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Abstract. Given two elliptic curves over Fq, computing an isogeny map-
ping one to the other is conjectured to be classically and quantumly hard.
This problem plays an important role in the security of elliptic curve
cryptography. In 2024, Galbraith applied recently developed techniques
for isogenies to improve the state-of-the-art for this problem.

In this work, we focus on computing ascending isogenies with respect
to an orientation. Our results apply to both ordinary and supersingu-
lar curves. We give a simplified framework for computing self-pairings,
and show how they can be used to improve upon the approach from
Galbraith to recover these ascending isogenies and eliminate a heuristic
assumption from his work. We show that this new approach gives an im-
provement to the overall isogeny recovery when the curves have a small
crater (super-polynomial in size). We also study how these self-pairings
affect the security of the (PEARL)SCALLOP group action, gaining an
improvement over the state-of-the-art for some very particular parameter
choices. The current SCALLOP parameters remain unaffected.

1 Introduction

Tate’s isogeny theorem [30] states that two elliptic curves defined over Fq have
the same number of points if and only if they are isogenous. To date, it is thought
to be a hard problem to recover an isogeny between two fixed elliptic curves.
The case where these two curves are supersingular greatly concerns modern-
day isogeny-based cryptography, however, the case where they’re ordinary still
remains pertinent to elliptic curve cryptography and pairing cryptography. In
1999, Galbraith [13] gave algorithms solving the ordinary case, and then im-
proved upon the worst case complexities in [14] using Kani’s lemma.

In the later work, given elliptic curves on the floor of an isogeny volcano,
Galbraith solves the problem by first computing paths up to the crater from
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each curve, and then solving a meet-in-the-middle search on the crater to com-
plete the path. In this work we focus on how to compute the paths up to the
crater, these paths are called vertical or ascending isogenies. In Section 3.2 we
give a new method to determine an ascending isogeny when the endomorphism
ring is known. In Section 4, we make use of the work from Castryck et al [5],
extended by Macula and Stange in [20], that shows how self-pairings can be
used to recover unknown horizontal isogenies. These are pairings that can be
evaluated using only one elliptic curve point and give a non-trivial output, i.e.
e(P, P ) ̸= 1. We give a simplified framework for these pairings, and show how
they can be used to recover vertical isogenies as well. In Section 4.2 we give a
simplified proof of a special case of a result from [20] where we use only the stan-
dard Weil pairing rather than sesquilinear pairings. This proof is designed to be
accessible to non-experts. We carefully characterize the cases when the order of
the torsion subgroup does or does not divide the conductor, as well as the addi-
tional case when it divides the overall degree of the secret isogeny. This increases
the available torsion subgroups on which we can gain partial information about
how the isogeny acts. We then show how to encode the missing information into
a conic equation, and treat the case of degenerate and non-degenerate conics
individually.

With this new toolkit to compute unknown vertical isogenies, we consider the
computational isogeny problem on certain curves with large volcanos (for exam-
ple, pairing-friendly ordinary elliptic curves). In this case, the isogeny volcano
is tall and the crater is very small (usually of size 1). The main result of [14] is
to show that this case can be solved in Õ(q1/4) field operations. In Section 5 we
first show how to eliminate a heuristic assumption (about Elkies primes) from
Galbraith’s work using our pairing construction. We then detail an algorithm for
solving the computational isogeny problem in volcanoes that are tall but with
crater larger than polynomial size. Denote by ∆ the discriminant of the maximal
order and suppose |∆| = qa for some 0 < a < 1. Write t2−4q = N2∆, where the
curves in the isogeny class have q + 1− t points. The state-of-the-art algorithm
from Galbraith [14] has complexity Õ(h0N

1/2) operations over Fq when the class

number, h0, is small enough, which works out as Õ(q(1+a)/4) operations when a
is small. Our new approach using self-pairings gives an improved complexity of
Õ(q(1−a)/4) operations, for most integers ∆.

In addition, in Section 2.4, we consider the case of volcanoes with small (but
super-polynomial) conductor. The result is implicit in [13] but has not been
explicitly stated anywhere. We show these two improvements compared to [14]
in Figure 1.

Lastly, in Section 6, we demonstrate a second application of our approach
to computing vertical isogenies. In this section our focus is on supersingular
curves. Namely, we outline an attack on the SCALLOP group action for maximal
orders with (almost) smooth discriminants. We show that if the fundamental
discriminant ∆ has a smooth factor of size at least ∆1/2+ϵ, then our isogeny
recovery approach from self-pairings potentially gives an improvement over the
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Fig. 1. The state-of-the-art from Galbraith is plotted in blue. The two improvements
that will be presented in this paper are plotted in red.

state-of-the-art classical attacks. The exact complexity of our attack depends on
the exact number and size of the prime factors of the smooth part of ∆.

Self pairings were introduced in [5] as a way to attack isogeny class group
actions; they were then extended in [20]. However, they only apply when the
degree d of the unknown isogeny ϕ : E0 → E1 is known. A key feature of our
attacks in Section 5 and Section 6 is that we use the self-pairings only to ascend
the volcano, and use this to compute an isogeny whose degree is not known. We
can always recover the degree of the going up isogeny (and it is usually part of
the SCALLOP parameter anyway).

2 Isogeny graphs and previous results on ascending
isogenies

We study elliptic curves over a finite field Fq. In some sections of the paper the
focus is on ordinary curves and in some sections on supersingular curves.

In the ordinary case, the fundamental problem is to construct an isogeny
ϕ : E0 → E1 between two given curves E0, E1 over Fq. We are mainly interested
in the case when ϕ is a vertical degree-N isogeny, which means one of the orders
End(E0),End(E1) has index N in the other.

We will sometimes use the notation that End(E0) and End(E1) have discrim-
inants ∆0, ∆1 respectively, and write ∆ for the discriminant of the imaginary
quadratic field K = End(E0) ⊗ Q. Note that ∆i = f2i ∆ for i = 0, 1 and the
integer fi is called the conductor of the ring End(Ei). Sometimes we will abuse
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notation and talk of the discriminant of a curve E when we mean the discrimi-
nant of End(E).

We write πq for the q-power Frobenius map on E0 and E1. If R is a quadratic
imaginary order, we will also often denote by ∆R = ∆(R) its discriminant, and
likewise if γ ∈ R we will denote by ∆γ = ∆(γ) the discriminant of its minimal
polynomial (which is also the discriminant of Z[γ]).

When we talk about supersingular curves we will always take them to be
defined over Fp2 and we will assume that we are in the isogeny class of maximal
curves, meaning that #E(Fp2) = (p+ 1)2.

2.1 Isogeny volcanos

Let E0 be an elliptic curve over Fq. Let S be a set of primes ℓ coprime to the
characteristic of Fq. The isogeny graph of E0 with isogeny degrees in S is the
graph whose vertex set is elliptic curves E over Fq that are isogenous to E0,
and there is an edge {E,E′} if there exists an isogeny ψ : E → E′ such that
deg(ψ) ∈ S. In the case S = {ℓ} we call the graph the ℓ-isogeny graph.

The connected components of the ℓ-isogeny graphs of ordinary elliptic curves
have a specific structure. They constitute a cycle where each vertex of the cycle
is the root of a tree. As can be seen in the example given in Figure 2, this
structure resembles a volcano.

Fig. 2. Example 2-isogeny volcano of depth 3.

The vertices forming the top cycle of the volcano are often called the crater, or
the surface of the volcano. The leaf vertices of the trees are called the floor of the
volcano. A set of vertices at the same distance from the crater are called a level.
The distance of a vertex on the floor from the cycle is called the depth. Vertices
in the same level correspond to curves whose endomorphism ring has the same
discriminant. Vertices on the crater correspond to curves whose discriminant is
equal to the fundamental discriminant, ∆ (or at least to a ring whose conductor
is not divisible by ℓ). In an ℓ-isogeny volcano, a vertex in level k will correspond
to a curve with discriminant ∆′ = ℓ2k∆.

In the ordinary case we will also consider volcanos with respect to a set S
consisting of all primes dividing the conductor of the ring Z[πq].

The Computational Isogeny Problem asks to recover an isogeny between two
given elliptic curves, E0, E1. Taking a walk in the ℓ-isogeny volcano, where the
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starting point is the vertex associated to E0 and the ending point is the vertex
associated to E1, can be seen as a special case of this problem where the recovered
isogeny is a power of ℓ.

2.2 The 1999 algorithm

In [13] Galbraith gave an algorithm that computes an isogeny between two ordi-
nary elliptic curves. For two elliptic curves E0, E1, the approach used was to take
a path starting at each of these curves that climbs up to the crater using modular
polynomials. Once on the crater, a meet-in-the-middle computation determines
how to join the two paths. If N is the largest prime divisor of the conductor and
h is the class number of the maximal order then equation (5) of Section 6 of [13]
states the complexity of the algorithm as

O(N3(log(N) + log(q)) +
√
h(log(h)2 + log(h) log(q)5)

+ log(h) log(q)6 + log(q)8/ log log(q))
(1)

field operations. When N is constant or polynomial in log q, the complexity is
Õ(q1/4). The worst case is when h is small and N ≈ q1/2, in which case the
complexity is Õ(q3/2) operations over Fq.

2.3 The 2024 algorithm

Recently, Kani’s lemma [18] was leveraged in some attacks [3, 21, 26] that were
able to reconstruct a secret isogeny given some information about how the
isogeny acts on a sufficiently large torsion group. Galbraith used this idea con-
structively in his recent paper [14] where he improves upon the worst case com-
plexity of his previous work [13].

Instead of using modular polynomials to walk up the volcano from each
of E0, E1 to the crater, Galbraith uses Kani’s lemma to reconstruct the path.
Suppose that N divides the conductor and that E0 is directly above E1 in the
sense that there is a descending N -isogeny ϕ : E0 → E1 (see Figure 3). Then
if we know ϕ on E0[M ] for some suitable torsion group, the Kani construction
can provide a representation of ϕ. Since we do not have any way to compute ϕ
on E0[M ], the method requires guessing how the isogeny acts on some torsion
points. In other words, for several small primes ℓ | M , given an ℓ-torsion basis
(P0, Q0) on E0, we need to guess ϕ(P0), ϕ(Q0). It is explained in [14] that we
need M ≈ N1/2.

To get the desired complexity we need the number of guesses for ϕ(P0), ϕ(Q0)
to be at most O(M). Since there are M2 choices for each M -torsion point, this
seems to be a challenge. In [14] it is suggested to choose M to be a product of
Elkies primes ℓ, namely primes such that E0[ℓ] has a Frobenius eigenbasis with
distinct eigenvalues, so πq(P0) = uP0 and πq(Q0) = qu−1Q0 where πq is the
q-power Frobenius and u ∈ (Z/ℓZ)∗. By choosing P1 and Q1 in the appropriate
eigenspaces of E1[ℓ], we know that P1 = [λ]ϕ(P0) and Q1 = [ν]ϕ(Q0) for some
integers λ, ν. Using the Weil pairing one can reduce to a single unknown integer,
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E1

E0

ϕ

Fig. 3. Two curves at different levels of a volcano.

hence reducing the problem to trying O(ℓ) values. The drawback of this approach
is that one needs to apply heuristic assumptions about the distribution of Elkies
primes, see [14, Assumption 1] or [3, Section 10]).

For each guess, we run the Kani attack. If it returns a viable isogeny, then
we can stop. Otherwise we repeat with a new guess. To run the Kani attack we
have to choose our integer M so that M −N is the sum of integer squares. One
can write all positive integers as a sum of 4 squares, but the attack is faster if
one can write M −N as a sum of two squares.

2.4 Precise analysis in the case of small conductor

One of the observations in [14] is that it is sometimes more efficient to compute
descending isogenies than ascending isogenies. Hence, [14] advocates descending
to the floor, and solving the isogeny problem there using a meet-in-the-middle
algorithm. This results in complexity Õ(q1/4) operations for all conductors up
to q1/8. This is seen in Figure 1 with the flat blue line on the left hand side of
the figure.

