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Abstract. In this short note, we present a simplified (but slower) version Clapoti of Clapotis, whose full descrip-
tion will appear later in [PR23]. Let 𝐸/𝔽𝑞 be an elliptic curve with an effective primitive orientation by a quadratic
imaginary order 𝑅 ⊂ End(𝐸). Let 𝔞 be an invertible ideal in 𝑅. Clapoti is a randomized polynomial time algorithm
in 𝑂 ((logΔ𝑅 + log 𝑞)𝑂(1)) operations to compute the class group action 𝐸 ↦ 𝐸𝔞 ≃ 𝐸/𝐸[𝔞].

1. Introduction

Let 𝐸/𝔽𝑞, 𝑞 = 𝑝𝑒, be an elliptic curve with an effective primitive orientation by a quadratic imaginary order
𝑅 ⊂ End(𝐸), and 𝔞 be an invertible ideal in 𝑅. In this short note, we explain how to compute the class group action
by 𝔞 in polynomial time.

Although specific instantiations of the full class group action (rather than a restricted action) are known [BKV19;
FFK+23; CL23], as explained by Lorenz Panny in https://yx7.cc/blah/2023-04-14.html none of them is
asymptotically polynomial. By contrast, Clapoti is a polynomial time algorithm that applies to any orientation.

We use the now standard trick of going to higher dimension, initially introduced in the SIDH attacks [CD23;
MMPPW23; Rob23]. For this, we need to extend the class group action Cl(𝑅) on 𝐸 to higher dimension. In
[PR23], we build an anti-equivalence of categories between unimodular hermitian torsion free 𝑅-modules and
𝑁-similitudes on one hand, and principally polarised 𝑅-oriented (not necessarily primitively) abelian varieties 𝐴
isogeneous to 𝐸𝑛 and oriented 𝑁-isogenies on the other hand (with the restriction that the 𝑅-action on differentials
𝜌𝐴 on 𝐴 has to be equivalent to 𝜌𝑛

𝐸 when 𝑝 is inert in 𝑅, owing to the fact that in this case the Frobenius map
𝜋𝑝 ∶ 𝐸 → 𝐸(𝑝) is not represented by an ideal). This equivalence of categories is an extension to the oriented setting
of an equivalence of categories proved in the non oriented setting in [JKP+18; KNRR21]. The isogeny 𝜙𝔞 ∶ 𝐸 → 𝐸𝔞
of kernel 𝐸[𝔞] corresponds under this equivalence to the module map (𝔞, 𝒩(⋅)/ 𝒩(𝔞)) → (𝑅, 𝒩(⋅)), with 𝒩(⋅)
the norm form. This representation does not requires 𝔞 to be invertible, and can therefore also be used to represent
going up isogenies (by taking 𝔞 to be the conductor ideal); hence even in dimension 1 it is more general than the
class group action.

We then build an 𝑁-similitude (𝔞, 𝒩(⋅)/ 𝒩(𝔞)) ⊕ (𝔞, 𝒩(⋅)/ 𝒩(𝔞)) → (𝑅, 𝒩(⋅)) ⊕ (𝑅, 𝒩(⋅)) for a “nice” 𝑁
(e.g. smooth), which we translate back to a 𝑁-isogeny 𝐸 × 𝐸 → 𝐸𝔞 × 𝐸𝔞. By the converse of Kani’s lemma [Kan97],
such an isogeny also comes from an isogeny diamond in dimension 1. This allows us to give a simplified (but
potentially slower) version Clapoti (CLass group Action in POlynomial TIme) of Clapotis (CLass group Action
in POlynomial TIme via Sesquilinear forms), bypassing the equivalence of categories (see Proposition 2.1).

