The geometric interpretation of the Tate pairing and its applications

DAMIEN ROBERT

ABSTRACT. While the Weil pairing is geometric, the Tate pairing is arithmetic: its value
depends on the base field considered. Nevertheless, the étale topology allows to interpret
the Galois action in a geometric manner. In this paper, we discuss this point of view for
the Tate pairing: its natural geometric interpretation is that it gives étale y,,-torsors. While
well known to experts, this interpretation is perhaps less known in the cryptographic
community.

As an application, we explain how to use the Tate pairing to study the fibers of an
isogeny, and we prove a conjecture by Castryck and Decru on multiradical isogenies.

1. INTRODUCTION

This paper serves two purpose: first provide a geometric interpretation of the Tate pairing,
namely as étale y,,-torsors, and secondly use this interpretation to study fibers of isogenies.

As an application, we give a short proof of a conjecture by Castryck and Decru on multi-
radical isogenies [ , Conjecture 1]. This conjecture is recalled in Section 2, and proven
in Section 5, see Theorem 5.19.

Along the way, we review the theory of twists and torsors in Section 3, then explain how to
define the Tate-Cartier pairing on an arbitrary abelian scheme A/S in Section 4, this allows
us to prove the version “in family” of this conjecture. We also give the general compatibility
of the Tate pairing with isogenies in Proposition 4.8, as we haven’t been able to find the
general formula in the literature.

It is actually quite fun to reprove all the standard theory (bilinearity, non degeneracy,
change of base field) of the Tate pairing over finite fields from the torsor point of view. We
explain some of this in Section 4.5: the proof of non degeneracy and bilinearity from the
torsor point of view does offer some insights compared to the standard proofs, especially in
the case where y,, ¢ IFq, see Remark 4.5.

There are several different versions of the Tate pairing. When K is a complete local field, and
A/K an abelian variety, Tate defines a pairing HY(K,AV) x HI71(K,A) - H2(K, G, =
Q/Z | , § L.3]. Instead, we will use the variant (the “Tate-Lichtenbaum-Frey-Ruck”
pairing) introduced in [ ] in the context of DLP and cryptography of elliptic curves,
that we will denote by ey ,, and which takes value in H! (k, 1,,), i.e., gives i,,-torsors. This is
essentially the torsion version of the global pairing defined above, and is induced by the cup
product action on cohomology coming from the Weil pairing ey ,,. In this paper we will
call it the Tate pairing, or sometimes the Tate-Cartier pairing et s when we look at a general
isogeny f (hence the cup product induced by the Weil-Cartier pairing eyy s of f) rather than
just the multiplication by [n].

In the context of cryptography, an essential feature of the Tate pairing et ,, on an abelian
variety A/, defined over a finite field is that it is non-degenerate if 1, C F,. This needs
not be the case if y,, ¢ F q (but see Theorem 4.25), nor when the base field k is not a finite
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field. Over a general base scheme S, we do have a weak version of non degeneracy under
certain conditions, see Corollary 5.2. We argue that even if we do not have a strong form
of non degeneracy in these more general contexts, the Tate pairing is still useful. The high
level overview may be stated as follows: the Weil pairing allows to understand the kernel
Ker f of an isogeny f, the Tate pairing to understand its fibers f ~1(P). See Proposition 5.1
and Remarks 5.3 and 5.8 for more precise statements.

Thanks to the powerful machinery of étale cohomology [ ], it is not more difficult
to work over a general scheme’ S as a base (provided that 7 is invertible on S). We adopt this
point of view in this text. As mentionned above, this allows to naturally provide statements
“in family”, or to prove that formulas obtained over a generic fiber are valid over points
where they have good reduction (see Example 5.21). The reader who is only interested in
abelian varieties over fields can without harm take S = Speck throughout, and use Galois
cohomology (see Example 3.7 and Remark 3.10).

We emphasize that, despite our use of somewhat technical jargon due to our choice of
working over a base scheme rather than a field, all our proofs are very natural and simple.
See for instance Remarks 5.8 and 5.20 where we reformulate the proofs of Proposition 5.1
and Theorem 5.19 in more elementary terms.

1.1. Outline: In Section 2, we briefly review the conjecture by Castryck and Decru on
multiradical isogenies.

In Section 3, we review the theory of torsors and how to interpret the first cohomology
group in terms of torsors. This is well known and we do not make any claim of originality. We
spend a bit of time detailing how to interpret the group structure on the first cohomological
group in terms of torsors in the hope of making this operation as concrete as possible.

Then in Section 4 we explain how the Weil-Cartier pairing allows to define a Tate-Cartier
pairing on an abelian scheme. There is no difficulty in extending the usual definition over a
finite field to a scheme. What is more interesting is to reinterpret and reprove the standard
properties of the Tate pairing in terms of torsors. In particular, we give explicit formula over
a field in Section 4.4 and then reprove the non degeneracy over a finite field in Section 4.5,
and various other standard properties of the Tate pairing over a finite field. As explained in
the introduction, for our applications over a general field k we cannot assume that 1, C k*,
so we need to be careful with our statements.

We finally give applications in Section 5. We show how various properties of elliptic curves
which are usually proven using the explicit addition formula admit a simpler conceptual
proof using the geometric interpretation of the Tate pairing, which allows to extend them to
abelian varieties. Indeed, as explained in Section 5.1, the Tate pairing allows to understand
the Galois structure of the fibers of an isogeny. This allows us to determine criterion for
divisibility in Section 5.2, determine the level of an isogenous elliptic curve on an isogeny
volcano in Section 5.3, and to prove the multiradical isogeny conjecture in Section 5.4.

1.2. Thanks: I benefited from helpful conversations with Baptiste Morin on étale cohomol-
ogy. All errors in this text are mine.

For simplicity, we will always assume that S is Noetherian, or at least qcqs with finitely many connected
components.
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2. MULTIRADICAL ISOGENIES

Let (A, L) be a principally polarised abelian variety of dimension g over a field k, and
f + A — Bann-isogeny” with K = Ker f of rank ¢ in A[n], and » invertible in k. Assume a
basis (Pq, ..., P,) of Ker fis given over k.

Definition 2.1 (Non backtracking isogenies). A non (partially) backtracking isogeny relative
to fis an n-isogeny g : B — C with kernel of rank g and such that Ker g N Kerf = 0 where
f: B — Ais the dual (or rather contragredient®) isogeny of f.

It is not hard to check that there are exactly n88*1/2 non backtracking isogenies over k
[ , Lemma 2]. This also will be a consequence of Theorem 5.19. Let 7;be the moduli of
all non backtracking kernels on B.

Lemma 2.2. j}: Ly :={(PY, ..., Py) | f(P}) = P; and the P} span an isotropic subgroup of
B[n] for the Weil pairing }.

Proof. Let K' = Ker g be the kernel of a non backtracking n-isogeny. Then K’ is isotropic
for the Weil pairing eyy ,, on B[n]. Since K' N Kerf = O,finduces a bijection between K’
andf(B[n]) = K. So there is a unique basis (P}, ..., P(;,) of K’ satisfying the conditions of
the Lemma.

Conversely, if the (P}) satisfy the condition, then they span a subgroup K’ of B[n] of
cardinal at least n® since #K = 7, but the isotropy condition ensures that the cardinal
is exactly n8. Hence f induces a bijection between K’ and K, so K' N Kerf = 0. Then the
isogeny g of kernel K’ is a non backtracking isogeny. O

The conjecture by Castryck and Decru [ , Conjecture 1] is that there are explicit
algebraic formulas expressing the locus L'f in terms of radicals e ,, (P;, P;) L/n where ern
denotes the n-Tate pairingand 1 < i < j < n. More precisely, there is an isomorphism
defined over k between £f and the scheme given by the radical formulas {xl’;- =er, (P, Pj)}

for1 < i <j < g. This scheme is our first example of torsor: it is a y§<g D72 torsor in the

étale topology. They also conjecture that these formulas vary in family, i.e., are valid for an
abelian scheme A/S (this is the “good reduction” aspect of their conjecture). Notably by
looking at the universal abelian stack 2/ Agl (n) with a marked maximal isotropic basis of
rank ¢ in 2A[n], we obtain a universal formula. In this paper we prove these conjectures.

Note that Lemma 2.2 holds for an abelian scheme A/S too if we are provided with a basis
Py, ..., Py of Kerfover S. Indeed since everything is flat over S, we can test isomorphisms
fibrally, hence the isogeny g is non backtracking if and only if it is non backtracking on each
geometric fibers.

This conjecture was already proven (except the case of “good reduction”) for elliptic curves
in|[ ; ], and applications for isogeny based cryptography are given in [ ;

; ]. We will first give in Section 4 the interpretation of the Tate pairings above

as étale y,,-torsors. As mentioned in the introduction, this is of course well known to expert,
but probably less known in the cryptographic community. Then in Section 5 we explain how,
using this interpretation, the conjecture essentially follows by unraveling the definitions. The
reader only interested to the proof can look at Theorem 3.8 and Definitions 3.12, 3.15 and 4.3
for the definition of the Tate pairing as a y,,-torsor, then skip directly to Section 5. Or even
go directly to Remark 5.20 for a direct proof when over a field.

2Which means that there is a principal polarisation M on B such that f*M = L.
3Iff : (A, L) = (B, M) with .L and M principal polarisations with associated isogenies ® ; : A — A,
®): B > B,and f*M = .L", we define the contragredient isogeny fby f := @11 of o D).
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3. TORSORS

3.1. Torsors and twists. We briefly review the general theory of torsors and twists. As usual,
the reference for all this is [ ], see also [ , SIIL.4; ].

Definition 3.1. A twist of an object X/S is an object Y/S which is locally isomorphic to X.

Here locally means with respect to some (Grothendieck) topology 7 on S. When S is
a scheme, standard topologies for the study of twists include the fppf, étale and Zariski
topology. In this paper we will mostly use the étale topology. Indeed the étale topology over

a field k is essentially the geometric interpretation of Galois theory [ ]. In the following
we will always assume that 7 is coarser than the fppf topology (and in practice we will take
the étale topology).

One needs to be careful that we consider twists of X/S in some category (where the local
isomorphisms need to be in this category), and that if X /S belong to two different categories,
it may have different twists in these categories.

Example 3.2.

e Aline bundle is a twist of the affine line Al for the Zariski topology.

o A twist E'/k of an elliptic curve E/k over a field k is a twist of E (in the category of
elliptic curves) for the étale topology: E’ becomes isomorphic to E over some étale
extension of k.

e If S = Speckis a field and {;,¢, € k*, the schemes x" = §p, x" = ¢, (e,
Spec(k[x]/(x™ — ;)) become isomorphic over the extension k((¢; /52)1/”), but
they are not isomorphic over k unless {7 /¢, is an n-th power over k already. Since
k((& /&)™) is a flat extension of k, they are twists for the fppf topology, and also
for the étale topology if 7 is inversible on k.

Definition 3.3. Given an fppf algebraic group space G/S, an algebraic space X/S with
an action of G is a torsor for the topology 7 if X/S is T-locally isomorphic to G (with its
canonical action by itself) in the category of G-spaces. In other words, a torsor is a twist of

G/S.

Remark 3.4 (Representability). Even if G/S is a scheme, G-torsors for the fppf (or étale
topology) need not be schemes, they are only algebraic spaces in general. Many criteria for
representability by schemes are given in [ ], see also [ , IIT Theorem 4.3] for a
summary. This will be the case in the following situations:

e If G/S is affine, by effectivity of fppf descent of quasi-coherent sheaves;

e If G/S is quasi-affine, by effectivity of fppf descent for quasi-affine morphisms
[ » Tag 0247];

e IfG/S is smooth and separated and dim S < 1 (in particular if S = Speck is a field);

e If G/S is smooth and proper with geometrically connected fibers and G is regular;

As a particular case, G-torsors will be represented by schemes when:

e A/Sisan abelian scheme and S is either regular or of dimension < 1. Note however
that over a general base, Raynaud proves that an abelian algebraic space A/S is
represented by a scheme, but its torsors need not be, see [ ] for some examples.

e G/kisa group scheme* such that the neutral point O is geometrically reduced over
k (because G/k is always separated as the diagonal is the base change of the identity
section which is assumed to be rational, and if O is geometrically reduced then
G/k is smooth by [ ,IV.15.6.10.(iii)]).