However, as already implied by equation (1), one can do better. We reproduce
the analysis in this case.

First we recall the process for computing ascending and descending isoge-
nies. In [13] ascending was done using modular polynomials and required cubic
complexity. In [14] it is shown how to compute descending isogenies more effi-
ciently (at least, asymptotically) when the group order is known by generating
random kernel points. Given a curve over Fq with q+1− t points and such that

ℓ4 | t2−4q, computing an ascending ℓ-isogeny may require Õ(ℓ3) field operations,
while computing a descending ℓ-isogeny takes Õ(ℓ2) operations (see [14, Sect.
2.3] for details). It is possible, however, to compute the ascending isogeny in
Õ(ℓ2) operations as well. This will be detailed in Section 3.2. Now recall that we
are trying to recover an isogeny, ϕ : E0 → E1 where [End(E0) : End(E1)] = N
and End(E0) = OK , i.e. E0 lies on the crater. The approach from [13] is to take a
walk up to the crater and then solve the problem there using meet-in-the-middle.

Suppose N = qb for a number 0 < b < 1/2. As noted in [14, Section 2.3],
walking up to the crater can always be done in Õ(q2b) finite field operations
(even with the Õ(ℓ3) ascending algorithm from [14]). Call this ending curve E2,
so we have recovered the ascending isogeny φ : E1 → E2 (see Figure 2.4 for
reference).
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Fig. 4. Volcano where E0 is not directly above E1.

The class number of the crater is around
√

|∆0|. Thus since N2∆0 = t2−4q,

we get that the class number will be h0 = Õ(
√
q/N2) = Õ(q(1−2b)/2). Hence the

meet-in-middle computation to recover the map ψ : E2 → E0 on the crater will
cost

√
h0 = Õ(q(1−2b)/4).

The total complexity to recover φ̂ ◦ ψ̂ : E0 → E1 therefore comes from
the cost to walk up to the crater and then conduct meet-in-the-middle which
is Õ(q2b) + Õ(q(1−2b)/4) operations over Fq. When 0 < b < 1/10, we get that
the meet-in-the-middle computation is dominating, giving a total complexity of
Õ(q(1−2b)/4). Otherwise, when b ≥ 1/10, the total complexity will be Õ(q2b)
operations. The details are given in Algorithm 1.

Algorithm 1: Isogeny recovery in volcanoes with small conductor

Input : elliptic curves E0, E1 such that End(E0) = OK and
[End(E0) : End(E1)] = N

Output: ϕ : E0 → E1

1 Compute the unique ascending path φ : E1 → E2 by sampling N -torsion
points in E1 and applying the formulas from Vélu ;

2 Compute an isogeny ψ : E2 → E1 via meet-in-the-middle ;

3 Compute ϕ = φ̂ ◦ ψ̂ ;
4 return ϕ ;

We gain an improvement over [13] when 0 < b < 1/8. Suppose, for example,
that b = 1/14. Then we get a complexity proportional to q(1−2b)/4 ≈ q0.21

operations over Fq which is better than q0.25 operations. We outline this range
of improvement in Figure 5.

3 Orientations

One can find a volcano structure in the supersingular isogeny graph over Fp2
when we endow the supersingular elliptic curves with an orientation. This ter-
minology was introduced by Colo and Kohel [8].
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Fig. 5. The algorithmic complexity given in [14] is plotted in red. The complexity of
the algorithm described in Section 2.4 is plotted in blue and green. Here we see that
for N < q1/8, the approach from Section 2.4 gives an improvement.

The terminology and notions in this section apply to both the ordinary and
supersingular case. So let E be any elliptic curve over Fq.

Definition 3.1 (K-orientation). Let K = Q(
√
d) be a quadratic imaginary

field. We say an elliptic curve E is K-oriented if there exists a ring homomor-
phism

ι : K ↪−→ End(E)⊗Z Q.

The pair (E, ι) is called a K-oriented elliptic curve.
If R ⊆ K is a ring and ι(R) ⊆ End(E) then we say E is R-oriented.

Suppose ι is the orientation on such a curve E. There exists a unique quadratic
order O ⊂ K such that ι(O) = End(E) ∩ ι(K). Then we call ι a primitive O-
orientation, and we say that E is O-orientable.

For any suborder O′ ⊂ O, ι still induces an orientation on O′, which is no
longer primitive. Conversely, given an orientation ι on O′, it extends uniquely to
aK-orientation, and ifO is the associated primitive orientation, we haveO′ ⊂ O.
We call O the saturation of the orientation on E. We have ∆(O′) = ∆(O)f2,
and if m is an integer, we say that O′ is m-locally primitive if m is coprime to
f .

An oriented isogeny between two O-oriented elliptic curves is an isogeny
which commutes with the orientations. We will often drop the ι from our nota-
tion.

Example 3.1. The advantage of the above framework is that it applies just as
well to ordinary curves.

If E/Fq is ordinary, there is a unique possible quadratic field K given by
K = Q(πq), and we will always use the natural orientation ι on K which sends
πq to the Frobenius endomorphism on E.
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In particular, E is always oriented by the order Z[πq], and the saturation of
the orientation is simply given by R = End(E).

Finally, an oriented isogeny between ordinary elliptic curves with the natural
Frobenius orientation is simply an Fq-rational isogeny.

The class group Cl(O) acts freely and transitively on the set of primitive
O-oriented curves up to isomorphisms (and Galois conjugacy in the special case
where p is inert in O, which can only happen in the supersingular case). A proof
of this statement is given by Onuki in [23, Thm. 3.4]. This gives rise to a group
action

a ⋆ (E, ι) = (Ea, ιa)

where a is an invertible O-ideal coprime to the conductor of O. To define it
concretely, let E[a] := ∩α∈a ker ι(α), and denote by φEa the isogeny whose kernel
is E[a]. Then

φEa : E → Ea = E/E[a] and ιa(x) =
1

n(a)
φEa ◦ ι(x) ◦ φ̂Ea .

If we also allow isogenies between O-oriented curves, relaxing the primitive
condition, then Colo and Kohel [8] show that there is a volcano structure just
like the ordinary case: if E1 is oriented by O, and O1 is its saturation in E1, and
we have an order O2 containing O1 such that O1 is of conductor f in O2, then
there is a unique “ascending” isogeny ϕ : E1 → E2 of degree f such that E2 is
primitively oriented by O2.

3.1 The module structure of the rational points of an oriented
elliptic curve

In this section we let R be a quadratic imaginary ring, and we assume that
we have an orientation R → End(E) of an elliptic curve E/Fq. Recall that
the orientation is said to be primitive whenever R is saturated in End(E) (i.e.,
R = (End(E)⊗ZQ)∩R), or equivalently End(E)/R is torsion free. We call E[n]
a cyclic R-module if there is some P ∈ E[n] such that E[n] = RP = {ϕ(P ) : ϕ ∈
R}, in which case we call P and R-generator.

Theorem 3.1. Let n be prime to the characteristic, and assume that the orien-
tation R on E is primitive. Then E[n] is a cyclic R-module.

In particular, if P ∈ E[n] is any R-generator, and γ ∈ R is of discriminant
∆(γ) = f2∆R, then Z[γ]P is of cardinality n2/ gcd(n, f). So E[n] is a cyclic
Z[γ] module if and only if gcd(n, f) = 1. It also follows that the Weil pairing
en(P, γP ) is a root of unity of exact order n/ gcd(n, f).

Proof. The first statement is [20, Theorem 3]. For the second one, if R = Z[ω],
then we can write γ = a+ fω. We have that P, ωP is a Z/nZ basis of E[n], and
Z[γ]P is generated by P and fωP , and the latter is a point of order n/ gcd(n, f).
Finally en(P, γP ) = en(P, ωP )

f = ζf is of order n/ gcd(n, f) since en(P, ωP ) is
of exact order n.
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We can restate Theorem 3.1 as saying that E[n] is R-cyclic if and only if R
is n-locally primitive.

Corollary 3.1. With the hypothesis of Theorem 3.1, E[n] is isomorphic as an
R-module to R/nR.

Proof. By Theorem 3.1, E[n] is a cyclic R-module, and if P is a generator, E[n]
is isomorphic to R/ ann(P ) where ann(P ) is the annihilator of P . If γ ∈ ann(P ),
then since γ(P ) = 0, R is commutative, and P generates E[n] as an R-module,
we find that γ = 0 on E[n], so γ is divisible by [n]. The converse is obvious, so
ann(P ) = nR, and E[n] ≃ R/nR.

Corollary 3.2. Let n = ℓe be prime to the characteristic, and assume that the
orientation R = Z[ωR] on E is primitive. Let u be the degree of the field of
definition of the geometric points of E[ℓe]. Then u ≤ ℓe+1 in the ordinary case,
and u ≤ ℓe in the supersingular case.

We can find an R-generator P ∈ E[n], normalised such that en(P, ωRP ) = ζ,

in time Õ(ℓ+u2 log2 q+logO(1) q) (which can be improved to Õ(ℓ1/2+u2 log2 q+

logO(1) q) in the supersingular case, or if ℓ is not inert in R).
For a general n, if R is n-locally primitive, we can find a basis (P1, P2) or

an R-generator P of E[n] in time Õ(n4 log2 q + logO(1) q) (resp. Õ(n2 log2 q +

logO(1) q) in the supersingular case), by factorising n and applying the result
above.

Proof. Assume for now that E/Fq is an ordinary curve (this is the harder case).
We first explain how to find u. Recall that we can compute the discriminant
of πq acting on E in polynomial time in log q by point counting algorithms,
and that we can use the endomorphism ring algorithm of [25] to also compute
the ℓ-saturation R of Z[πq] in E in polynomial time in log q, so that R is ℓ-
locally primitive in E. Now E[ℓe] ≃ R/ℓe by Corollary 3.1, and u is the order of
πq ∈ R/ℓe.

Finding u reduces to the computation of the order of elements in Fℓ if ℓ is
ramified or split in R, and in Fℓ2 if ℓ is inert in R, hence costs Õ(e log ℓ +

√
ℓ)

or Õ(e log ℓ + ℓ) respectively. In the worst case u ≤ ℓe+1 (this can be improved
to u ≤ ℓe if ℓ is split in R).

Now πuq − 1 is divisible by ℓe in R. Write πuq − 1 = ℓeγ, we have N(γ) ≤ qu.
We can sample uniform points in E[ℓe] as follows. First we sample uniformly
random points on E(Fqu) by computing square roots; this costs Õ(u2 log2 q)
[24]. Then we apply γ to get uniformly random points on E[ℓe]. This costs

Õ(u2 log2 q+logO(1)(q)). One then discards points that do not have the required
order n = ℓe. Finally, one takes pairs (P1, P2) and checks whether the Weil
pairing eℓe(P1, P2) is of full order in µℓe , in which case (P1, P2) is a basis. This
requires generating O(1) points and checking O(1) conditions. Hence the overall
cost is Õ(log(ℓe) log(qu)) = Õ(eu log ℓ log q) (because µℓe ⊂ Fqu).

Once we have a basis, we know that either P1 or P2 is a generator of E[ℓe] as
an R-module, and find it by evaluating ωR followed by a Weil pairing. The total
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cost, since ℓe < qu, is then Õ(ℓ + u2 log2 q + logO(1) q) to find a basis (P1, P2)
and an R-generator P of E[ℓe].

If E/Fp2 is a maximal supersingular curve, then E(Fp2u) ≃ Z/(pu + 1) ×
Z/(pu + 1), and so u is the order of p2 modulo n. In particular, u < n = ℓe.

We can also easily sample uniform points in E[n] by sampling them in
E(Fqu) and multiplying by the scalar cofactor (no need to use an endomor-

phism here). This costs Õ(u2 log2 q) operations. Then we use pairings to extract
a basis (P1, P2), and then we apply ωR and pairings again to find an R-generator
R. The total cost is thus Õ(ℓ1/2 + u2 log2 q) to find a basis (P1, P2) of E[ℓe], to

which we need to add an endomorphism evaluation of Õ(logO(1) q) to extract an
R-generator P .

