑔ℓ
𝑃,𝑄 with the

constant 1.
Elliptic nets extend to abelian varieties using analytic thetas instead of the Weierstrass 𝜎

function, see [Tra14, Chapitre 3] (which also gives formula for analytic thetas of higher level
than 𝑛 = 2). Although the result is stated there for Jacobians of hyperelliptic curves, the proof
is valid for any abelian variety. The idea is that the differential addition formula deduced from
Riemann relations give a bilinear relation between products of the form 𝜃𝑖(𝑧1+𝑧2)𝜃𝑗(𝑧1−𝑧2)
and products of the form 𝜃𝑖(𝑧1)𝜃𝑖(𝑧2) and 𝜃𝑖(𝑧2)𝜃𝑗(𝑧2). The associated matrix to these
bilinear relations is not of full rank and taking its determinant give the recurrence relation
sought for.
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We now compare elliptic nets with our approach. First the strategy of the proof is slightly
different: Stange uses the analytic 𝜎 function to derive algebraic formulas for elliptic nets
over ℂ, which she uses to give algebraic formulas for elliptic nets over any field. Here we
use the fact that we already know that the cubical arithmetic is algebraic to give an algebraic
interpretation of the analytic function 𝜎 as defining a cubical point, so that we can define an
algebraic 𝜎 over any field. We could then recover the algebraic elliptic net recurrence from
this algebraic 𝜎.

But the main difference is in terms of our choice of representation of cubical point: repre-
senting them only by 𝜎(�̃�) loses a lot of information and the elliptic net representation needs
to work with many values. In Section 4.9, we give cubical formulas for the representation
(𝑃, 𝜎(�̃�)) where we keep track of the underlying point on the elliptic curve together with
𝜎(�̃�). In other words: the cubical points are the intrinsic object, and since 𝜎(�̃�) alone can not
recover �̃�, it makes working with the elliptic nets 𝜎(∑ 𝑛𝑖�̃�𝑖) directly harder than working
with the cubical points ∑ 𝑛𝑖�̃�𝑖 themselves.

And we will see in Section 5 that the sweet spot for efficient cubical arithmetic seems to
be to use the affine representation associated to the divisor 2(0𝐸) and the global sections
𝑋, 𝑍, i.e. represent �̃� via the level two affine coordinates 𝑋(�̃�), 𝑍(�̃�) rather than by only one
affine coordinate 𝜎(�̃�). Via this representation, as explained in Section 4.5 we will be able to
leverage the efficient Kummer arithmetic to an efficient cubical arithmetic.

The only drawback is that the polarisation associated to 2(0𝐸) is not principal anymore,
so as explained in Remark 2.11 we will need to use the full power of Theorem 2.9 rather than
Corollary 2.5 to correctly handle the case ℓ even.

5. Pairings on Kummer lines

We specialize in Section 5.1 our whole framework of cubical arithmetic from Section 4
to the case of Kummer lines. Then we specialize further in Section 5.2 to the case of the
Montgomery model of Kummer lines, which allows us to prove Theorem 1.1.

5.1. Algorithms for a Kummer line. We will represent our cubical points through the affine
lift representation associated to the sections 𝑋, 𝑍 ∈ Γ(2(0𝐸)) of the divisor 𝐷 = 2(0𝐸). We
will always take ̃0 = (1, 0) as our choice of affine lift of 0𝐸 = (1 ∶ 0). Indeed, we have seen in
Remark 4.34 that normalizing ̃0 in level 2 through (𝑍2/(𝑥/𝑦)2)( ̃0) = 1, makes 𝑋2( ̃0) = 1,
so ̃0 = (1, 0) in level 2 corresponds to 𝑍2( ̃0) = 1 being normalised with respect to (𝑥/𝑦)2.

The algorithm to compute the non reduced Tate pairing is given in Algorithm 5.1. To
compute the Weil pairing, it suffices to apply Algorithm 5.1 again with the arguments 𝑃, 𝑄
reversed, but making the same choices for �̃�, 𝑄, ̃𝑃 + 𝑄 (or if making different choices for
whatever reason, ensuring the associated biextension element 𝑔𝑄,𝑃 is equal to 𝜄(𝑔𝑃,𝑄)), to
obtain 𝜆𝑄. The Weil pairing is 𝑒𝑊,2(0𝐸),ℓ(𝑃, 𝑄) = 𝜆𝑃/𝜆𝑄.

This is the (non reduced) Tate and Weil pairings associated to 2(0𝐸), so the square of the
usual non reduced Tate and Weil pairing. When ℓ is odd, and if the characteristic 𝑝 > 0,
to recover the usual reduced Tate pairing it suffices to adjust the final exponentiation from
(𝑞 − 1)/ℓ to (𝑞 − 1)/(2ℓ). In any case, having the squares of the usual pairings on 𝜇ℓ is
not a problem in practice if ℓ is odd (one could always take a square root if needed). This
becomes a problem if ℓ is even, in which case we use the strategy of Remark 2.11 to compute
the standard (non reduced) Tate and Weil pairing associated to (0𝐸). In this case, ℓ = 2𝑚,
and rather than computing ℓ̃𝑃, ̃ℓ𝑃 + 𝑄, we compute 𝑚𝑃, ̃𝑚𝑃 + 𝑄.

By assumption, 𝑇 = 𝑚𝑃 is a point of two torsion, and we can now use the action of an
element of the theta group 𝑔𝑇 ∈ 𝐺(2(0𝐸)) above 𝑇 as explained in Section 4.5.
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Input: (𝑋(𝑃) ∶ 𝑍(𝑃)) a rational point of ℓ-torsion, (𝑋(𝑄) ∶ 𝑍(𝑄)) a rational point,
(𝑋(𝑃 + 𝑄) ∶ 𝑍(𝑃 + 𝑄))

Output: The non reduced Tate pairing 𝑒𝑇,2(0𝐸),ℓ(𝑃, 𝑄)
.

: Take arbitrary affine lifts �̃� = (𝑋(�̃�), 𝑍(�̃�)), 𝑄 = (𝑋(𝑄), 𝑍(𝑄)), ̃𝑃 + 𝑄 =
(𝑋( ̃𝑃 + 𝑄), 𝑍( ̃𝑃 + 𝑄)).

: Compute ℓ̃𝑃, ̃ℓ𝑃 + 𝑄 using either Algorithms 4.2 and 4.7.
: Write ℓ̃𝑃 = 𝜆0,𝑃 ̃0, ̃ℓ𝑃 + 𝑄 = 𝜆1,𝑃𝑄.
: Return 𝜆𝑃 = 𝜆1,𝑃/𝜆0,𝑃.

Algorithm 5.1. The non reduced Tate pairing associated to 2(0𝐸) on a
Kummer line

Concretely, the translation by 𝑇 is given by a projective matrix, i.e. an action of the form
(𝑋, 𝑍) ↦ (𝑎𝑋 +𝑏𝑍 ∶ 𝑐𝑋 +𝑑𝑍). Take any choice of affine lift (𝑋, 𝑍) ↦ (𝑎𝑋 +𝑏𝑍, 𝑐𝑋 +𝑑𝑍)
of the translation by 𝑇 on (𝑋, 𝑍) coordinates. In other words, we lift the projective 2 × 2
matrix of translation to a standard matrix; this is the same as making a choice of theta group
element 𝑔𝑇 ∈ 𝐺(2(0𝐸)) above 𝑇 and looking at the action of 𝑔𝑇 on (𝑋, 𝑍). The choice
of an affine point 𝑇 is a way to encode this choice: 𝑔𝑇 should then be the unique element
such that 𝑔𝑇 ⋅ ̃0 = 𝑇. We we call the action of a 𝑔𝑇 corresponding to 𝑇 on a cubical point
�̃� the translation of �̃� by 𝑇 and denote it �̃� + 𝑇 = Translate(�̃�, 𝑇). Then we can compute
ℓ̃𝑃 = 𝑚𝑃 + 𝑇, ̃ℓ𝑃 + 𝑄 = ̃𝑚𝑃 + 𝑄 + 𝑇.

Since 𝑇 = 𝑚𝑃, we could use in practice the choice of 𝑇 = 𝑚𝑃 which just computed; but
we remark that a different choice of 𝑇 would still get the correct value as long as we use the
same choice of 𝑇 for both the translation action to compute ℓ̃𝑃 and ̃ℓ𝑃 + 𝑄, since changing 𝑇
to 𝜆𝑇 would change ℓ̃𝑃 to 𝜆ℓ̃𝑃 and ̃ℓ𝑃 + 𝑄 to 𝜆 ̃ℓ𝑃 + 𝑄, so they would still induce the same
biextension element by Lemma 4.15.

We will also denote byTranslate(�̃�, 𝑇) an algorithmwhichmakes a choice of 𝑇 depending
on 𝑇 and then call Translate(�̃�, 𝑇); as long as the choice of 𝑇 is the same for every call with
the same 𝑇, the computation will be correct. This can save us some arithmetic operations,
for instance on a Montgomery model if 𝑚𝑃 = (0, 𝑎), we prefer to take ̃(0 ∶ 1) = (0, 1)
rather than (0, 𝑎). Indeed in the former case, the translation action by (0, 1) is simply
(𝑋, 𝑍) ↦ (𝑍, 𝑋), while the translation action of (0, 𝑎) would be (𝑋, 𝑍) ↦ (𝑎𝑍, 𝑎𝑋), so we
save multiplications.

The algorithm for the non reduced Tate pairing for even ℓ is given in Algorithm 5.2, and
like for Algorithm 5.1 it gives an algorithm for the Weil pairing by calling it a second time
with (𝑃, 𝑄) swapped and computing 𝑒𝑊,(0𝐸),ℓ(𝑃, 𝑄) = 𝜆𝑃/𝜆𝑄.

By Remark 4.27, it is important in Algorithm 5.1 that we normalize our cubical points via
𝑍 = 1. Indeed, the divisor of zeroes of 𝑍 is 2(0𝐸), so it satisfies the condition of Algorithm 5.1,
and normalising all points with 𝑍 = 1 is a convenient way to be sure that the associated
biextension element 𝑔𝑃,𝑄 is a rational tensor square. (We do have 𝑍( ̃0) = 0, but ̃0 is
normalised for 𝑍 with respect to (𝑥/𝑦)2 which is a square too.)

We could allow an arbitrary normalisation of �̃�, 𝑄, ̃𝑃 + 𝑄, but we would then need to

adjust 𝜆𝑃 by ( 𝑍(𝑃+𝑄)
𝑍(�̃�)𝑍(𝑄)

)
ℓ
.
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Input: (𝑋(𝑃) ∶ 𝑍(𝑃)) a rational point of ℓ-torsion, (𝑋(𝑄) ∶ 𝑍(𝑄)) a rational point,
(𝑋(𝑃 + 𝑄) ∶ 𝑍(𝑃 + 𝑄))

Output: The non reduced Tate pairing 𝑒𝑇,(0𝐸),ℓ(𝑃, 𝑄)
.

: Take affine lifts �̃� = (𝑋(�̃�), 𝑍(�̃�) = 1), 𝑄 = (𝑋(𝑄), 𝑍(𝑄) = 1), ̃𝑃 + 𝑄 =
(𝑋( ̃𝑃 + 𝑄), 𝑍( ̃𝑃 + 𝑄) = 1).

: Compute 𝑚𝑃, ̃𝑚𝑃 + 𝑄 using either Algorithms 4.2 and 4.7.
: Let 𝑇 = 𝑚𝑃, and compute ℓ̃𝑃 = Translate(𝑚𝑃, 𝑇) and ̃ℓ𝑃 + 𝑄 =

Translate( ̃𝑚𝑃 + 𝑄), 𝑇).
: Write ℓ̃𝑃 = 𝜆0,𝑃 ̃0, ̃ℓ𝑃 + 𝑄 = 𝜆1,𝑃𝑄.
: Return 𝜆𝑃 = 𝜆1,𝑃/𝜆0,𝑃.

Algorithm 5.2. The non reduced Tate pairing associated to (0𝐸) on a
Kummer line for ℓ = 2𝑚 even

Input: (𝑋(𝑃) ∶ 𝑍(𝑃)) ∈ 𝔾2, (𝑋(𝑄) ∶ 𝑍(𝑄)) ∈ 𝔾1, (𝑋(𝑃 + 𝑄) ∶ 𝑍(𝑃 + 𝑄)), 𝜆 ≡ 𝑞
mod ℓ

Output: The non reduced Ate pairing 𝑎𝜆,2(0𝐸),ℓ(𝑃, 𝑄)
.

: Take arbitrary affine lifts �̃� = (𝑋(�̃�), 𝑍(�̃�)), 𝑄 = (𝑋(𝑄), 𝑍(𝑄)), ̃𝑃 + 𝑄 =
(𝑋( ̃𝑃 + 𝑄), 𝑍( ̃𝑃 + 𝑄)).

: Compute 𝑚𝑃, ̃𝑚𝑃 + 𝑄 using either Algorithms 4.2 and 4.7.
: Write 𝜆𝑃 = 𝜆0,𝑃𝜋𝑞(�̃�), ̃𝜆𝑃 + 𝑄 = 𝜆1,𝑃𝜋𝑞( ̃𝑃 + 𝑄).
: Return 𝜆𝑃 = 𝜆1,𝑃/𝜆0,𝑃.

Algorithm 5.3. The non reduced Ate pairing associated to 2(0𝐸) on a
Kummer line

We can also use Proposition 4.22 to compute the (non reduced) Ate pairing (with re-
spect to 2(0𝐸), so the square of the usual Ate pairing). We reuse the notations of Sec-
tion 3.4 and Proposition 4.22, and let 𝑚 ≡ ℓ mod 𝑞. We recall that 𝜋𝑞((𝑋(�̃�), 𝑍(�̃�))) =
(𝜋𝑞(𝑋(�̃�)), 𝜋𝑞(𝑍(�̃�))).

A summary is given by:

Theorem 5.1. Let 𝐸/𝔽𝑞 be an elliptic curve, and 𝑋 = 𝑋2(0𝐸) the biextension associated to
the divisor 2(0𝐸).

When ℓ is odd, to compute the square of the non reduced Tate pairing (resp. of the Weil
pairing), we need to compute one (resp. two) biextension exponentiation by ℓ.

When ℓ is even, to compute the usual non reduced Tate pairing (resp. of the Weil pairing),
we need to compute one (resp. two) biextension exponentiation by ℓ/2, followed by an affine
translation by a point of two torsion.

To compute the square of the usual𝑚-Ate pairing (with𝑚 ≡ 𝑞 mod ℓ), we need to compute
one biextension exponentiation by 𝑚.
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Furthermore, using the cubical representation of biextension elements, and representing
cubical points �̃� by the affine lifts �̃� = (𝑋(�̃�), 𝑍(�̃�)), where 𝑋, 𝑍 are sections of 2(0𝐸), a
biextension exponetiation then costs:

• Using the cubical biextension ladder from Algorithm 4.2, one affine doubling and two
affine differential additions by bits. (One could replace an affine differential addition
by a three way addition instead.)

As special cases:
– When ℓ = 2𝑚 or for self pairing 𝑒(𝑃, 𝑃), one affine doubling and one affine
differential addition by bits

– For batch Tate or Ate pairings computations 𝑒(𝑃, 𝑄𝑖) with the same base point 𝑃,
after the first biextension exponentiation the follow up biextension exponentiation
only cost one differential addition (alternatively, one three way addition) by bits

• Using the cubical biextension double and add from Algorithm 4.1, one affine doubling
and one differential addition (or alternatively one three way addition) for each doubling,
and one compatible addition and one three way addition for each addition.

5.2. TheMontgomery model. As explained in Section 5.1, to compute pairings using the
formulas from Theorem 4.19 and Proposition 4.22, we need to compute cubical biextension
exponentiations using either Algorithm 4.2 or Algorithm 4.7.

5.2.1. Cubical ladder on the Montgomery model. For the first one, we just need to explain
how to compute affine doublings and affine differential additions in 𝑋, 𝑍 coordinates. For
the second one, we also need to give algorithms for compatible additions and three way
additions in 𝑋, 𝑍 coordinates.