2. The algorithm

Let 𝐸/𝑘, 𝑘 = 𝔽𝑞, be an elliptic curve, and 𝑅 ⊂ End𝑘(𝐸) be a primitive orientation on 𝐸 by a quadratic imaginary
order of discriminant Δ𝑅. We will assume that the orientation is effective, meaning that we can evaluate an
explicit non trivial endomorphism 𝛿 (of polynomial norm) of 𝑅 on 𝐸 in polynomial time; such an efficient isogeny
representation always exist by [Rob22a]. (By polynomial time, we always mean in term of logΔ𝑅 and log 𝑞, and
by polynomial norm we always mean in term of Δ𝑅.) All other endomorphisms are of the form 𝑎+𝑏𝛿

𝑓 and can be
evaluated in polynomial time too (if they have polynomial norm) by the division algorithm of [Rob22b].

Let 𝐾 = Frac𝑅, and let 𝔞 be an integral invertible ideal in 𝑅 (of polynomial norm, which we can always assume
by reducing 𝔞 first if necessary). The ideal class group action gives an isogeny 𝜙𝔞 ∶ 𝐸 → 𝐸𝔞 of kernel 𝐸[𝔞]. We
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say that the 𝑁-torsion of 𝐸 is accessible if the primary parts of 𝐸[𝑁] lie in small extensions, i.e., extensions of
polynomial degree in 𝑂(log 𝑞).

Proposition 2.1. Let 𝔟, 𝔠 be two explicit integral ideals equivalent to 𝔞 of polynomial norm such that 𝒩(𝔟)+𝒩(𝔠) =
𝑁. Then there is a 𝑁-isogeny 𝐹 ∶ 𝐸 × 𝐸 → 𝐸𝔞 × 𝐸𝔞, whose kernel can be efficiently computed provided that 𝒩(𝔟) is
coprime to 𝒩(𝔠) and the 𝑁-torsion is accessible.

Proof. Since 𝔟 is equivalent to 𝔞, there exists 𝛽 ∈ 𝐾∗ such that 𝔟 = 𝛽𝔞; since 𝔟 is integral and 𝔞𝔞 = 𝒩(𝔞), we
have 𝛽 = 𝛾𝑏/ 𝒩(𝔞) for some 𝛾𝑏 ∈ 𝔞 of norm 𝒩(𝛾𝑏) = 𝒩(𝔟) 𝒩(𝔞). Conversely, given 𝛾𝑏 ∈ 𝔞, the ideal 𝔟 =
𝛾𝑏/ 𝒩(𝔞) ⋅ 𝔞 is an integral ideal equivalent to 𝔞 of norm 𝒩(𝛾𝑏)/ 𝒩(𝔞). Furthermore, since 𝔟𝔞 = (𝛾𝑏), the element
𝛾𝑏 can be efficiently computed as the smallest element in the lattice 𝔟𝔞. Likewise, fix a 𝛾𝑐 ∈ 𝔞 inducing the
equivalent ideal 𝔠.

Since 𝔞 lies in the class [𝔞]−1 of the class group, we have that 𝔠𝔟 is a principal ideal, and in fact 𝔠𝔟 = (𝛾𝑐𝛾𝑏/ 𝒩(𝔞)).
We remark that 𝛾𝑐𝛾𝑏 is in 𝔞𝔞 = (𝒩(𝔞)), so 𝛾 ≔ 𝛾𝑐𝛾𝑏/ 𝒩(𝔞) is a well defined endomorphism on 𝐸.

Now consider the following isogeny diamond:

𝐸 𝐸𝔞

𝐸𝔞 𝐸

𝜙𝔟

𝜙𝔠 𝜙𝔠

𝜙𝔟

which is commutative because 𝜙𝔠 ∘ 𝜙𝔟 = 𝜙𝔟 ∘ 𝜙𝔠 = 𝛾 = 𝛾𝑐𝛾𝑏/ 𝒩(𝔞). Kani’s lemma then gives an 𝑁-isogeny

𝐹 ∶ 𝐸 × 𝐸 → 𝐸𝔞 × 𝐸𝔞, 𝐹 = ( 𝜙𝔟 ̃𝜙𝔠
−𝜙𝔠 ̃𝜙𝔟

) . If 𝒩(𝔟) is coprime to 𝒩(𝔠), the kernel of 𝐹 is given by {(𝒩(𝔟)𝑃, 𝛾𝑃) ∣

𝑃 ∈ 𝐸[𝑁]}. �

Corollary 2.2. Let 𝔟, 𝔠 be two integral ideals equivalent to 𝔞 of coprime norms such that 𝒩(𝔟) + 𝒩(𝔠) = 𝑁 is
smooth and the 𝑁-torsion is accessible. Then 𝐸𝔞 can be recovered in polynomial time.