Finally we mention the case of general n. We simply handle each power of
ℓ in turn and apply the Chinese remainder theorem to compute the point. The
worst case is when n = ℓ is prime, in which case u = O(n2) and u2 = O(n4),
giving the stated complexity.

Example 3.2. Let E/Fq be an ordinary curve. Specializing to the case n = ℓ, we
have three (well known) possibilities.

The first one is when ℓ splits in Z[πq] (ℓ is Elkies), Z[πq]/ℓZ[πq] ≃ F2
ℓ , πq acts

diagonally, and u | ℓ− 1.
If ℓ is inert in Z[πq] (ℓ is Atkin), Z[πq]/ℓZ[πq] ≃ Fℓ2 , so u | ℓ2 − 1.
Finally, if ℓ is ramified in Z[πq], then either πq acts as a diagonal matrix(

λ 0
0 λ

)
(so u | ℓ − 1) on E[ℓ], or as

(
λ 1
0 λ

)
(so u | ℓ(ℓ − 1)). But the diagonal

matrix case can happen if and only if πq − λ is divisible by ℓ in End(E), which
is equivalent to Z[πq] being of conductor divisible by ℓ in R. And the second
case happens precisely when Z[πq] is ℓ-locally primitive. Similar analysis holds
for n = ℓe, see for instance [22] for some results.

Remark 3.1. As a consequence of the proof above, we remark that in the ordinary
case, if ϕ : E0 → E1 is an ascending oriented isogeny, so that R0 ⊂ R1, and ui
denotes the degree of the field of definition of the points in Ei[n], then u1 < u0,
because ui is the order of πq in Ri/nRi.

Definition 3.2. Let R be a quadratic order of discriminant ∆R. We define the
canonical (up to sign) imaginary element ωR as follows. If ∆R ≡ 1 mod 4, we
let ωR =

√
∆R; in that case Z[ωR] is of conductor 2 in R. Otherwise, ∆R ≡ 0

mod 4, and we let ωR =
√
∆R/2; which means R = Z[ωR].

Corollary 3.3. Let E be an elliptic curve oriented by R, n | ∆R, and assume
that the orientation is n-locally primitive. We let ωR be as in Definition 3.2.

Then E[n, ωR] is cyclic, and there exists a basis (P, ωR(P )) of E[n].
Furthermore, if either n is odd, or n | ∆R/4, the matrix of ωR on this basis

is given by (
0 0
1 0

)
In particular, for this n, E[n, ωR] = ωR(E[n]).
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Proof. If R is a primitive orientation on E, then E[ωR] is cyclic because ωR
is not divisible by any integer in R by construction, so E[ωR] cannot contain
any subgroups E[ℓ]. It follows that E[n, ωR] is still cyclic if R is just n-locally
primitive.

If n is even, then ∆R has to be divisible by 4, so R = Z[ωR]. If n is odd,
Z[ωR] might be of index 2 in R, but it is still n-locally primitive.

We deduce that there exists a basis (P, ωR(P )) of E[n]. Since ω2
R is either

∆R or ∆R/4, under our assumptions ω2
R = 0 mod n, so we get the form of the

matrix.

3.2 The kernel of an ascending isogeny

This section gives new results that allow to compute an ascending isogeny in
certain situations. These results extend previous work by Kohel [19] and Ionica
and Joux [16].

Kohel [19] pointed out that for ordinary curves E over Fq, if one is on the
floor with respect to a prime ℓ, then there is only one Fq-rational ℓ-isogeny from
E and it is automatically ascending. This is linked to the fact that the ℓ-torsion
is Z[πq]-cyclic for such a curve. Since the cyclic subgroup corresponding to the
kernel of the isogeny is fixed by Frobenius, the kernel of the isogeny is E[ℓ, πq−λ]
for some integer λ. In other words, the ascending isogeny has kernel E[ℓ, πq−λ],
and this is a special case of our main result.

Ionica and Joux [16] extended this further, by showing how pairings can, in
some situations, identify which subgroup of E[ℓ] leads to an ascending isogeny.
Their results apply to ordinary curves, and require certain self-pairings to be
non-trivial, which does not always hold.

Our result in this section is much more general. It shows that, if we are
given a basis of E[ℓ], defined over some extension Fqd , we can find the kernel
of the ascending isogeny in polynomial time in log ℓ and d log q. It applies in all
ordinary settings. It also applies to the oriented supersingular case (provided we
have an effective representation of the orientation). It is important to stress that
the notion of “ascending” isogeny is not well-defined for supersingular curves
in general. Instead, one must consider supersingular curves with an orientation,
and it is the orientation that specifies whether or not an isogeny is ascending.
This is exactly the information provided by the SCALLOP system.

Theorem 3.2. Let ϕ : E0 → E1 be an ascending R-oriented cyclic isogeny of
degree d. Let Ri be the saturation of R on Ei, let f be the conductor of R0 in
R1. Then f | d, and ϕ factorizes uniquely as ϕ = ϕ2 ◦ ϕ1 where ϕ1 is a purely
ascending isogeny of degree f and ϕ2 is an R1-horizontal oriented isogeny.

Furthermore, for any ω1 such that R1 = Z[ω1] (i.e. such that ∆ω1 = ∆R1),
R0 = Z[fω1] and the kernel of ϕ1 is given by E0[fω1, f ].

Proof. The unicity of the decomposition comes from the volcano structure.
The form of the kernel is an easy consequence of the general equivalence of

categories described in [17, 27], which implies that the kernel of the ascending
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isogeny is given by the action of the conductor ideal. We give a direct proof in
a special case that is sufficient for our applications.

Let ϕ1 : E0 → E′
0 be our strictly ascending f -isogeny. Since ω1 is an endo-

morphism on E′
0, we have that fω1 is 0 on E′

0[f ]. Since fω1 ∈ R0 and ϕ1 is R0-
oriented, if P ∈ E0 is such that ϕ1(P ) ∈ E′

0[f ], then ϕ(fω1P ) = fω1ϕ(P ) = 0.
In particular, kerϕ1 contains (fω1)E0[f ].

We also remark that E0[f, fω1] does not depend on the choice of generator
ω1 for R1: another generator will be of the form ω′

1 = a ± ω1 with a ∈ Z, so
E0[f, fω1] = E0[f, fω

′
1]. In fact, the argument shows that we can even take

ω′
1 = a+ bω1, of discriminant ∆(ω′

1) = b2∆R, as long as b is coprime to f .
So we can take ω1 to be the canonical imaginary element of R1 from Defi-

nition 3.2. Now for simplicity, we assume that f is odd or that ∆0 is even. In
that case, fω1 is the canonical imaginary element of R0, and by Corollary 3.3
there is a basis (P, fω1P ) of E0[f ] and (fω1)

2 is zero on E0[f ]. It follows that
(fω1)E0[f ] = E0[f, fω1], and so kerϕ1 contains E0[f, fω1]. But ϕ1 is of degree f ,
and the above basis shows that E0[f, fω1] is too.

Looking at the proof of the theorem above, we can give another description
of a generator of the kernel of ϕ1, more useful for algorithmic applications:

Corollary 3.4. With the notations above, assume that R is f -locally primitive
in E0, and let ωR be the canonical imaginary element from Definition 3.2.

If either f is odd, or ∆1 is even, then the kernel K of ϕ1 is given by E0[ωR, f ].
If P is any generator of E0[f ] as an R-module, then ωRP is a generator of this
kernel K.

We can compute the ascending isogeny ϕ1 : E0 → E′
0 in Õ(u2 log f log2 q +

uB
1/2
f log f log q+log f logO(1) q) = Õ(f2 log2 q+log f logO(1) q) operations, where

Bf is a bound on the largest prime divisor of f , and u < f a bound on the degrees
of the field extensions where the points of (kerϕ)[ℓi] live, for f =

∏
ℓeii .

Proof. If ω0, ω1, ωR are the canonical imaginary elements of R0, R1, R respec-
tively, then the proof of Theorem 3.2 shows that under our assumptions, we
have ω0 = fω1 and ωR = uω0 for u coprime to f . From the R module structure
of E0[f ], we see that the kernel of ϕ1, given by E0[f, ωR], is generated by ωRP
for any R-generator P of E0[f ].

Now, to compute ϕ1, we will work prime divisor by prime divisor of f (recall
that we assumed that we know the factorisation of fR, hence of f); there are at
most O(log f) such primes. So in what follows we can assume that f is prime.

As in Corollary 3.2, in the ordinary case, we can determine the field extension
where the points of the kernel of ϕ1 are defined by determining the smallest u
such that πuq = 1 in R0/(fω1, f). Since the kernel is of order f , we have u | f−1.
We also remark at this point that, as in Remark 3.1, since the saturation of R
in E′

0 will contain R0, the degrees we will subsequently obtain on E′
0 when we

work prime by prime will be smaller than on E0.
Now if E0[f ](Fqu) is cyclic, it is automatically equal to kerϕ1 since the kernel

is rational. Sampling a point in E0(Fqu) and multiplying by the (scalar) cofactor
now gives a uniform point in the kernel.
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The second case is that E0[f ](Fqu) is the full f -torsion. We can apply Corol-
lary 3.2 to sample a generator P of E0[f ] as an R-module. Then, in the situation
of Corollary 3.4, we can apply ωR to P to get a generator of kerϕ1.

Finally, computing ϕ1 from a generator of the kernel can be done in Õ(f1/2u log q)
operations as shown in [2]. All in all, we can compute ϕ1 in Õ(u2 log f log2 q +

uf1/2 log q + logO(1) q) operations.

The supersingular case works as above, except that this time u is automati-
cally also the degree of the field of definition of the full f -torsion.

Remark 3.2. The only case not covered by Corollary 3.4 is when ∆1 is odd
and f = 2f ′ is even. Then we can write ϕ1 as an f0-ascending isogeny E0 →
E′′

0 with R′ the saturation of R in E′′
0 , of discriminant 4∆1, followed by a 2-

isogeny E′′
0 → E′

0. We can apply Corollary 3.4 to the isogeny E0 → E′′
0 . And

by Theorem 3.2, since R′ = Z[ 1+
√
∆1

2 ], the kernel of the 2-isogeny E′′
0 → E′

0 is
given by E′′

0 [1 +
√
∆1, 2].

4 Recovering an oriented isogeny of known degree

In this section we study the following problem: let R be a quadratic imaginary
order. Let ϕ : E0 → E1 be an R-oriented cyclic isogeny of known degree d
between elliptic curves defined over Fq. Our goal is, given R,E0, E1 and d, to
recover ϕ. Following [14] we are going to do this by trying to determine ϕ on
E[n] for suitable n. In this paper the key tools are self-pairings.

We recall from Section 3 that this encompasses two cases. If E0/Fq is or-
dinary, we can take R = Z[πq] and we will always use the natural Frobenius
orientation on E0, E1. This is the case we will consider for the (ordinary) com-
putational isogeny problem. We remark that point counting algorithms give ∆R

in polynomial time in log q. The other case is when E0, E1 are maximal super-
singular elliptic curves defined over Fp2 . In that case, ϕ is also automatically
rational over Fp2 . This is the case we will consider for the SCALLOP group
action.

Let Ri be the saturation of R in End(Ei), and ∆i the discriminant of Ri. We
assume that ϕ is “ascending”, meaning that R0 ⊂ R1, and we let f = [R1 : R0]
be the conductor of R0 in R1. We will say that ϕ is purely ascending if f = d. We
remark that ϕ is automatically R0-oriented: if γ ∈ R0, there is some multiple mγ
in R, so since ϕ is R-oriented we have [m]γ ◦ ϕ = ϕ ◦ [m]γ = [m]ϕ ◦ γ. Dividing
by [m], we get γ ◦ ϕ = ϕ ◦ γ.