In this section, we thus concentrate on the Montgomery model of Kummer lines. We
use Section 4.9 to derive our cubical arithmetic. We start with a Montgomery curve 𝐵𝑦2 =
𝑥3 + 𝒜𝑥2 + 1. 𝑥-only additions have a particularly nice form on the Montgomery model:

𝑥(2𝑃) =
(𝑥(𝑃)2 − 1)2

4𝑥(𝑃)(𝑥(𝑃)2 + 𝒜𝑥(𝑃) + 1)
=

(𝑋(𝑃)2 − 𝑍(𝑃)2)2

4𝑋(𝑃)𝑍(𝑃)(𝑋(𝑃)2 + 𝒜𝑋(𝑃)𝑍(𝑃) + 𝑍(𝑃)2)
,

and

𝑥(𝑃 + 𝑄)𝑥(𝑃 − 𝑄) = (
𝑥(𝑃)𝑥(𝑄) − 1
𝑥(𝑃) − 𝑥(𝑄) )

2
= (

𝑋(𝑃)𝑋(𝑄) − 𝑍(𝑃)𝑍(𝑄)
𝑋(𝑃)𝑍(𝑄) − 𝑍(𝑃)𝑋(𝑄))

2
.

On the other hand, by Section 4.9.4, we have

𝑍(2�̃�) = 4𝑋(�̃�)𝑍(�̃�)(𝑋(�̃�)2 + 𝒜𝑋(�̃�)𝑍(�̃�) + 𝑍(�̃�)2),
and

𝑍( ̃𝑃 + 𝑄)𝑍( ̃𝑃 − 𝑄) = (𝑋(𝑄)𝑍(�̃�) − 𝑋(�̃�)𝑍(𝑄))
2

.
In particular, combining both equations, we see that the natural way to write 𝑥(2𝑃), 𝑥(𝑃 +
𝑄)𝑥(𝑃−𝑄) as rational functions in terms of the projective coordinates𝑋(𝑃), 𝑍(𝑃), 𝑋(𝑄), 𝑍(𝑄)
already gives us the correct cubical arithmetic by taking the numerator for𝑋(2�̃�),𝑋( ̃𝑃 + 𝑄)𝑋( ̃𝑃 − 𝑄)
and the denominator for 𝑍(2�̃�), 𝑍( ̃𝑃 + 𝑄)𝑍( ̃𝑃 − 𝑄) respectively! We remark that we can
also directly recover the formulas for 𝑋(2̃𝑃) and 𝑋( ̃𝑃 + 𝑄)𝑋( ̃𝑃 − 𝑄) from the ones for 𝑍,
by using that if 𝑇 = (1, 0), 𝑋(�̃�) = 𝑍(𝑃 + 𝑇). We obtain Algorithms 5.4 and 5.5 for the
cubical arithmetic.

Some comments are in order: in these algorithms we take ̃0 = (1, 0). Taking a different
affine lift of ̃0, we would need to adjust the doubling and differential addition formulas
accordingly. Also the Montgomery coefficients 𝒜 or 𝒜+2

4 are often represented in projective
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Input: �̃� = (𝑋(𝑃), 𝑍(𝑃))
Output: 2̃𝑃 = (𝑋(2𝑃), 𝑍(2𝑃)) = Double(�̃�)

.
: 𝑎 = (𝑋(𝑃) + 𝑍(𝑃))2

: 𝑏 = (𝑋(𝑃) − 𝑍(𝑃))2

: 𝑐 = 𝑎 − 𝑏
: 𝑋(2𝑃) = 𝑎𝑏
: 𝑍(2𝑃) = 𝑐(𝑏 + 𝒜+2

4 𝑐)

Algorithm 5.4. Affine cubical doubling in the Montgomery model

Input: �̃� = (𝑋(𝑃), 𝑍(𝑃)), 𝑄 = (𝑋(𝑄), 𝑍(𝑄)), ̃𝑃 − 𝑄 = (𝑋(𝑃 − 𝑄), 𝑍(𝑃 − 𝑄))
Output: ̃𝑃 + 𝑄 = (𝑋(𝑃 + 𝑄), 𝑍(𝑃 + 𝑄)) = DiffAdd(�̃�, 𝑄, ̃𝑃 − 𝑄

.
: 𝑢 = (𝑋(𝑃) + 𝑍(𝑃))(𝑋(𝑄) − 𝑍(𝑄))
: 𝑣 = (𝑋(𝑃) − 𝑍(𝑃))(𝑋(𝑄) + 𝑍(𝑄))
: 4𝑋(𝑃 + 𝑄)𝑋(𝑃 − 𝑄) = (𝑢 + 𝑣)2

: 4𝑍(𝑃 + 𝑄)𝑍(𝑃 − 𝑄) = (𝑢 − 𝑣)2

Algorithm 5.5. Affine cubical differential addition in the Montgomery model

coordinates 𝒜+2
4 = (𝐴24 ∶ 𝐶24). Here I gave the cubical formulas where 𝐶24 is normalised

to 1. (Alternatively, using the notations from Algorithm 5.4, a 𝐶24 not normalised to 1
corresponds to doubling formulas given by 𝑋(2𝑃) = 𝐶24𝑎𝑏, 𝑍(2𝑃) = 𝑐(𝐶24𝑏 + 𝐴24𝑐), and
associated to a different normalisation of ̃0, but then we would need to update the cubical
differential additions for this different normalisation.) However, as explained in Remark 4.23,
for pairings we only need the biextension arithmetic, which is more flexible than the cubical
arithmetic. In particular, the extra factor 4 in the affine differential addition formulas do not
matter for pairings (it does for other applications though): in the case of the Weil pairing
they are compensated in the quotient 𝜆𝑃/𝜆𝑄, and in the case of the Tate pairing it is killed
by the final exponentiation, as long as we are not over the base field 𝔽𝑝.

To compute pairings for ℓ even, we also need to make a choice of affine lift of translation by
points of 2-torsion (i.e, fix once and for all an element (𝑇, 𝑔𝑇) ∈ 𝐺(2(0𝐸)) represented via
its action on the (𝑋, 𝑍) coordinates). This is done in Algorithm 5.6. We remark also that for
Montgomery Kummer lines, we could apply Algorithm 5.2 by normalising our points with
respect to 𝑋 rather than to 𝑍, because the divisor of zeroes of 𝑋 is 2(𝑇), with 𝑇 = (0 ∶ 1),
so by Remark 4.27, 𝑋 is also a suitable coordinate for normalisation.

Example 5.2. Let 𝑃 be a point of 2-torsion. We want to compute the Tate pairing 𝑒𝑇,2(𝑃, 𝑄)
with respect to (0𝐸) rather than with respect to 2(0𝐸) (since the later would be trivial). By
Remark 2.11, we can use either the 𝑋 or 𝑍 coordinate, since the divisor of 𝑍 is 2(0𝐸) and
the divisor of 𝑋 is 2(𝑇), with 𝑇 = (0 ∶ 1), so they are both twice a rational divisor.

Let 𝑀𝑃 be the matrix of translation by 𝑃 in (𝑋, 𝑍) coordinates (formally this is the
matrix of some theta group element 𝑔𝑃 ∈ 𝐺(2(0𝐸)) above 𝑃 action on 𝑋, 𝑍). There are two
approaches to this pairing computation:
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Input: �̃� = (𝑋(𝑃), 𝑍(𝑃)) and 𝑇 = (𝑋(𝑇) ∶ 𝑍(𝑇)) a point of 2-torsion
Output: 𝑃 + 𝑇 = (𝑋(𝑃 + 𝑇), 𝑍(𝑃 + 𝑇)) = Translate(�̃�, 𝑇)

.
: If 𝑇 = 0𝐸 = (1 ∶ 0), return (𝑋(𝑃), 𝑍(𝑃))
: If 𝑇 = (0 ∶ 1), return (𝑍(𝑃), 𝑋(𝑃))
: Else 𝑇 = (𝑋(𝑇) ∶ 𝑍(𝑇)), we fix once and for all 𝑇 = (𝑋(𝑇), 𝑍(𝑇)) and return

(𝑋(𝑇)𝑋(𝑃) − 𝑍(𝑇)𝑍(𝑃), 𝑍(𝑇)𝑋(𝑃) − 𝑋(𝑇)𝑍(𝑃))

Algorithm 5.6. Affine cubical translation by a point of 2-torsion in the
Montgomery model

• We start with �̃�, 𝑄, ̃𝑃 + 𝑄 normalised to have 𝑍(�̃�) = 𝑍(𝑄) = 𝑍( ̃𝑃 + 𝑄) = 1
(alternatively normalized by their 𝑋 coordinates). We compute the monodromy
actions 𝑀𝑃 ⋅ ̃𝑃 + 𝑄 = 𝜆𝑃,1𝑄, and 𝑀𝑃 ⋅ �̃� = 𝜆𝑃,0 ̃0, and return the Tate pairing as
𝑒𝑇,2(𝑃, 𝑄) = 𝜆𝑃,1/𝜆𝑃,0.

• We start with 𝑄 arbitrary, but we use �̃� = 𝑀𝑃 ⋅ ̃0, ̃𝑃 + 𝑄 = 𝑀𝑃 ⋅ 𝑄. Since 𝑃 is
of two torsion, 𝑀2

𝑃 is a constant times the identity matrix: 𝑀2
𝑃 = 𝜆𝑃 Id. We have

𝑀𝑃 ⋅ ̃𝑃 + 𝑄 = 𝜆𝑄, 𝑀𝑃 ⋅ �̃� = 𝜆 ̃0, so the monodromy 𝜆/𝜆 = 1 is trivial. However,
since our points �̃�, 𝑄, ̃𝑃 + 𝑄 are no longer normalized, we need to keep track of
their coordinates to get the correct Tate pairing: 𝑒𝑇,2(𝑃, 𝑄) = 𝑍(�̃�)𝑍(𝑄)

𝑍(𝑃+𝑄)
.

It is not hard to see that both methods give the same result; this is a special case of the more
general formula from Remark 2.11 (which handle the case where the pairing is recovered
from both a non trivial monodromy action and a non trivial normalisation).

We stress that these two methods work for 𝑍 (or 𝑋), because their zero divisors are twice
a divisor; it would not work for a random linear combination 𝑈 = 𝑢0𝑋 + 𝑢1𝑍.

In practice, applying the secondmethod, if �̃� = (𝑋(𝑃), 𝑍(𝑃)), 𝑄 = (𝑋(𝑄), 𝑍(𝑄)), then
̃𝑃 + 𝑄 = (𝑋(𝑃)𝑋(𝑄) − 𝑍(𝑃)𝑍(𝑄), 𝑍(𝑃)𝑋(𝑄) − 𝑋(𝑃)𝑍(𝑄)). We obtain 𝑒𝑇,2(𝑃, 𝑄) =

𝑍(�̃�)𝑍(𝑄)
𝑍(𝑃+𝑄)

= 𝑍(𝑃)𝑍(𝑄)
𝑍(𝑃)𝑋(𝑄)−𝑋(𝑃)𝑍(𝑄) = 1

𝑥(𝑄)−𝑥(𝑃) .
This is indeed the correct formula for the non reduced Tate pairing (recall that we take

the opposite sign convention than the usual one): the normalised function 𝐟2,𝑃 = 𝑥 − 𝑥(𝑃),
so its evaluation at 𝑄 is 𝑥(𝑄) − 𝑥(𝑃).

Using the𝑋 coordinate instead,we have 𝑒𝑇,2(𝑃, 𝑄) = 𝑋(�̃�)𝑋(𝑄)
𝑋(𝑃+𝑄)𝑋(0̃)

= 𝑋(𝑃)𝑋(𝑄)
𝑋(𝑃)𝑋(𝑄)−𝑍(𝑃)𝑍(𝑄) =

1
1− 1

𝑥(𝑃)𝑥(𝑄)
. And indeed, we have 𝐟2(𝑃+𝑇)−2(𝑇)((𝑄) − (0)) = 𝐟2(𝑃)−2(0)((𝑄 + 𝑇) − (𝑇)) =

𝑥(𝑄+𝑇)−𝑥(𝑃)
𝑥(𝑇)−𝑥(𝑃) = 1/𝑥(𝑄)−𝑥(𝑃)

−𝑥(𝑃) = 1 − 1
𝑥(𝑃)𝑥(𝑄) .

Remark 5.3 (Complete arithmetic laws). We remark that Algorithm 5.4 is always well
defined, even for doubling ̃0, and Algorithm 5.5 is also always well defined, except in the
case where ̃𝑃 − 𝑄 is above a point 𝑃 − 𝑄 = 0𝐸 = (0 ∶ 1) or 𝑃 − 𝑄 = 𝑇 = (1 ∶ 0). In the
first case, we have 𝑃 = 𝑄, and so we can first compute 2𝑄 = Double(𝑄) and then adjust the
result depending on the scalar thus that �̃� = 𝜆𝑃 ⋅𝑄, ̃𝑃 − 𝑄 = 𝜆0 ̃0:DiffAdd(�̃�, 𝑄, ̃𝑃 − 𝑄) =
𝜆2

𝑃
𝜆0

Double(𝑄). In the second case, we first lift the translation action by 𝑇 by taking 𝑇 =
(1, 0) = 𝑔𝑇 ⋅ ̃0, with 𝑔𝑇 ∈ 𝐺(2(0𝐸)) satisfies 𝑔𝑇 ⋅ (𝑋, 𝑍) = (𝑍, 𝑋). Now by Lemma 4.12,
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DiffAdd(𝑔𝑇 ⋅ 𝑄, 𝑄, 𝑇) = 𝑔𝑇 ⋅ Double(𝑄). We can thus compute Double(𝑄), apply 𝑔𝑇 on
it (i.e. switch the 𝑋 and 𝑍 coordinates). Then we need to adjust by the scalars such that

�̃� = 𝜆𝑃 ⋅ 𝑔𝑇 ⋅ 𝑄, ̃𝑃 − 𝑄 = 𝜆0𝑇. Then DiffAdd(�̃�, 𝑄, ̃𝑃 − 𝑄) = 𝜆2
𝑃

𝜆0
𝑔𝑇 ⋅ Double(𝑄).

This means that, adapting our formulas for these particular case, we have complete cubical
arithmetic laws on Montgomery Kummer lines. In practice, for a pairing computation
𝑒(𝑃, 𝑄), we can always use Algorithms 5.4 and 5.5, except when 𝑃, 𝑄 or 𝑃 + 𝑄 is equal
to the two torsion point 𝑇 = (0 ∶ 1). We might as well treat these cases globally, or use
Corollary 4.13.

Still, it is an interesting exercice to unravel the cubical formulas for these special cases, and
check we recover the correct pairings. Let 𝑇 = (1 ∶ 0), we fix 𝑇 = (1, 0), since ̃0 = (0, 1)
this means that the corresponding theta group element 𝑔𝑇 ∈ 𝐺(2(0𝐸)) is the one that acts
on (𝑋, 𝑍) by (𝑋, 𝑍) ↦ (𝑍, 𝑋).

If 𝑃 + 𝑄 = 𝑇, then 𝑄 = 𝑇 − 𝑃, so by bilinearity 𝑒(𝑃, 𝑄) = 𝑒(𝑃, 𝑇)𝑒(𝑃, −𝑃), so we only
need to treat the case 𝑃 = 𝑇 and 𝑄 = 𝑇. Furthermore, these cases are only interesting when
ℓ = 2𝑚 is even, otherwise the pairings are trivial.