4A quasi-separated algebraic group space is a scheme [ ].


https://stacks.math.columbia.edu/tag/0247

The geometric interpretation of the Tate pairing and its applications 5

If X/S is a torsor, then it is a formally principal homogeneous space’: the action of G
is free and transitive. Equivalently, a formally principal homogeneous space is a G-space,
i.e., a space X /S with an action by G, such that the natural map G xg X —» X xg X is an
isomorphism (this can be checked fpqc locally).

Note that if X/S is a (formally) principal homogeneous space, it is isomorphic to G (i.e.,
it is trivial) if and only if it admits a global section. Indeed, the action of G on this global
section induces an isomorphism of G with X over S. So X/ is a torsor in the topology T if
and only if it admits sections 7-locally, and it is the trivial torsor if and only if it admits a
global section.

Lemma 3.5. If G/S is fppf, then fppf-torsors are the same as fppf (formally) principal homo-
geneous spaces. If G/S is smooth, then fppf-torsors are already étale torsors and they are the
same as smooth (formally) principal homogeneous spaces. If G/S is étale, then fppf torsors are
already étale torsors and are the same as étale (formally) principal homogeneous spaces.

Proof. It X/S is a T-torsor with T coarser than the fpqc topology, then since G/S is fppf
and X/S is locally isomorphic to G, X/S is fppf. By the same reasoning, if G/S is smooth
or étale, then a G-torsor X/S will also be smooth or étale because these notions are also
fpgc-local on the base [ ,p-IV.17.7.3].

Conversely, if X/S is an fppf G-formally principal homogeneous space, then it is an fppf
torsor. Indeed X /S always admits sections over itself: the diagonal map X — X xg X is
such a section, so since X/ is fppf, X /S admits sections fppf-locally, hence is an fppf torsor.
Likewise, if X /S is smooth (resp. étale), then it admits sections smooth-locally (resp. étale
locally), so is a smooth (resp. étale) torsor. But in fact a smooth morphism always admits
étale local sections since it is Zariski locally given by an étale morphism over A" /U. So if
X/S is a smooth fppf torsor, it admits section étale locally, so it is an étale torsor. O

If G/S is a group space, the category of fppf G-torsors above S is classified by the algebraic
stack BG = [S/G] | , Tag 0CQJ], in particular torsors are stable by base change and
satisfy descent under an fppf morphism.

Example 3.6.

e Let ¢ € k¥, then the scheme x” = ¢ has a natural action multiplicative action by
U, It is a torsor over k in the fppf topology, and even in the étale topology if 11 is
prime to the characteristic p of k. In particular the twists x” = ¢; and x" = ¢, from
Example 3.2 are not only twists in the category of schemes, but also in the category
of schemes with a y,,-action.

e The archetypical example of a torsor is a quotient: if a fppf group G/S acts freely
on a space X — S, then the quotient X /G (in the category of fppf sheaves) is an
algebraic space [ Jand X — X/G is a G-torsor above S. Conversely given a
G-torsor X — Y above S, then Y is isomorphic to X/G.

o If A/kisan abelian varietyandp : X — A afinite étale cover, then X is an abelian va-
riety provided that p~1(04) has a rational point in X, and in this case p is a separable
isogeny. This is the Serre-Lang theorem, see [ , Theorem 10.36]. In this case, p
is a Galoisian étale cover with abelian Galois groupkerp,andp : X - A = X/ Kerp
is a Ker p-torsor. As an application, 7t} | (Agser,04) = lim A[n](k*P) = T(A) is

etale

5Also called pseudo-torsor in [ , Tag 0497]; in the terminology of [ ] a principal homogeneous
space is a torsor for the fpqc topology.
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(Aksep, Ze) = Hom(7‘[l

etale

the Tate module, hence H?

etale

[ ,$10.38 and 10.39].

(Aksep,OA), ZQ) = TeAv

Example 3.7 (The case of a field). If S = Speck is a field, a connected finite étale cover is a
finite separable field extension k' /k. An fppf cover is any non empty scheme of finite type
Y — k, in particular an inseparable field extension k'/k is an fppf cover but not an étale
cover.

If G/k is a group scheme then an fppf G-torsor X — k is a scheme X /k of finite type with
an action by G such that the induced action of G(k) on X (k) is free and transitive. If G/k is
smooth, X/k is a torsor in the étale topology, and will be trivialised over k*P already.

The link between twists, torsors and cohomology is given by:

Theorem 3.8. Let X/S be an algebraic space, and G = Autg(X). Then twists of X/S in the
T-topology correspond bijectively to G-torsors in the T-topology, whose isomorphism classes are
classified by HL(S, G).

Proof. We will only need the second assertion, which is proven in [ , Tag 03AG].

Note that in the category of G-spaces, Autg(G) = G, so the first assertion of Theorem 3.8
applied to G-torsors become the tautological statement that a G-torsor is a twist of G (by
definition) is a G-torsor (by Theorem 3.8).

To show the first assertion, it thus suffices to show that twists of X/S are classified by
H}(S, G) (in particular this also proves the second statement). Given a twist Y/S and a
cover U = (JU; — S in the 7-topology where Y is locally isomorphic to X over each
U;, then these isomorphisms need not coincide on U; N U, but they differ by an element

8ij € G = Autg(X). The g;; define a cocycle on the Cech cohomology group HY(U,S),
and conversely a cocycle define a twist of Y locally isomorphic to X on the U;. We conclude

by the Cech to derived spectral sequence [ , Tag 030W], which shows that the Cech
cohomology on X gives sheaf cohomology fori = 0,1 [ , V Corollaire 3.4; ,
Corollary 5.6.3]. O
Example 3.9.

e For an elliptic curve E/k with Aut,(E) = pu, = +1, we recover the fact that twists
of E are given by p,-torsors, i.e., quadratic twists.

e If E/S is an elliptic curve, then E-torsors corresponds to twists of E in the category
of E-spaces® rather than in the category of elliptic curves. In the former category,
as seen in the proof of Theorem 3.8, Autg(E) = E. The group HY(S,E), classifying
E-torsors, is also called the Weil-Chatelet group. When S = Spec K is a number
field, we also have the closely related Selmer and Tate-Shafarevich groups.

e Since a line bundle is a twist of A! whose automorphism group is G,, we get
that Pic(S) = Hy_.,(S, G,,). By Hilbert 90, HY_..(S,G,,,) = HL .(5,G,,) =
Hflppf(S, G,,): a twist of A for the fppf topology is in fact a line bundle, i.e., a twist
for the Zariski topology.

e The same is true for vector bundles: a vector bundle of rank d is a twist of A%, so a
Gl;-torsor. Since Gl is a special group in the terminology of Serre-Grothendieck,
Gl,;-torsors for the fppf topology are already torsors for the Zariski topology [ ,
IX Proposition 5.1], so a vector bundle of rank 4 for the fppf topology is already a
vector bundle in the Zariski topology.

6These will be schemes if S = Speck is a field by Remark 3.4.
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e A Severi-Brauer variety X /k is a twist of P! /k. Since Aut, (P"~!) = PGL,, (k),
they are classified by H%(k, PGL,, (k)).

e A central simple algebra of rank n? is a twist of M,, (k). Since Aut; (M,,(k)) =
PGL,, (k), they are also classified by HL(k,PGL, (k)).

Remark 3.10 (Galois cohomology). Let S be a connected scheme ands € S a geometric
point. Then Galois theory [ ] provides an equivalence between LCC (locally constant
constructible) étale sheaves, finite étale covers and 7161t ale (S, 8)-finite sets [ , Tag oDV 4],
where 711 | (S, ) is the étale fundamental group. For an LCC étale sheaf F, there is a natural
map Hi(ngtale(S,E),F) - Hétale(S,F) which is an isomorphism fori = 0,1 [ ,
SVII.2; , Proposition 5.7.20]” (i = 0 is Galois theory, and for i = 1 this also follows from
Theorem 3.8). If S = Speck is a field, and 5 corresponds to k — k, the étale fundamental
group is the Galois group Gal(k/k) and the above map is an isomorphism for all i (k is
an algebraic K (77, 1)-space): étale cohomology is simply Galois cohomology [ , Tag

03QQ].

Remark 3.11 (Twists and Galois action). If X'/S is a twist of an object X/S (in the étale
topology), and T — S is a Galois finite étale cover where X’ and X become isomorphic,
then the Galois action on X'(T) is a twist of the Galois action on X (T) by the cocycle in
HY(rl . (S,3), Autg(X)) = HL(S, Autg (X)) representing X' by Theorem 3.8.

etale

3.2. Torsors and cohomology. So torsors give a geometric interpretation of the first co-
homology group. We will use this to describe the first maps in the long exact sequence of
cohomology. We drop the T in our notations, for now we do not need to assume anything on
the topology T.

Given an exact sequence of fppf commutative group spaces over S:

(1) 0-KLHG25% HS0

seen as abelian sheaves, the long exact sequence of cohomology is given by
(2)
0 - H°(S,K) = H%S,G) - H(S,H) - H'(S,K) - H'(S,G) - H'(S,H) - H*(§,K) — ...

Iff : S — S isamorphism, the preimage functor f~! is exact (it induces a geometric
morphism of topoi Sh (S") — Sh (S)), hence the long exact sequence commutes with the
base change to S’ (see also [ , p- 1IL.o.12.1.6]).

Definition 3.12 (Pushforward/Change of structure group of torsors). Ifa : G - Hisa
group morphism (all our morphisms and maps will be above the base scheme S), then to a
G-torsor X one can associate a H torsor Y = a, X = X xg H := (X x H)/G, where G acts
on X x H on T-points via: g - (x,h) = (3.x, htx(g)_l) and H acts on itself. Hence «, givesa
pushforward map HY(S,G) - HY(S, H).

Lemma 3.13. The maps HY(S,K) - HY(S,G) » HY(S,H) are given by the pushforwards
i, and w, respectively.

Proof. This is essentially an unraveling of Theorem 3.8 and the definitions. If X/S is a G-
torsor which is trivial over each U;, where U = |J U; — Sisa cover, thena, (X) isa H-torsor
which is trivial over each U;. Furthermore let g;; be the cocycle data on the U; N Uj; associated
to X, then a(g;j) is the cocycle data associate to &, (G), which is what we wanted. O

7These references give the case of a constant sheaf F, but the general case of an LCC sheaf reduces to this
case via the Hochschild-Serre spectral sequence [ , Theorem III.2.20].
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Remark 3.14 (Quotient). In the situation of Equation (1), then G — H is a K-torsor above
S.If X — Y is a G-torsor, the pushforward map X — a, X can be interpreted as a quotient
X — X/KbyLemma 3.19 below, and X — Y factorizesas X — X/K — Y where X —» X/K
is a K-torsor and X/K — Y a H-torsor.

Definition 3.15 (Preimage/Fiber). Let &« : G — H be a group morphism. Let P &€
HOY(S,H) = H(S) be a point, it represents a section P : S — H of H — S. To this
section P one can associate the pullback of P by a: a*P : a~1(P) > G.'The space a~1(P)is
called the preimage or fiber of P by «, and it is a Ker a-torsor.

Lemma 3.16. The map H°(S,H) — H'(S,K) is given by P € H(S) ~ a~1(P).