We will make the following assumptions for our complexity analysis:

– First, for simplicity, we will assume that log∆R is polynomial in log q. This is
automatic in the ordinary case, since |∆πq

| is at most 4q; and is also the case
in all currently proposed instances of a supersingular oriented group action.
All statements in this section are still valid in the general case if we replace
the O(log qO(1)) in the complexity statements by O((log q + log∆R)

O(1)).
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– The orientation R is effective on both E0 and E1, meaning that we can
evaluate any endomorphism γ ∈ R on a point P using a polynomial in
logN(γ) arithmetic operations over the field of definition of P .
We can refine this as follows: we fix ωR =

√
∆R/2 if ∆R ≡ 0 mod 4, and

ωR = (1 +
√
∆R)/2 if ∆R ≡ 1 mod 4. In both cases N(ωR) ≤ |∆R|, and if

γ = a + bωR, a, b ≤
√
2N(γ). If we have an efficient representation of ωR,

then evaluating γ on P requires the evaluation of ωR, scalar multiplication
by [a], [b] and a sum. This thus costs O(log(|a|) + log(|b|) + logO(1)∆R) =

O(log(N(γ)) + logO(1)∆R) arithmetic operations over the field of definition
of P .
As an aside, by adapting point counting algorithms, given an efficient repre-
sentation of ωR we can recover ∆R in polynomial time. From now on, for our
complexity analysis, whenever we pick up a generator ωR of R, we will always
assume that ωR is a generator like the above, such that N(ωR) = O(∆R).
This prevents silly situations like using a+ ωR for a very large a.

– As a consequence, the orientations by R0 and R1 are also effective. If γ0
is an element of R0, then some multiple n0 of γ0 is in R, hence can be
efficiently evaluated (since n0 | ∆R cannot be too large). Now to evaluate
γ0 on a point P , we would like to find a point P ′ such that P = [n0]P

′;
then γ0P = (n0γ0)P

′. Such a point can be very expensive to compute for
large, non-smooth n0 since we would require a large extension field. Instead,
Robert shows in [25, Sect. 2.3] how to efficiently divide an endomorphism by
using higher dimensional isogenies.
If γ0 is any generator of R0, we can thus find an efficient representation of γ0,
and use this efficient representation to evaluate the other endomorphisms.
Finding this efficient representation involves the evaluation of an endomor-
phism of R, but this is a precomputation that only needs to be done once.
Similar techniques also allow us to push forward theR-representation through
an explicit R-isogeny ϕ′ : E0 → E′

0, by computing the image by ϕ′ of
(P, ωRP ) for several points P . This allows to find an efficient representa-
tion of the R-orientation on E′

0 through a polynomial in log∆R number of
calls to the evaluation of ϕ′.

– Finally, we will assume that the factorisation of ∆R is known. As a conse-
quence, we can write ∆R = ∆f2R where ∆ is a fundamental discriminant and
the factorisation of fR is known. We also have ∆0 = ∆f20 and ∆1 = ∆f21 ,
with f0 = ff1. Then thanks to [25], we can recover f0 and f1, hence R0 and
R1 in polynomial time in log∆R + log q.

4.1 The general strategy

We will adapt the strategy of [14], which consists in guessing the image of ϕ on
suitable subgroups of E0, typically the image on the ℓ-torsion E0[ℓ] for several
small primes ℓ, and then reconstructing ϕ using a higher dimensional isogeny.

There are a number of different ways to reduce the number of guesses required
to determine ϕ on E0[ℓ] and we give a high level overview of them now.
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– The case of Elkies primes. We can adapt the strategy of Section 2.3 to the
general oriented case as follows. If ℓ ∤ ∆R splits as ℓ = f1f2, then E0[fi] is
cyclic of order ℓ with generator Pi. Likewise, E1[fi] is cyclic of order ℓ with
generator Qi. Since ϕ is R-oriented, ϕ(E0[fi]) ⊂ E1[fi], so we have ϕ(Pi) =
aiQi, for some unknown scalars a1, a2 modulo ℓ. The Weil pairing gives
us some information on a1, a2: we have eℓ(ϕ(P1), ϕ(P2)) = eℓ(P1, P2)

d =
eℓ(Q1, Q2)

a1a2 . So, provided discrete logarithms are easy in the multiplicative
group µℓ of ℓ-th roots of unity in Fq, we can compute c such that eℓ(Q1, Q2) =
eℓ(P1, P2)

c, and we know that a1a2 = d/c modulo ℓ.
In the special case that ℓ | d, then either a1 or a2 is 0, and E0[f1] or E0[f2]
is in the kernel of ϕ. So we recover part of the kernel of ϕ up to a choice.
Otherwise, ℓ ∤ d, and there are ℓ − 1 possibilities for a1, and then a2 is
completely determined by a1.

– Using self-pairings. If ℓ | ∆R, and R is a ℓ-locally primitive orientation on
E0, E1, then we follow the insight of [5] that there exists a self-pairing that
gives the image of ϕ up to a sign on a cyclic subgroup of E0[ℓ]. In [20, § 8],
Macula and Stange give a more efficient construction of this self-pairing (see
in particular [20, Example 3]), and we use a slight variant of their approach.

– Using sesquilinear self-pairings. If ℓ ∤ ∆R, then E[ℓ] is a cyclic R-module,
and Macula and Stange show in [20, Theorem 6] that there exists an R-
sesquilinear self-pairing. While this gives less information than the previous
case of self pairing, this still allows them to reduce the number of choices
for the action of ϕ on E0[ℓ] to ℓ − 1 (if ℓ splits) or ℓ + 1 (if ℓ is inert),
see [20, Theorem 8 and 9]. In particular, this subsumes the previous special
case of Elkies primes.

– The remaining case, at least if R = R0 which we can assume from our
hypotheses, is when ℓ | f . In that case, R is not an ℓ-locally primitive ori-
entation on E1, and we cannot follow the pairing approach. Since we are
speaking at the moment about small ℓ, this case is treated in [13, 14] as an
easy case, because one can ascend in the volcano efficiently using the meth-
ods in those papers. We have shown in Section 3.2 an improved method to
compute (kerϕ)[ℓ] directly.

In summary, we will show that the self-pairings approaches of [5, 20], which
were mainly used in the horizontal case, work just as well for the ascending case.
The main difference compared to [20, Theorem 9] (which treats the case ℓ ∤ ∆R)
and [20, Theorem 11] (which treats the case ℓ | ∆R) is that we also treat the
case when ℓ divides d. This gives more flexibility in our choice of ℓ.

We also give in Section 4.2 a simplified and unified construction of “self-
pairings”, which only requires the standard Weil pairing (but is heavily inspired
by the sesquilinear pairings used in [20]). By contrast, in [20] two different pairing
constructions are given, depending on whether ℓ | ∆R or not. Our approach is
similar to the use of the distortion map in pairing based cryptography. We refer
to the end of Section 4.2 for a more detailed comparison of our approaches with
the approach of [5, 20]. We also remark that the use of the distortion map was
also explored in [12] as a way to determine whether an ℓ-isogeny was descending.
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Finally, since we will apply self-pairings to large-ish ℓ, we will present some
precise complexity statements that will be needed for the analysis in Section 5
and Section 6.

4.2 Pairings and distortion maps

We can reduce the computation of ϕ to the computation of the purely ascending
isogeny ϕ1 and an horizontal isogeny ϕ2. We might not want to compute the
purely ascending isogeny ϕ1 fully, especially if the conductor f has large prime
factors.

Section 3.2 can be seen as recovering partial information on the action of ϕ
on E[n] when n | f . But in this section, we focus on the case n coprime to f .
More precisely, we explain how we can combine pairings with the orientation R
to recover partial information about the image of ϕ on a basis of E[n].

Recall that a pairing is a bilinear and non-degenerate map. Let E be an
elliptic curve over Fq and m an integer co-prime to q. The most well-known and
familiar pairing in elliptic curve cryptography is the Weil pairing

em : E[m]× E[m] → µm ⊆ F̄∗
q

where µm is the multiplicative group of order m.

An important property of pairings, which has been widely used in isogeny
cryptography and cryptanalysis, is that if ϕ : E0 → E1 is an isogeny of elliptic
curves of degree d and P,Q ∈ E0[m] then

em(ϕ(P ), ϕ(Q)) = em(P,Q)d

where the first pairing is being computed on E1 and the second pairing on E0.
Sometimes this property is used to learn information about the degree of an
unknown isogeny. Other times, and this is how we use it, knowing d, one can use
the above property to constrain the possible values for ϕ(P ). These approaches
have been used in a number of papers, including [5, 14,20].

As mentioned in the introduction, an important set of techniques about self-
pairings was given in [5], however in some contexts (including in our application)
this requires a large field extension to be computed. Macula and Stange [20]
showed a different approach that enables to obtain the same results without
enlarging the fields over which one is working. Of particular importance for
us will be [20, Theorem 8], which treats the case when n is coprime to ∆R

(this is a hidden hypothesis which comes from the invocation of Theorem 6
and Theorem 11 of [20] which treats the case when n | ∆R). Since [20] treats
sesquilinear pairings and other advanced topics, the proof of this theorem may
not be easily accessible to some researchers. Hence we take the opportunity to
give an elementary proof of the result in a special case, and also note that the
condition of supersingularity is not required.

Here is our version of “self-pairings”.
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Theorem 4.1. Let ϕ : E0 → E1 be an R-oriented cyclic isogeny of degree d,
let n = ℓe be an integer coprime to d, and assume that R is n-locally primitive
on E0 and E1. Assume that we are also given P0 ∈ E0[n], P1 ∈ E1[n] cyclic
R-generators, and write ϕ(P0) = γ(P1) for some unknown endomorphism γ ∈
R/nR.

Then we can compute v = deg(γ) (mod n) in time Õ(ue log ℓ log q+u′e
√
ℓ log q),

where u is the degree of the field of definition of E0[ℓ
e], and u′ | u the degree of

the field of definition of µℓe .

Proof. Take ωR a generator of R, of norm bounded by |∆R| so that we can eval-
uate it efficiently. Since ϕ is oriented, it commutes with ωR. Furthermore, since
RP0 = E0[n] it follows that {P0, ωR(P0)} generates E0[n] and so en(P0, ωR(P0))
is an exact n-th root of unity. Similarly, en(P1, ωR(P1)) is an exact n-th root
of unity. (The endomorphism ωR here is performing the role of a “distortion
map”.) Suppose ϕ(P0) = γ(P1).

By compatibility of the Weil pairing with isogenies, we have

en(P1, ωR(P1))
deg(γ) = en(γ(P1), γωR(P1))

= en(ϕ(P0), ωR(ϕ(P0)))

= en(P0, ωR(P0))
deg(ϕ).

Thus by computing these two pairings in Õ(ue log ℓ log q) and solving the
discrete logarithm problem in Õ(u′e

√
ℓ log q), one can compute deg(γ) modulo

the order of en(P0, ωR(P0)), which is n.

By combining Corollary 3.2 and Theorem 4.1, we see that sampling P0, P1

dominates the complexity:

Corollary 4.1. With the notations above, we can sample cyclic R-generators
P0 ∈ E0[n], P1 ∈ E1[n], and compute deg γ (mod n) where γ(P1) = ϕ(P0) in

Õ(ℓ+ u2 log2 q + logO(1) q).

Let γ = a+bωR ∈ R ⊆ End(E1) be such that ϕ(P0) = γ(P1). Then deg(γ) =
N(γ) = a2 + abTr(ωR) + b2N(ωR).

From now on, we will suppose that n is coprime to d, since the non-coprime
case is easier and will be treated in Section 4.3, so that v = deg(γ) ̸= 0 (mod n).