Proof. By Proposition 2.1, we have an explicit 𝑁-isogeny 𝐹 ∶ 𝐸 × 𝐸 → 𝐸𝔞 × 𝐸𝔞, which can be computed in
polynomial time.

We now need to distinguish between 𝐸𝔞 and 𝐸𝔞. The first copy of 𝐸 has an isogeny of degree 𝒩(𝔟) to 𝐸𝔞 and
an isogeny of degree 𝒩(𝔠) to 𝐸𝔞, and this relationship is reversed for the second copy of 𝐸. Taking a small ℓ
such that these norms are different modulo ℓ, we can use the Weil pairing on the ℓ-torsion to distinguish the two
isogenies. �

Remark 2.3. When 𝒩(𝔟) is not coprime to 𝒩(𝔠), we still have an isogeny diamond. The description of the kernel
of a general isogeny diamond is given in [Kan97, Corollary 2.11], but it is a priori not obvious how we might
recover the kernel of 𝐹 without knowing the action of 𝜙𝔟, 𝜙𝔠 on 𝐸[𝑁] first. However, in Proposition 2.1, 𝐹 comes
from a module map, and in [PR23], we explain how to recover the kernel associated with an arbitrary module map,
so in that case we can recover the kernel of 𝐹 even if the coprimality condition of Proposition 2.1 and Corollary 2.2
is not satisfied.

Let us explain the case of the specific isogeny 𝐹 to illustrate the usefulness of the module representation. We
have 𝔟 = 𝛾𝑏

𝒩(𝔞)𝔞, so the multiplication map 𝛾𝑏/ 𝒩(𝔞)∶ (𝔞, 𝒩(⋅)/ 𝒩(𝔞)) → (𝔟, 𝒩(⋅)/ 𝒩(𝔟)) is an isomorphism 𝛼𝑏
of unimodular Hermitian modules. The isogeny 𝜙𝔟 ∶ 𝐸 → 𝐸𝔞 corresponds from the module point of view to the
post-composition of 𝛼𝑏 with the natural 𝒩(𝔟)-similitude given by the inclusion (𝔟, 𝒩(⋅)/ 𝒩(𝔟)) → (𝑅, 𝒩(⋅)).

Likewise, the isogeny𝐹 fromProposition 2.1 corresponds to a𝑁-similitude𝜓∶ (𝔞, 𝒩(⋅)/ 𝒩(𝔞))⊕(𝔞, 𝒩(⋅)/ 𝒩(𝔞)) →
(𝑅, 𝒩(⋅)) ⊕ (𝑅, 𝒩(⋅)).

The anti-equivalence of categories is exact, so the kernel of 𝐹 corresponds to the cokernel of𝜓. Fix two generators
of 𝔞, these generators induce surjective maps 𝑅2 ↠ 𝔞, 𝑅2 ↠ 𝔞. Pre-composing 𝜓 with these epimorphisms, we get
a module map ̃𝜓 ∶ 𝑅4 → 𝑅2, whose cokernel is exactly the cokernel of 𝜓. The map ̃𝜓 is given by a 4 × 2 matrix
of elements of 𝑅, hence of endomorphisms on 𝐸, and corresponds on the abelian variety side to a morphism
Φ̃ ∶ 𝐸2 → 𝐸4. By exactness, the cokernel coker ̃𝜓 = coker𝜓, which as we have seen corresponds to Ker𝐹, is given
by Ker Φ̃ which we can explicitly compute since the orientation by 𝑅 is effective on 𝐸.
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Remark 2.4. Using 𝜙𝔟, we can transfer the effective orientation on 𝐸 to an effective orientation on 𝐸𝔞 by using
the division algorithm of [Rob22b], as explained in [MW23, Lemma 6.11].