Proof. Again, this is an unraveling of the definitions. Since0 - K - G - H — 0is
an exact sequence in the category of sheaves for the T-topology, a~!(P) admits a section
over a T-cover U of S. Since it is clearly a K-principal homogeneous space (we can check
this locally), it is a K-torsor, which as mentioned is trivial over U. It is then an exercise
to check that the corresponding cocycle is the one given by the connecting morphism
HY(S,H) - H'(S,K). 0

Remark 3.17 (Gerbes). The map H'(S,H) — H?(S,K) is described similarly. The second
cohomology group classify K-gerbes. To a H-torsor Y, one associate the category a~'Y of
all G-torsors X such that #, X = Y. This category is a K-gerbe over S (7-locally on S this
category is isomorphic to the category of K-torsors), hence an element of H?(S, K).

3.3. Properties of the pushforward map. We will need various elementary properties of
the pushforward map defined in Definition 3.12.

Definition 3.18. Leta : G - H be a morphism, X/S a G-torsor and Y/S a H-torsor. Via a,
Y can be seen as a G-space. A morphism f : X — Y (of (G, H)-torsors) relative to/above &
is a morphism of G-spaces f : X — Y, i.e., a morphism which is compatible with the action
on T-points: f(g.x) = a(g).f (x). If a is an isomorphism, the morphism f is automatically
an isomorphism too (because it is locally an isomorphism).

Ifo = Id, thenf : X — Y is simply a morphism of G-torsors, in which case it is
automatically an isomorphism.

Our basic tool for checking various isomorphisms will be given by:

Lemma 3.19. Ifa : G — H is a morphism, there is a natural map f : X — a, X of
(G, H)-torsors above «.

Conversely, if X is a G torsor, Y a H torsor, and « : G — H a morphism, then iff : X - Y
is a morphism above w, it induces an isomorphism a,(X) — Y. More precisely, we have a
bijection between maps f : X — Y above a and isomorphisms a, X — Y.

Proof. The neutral section 0 — H induces amap X = X x 0 - X x H compatible with the
action of G, and composing with X x H — (X x H)/G we getamap X — «,X.
Conversely, givenf : X —Y, wehaveamap XxH — Y given on points by (x, h1) — h.f (x),
and the compatibility of f with the action shows that the action of G on X x H factor through
this map. Hence this map descends to a morphism of H-torsor #, X — Y, which as we have
seen is automatically an isomorphism. O

Lemma 3.20. The pushforward is functorial, commutes with base change, direct sums, and
sends the trivial G-torsor to the trivial H-torsor. If X is a G-torsor, then X x X = A, X is the
G x G-torsor induced by the pushforward of the diagonal map A : G - G x G.
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Proof. Letay : G; = Gy, ap : G, — Gj are two morphisms and X a G-torsor. Then a5,
induces a map X x G, — X x Gz and this map commutes with the action of G; induced by a4
and & = & oy, hence we getamap &1 , X — &, X. Then by Lemma 3.19, a5 &7 . X =~ a,X.
Commutativity with base change is similar.

Ifa; : Gi - Hy,ap : Gy —» Hj are two morphisms and X; is a G-torsor, X,
a Gy-torsor, then X; x X, is a Gy x Gp-torsor, and the maps X; — aq ,X; above a4,
X, — ap X5 above &, induce a map X; x X; — a9 ,Xq x a, X5 above 4y x a;, hence
(@ X ap),(Xg x Xp) = aq , X5 x ay X, by Lemma 3.19.

Finally, the map & : G — H above itself shows that «, G ~ H still by Lemma 3.19, and the
diagonal map X — X x X above the diagonal map G — Gx G showsthatA, X ~ XxX. [J

Lemma 3.21. If we have a commutative diagram of morphisms

G, — H,

2 e

G, —23 H,

and f : X1 — X, a morphism of (Gq, G,)-torsors above By, then f induces a morphism
g aq Xy = &y Xy of (Hy, Hy)-torsors above f,.

Proof. From f : X; — X, we get a morphism X; x H| —» X, x Hy = (X5 x Hp) /G, =
a; . X, and the commutativity of the diagram shows that the action of G; on X; x H;
factorizes through this map.

Notice that Lemma 3.19 above is a special case of this with G; = G,G, = H; = H, = H.
Conversely, Lemma 3.21 could be directly deduced from Lemma 3.19 and the isomorphism
ay Xy =y B .Xq = By .aq X1 given by functoriality. O

Lemma 3.22. Letf; : G; = Gy, f, : Gy — Gz be morphisms. Then if P3 € G3(S),
fi(fa o f1)"H(P3) = f 1 (Pa).

And if Py € Gy(S), and i : Kerf; — Kerf, o f; is the inclusion, then i,f{1(Py) =
(f2 o f) T (F2(P2))-

Proof. For the first statement, apply Lemma 3.19 to the natural morphism (f, o f;) "1 (P,) —
f51(P) induced by f; and above f; : Ker(f, o f;) — Kerfs.

For the second statement, we have an inclusion in Gy, f; 1(P2) = (f> © f1) "1 (f2(Py))
over i and we also conclude by Lemma 3.19.

3.4. The group structure on torsors. By the abstract theory of cohomology, the maps in
Equation (2) are group morphisms. For Section 4, we need to describe the group structure
on cohomology in order to define the bilinearity of the Tate pairing. We explain the form
this group structure takes on torsors.

Definition 3.23 (Group structure). The canonical map g : G x G — G induces a group
structureon H1(S, G) viaHY (S, G)xH1(S, G) — H1(S,GxG) - HL(S,G), (X1, X5) —
X1 * X5

By Definition 3.12 and Lemma 3.13, the group structure is explicitly given as follow: if
X1/S and X, /S are two G-torsors, then X; x X, is a G x G-torsor, and X; » X, is given
by g, (X7 x X5). In summary: (X; * X5)/S is given by (X; x X, x G) /(G x G) where the
action is given on T-points by (¢1,92)-(X1,X2,9) = (§1.X1,$2-X2,887 85 ).

The neutral point is the trivial torsor, and the inverse of X is the torsor Hom(X, G).



10 DAMIEN ROBERT

Remark 3.24. It is elementary to check that G is the neutral point for the group structure
on HY(S, G). It is also easy to check that Hom (X, G) is a G-torsor, and the evaluation map
X x Hom(X, G) — G shows that X * Hom(X, G) =~ G by Lemma 3.27.

Note however that this is an isomorphism, not an equality. Likewise, associativity only
holds up to isomorphism. There is probably something clever to say about co-categories here
to keep track of the coherence conditions, but by lack of familiarity on this subject we will
contend ourselves to work up to isomorphisms. Still, we will try to be careful to keep track
of our isomorphisms, this will be useful for formulas in Section 5.

This group structure behaves as expected:

Lemma 3.25. Leta : G — H be a group morphism, then a,, : HY(S,G) - HY(S,H) isa
group morphism. Namely, given X1, X, two G-torsors, o, (X1 * Xp) = (@, Xq) * (2, X5p).

Proof. Both are equal to the pushforward of X; x X, through G x G — H, which can be
writtenasGxG > HxH - HorasGxG - G - H. d

Lemma 3.26. Letw : G — H be a group morphism, f1 : X; — Yy andf, : X, = Y, two
morphisms above a. Then we have a morphism f1 % fo : Xq x X, = Y1 x Y, above a.

Proof. Apply Lemma 3.21 to the diagram
GxG ——> HxH

| |

G—>H
]

Lemma 3.27. Let X;, X5, X be G-torsorsandf : X1 xX, — X amorphism above GXG — G.
Then f induces an isomorphism X1 x X, — X.

Proof. This is a special case of Lemma 3.19. O

Lemma 3.28. Leta : G — H be a group morphism with kernel K, P1,P, € H(S). Then
a~1(Py 4 Py) = a~1(Py) x a~1(Py).

Proof. Addition gives a morphism a1 Py x a~ 1P, — a~1(P; + P,) above Ker & x Kera —
ker &, so we can apply Lemma 3.27. O

Lemma 3.29. Let &, &y : G — H be two group morphisms, and & = a1 + «». Let X/S be a
G-torsor. Then a, X = a1 X » ap , X.

Proof. The map « factorizes through G - G x G —» H x H — H where the first map is the
diagonal, the second map is given by (a1, &,), and the last map is the canonical map given
by the group structure. So the pushforward of X by a along this decomposition is as follow
by Lemma 3.20: first we get X x Xasa G x G torsor, then a; , X x &, , X asa H x H torsor,
then a; , X » a, , X as a H-tosor. (]

Lemma 3.30. If X/G is a G-torsor, and X**? is the torsor induced by the multiplication by d
via the group structure on H' (S, G), and [d] : G — G is the morphism of multiplication by d
on G, then X** = [d],X.

If0-K->G 2, H - 0is an exact sequence and P € H(S), then [d],a"1(P) =
a1 (dp).
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Proof. The first statement is a consequence of Lemma 3.29, and the second of Lemma 3.28.
We can also apply Lemma 3.19 to the multiplication by [d] map on G which induces a map

a~1(P) -» a~1(dP) over Kerw 19, Kera. O

3.5. p,-torsors. We conclude this section by the description of y,,-torsors over S. From
now on, we assume that 7 is invertible on S, and 7 will be the étale topology. This is merely
for convenience, because in this case p,, will be étale over S rather than just fppf, hence we
can work with étale torsors.

Lemma 3.31. H1(S, Uy,) is in bijection with the isomorphism classes of the pairs (L, a) where
L € Pic(S) is an invertible bundle and o : L" — Og an isomorphism, i.e., a trivialisation of
L,

Proof. The Kummer sequence 1 - y,, - G,, - G,, — 1induced by x — x" is exact in
the étale topology. (This is also why we need 7 invertible. In general this sequence is always
exact in the fppf topology.) It induces the sequence

1 - HS,u,) - H(S,G,,) - H°(S,G,,) - H'(S,u,,) —» H'(S,G,,) - H'(S,G,,)

thus we get a map HO(S, G,,) — HY(S, U,) — Pic(S)[n] by Example 3.9. From this map
we obtain the bijection stated in the Lemma by unraveling the definitions, see | , Tag
040Q]. O

Example 3.32 (j,,-torsors over a field). If S = Speck is a field (of characteristic prime to 1),
then Pic(S) is trivial, and we obtain that H (k, t,,) ~ H'(Gal(k/k), u,,) = k*/k*": any
U,,-torsor over k is isomorphic to the torsor x” = ¢ for a ¢ in k*. The link with Lemma 3.31
is as follows: to an isomorphism (of k-vector spaces) & : k — k corresponds the torsor
x" = ¢ = a(l).

So given a 1, -torsor X /k we have two representatives. The element ¢ € k*/k*" given by
the second isomorphism gives an explicit equation (i.e., an isomorphism) with the torsor
x" = & And the cocycle E € H' (G, j1,,) given by the first isomorphism (see Remark 3.10)
gives the Galois action of G = Gal(k/k) on X (e.g., by twisting the natural Galois action of
G on p,, by E). If two torsors X;, X, are represented by ¢q, &, € k*/k*", then X; x X, is
represented by ¢3¢y, indeed (x} = 1) x (x5 = &) — (X" = §182), (X1, %) = xyxpisa
morphism above the product p,, x p,, — p,, so we may apply Lemma 3.19.

In particular, X corresponds to a twisted Galois structure on p,,, hence by Galois theory
to a field extension k' /k. We recover Kummer theory (in the more general case where we
don’t assume p,, C k*).

Example 3.33 (j,,-torsors over an elliptic curve). Let E/k be an elliptic curve (as always
we assume 7 invertible on k). By Lemma 3.31, a j,,-torsor X is given by an element L of
n-torsion in the Picard group of E, and an isomorphism O — JL". Via the canonical
identification R — (R) — (Og) of E with Pic’(E) (the torsion elements of Pic(E) are of
degree 0), the line bundle .L corresponds to a point P € E[n](k) of n-torsion. To fix an
isomorphism of O with .L” then corresponds to a choice of rational function f,, p with
divisor n(P) — n(0g). The y,, torsor X may informally be interpreted as fr}/P" .