Let us first work out the case 𝑃 = 𝑇. We can take �̃� = 𝑇 = (1, 0), fix 𝑄 = (𝑋(𝑄), 𝑍(𝑄))
arbitrarily, and take ̃𝑃 + 𝑄 = 𝑇 ⋅ 𝑄 = (𝑍(𝑄), 𝑋(𝑄)). Then 𝑚�̃� = (1, 0) if 𝑚 is odd, and
(0, 1) if 𝑚 is even. But in the odd case, for the monodromy we need to act by −𝑚�̃� =
(1, 0), so −𝑚�̃� ⋅ 𝑚�̃� = ̃0. By Corollary 4.13, ̃𝑚𝑃 + 𝑄 = 𝑄 if 𝑚 is even, and is equal
to ̃𝑃 + 𝑄 if 𝑚 is odd. In both cases −𝑚�̃� ⋅ ̃𝑚𝑃 + 𝑄 is equal to 𝑄. So the monodromy
is trivial in this case. Since the divisor is 2(0𝐸), this monodromy gives the square of the
Tate pairing 𝑒𝑇,2(𝑃, 𝑄), which is indeed trivial since 𝑃 is of 2-torsion. By Remark 2.11,
if we want to recover 𝑒𝑇,2(𝑃, 𝑄), we need to correct the monodromy information by the

coordinates ( 𝑍(𝑃+𝑄)
𝑍(�̃�)𝑍(𝑄)

)
𝑚

= (𝑋(𝑄)/𝑍(𝑄))𝑚 = 𝑥(𝑄)𝑚. We indeed have 𝐟2𝑚,𝑃((𝑄) −
(0)) = 𝐟2,𝑃((𝑄) − (0))𝑚 = (𝑥(𝑄) − 𝑥(𝑃))𝑚 = 𝑥(𝑄)𝑚.

Now for the case 𝑄 = 𝑇; we take 𝑄 = (1, 0), and ̃𝑃 + 𝑄 = 𝑄 ⋅ �̃� = (𝑍(𝑃), 𝑋(𝑃)).
We compute 𝑚�̃� and ̃𝑚𝑃 + 𝑄, then we act by −̃𝑚𝑃 which we can take to be equal to
−𝑚�̃�. By Corollary 4.13, ̃𝑚𝑃 + 𝑄 = 𝑄 ⋅ 𝑚𝑃. If 𝑔𝑄, 𝑔−𝑚𝑃 are the theta group elements
encoded by 𝑄, −𝑚�̃�, it follows that the monodromy information we get is precisely the
commutator pairing between 𝑔𝑄, 𝑔−𝑚𝑃, hence by Example 2.1 is equal to 𝑒𝑊,2(−𝑚𝑃, 𝑄).
In particular, for the Weil pairing 𝑒𝑊,2𝑚(𝑃, 𝑄) = 𝑒𝑊,2(𝑚𝑃, 𝑄), since the monodromy
information on the preceding paragraph was trivial, it follows that the monodromy we
compute with respect of both 𝑃, 𝑄 do give the Weil pairing. For the Tate pairing however, the

monodromy is not enough, and we need to correct by the cubical function ( 𝑍(𝑃+𝑄)
𝑍(�̃�)𝑍(𝑄)

)
𝑚

=
(𝑋(𝑃)/𝑍(𝑃))𝑚 = 𝑥(𝑃)𝑚.The end result we obtain for the Tate pairing via cubical arithmetic
is 𝑒𝑇,2𝑚(𝑃, 𝑄) = 𝑥(𝑃)𝑚𝑒𝑊,2(𝑚𝑃, 𝑄). Comparing with the usual formula, we indeed have
𝑒𝑇,2𝑚(𝑃, 𝑄) = 𝐟2𝑚,𝑃((𝑄)−(0)) = 𝑒𝑊,2𝑚(𝑃, 𝑄)𝐟2𝑚,𝑄((𝑃)−(0)) = 𝑒𝑊,2(𝑚𝑃, 𝑄)𝑥(𝑃)𝑚.

We obtain the following complexity, which complements Theorem 5.1, for pairings in the
Montgomery model of Kummer lines:
Theorem5.4. Given the Kummer lineMontgomery coordinates (𝑋(𝑃) ∶ 𝑍(𝑃)) of𝑃,𝑄,𝑃+𝑄,
first do a batch inversion to compute 𝑥(𝑃) = 𝑋(𝑃)/𝑍(𝑃), 𝑥(𝑄), 𝑥(𝑃 + 𝑄) and their inverses,
and also compute 𝒜+2

4 . Take for cubical points ̃0 = (1, 0), �̃� = (𝑥(𝑃), 1), 𝑄 = (𝑥(𝑄), 1),
̃𝑃 + 𝑄 = (𝑥(𝑃 + 𝑄), 1).
Then during the cubical biextension ladder, each affine doubling costs 2𝑀 + 2𝑆 + 1𝑚0 and

each affine differential addition costs 3𝑀 + 2𝑆.
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Input: 𝑃1 = (𝑋(𝑃1) ∶ 𝑍(𝑃1)), 𝑃2 = (𝑋(𝑃2) ∶ 𝑍(𝑃2), 𝑃1 + 𝑄 = (𝑋(𝑃1 + 𝑄) ∶ 𝑍(𝑃1 +
𝑄)), 𝑃2 + 𝑄 = (𝑋(𝑃2 + 𝑄) ∶ 𝑍(𝑃2 + 𝑄))

Output: 𝑃1 + 𝑃2 = (𝑋(𝑃1 + 𝑃2) ∶ 𝑍(𝑃1 + 𝑃2)
.

: 𝜅00 = (𝑋(𝑃1)𝑋(𝑃2) − 𝑍(𝑃1)𝑍(𝑃2))2

: 𝜅11 = (𝑋(𝑃1)𝑍(𝑃2) − 𝑋(𝑃2)𝑍(𝑃1)2

: 𝜅01 = 2((𝑋(𝑃1)𝑋(𝑃2) + 𝑍(𝑃1)𝑍(𝑃2))(𝑋(𝑃1)𝑍(𝑃2) + 𝑋(𝑃2)𝑍(𝑃1)) +
2𝒜𝑋(𝑃1)𝑋(𝑃2)𝑍(𝑃1)𝑍(𝑃2))

: 𝜅′
00 = (𝑋(𝑃1 + 𝑄)𝑋(𝑃2 + 𝑄) − 𝑍(𝑃1 + 𝑄)𝑍(𝑃2 + 𝑄))2

: 𝜅′
11 = (𝑋(𝑃1 + 𝑄)𝑍(𝑃2 + 𝑄) − 𝑋(𝑃2 + 𝑄)𝑍(𝑃1 + 𝑄)2

: 𝜅′
01 = 2((𝑋(𝑃1 + 𝑄)𝑋(𝑃2 + 𝑄) + 𝑍(𝑃1 + 𝑄)𝑍(𝑃2 + 𝑄))(𝑋(𝑃1 = 𝑄)𝑍(𝑃2 + 𝑄) +

𝑋(𝑃2 + 𝑄)𝑍(𝑃1 + 𝑄)) + 2𝒜𝑋(𝑃1 + 𝑄)𝑋(𝑃2 + 𝑄)𝑍(𝑃1 + 𝑄)𝑍(𝑃2 + 𝑄))
: 𝑋(𝑃1 − 𝑃2) = 𝜅′

01𝜅00 − 𝜅01𝜅′
00

: 𝑍(𝑃1 − 𝑃2) = 𝜅′
11𝜅00 − 𝜅11𝜅′

00
: 𝑋(𝑃1 + 𝑃2) = 𝜅00

𝑋(𝑃1−𝑃2)
: 𝑍(𝑃1 + 𝑃2) = 𝜅11

𝑍(𝑃1−𝑃2)

Algorithm 5.7. Compatible additions in the Montgomery model

Theorem 1.1 follows from Theorems 5.1 and 5.4.

5.2.2. Double and add biextension algorithm for the Montgomery model. For the double and
add algorithm, we need to give the formulas for the compatible addition. Using the notations
of Section 4.9.4, we have

𝜅00 = (𝑋(𝑃1)𝑋(𝑃2) − 𝑍(𝑃1)𝑍(𝑃2))2,

𝜅11 = (𝑋(𝑃1)𝑍(𝑃1) − 𝑍(𝑃1)𝑋(𝑃2)),
by the differential addition formulas from above. Lastly,

𝜅01 = 2((𝑋(𝑃1)𝑋(𝑃2)+𝑍(𝑃1)𝑍(𝑃2))(𝑋(𝑃1)𝑍(𝑃2)+𝑋(𝑃2)𝑍(𝑃1))+2𝒜𝑋(𝑃1)𝑋(𝑃2)𝑍(𝑃1)𝑍(𝑃2))

by homogenisation of [BDLS20, Example 4.4].
For the three way addition, Section 4.9.4 already gives the formula for 𝑍. We can obtain

𝑋( ̃𝑃1 + 𝑃2 + 𝑄) from the formula for 𝑍 simply by replacing 𝑄 by 𝑄 + 𝑇:

𝑋( ̃𝑃1 + 𝑃2 + 𝑄) =
(𝑋(𝑃2)𝑋( ̃𝑃1 + 𝑄) − 𝑍( ̃𝑃1 + 𝑄)𝑍(𝑃2))(𝑋(𝑃1)𝑋( ̃𝑃2 + 𝑄) − 𝑍( ̃𝑃2 + 𝑄)𝑍(𝑃1))

(𝑋( ̃𝑃1 − 𝑃2)𝑋(𝑄) − 𝑍( ̃𝑃1 − 𝑃2)𝑍(𝑄))
.

Algorithms 5.7 and 5.8 give the algorithms for the compatible addition and the three way
cubical addition in the Montgomery model respectively.

We can combine Algorithms 5.7 and 5.8 to compute the addition step of Algorithm 4.7.
We compute 𝑃1 + 𝑃2 by a compatible addition, then take an arbitrary lift ̃𝑃1 + 𝑃2 and then
apply the three way addition to obtain ̃𝑃1 + 𝑃2 + 𝑄. We remark that in Algorithm 5.8, we
already have ̃𝑃1 − 𝑃2 from Algorithm 5.4. Furthermore, while we describe these algorithms
with divisions for simplicity, we can use Lemma 4.15 to remove all divisions: we can multiply

̃𝑃1 + 𝑃2, ̃𝑃1 + 𝑃2 + 𝑄 by the same projective factor 𝜆 and still get the same biextension
element 𝑔𝑃1+𝑃2,𝑄.
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Input: �̃�1 = (𝑋(𝑃1), 𝑍(𝑃1)), �̃�2 = (𝑋(𝑃2), 𝑍(𝑃2), ̃𝑃1 + 𝑄 = (𝑋(𝑃1 + 𝑄), 𝑍(𝑃1 + 𝑄)),
̃𝑃2 + 𝑄 = (𝑋(𝑃2 + 𝑄) ∶ 𝑍(𝑃2 + 𝑄)), ̃𝑃1 + 𝑃2 = (𝑋(𝑃1 + 𝑃2), 𝑍(𝑃1 + 𝑃2))

Output: ̃𝑃1 + 𝑃2 + 𝑄 = (𝑋(𝑃1 + 𝑃2 + 𝑄), 𝑍(𝑃1 + 𝑃2 + 𝑄)) =
ThreeWayAdd(�̃�1, �̃�2, 𝑄, ̃𝑃1 + 𝑄, ̃𝑃2 + 𝑄, ̃𝑃1 + 𝑃2)

.
: Compute (𝑋( ̃𝑃1 − 𝑃2), 𝑍( ̃𝑃1 − 𝑃2)) = DiffAdd(�̃�1, �̃�2, ̃𝑃1 + 𝑃2)
: 𝑋( ̃𝑃1 + 𝑃2 + 𝑄) = (𝑋(𝑃2)𝑋(𝑃1+𝑄)−𝑍(𝑃1+𝑄)𝑍(𝑃2))(𝑋(𝑃1)𝑋(𝑃2+𝑄)−𝑍(𝑃2+𝑄)𝑍(𝑃1))

𝑋(𝑃1−𝑃2)𝑋(𝑄)−𝑍(𝑃1−𝑃2)𝑍(𝑄)

: 𝑍( ̃𝑃1 + 𝑃2 + 𝑄) = (𝑋(𝑃2)𝑍(𝑃1+𝑄)−𝑋(𝑃1+𝑄)𝑍(𝑃2))(𝑋(𝑃1)𝑍(𝑃2+𝑄)−𝑋(𝑃2+𝑄)𝑍(𝑃1))
𝑋(𝑃1−𝑃2)𝑋(𝑄)−𝑍(𝑃1−𝑃2)𝑍(𝑄)

Algorithm 5.8. Three way cubical additions in the Montgomery model

In practice, thismeans thewe compute the numerators𝑛 anddenominators 𝑑 of𝑋( ̃𝑃1 + 𝑃2 + 𝑄)
and 𝑍( ̃𝑃1 + 𝑃2 + 𝑄) separately, and use the formulas

𝑋(𝑃1 + 𝑃2) = 𝜅00𝑍(𝑃1 − 𝑃2)𝑑(𝑋(𝑃1 + 𝑃2 + 𝑄))𝑑(𝑍(𝑃1 + 𝑃2 + 𝑄)),
𝑍(𝑃1 + 𝑃2) = 𝜅11𝑋(𝑃1 − 𝑃2)𝑑(𝑋(𝑃1 + 𝑃2 + 𝑄))𝑑(𝑍(𝑃1 + 𝑃2 + 𝑄)),

𝑋(𝑃1 + 𝑃2 + 𝑄) = 𝑛(𝑋(𝑃1 + 𝑃2 + 𝑄)𝑑(𝑍(𝑃1 + 𝑃2 + 𝑄))𝑋(𝑃1 − 𝑃2)𝑍(𝑃1 − 𝑃2),
𝑍(𝑃1 + 𝑃2 + 𝑄) = 𝑛(𝑍(𝑃1 + 𝑃2 + 𝑄)𝑑(𝑋(𝑃1 + 𝑃2 + 𝑄))𝑋(𝑃1 − 𝑃2)𝑍(𝑃1 − 𝑃2).

We could use a similar strategy to compute a biextension double 2�̃�, ̃2𝑃 + 𝑄, but it is
faster to use a cubical double and differential addition for this case, as explained in Section 4.7.

These algorithms combined give us the 32𝑀 + 4𝑆 + 2𝑚0 count for an addition. There is
probably room for improvement for these formulas by rearranging the arithmetic operations.
Also it could potentially be faster to do a compatible addition to compute 𝑃1 + 𝑃2 + 𝑄
projectively rather than 𝑃1 − 𝑃2, and then using cubical arithmetic to get ̃𝑃1 + 𝑃2 from a
choice of ̃𝑃1 + 𝑃2 + 𝑄.

We refer to the implementation in [Rob23b] for a variant which combines a double and
addition into a DoubleAndAdd, which costs 17𝑀 + 8𝑆 + 3𝑚0 (so strangely, is faster than
just an addition, but this is probably an artefact of the fact that the addition is not at all
optimised).

5.2.3. Results. Giacomo Pope kindly implemented our algorithm in Rust. Section 5.2.3 give
some timings on a Intel Core i5-1335U, with turboboost disabled, on a supersingular curve
𝐸 over 𝔽𝑝2 with 𝑝 = 2604 ⋅ 3363 − 1 and 𝑝 = 274 ⋅ 341 − 1 respectively.

2604 3363 2604 ⋅ 3363 274 341 274 ⋅ 341

Tate pairing 26.6 ms 34.7 ms 57.9 ms 80.6 μs 100.8 μs 166.4 μs
Weil pairing 35.2 ms 50.9 ms 103.84 ms 112.8 μs 149.7 μs 300.9 μs

One nice advantage of Theorem 1.1 is that the cubical ladder, since it is derived from the
Montgomery ladder, is naturally constant time. Constant time constraints are different for
pairings than for standard elliptic curve cryptography: in elliptic curve cryptography the
scalar is secret, while the base point may or may not be public. For pairings, the scalar is
usually public, but the paired points may be secret. The pairing arithmetic such need to not
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depend on the paired point. By Remark 5.3, this is naturally the case for the cubical ladder in
the Montgomery model, except for a few exceptions (which do not happen when ℓ is odd).

Compared to a previous constant time implementation using Miller’s algorithm, our new
algorithm is between 2.5× to 3× faster over 𝔽𝑝2 for 𝑝 = 274 ⋅ 341 − 1.