It remains to find ideals 𝔟, 𝔠 satisfying the conditions of Corollary 2.2. First we handle the coprimality condition.

Lemma 2.5. Given 𝔞 ⊂ 𝑅 an invertible ideal, it is possible to find in randomized polynomial time two equivalent
integral ideals 𝔟, 𝔠 whose norms are polynomial in Δ𝑅 and coprime to each other.

Proof. Let 𝔥 be an integral ideal of polynomial norm, we explain how to find in polynomial time an ideal equivalent
to 𝔞 and coprime to 𝔥.

Given an element 𝑎 in 𝔞−1, then 𝑎𝔞 is integral, and it is coprime to 𝔥 iff for each of the finitely many prime ideals
𝔥 ⊂ 𝔭𝑖 ⊂ 𝑅 containing 𝔥, 𝑎 ∉ 𝔭𝑖𝔞−1. By the CRT, 𝜋∶ 𝔞−1 → ∏ 𝔞−1/𝔭𝑖𝔞−1 is surjective, and any 𝑎 ∈ 𝔞−1 such
that 𝜋𝑖(𝑎) ≠ 0 for all 𝑖 gives an ideal 𝑎𝔞 coprime to 𝔥. If the primes above 𝔥 are known, we can find a suitable 𝜋(𝑎)
in the codomain by linear algebra, and then lift it to 𝔞−1.

Otherwise, we turn to a randomized algorithm. Fix a bound 𝐵 large enough (but still polynomial) so that the
image of 𝜋 restricted to the ball of radius 𝐵 is close to uniform, and sample uniformly in 𝔞−1 with bound 𝐵 (e.g.
using [DLRW23, Lemma 4.2.1]) to obtain our required 𝑎 in random average polynomial time. (As an optimisation:
failed random samples, i.e. samples 𝑎 ∈ 𝔞−1 such that 𝑎𝔞 is not coprime to 𝔥 give informations on the primes
above 𝔥, which we can use to refine the sampling.)

We apply this algorithm to 𝔥 = 𝒩(𝔞), and take 𝔟 = 𝔞, 𝔠 = 𝑎𝔞. �

Remark 2.6. In Lemma 2.5, we need 𝔞 to be invertible. If 𝔣 = 𝔣 is the conductor ideal, all elements in 𝔣 have norm
divisible by 𝒩(𝔣)2, so using Proposition 2.1 with 𝔞 = 𝔣, we can only build 𝑁-isogenies with 𝒩(𝔣) ∣ 𝑁.

We now need to adjust 𝔟, 𝔠 so that 𝒩(𝔟)+𝒩(𝔠) is nice. In this note, we are not looking for an efficient algorithm,
just a provably polynomial time one, so we sidestep this problem by going to dimension 8 as in [Rob23].

Proposition 2.7. Let 𝔟, 𝔠 two integral ideals equivalent to 𝔞 of norm coprime to each other. Let 𝑁 be any integer
𝑁 ≥ 𝒩(𝔟) 𝒩(𝔠). Then, possibly replacing 𝑁 by 4𝑁, there exists an 𝑁-isogeny 𝐹 ∶ 𝐸8 → 𝐸4

𝔞 × 𝐸4
𝔞 .

Proof. Since 𝒩(𝔟) is coprime to 𝒩(𝔠), every integer 𝑁 is an integral linear combination 𝑁 = 𝑢 𝒩(𝔟) + 𝑣 𝒩(𝔠). If
𝑁 ≥ 𝒩(𝔟) 𝒩(𝔠), we may find 𝑢, 𝑣 positive by the pigeonhole principle. Let 𝑥 be an element of the Lipschitz quater-
nion order whose norm is 𝑢 and 𝑦 an element whose norm is 𝑣. (By [PT18], 𝑥 and 𝑦 can be found by a randomized
polynomial time algorithm.) We identify 𝑥, 𝑦 with their 4 × 4 integral matrix, hence with endomorphisms of 𝐸4