Themap [1] : E — Eisafinite étale cover,andf, pe[n]hasfordivisorn 3 ;. ((P1 +T) — (T))
for any P; such that P = nP;. The divisor ZTEE[n] ((P1 + T) — (T)) is principal and ratio-
nal, we let g;, p be a rational function representing it. Since g7 p and fu,p © [1] have the same

divisors, they differ by a constant ¢ . Letk’ = k(c1/m), this is an étale extension of k. It follows
that c/"g,, p gives a trivialisation of our y,,-torsor over the étale cover [n] : Ey — E.


https://stacks.math.columbia.edu/tag/040Q
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This example explains why the functions f,, p and g, p naturally appear in the algorithmic
computation of the Tate pairing, see Section 4.4.

4. THE TATE PAIRING OVER A SCHEME

Following the seminal work [ ; ] introducing the Tate pairing in cryptography
in the context of Jacobians of curves over a finite field for the isogeny of multiplication by
[n], most texts restrict to this context.

An exception is [ | which proves the general case of non degeneracy of the Tate-
Cartier pairing associated to a separable isogeny of abelian varieties over a finite field. How-
ever, Bruin only gives formulas for the Tate pairing for Jacobians over a finite field. In [ I,
we gave formulas for the Tate pairing for general abelian varieties over a finite field in the
theta model.

In this section, we give a general definition of the Tate pairing related to an isogeny over a
base scheme. Then we specialize to a field and show that the usual formulas still work for
abelian varieties when appropriately adjusted, see Equation (14). Finally we recover the usual
standard results when specializing further to finite fields.

4.1. The Weil pairing. Let A/S be a principally polarised abelian scheme.
We first need the Weil-Cartier pairing (see [ , Chapter XI]):

Theorem 4.1. Iff : A — B is an isogeny, the Cartier-Weil pairing ey ¢ is a non-degenerate
pairing Ker f x Kerf — G,,,.

Proof. Recall that as an fppf sheaf, A is isomorphic to Ext! (A, G,,). For instance an explicit
isomorphism is given by L € Pic’(A) — G(L) where G(.L) is the theta group; it is an
extension of A by G,,, when L is algebraically trivial because its associated polarisation is 0.

Then the exact sequence 0 — Kerf - A — B — 0 induces 0 - Hom(B, G,,) —
Hom(A, G,,) — Hom(f,G,,) — Ext'(B,G,,) — Ext'(A,G,,) — Ext'(Kerf,G,,).
Now Hom(A, G,,) = 0 since G,, is affine and A is proper, we have seen that we can
identify Ext! (A, G,,,) with A, and Ext! (Ker f,G,,) = 0because Kerf is finite. So we get
0 - Hom(K, G,,) — B - A - 0and it is an exercise to check that the map B-o A
corresponds to f. So Kerf =~ Hom(K, G,,), and the Weil pairing corresponds to Cartier
duality. See also [ ,§ 7.2] for a sleek direct proof. O

If Ker f is of exponent # (in particular if f is an n1-isogeny), the Weil-Cartier pairing lends
in p,,. We will assume from now that all our isogenies have kernel of exponent dividing n,
and recall that we also assume that 7 is invertible on S.

There are many different variants and interpretations of the Weil pairing, see [ ,
§ 4.1.1] for an overview. The Weil pairing is invariant by base change and commutes with
the Galois action (i.e., the action of the étale fundamental group). The compatibility of the

Weil pairing with isogenies is given by [ , Proposition 11.21]:

(3) eW hogor(P, Q) = ey o (f (P), 11(Q))

forany P € f~' Kerg and Q € /! Ker 3. And by biduality [ , Proposition 11.17],
(4) ew f(P,Q) = ey, Q,P)~".

In particular, the canonical isomorphism Kerf — Ker f coming from biduality is given by
P~ —P.
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The identification of Ker f with the Cartier dual of Ker f from Theorem 4.1 is compatible
with products, soif f; : Ay - Byandf, : A, — By are two isogenies, we have for

P = (P1,P,) € Kerfy xf,and Q = (Q1,Q,) € Kerfy x fo:
(5) ew fxf, ((P1,P2), (Q1,Q2)) = ew r, (P1, Qlew r, (P2, Q2).

Example 4.2 (Poincaré bundle). Let P be the canonical Poincaré bundle on A x A, and
® : AxA — AxA theassociated principal polarisation, which is simply given by (P, Q) ~
(Q, P) (here we have used the canonical identification of A and its bidual). By Equations (4)
and (5), we have epy 1. (P, Q1), (P2, Q1)) = e o(P1, Qo) (P2, Q)7L

4.2. The Tate pairing. Weletf : A — B be an isogeny as in Section 4.1, and let K = Ker f.
From the exact sequence 0 - K - A — B — 0 we get a long exact sequence as in
Equation (2):
0 - H%(S,K) - H%S,A) - HY(S,B) - HY(S,K) - H'(S,A) - H'(S,B).

In particular we obtain a map H 0(S,B) » H(S,K). This map is described as follows (see
Section 3): to an S-point P : S — B we associate the K-torsor f ~1(P). Now if we are also
given a S-point Q : S — Kerf of order m | n, the Weil pairing applied to Q gives a map
¢o : Kerf — p,,. We can pushforward our torsor f ~1(P) through this map.

Definition 4.3. Letf : A — B be an isogeny of exponent #, P € B(S) and Q € Kerf(S)
a point of order m | n. The Tate pairing e (P, Q) is the pi,,-torsor over S given by
$0,+(fT1(P)) where ¢ : Kerf — p,, C = ey (-, Q).

Remark 4.4 (Products). Iff; : Ay — By andf, : A, — B, are isogenies of exponent 1, and
f=fixfo, P =(P1,Py) € B1(S)xBy(S),Q = (Qq,Q,) € Kerf;(S) xKerf,(S) a point
of order m, then by Equation (5) we have that eT,f(P, Q) = erf, (P1,Qq) - ery, (P5,Q5) as
a product of y,,-torsors. If X1, X, are p,,,-torsors, their product is the pushforward of the
Uy X Yy -torsor Xy x X, through the map ., X p,,, = Uy, (81, 82) — 0105,

Remark 4.5 (Order). Of course, since Q is also of order #, we also get a version of e f(P, Q)
as a ji,,-torsor. It is simply given by the image of e (P, Q) via i, : HY(S, uyy) = HY(S, 1,,)
where i : p,,, — p,, is the inclusion.

Note however that although 7 is injective, this is not the case in general for the pushforward
mapi, : HL(S, Um) — HL(S, Uy,). So seeing all our pairings in HL(S, U,,) lose information!
This is why we were careful to define our pairing in the correct cohomology group. We will
see this situation again when we study bilinearity (see Remark 4.7) and non degeneracy over
a finite field (see Theorem 4.25).

If S = Spec IFq is a finite field, then H(S, ) — H! (S, 1y,) is injective whenever
#n C Fy. Butin this paper we want to investigate the general case of the Tate pairing when
only a subgroup of y,, is rational. In this situation, our refined definition will be useful.

Proposition 4.6. The Tate pairing is bilinear.

Proof. Let P € B(S), Q1,Q» € Kerf(S), with Q;,Q, of n-torsion. Then by bilinearity
of the Weil pairing, ewlf(-, Q) :Kerf - pu, = ew,f(-, Ql)ewd[(-, Q5), so by Lemma 3.29,
er (P, Q) = er (P, Q) » e s(P, Qo).

LetP1,P, € B(S),Q € Kerf(S) with Q of n-torsion, ¢ = ew (-, Q). Then eTf(Pl +

Py, Q) = g0 (f L(P14P2)) = ¢ (f 1P *fTL(P2)) = P (f 1P *Pg  (f 1(P2)) =
eTf(Pl) * eTf(Pz) by Lemmas 3.25 and 3.28.
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Remark 4.7 (Bilinearity). Let Q; be a point of order n; and Q, = dQq where n; =
dny. We have a map 1, — ji,, givenby { — { 4, By bilinearity of the Weil pairing,
the map ¢, : Kerf — p,,, is exactly given by the composition of ¢, : Kerf — p,,
with this map. From the definition and the functoriality of the pushforward, we get that
eT,f(P, Q) € H! (IFq, Hny) is the pushforward of eTf(P, Q) € H! (IFq, Hiy) along this
projection pt,,  — py,.

This gives a refined version of Proposition 4.6. Indeed, we can also consider the map
¢ — % as an application Hn, — Hp,> this is the composition of the exponentiation
Hn, — My, above with the canonical inclusion p,,, C p,, . As above, we obtain that
er ,f(P, Q) eH L(F g Mny) 18 the pushforward by this “multiplication by d” of e ,f(P, Q).
This is the standard version of bilinearity (on the right) of the Tate pairing, as recovered by
applying Proposition 4.6. But by Remark 4.5 this second version loose information! (Note
also that although the projection map y,,, — p,,, is surjective, it need not stay surjective on
HL(S, fa) = H 1¢s, iy )- This will be the case however if S is of cohomological dimension
<1,eg,S = Spec IFq.)

One should be careful that this refined version does not work for bilinearity on the left.
Let ny = dny and Q a point of order n1y. Let P, = dP;. Then a priori er s(P5, Q) lives in
H(S, Hny)- Of course, by bilinearity, this is also e ,f(Pl, dQ), which we have seen has a
natural interpretation in H' (S, Hn,)- Explicitly, multiplication by d induces an isomorphism
f~1(Py) = [d],f~(P;) by Lemma 3.30. By bilinearity of the Weil pairing, this induces
our isomorphism eTf(Pz, Q) = eTf(Pl, dQ) e H (S, Jin,)- However, eT,f(Pz, Q) hasno
natural interpretation in H Les, Hn, ).

The compatibility of the Tate pairing with isogenies is given by:
Proposition 4.8. Letf : A —» B,g: B — C,h: C — D beisogenies over S, P € C(S) and
Q € Ker Pﬁa\g(S) of order n. Then
OT hogor ((P), Q) = e1,o(P,1(Q)) € H'(S, ).

Proof. This is a nice exercise using Equation (3) and the definitions. We can treat & and f
separately.

The isogeny f induces a morphism Kerg o f — Kerg, and by Equation (3) the map
ew,gof( Q) = ew o(f(-),Q) : Kerg of — p, factors through this map. And f, (g ©
f)_1 (P) =~ g_l (P) by Lemma 3.22. So eT,gof(P, Q) = eT,g(P, Q).

We also have the inclusion 7 : Ker g — Ker & o g. By Equation (3), the map ew,g (s lAaQ) =
W, jog (4 Q) : Kerg — u,, factor through this inclusion. Since i*g_1 (P) = (h og)_1 (h(P))
by Lemma 3.22, we get that eT,hog(h(P), Q) = eT,g(P, fz(Q) ). [l

We remark that the same proof works if we do not assume our isogenies to be separable,
we just need that Q should be of order n with n invertible. (Or work with fppf torsors rather
than étale torsors, see Remark 4.12.)

Corollary 4.9. Let « : A — B be a a-isogeny between principally polarised abelian varieties.
For P € A(S) and Q € B[n](S),

eT,n(a(P)/ Q) = eT,n (Pr&(Q))
so in particular, for P € A(S) and Q € A[n](S),
er n(@(P),a(Q)) = er ,(P,Q)".
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Proof. Since @ commutes with 7, we have er n(@(P), Q) = er ;00 (@(P), Q) = er ,(P,&Q)
by Proposition 4.8 and the second equation follows by bilinearity. O

Remark 4.10 (Base change). The Tate pairing commutes with base change and the Galois
action. More precisely, if S' — S is a map of scheme, and f* the base change of f, P’, Q' the
base change of P, Q, then er P',Q") = f”eT,f(P, Q) is the base change of eT,f(P, Q) e
HL(S, M) via the pullback map HL(S, Hy) — HY(s, M)

As a torsor, this is simply the corresponding torsor over S base changed to S’. As a
cocycle (via the isomorphism H 1, uy) = H 1 (n‘}tale (S,5), 1y,)), it is simply the cocycle in
H! (neltal (S, 3), U,,) given by composition of the cocycle above and the map ngtale(S’, ) >
ntl 1.(S,5) induced by functoriality of étale fundamental groups.