A last advantage of Theorem 1.1 is that in isogeny based cryptography, we often represent
a basis (𝑃1, 𝑃2) of 𝑁-torsion by 𝑥(𝑃1), 𝑥(𝑃2), 𝑥(𝑃1 + 𝑃2) (or via their (𝑋 ∶ 𝑍) projective
coordinates). Indeed, it usually does not matter if we compute an isogeny 𝜙 or its opposite
−𝜙, so it is harmless to replace the basis (𝑃1, 𝑃2) by (−𝑃1, −𝑃2), hence represent it by
𝑥(𝑃1), 𝑥(𝑃2), 𝑥(𝑃1 + 𝑃2). Since Theorem 1.1 naturally take such a data as input, it allows
to compute the pairing 𝑒(𝑃1, 𝑃2) without the need of taking a square root first.

5.3. The theta model. Explicit formulas in the level 2 theta model (in any dimension) are
given in [LR16]. Although it was not stated in this form there, the formulas compute the
correct cubical arithmetic.

In the theta model, a cubical differential addition (with the base point normalised) costs
2𝑆 + 3𝑀, and a doubling costs 3𝑆 + 1𝑀 + 2𝑚0. Since the cubical biextension ladder uses
one doubling and two differential additions by bits, the total cost is 7𝑆 + 7𝑀 + 2𝑚0.

There is a variant which costs 2𝑆 + 3𝑀 + 1𝑚0 for a differential addition, and 4𝑆 + 2𝑚0
for a doubling; using this variant the cubical biextension ladder than costs 8𝑆 + 6𝑀 + 4𝑚0
by bits.

5.4. Short Weierstrass curves. On a short Weierstrass curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏„ 𝑥-only
doublings and differential additions formulas are given by:

𝑥(𝑃+𝑄)𝑥(𝑃−𝑄) =
−4𝑏(𝑥(𝑃) + 𝑥(𝑄)) + (𝑥(𝑃)𝑥(𝑄) − 𝑎)2

(𝑥(𝑃) − 𝑥(𝑄))2 =
−4𝑏𝑍(𝑃)𝑍(𝑄)(𝑋(𝑃)𝑍(𝑄) + 𝑋(𝑄)𝑍(𝑃)) + (𝑋(𝑃)𝑋(𝑄) − 𝑎𝑍(𝑃)𝑍(𝑄))2

(𝑋(𝑃)𝑍(𝑄) − 𝑋(𝑄)𝑍(𝑃))2 ,

𝑥(2𝑃) =
(𝑥(𝑃)2 − 𝑎)2 − 8𝑏𝑥(𝑃)
4(𝑥(𝑃)3 + 𝑎𝑥(𝑃) + 𝑏

=
(𝑋(𝑃)2 − 𝑎𝑍(𝑃))2 − 8𝑏𝑋(𝑃)𝑍(𝑃)3

4𝑍(𝑃)(𝑋(𝑃)3 + 𝑎𝑋(𝑃)𝑍(𝑃)2 + 𝑏𝑍(𝑃)3).
Exactly as for Montgomery curves the denominators are precisely the ones coming from the
cubical arithmetic:

𝑍( ̃𝑃 + 𝑄)𝑍( ̃𝑃 − 𝑄) = (𝑋(𝑄)𝑍(�̃�) − 𝑋(�̃�)𝑍(𝑄))
2

,

𝑍(2�̃�) = 4(𝑋(�̃�)3𝑍(�̃�) + 𝑎𝑋(�̃�)𝑍(�̃�)3 + 𝑏𝑍(�̃�)4).
This means that the standard ladder [BJ02] on short Weierstrass curves already compute

the correct cubical arithmetic (modulo the fact that, in the ladder, we need to divide the 𝑋
coordinate by 𝑥(𝑃0) where 𝑃0 = (𝑥(𝑃0), 1) is the base point, rather than multiplying the 𝑍
coordinate by 𝑥(𝑃0), in order to keep track of the correct cubical factor).

Thus a cubical doubling costs 3𝑀+4𝑆+2𝑚0 and a cubical differential addition costs 6𝑀+
2𝑆+2𝑚0, so a cubical biextension ladder costs a quite expensive 15𝑀+8𝑆+6𝑚0 by bits.This
allows to compute pairings on short Weierstrass curves knowing only 𝑥(𝑃), 𝑥(𝑄), 𝑥(𝑃 + 𝑄).

We leave for future work improving these formulas. Maybe keeping track of the 𝑌 coor-
dinate could help. An alternative approach would be to use a Montgomery ladder in co-Z
coordinates [Mel07; GJMRV11; Ham20], since these gives faster formula. But we would need
to extend this co-Z approach to a 3 point ladder (i.e., a ladder computing ℓ𝑃, ℓ𝑃 + 𝑄), and
we would still need to track the correct cubical factor for each point somehow (scaling to the
same co-Z coordinates on 𝑚𝑃, (𝑚 + 1)𝑃, (𝑚 + 1)𝑃 + 𝑄 kills the cubical information if we
do not keep it somewhere else).
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6. Applications

We discuss various applications of the cubical arithmetic. In Section 6.1 we look at pairing
based cryptography and how the cubical arithmetic on Montgomery models from Section 5
compares with the usual Miller’s algorithm. We also derive new (to my knowledge), more
or less interesting, formulas for the standard Miller algorithm by using the cubical point of
view.

In Section 6.2, we brieflymention some applications of cubical arithmetic beyond pairings,
notably on isogenies and radical isogenies.

In Section 6.3, we reinterpret, using cubical arithmetic, Doliskani’s supersingularity test
(see [Dol18; BGS22]) as a self Tate pairing test.

Finally, our most important application is probably Section 6.4 where we use cubical
arithmetic to obtain a new powerful side channel attack against the Montgomery ladder
for Montgomery curves. Namely, one projective coordinate leak in the Montgomery ladder
allows to solve the elliptic curve dlp by reduction to the base field dlp.

Each of these applications would deserve an article on its own2. We won’t detail these
applications much in this paper, because it is quite long already.

6.1. Pairing based cryptography.

6.1.1. Comparison with Miller’s algorithm for pairing based cryptography. For pairing based
cryptography on elliptic curves, with embedding degree 𝑑 > 1, it is convenient to use the Tate
pairing with 𝑃 ∈ 𝔾1 ⊂ 𝐸(𝔽𝑞), 𝑄 ∈ 𝔾2 ⊂ 𝐸(𝔽𝑞𝑑), and 𝑑 even to allow for denominator
elimination. We recall that 𝑄 ∈ 𝔾2 if and only if 𝜋𝑞(𝑄) = 𝑞𝑄.

Counting only operations involving the big field 𝔽𝑞𝑑 , Miller’s algorithm, with denominator
elimination, costs 1𝑀 + 1𝑆 + 1𝑚 by doubling, and 1𝑀 + 1𝑚 by addition. Here 1𝑚 denotes a
“mixed multiplication”, meaning a multiplication between a coefficient in 𝔽𝑞 and a coefficient
in 𝔽𝑞𝑑 .

When denominator elimination is not possible (because 𝑑 is odd or 𝑄 is not in 𝔾2), the
cost becomes 2𝑀 + 2𝑆 + 1𝑚 by doubling, and 2𝑀 + 1𝑚 by addition. (In practice, working
with projective coordinates for 𝑃, the number of mixed multiplications 𝑚 is a bit higher, see
Section 6.1.2.) On the other hand, when 𝑑 is odd, there are variants of Miller’s algorithm
in the literature (notably [BELL10]) which we will discuss in Section 6.1.2, which achieve
2𝑆 + 1𝑀 + 3𝑚 for a doubling and 1𝑀 + 2.5𝑚 for an addition.

Using our arithmetic of biextension on Kummer lines in the Montgomery model, only
counting the operations on the big field, we have 2𝑆 + 1𝑀 + 2𝑚 by bit for the cubical
biextension ladder. This is better than Miller’s algorithm (even the improved variant), except
when denominator elimination is available.

Our main difficulty is that it is not clear how to do an efficient denominator elimination in
cubical arithmetic when the embedding degree is even. If 𝑑 is even and 𝑄 ∈ 𝔾2, then 𝑥(𝑄)
lies in a strict subfield of 𝔽𝑞𝑑 . This allows to do denominator elimination, i.e. not compute the
denominator of the Miller functions 𝜇𝑢𝑃,𝑣𝑃 evaluated at 𝑄, since this evaluated denominator
is 𝑥(𝑄) − 𝑥((𝑢 + 𝑣)𝑃) is in a strict subfield, hence killed by the final exponentiation.

InTheorem 1.1, for 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2 and 𝑑 even, then while 𝑥(𝑃), 𝑥(𝑄) lies in a subfield,
we also need to use 𝑥(𝑃 + 𝑄) which does not. This means that for the cubical biextension

2Which I cannot promise I will ever write someday; I already made such promises in previous papers and so
far I have a bad track record on keeping these…The only exception will hopefully be the monodromy leak attack,
because several people have encouraged me to publish it in its own paper, rather than to hide it at the end of a
paper about biextensions.
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ladder, the cost is 2𝑆 + 1𝑀 + 2𝑚 when the current bit is 1 and the difference point is 𝑃 + 𝑄,
and 2𝑆 + 1𝑀′ + 2𝑚 when the current bit is 0 and the difference point is 𝑄, where 𝑀′ means
that we multiply by a coordinate in 𝔽𝑝𝑑/2. So even embedding degree 𝑑 still helps for the
cubical ladder.

Another way it helps, which is well known, is that an inverse in 𝔽𝑞𝑑 can be written
1/𝑥 = 𝑥/(𝑥𝑥) where 𝑥 is the quadratic Galois conjugate of 𝑥 and in particular 𝑥𝑥 ∈ 𝔽𝑞𝑑/2.
In situations where 𝑥𝑥 will be killed by the final exponentiation, this allows to use 𝑥 instead
of 1/𝑥, hence replace a division by (one or several) multiplications.

It could be interesting to work out formulas where we represent ̃𝑚𝑃 + 𝑄 using only
𝑍( ̃𝑚𝑃 + 𝑄) rather than via (𝑋( ̃𝑚𝑃 + 𝑄), 𝑍( ̃𝑚𝑃 + 𝑄)).

On the other hand, for the Ate or optimal Ate pairing, since the computation is done with
𝑃 ∈ 𝔾2 and 𝑄 ∈ 𝔾1, it is plausible that the cubical arithmetic could be faster than the
usual Miller’s algorithm, since the overall number of operations for a generic pairing is much
smaller.

6.1.2. Cubical arithmetic and new formulas for Miller’s algorithm. In this section, rather than
comparing Miller’s algorithm with the cubical arithmetic on Kummer lines, we will compare
Miller’s algorithm with the cubical arithmetic on elliptic curves, where we represent �̃� by
using the level 3 projective Weierstrass coordinates 𝑃 = (𝑋(𝑃) ∶ 𝑌(𝑃) ∶ 𝑍(𝑃)) along with
the level 1 affine cubical coordinate 𝑍1(�̃�).

To simplify, we will consider the case of the Tate pairing 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2. In Miller’s
algorithm, we compute 𝑓ℓ,𝑃((𝑄) − (0)). In the cubical arithmetic, we compute ℓ�̃�, ̃ℓ𝑃 + 𝑄.
The relationship between the two approaches is given by Porism 4.25. In particular, assuming
we fix �̃�, 𝑄, ̃𝑃 + 𝑄 so that 𝑍1(�̃�) = 𝑍1(𝑄) = 𝑍1( ̃𝑃 + 𝑄) = 1, under our assumptions on
𝑃, 𝑄, we have that 𝑍1( ̃ℓ𝑃 + 𝑄) is equal to 𝑓ℓ,𝑃((𝑄) − (0)) up to a factor lying in the small
field 𝔽𝑞, which will be killed by the final exponentiation.

Now we already saw in Remark 3.16 that the biextension arithmetic provided new insight
on how to compute 𝑓ℓ,𝑃 via the functions 𝜇𝑢𝑃,𝑣𝑃. We will now derive new formulas using
the cubical arithmetic.

Let’s start by formulas to compute 𝑍1( ̃ℓ𝑃 + 𝑄), using Section 4.9.3. We have the doubling
formula

𝑍1(2̃𝑚𝑃) = 2𝑦(𝑚𝑃)2𝑍4
1(𝑚𝑃)

and the differential addition formulas

𝑍1( ̃(2𝑚 + 1)𝑃)𝑍1(�̃�) = 𝑍1( ̃(𝑚 + 1)𝑃)2𝑍1(𝑚𝑃)2(𝑥(𝑚𝑃) − 𝑥((𝑚 + 1)𝑃)),
𝑍1( ̃2𝑚𝑃 + 𝑄)𝑍1(𝑄) = 𝑍1( ̃𝑚𝑃 + 𝑄)2𝑍1(𝑚𝑃)2(𝑥(𝑚𝑃) − 𝑥(𝑚𝑃 + 𝑄)),

𝑍1( ̃(2𝑚 + 1)𝑃 + 𝑄)𝑍1( ̃𝑃 + 𝑄) = 𝑍1( ̃(𝑚 + 1)𝑃 + 𝑄)2𝑍1(𝑚𝑃)2(𝑥(𝑚𝑃) − 𝑥((𝑚 + 1)𝑃 + 𝑄)).

This allows to compute ̃ℓ𝑃 + 𝑄 via a cubical ladder using the points𝑚𝑃, ̃(𝑚 + 1)𝑃, ̃(𝑚 + 1)𝑃 + 𝑄.
(Note the similarity with Remark 3.16).

We could also use a double and add algorithm, using

𝑍1( ̃2𝑚𝑃 + 𝑄)𝑍1(𝑄) = 𝑍1( ̃𝑚𝑃 + 𝑄)2𝑍1(𝑚𝑃)2(𝑥(𝑚𝑃) − 𝑥(𝑚𝑃 + 𝑄))

for doublings, and the three way addition

𝑍1( ̃𝑃 + 𝑚𝑃 + 𝑄) =
𝑍1( ̃𝑃 + 𝑚𝑃)𝑍1( ̃𝑚𝑃 + 𝑄)𝑍1( ̃𝑃 + 𝑄)

𝑍1(�̃�)𝑍1(𝑚𝑃)𝑍1(𝑄)
𝑙𝑚𝑃,𝑃(𝑄)

(𝑥(𝑄) − 𝑥(𝑚𝑃))(𝑥(𝑄) − 𝑥(𝑃)) ,
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for an addition. We could also compute the doubling using the following three way addition:

𝑍1( ̃𝑚𝑃 + 𝑚𝑃 + 𝑄) =
𝑍1( ̃𝑚𝑃 + 𝑚𝑃)𝑍1( ̃𝑚𝑃 + 𝑄)2

𝑍1(𝑚𝑃)2𝑍1(𝑄)
𝑙𝑚𝑃,𝑚𝑃(𝑄)

(𝑥(𝑄) − 𝑥(𝑚𝑃))2)
.

I implemented both methods and the pairing is computed correctly, but these formulas
seem a priori no faster than Miller’s standard algorithm.

However, the following approach seems the most promising: use a double and add algo-
rithm, using

𝑍1( ̃2𝑚𝑃 + 𝑄)𝑍1(𝑄) = 𝑍1( ̃𝑚𝑃 + 𝑄)2𝑍1(𝑚𝑃)2(𝑥(𝑚𝑃) − 𝑥(𝑚𝑃 + 𝑄))

as before for doublings, and

𝑍1( ̃(2𝑚 + 1)𝑃 + 𝑄)𝑍1( ̃𝑃 + 𝑄) = 𝑍1( ̃(𝑚 + 1)𝑃 + 𝑄)2𝑍1(𝑚𝑃)2(𝑥(𝑚𝑃)−𝑥((𝑚+1)𝑃+𝑄))

for a doubling and addition.
Now we remark that the function 𝑄 ↦ 𝑥(𝑚𝑃) − 𝑥(𝑚𝑃 + 𝑄) has for divisor (0𝐸) +

(−2𝑚𝑃)−2(−𝑚𝑃) so is equal to a biextension function 𝑔𝑚𝑃,𝑚𝑃(𝑄). In particular, (𝑥(𝑚𝑃)−
𝑥((𝑚 + 1)𝑃 + 𝑄)) is given by 𝑔𝑚𝑃,𝑚𝑃(𝑃 + 𝑄).