For our applications it will not be enough to know deg(γ). We will need to
know the integers a and b, because we want to actually compute ϕ(P0) by com-
puting γ(P1). (From this we will also be able to compute ϕ(Q0) where {P0, Q0}
is a basis for E0[n], by taking Q0 = ωR(P0) and ϕ(Q0) = ωR(ϕ(P0)).) To find
these integers we need to solve the conic equation

x2 + xyTr(ωR) + y2N(ωR) = v (mod n). (2)

In practice it is usually simpler to separately solve the conic modulo each prime
dividing n, and then use Hensel lifting and the Chinese remainder theorem
to compute the set of solutions. We remark that this conic is of discriminant
∆(ωR) = ∆R.
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There are two cases of relevance in our paper. The first is when n is coprime
to ∆R and the conic is non-singular. In this case there are O(n) solutions. To
find solutions one calculates a rational parameterization of the conic and hence
one can easily enumerate all solutions. The second case is when n | ∆R and
the conic degenerates, typically as the union of lines. In this case, as long as
n does not have too many distinct prime factors, we can obtain a lot of useful
information. We explain in more detail below.

The case of a non-degenerate conic We suppose here for simplicity that
n = ℓ is a prime, and that ℓ ∤ ∆R.

By assumption, we know there exists an endomorphism γ, hence a solution
of Eq. (2) for x, y ∈ Z/ℓZ. Thus, the homogenised conic X2 + XY Tr(ωR) +
Y 2N(ωR)− vZ2 is isomorphic to P1 over Z/ℓZ.

At infinity, Z = 0, we have 2 or 0 rational solutions (X : Y : 0) depending
on whether ∆R is a square or not modulo ℓ. We deduce that if ℓ splits in R, the
conic has ℓ−1 solutions (x, y), and if ℓ is inert in R, the conic has ℓ+1 solutions
(x, y).

The case of a degenerate conic In this subsection, we assume that n | ∆R.

Theorem 4.2. Let ωR be the canonical imaginary element of R as defined in
Definition 3.2. Let n | ∆R be coprime to d, and such that n | ∆R/4 if n is even.
Let P0 ∈ E0[n] be a cyclic generator, and same for P1. Let Q0 = ωR(P0) and
Q1 = ωR(P1). Then ϕ(Q0) = αQ1, where α

2 = v mod n, where v is computed
using pairings as in Theorem 4.1.

Proof. As in Corollary 3.3, if n is even then R = Z[ωR], otherwise n is odd
and Z[ωR] may be of index 2. In both cases, Z[ωR]/nZ[ωR] = R/nR, so we
may assume that γ = x + yωR is such that ϕ(P0) = γ(P1). Now since ωR is
imaginary, the norm is N(γ) = x2+∆ωR

y2. And by hypothesis, n | ∆ωR
. So our

conic degenerates to x2 = v mod n. The solutions are given by (α, y) for any α
such that α2 = v.

We now recall that ω2
R = 0 modulo n by Corollary 3.3. So if γ = α + yωR,

then ϕQ0 = ϕωRP0 = ωRϕP0 = ωR(γP1) = ωR(αP1 + yωRP1) = αωRP1 = αQ1.
In particular, the image of ϕ on Q0 only depends on the possible solutions α.

We remark that the equation α2 = v has at most 2m+1 solutions, where m
is the number of distinct prime factors of n. More precisely, since there exists at
least one solution by hypothesis, there are exactly 2m−1, 2m or 2m+1 solutions
according to whether v2(n) = 1, v2(n) = 0, 2, or v2(n) > 2 respectively.

This means that while the image of Q0 is fairly constrained (if n has not too
many prime factors), the conic itself actually has ≈ 2mn solutions, rather than
just O(n) (because it is not irreducible). We will call this version of self-pairing
the cyclic version, because it gives information on a cyclic subgroup of E0[n].
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Comparison with self-pairings As mentioned in [20], the sesquilinear pair-
ings used in that article can be seen as a neat way to package together the pair-
ing data en(P,Q), en(ωRP,Q), en(P, ωRQ), en(ωRP, ωRQ) together into an R-
sesquilinear Weil pairing. (In [20] Macula and Stange look at the R-sesquilinear
Tate pairing rather than the sesquilinear Weil pairing, but the sesquilinear Weil
pairing works similarly and was constructed in [29].)

Unfortunately, this sesqulinear pairing becomes degenerate when n | ∆R, so
to handle this situation, in [20] the authors look at (P,Q) 7→ (tn(ωRP,Q), tn(P,Q))
where tn is the Tate pairing. Theorem 4.1 is almost the same, except that using
the Weil pairing en instead of the Tate pairing allows us to only use en(P, ωRQ),
because the Weil pairing is alternating, and to use the same construction both
for n | ∆R and n coprime to ∆R. We remark that the same phenomena was
present in [6], where the authors remarked that it is often more convenient to
use the Weil pairing than the Tate pairing to evaluate the “character” associated
to an horizontal isogeny. This is not surprising: as explained in [5, § 6.2], this
character evaluation can be done through self-pairings computation.

Finally, still for the case n | ∆R, the authors of [5] construct a self-pairing on
the cyclic subgroup E0[n, ωR], using an “oriented” version of the Tate pairing [5,
§ 5.1]. By the discussion of [5, § 5.3], we see that a way to compute these self-
pairings is via the distorted pairing en(P, ωRQ) from Theorem 4.1. We refer to
Section A for a generalisation of this result.

4.3 Putting everything together

In this section, we summarise the torsion information we can guess on ϕ, and
how to use it to reconstruct ϕ. Recall that we assume d = deg(ϕ) is known and
is large, and we are choosing suitable n = ℓe, where ℓ is a small prime, and
attempting to deduce candidates for ϕ on E0[n].

We have developed tools for a number of cases.

1. The case n = ℓ is a prime dividing d. In this article, we will be interested
in the case where ℓ furthermore divides the conductor f . Then we can use
Section 3.2 to compute the associated ascending ℓ-isogeny ϕ1 : E0 → E′

0. We
have ϕ = ϕ2 ◦ ϕ1, and we are reduced to recovering ϕ2 : E′

0 → E1 of degree
d/ℓ. We remark that the case where n divides d but not f is standard: we
can write as above ϕ = ϕ2 ◦ϕ1 where this time ϕ1 is an horizontal ℓ-isogeny,
and there are at most two such isogenies.

2. The case n is coprime to ∆R and d. Then by Section 4.2, we have O(n)
possible choices for the action of ϕ on E0[n], which we can recover in Õ(ℓ+

u2 log2 q + eu log ℓ log q + logO(1) q) = Õ(n4 log2 q + logO(1) q). Here, u is the
degree of the field extension of the points in E0[n]. Indeed, this dominates
both the cost of finding the conic equation Eq. (2), and the cost of finding
all solutions of this conic.

3. The case n | ∆R, but with n coprime to d (hence also to f). For simplicity,
we will assume that n | ∆R/4 if n is even. Then by Section 4.2, we have
O(2m) possible choices for the action of ϕ on a specific point Q of E0[n]
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(with the notation of Theorem 4.2, the image by ωR of an R-generator of
E0[n]), where m is the number of distinct prime divisors of n. These choices

can be computed in Õ(ℓ+u2 log2 q+eu log ℓ log q+logO(1) q) = Õ(n4 log2 q+

logO(1) q).

We now explain how to use the torsion information from cases 2 and 3, which
are the main cases of interest since d is coprime to n for these cases and so we
are not directly getting information about the kernel of ϕ.

The method in [14] was based on the Kani attack [3, 21, 26], which needed
the full torsion information (as provided by case 2). Namely, knowing the torsion
information of ϕ on the n-torsion for n2 > 4d is enough to recover ϕ. This involves
computing an n2-isogeny Φ : Er0 × Er1 → Er0 × Er1 in higher dimension g = 2r.
The higher dimensional isogeny Φ is built out of an (d, n2−d)-isogeny diamond,
involving the isogeny ϕ Idr with r = 1, 2, 4 and auxiliary isogenies ϕ′, ρ, ρ′ in
dimension r of polarised degree d, n2 − d, n2 − d respectively. Then Φ will be an
isogeny of polarised degree n2 in dimension 2r.

The reason we need to move from dimension 1 to r is to be able to compute
ψ,ψ′ of the correct degree efficiently. Namely, if n2 − d =

∑r
i=1 a

2
i is the sum

of r = 1, 2 or 4 squares, we can build the auxiliary isogenies in dimension r
by using suitable r × r integer matrices. We know by Lagrange’s theorem that
we can always find a sum of 4 squares (and finding an explicit decomposition is
efficient), so we can always work in dimension g = 8.

The Kani construction is well-documented in many papers so we do not give
all the details. We remind the reader that kerΦ may be computed as

{(ϕ̂(P ),−ρ′(P )) : P ∈ Er1 [n
2]}

where we view ϕ̂ : Er1 → Er0 as a diagonal map, and where ρ′ : Er1 → Er1 is coming
from the matrix associated with the sum of squares. To compute (kerΦ)[ℓ] it
suffices to know a basis (P,Q) for E0[ℓ] and the values (ϕ(P ), ϕ(Q)) ∈ E1[ℓ] and
everything else follows.

Finally, we mention that in practice, Φ is not computed directly, rather we
write it as Φ = Φ2 ◦ Φ1 where Φi is of polarised degree n and we compute the
two isogenies Φ1 and Φ̃2 from Er0 × Er1 and Er1 × Er0 respectively and meet in
the middle. It suffices to know ϕ on E0[n] to be able to compute the kernel of
both these higher dimensional isogenies.

Remark 4.1. To handle case 3 we use an approach that was presented in an
invited talk at ANTS in 2024 by Castryck [4]. At a high level, the result is that
one can recover an unknown isogeny of degree d given interpolation data coming
from a group of size O(d).

We briefly recall the ideas from [4], which apply in a simplified form for
our case 3. Reusing the notation and arguments from Theorem 4.2, we have
points P0, Q0, P1, Q1 such that ϕ(P0) = γP1, for some γ = α+ yωR, where α is
constrained by an equation α2 = v (mod n), but y can be arbitrary. From this
we know that αQ1 = αωR(P1) = ϕ(Q0), but ϕ(P0) = αP1 + yQ1. The idea is to
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compose ϕ with an isogeny ψ : E1 → E2 of kernel ⟨Q1⟩, so that

ψ(ϕ(P0)) = ψ(αP1 + yQ1) = αψ(P1).

We remark that kerψ = E1[n, ωR], so ψ is R-oriented, and does not depend
on α. Now consider ϕ2 = ψ ◦ ϕ, of degree nd. Then we know that ϕ2(P0) =
ψ(αP1 + yωRP1) = αψ(P1). Since P0 is an R-generator of E0[n], this allows to
recover how ϕ2 acts on the full n-torsion of E0[n].

In conclusion, we now have an isogeny ϕ2 of degree dn and we know how ϕ2
acts on the full group E0[n]. We can then proceed with existing techniques.

All in all, let n1 be the product of all prime powers we use for case 2, and
n2 the product of all prime powers we use for case 3. Let n = n1n2. We build a
n2-isogeny ψ : E1 → E2 using the method in the previous paragraph to obtain
a n2d-isogeny ϕ2 = ψ ◦ ϕ : E0 → E2 for which we know the action on the full
E0[n]-torsion. We need n21n2 > 4d to be able to recover ϕ2 hence ϕ, via a n2

1n
2
2-

isogeny Φ : Er0 × Er2 → Er0 × Er2 in dimension g = 2r (see Figure 6). Here the
dimension r will depend on whether we can find a solution with r = 1, 2, 4 to
n21n

2
2 − n2d =

∑r
i=1 a

2
i . Because of the common factor n2, we require n2 to be

a sum of two squares to be able to work in dimension g = 4 (i.e., r = 2). In
general we will need to work with r = 4 and so dimension 8 Abelian varieties.

Remark 4.2. Let E0 be an ordinary elliptic curve over Fq with q+1−t points and
let End(E0) have discriminant ∆f2. If t is odd then ∆f2 = t2 − 4q ≡ 1 (mod 4)
and so |∆| ≡ 3 (mod 4). So we know ∆ is divisible by a prime congruent to 3
modulo 4. So a bad case is when t is odd and |∆| is a prime.