In particular, if Ker f admits a section over S’, then the Tate pairing becomes trivial over
S’. This is a fundamental difference between the Weil and Tate pairing, the Weil pairing takes
value in p,,, but the Tate pairing takes value in y,,-torsors, and two torsors non isomorphic
over S may become isomorphic after base change.

Remark 4.11 (Weil’s restriction of scalar and trace). If 7 : S — S is a map, then we
have a pushforward map 77, on étale sheaves [ , Tag 03PV]: if F'/S’ is an étale sheaf,
. F'(V) = F'(V xg §). For instance, if X' /S’ is a scheme seen as an étale sheave, then the
pushforward is Weil’s restriction of scalar Rg/,g(X"). It will be represented by an algebraic
space if fis proper flat of finite presentation [ , Theorem 1.5], and by a scheme if " — S
is finite locally free and X' is AF-finite (e.g., quasi-projective) by [ , Theorem 7.6.4].

If 7T is a finite morphism, then 77, is exact [ , Tag 03QN], so H!(S',F") =~ H(S,F).
In particular, G'-torsors X' /S’ correspond bijectively to 77, G’ -torsors X /S, in fact X = 7, X'
[ , XIV, Proposition 8.4 et Remarques 8.5].

Still for 77 finite, in the context of a Tate pairing et £ (P',Q’")/S" associated to an isogeny
f' A" - B’ over S, this means that in particular we can consider its pushforward/Weil
restriction to S, to get a 7T, J4,,-torsor over S. By the isomorphisms above, we get that the
Weil restriction commutes with the long exact cohomology sequence, so the end result is the
same if we take the Weil restriction of f "~1(P’) first then map it through the Weil restriction

of the morphism ey £ Q"). And the Weil restriction of f r—1 (P") is also isomorphic to
taking the Weil restriction of P’ (seen as a morphism S’ — A’) and then applying the fiber
functor (n*f’)_l.

Let us now assume that 77 is finite étale. Then since 7t is proper, 7r, = 71y, and 7, is both
a left and right adjoint of 771, In particular, 77,771 is a comonad, hence for any étale sheaf
F we have a natural counit 77,77~ 1F — F: this is the trace map Tr, see [ , Tag 03SH].

Coming back to the Tate pairing, since y,, is defined over S, then we can pushforward
the 77=1,,-torsor er (P, Q")/S" through 7, followed by the trace map T T Vi — 1y,
to get a i, torsor Tr, e ¢ (P',Q") over S.

Iff' : A” —» B’ is the pullback of an isogeny f : A — B over S, then we can also apply
the trace map to transform the Ker f’-torsor (f ~L(P') to a Ker f-torsor, and by linearity
of f we have that Tr, (f')"1(P") = f~'(TrP'). If Q' is the pullback of Q : S — Kerf,
then by bilinearity of the Tate pairing, Tret f (P',Q") =er ATt P’, Q) as a p,,-torsor over
S. Likewise, if P’ : S — A’ is the pullback of P : S — A, then by bilinearity we have
TTETJC/ (P,, Q,) = eT,f(P/ TI‘Q’).

Remark 4.12 (The case n = p). If S = Speck is a field of characteristic p and in the

general case when 7 is not assumed to be prime to p, the Weil pairing still gives an identifi-
cation between Ker fand (Kerf)V. So we could still define the Tate pairings as elements of


https://stacks.math.columbia.edu/tag/03PV
https://stacks.math.columbia.edu/tag/03QN
https://stacks.math.columbia.edu/tag/03SH

16 DAMIEN ROBERT

Hflppf(S, U,,) as in Definition 4.3, i.e., as fppf y,,-torsors. However, if S = Speck is a perfect
field, infinitesimal group schemes over k have no non-trivial torsors | , Lemma 5.7]. So
Hflppf(k, #pm) = 1 and the Tate pairing does not bring any information at the level pvp(n)
part of y,,.

4.3. The Weil pairing over a field. If S = Speck is a field, an explicit definition of the Weil
pairing is as follows: let Q € Ker f, Q corresponds to a divisor Dg on B. The pullback of Dg
by fis trivial since Q is in the kernel of the dual isogeny, so f*Dg = Div(gf o) for some
function g¢ o € k(A). Then if P € Kerf, Tpf*Dg = f*Dy, so the function 7}y o has the
same divisor as g . They need not be the same but they differ by an invertible constant:

this is ef(P, Q):
(6) er(P,Q) = gr,o(x + P)/gf,o(x).

If Land Mare principal polarisations on A and Bandf : (A, L) — (B, M) an n-isogeny,
then composing the Weil pairing with the polarisation @ gives the Weil pairing associated
to @ );of: Kerf x Kerf — p,,. If ® 4, @p are divisors associated to the polarisations, then to
a (0-dimensional) cycle Z = )" n;(P;) on A we can associate the divisor Dy = ) 1,7, @ 4.
By the theorem of the square and the definition of the polarisation, the divisor D is prinlcipal
ifdegZ = 0 and S(Z) := Y n;P; € Ker® = 0. In this case we let g = ¢p_ be an
associated function. Given Q € Kerfand P € Ker f, we let Z4, Zp be any cycle equivalent
to (Q) — (0p) and (P) — (04) respectively. Then DZQ is a divisor representing the point
D,1(Q), the divisor f*D, ols principal and we let g¢ 7 o be a function associated to it. Then
Equation (6) becomes

(7) er(P, Q) = &5z, (x + P) /8,7, ().

Now if f = [n] is the multiplication, in the context of elliptic curves and Jacobians it is
possible to use Weil’s reciprocity to give an alternative definition of the Weil pairing. One
can use an extension due to Lang [ ] to prove a similar formula for abelian varieties
(seealso [ ; ,§ 4.1.2]): if Z4, Z, are principal cycles, then 87,(Zy) = 87,(Zy)
provided these values are well defined.

Using Langs reciprocity, one can show that for P, Q € A[n],f, » 0d function associated

to the cycle nZ and likewise for f,, 7, then (up to a sign) [ , Theorem 6]:
(8) ew,n(P, Q) = fu,z2o(Zp) fn,z,(ZQ)-

Remark 4.13 (Elliptic curves and Jacobians). We recover the usual formula for the Weil
pairing on an elliptic curve by taking Zp = (P) — (0), Zg = (Q) — (0). In this case the
cycles are already divisors. Let P, Q € E[n], Qg such that nQy = Q. Let g, , be a function
with divisor ZTGE[n](QO +T) = (T) = [n]*((Q) — (Og)). Let f,, o be a function with
divisor n(Q) — n(0g). Then the formula above become:

©) ey (P, Q) = 80P +%)/800(P) = fo0((P) = (Op)) /fp((Q) — (OF)).

The last definition is used for computations because it is well suited for Miller’s double and
add algorithm [ ]. Notice that f,, 5 has a pole at Og so cannot be directly evaluated
there, but there is a way to make the formula fn,Q ((P) — (0g)) make sense (see [ ,
Lemma 3.5.3]) and equal to f,, 5 (P) iff,, o is appropriately normalised at infinity.

For Jacobians | = Jac(C), a function on C induce a function on J. The functions involved
in the Weil pairing all come from functions on C, so it is possible to compute the Weil



The geometric interpretation of the Tate pairing and its applications 17

pairing on P, Q € | by seeing them as divisors on C and evaluating similar functions as in
Equation (9) on them. This allows to work entirely on the curve.

At least over Jacobians, it is thus possible to make sense of Equation (8) by using Weil’s
extended reciprocity theorem, even if the support of Zp is not disjoint form the support of
DZQ (and conversely), see [ ,§ 3.4].

Formula for the Weil pairing on abelian varieties in the theta model are given in [ ;

1.

Remark 4.14 (Restricting the Weil pairing to subgroups). Let A/, bea principally polarised
abelian variety over a finite field, the Weil pairingeyy ,, : A[n]xA[n] — p,, isnon degenerate.
Assume for simplicity that 7 is prime. Let P be the characteristic polynomial of 77, on A[n],

Py an irreducible factor, and A[n]p, the characteristic subspace associated to P;. Since 71,

is g-symplectic with respect to eyy ,,, if Py = X9egP1P, (g/X) is the g-reciprocal polynomial
of Py, then P; also divides P and we have another characteristic subspace A[1]p,. (Note
that we can have P; = P,.)

Let A'[n] = A[nlp, + Alnlp,. Then the Weil pairing eyy ,, is non degenerate when
restricted to A[n]p, x A[n]p,.

Indeed, let us first assume that P; # P,. Write P(X) = P;(X)?P5(X)°R(X), with R
prime to Py and P; and g-reciprocal. The subgroup A[]p, is the image by P{ (77,)R(77,) on
A[n].Letx € A[n]p], we want to find y € A[n] such thateyy ,, (x, P§ (nq)R(nq) ) # 1.

Buteyy , (x, P§ (T)R(7T,) (1) = e, (P§ (DR, (), ) = ey (P ()R (71) (7t 87 ), )

where 7T, = g/, and we have used that R is g-reciprocal, and P; is the g-reciprocal of P;.

So y exists by non degeneracy of the Weil pairing, since (Ps(nq)R(T(q) ) (7Tq_ deg Plx) # 0as

x € Ker P{(71,) and Py is prime to P5R. The same reasoning holds for non degeneracy on
the right. A similar proof holds when P = P,.

4.4. The Tate pairing over a field. We now unravel Definition 4.3 when S = Speck is a
field. We have an isogeny f : A/k — B/k (of exponent n), a point P € B(k) and a point
Q € Kerf (k). To P we associate the Ker f-torsor f~1(P). Using the Weil pairing with Q,
we have a map ¢ = ey, (-, Q) : Kerf — j,; the Tate pairing er (P, Q) is then the
pushforward of f =1 (P) by $o-

The Tate pairing takes value in Hl(k, Uy). By Example 3.32, Hl(k, Uy) = k*/k*™, and
by Remark 3.10, H' (k, Uy) = HY(G, U,,) where G = Gal(k) is the Galois group of k. We
explain how to switch between these isomorphisms. If X /k is a p1,,-torsor, it is trivialised over k
(it has a geometric point!), so Xi = p,,. Thus X is the descent of X} through Spec k — Speck,

0

and this descent is encoded by gluing data on Speck XSpec k SPeC k.Since k ®; k = YveG k

wherek is the k-vector space k with action twisted by o, this gluing data is given by a cocycle
& : G - p,,. This is the cocycle representing X /k. Concretely it is given as follows: let P be
any point in X (k). Then the cocycle representing X is given by
(10) E:0€Gw (, €, whereo(Py) =, Py.
In the particular case where X is the y,,-torsor X : x" = ¢ associated to some ¢ € k*, if
¢y = ¢, then this cocycleis o — 0 (&y) /8y € Hy-

Conversely, given a cocycle in H! (G, j4,,), then by Galois descent it encodes a scheme
X /k which will be a p,,-torsor. It is not obvious how to find a ¢ € k*/k*" representing X /k
however. But if one can find a ¢ such that the cocycle is given (up to a coboundary) by
o~ () /¢y € My then a representative of Xis § = .
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Going back to the Tate pairing associated to an isogeny f, if B is principally polarised
by M, the Tate pairing associated to f composed with @, or equivalently the Tate pairing

associated to @ o f gives a pairing erf - B(k)/f (A(k)) x Kerf(k) - HY(k, M) Let
PeBk),Qe Kerf(k), Py e A(k) any point such that P = f (Pg). By Definition 4.3 and
our recipe above, the associated cocycle representing er (P, Q) in H (G, uy,) is given by

(11) eT,f(P/Q) Z(TEG’—)EW/f((T(Po)—Po,Q) Eyn.
Plugging Equation (7), we get
(12)  epfP,Q): 0 €G> 087, ((Po) = (0))/8f,2,((Po) = (0)) € iy,

using that 8,70 18 rational hence commute with .