This gives the following alternative strategy to compute the (normalised) Miller function
𝑓ℓ,𝑃(𝑄). Usually we use 𝑓𝑢+𝑣,𝑃(𝑄) = 𝑓𝑢,𝑃(𝑄)𝑓𝑣,𝑃(𝑄)𝜇𝑢𝑃,𝑣𝑃(𝑄) with 𝜇𝑢𝑃,𝑣𝑃 the normalised
function with divisor 𝐷𝑢𝑃+𝑣𝑃 − 𝐷𝑢𝑃 + 𝐷𝑣𝑃. In particular, the above formula gives the same
Miller doubling: 𝑓2𝑢,𝑃(𝑄) = 𝑓𝑢,𝑃(𝑄)2𝜇𝑢𝑃,𝑢𝑃(𝑄). But we also have the following Miller
DoubleAndAdd: 𝑓2𝑢+1,𝑃(𝑄) = 𝐶𝑓𝑢+1,𝑃(𝑄)2𝜇𝑢𝑃,𝑢𝑃(𝑃 + 𝑄). Here the constant 𝐶 refers to
the fact that the function 𝑄 ↦ 𝜇𝑢𝑃,𝑢𝑃(𝑃 + 𝑄) is no longer normalised; however under our
assumptions that 𝑃 ∈ 𝔾1, 𝐶 is in a strict subfield so will be killed by the final exponentiation.
Of course, this formula can be proved directly without going through the cubical arithmetic:
the left hand side has divisor 𝐷(2𝑢+1)𝑃 − (2𝑢 + 1)𝐷𝑃 while the right hand side has divisor
2𝐷(𝑢+1)𝑃 − 2(𝑢 + 1)𝐷𝑃 + 𝑡∗

𝑃(𝐷2𝑢𝑃 − 2𝐷𝑢𝑃) = 2𝐷(𝑢+1)𝑃 − 2(𝑢 + 1)𝐷𝑃 + 𝐷(2𝑢+1)𝑃 −
2𝐷(𝑢+1)𝑃 + 𝐷𝑃 = 𝐷(2𝑢+1)𝑃 − (2𝑢 + 1)𝐷𝑃.

Using the standard sign conventions, the latter formulas reads:

𝐟2𝑢+1,𝑃(𝑄) = 𝐶𝐟𝑢+1,𝑃(𝑄)2𝝁𝑢𝑃,𝑢𝑃(𝑄 − 𝑃).

This gives the following double and DoubleAndAdd algorithm: at each step we compute 𝑚𝑃
or (𝑚 + 1)𝑃 along with 𝐟𝑚+1,𝑃(𝑄) up to some factor in a subfield.

We use either: 𝐟2𝑚+1,𝑃(𝑄) = 𝐶1𝐟𝑚+1,𝑃(𝑄)2𝝁𝑚𝑃,𝑚𝑃(𝑄 − 𝑃) (in which case we need to
compute𝑚𝑃 if we had (𝑚+1)𝑃, andwe also compute 2𝑚𝑃) or 𝐟2𝑚+2,𝑃(𝑄) = 𝐶2𝐟𝑚+1,𝑃(𝑄)2𝝁(𝑚+1)𝑃,(𝑚+1)𝑃(𝑄)
(in which case we need to compute (𝑚+1)𝑃 if we had 𝑚𝑃, and we also compute 2(𝑚+1)𝑃).
This makes a DoubleAndAdd very similar to a simple doubling.

We compute in this way 𝐟ℓ,𝑃(𝑄) (or 𝐟ℓ+1,𝑃(𝑄) if we prefer). As far as I know, this Dou-
bleAndAdd method is new. We refer to [Rob23b] for the implementation.

Let us compare this strategy with known optimisation of Miller’s algorithm. In [BELL10],
they use the formula 𝐟𝑢+𝑣,𝑃(𝑄) = 1

𝐟−𝑢,𝑃(𝑄)𝐟−𝑣,𝑃(𝑄)𝑙−𝑢𝑃,−𝑣𝑃(𝑄) Compared to the usual formula
which involves 𝜇𝑢𝑃,𝑣𝑃(𝑄) = 𝑙𝑢𝑃,𝑣𝑃(𝑄)/𝑣𝑢𝑃+𝑣𝑃(𝑄), where 𝑣𝑢𝑃+𝑣𝑃 = 𝑙𝑢𝑃+𝑣𝑃,−𝑢𝑃−𝑣𝑃, this
saves the denominator 𝑣𝑢𝑃+𝑣𝑃(𝑄) of 𝜇𝑢𝑃,𝑣𝑃.

In [DZZZ22] the authors introduce functions with divisors ℓ(𝑃) + (−ℓ𝑃) − (ℓ + 1)(0)
which give a streamlined double and add formula. We remark that such a function is given
by 𝐟−ℓ,𝑃, so [DZZZ22] is subsumed by the formula above from [BELL10].
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Under the assumption 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2 and counting only operations in the big field,
[BELL10] have a complexity (for 𝑑 odd) of 2𝑆 + 1𝑀 + 3𝑚 for a doubling (compared to
2𝑆 + 2𝑀 + 5𝑚 for the classical Miller formula), and 1𝑀 + 2.5𝑚 for an addition (compared
to 2𝑀 + 5𝑚 for the classical Miller formula); so a DoubleAndAdd costs 2𝑀 + 2𝑆 + 5.5𝑚
(compared to 4𝑀 + 2𝑆 + 10𝑚). When 𝑑 is even, they have the same complexity (in the big
field) as the usual Miller’s formula of 1𝑀 + 1𝑆 + 1𝑚 for a doubling and 1𝑀 + 1𝑚 for an
addition; so a DoubleAndAdd costs 2𝑀 + 1𝑆 + 2𝑚. (We assume here that multiplying an
element in 𝔽𝑝 with an element of 𝔽𝑝𝑑/2 is half the cost of a multiplication of an element in
𝔽𝑝 with an element in 𝔽𝑝𝑑 .)

Our new DoubleAndAdd method cost 2𝑆 + 2𝑀 + 5𝑚 both for a doubling and a Dou-
bleAndAdd. When 𝑑 is even, we have the same difficulty as in Section 6.1.1 that 𝑥(𝑃 + 𝑄)
does not lies in a subfield. If 𝔽𝑝𝑑 = 𝔽𝑝𝑑/2[𝑖] with 𝑖2 = 𝑐, we can use that 1/(𝑥 + 𝑖𝑦) =
(𝑥 − 𝑖𝑦)/(𝑥2 − 𝑑𝑦2) where 𝑥, 𝑦 ∈ 𝔽𝑝𝑑/2 and since 𝑥2 − 𝑑𝑦2 is in a strict subfield, this allows
to replace divisions bymultiplications.The cost becomes 2𝑀+1𝑆+3𝑚 for a DoubleAndAdd
which involves 𝑥(𝑃 + 𝑄) and 1𝑀 + 1𝑆 + 1𝑚 for a doubling which involves 𝑥(𝑄) which
is in a subfield. So for 𝑑 odd, the DoubleAndAdd method is better than the usual Miller’s
formula but not better than [BELL10], and for 𝑑 even roughly similar to [BELL10].

However we can combine the DoubleAndAdd variant with the following line folding trick
(see [LL11, Lemma 3.2] and the references):

𝑙𝑇,𝑇(𝑄)
𝑣2

𝑡 (𝑄)𝑣2𝑇(𝑄)
= 1

𝑙−𝑇,−𝑇(𝑄) . This allows to delay a
vertical line evaluation and fold it in a standard line evaluation. With the DoubleAndAdd
algorithm, since we change the evaluated point according to whether the current bit is 0 or
1, we can only apply this line folding trick for consecutive 0s or 1s. Using this line folding
trick, [LL11] obtain a complexity, for 𝑑 odd and forgetting mixed additions, of 2𝑆 + 1𝑀 for
a doubling and 2𝑆 + 2𝑀 for a double and add. (They give 2𝑆 + 1𝑀 or 2𝑆 + 2𝑀 according
to which branch of the algorithm is evaluated, but it seems to me that in the branch where
a parabola is computed one should account that evaluating this parabola costs 2𝑀). By
comparison, our DoubleAndAdd algorithm (and also not counting mixed additions), we
have a cost of 2𝑆 + 1𝑀 for consecutive doublings or DoubleAndAdds, and, as we have seen
above, a cost of 2𝑆+2𝑀 when we switch from a bit equal to 0 to a bit equal to 1 or conversely.
In the case when 𝑑 is even, using the line folding trick, consecutive DoubleAndAdds cost
1𝑀+1𝑆, the same as doublings (whether they are consecutive or not). So thisDoubleAndAdd
algorithm could be interesting when ℓ has low Hamming weight.

6.2. Algorithms for abelian varieties. The cubical arithmetic we develop has important
applications for algorithms on abelian varieties beside pairings.

Notably, we will see that explicit formulas for the cubical arithmetic gives explicit formulas
for the theta group action (at level ℓ). Using the generic isogeny framework from [Rob21a,
§ 2.9, § 4.2], this explicit action gives formulas for isogenies (or even allows to compute a
basis of algebraic theta functions or to change levels). We have also just seen in this paper
how the cubical arithmetic allows to compute pairing.

Now by the construction of the algebraic Riemann relations from Proposition 4.1, the
cubical arithmetic can be derived from explicit formulas for the theorem of the square:
𝑡∗
𝑃+𝑄ℒ ⊗ ℒ ≃ 𝑡∗

𝑃ℒ ⊗ 𝑡∗
𝑄ℒ, which also (implicitly) encodes addition formulas. In summary:

explicit formulas for the theorem of the square, which induces explicit formulas for the
cubical arithmetic, is key for all standard algorithms on abelian varieties: additions, pairings,
isogenies.
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6.2.1. Theta group arithmetic of higher level through cubical arithmetic. First, we show that
cubical arithmetic gives a convenient way to work out the arithmetic of theta group of level ℓ𝑛
while using coordinates of level 𝑛 evaluated on cubical points of ℓ-torsion. As explained in
[LR22a], having this explicit theta group action can then be used to compute isogenies by
taking suitable traces; so the cubical arithmetic can be used to find isogeny formulas in any
models (by contrast to [LR12; CR15; LR22a] which use the theta model).

The basic idea is as follows: let (𝐴, ℒ) be a polarised abelian variety. To compute ℓ-
isogenies, we need to work out the arithmetic of the theta group 𝐺(ℒℓ). We recall from
Section 2 that an element (𝑃, 𝑔ℒℓ,𝑃) ∈ 𝐺(ℒℓ) is such that 𝑃 ∈ KerΦℒℓ where Φℒℓ(𝑃) =
𝑡∗
𝑃ℒℓ ⊗ ℒ−ℓ is the polarisation associated to ℒℓ and 𝑔ℒℓ,𝑃 is a section of 𝑡∗

𝑃ℒℓ ⊗ ℒ−ℓ.
In particular, a cubical point �̃� for ℒℓ is enough to determine 𝑔ℒℓ,𝑃. Now a cubical point �̃�

for ℒ does determine a cubical point for ℒℓ, simply by taking the tensor product to the ℓ of the
rigidification at 𝑃; we will denote this by �̃�⊗ℓ. (In particular, 𝜁�̃� induce the same cubical point
for ℒℓ whenever 𝜁 ℓ = 1.) We remark also that if [�̃�1, �̃�2, �̃�3, �̃�4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] are in
Riemann position, then certainly their ℓ-fold tensor product are in Riemann position; so �̃� ↦
�̃�⊗ℓ is compatible with the cubical arithmetic with respect to ℒ and ℒℓ respectively. Further-
more, if 𝛾 is the function associated to the Riemann relation [𝑃1, 𝑃2, 𝑃3, 𝑃4; 𝑄1, 𝑄2, 𝑄3, 𝑄4]
for ℒ, then 𝛾ℓ is the corresponding function for ℒℓ. Finally, if 𝑋1, … , 𝑋ℓ are sections of
Γ(ℒ), then 𝑋 = ∏ℓ

𝑖=1 𝑋𝑖 is a section of Γ(ℒℓ), and 𝑋(�̃�⊗ℓ) = ∏ℓ
𝑖=1 𝑋𝑖(�̃�).

This allows to work on the theta group 𝐺(ℒℓ) (i.e. at level ℓ) while using cubical points
for ℒ (i.e. at the base level). (We remark that the method of Remark 2.11, to compute the ℓ𝑚
Tate pairing for 𝐷1 when working with 𝐷 = 𝑚𝐷1 goes in the other direction: we work with
cubical points for 𝐷, but we try to normalise things such that the cubical points come from
the 𝑚-fold tensor product of cubical points on 𝐷1; that’s how I found out this trick!)

We illustrate this approach in the following situation. Let 𝐾 ⊂ 𝐴[ℓ] be an isotropic
subgroup. By [Rob21a, Chapter 2], to compute isogeny formulas, we first need to compute a
lift 𝐾 of 𝐾 to the theta group 𝐺(ℒℓ), and then compute the action of 𝐾 on sections of Γ(ℒℓ).

If 𝑃 ∈ 𝐴[ℓ], and �̃� is a cubical point with respect to ℒ then we have seen above that �̃�⊗ℓ

is a cubical point with respect to ℒℓ, hence encodes a theta group element 𝑔𝑃 ∈ 𝐺(ℒℓ).
This element 𝑔𝑃 acts on the sections of Γ(ℒℓ). Here is how we can recover this action using
the cubical point �̃�, in the particular case when the section 𝑢 ∈ Γ(ℒℓ) can be written as
𝑢 = ∏ℓ

𝑖=1 𝑢𝑖, where 𝑢𝑖 ∈ Γ(ℒ).
First, we need to take �̃� such that 𝑔𝑃 is an element of ℓ-torsion. If ℒ is symmetric, it

if often convenient to add the further constraint that 𝑔𝑃 should be symmetric: when ℒ
is symmetric there is a canonical involution 𝛿−1 on 𝐺(ℒℓ) defined in [Mum66], and an
element is symmetric if 𝛿−1𝑔𝑃 = 𝑔−1

𝑃 . We will see below the definition of a canonical lift
of ℓ-torsion �̃�, and that such a �̃� gives an element �̃�⊗ℓ such that the associated theta group
element 𝑔𝑃 ∈ 𝐺(ℒℓ) is symmetric of ℓ-torsion.

Next, for a 𝑅 ∈ 𝐴, we take an arbitrary cubical point �̃� for ℒ, and we take 𝑅 + 𝑃 such
that ̃𝑅 + ℓ𝑃 = �̃�. By homogeneity, this equation constrains 𝑅 + 𝑃 from �̃�, �̃� completely, up
to the action by 𝜇ℓ ⊂ 𝔾𝑚.

Now the theta group action of 𝑔𝑃 on 𝑢 = ∏ 𝑢𝑖 is induced by the value ∏ 𝑢𝑖(𝑃 + 𝑅);
since we take an ℓ-fold product the action of 𝜇ℓ above is killed, hence this product is well
defined. More precisely, if 𝑋0 has for divisor 𝐷, then 𝑔𝑃 ∈ 𝐺(ℓ𝐷) can be described by the
formula 𝑔𝑃(𝑅) = 𝑋0(𝑅 + 𝑃)𝑚/𝑋0(�̃�)𝑚.
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6.2.2. Canonical lifts of ℓ-torsion. As a warm up, we first look at the theta group arithmetic
on 𝐺(𝐷) encoded by cubical points �̃� for 𝑃 ∈ 𝐴[𝐷]. Then we will extend this to the theta
group arithmetic for 𝐺(ℓ𝐷) encoded by �̃�⊗ℓ for 𝑃 ∈ 𝐴[ℓ].