Furthermore, while ψ does not depend on the torsion possibilities, we need
to compute Φ for all the possibilities of the torsion we have. As explained before,
in practice we compute two n1n2-isogenies Φ1, Φ2 from Er0 ×Er2 . As a technical
detail: to find the kernel of Φ2 we need to know how ϕ̃2 acts on the n-torsion;
this can be done from the knowledge of how ϕ2 acts on the n-torsion through
pairings and DLPs, because ϕ̃2 is the adjoint of ϕ2 for the Weil pairing.

The complexity of the computation of the isogenies ψ,Φ itself will depend
on the dimension where Φ lives, and if n =

∏
ℓeii , of the largest prime ℓi and

the degrees ui of the field generated by the ℓeii -torsion points. More precisely,
by [28, Lemma 5.7], if n =

∏a
i=1 ℓ

ei
i , computing an n-isogeny in dimension g can

be done in time Õ(aeℓgu log q), where ℓ (resp. e) is a bound on the ℓi (resp. ei),
and u is a bound on the lcm(ui, uj) where ui is the degree of the field extension
defined by the points of the ℓeii -torsion (so u ≤ n2).

The choice of prime power ℓe to use in practice will be a delicate balance
between the size of ℓ, the degree of the field extension where the ℓe-torsion is
defined, and the number of possibilities, mainly whether we are in case 2 or 3.

Remark 4.3. There is a non-trivial way to save time: rather than computing Φ
from scratch from every possible choice of torsion information, we remark that
we can reuse part of our construction of Φ.
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Er
0 × Er

2 B1 B B2 Er
2 × Er

0

Ψ1

(n2, . . . n2)

Θ1

(n1, . . . n1)

Θ̃2

(n1, . . . n1)

Ψ̃2

(n2, . . . n2)

Φ1 Φ̃2

Fig. 6. This isogeny diagram corresponds to the explanation of how to address case 3.
We use our knowledge of the E0[n] torsion group to compute the (probably non-smooth)
(n2, . . . n2)-isogeny and guess the remaining (smooth) (n1, . . . n1)-isogeny ϕ2 using a
meet-in-the-middle computation (as detailed in Remark 4.3).

First, we can assume that we are given the torsion information of ϕ2 : E0 →
E2 in terms of matrices acting on basis elements (P0, Q0), (P

′
1, Q

′
1) of the ℓeii -

torsion. We remark that the pairing information from Section 4.2 already gives
this information on E1, we have Pi a cyclic R-generator, and Qi = ωRPi, and the
torsion information is expressed as a constraint on an endomorphism γ ∈ R/ℓeii ,
which we can recast as a matrix. We propagate this information through ψ,
this involves sampling a new basis; we may pick P ′

1 a cyclic generator of E2[ℓ
ei
i ]

and let Q′
1 = ωRP

′
1 to simplify the computations. Then ψ(P ′

1) = cQ′
1, and we

determine c by pairings and DLPs as in Section 4.2.
Now we have several choices of matrices for the action of ϕ2 on ℓe11 . We pick

one choice, and use it to build the ℓe11 -component of the kernel of Φ1, Φ2. We push
the other ℓeii -basis points (using a product basis); this is where the compositum
of the field of definition of the ℓe11 and ℓeii torsion comes in. Then we make a
choice of matrix for the action on ℓe22 , determine the kernel of the next ℓe22 higher
dimensional isogenies, and so on.

The key remark is that if we change our choice of matrix for ℓemm , we need
to recompute the subsequent ℓeii isogenies for i ≥ m, but we can keep the ones
already computed for i < m.

We illustrate this with a small example: assume that we want to use n1 = ℓ1ℓ2
with ℓ1 split and ℓ2 inert, and n2 = ℓ3ℓ4 a product of two different primes. We
have ℓ1 − 1 possible choices for the action of ϕ on E0[ℓ1], ℓ2 + 1 possible choices
for the action of ϕ on E0[ℓ1], and 2 possible choices for the action of ϕ on a
subgroup of order ℓi of E0[ℓi] for i = 3, 4. We can choose in which order to treat
our primes, and it makes sense to pick them up by decreasing size. So suppose
for instance that ℓ3 > ℓ1 > ℓ2 > ℓ4. Then via the above strategy, to compute
all possibilities for Φ1, we will compute in total 2(ℓ1 − 1)(ℓ2 + 1)2 ℓ4-isogenies,
2(ℓ1 − 1)(ℓ2 + 1) ℓ2-isogenies, 2(ℓ1 − 1) ℓ1-isogenies, and 2 ℓ1-isogenies.

We have all the tools to bound the cost of recovering ϕ.

Theorem 4.3. Let the notation and hypothesis be as at the beginning of Sec-
tion 4. Specifically, let ϕ : E0 → E1 be an ascending R-oriented isogeny of degree
d. Let m | ∆R be a factor of ∆R. Assume that R is m-locally primitive on E0,
and let m =

∏
ℓeii . Denote the number of square roots of 1 modulo m by T , B
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a bound on the largest prime divisor ℓi of m, and u a bound on the lcm(ui, uj),
where ui is the degree of the field of definitions of the points of E0[ℓ

ei
i ].

Then we can recover ϕ : E0 → E1 in time Õ((TuB8 + T
√
d/m)(log q +

log d)O(1)).

Proof. First, dividing m by 2 or 4 if necessary, we can assume that m | ∆R/4.
We can also assume that we know the factorisation of m, since we know the one
of ∆R.

If m is not coprime to d, we use standard tools such as case 1.
Following the notation used above, we take n2 = m, and for n1 a B′-

powersmooth number coprime to ∆R and of size Θ(
√
d/m). We can always

take a smoothness bound B′ polynomial in log q + log d.
We compute the torsion information on the n1 and n2 torsion using Sec-

tion 4.2. There are T possibilities for the n2-torsion by Theorem 4.2, and Õ(n1)
possibilities for the action on the n1-torsion. By Corollaries 3.2 and 4.1 the cost
of recovering this information is not the dominating step.

Computing the n2-isogeny ψ : E1 → E2 as in Remark 4.1 takes Õ(Bu) field
operations.

We apply the strategy of Remark 4.3 by computing the n2-isogeny first,
followed by the n1-isogeny. We assume that we are in the worst case and that we
need to work in dimension 8. The first n2-isogeny costs Õ(uB8 log2(n2) log q).
We also need to push the torsion information on the n1-torsion, which costs
Õ(u′B8 log n2 log n1 log q). Here u

′ is a bound on the degree of the compositum
field of the ℓeii -torsion and the ℓ

ej
j torsion for ℓi | n2 and ℓj | n1, so since n1 is

B′-powersmooth, we have u′ ≤ u(B′)2. We need to perform these computations
T times.

Then we need to compute the remaining n1-isogeny and decide if we meet in
the middle. This costs Õ(B′4B′8 log2(n1) log q). We need to do this computation
Õ(Tn1) times. This gives us our final complexity result.

Remark 4.4.

– A bound on u is given by u = min(O(m2), O(B4)) in the ordinary case and
u = min(O(m), O(B2)) in the supersingular case.

– In practice for our applications, the term TuB8 + T
√
d/m will be large

enough to absorb the log q + log d part into the Õ factor, and we will use
Õ(TuB8 + T

√
d/m) as our complexity.

– If m is a sum of two squares, then heuristically we can work in dimension 4,
and replace the term TuB8 by TuB4.

– If ϕ : E0 → E1 is an R-oriented cyclic descending isogeny of degree d,
we can follow the same approach, except for case 2: ℓ is a prime dividing
the conductor. Indeed, in that case, K = (kerϕ)[ℓ] is a kernel of a strictly
descending isogeny, but there are between ℓ−1 and ℓ+1 descending isogenies,
so many more possibilities for K than in the case of a purely ascending
isogeny when K is unique. Of course, the better strategy is to reconstruct
the dual ϕ̃ : E1 → E0 instead, which is ascending.



Improved algorithms for ascending isogeny volcanoes, and applications 25

5 Improving the computational isogeny problem when
the conductor is large

In this section we apply the techniques from Section 4 to the ordinary isogeny
problem. In particular, we will show how to use the pairings from Section 4.2 to
improve the algorithm from [14]. Our main application is the case of volcanoes
with a small crater.

5.1 Improved computation of an ascending isogeny.

Let E0 and E1 be ordinary elliptic curves over Fq with q + 1 − t points. Let
t2 − 4q = f2∆, where ∆ is a fundamental discriminant and f > 1. Suppose
End(E1) has discriminant ∆1 = ∆f21 , End(E0) has discriminant ∆0 = ∆f20 with
f0 = Nf1. We want to recover the ascending Fq-rational N -isogeny ϕ : E0 → E1

of degree N |f . Since ϕ is Fq-rational we have ϕ ◦ πq = πq ◦ ϕ, where πq denotes
the q-power Frobenius maps on E0 and E1, so ϕ is Z[πq]-oriented. In this section
we will neglect factors polynomial in log q.

Galbraith in [14, Theorem 2] gives an algorithm that can compute ϕ in
Õ(N1/2) operations over Fq. Our first improvement concerns a heuristic assump-
tion used in the algorithm. As explained in Section 2.3, a key task of the 2024
algorithm is to guess ϕ(P0), ϕ(Q0) for a suitable basis P0, Q0 of E0[ℓ]. This was
done in [14] by choosing P0 and Q0 to be Elkies primes (i.e., eigenvectors for the
q-power Frobenius). But by Theorem 4.1, we can use inert primes just as well
as split primes. This removes the need for an assumption about the distribution
of Elkies primes.

Our second main improvement will come from cyclic self-pairings (or from
our point of view, the use of degenerate conics), coming from a factor m | ∆1.
The details of the self-pairings algorithm is outlined in Algorithm 2.

In that algorithm we restrict for simplicity to the case where m is odd and
gcd(m, f) = 1. This is because in that case we can directly use the Frobenius
πq to get the self-pairing information. Indeed, define τ = 2πq − t, which will be
interpreted depending on the context as lying in End(E0) and End(E1). Note

that τ = ϕ ◦ α ◦ ϕ̂, where α ∈ End(E0) is the endomorphism corresponding to√
∆. We also have that Tr(τ) = 2Tr(πq) − 2t = 0 and ∆(τ) = τ2 = t2 − 4q,

N(τ) = 4q − t2. In particular τ is, up to a factor 2, our canonical imaginary
element for Z[πq] from Definition 3.2. We can thus apply Section 4.2, using
ωR = τ . Since em(P, τQ) = em(P, πqQ)2, the situation is simplified because we
can simply evaluate the Frobenius rather than a more general endomorphism of
the form τ/b. We refer to Theorem 4.2 for the general case, when m may have
a common factor with f .

We then illustrate how to use the self-pairing information to recover ϕ in
Algorithm 3. This algorithm calls two functions Guess() and Kani().

As already explained, we need to compute (kerΦ)[ℓ] for various primes ℓ, and
this is fully determined by a basis (P,Q) for E0[ℓ] and the corresponding image
(P ′, Q′) ∈ E2[ℓ] under ψ ◦ ϕ.
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In our applications we will have a point P0 ∈ E0[ℓ] such that RP0 = E0[ℓ]
and a point P1 ∈ E1[ℓ] such that RP1 = E1[ℓ]. We know that ϕ(P0) = γ(P1)
for some γ = a + bωR, but we don’t know (a, b). Indeed, we will extend this
to P2 ∈ E2[ℓ] such that ψ ◦ ϕ(P0) = γ(P2), using the fact that ψ is also R-
oriented. The function Guess() will produce a list of candidates for the unknown
coefficients (a, b) in γ. To be precise, it will take as input torsion information as
a sequence of data (P0, P2) ∈ E0[ℓ] × E2[ℓ], and it will output a list of items,
each of which is a tuple of candidates for the correct (a, b) ∈ (Z/ℓZ)2.