In this situation there is also an explicit formula for identifying this ¢,,-torsor as rep-
resented by some ¢ € k*/k*”. Indeed, by our recipe above and Equation (12), we have
that { = gf,ZQ((PO) — (0)))™. Now with the functions we have defined in Section 4.3,

fn,ZQ of = gf”,ZQ (if appropriately normalized; indeed they have the same divisors). So
fn,zo((P) = (0)) = gf",ZQ((Po) — (0)), and we obtain:

(13) erf(P,Q) = fn,z,((P) — (0)) € k*/k*™.

(It is also possible to recover Equation (13) from Equation (8) but this uses Weil’s or Lang’s
reciprocity theorem, it is not as direct as using Equation (7).) In particular, we recover that
er ,f(P, Q) =er ,(P,Q), this is a particular case of Proposition 4.8.
Note that if (for instance) A = E is an elliptic curve, and we take Z = (Q) — (0), then
ifweletf, o =f,z o and we normalize it appropriately at infinity, then f,, » o((P)—(0) =
fn,Q (P). Also, if A = Jac(C) is a Jacobian, we can work directly over C as in Remark 4.13.
More generally on an abelian variety A, if Zp is any cycle equivalent to (P) — (0), then

(14) eT,n(P/ Q) =fn,ZQ(ZP)/

indeed by Langs reciprocity this differ from Equation (13) by an n-th power.

Lemma 4.15. Letf : A — B be an n-isogeny, P € B(k) /f (A(k)), Q € Kerﬁ Py Ef_l(P).
With the notations above, a representative ofeT,f(P, Q) is given byfn,ZQ ((P) — (0)), and
a map f_l(P) - eT,f(P, Q) above the map ¢ = ef(-,Q) : Kerf — u, is given by
L %f,ZQ((Po) — (0)), lffn,ZQ and 8f,z, are appropriately normalised so that
fn,ZQ Of = gf,ZQ'

Proof. The representative comes from the discussion above: f,, » 0° f has the same divisor as
g}’ Zy 50 they are equal up to renormalisation. So if Py € f ~1(P), we have 8f,ZQ((P0) -
on" = fn/ZQ ((P) — (0)) so the map lends in the torsor x” = eT,f(P, Q). Now translating

Py by T € Kerf, changes ®(Py) by D(Py+T) = eW,f(T, Q)P (Py) by Equation (7). Hence
@ commutes with the action of Ker f on the domain and y,, on the codomain. O

4.5. The Tate pairing over F;. Let G/F, be a finite abelian Galois module. Then a standard
calculation [ ], using the inflation-restriction spectral sequence, Tate’s cohomology
groups and the Herbrand quotient shows:

Proposition 4.16. HO(]Fq,G) = G(IFq) = G[nq - 1], Hl(]Fq,G) = G/(r(q - 1),
#HO(F,, G) = #H (F,, G), and H'(F,, G) = 0 fori > 1.
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In fact, one can also see that F ; is of cohomological dimension 1 because by the Chevalley-
Warning theorem it is a C;-field and a C;-field is of cohomological dimension 1 (see e.g.,
[ , Tag 0A2M]).

Remark 4.17 (Representation of y,,-torsors). As a corollary, we get a third interpretation
(compared to Section 4.4) of H! (IFq, M)t H! (]Fq,‘un) = /(715 — 1).LetG = Gal(]Fq),
it is procyclic generated by 77,. Given a cocyle & : G — p,, in H (G, ) representing a
U,,-torsor X, the element of 1,/ 1y — 1) associated to X is E(T[q). If &' is another cocycle
representing X, it will differ from E by a coboundary 7" — 71" ({y) /o, then E'(77,) =

E(T[q)gg 1, hence lies in the same equivalence class of y1,, modulo 77, — 1. Conversely, if

[C] € pu/(ty — 1), and we take any representative ¢, then a cocycle corresponding to &
(up to coboundary) is given by E(nq) =/( ie, E(r(,;”) = énq(g) ng”‘l ().

In particular, recall that if § € Fy/ ]F;’”, the ,,-torsor associated to x" = ¢ has for
cocycle o — (&) /G for a Gy such that ¢ = . So taking o = 71, we obtain the element
Cg_l = F@=D/" Here,whenn g — 1, #971D/" is an abuse of notation for the element
Cg_l, itliesin pt,,/ (7r; — 1) and not in p,,.

In summary (see also Example 3.32), given a y1,,-torsor X, the first isomorphism H' (F g M) =
Fg/ IF;’" gives explicit equations (i.e., an isomorphism) fo_r X:x™ = ¢, if C represents X. The
second and third isomorphism, Hl(IFq, Hy) = Hl(Gal(IE'q/]Fq),yn) =~ i,/ (71, — 1) gives
the Galois structure of X. Notably, if X is represented by (x, then as a Galois module, X is

q"-1
isomorphic to 1, with the twisted Galois action  given by 775" x ' = (715" - {) x gX”’*l .
Let jt,,, be the image of 77, — 1 on 1,,. Then there are m other distinct representatives
for X: {x(' for {' € u,,. In the twisted Galois action above, y,, decomposes into a disjoint
union p,, = ||, o where p, - = {{ € py, | 7971 = ('} is of order d = n/m, and for

€ py, ¢ the twisted action of 77, on this  is given by 77, « { = (Ix{e.

Example 4.18 (Change of order). Letn = md andi: y,, — y, denote the inclusion. We
can describe the pushforward map i, : H 1 (IFq, ) > H 1 (IFq, U,,) on torsor in terms of
our different representatives above as follows. If X is a p,,,-torsor represented by a cocycle
E with value in j1,,, then i, X is the y1,,-torsor represented by i o . Taking the image of 77,
by &, we get that i, : P! (705 — 1) —» ! (705 — 1) is the natural map [{] — [{]. On the
other hand, if X is represented by x”* = ¢, then the cocycle associated comes from any ¢
such that ¢} = ¢. The same ¢ gives the cocycle associated to i, X, hence it is represented by
& = ¢4 ie, themapi, Fy/Fy™ — Fy/Fy" is givenby § - &,

We also have the projection map p : p,, — py, ¢ — . If X is represented by the cocycle
E, p.X is represented by p o E, and p o E(71;) = E(71,)"™, hence p, : p,/(7; — 1) —
P! (705 — 1) is also the natural map [{] — [{™] induced by p. On the other hand, if X
is represented by x* = ¢ then x — x™ is a morphism between x”" = #and x¥ = #above
p, hence p, X is represented by x? = &by Lemma 3.19. So Fo/Ey" — ]F;’]/IF;'d is given by
oG

The exact sequence 1 — u,, — p, — ug; — 1 induces a long exact sequence of
cohomology:

using that F is of cohomological dimension 1. If y1,,(F;) = g4 (Fq) (i.e., the subgroup
of rational roots of unity is y;), then by Proposition 4.16, #H! (]Fq, U,) = d, and since
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Ht (Fg pn) = py/ (7ry—1), it follows that (77, — 1)1, = 1, In this case, the maps induced
by exponentiation Hl(IE'q, ) = /(T = 1) - Hl(]Fq,yd) = i is an isomorphism.
And p,, is the largest subgroup y’ of p,, such that the image of H! (]Fq, u) - H1 (IFq, )

is trivial.

Example 4.19 (Iterating n1-th roots). Assume that { € IF;'”, i.e., the torsor x” = {is trivial.
Among all the rational roots of x” = ¢, is there one such that the associated torsor y" = x is
still trivial? If x is a rational root, the other ones are given by x{, where { € 1,,(F ). The
element x induces the element x(7~ 1/ in H1 (Fg, 1) = py/ (7;—1). So if e u, (Fy) —
ga=bim gy g (71, — 1) is surjective, we can always correct our X to get a trivial torsor.
Furthermore, since both set have the same cardinal by Proposition 4.16, the map above is
then an isomorphism: there is a unique x with x* = ¢ such that y” = x is a trivial torsor.
We might call this x the canonical n1-th root of ¢, and we can then iterate it.

For instance, if yn(]Fq) = 4, then (15 — 1) (u,) = Uy, with n = dm. If furthermore
m is prime to d, then m is prime to ¢ — 1 becaused = n A (g — 1). Hence x — x™ is an
isomorphism on F7: every element has a unique rational #-th root. Via the isomorphism
Hnl (ty—=1) = pg, & — '™, the map above has the same image as the map y,,(F ) = g —
ta, { — 9D/ Hence if (and only if) (g — 1) /d is prime to d (if d is prime, an equivalent
condition is that F7 has no points of primitive order d?), each trivial torsor x* = Fhasa

unique element x such that " = x is trivial. A well known example concern square roots on
Fj wheng =3 mod 4.

Definition 4.20 (The reduced Tate pairing). Given a principally polarised abelian variety
A/IFq, P e A(IFq) and Q € A[n] (]Fq), we call the reduced Tate pairing the Tate pairing
er,(P,Q) € Hl(qu,yn) seen in 1,/ (71, — 1) via Proposition 4.16. By Equations (11)
to (14), the reduced Tate pairing is given by

(15) er, (P, Q) = ew,n(7gPo — Py, Q) = 84,7, ((Po) — (0))771
= fa, 2o ((P) = () I = £, 7 (Zp) T~V € i,/ (71, = 1)

where nPy = P.

When n | g—1, we recover the usual process of the final exponentiation in the Tate pairing,
which gives the reduced Tate pairing. In general, we letd = n A (7 — 1), then p,, (F ) = puy
and y,,/ (11, =1) = pg, e 4 jsan isomorphism, and via this isomorphism the reduced

Tate pairing is given by e ,, (P, Q) :fn,ZQ (Zp)a=—D/d g Ha.

Remark 4.21 (The reduced Tate pairing as a Weil-Cartier pairing). We have the Weil-Cartier
pairing ey 1 : A(Fq) x Ker(t — 1) —» G,,,. We have Ker(7# — 1) = Ker(7t — g). So
when y,, C IFq, Ker(7t — 1)[n] = Ker(t — 1)[n] = A[n](IFq). Using Equation (15) and
the compatibility of the Weil pairing with isogenies from Equation (3), we get that for P €
A(IF'q), Q e Aln] (IE'q), the reduced Tate pairing is given by: et ,, (P, Q) = ey , (7TqP0 -
Py, Q) = ew,z-1(nPy, Q) = ey, _1(P, Q).

Hence the reduced Tate pairing can be seen as the restriction of the Weil-Cartier pairing
ew, -1 to A(F,) x A[n](F ). Since the Weil-Cartier pairing is non degenerate and the
orthogonal of A[n] (F,) in A(IF'q) is given by nA(]Fq), we obtain that the reduced Tate
pairing is non degenerate on A(IE'q)/nA(IFq) x A[n] (Fp) = py This is essentially the
argument of [ ]. We will give a refined proof of non degeneracy of the Tate pairing in
Theorem 4.25.
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Remark 4.22 (Change of order in the Tate pairing). Ifd =n A (g—1),n =dm, P € A(k),
Q € A[n],and ey ,, (P, Q) is interpreted as being in j; by the isomorphism H' (Fg ptn) =
#gq from Example 4.18, then by the refined version of bilinearity of Remark 4.7, et ,, (P, Q) =
er 4(P,mQ) € uy.