In this section, we freely use the notations 𝛿𝑛, 𝑒⋆, … from [Mum66]. Let’s assume that we
are on level 𝑛 for simplicity, so 𝑃 is a point of 𝑛-torsion, and we assume further that 𝐷 is
symmetric, and if 𝑛 is even that (the line bundle associated to) 𝐷 is totally symmetric. In
particular, 𝑒𝐷,⋆(𝑇) = 1 for all 𝑇 ∈ 𝐴[2], so the symmetric elements 𝑔𝑇 ∈ 𝐺(𝐷) above 𝑇 are
of order 2. Furthermore, over 𝑘, the theta group 𝐺(𝐷) is isomorphic to the Heisenberg group
𝑘

∗
× (ℤ/𝑛ℤ)𝑔 × 𝜇𝑔

𝑛. On the Heisenberg group, we have that 𝛿𝑛(𝛼, 𝑥, 𝜁) = (𝛼𝑛2, 𝑛𝑥, 𝜁𝑛),
and that (±1, 𝑥, 𝜁) are the two symmetric elements above (𝑥, 𝜁).

One need to be careful that there are two different laws for the cubical arithmetic when
𝑃 ∈ 𝐴[𝐷]: the first one comes the action by 𝐺(𝐷). Iterating this action 𝑚 times we get the
cubical point �̃� ⋅ �̃� ⋅… �̃�. If �̃� corresponds to 𝑔𝑃 ∈ 𝐺(𝐷), this laws corresponds, by definition
of the cubical action, to the theta group law 𝑔𝑚

𝑃 . The second law comes from the cubical
exponentiation: 𝑚�̃�. One can check (the easiest way is to use the analytic interpretation of the
cubical law through the canonical factor of automorphy, see [LR22a]) that 𝑚�̃� corresponds
to 𝛿𝑚𝑔𝑃. (A way to reformulate this is as follows: in the cubical ladder, if �̃� corresponds to
𝑔𝑃 ⋅ ̃0, then −�̃� corresponds to 𝛿−1𝑔𝑃 ⋅ ̃0. That’s why the ladder will give 𝑛�̃� = 𝛿𝑛𝑔𝑃 ⋅ ̃0. But
the cubical arithmetic is also compatible with the group action by Lemma 4.12. So in the
ladder if we would use �̃�−1 ≔ 𝑔−1

𝑃 ⋅ ̃0 instead of −�̃�, we would obtain �̃�𝑛 = 𝑔𝑛
𝑃 ⋅ ̃0.)

In particular, 𝑛�̃� = ̃0 corresponds to 𝛿𝑛𝑔𝑃 = 1 which is equivalent to 𝑔𝑃 being of
𝑛2-torsion. This is why the equation 𝑛�̃� = ̃0 has 𝑛2-solutions over 𝑘.

If 𝑛 = 2𝑛′ + 1 is odd, we can check that 𝑔𝑃 is of 𝑛-torsion is equivalent to 𝛿𝑛′+1𝑔𝑃 =
𝛿−𝑛′𝑔𝑃. This corresponds to the equation (𝑛′ + 1)�̃� = −𝑛′�̃�, which indeed has 𝑛 solutions
over 𝑘. If 𝑛 = 2𝑛′ + 2 is even, we have that 𝑔𝑃 is of 2𝑛-torsion is equivalent to 𝛿𝑛′+2𝑔𝑃 =
𝛿−𝑛′𝑔𝑃, which corresponds to the equation (𝑛′ + 2)�̃� = 𝑛′�̃� and has 2𝑛 solutions over 𝑘.

Now let’s consider a point 𝑃 ∈ 𝐴[ℓ], and take a cubical point �̃�. By Section 4.2.5, we have
if ℓ�̃� = 𝜆0 ̃0, (ℓ + 1)�̃� = 𝜆0𝜆′

1�̃�, with 𝜆2
0 = 𝜆′

1
ℓ.

Let us first assume that ℓ = 2ℓ′ + 1 is odd. Then there is a unique 𝛽 such that 𝛽ℓ = 𝜆0,
𝛽2 = 𝜆′

1, 𝛽 is rational since 𝜆0, 𝜆′
1 are rational, and we have (𝑢ℓ + 𝑣)�̃� = 𝛽ℓ𝑢2+2𝑣𝑣�̃�.

Furthermore, it is easy to check that replacing �̃� by 𝛾�̃� changes 𝛽 by 𝛽𝛾ℓ, hence 𝜆0 by 𝜆0𝛾ℓ2

and 𝜆′
1 by 𝜆′

1𝛾2ℓ. Also, by the monodromy interpretation of the Tate pairing, 𝜆′
1 = 𝛽2 is (a

representative of the class of) the non reduced Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑃).
From this, we see that the equation ℓ�̃� = ̃0 (which has ℓ2 solutions over 𝑘) imposes

𝛽ℓ = 1, which is not enough to guarantee that (ℓ + 1)�̃� = �̃�. However, both equations
ℓ�̃� = ̃0, (ℓ + 1)�̃� = �̃� are enough to impose 𝜆0 = 𝜆′

1 = 1, which imposes 𝛽 = 1 in the odd
case, and 𝛽2 = 1 in the even case. If these equations are satisfied, we say that �̃� is a canonical
cubical point of ℓ-torsion; we will also say it is a canonical lift of ℓ-torsion (beware that it is
not unique: if �̃� is a cubical point of ℓ-torsion, so is 𝜁�̃� for 𝜁 ∈ 𝜇ℓ. Since 𝜆0 = 𝜆′

1 in that case,
𝑚�̃� is also a canonical cubical point of ℓ-torsion). Using the formula for (𝑢ℓ + 𝑣)�̃� above,
we see that that these two equations can be rewritten as a single equation (ℓ′ + 1)�̃� = −ℓ′�̃�.
Finding a canonical point of ℓ-torsion thus corresponds to solving the equation 𝑥ℓ = 𝛽, and
since 𝛽2 = 𝑒𝑇,ℓ(𝑃, 𝑃) and ℓ is odd, we see that we have an obstruction to finding a rational
solution given by the self Tate pairing. Note however that even if a canonical point �̃� is given
over an extension, �̃�⊗ℓ is rational since 𝛽 is rational; and one can check (using the analytic
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formulas of [LR22a]) that this point corresponds exactly to the unique element 𝑔𝑃 ∈ 𝐺(ℓ𝐷)
which is symmetric of order ℓ (this is coherent with Example 2.7). By the discussion above,
the other elements 𝑔𝑃 of order ℓ are given by the �̃�⊗ℓ where �̃� satisfies the relaxed equation
(ℓ′ + 1)�̃� = 𝜁 − ℓ′�̃� for some 𝜁 ∈ 𝜇ℓ.

Now assume that ℓ = 2𝑚 is even. The situation is more tricky. First, consider ℓ = 2 and
𝑃 ∈ 𝐴[2]; then 𝜆2

0 = 𝜆′
1

2, and we have two cases: 𝜆0 = 𝜆′
1 or 𝜆0 = −𝜆′

1. One can check
that the sign is given by 𝑒𝐷,⋆(𝑃) = (−1)𝑚𝐷(𝑃)−𝑚𝐷(0) where 𝑚𝐷(𝑃) is the multiplicity of 𝐷
at 𝑃 (so for an elliptic curve and 𝐷 = (0𝐸), 𝑒𝐷,⋆(𝑃) = 1 for all 𝑃 ∈ 𝐸[2]). In the later case,
when 𝑒𝐷,⋆(𝑃) = −1, there are no canonical cubical points of 2-torsion above 𝑃. But when
𝑒𝐷,⋆(𝑃) = 1, the equation 2�̃� = ̃0 has four solutions (over 𝑘), and is enough for �̃� to be a
canonical point of 2-torsion.

Now for the general even case ℓ = 2𝑚 = 2ℓ′ + 2, 𝑃 ∈ 𝐴[ℓ]. Let 𝑃0 = 𝑚𝑃. We have
𝜆2

0 = 𝜆′
1

ℓ, so 𝜆′
1

𝑚 = ±𝜆0. But 𝜆0(𝑃0) = 𝜆0(𝑃), 𝜆′
1(𝑃0) = 𝜆′

1(𝑃)𝑚, so 𝜆′
1

𝑚 = 𝑒𝐷,⋆(𝑃0)𝜆0.
If 𝑒𝐷,⋆(𝑃0) = −1, there are no canonical points of ℓ-torsion. If 𝑒𝐷,⋆(𝑃0) = 1, there are
2ℓ canonical points of ℓ-torsion, which can be found by solving the two equations ℓ�̃� =
̃0, (ℓ + 1)�̃� = �̃�, or the single equation (ℓ′ + 2)�̃� = −ℓ′�̃�. The solutions are parametrized

by 𝛾2ℓ = 𝜆′
1. These 2ℓ solutions for ℒ induces 2 distinct elements �̃�⊗ℓ, which correspond to

the two symmetric elements above 𝑃 (necessarily of order ℓ) in 𝐺(ℓ𝐷). These two elements
are rational if and only if 𝜆′

1 = 𝑒𝑇,ℓ(𝑃, 𝑃) is a square; this is coherent with Example 2.7.

6.2.3. Radical isogenies. We remark that the cubical arithmetic also extends to isogenies.
Let 𝑓 ∶ 𝐴 → 𝐵 be an isogeny of abelian varieties, ℳ a line bundle on 𝐵 and ℒ a line bundle
on 𝐴 such that 𝑓 is a ℓ-isogeny, i.e, 𝑓 ∗ℳ ≃ ℒℓ. We fix such an isomorphism once and for all.
We remark that a rigidification �̃� of 𝑓 ∗ℳ (hence via the isomorphism above, a rigidification
of ℒℓ) at a point 𝑃 ∈ 𝐴 corresponds to a rigidification of ℳ at the point 𝑓 (𝑃), which we
denote by 𝑓 (�̃�) (or rather ̃𝑓 (�̃�) where ̃𝑓 depends on the choice of isomorphism 𝑓 ∗ℳ ≃ ℒℓ).
It is convenient to normalise the neutral points so that ̃𝑓 ( ̃0𝐴) = ̃0𝐵.

Cubical points thus also give the correct conceptual framework to build algorithms for
radical isogenies. It is known (see [CDV20; CDHV22] for dimension 1 and [CD21; LR22b]
for the general case) that radical isogenies can be described by choices of ℓ-th root of unity
on Tate pairings.

Let us focus to the case of radical elliptic curve isogenies for simplicity. We start with
𝑃 ∈ 𝐸 a point of ℓ-torsion, and the goal is to find formulas not only for the isogeny 𝜑 ∶
𝐸 → 𝐸′ = 𝐸/⟨𝑃⟩ but also to find a new point 𝑃′ ∈ 𝐸′ of ℓ-torsion such that the associated
isogeny is not backtracking. It is not hard to see that such choices of 𝑃′ are in bijection with
𝜑−1(𝑃), and the theory of radical isogenies state that this fiber is in bijection with choices of
ℓ-th root of the non reduced Tate self pairing 𝑒𝑇,ℓ(𝑃, 𝑃). We refer to [LR22b] for a geometric
description of this isomorphism. Since cubical point arithmetic can be used to compute the
Tate pairing, it is not surprising that they can explain radical isogenies, or more generally
fibers of isogenies.

In brief, let 𝑓 ∶ 𝐸1 → 𝐸2 be a cyclic isogeny of degree ℓ, and ̃𝑓 the contragredient isogeny.
Fixing a point 𝑃 ∈ Ker ̃𝑓 gives through the Weil-Cartier pairing 𝑒𝑓 an isomorphism Ker 𝑓 ≃
𝜇ℓ, and if 𝑄 ∈ 𝐸2(𝑄), the (non reduced) Tate pairing 𝑒𝑇,𝑓(𝑃, 𝑄) = 𝑒𝑇,ℓ(𝑃, 𝑄), seen as a
𝜇ℓ-étale torsor 𝜁 ℓ = 𝑒𝑇,ℓ(𝑃, 𝑄), is isomorphic to the fiber 𝑓 −1(𝑄) which is aKer 𝑓-torsor. (In
other words, the Galoisian structure of 𝑓 −1(𝑄) can be derived from the Galoisian structure
of 𝜁 ℓ = 𝑒𝑇,ℓ(𝑃, 𝑄).) For an ℓ-isogeny 𝑓 ∶ 𝐴1 → 𝐴2 of principally polarised abelian varieties
of dimension 𝑔, fixing a basis 𝑃1, … , 𝑃𝑔 of Ker ̃𝑓 splits Ker 𝑓 as a product 𝜇𝑔

ℓ , hence splits the



74 DAMIEN ROBERT

torsor 𝑓 −1(𝑄) as a product of 𝜇ℓ-torsors, whose isomorphism classes are given by the torsors
𝜁 ℓ = 𝑒𝑇,ℓ(𝑃𝑖, 𝑄).

Let us go back to an ℓ-isogeny 𝑓 ∶ 𝐸1 → 𝐸2 of elliptic curves for simplicity, and assume
ℓ-odd. The symmetric divisor ℓ(0𝐸1

) on 𝐸1 descends (up to linear equivalence) to the
symmetric divisor 0𝐸2

on 𝐸2, so by Mumford’s theory corresponds to a lift 𝐾 of Ker 𝑓 to the
theta group 𝐺(ℓ(0𝐸1

) (in practice: this is the unique lift given by symmetric elements of
order ℓ). Now let 𝑃 ∈ Ker ̃𝑓 and 𝑃′ ∈ 𝐸1[ℓ] be a preimage of 𝑃 by 𝑓. By the discussion above,
a choice of cubical point �̃� (of level 1) for 𝑃 gives a choice of cubical point 𝑃′ (of level ℓ) for
𝑃′, but since 𝑃′ is in 𝐸1[ℓ], the local rigidification of the line bundle associated to ℓ(0𝐸) at
𝑃′ gives a global rigidification, hence an element 𝑔𝑃′ ∈ 𝐺(ℓ(0𝐸1

)), and conversely. So in the
other direction, since we have the canonical level subgroup 𝐾 ⊂ 𝐺(ℓ(0𝐸1

)) above 𝐾 = Ker 𝑓,
we have a canonical cubical point of level ℓ, for 𝑃′, hence a canonical cubical point �̃� of level 1
for 𝑃. One can check that this �̃� is symmetric and of order ℓ for the cubical arithmetic (in the
terminology above it is a canonical cubical point above �̃�), and that replacing 𝑃′ by 𝑃′ + 𝑇
with 𝑇 ∈ Ker 𝑓 replace �̃� by 𝜁�̃� for 𝜁 = 𝑒𝑓(𝑇, 𝑃). In particular, the ℓ canonical cubical points
�̃� above 𝑃 all come from a choice of 𝑃′ ∈ 𝑓 −1(𝑃).

On the other hand, to compute a canonical cubical point �̃� above 𝑃, one can start with
an arbitrary cubical point �̃�, write ℓ = 2ℓ′ + 1, and compute the monodromy 𝜆𝑃 between
(ℓ′ + 1)�̃� and −ℓ′�̃�. By Remark 3.13 and Section 4.2.5, this monodromy 𝜆𝑃 is exactly the
square root of the non reduced Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑃). Canonical cubical points are then
of the form 𝜁�̃�, where 𝜁−ℓ = 𝜆𝑃. Since we have seen that we also had a bijection with the
preimages of 𝑃, this gives an explicit bijection between 𝜁−ℓ = 𝜆𝑃 = 𝑒𝑇,ℓ(𝑃, 𝑃)1/2 and
𝑓 −1(𝑃).