that commute with 𝜙𝔟 and 𝜙𝔠.
Let 𝑧 = 𝑦𝑥, by metacommutation we can write 𝑧 = 𝑥′𝑦′ where 𝒩(𝑥′) = 𝒩(𝑥), 𝒩(𝑦′) = 𝒩(𝑦), but 𝑥′, 𝑦′ may

live in the Hurwitz quaternionic order. The Hurwitz order has an Euclidean division (for both sides), so all ideals
are principals and finding a generator can be done efficiently by the Euclidean algorithm. If 𝑢 = 𝒩(𝑥), 𝑣 = 𝒩(𝑦)
are coprime, we can compute 𝑥′ as the left gcd of 𝑧 and 𝒩(𝑥) and set 𝑦′ = 𝑥′−1𝑧; the coprimality condition ensures
that 𝒩(𝑥′) = 𝒩(𝑥),

Since the Liptschitz order is of index 2 inside the maximal Hurwitz order, replacing 𝑥′, 𝑦′ by 2𝑥′, 2𝑦′ if necessary
(hence also multiplying 𝑥, 𝑦 by 2 and 𝑢, 𝑣, 𝑁 by 4), we can assume that 𝑥′, 𝑦′ are also given by integral coefficients,
i.e. live in the Lipschitz order.

Consider the isogeny diamond:

𝐸4 𝐸4
𝔞

𝐸4
𝔞 𝐸4

𝜙𝔟𝑥

𝜙𝔠𝑦′ 𝑦𝜙𝔠

𝑥′𝜙𝔟

From the diamond in Proposition 2.1 and the construction of 𝑥, 𝑦, 𝑥′, 𝑦′, we do have commutativity, hence Kani’s
lemma yields a 𝑁-isogeny. �

Remark 2.8. If 𝑥′, 𝑦′ do not lie in the Liptschitz order, rather than replacing 𝑁 by 4𝑁, we can still build an isogeny
diamond associated to 𝑦𝜙𝔠 ∘ 𝜙𝔟𝑥 since 𝑢𝑑1 is coprime to 𝑣𝑑2; but the bottom left element of the diamond will not
be isomorphic to 𝐸4

𝔞 anymore. Ensuring that 𝑥′, 𝑦′ are in the Lipschitz order (at the cost of eventually replacing 𝑁
by 4𝑁) has the nice side effect that we compute 𝐸𝔞 and 𝐸𝔞 at the same time in one step.
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Theorem 2.9. The isogeny 𝜙𝔞 ∶ 𝐸 → 𝐸𝔞 can be computed in randomized polynomial time.

Proof. Use Lemma 2.5 to sample 𝔟, 𝔠 of coprime norms. Take 𝑁 > 𝒩(𝔟) 𝒩(𝔠) coprime to each and such that 𝑁 is
smooth and the 𝑁-torsion is accessible (e.g. take 𝑁 powersmooth).

Replacing 𝑁 by a divisor of it if necessary, we can assume that the 𝑢, 𝑣 of the proof of Proposition 2.7 are coprime
to each other, and so also to 𝑁, hence in particular that 𝑢 𝒩(𝔟) is coprime to 𝑣 𝒩(𝔠).

Assume first that we do not need to change 𝑁 by 4𝑁 in Proposition 2.7. With the notations of Propositions 2.1
and 2.7, the composition 𝑦𝜙𝔠 ∘ 𝑥𝜙𝔟 = 𝑦𝑥 diag(𝛾) in the isogeny diamond is explicit. Thus we can recover the
kernel of 𝐹 as in the proof of Proposition 2.1, evaluate 𝐹 and recover 𝐸𝔞, 𝐸𝔞, and distinguish the two by using
pairings as in Corollary 2.2.

Since we know how to evaluate 𝐹 and ̃𝐹, we know how to evaluate 𝑥𝜙𝔟, 𝑦′𝜙𝔠 and their duals, hence some explicit
integer multiple of 𝜙𝔟, 𝜙𝔠 and their duals, hence the isogenies 𝜙𝔟, 𝜙𝔠 and their duals by the division algorithm
of [Rob22b]. The isogeny 𝜙𝔞 differ from 𝜙𝔟 by the non integral endomorphism 𝛾𝑏/ 𝒩(𝔞) ∈ 𝐾, so we can also
evaluate 𝜙𝔞 on suitable torsion points, hence recover 𝜙𝔞 by [Rob22a].