Remark 4.23 (Base change over F q). We can refine Remark 4.10 over a finite field. The Tate
pairing e (P, Q) seen as a torsor x” = ¢ over I is still represented by the same torsor
x" = ¢ when seen over F g where ¢ € Fj C ]F;d. However the isomorphism class of this
torsor can change: the pullback map H! (]Fq, Hy) — H! (IF'qd, U,,) corresponds via the iso-
morphisms H! (]Fq, Hp) = yn/(nq —1),H? (]qu, Hp) = Hy/ (nsl —1) to the exponentiation
Pl (T0g = 1) = p /(3 = 1), 7@'=D/@=1) Indeed, remember by Remark 4.17 that
the isomorphism H' (F g Mn) = pu/ (71; — 1) correspond to taking the cocycle representing
the torsor and to evaluate it at 77,. If {f' = ¢, then the element representing er (P, Q) over
F,in p,/(ty — 1) is then 77, (Gp) / Go, while the element representing et (P, Q) over ]qu
in yn/(r(qd —1)is nqd(é‘o)/é‘o.

Since (¢ = 1)/(q—1) =1+ g+ ¢* + - +¢"and {7 = {in p,,/ (77, — 1), then,
if (71,‘; - Dy, = (15 — 1) (), ie., if,un(IF'q) = yn(IF'qd) (this is of course the case if

nt, = 1lonp,,ie,n|qg— 1), this exponentiation map corresponds to { — (' 4,

q
Remark 4.24 (Trace map over finite fields). We can refine the form Weil’s scalar restriction
from Remark 4.11 takes from torsors over F 44 to torsors over ]Fq (note that F g /F q1s finite
étale). Recall that if G/ ]F,7 is a finite étale group, and X'/F g is a G'-torsor over F g (where
G' is the base change of G to F ¢4)> then we can build a G-torsor over F, by first taking the
Weil restriction of X' to get a R]Fq p /quG' torsor, then mapping it through the natural counit
morphism R]qu /]FqG’ — G. Via Proposition 4.16, the corresponding map on cohomology is

the natural projection Hl(]Fq,,,G’) ~ G/(n,‘; -1 - Hl(IFq,G) ~ G/(nq —-1).

In the special case where G = j4,,, so we can also represent a j1,,-torsors by ¢ € k*/k*™",
then the morphism corresponds to & € IF';d/IF';[,” = Emy(8) - ﬂg_l(é‘) € F;/Fy" ie,
in this case the trace map Tr is the norm of F g /E,.

As mentioned in Remark 4.11, by bilinearity of the Weil pairing, if P’ € B(F qd) and Q
is rational, and we let P = Tr P’ = P’ + nq(P’) + .- ng_l(P’), then looking at the non
reduced Tate pairings in IF';d and IF'; respectively, Tr eTf(P’, Q) = eT/f(P’, Q) T4g+-4g771 _
er ,f(P, Q) e ]F; / IF':;’". Taking this equality to the power (q — 1)/n, and remarking that
(qd -Hm=aA+qg+ -+ qd_l)(q — 1)/n, then the reduced Tate pairings satisfies
Tr eT,f(P’, Q) = eT,f(P, Q) e Pl (705 — 1) where as explained above, for the reduced Tate
pairing the trace is simply the projection yn/(nqd -1 - p, /(= 1).

We have similar formulas if P is rational but Q’ is defined above F g with Q = TrQ":
for the non reduced Tate pairings, Tr ey ¢(P, Q" = erf(P, Q,)1+q+...+qd—1 =erp(P,Q) €
]F;/IFZ’n, and for the reduced Tate pairing: Tr eTf(P, Q) = erc(P, Q) e Hal (75 = 1).

We now prove non degeneracy of the Tate pairing; this is a special feature of finite fields.

Theorem 4.25. Letf : A — B,P € B(F,),Q € Ker f of exact order d | n. Then erf(,Q) ¢
B(F,)/f(A(Fy)) — Hl(]Fq,yd) is surjective.
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Hence if Q € Kerf is of order dividing n, H' (Fg, pty) is not trivial and et (P, Q) €
H! (IE'q, Uy is trivial for all P € B(IF'q)/A(]Fq), then Q is of order d a strict divisor of n.

Proof. First by Lang’s theorem on triviality of torsors of a smooth connected algebraic group
G/]Fq [ 1, Hl(]Fq,A) = 0: all A-torsors have a rational points hence are trivial. So
B(F,) - H 1 (F,, Kerf) is surjective: all Ker f-torsorf comes from the preimage by f of a
point P € B(IF'q). Secondly, given a point Q € Kerf(IFq) of exact order d | n, since the
application ¢y = ey ,(-,Q) : Kerf — pg  is surjective by non degeneracy of the Weil
pairing, and F is of cohomological dimension 1 (in particular all gerbes are trivial), then
o - H! (IFq, Kerf) — H! (IFq, Hg) is surjective. Combining these two surjections, we get
that er (-, Q) : B(F,) - Hl(]Fq, 144) is surjective. O

Remark 4.26 (Non degeneracy). By the proof above, Hl(IF'q, Kerf) =~ B(]Fq)/A(]Fq).
Furthermore, H?! (]Fq, Kerf) has the same cardinal as HO(IFq, Kerf) = Kerf(IFq) by Propo-
sition 4.16. Now suppose that Kerf is of exact exponent 7 and that y1,, C F, so that
Hl(IFq, Uyn) = My, Then the Tate pairingB(IFq)/A(IFq)xKerf(IFq) — U, isnon-degenerate
on the right by Theorem 4.25, and since both groups on the left have same cardinal and are
of exponent 7, they are dual to each other. Hence the Tate pairing is also non-degenerate on
the left.

More generally, if 11, is the subgroup of j,, generated by y,, (F,), then H 1 (Fg ) = pa
by Example 4.18. And if ey ,, (P, Q) is trivial for all P € B(IFq)/A(IFq), then Q is of order
dividing m = n/d by Theorem 4.25. Of course this can be recovered from the refined
version of bilinearity, as explained in Remark 4.22, e ,, (P, Q) seen in ji; is naturally equal to
er 4(P,mQ), and since d | g — 1, we can apply the usual non degeneracy of the Tate pairing
over a finite field.

Let us give a direct proof that the Tate pairing over F, is non-degenerate on the left
when y,, C F,. This is instructive to see why the argument does not work over a more
general field k. Let K’ C Kerf be the orthogonal of Ker f( F,) under the Weil pairing
ey . We have an exact sequence 0 —» K’ — Kerf — H — 0 where H = Kerf/K' =
(Ker f (F,))" by non degeneracy of the Weil pairing. The isogeny f : A — B decomposes
asf =fyofy : A — C > BwhereKerf; = K" and Kerf, =~ Kerf/K' =~ H.If P € B(F,),
fllyff_1 (P) :fz_1 (P) by Lemma 3.22. Taking a basis (Q1, ..., Q,) ofKerf(IFq) (we assume
that Ker f (]Fq) ~ (Z/nZ)" for simplicity, the general case can be treated similarly, see
Remark 5.5 below), the map @ : Kerf — uj, P = ey ,(P,Q;) induces an isomorphism
between H = ker f /K’ and p},. Since ® factorizes though f;, and by definition of the Tate
pairing, CID*f_1 (P) = CD*fz_l(P) is the p,-torsor represented by the (eT,f(P, Q;) (this is
the same argument as in Proposition 5.1 below). Since ® is an isomorphism from H to
p5,, we see that @, is an isomorphism above ® of £;1 (P) with the jJ;,-torsor given by the
(e ,f(P, Q;)). In conclusion: et ’f(P, Q) is trivial for all Q € Ker f (IF'q) is equivalent to
fz_l (P) is trivial. It remains to show that in this case, f ~1(P) is trivial too. We thus need to
prove thatf; , : H'(F,, Kerf) — H'(F,, H) is injective. Up to now, the whole argument
did not need that y1,, C F, or even that k is a finite field, this is where we will need these
hypothesises.

By the long exact sequence in cohomology, to prove that f; , is injective is the same as
requiring that H(IFq) - Hl(IFq,K’) = K’(]Fq)/(nq — 1) is surjective. If i € H(]Fq),
and g € fz_l(h), the image of /1 in K'(Fq)/(ﬂq — 1) is represented by 7,(8) — 8§ € K'.
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Since y,, C ]Fq, U, = (Z/nZ)V =~ (Z/nZ), hence H =~ Kerf(]Fq) as a Galois module,
and H(?q) = H(IFq). In particular, fz‘lH(]Fq) = Kerf(ﬁq), so we just need to show
that the image of 77, — 1 : Kerf — K'is surjective. But #K'#H = #Kerf = #(7, —
1)(Kerf)#Kerf(]Fq). Since #H = #Kerf(]Fq) = #Kerf(IFq) (because Ker f and Ker f are
Galois dual and ¢ =1 mod n), we get that #K’ = #(nq — 1) (Kerf) as we wanted.

Remark 4.27 (Restriction to subgroups). All proofs I know [ ; ; ; ]
of non degeneracy of the Tate pairing suppose that 1, C F,. Indeed, for non degeneracy, by
Remark 4.26 it is harmless to only deal with this case.

Furthermore, when i, ¢ F,, n is prime and d is the embedding degree, they have a
refined version of the n-Tate pairing restricted to subgroups of A[1](F ). Indeed, they
define the subgroups G, G, to be the subgroups of A(F 1) where 77, has eigenvalue 1
and g respectively, and show that the n-Tate pairingA(]qu) /nA(]qu) x A[n] (]qu) - Uy,
over F g i still non-degenerate (under certain conditions) when restricted to G x G, or
G, x Gq (provided that they are not empty).

We can recover this result as follows. Let A be principally polarised, assume that 7 is
prime and A[n](F,) is non empty. So G is non empty, and Gy its Galois dual (thanks
to the Weil pairing) is non empty too over F gi-Letg i B — A be the dual isogeny of the
quotient A — B := A/ G, (here we identify A with A via the principal polarisation). Then
we get a non-degenerate pairing A(Iqu)/CP(B) (]qu) X GZ(Iqu) — H,, by Theorem 4.25.
But Ker ¢ is the Galois dual of G, hence is isomorphic to G, so A(Iqu) /$(B) (Iqu) ~
H! (IE"qd, Gy) = H! (]Fq, Gy) = A(IFq)/¢(B) (IF'q), hence we have a non-degenerate pair-
ing A(]Fq)/<p(B)(]Fq) X GZ(IF'qd) — . Since 1 is prime, then ifA(IFq) does not have
points of n?-torsion, the inclusion G4 (]Fq) - A(IFq) induces an isomorphism G ( ]Fq) =~
A(IFq)/nA(]Fq) o A(IFq)/gb(B) (]Fq), so we get a non-degenerate pairing

Gy (Fg) x Go(Fpa) = phy

More generally, if n1 is prime and d > 1, then g is a primitive d-th root of unity modulo n
by the definition of the embedding degree. Since 7'(51 = Ton A[n](F ) and d is prime
to 1, 71, splits A[n](F q,j) into eigenspaces with eigenvalues 1,4, ..., qd’l, that we denote
by Gy, Gy, ..., G,. The Galois dual of G; is G3_; (because 77, acts by g"~! on G; and
q/9"~! on G}), with the convention that Gy = G4, G_; = Gy_y, ... Incidentally, the
Weil pairing eyy ,, is non degenerate on G; x G3_; by Remark 4.14. We can look at the
Tate-Cartier pairing given by the dual isogeny ¢, of A - C = A/Gj_,, to obtain a non-
degenerate pairing A(]qu)/4>z(C)(Iqu) X G3_i(]qu) — y,, by Theorem 4.25. Assume
that A(Iqu) does not have points of n2-torsion. Then A[n](]qu) ~ A(IF'qd)/nA(IE'qd),
because the map is injective by assumption and they have the same cardinal over F ;. Now
Ker ¢, = Gg’_i ~ @G; as a Galois module. Furthermore, since A(Iqu)/(Pz(C)(IFq,;) is
isomorphic as a Galois module to H! (]qu, Ker ¢,) = H! (Iqu, G;) = G;, we get that the
projection A[n] — A(]qu)/¢2(C) (Iqu) kills all the Gj with j # i. Hence the injection
G; - A(IE'qd)/<p2(C) (Iqu) is a bijection, and we obtain a non-degenerate pairing G; x
Gj_; = M, Asaspecial case, in this situation, the Tate pairing restricted to G, x G — p,
is non-degenerate.