To study the general fiber 𝑓 −1(𝑄) for some point 𝑄 ∈ 𝐸2(𝑘), we can proceed similarly.
Fix a 𝑄′ in the preimage, and an arbitrary cubical point of level 1 for 𝑄 (hence of level ℓ for
𝑄′). We have seen that each preimage of 𝑃′ of 𝑃 gives a level ℓ theta group element 𝑔𝑃′ , hence
an action 𝑔𝑃′ ⋅ 𝑄′, hence by descent a cubical point ̃𝑃 + 𝑄 = 𝑔𝑃′ ⋅ 𝑄 above 𝑃 + 𝑄. One can
check that ̃𝑃 + 𝑄 satisfy the equation ̃ℓ𝑃 + 𝑄 = 𝑄, and that changing 𝑃′ by 𝑃′ + 𝑇 changes
̃𝑃 + 𝑄 to 𝑒𝑓(𝑇, 𝑃) ̃𝑃 + 𝑄. Hence we get all ℓ-cubical points ̃𝑃 + 𝑄 satisfying this equation.
On the other hand, we can also compute these cubical points on 𝐸2 directly: take an

arbitrary ̃𝑃 + 𝑄, an arbitrary canonical cubical point �̃� so that ℓ�̃� = ̃0, and compute the
monodromy ̃ℓ𝑃 + 𝑄 = 𝜆𝑃𝑄. By the monodromy interpretation of the Tate pairing, we have
𝜆𝑃 = 𝑒𝑇,ℓ(𝑃, 𝑄). The points ̃𝑃 + 𝑄 we search for are the ones given by 𝜁 ̃𝑃 + 𝑄 where 𝜁−ℓ =
𝜆𝑃. Hence in this case, we have an explicit bijection between couples (𝑄, 𝑄 + 𝑃) satisfying

̃𝑄 + ℓ𝑃 = 𝑄; roots of the equation 𝜁−ℓ = 𝜆𝑃 = 𝑒𝑇,ℓ(𝑃, 𝑄); and couples (𝑄′, 𝑄′ + 𝑃′ + 𝑇)
where 𝑓 (𝑄′) = 𝑄, 𝑓 (𝑃′) = 𝑃 are fixed and 𝑇 goes through Ker 𝑓.

The same strategy works for higher dimension. In practice, this allows to obtain explicit
formulas3 for fibers of isogenies between abelian varieties in the theta model, and also to
obtain explicit multiradical isogeny formulas in the theta model. The formulas can be derived
from the study of fibers of modular correspondances of [FLR11; Rob21a, § 5.2.2], then
using [LR10; LR15] to reinterpret the constants appearing in these formulas as suitable Tate
pairings, and then (a not yet published) adaptation of the descent level formula from [LR22a]
to go down in level without multiplying by ℓ.

3These formulas, resulting from joint work with David Lubicz, were already promised more than one year
ago in [Rob23c, Remark 5.19], but see footnote 2…
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6.3. Supersingularity testing as a self pairing test. Let 𝐸/𝔽𝑞 be an elliptic curve (with
𝑗-invariant different from 0, 1728), 𝑞 = 𝑝2. We would like to test if it is supersingular. In
[Dol18], Doliskani proposes the following probabilistic supersingularity test.

Recall that on an elliptic curve with a Weierstrass equation, there are canonical polynomi-
als 𝜙𝑛, 𝜔𝑛, 𝜓𝑛 (depending on 𝐸) such that if 𝑃 = (𝑥𝑃, 𝑦𝑃), 𝑛𝑃 = ( 𝜙𝑛(𝑥𝑃)

𝜓2
𝑛(𝑥𝑃) , 𝜔𝑛(𝑥𝑃,𝑦𝑃)

𝜓3
𝑛(𝑥𝑃,𝑦𝑃)

). The
polynomial 𝜓𝑛 is the 𝑛-th division polynomial: 𝜓𝑛(𝑥𝑃, 𝑦𝑃) = 0 if and only if 𝑃 is a non
trivial point of 𝑛-torsion. (If 𝑛 is odd, 𝜓𝑛 depends only on 𝑥).

Furthermore, there is a linear recurrence relation for these polynomials, which allows to
compute 𝜓𝑛(𝑥𝑃, 𝑦𝑃) efficiently.

If the characteristic is 𝑝, then 𝜓𝑝(𝑥) = 𝜓𝑝(𝑥)𝑝, where 𝜓𝑝(𝑥) is a polynomial of degree
(𝑝 − 1)/2 if 𝐸 is ordinary, or ±1 if 𝐸 is supersingular. In particular, 𝐸 is supersingular if and
only if 𝜓2

𝑝 = 1 [Dol18, Lemma 4; BGS22, Lemma 3].
Doliskani’s supersingularity test is then to sample a random 𝑥 ∈ 𝔽𝑞, and test if𝜓𝑝(𝑥)2 = 1.

If it is not the case, we know that 𝐸 is ordinary. Otherwise, by the Schwartz-Zippel lemma
[Dol18, Lemma 2], we know that 𝐸 is supersingular with high probability [Dol18, § 3]. In
[Dol18, § 4] this test is further refined.

We now reinterpret this test as a pairing test. First, the division polynomials 𝜓𝑛 give
precisely the elliptic nets of rank 1 (i.e., elliptic divisibility sequences) [Sta08, Theorem 1.2.1],
and elliptic nets give pairings by [Sta08, § 17, § 18]. Here we will rather use the cubical point
of view (this is essentially the same thing by Section 4.9.5).

Analytically we have Ψ𝑛(𝑧) = 𝜎(𝑛𝑧)
𝜎(𝑧)𝑛 . It follows from Sections 4.8 and 4.9 that if �̃� =

(𝑥(𝑃), 𝑦(𝑃), 1) is a level 3 cubical point given by level 3 affine Weierstrass coordinates,
then 𝑛�̃� = ((𝜙𝑛(𝑥𝑃)𝜓𝑛(𝑥𝑃, 𝑦𝑃), 𝜔𝑛(𝑥𝑃, 𝑦𝑃), 𝜓3

𝑛(𝑥𝑃, 𝑦𝑃)). Likewise, if �̃� is a level 1 cubical
point normalised by 𝑍1(�̃�) = 1, then 𝑍1(𝑛�̃�) = 𝜓𝑛(𝑥𝑃, 𝑦𝑃). (As an aside, by Remark 4.24,
using division polynomial for cubical arithmetic means that ̃0 is normalised with respect to
−𝑥/𝑦 rather than with respect to 𝑥/𝑦).

So Doliskani’s supersingularity test can be reinterpreted as follows: given �̃� normalised as
above, is 𝑍2(𝑝�̃�) ≔ 𝑍2

1(𝑝�̃�) = 1?
Now if 𝐸 is supersingular over 𝔽𝑞 (with maximal endomorphism ring), then 𝐸(𝔽𝑞) =

(ℤ/(𝑝 ± 1)ℤ)2. We first sample a random point 𝑥(𝑃) on the Kummer line; 𝑃 lies either in
𝐸 or its quadratic twist, so 𝑃 is of order 𝑝 + 1 or 𝑝 − 1. In both cases, 𝑥(𝑝𝑃) = 𝑥(𝑃), this
gives us a first test for a point order.

We can refine this test as follows: take �̃� a cubical point of level 1 normalised by 𝑍1(�̃�) = 1,
and of order 𝑝 ± 1, which we have checked via the equation 𝑥(𝑝𝑃) = 𝑥(𝑃). We want to
compute the self Tate pairing 𝑒𝑝±1(𝑃, 𝑃). By Theorem 4.19 and Remark 3.13, if 𝑃 is of
order 𝑝 − 1, we can compute 𝑒𝑝(𝑃, 𝑃) by comparing 𝑍1(𝑝�̃�) and 𝑍1(�̃�) = 1. In particular,
𝑍1(𝑝�̃�) = 1 (i.e. 𝜓𝑝(𝑃) = 1) if and only if 𝑒𝑝−1(𝑃, 𝑃) = 1. And if 𝑃 is of order 𝑝+1, we can
compute 𝑒𝑝(𝑃, 𝑃) by comparing 𝑍1(𝑝�̃�) and 𝑍1(−�̃�) = −1. In particular, 𝑍1(𝑝�̃�) = −1
(i.e. 𝜓𝑝(𝑃) = −1) if and only if 𝑒𝑝+1(𝑃, 𝑃) = 1. (We remark that if 𝜆 ∈ 𝔽𝑞 = 𝔽𝑝2,
𝑝(𝜆 ⋅ �̃�) = 𝜆𝑝2 ⋅ 𝑝�̃� = 𝑝�̃� so the Tate pairing is already reduced here.) So we can reframe
Doliskani’s supersingularity test as a self pairing test: is 𝑒𝑝±1(𝑃, 𝑃) = 1 for a randomly
sampled 𝑃?

Lemma6.1. Let𝑃 ∈ 𝐸(𝔽𝑞) be of order 𝑝±1.Then the reducedTate self pairing 𝑒𝑇,𝑝±1(𝑃, 𝑃) =
1 if and only if the elliptic curve quotient 𝐸′ = 𝐸/⟨𝑃⟩ has its full 𝑝 ± 1-torsion rational over
𝔽𝑞.
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Proof. This follows from the geometric interpretation of the Tate pairing, see [Rob23c,
Example 5.14]. �

In particular, if 𝐸 is supersingular, then since 𝐸/⟨𝑃⟩ has the same Galois structure than 𝐸
we always have 𝑒𝑇,𝑝±1(𝑃) = 1: self pairings are trivial on a supersingular curve. (This can
also be seen more directly as follows: if 𝑃 is of order ℓ, 𝑒𝑇,ℓ(𝑃) = 𝑒𝑊,ℓ(𝑃, 𝜋𝑃′ − 𝑃′) where
ℓ𝑃′ = 𝑃, but 𝜋 is a scalar for a supersingular curve and the Weil pairing is alternate, hence
the self pairing is trivial.) Lemma 6.1 thus gives an alternative proof that 𝜓𝑝(𝑥(𝑃)) = ±1
for a supersingular curve.

We can also use Lemma 6.1 and our reinterpreration of Doliskani’s supersingularity test as
a self pairing test to give a precise description of the points 𝑃 ∈ 𝐸(𝔽𝑞) such that Doliskani’s
test fails for an ordinary elliptic curve 𝐸: 𝑃 has to be of 𝑝 ± 1-torsion and the isogeneous
curve 𝐸/⟨𝑃⟩ has to have fully rational 𝑝 ± 1-torsion. Using the group structure of isogeny
volcanoes of ordinary curves, this allows to refine the probability of failure (depending on
where 𝐸 is in the volcano).

In practice, in isogeny based cryptography we work with the Montgomery model. We can
thus use the fast cubical ladder formulas from Section 5.2 to do our self pairing test: sample
a random point 𝑥(𝑃), start with �̃� such that 𝑋2(�̃�) = 𝑥(𝑃), 𝑍2(�̃�) = 1 in level 2 affine
cubical coordinates, and compute whether 𝑝�̃� = �̃�. This test both that 𝑃 is of 𝑝 ± 1 torsion
and that the self pairing is trivial (or rather its square, since we are using level 2 coordinates).

We recover precisely the fast supersingular test from [BGS22]. In that paper, the authors
apply the above strategy, but using the usual projective Montgomery ladder to compute
𝑝�̃�. As we have seen in Section 5.2, the standard projective ladder almost correctly com-
putes the cubical arithmetic, and it is easy to keep track of a correcting factor to apply
afterwards to obtain the correct cubical point 𝑝�̃�. Now comparing Algorithms 5.4 and 5.5
with [BGS22, Algorithm 1], we can check that this correcting factor is precisely the factor
from [BGS22, Proposition 2]. Since the authors of [BGS22] use this correcting factor in their
fast supersingularity test [BGS22, Algorithm 6], they are really computing the true cubical
exponentiation [BGS22]! (We remark that computing 1/𝑥(𝑃) and then directly using the
formulas Algorithms 5.4 and 5.5 for the cubical ladder would save 1𝑀 by bit.)

6.4. Monodromy leak and the DLP. Our last non pairing application, and perhaps the most
important one, is a new devastating side-channel attack against the Montgomery ladder on
Montgomery curves, which we call the monodromy leak, a type of projective coordinate
leak.

Let 𝑃 ∈ 𝐸(𝔽𝑞) be a point of ℓ-torsion, with ℓ prime for simplicity. It is known since
[NSS04] that a projective coordinate leak, that is leaking the individual projective coordinates
𝑋(𝑚𝑃), 𝑌(𝑚𝑃), 𝑍(𝑚𝑃) which are computed during the scalar multiplication, where 𝑚𝑃 =
(𝑋(𝑚𝑃) ∶ 𝑌(𝑚𝑃) ∶ 𝑍(𝑚𝑃)), would yield information on the secret 𝑚.The attack of [NSS04]
can only recover a few bits of 𝑚, so the attack was only used for attacking the signature scheme
ECDSA. For ECDSA, obtaining a few bit of leakage for each signature, combined with lattices
methods, allows to recover the full secret key. This attack was revisited in [AGB20] where
the authors found that many implementation were still vulnerable to projective coordinate
leaks, and extended it to the Montgomery ladder.

By contrast, our monodromy leak attack on the Montgomery ladder is much more devas-
tating, since it allows to recover the full key via only one leak, by reduction to some DLPs in
𝔽∗

𝑞.
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The main idea is as follows: first we can assume that 𝜇ℓ ⊄ 𝔽𝑞, otherwise pairings already
give an efficient reduction from DLPs to 𝐸(𝔽𝑞) to DLPs in 𝔽∗

𝑞. We can also assume ℓ odd
for simplicity. Under this hypothesis, for a point 𝑃 ∈ 𝐸[ℓ](𝔽𝑞) there is only one rational
cubical point �̃� which is still of ℓ-torsion. We will call �̃� the canonical lift of 𝑃, and denote it
also by �̂�. We can efficiently compute �̂� by taking an arbitrary rational cubical lift �̃� and then
computing �̂� = 𝑢�̃� where 𝑢 ≡ 1 mod ℓ and 𝑢 ≡ 0 mod 𝑞 − 1; such a 𝑢 exists because ℓ is
prime to 𝑞 − 1 by assumption.

Lemma 6.2. If 𝜇ℓ(𝔽𝑞) = 1 (i.e. ℓ is coprime to 𝑞 − 1), there is a unique rational canonical
cubical point of ℓ-torsion �̂�. It suffices to check that ℓ�̂� = ̃0, and for any rational cubical point
�̃� above 𝑃, �̂� = 𝑢�̃�, where 𝑢 ≡ 1 mod ℓ and 𝑢 ≡ 0 mod 𝑞 − 1.

Furthermore, for any 𝑚, we have 𝑚�̂� = ̂𝑚𝑃

Proof. We defined canonical cubical points of ℓ-torsion in Section 6.2; they satisfy ℓ�̃� =
̃0, (ℓ + 1)�̃� = �̃�. Using the notations of Section 6.2.2, if ℓ�̃� = ̃0 then 𝜆0 = 𝛽ℓ = 1, hence

𝛽 = 1 since 𝛽 is rational and 𝜇ℓ(𝔽𝑞) = 1, so 𝜆′
1 = 1, and in this case the equation ℓ�̃� is

sufficient to define a canonical point of ℓ-torsion.
For a random cubical point �̃�, if ℓ�̃� = 𝜆0 ̃0, then 𝛾�̃� is a canonical point of ℓ-torsion

for 𝛾ℓ = 𝜆−1
0 . Since 𝜇ℓ(𝔽𝑞) = 1, 𝑥 ↦ 𝑥ℓ is bijective in 𝔽∗

𝑞, so this equation has a unique
solution in 𝔽∗

𝑞.
We have 𝑢�̂� = �̂� because 𝑢 ≡ 1 mod ℓ and �̂� is a canonical cubical point of ℓ-torsion.

On the other hand, starting with an arbitrary rational cubical point �̃� = 𝜆�̂�, 𝜆 ∈ 𝔽𝑞, we
have 𝑢�̃� = 𝜆𝑢2𝑢�̂�, and since 𝑢 ≡ 0 mod 𝑞 − 1, 𝜆𝑢2 = 1. So 𝑢�̃� = �̂�.

If 𝑄 = 𝑚𝑃, taking an arbitrary rational �̃� and letting 𝑄 = 𝑚�̃�, we obtain 𝑄 = 𝑢𝑄 =
𝑢𝑚�̃� = 𝑚𝑢�̃� = 𝑚�̂�. �

(We remark that [Sta08, Chapter 19; LS08] also compute an elliptic net representation of
the level 1 canonical lift �̂� for elliptic curves. Their formula to compute �̂� is slightly different
than the one above, but do give the same canonical lift.)