The notation Aℓ represents the data needed for the Kani construction. For
example, An2

= (n2, (P0, Q0), (S, 0))) represents the information that (P0, Q0)
is a basis for E0[n2] and that ψ ◦ ϕ(P0) = S and ψ ◦ ϕ(Q0) = 0.

The function Kani() takes as input the torsion data ℓ, (P0, P2) ∈ E0[ℓ] ×
E2[ℓ] and a candidate (a, b) and constructs some prefix of the map Φ of degree
(ℓ, ℓ, . . . , ℓ), by computing the ℓ-part of kerΦ. An extra detail is that we will
apply this to an abelian variety B1 that is already part-way along the path of
Φ. This is handled by calculating the image of ψ ◦ ϕ(P0) = (a + bωR)(P2) on
B1 by working with the images of the points P0 and P2 on B1. We will also
abuse notation and use the function Kani() for computing the ℓ-part of ker Φ̃
corresponding to the right hand side of Figure 6.

Algorithm 3 puts everything together. It describes how to recover an as-
cending isogeny between two fixed elliptic curves by making use of the partial
information gained from self-pairings and then using Guess() and Kani() to re-
cover the remaining part.

Applying Theorem 4.3 to our situation, we obtain the following complexity.

Proposition 5.1. Let E0 and E1 be ordinary elliptic curves over Fq. Suppose
End(E1) has discriminant ∆1 and End(E0) has discriminant ∆0 = ∆1N

2. Sup-
pose there is an N -isogeny ϕ : E0 → E1 (in other words E1 is directly above E0

in the volcano). Suppose ∆1 has a large divisor m = qa which has O(log(log(q)))
distinct prime factors.

Then we can recover ϕ using

max
(
Õ(q10a), Õ(q(1−3a)/4)

)
operations over Fq.

Proof. In the notation of Theorem 4.3, we have d = N , and since N2|∆| = O(q),
we have N = O(q(1−a)/2). We also have m = O(qa) since m | ∆, so

√
d/m =

O(q(1−3a)/4). We also take the trivial upper bounds B = m and u = m2. Finally
T = O(log q) because of our assumptions on the number of distinct prime factors
of m. Then we can bound the term TuB8 by Õ(q10a), and the term T

√
d/m by

Õ(q(1−3a)/4).

Remark 5.1. It remains to address the question of whether |∆1| contains a large
divisor m with O(log log q) distinct prime factors. Unfortunately this may not
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Algorithm 2: Torsion recovery via self-pairings

Input : Ordinary elliptic curves E0, E1 over Fq such that
[End(E0) : End(E1)] = N , an odd integer m such that m | ∆1,
(m, f) = 1;

Output: S0 ∈ E0(Fq), {Sj}Tj=1 such that ϕ(S0) = Sj for one j ∈ [1, T ].

1 Sample Pi ∈ Ei[m] that is a generator for the Z[πq]-module Ei[m] for
i = 0, 1;

2 Define τ = 2πq − t and set Qi = τ(Pi) for i = 0, 1;
3 Compute the following pairings: Ti = em(Pi, Qi), i = 0, 1;

4 Compute all possible {aj}Tj=1 such that (T1)
a2
j = (T0)

N ;

5 return
(
(P0, Q0, P1, Q1), {aj}Tj=1

)
;

always be the case. If |∆1| is a primorial then divisors of it, even of size only
|∆1|1/2, will have too many distinct prime factors.

However, it is well-known (see Theorem 430 of Section 22.10 of Hardy and
Wright [15]) that the average number of distinct prime factors of integers up to
X is log log(X). Hence the required condition on m applies to most integers ∆1

and our claim holds on average.

We also consider the very special case that ∆1 has a large powersmooth
factor in the following corollary.

Proposition 5.2. Let notation and hypotheses be as in Proposition 5.1. In ad-
dition, suppose the discriminant ∆1 has a factor m | ∆1 of size qa which is
B-powersmooth. Denote the number of square roots of 1 modulo m by T .

Then we can recover ϕ : E0 → E1 in time

max
(
Õ(TB12), Õ(T · q(1−3a)/4)

)
Proof. This is immediate from Theorem 4.3 using the bound u = B4 and the
analysis from Proposition 5.1.

5.2 Volcanoes with small crater

Let E0 and E1 be ordinary elliptic curves over Fq with q + 1 − t points where
t2 − 4q = f2∆ where ∆ is the fundamental discriminant, and |∆| = qa with
a > 0 small. We want to find an isogeny between them, but this time we do not
assume that E0 is directly below E1.

If E0 is on the crater and E1 on the floor then the approach in Galbraith [14]
has complexity Õ(h0f

1/2) operations over Fq, where h0 is the class number of ∆.

Since f = O(q(1−a)/2) and h0 = Õ(
√
|∆0|) = Õ(qa/2), we get that Õ(h0f

1/2) =

Õ(qa/2q(1−a)/4) = Õ(q(1+a)/4). The approach in [14] dealt with the cases when



28 Steven D. Galbraith, Valerie Gilchrist, Damien Robert

Algorithm 3: Vertical isogeny recovery in volcanoes with small crater

Input : Ordinary elliptic curves E0, E1 such that
[End(E0) : End(E1)] = N

Output: A representation of ϕ : E0 → E1

1 Choose n2 ∈ Z dividing the discriminant ∆ that satisfies the conditions in
Algorithm 2;

2 Choose t small distinct primes ℓ1, . . . ℓt and a (small) integer s such that
N < 3s · n2 ·

∏
i∈[1,t] ℓ

2
i < 2N(c+ 2t log(t))2) for a small constant c;

3 Set n1 = 4 · 3⌈s/2⌉ℓ1 · · · ℓt;
4 Write 3sn2

2(ℓ1 · · · ℓt)2 − n2N > 0 as a sum of squares;

5 Run Algorithm 2 to get (P0, Q0, P1, Q1, {aj}Tj=1) such that ϕ(Q0) = ajQ1

for one of the j ∈ [1, T ];
6 Compute ψ : E1 → E2 with kernel ⟨Q1⟩;
7 Set up torsion information Sℓ = (P0,ℓ, P2,ℓ) ∈ E0[ℓ]× E2[ℓ] for each ℓi, and

also S3⌈s/2⌉ ∈ E0[3
⌈s/2⌉]× E2[3

⌈s/2⌉];
8 for j ∈ [1, T ] do
9 Set An2 = (n2, (P0, Q0), (ajψ(P1), 0)));

10 Compute Ψ1, B1 ← Kani(E4
0 × E4

2 , An2) ; // The partial Kani

isogenies

11 Compute the kernel of the dual isogeny to Ψ1 and use Kani to compute

the image B2 of the isogeny Ψ̃2 : E4
2 × E4

0 → B2;
12 Compute S′

ℓ = Ψ1((P0, Q0, Sj)) and S
′′
ℓ = Ψ̃2((P0, Q0, Sj)) for each

i = 1, . . . t; // Push the torsion basis

13 Let M = Õ(n1) be the number of possible guesses for the images of ϕ on
n1-torsion;

14 for i ∈ [1,M ] do
15 Compute bases A3s/2 , Aℓ1 , . . . , Aℓt from

Guess(S3⌈s/2⌉ , {Sℓ1 , . . . Sℓt})[i] ;
16 Θ1, B ← Kani(B1, n1, A3s/2 , Aℓ1 , . . . , Aℓt);

17 Use Kani to compute the corresponding Θ̃2 from B2 and call the
codomain B′;

// Test if the two Kani isogenies have met in the middle:

18 if B ∼= B′ then
19 return Ψ2 ◦Θ2 ◦Θ1 ◦ Ψ1 as a representation of ϕ;

20 return ⊥ ;
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E0 and E1 are not on the crater by descending to the floor and solving the
isogeny problem in Õ(q1/4) time.

We can improve these results using the results of Section 5.1, in the case
when ∆ has O(log log(q)) prime factors.

Theorem 5.1. Assume that |∆| = qa has O(log log(q)) prime factors, and that
a < 1/41. Then we can find a connecting isogeny between E0 and E1 in time
Õ(q(1−a)/4).

Proof. We will show that we can climb up from E0 to the crater in Õ(q(1−a)/4)
when a is small enough. Doing the same for E1, we can then solve the isogeny

problem in the crater in time Õ(h
1/2
0 ) where h0 = Õ(|∆|1/2) = Õ(qa/2) is

the number of curves on the crater, which is the class number of Q(
√
∆). So

Õ(h
1/2
0 ) = Õ(qa/4), and the dominating step is the climbing up phase (since a

is small).
We let m = |∆|/4 if 4 | ∆, and m = |∆| otherwise. We still have m =

Θ(qa). If we knew the curve E′
0 on the crater directly above E0, we could apply

Proposition 5.1 to climb up in time Õ(q(1−3a)/4), when a < 1/43 (for larger a, the
dominating complexity becomes Õ(q10a)). Since we do not know E′

0, we need to
test all the curves on the crater, for a total time of Õ(h0q

(1−3a)/4) = Õ(q(1−a)/4).
This is the dominating complexity over Õ(q10a) when a < 1/41.

Remark 5.2. If all primes dividing f = O(q(1−a)/2) are smaller than qa
′
then one

can compute ascending isogenies from E0, E1 to the crater in Õ(q2a
′
) operations

and solve the isogeny problem in the crater in Õ(|∆|1/2) = Õ(qa/2) operations,
for a total cost of Õ(q2a

′
+ qa/2). So Theorem 5.1 is mainly interesting in the

case where f has at least one large enough prime divisor.

6 A special case attack attempt on SCALLOP

In what follows we outline how the general approach from Section 4 might poten-
tially be leveraged to attack the SCALLOP group action when the fundamental
discriminant has a large smooth factor. This indicates that any cryptographic
protocol using this group action should exclude (almost) smooth discriminants
from their parameter selection.

SCALLOP [11] is a group action on oriented supersingular elliptic curves,
initially proposed with the purpose of improving upon the CSIDH group action.
There have since been two variants: SCALLOP-HD [7] and PEARL-SCALLOP [1],
that improve upon some subroutines and parameter choices but rely on similar
security assumptions. Our attack will apply in the special case that the discrim-
inant has a large smooth factor, so we will focus on PEARL-SCALLOP, whose
parameter generation uses larger fundamental discriminants.

We consider the SCALLOP class group action by a non-maximal order O ⊂
K of discriminant ∆ = ∆0f

2. Suppose we are given two oriented curves (E0, ι0)
and (Ea, ιa) on the floor. We would like to recover an ideal a in Cl(O) such that
a ⋆ (E0, ι0) = (Ea, ιa). In this section, we only look at classical attacks.



30 Steven D. Galbraith, Valerie Gilchrist, Damien Robert

Standard attack. The standard classical attack for this problem is direct meet-
in-the-middle [1, Sect. 3.5]. Since the class group is of order

√
|∆| this gives

a complexity of Õ(|∆1/4|) = Õ(|∆0|1/4f1/2) field operations. So for a security
parameter, λ, we can expect log|∆| = 4λ in order to avoid this attack.

The “Climbing Up” approach. We consider the same attack from Galbraith [14]
in the ordinary case, that uses the Kani machinery to climb up to the crater from
each curve, and then use meet-in-the-middle on the crater to join the paths (see
the figure below).

E0 Ea

E′
0 E′

a

ϕ0 ϕa

This is the approach we improved in Section 5.1 by using self pairings.

Recall, this approach involves guessing which curve on the crater is “directly
above” the curves, i.e. the curve E′

a such that [End(E′
a) : End(Ea)] = f . Note

that we usually already know E′
0. For brevity we outline how to recover ϕa,

though recovering ϕ0 follows symmetrically. There are Õ(
√
∆0) curves that lie

on the crater. For each of these candidate curves, we must then guess the action
of ϕa on some torsion points. Galbraith [14] shows that this guessing requires a
complexity ofO(

√
f); so in total the approach requires (|∆0|f)1/2 field operations

to complete.