Now in the case where we need to change 𝑁 by 4𝑁 in Proposition 2.7, in the isogeny diamonds we have isogenies
of degrees whose gcd is 4. Assume for simplicity that our original 𝑁 was odd, then we can still recover the odd part
of the kernel Ker𝐹, and we only miss Ker𝐹[4].

By Remark 2.3, using our module description of 𝐹 we can still recover its full kernel. In our current simplified
description, a solution is to simply try all 𝑂(1) possible kernels Ker𝐹[4] until a splitting isogeny is found. We then
verify that the splitting is correct as follows (heuristically there will be only one splitting among all our choices
anyway). By the above reasoning, we know how to evaluate 𝜙𝔠 and 𝜙𝔟. The decomposition is correct if and only if
the composition 𝜙𝔠 ∘ 𝜙𝔟 gives the endomorphism 𝛾 defined in the proof of Proposition 2.1.

An alternative is to use Remark 2.8 to keep using 𝑁 rather than 4𝑁. The downside is that we give up obtaining
𝐸𝔞 at the same time as 𝐸𝔞. �

Remark 2.10 (An heuristic algorithm in dimension 4). Assume that 𝔟, 𝔠 are of coprime norm.
We canwork in dimension 4 in Proposition 2.7wheneverwe can find positive𝑢, 𝑣 such that𝑁 = 𝑢 𝒩(𝔟)+𝑣 𝒩(𝔠)

and 𝑢, 𝑣 are sums of two squares. In this case we can find 𝑥, 𝑦 ∈ ℤ[𝑖] (the Gaussian integers) of norm 𝒩(𝔟), 𝒩(𝔠)
(efficiently if these norms are prime) and represent them by 2 × 2-integral matrices (that commute with each other).
Taking 𝑁 to be coprime to 𝒩(𝔟) and 𝒩(𝔠), we can assume as inTheorem 2.9 the degrees 𝑢 𝒩(𝔟) and 𝑣 𝒩(𝔠) to
be coprime, so the kernel of the isogeny 𝐹 associated with the corresponding diamond is easy to describe via the
endomorphism 𝑦𝑥 diag(𝛾). (Like in Remark 2.3, we could also relax the coprimality condition by using the module
representation.)

Heuristically, we expect 𝑢 to be a prime congruent to 1 modulo 4 with probability Ω(1/ log𝑁), and both 𝑢, 𝑣
to satisfy these conditions with probability Ω(1/ log2 𝑁). There are at least 𝑁

𝒩(𝔟) 𝒩(𝔠) possible couples (𝑢, 𝑣), so we
expect heuristically to find a solution as soon as 𝑁 = Ω(𝒩(𝔟) 𝒩(𝔠) log2(𝒩(𝔟) 𝒩(𝔠))).

If we cannot find suitable 𝑢, 𝑣 for given 𝑁, 𝔟, 𝔠, we can simply tweak 𝑁 or (if we want to find 𝑁 as small as
possible) rerandomize 𝔟, 𝔠 until a suitable solution is found.

By Minkowski’s bound, we know that there exists two linearly independent elements 𝑤1, 𝑤2 in 𝔞 such that
‖𝑤1‖‖𝑤2‖ ≤ 𝒩(𝔞)Δ1/2

𝑅 . Taking ‖𝑤1‖ ≤ ‖𝑤2‖, and using the fact that𝒩(𝑥) = ‖𝑥‖2 and that if 𝑥 ∈ 𝔞,𝒩(𝑥) ≥ 𝒩(𝔞),
we find that ‖𝑤1‖ ≤ 𝒩(𝔞)1/2Δ1/4