The relation 𝑚�̂� = ̂𝑚𝑃 can also be proved by unicity and the compatibility relations of
the cubical arithmetic: in general, if �̃� is a canonical lift of ℓ-torsion, so is 𝑚�̃� for any 𝑚. In
our situation, the canonical lift is unique (if we want it to be rational), so by Corollary 4.33,
we even have that if [𝑃1, 𝑃2, 𝑃3, 𝑃4; 𝑄1, 𝑄2, 𝑄3, 𝑄4] are points of ℓ-torsion in Riemann
position, so are their canonical lift of ℓ-torsion.

Now the cubical arithmetic is a mix of elliptic curve arithmetic and 𝔽∗
𝑞 arithmetic, and

we can use �̂� to try to reduce to DLPs in 𝔽∗
𝑞. Namely, for the Montgomery ladder, one start

with a normalised point 𝑃 = (𝑥(𝑃) ∶ 1) in order to reduce the number of multiplications.
Let us define �̃� = (𝑥(𝑃), 1), and assume we obtain a projective coordinate leak of 𝑚.𝑃 =
(𝑋(𝑚𝑃), 𝑍(𝑚𝑃)). Now assume furthermore that 𝑚.𝑃 was computed using the cubical
formulas, in other words 𝑋(𝑚𝑃), 𝑍(𝑚𝑃) gives 𝑚�̃� exactly. Then we have �̃� = 𝜆�̂� with
𝜆 = 1/𝑍(�̂�), and 𝑚�̃� = 𝜆𝑚2𝑚�̂� by homogeneity.

Now we know 𝑚𝑃 = (𝑋(𝑚𝑃) ∶ 𝑍(𝑚𝑃)) because it is public, we know �̃� = (𝑥(𝑃), 1)
because 𝑃 is normalised, we also know 𝑚�̃� = (𝑋(𝑚𝑃), 𝑍(𝑚𝑃)) because we have assumed
we had a projective coordinate leak. We know the canonical lift �̂�, and we can also compute
𝑚�̂� even if we don’t know 𝑚, because the canonical lift ̂𝑚𝑃 of 𝑚𝑃 is precisely equal to 𝑚�̂�.
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So we obtain an equation of the form 𝜆𝑚2 = 𝑍(𝑚𝑃)/𝑍( ̂𝑚𝑃), where the only unknown
is 𝑚. Solving a DLP in 𝔽∗

𝑞 followed by a square root allows to recover the possible values of
𝑚 modulo 𝑞 − 1, or more precisely modulo the order of 𝜆.

In practice, we know that in the Montgomery ladder implementation, 𝑚 is as small as
possible, so in particular is smaller than #𝐸(𝔽𝑞) ≤ 𝑞 + 1 + 2√𝑞. We first solve the DLP
in 𝔽∗

𝑞 to recover 𝑚2 modulo the order 𝑁 of 𝜆 (so that 𝑁 ∣ 𝑞 − 1). We then test all possible
square roots, there are at most 2𝑡 such square roots where 𝑡 is the number of distinct prime
factors of 𝑞 − 1. Unless 𝑞 − 1 is very smooth, computing all square roots is not a bottleneck
compared to the DLP in 𝔽∗

𝑞.
Now, for each possible square root 𝑚 modulo 𝑁, we need to test all possibilities 𝑚 + 𝑎𝑁

up to the upper bound 𝑚 ≤ #𝐸(𝔽𝑞). The number of possibilities is in 𝑂(𝑞/𝑁), the smaller
the order of 𝜆 the more tries we need, but on the other hand the lower the probability to
stumble on such a 𝜆. By Merten’s theorem, the average number of tries for a random 𝜆 is in
𝑂(log 𝑞).

Note that the above method applies even if �̃� is not normalised, as long as we know both
�̃� (say because the implementation is public) and 𝑚�̃� (because of a projective coordinate
leak).

However, this only applies because we know that 𝑚 ≤ ℓ. If we don’t know the projective
coordinate leak 𝑚�̃�, we can still take an arbitrary cubical point 𝑚𝑃 (well not quite arbitrary,
we want to choose 𝑍(𝑚𝑃) such that 𝑍(𝑚𝑃)/𝑍(𝑚�̂�) is in the group generated by 𝜆). Then
we have 𝑚𝑃 = 𝑀�̃� for some 𝑀 ≡ 𝑚 mod ℓ, but this time we only have the bound
𝑀 ≤ ℓ(𝑞 − 1). The cubical arithmetic allows to recover the value of 𝑀 modulo 𝑞 − 1 (or
rather modulo 𝑁 the order of 𝜆), which gives zero information on the value of 𝑀 modulo
ℓ since ℓ is prime to 𝑞 − 1. In other words, the monodromy attack only applies if we know
the number (or we can pin this number in a small interval) of loop around ℓ we did when
computing 𝑀.�̃�.

Remark 6.3 (Biextension monodromy leak). We can also do a monodromy attack using
biextension arithmetic, this requires more information but bypass the square root step.
Namely, still with our hypothesis that ℓ is prime to 𝑞 − 1, given another rational point 𝑄,
there is a unique rational biextension element ̂𝑔𝑃,𝑄 above 𝑃 of order ℓ for ⋆1. We have
̂𝑔⋆1,𝑚
𝑃,𝑃 = ̂𝑔𝑚𝑃,𝑃.
It follows that if through some projective coordinate leak we are able to recover both some

biextension element 𝑔𝑃,𝑃 = 𝜆 ̂𝑔𝑃,𝑃 and 𝑔⋆1,𝑚
𝑃,𝑃 = 𝜆𝑚 ̂𝑔𝑚𝑃,𝑃, we can recover 𝑚 modulo the

order 𝑁 ∣ 𝑞 − 1 of 𝜆 by solving an equation 𝜆𝑚 = 𝐶.
In practice, this could happen if we have a projective coordinate leak of both 𝑚�̃�, (𝑚+1)�̃�

(this is not unreasonable since the Montgomery ladder computes 𝑚𝑃, (𝑚 + 1)𝑃).
Namely, we know that on input the ladder start with the normalised point �̃� = (𝑥(𝑃), 1);

we compute 2�̃� by a cubical doubling, and represent 𝑔𝑃,𝑃 by the cubical points [�̃�, �̃�; ̃0, 2�̃�].
Then 𝑔⋆1,𝑚

𝑃,𝑃 is represented by [�̃�, 𝑚�̃�; ̃0, (𝑚 + 1)�̃�], so a projective leak of 𝑚�̃�, (𝑚 + 1)�̃�
indeed gives us 𝑔⋆1,𝑚

𝑃,𝑃 . (As an aside: ̂𝑔𝑚𝑃,𝑃 = [�̂�, ̂𝑚𝑃; ̃0, ̂(𝑚 + 1)𝑃].)

Now, all the discussion above assumes that the Montgomery ladder is implemented using
the cubical arithmetic; which is definitively not the case. But we saw in Section 1.2 that it is
very close to the cubical ladder.
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More precisely, the projective doubling formula is exactly the same as in Algorithm 5.4.
However, the projective differential addition formula uses the equation

𝑈 = (𝑋(𝑃) − 𝑍(𝑃))(𝑋(𝑄) + 𝑍(𝑄))
𝑉 = (𝑋(𝑃) + 𝑍(𝑃))(𝑋(𝑄) − 𝑍(𝑄))

𝑋(𝑃 + 𝑄) = 𝑍(𝑃 − 𝑄)(𝑈 + 𝑉)2

𝑍(𝑃 + 𝑄) = 𝑋(𝑃 − 𝑄)(𝑈 − 𝑉)2

which differs from the cubical differential addition Algorithm 5.5 by the factor 4𝑋(𝑃 −
𝑄)𝑍(𝑃 − 𝑄).

Taking this into account, we need to solve a slightly different degree two equations to
recover 𝑚. Namely, let [𝑚�̃�] be the cubical point computed by the usual Montgomery ladder.
Then by [BGS22, Proposition 2], [𝑚�̃�] = (4𝑥(𝑃))𝑚2𝑙(𝑚)−𝑚𝑚�̃� where 𝑙(𝑚) is the binary
length of 𝑚 (see Section 6.3 for the link between the division polynomials in the statement
of [BGS22, Proposition 2], and cubical arithmetic).

Using �̃� = 𝜆1�̂�, 𝑄 = 𝑚𝑃, 𝑚�̃� = 𝜆𝑚2
1

̂𝑚𝑃, [𝑚�̃�] = (4𝑥(𝑃))𝑚2𝑙(𝑚)−𝑚𝑚�̃�, and since
we know 𝑃, 𝑄, hence �̂�, �̂�, and also �̃� and [𝑚�̃�] by assumption that we have a projective
coordinate leak on the standard projective ladder, we can recover 𝜆2 such that [𝑚�̃�] = 𝜆2 ̂𝑚𝑃
and we have the following equation where the only unknown is 𝑚:

(22) (4𝑥(𝑃))𝑚2𝑙(𝑚)−𝑚𝜆𝑚2
1 = 𝜆2

In practice, we also know the length 𝑙(𝑚) of 𝑚. So we fix 𝜁 a primitive root of 𝔽∗
𝑞, and

compute the dlps with respect to 𝜁: dlp𝜁(4𝑥(𝑃)), dlp𝜁(𝜆1), dlp𝜁(𝜆2). Then by Equation (22),
𝑚 is a solution of the degree two equation:

𝑋2(dlp𝜁(𝜆1) − dlp𝜁(4𝑥(𝑃))) + 2𝑙(𝑚) dlp𝜁(4𝑥(𝑃))𝑋 − dlp𝜁(𝜆2) = 0.

We then proceed as before. The above discussion can thus be summarised in:

Theorem 6.4. Let 𝑃 = (𝑋(𝑃), 𝑍(𝑃)) be a known public point of order ℓ on a Montgomery
Kummer line associated to a Montgomery curve 𝐸/𝔽𝑞 (here we assume that we know not only
𝑃, but 𝑋(𝑃), 𝑍(𝑃), in practice 𝑃 is normalised via 𝑍(𝑃) = 1). Assume that ℓ is prime to 𝑞 − 1.

Let 𝑚 ≤ ℓ, and let 𝑚𝑃 = (𝑋(𝑚𝑃), 𝑍(𝑚𝑃)) as computed by the standard projective
Montgomery ladder. Assume that we obtain a projective coordinate leak of 𝑚𝑃, i.e., we not only
know 𝑥(𝑚𝑃) = 𝑋(𝑚𝑃)/𝑍(𝑚𝑃), but also 𝑋(𝑚𝑃), 𝑍(𝑚𝑃).

Let 𝑢 be the number of distinct prime factors of 𝑞 − 1. Let �̂� = (𝑋(�̂�, 𝑍(�̂�)) be the unique
canonical cubical rational point above 𝑃, 𝑁 ∣ 𝑞 − 1 be the multiplicative order of 𝑍(𝑃)/𝑍(�̂�)
and 𝑣 = (𝑞 − 1)/𝑁.

Then one can recover 𝑚 by solving three discrete algorithms in 𝔽∗
𝑞 (two of which can be seen

as a precomputation depending only on 𝑃, not 𝑚), followed by an algorithm polynomial in
log 𝑞, 2𝑢 and 𝑣.

Any constant time division algorithm to compute 𝑥(𝑚𝑃) = 𝑋(𝑚𝑃)/𝑍(𝑚𝑃), such as the
one employed by NaCL, prevents this attacks. Compared to [NSS04], we can recover 𝑚 fully
from one leak, but we need to assume that we know 𝑋(𝑃), 𝑍(𝑃), not only 𝑃. So another
protection is to mask 𝑃 by multiplying 𝑋(𝑃), 𝑍(𝑃) by some random scalar factor before
doing the exponentiation.

For more details on the monodromy leak (and some wild speculations), we refer to
[Rob23a, § 7.2] and to [Rob23b] for a toy implementation.
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7. Perspectives

We have seen that biextensions provide a convenient framework to study pairings as mon-
odromy information, and that the efficient representation of biextension elements provided
by cubical points gave fast formulas to compute pairings on elliptic curves.

In this paper, we have mainly looked in Section 5 at cubical points on Montgomery
Kummer lines represented by level 2 affine coordinates. It would be interesting to look at
othermodels and also explore further amix of projective and affine coordinates (notably in the
Edwardsmodel), as suggested in Remark 4.34.There is also potentially room for optimisation
of the adding formulas in the double and add biextension algorithm for the Montgomery
model. We have also seen in Section 6.1 that the cubical arithmetic could potentially be
interesting for pairing based cryptography, not only for generic pairing computations. In
fact, we saw that biextensions and cubical arithmetic shed new light (and gave new formulas)
on Miller’s algorithm.

In the other direction, one could ask if the refinements ofMiller’s algorithm from [BELL10;
LL11; DZZZ22] (see Section 6.1.2) could also be applied in some sense to the cubical ladder.
Notably so far in our explicit cubical arithmetic, we have only used doublings, differential
additions and three way additions, but not the more general algebraic Riemann relations
from Section 4.1. Although the general Riemann relations are induced by the squared torsor
structure, and explicit formulas can be given via the differential addition formulas (see
Section 4.9.3 for an example), expressing the general Riemann relations through differential
addition formulas involve some divisions by 2, hence potentially points in field extensions,
while using the formulas from Section 4.1 we can stay in the base field. Notably, the work of
[BELL10] suggest looking at the following Riemann relations to compute the cubical expo-
nentiation: [(𝑚1 +𝑚2)𝑃+𝑄, −𝑚1𝑃+𝑄, −𝑚2𝑃+𝑄, −𝑄; −(𝑚1 +𝑚2)𝑃, 𝑚1𝑃, 𝑚2𝑃, 2𝑄].
Maybe some other types of Riemann relations could also be useful.

We have focused in this article on computing pairings through monodromy (except in
the setting of Remark 2.11. Furthermore, we work with biextension elements represented
via cubical points, and we represent cubical points fully (or almost fully in level 2) through
their cubical coordinates. This helps making the pairing formula complete, see Remarks 4.26
and 5.3: we can switch coordinates on the fly according to which point monodromy we
want to compute. On the other hand, this means that for pairings, we compute redundant
information: by Lemma 4.15 the cubical representation of a biextension element is not
unique, and by Sections 4.5.2 and 4.6 cubical points are overkill to compute pairings, we
just need cubical functions (a cubical point, represented by its cubical coordinates, encode a
bunch of cubical functions at once). We already exploited the non unicity of the biextension
representation in the double and add algorithm from Algorithm 4.1: the cubical points
computed via this algorithm are not compatible with the cubical arithmetic, but they still
give the correct biextension arithmetic. All in all this means that we have various ways to
represent biextension elements (the evaluation representation, the cubical representation)
and various ways to represent cubical points or cubical functions themselves, which makes
our framework quite flexible, and there could still be potential for optimisations.

An interesting direction would also be to look at the arithmetic of a general biextension 𝑋𝑓
associated to an isogeny rather than just a polarisation, and see if it can help to compute the
Weil-Cartier pairing 𝑒𝑓 and the generalised Tate pairing. It also could be helpful in deriving
isogeny formulas; see Section 6.2 for why the cubical arithmetic can help to understand
isogenies and their fibers.
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One can also wonder whether this point of view can help about pairing inversion (we saw
in Section 6.4 that it gave new insight on the dlp). From the point of view of biextensions,
the reduced Tate pairing inversion is just the computation of a 𝑞 − 1-th root in some theta
group. But taking root of elements is not faster than a dlp for a generic group.

Going beyond pairings, we hope that Section 6 has convinced the reader that the notion
of cubical points and cubical arithmetic is worthwhile to study, beyond just as a convenient
way to work out the biextension arithmetic and computing the monodromy pairings. Indeed,
some of our applications really need the full power of the cubical arithmetic. A cubical point
is an amalgamation of an abelian variety point with some extra data coming from an action
of 𝔾𝑚. Exploiting this action carefully through monodromy computations gave us back the
usual pairings. One can wonder whether there could be some cryptographic applications
which uses the cubical arithmetic directly, not just through pairing computations.
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