From here, we compute a meet-in-the-middle search on the crater to get an
ideal mapping E′

0 → E′
a. This requires Õ(|∆0|1/4) field operations. Let O0 be the

maximal order ofO. So far we have recovered an ideal b such that b⋆E′
0 = E′

a, but
where [b] is in Cl(O0) instead of Cl(O). Notice that we have an exact sequence

0 → G→ Cl(O) → Cl(O0) → 0,

where G := ker(Cl(O) → Cl(O0)) is of order Θ(f) that has a very explicit
description (see Theorem 7.24 and Equation (7.25) of Cox [9]).

Taking an arbitrary preimage of [b] in Cl(O), say [b′], we may still be off
from our target ideal by an element in G. With yet another meet-in-the-middle
on the G action we recover this element with a complexity of O(f1/2) operations.

Thus, to recover the ascending isogeny, compute the meet-in-the-middle on
the crater, and recover the necessary element of G, the final complexity is

Õ(|∆0|1/2f1/2) + Õ(|∆0|1/4) + Õ(f1/2) = Õ(|∆0|1/2f1/2)

field operations. Note, this complexity is worse than the direct meet-in-the-
middle attack from before.
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Self-pairings attack. We can follow the same idea as the “Climbing Up” ap-
proach, but hope to gain some savings using self-pairings. In the following the-
orem, we compute the cost of recovering the ascending isogeny as outlined in
Algorithm 3.

Theorem 6.1. Fix an imaginary quadratic order K and a non-maximal order
O ⊂ K with discriminant ∆ = ∆0f

2, where ∆0 is a fundamental discriminant.
Further, suppose ∆0 has a B-smooth factor m. Denote the number of square
roots of 1 modulo m by T .

Let (E0, ι0) and (Ea, ιa) be two oriented curves such that there exists an ideal
a ∈ Cl(O) such that a ⋆ (E0, ι0) = (Ea, ιa).

Then we can recover a in

Õ
(
T |∆0|1/2B10 + T (f |∆0|/m)1/2

)
field operations.

Proof. First, suppose we are given two supersingular curves Ea, E
′
a over F̄p such

that [End(E′
a) : End(Ea)] = f .

Then recovering the isogeny ϕa : Ea → E′
a can be done in Õ(T (B10 +

f1/2m−1/2) log(q)O(1)) field operations by Theorem 4.3 (here we bound u by
B2).

Since we must also guess which curve E′
a on the crater is above Ea, we must

again multiply the complexity above by the number of guesses, which is Õ
√
|∆0|.

This gives a complexity of Õ(T |∆0|1/2B10 + T (f |∆0|/m)1/2) field operations.
From here, we have the same task as before of computing the precise ideal

b, requiring yet another meet-in-the-middle computation in the action G. This
costs Õ(|∆0|1/4 + f1/2) field operations, which is negligible compared to the
climbing up phase.

Let us assume that m has O(log log q) distinct factors, so that T = O(log q).
The complexity becomes Õ(|∆0|1/2B10 + (f |∆0|/m)1/2) field operations.

We see that for this method to be better than the direct attack on the floor
which costs Õ(|∆0|1/4f1/2), we need:

– |∆0| to be not too large compared to f so that |∆0|1/4B10 ≪ f1/2.
– m large enough compared to ∆0, so that m≫ |∆0|1/2, but with few enough

prime factors, which forces m not to be too large either: m ≤ BO(log log q).
In particular, we need |∆0|1/2 ≪ BO(log log q).

These make for tight restrictions on the choice of ∆0 and f even when |∆0| ≪ f .
For instance, if B10 = f1/2|∆0|−1/4−ϵ, and m = |∆0|1/2+ϵ (with few enough

prime factors), we obtain a complexity of O(f1/2|∆0|1/4−ϵ).
In the most favourable scenario for our attack, ∆0 has a large smooth divisor

m =
∏
ℓi, such that each ℓi is congruent to 1 modulo 4 so that we can work in

dimension g = 4 rather than 8, and ℓi | p+1 so the ℓi-torsion is already rational.
The reason we need ℓi congruent to 1 modulo 4 to be able to work in dimension 4
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is that this allows us to write a suitable multiplem′ ofm as a sum of two squares,
which allows us to build a suitable m′-isogeny in dimension 2 given by a matrix
of integers. But for SCALLOP we also have access to endomorphisms in O, not

just integers, and we can build an m′-isogeny in dimension 2 given by

(
γ1 γ2
−γ2 γ1

)
as long as we find γ1, γ2 ∈ O such that m′ = N(γ1) +N(γ2). This can allow us
to relax the conditions on the ℓi. The total complexity of the attack would then
be Õ(|∆0|1/2B4 + (f |∆0|/m)1/2).

We finish by an example showing that our attack does not apply to the public
SCALLOP parameter sets.

Example 6.1.

– The original version of SCALLOP uses |∆0| = O(1). This is too small to be
of use, since it means that m is O(1) and the self-pairings do not provide
enough information.

– For λ = 128 bits of classical security, the authors of PEARL-SCALLOP use a
discriminant ∆ = ∆0f

2 of 512 bits, where ∆0 has 6 factors, log(|∆0|) = 256,
and log(f) = 128. Here ∆0 is too large compared to f for our attack to
apply: we would have too many curves on the crater to try.

– For λ = 256 bits of security the authors of PEARL-SCALLOP [1, Sect. 4.1]
suggest a discriminant of 1024 bits where ∆0 has 4 factors, log(|∆0|) = 258,
and log(f) = 390.
The self-pairings attack described above would give an improvement over
state-of-the-art for a smoothness bound B such that

|∆0|1/2B10 < |∆0|1/4f1/2.

This gives logB < 13 (of course this is a back of the envelope computation,
the exact value would depend on the exact hidden factors). Their∆0 contains
a 216-smooth factor m of size log(m) ≈ 33 ≪ 258/2. So ∆0 is not smooth
enough for our attack to apply either.
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A Tate-Weil-Cartier pairings

The goal of this section is to revisit the construction of self pairings from [5].
Consider a commutative diagram of isogenies of abelian varieties:

A1 A2

B1 B2

σ1

ψ1 ψ2

σ2

We know that the Weil-Cartier pairing [10, Ch. 11] is non degenerate: eσ1
:

A1[σ1]× Â2[σ̂1] → Gm, where we denote by A1[σ1] the kernel of σ1. By analogy
with the standard Tate pairing, we can define a Tate-Weil-Cartier pairing by
restricting to the subgroup A1[σ1, ψ1] = A1[σ1] ∩A1[ψ1] of A1[σ1].

Theorem A.1. There is a well defined Tate-Weil-Cartier pairing:

Tσ1

ψ1
: A1[σ1, ψ1]× Â2[σ̂1]/ψ̂2(B̂2[σ̂2]) → Gm

which can be computed for P1 ∈ A1[σ1, ψ1] and Q2 ∈ Â2[σ̂1] by

Tσ1

ψ1
(P1, Q2) = eσ1(P1, Q2) = eψ1(P1, σ̂2Q

′) (3)

where ψ̂2Q
′ = Q.

Proof. Let

A1[σ1, ψ1]
⊥ = {P ∈ Â2[σ̂1] : eσ1

(Q,P ) = 1 ∀ Q ∈ A1[σ1, ψ1]}
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be the orthogonal of A1[σ1, ψ1] in Â2[σ̂1] for the Weil-Cartier pairing. We then
have a well defined pairing:

A1[σ1, ψ1]× Â2[σ̂1]/A1[σ1, ψ1]
⊥ → Gm

It is not hard to see that ψ̂2(B̂2[σ̂2]) is in this orthogonal, because eσ1
(P1, ψ̂2Q2) =

eψ2◦σ1
(P1, Q2) = eσ2◦ψ1

(P1, Q2) = eσ2
(ψ1P1, Q2) = 1, since ψ1(P1) = 0 when

P1 ∈ A1[σ1, ψ1]. Hence Tσ1

ψ1
is well defined.

We can use the compatibility of the Weil-Cartier pairings with isogenies
to prove Eq. (3). Indeed, we have ψ̂1σ̂2Q

′ = σ̂1ψ̂2Q
′ = 0, so eψ1(P1, σ̂2Q

′) is
well defined. And we compute: eψ1

(P1, σ̂2Q
′) = eσ2ψ1

(P1, Q
′) = eψ2σ1

(P1, Q
′) =

eσ1
(P1, ψ̂2Q

′) = eσ1
(P1, Q2).

Remark A.1.

– The non degenerate pairing on the left A1[σ1, ψ1]×Â2[σ̂1]/ψ̂2(B̂2[σ̂2]) → Gm
is also non degenerate on the right whenever ψ̂2(B̂2[σ̂2]) is the full orthogonal,

e.g., when #B̂2[σ̂2] = #Â2[σ̂1] and #B̂2[σ̂2, ψ̂2] = #A1[σ1, ψ1].
– The proof of Eq. (3) shows that Q′ ∈ B2[σ2ψ1] and that Tσ1

ψ1
(P1, Q2) =

eσ2ψ1(Q
′) = eσ2ψ1(Q

′) which shows that Tσ1

ψ1
is also induced by the Weil-

Cartier pairing eσ2ψ1
, which highlight the symmetric role of the ψi, σi.

– Still by the compatibility of the Weil-Cartier pairing and isogenies, whenever
σ1 is a d-isogeny, that is we have a contragradient isogeny σ̃1 satisfying
σ1 ◦ σ̃1 = σ̃1 ◦ σ1 = [d], we have: eσ1

(P,Q) = ed(P,Q
′) = ed(P

′, Q) where
σ1(Q

′) = Q and σ̃1(P
′) = P .

Example A.1.

– Take E1/Fq an elliptic curve defined over a finite field Fq, ψ1 = ψ2 = ψ :
E1 → E2 a rational isogeny, and σi = π̂q−1 on Ei. Since E[π̂q−1] = E[πq−q]
and E[πq − 1] = E(Fq), we obtain a non degenerate pairing on the left

E1[πq − q, ψ]×E1(Fq)/ψ̂(E2(Fq)) → Gm. We remark that if E1[ψ] ⊂ E1[m]
with q ≡ 1 mod m, then E1[πq − q, ψ] = E1(Fq)[ψ].
As a further special case, taking ψ = [m] (where m satisfy the above con-
dition), we obtain a non degenerate pairing on the left e : E1(Fq)[m] ×
E1(Fq)/m(E1(Fq)) → Gm, which can be computed as e(P,Q) = eπ̂q−1(P,Q) =
em(P, (πq − 1)Q′) where mQ′ = Q. We recover the standard Tate pairing.

– Take E/Fq an elliptic curve, and R a primitive orientation on E by a
quadratic imaginary order of discriminant∆R. Let ωR be the canonical imag-
inary element of Definition 3.2. Since ω̂ = −ω, we have a non degenerate
Cartier-Weil pairing eωR

: E[ωR] × E[ωR] → Gm. Since E[ωR] is cyclic, we
see that eωR

gives a cyclic self pairing.
Now if N(ωR) = m1m2, then we can construct a commutative diagram
as above, by taking σ1 = ωR, ψ1 = [m1], ψ2 = ω̂R, σ2 = [m2], to obtain
a non degenerate pairing on the left (hence also on the right) E[ωR,m1] ×
E[ωR]/ωRE[m2] → Gm, which can be computed as eω(P,Q) = em1(P,m2Q

′)
where ωRQ

′ = Q.
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Let P0 be a Z[ωR]-generator of E[m1m2]. Then Q0 = ωRP0 is a generator of
E[ωR], P = m2P0 is a Z[ωR]-generator of E[m], and Q = ωRP = m2ωRP0

a generator of E[ωR,m1]. By the result above, we find that eω(Q,Q) =
em1

(ωRP, P ). We recover the distorted pairing from Theorem 4.1 (up to a
sign), and this is the self pairing built in [5].
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