𝑅 and ‖𝑤2‖ ≤ 𝒩(𝔞)1/2Δ1/2
𝑅 . So the reduced (i.e. the minimal) ideal equivalent

to 𝔞 is of norm ≤ Δ1/2
𝑅 . And there are many equivalent ideals of norm 𝑂(Δ𝑅), so we can expect to find 𝔟, 𝔠 of

coprime norm such that 𝒩(𝔟) 𝒩(𝔠) = 𝑂(Δ3/2
𝑅 ), hence embed the isogeny 𝐸 → 𝐸𝔞 into a dimension 4 𝑁-isogeny

whenever 𝑁 ≈ Δ3/2
𝑅 log2 Δ𝑅. If the lattice 𝔞 is not too skewed (so that ‖𝑤2‖ ≈ ‖𝑤1‖), we can even expect to find

two ideals 𝔟, 𝔠 of coprime norm ≈ Δ1/2
𝑅 , which lowers 𝑁 to 𝑁 ≈ Δ𝑅 log2 Δ𝑅.

Remark 2.11. A similar strategy as in Theorem 2.9 applies whenever we can find two isogenies 𝑓 , 𝑔 ∶ 𝐸1 → 𝐸2 of
coprime degrees 𝑁1, 𝑁2 such that the endomorphism 𝛾 = ̃𝑔 ∘ 𝑓 on 𝐸1 is known. As in Proposition 2.1, we use the
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isogeny diamond associated with the pushforward square

𝐸 𝐸2

𝐸′
2 𝐸

𝑓

𝑔′ �̃�
̃𝑓 ′

where 𝑔′ ∶ 𝐸 → 𝐸′
2 is the isogeny with kernel 𝑓 −1(Ker ̃𝑔), and Ker ̃𝑓 ′ = 𝑔′(Ker ̃𝑔 ∘ 𝑓 ).

Then for any 𝑁 > 𝑁1𝑁2, we can embed 𝑓 , 𝑔 into an 𝑁-isogeny 𝐹 in dimension 8 as in Proposition 2.7 (or
possibly dimension 4 as in Remark 2.10), whose kernel 𝐾 can be recovered from the action of 𝛾 on 𝐸[𝑁].

A situation where this might be useful is, as a variant to the KLPT algorithm, to compute the Deuring cor-
respondence from an ideal 𝐼 to an isogeny 𝜙𝐼 ∶ 𝐸1 → 𝐸2 between two supersingular curves over 𝔽𝑝2, when we
have an effective representation of End𝔽𝑝2(𝐸1). We sample two ideals 𝐽1, 𝐽2 equivalent to 𝐼 of coprime reduced
norms as in Lemma 2.5 and embed 𝜙𝐼 into a 𝑁-isogeny 𝐹 of dimension 8 via the isogeny diamond associated with
the decomposition 𝐽2𝐽1 = 𝐽′

1𝐽′
2 for some ideals 𝐽′

1, 𝐽′
2 of reduced norm 𝒩(𝐽1), 𝒩(𝐽2) respectively. Compared to

[Wes22], this gives a proven polynomial time version of an IdealToIsogeny algorithm without GRH (at the cost
of going to dimension 8 instead of staying in dimension 1).

Heuristically, we can expect to find 𝐽1, 𝐽2 of norm 𝑁1, 𝑁2 ≈ √𝑝, and compute 𝜙𝐼 via a 𝑁-isogeny in dimension 8
with 𝑁 ≈ 𝑝 (resp. of dimension 4 with 𝑁 ≈ 𝑝 log2 𝑝).

(As in the 𝑅-oriented case, the isogeny 𝐹 is represented by an explicit module map, so we can compute its full
kernel 𝐾 even in the non coprime degrees case. Thus we can relax the coprimality condition on 𝐽1, 𝐽2 at the expense
that 𝑁 will need to be divisible by the gcd of the reduced norms of 𝐽1, 𝐽2.)

Remark 2.12 (Splitting and pushforward of isogenies). Let 𝑓1 ∶ 𝐸0 → 𝐸1 be a 𝑑1-isogeny, 𝑓2 ∶ 𝐸1 → 𝐸2 a
𝑑2-isogeny, with 𝑑1 coprime to 𝑑2, and let 𝑓 = 𝑓2 ∘ 𝑓1. Assume that we know an efficient representation of 𝑓, meaning
that we can evaluate it on points efficiently. Then the same techniques as in Remark 2.11 allow to find in polynomial
time an efficient representation of 𝑓1 and 𝑓2. Indeed Proposition 2.1 works too if 𝛾 is an isogeny rather than an
endomorphism, we just need to be able to evaluate it on points to recover Ker𝐹.

In fact, it suffices to find a 𝑢-isogeny 𝑥 ∶ 𝐴𝑢 → 𝐸𝑚
0 and a 𝑣-isogeny 𝑦 ∶ 𝐸𝑚

2 → 𝐴𝑣, in some dimension 𝑚,
such that we have an efficient representation of 𝑥, 𝑦 (for instance take 𝑚 = 4 and use quaternion matrices). We
apply a variant of Proposition 2.1 to recover diag(𝑓1) ∘ 𝑥 and 𝑦 ∘ diag(𝑓2) and then apply the division algorithm to
recover 𝑓1, 𝑓2. Indeed, the division algorithm applies for any isogeny 𝑥 with an efficient representation: then ̃𝑥 has
an efficient representation (by the same argument as in [Rob22b, § 5.1]), so we can compose on the right by ̃𝑥 to
reduce to a division by an integer.

We remark that 𝑓 also decomposes uniquely as 𝑓 = 𝑓 ′
1 ∘ 𝑓 ′

2 where 𝑓 ′
1 is a 𝑑1-isogeny and 𝑓 ′

2 a 𝑑2-isogeny.
Furthermore 𝑓 ′

2 is the pushforward of 𝑓2 by ̃𝑓1, and ̃𝑓 ′
1 is the pushforward of ̃𝑓1 by 𝑓2. It follows that if we know an

efficient representation of 𝑓1 ∶ 𝐸0 → 𝐸1 a 𝑑1-isogeny and of 𝑓2 ∶ 𝐸0 → 𝐸2 a 𝑑2-isogeny with 𝑑1 prime to 𝑑2, then
since we can derive an efficient representation of ̃𝑓1 ∶ 𝐸1 → 𝐸0, hence of 𝑓 = 𝑓2 ∘ ̃𝑓1, we can compute in polynomial
time an efficient representation of the pushforwards 𝑓 ′

1 of 𝑓1 by 𝑓2 and 𝑓 ′
2 of 𝑓2 by 𝑓1.

3. The full algorithm

The algorithm presented in these notes (at least the dimension 8 version) is impractical. The full Clapotis
algorithm describes several improvements.

First, there is no real need to go to dimension 8 as in Proposition 2.7; the endomorphism order 𝑅 in End(𝐸) is
of rank 2 (which we do not even exploit in Proposition 2.7), which is already large enough to devise an algorithm
to find suitable ideals 𝔟, 𝔠 for Corollary 2.2 encoding a 𝑁-isogeny (for 𝑁 large enough). This allows us to work in
dimension 2. For instance, for CSIDH-1024 [CLMPR18], taking a random prime 𝑝 ≡ 3 mod 4 of 1024 bits and
a random prime ideal 𝔞 of 512 bits, our algorithm implemented in Pari/GP finds a 𝐵-powersmooth isogeny in
dimension 2 computing the action of 𝔞 with 𝐵 = 2591.

Still, a 2591-isogeny in dimension 2 is of very large degree 6713281. So for practical specific instantiations of
Clapotis, it would be convenient to be able to choose 𝑁 = 2𝑚 a large power of 2, and a CSIDH-prime 𝑝 with
some accessible 2𝑡 torsion (and extra accessible smooth torsion), and decompose the isogeny 𝐹 into blocks of



6 AUREL PAGE AND DAMIEN ROBERT

2𝑡-isogenies a la SQISign [DKLPW20; DLW22]. As a first step for this decomposition, we need a way to describe
the intermediate abelian surfaces; this is where we can leverage our equivalence of categories described in Section 1.
Indeed, we can describe the intermediate principally polarised abelian surfaces as explicit submodules of rank 2
inside the Hermitian module (𝑅, 𝒩(⋅)) ⊕ (𝑅, 𝒩(⋅)).
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