Similarly, let IF'qg be the smallest extension such that A[n] C A[n] (IFqg). Let G’ be one
of the characteristic subspace of A[n] and G" its Galois dual (i.e., the characteristic space
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associated to the g-reciprocal of the irreducible polynomial associated to G'). Then if A(]Fqg)

does not contain a point of 72-torsion, by the same reasoning as above, the Tate pairing
restricted to G’ x G" is non-degenerate.

Example 4.28. LetE/F q be an elliptic curve whose {-Sylow E (F q) [€=°]of E(F ) 1s generated
by (P, Q) where P is of order 02 and Q of order .

Assume first that yrp C F e Then er 2 (Q, P) is of order £ by bilinearity, hence er (P, P)
has to be of primitive order {2 by non degeneracy, so (the reduced Tate pairings) er 2(Q,tP) =
1ere(Q,EP) # 1. Ander 2(Q, Q) = er(Q,Q),er 2(P, Q) = eg (P, Q), they are of
order at most { by bilinearity and one of them is non-trivial by non degeneracy.

Now if yty C F, but F, does not contains all of ¢, the situation is very different. If ('is a
primitive 2 root of unity, 7, ) =¢ U for some m invertible modulo ¢, and H?! (]Fq, Up2) =
Mg/ (T — 1) = py (where the last isomorphism is given by exponentiation by {). Both
er 2(Q, P) and e 2 (P, P) are of order at most { in H! (Fg, ) hence e7 2(Q, ¢P) =
er (P, Py =1€ Hl(]Fq,‘uez). However, when seen in Hl(IFq, Hg) (see Remark 4.7),
er 2(Q, €P) = et 4(Q, IP) need not be trivial, and likewise for e 2 (P, €P) = er o(P, (P).

5. APPLICATION TO FIBERS AND RADICAL ISOGENIES

In this section we will use the Tate pairings to study fibers of an isogeny. As an application,
we will prove the multiradical conjecture. We will work over a base scheme S, but since
everything in sight is flat over S, it is essentially harmless to work fibrally over S, i.e., to
assume that S is a field.

5.1. The Galois structure of fibers of isogenies. The basic idea is as follows. Letf : A —» B
be an isogeny (of exponent 7 as usual) over S. Assume we have a primitive n1-root of unity
over S,i.e.,asection( : S — y,, that is fibrally primitive. Given { and a basis (Q1, ..., Q,)
of Ker f (i.e., given sections of Ker f/S which form a basis fibrally), the Weil pairing gives a
canonical dual basis on Ker f, and can be used to express a point P € Ker fin terms of this
dual basis.

When P € B(S), the Tate pairing gives a similar description on the Ker f-torsor f “1(py:

Proposition 5.1. Given a basis (Qq,...,Q,) € B(S) ofKerﬁ the torsorf_1 (P) splits (canoni-
cally®) as a Uy, -torsor whose isomorphism classes are given by (e f(P, Q1), ..., erf(P, Q) =
(ET,TZ (P/ Q] )/ ey eT,n (P/ Qr) )

Proof. The basis (Q1, ..., Q,) gives a canonical splitting
O : Kerf —» ul,,P — (eW,f(P, Ql),...,ewf(P,Q,)).

Transporting the torsor f~! (P) under ® gives a canonical splitting as a i/, torsor, and its
individual components are given by the et (P, Q;) by the definition of the Tate pairing. The
last equality comes from Proposition 4.8. ]

Corollary 5.2. If the Tate pairings eT,f(P, Q1), .- ,eTlf(P, Q,) are all trivial, then P €

fA(S)).
Proof. 'The torsor f ~1(P) is then isomorphic to the trivial y/,-torsor by Proposition 5.1,
hence has a section over S. O

80nce we have fixed the basis (Q1,---,Q)).
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Remark 5.3 (Partial fiber information). In the case where our sections Qy, ..., Q, do not
span the full Ker ﬁ we only have partial information on the fiber f =1 (P). This is similar to
what happens with the Weil pairing. Let H C Ker fbe the subgroup spanned by the Q; and
K" C Ker fbeits orthogonal under the Weil pairing. Since the Q; are rational, H is isomorphic
to (Z/8Z)". HenceKerf /K" ~ H" isisomorphic, viathemap ® : P € Kerf — ey £(P, Q;)
induced by the Weil pairing, to p;.

Now we can decompose fas f = f, o f; with Kerf; = K’. Then as in Proposition 5.1,
f‘l(P) /K" =~ CD*f_l(P) :f2_1 (P) (see also Remarks 3.14 and 4.26). So the r Tate pairings
above give the Ker f /K’ =~ HY =~ yj torsor isomorphic to (i.e., parametrizing) f “L(P)/K' =
fz_l (P). The larger H is, the smaller K" will be, and the more information we will have on

~(P).
! One should be careful that the situation is different than with the Weil pairing above. Over
a field k, for the Weil pairing, ®(P) € pj describes a point in P € Ker f /K’ given by the r
coordinates ew,f(P, Q;) in yQ(E). By contrast, for P € B(k),f‘l(P)/K' o~ qD*f_lP isa pl;-
torsor, whose isomorphism class is given by the r Tate pairings e7 ,, (P, Q;). These pairings
should really be seen individually as representing y,,-torsors, they are not coordinates!

When given by an element ¢ € k*/k*” the Tate pairing represents the n-points in k" such
that x” = ¢, and when k = F, and the (reduced) Tate pairing is given by an element
[C] € py/(7ty — 1), it represents the torsor whose associated cocycle & evaluated at 77, is {
(see Remarks 3.10 and 4.17).

Example 5.4. Letf : E; — E, be an n-isogeny of elliptic curves defined over a field k.
Assume that Kerf C E,[NT] is generated by P € E,(k), and let R € E,(k). Then by
Proposition 5.1, f ~1(R) is isomorphic to the p,,-torsor er (R, P), above the isomorphism
ew n (-, P) : Kerf — p,,. We will come back to this in Example 5.14.

Let Q be another generator of Ker f. Then the same Ker f-torsor f =1 (R) is also isomorphic
to the p1,,-torsor er ,, (R, Q), above the isomorphism ey ,, (-, Q) : Kerf — p,,.

Notice that er ,, (R, P) and er ,, (R, Q) need not be isomorphic as y,-torsors (in fact,
if p,, C k, they won’t be isomorphic unless P = Q). Recall that if X is a G-torsor, then
isomorphisms of X are given on points by x — g - x for a g € G. These are isomorphisms
of X where the action of G is fixed. On the other hand, if x € Aut(G), there is also an
isomorphism X — a, X above &, which changes the action of G through «, hence is not an
isomorphism of G-torsors.

Remark 5.5 (Basis). In the statement of Proposition 5.1, we have implicitly assumed that all
our Q; are of exact order 7, this is the case for instance if  is prime. In general, if Ker f has
all its points rational, we can find a basis (Qq, ..., Q,) of order (ny,...,n,) with n; | n;, ;.
(By the equivalence of category between finite étale covers T — S and finite sets with an
action by neltal .(58),a finite étale abelian group T — S corresponds to a finite Z-module G
with an action by 7'(2t a1e(S,8), and the points are rational when this action is trivial. There
is certainly a basis as above for G seen as a Z-module, which we translate back via our
equivalence of category.) Then the isomorphism of Proposition 5.1 should be amended to
take ®(P) = (er,,(P,Q;)) anditlendsin pt,,, ® ... ® 1, . We'll stick to our simplifying

assumption above for the rest of this section, the general case is easy to adapt.

Remark 5.6 (The Galois structure of the fiber). By Example 3.32, the interpretation of
Proposition 5.1 over a field k is as follows. The map & from the proof gives an isomorphism
of Ker f with p;, and to give a point T & Ker f is the same as to give ®(T) = (ewf(T, Q-
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Now if P € B(k) and the torsor f =~1(P) is described by the Tate pairings et Jc(P, QN>
then if these pairings are given by elements & € k*/k*", f =1 (P) is canonically isomorphic
(via @, and our choice of basis) to the scheme {x}' = ¢;}. (Warning: this scheme describes
F~1(P) as an abstract étale scheme over k, not as embedded inside A!) To give a point of
f —1(P) over some étale extension k' /k is then the same thing as to give a tuple (/) in k'
such that {/" = ¢;.

Conversely, if the pairings are represented by cocycles in H L(Gal(k/k), U.,)> then these
cocycles give the Galois structure of f “1(py. Namely, if P’ € f ~1(Py and ¢ € Gal(k/k),
we have 0 (P") — P’ € Ker ¢, and via the isomorphism Ker f =~ yu}, given by the choice of
basis (Q;) ofKerﬁ we obtain an element § (¢) = (§1(0), ..., (7)) € pj,. The equivalence
classes of these r cocycles ¢; are precisely the values e (P, Q;) of the r Tate pairings viewed
as cocycles. In the other direction, take ¢ = ({7, ..., ¢,) = (et Jc(P, Q;)) a cocycle represen-
tative of the Tate pairings (viewed as cocycles). Then there exists P’ € f —1(P), such that for
all o € Gal(k/k), if (C1,---, ) = (61(0),...,C(0)), and we let T € Ker f be the unique
element such that ef(T, Q;) = {;, then o(P") — P’ = T. We remark that replacing P’ by
another element P” € f~!(P) would change the cocyles &; by coboundaries, and we can
obtain all representatives in the equivalence class of ¢ this way.

In particular, if k = F, then by Remark 4.17, if the reduced Tate pairings are given by

classes [(;] € p,,/ (15— 1), then the Galois module structure of f 1Py is isomorphic to pJ,
together with the twisted action of 7, given by: Tty * (1, e ) S,) = (nq (51081, s u (5.)8,).
If u, C IFq (to simplify), the cocycle description give above shows that (et ,f(P, Q) =
(&4, -+, ¢,) if and only if for one (resp. any) P’ € f~1(P), we have 7rq(P’) — P’ = T, where
T € Kerfbe the unique element such that ey AT, Q;) = {;. Wenote that in the case of finite
fields, by the non degeneracy of the Tate pairing (Theorem 4.25), P — e ’f(P, Q;) induces a
canonical isomorphism (once we have fixed the basis Q; which gives an isomorphism, as Ga-
lois modules, between Kerfand (ZnZ)") between A(]Fq) /f(B(IFq)) and the Cartier dual
Hom((Z/nZ)", G,,) =~ u},. Assuming again that y,, C IFq, so that the only coboundary is
the trivial one and there is only one cocycle by class in H' (F g Mn)»> we find that all Galois
module types encoded by the ({3, ..., {,) € pj, appear exactly once in A(]Fq) /f(B(]Fq) ), as
the fiber f =1 (P) for P a representative of P +f(B(F,)) € A(F,)/f (B(F,)).
Example 5.7 (The Galois structure of the fiber of an isogeny between elliptic curves over
a finite field). Let E/F, be an elliptic curve, with a rational point of exact order n, P €
E[n](IFq). Letf : E — E' = E/(P) be the corresponding isogeny, and Q € E(]Fq). Then
by Proposition 5.1, from e, ,f{ Q,P) = er,,(Q, P), we can recover the Galois structure on
f_1 (Q) as follows.

Fix {;j a primitive n1-th root of unity in Fq, this fixes (via the Weil pairing) an isomorphism
Kerf = y,,, and in particular a generator P’ of Ker f determined by e}y FP,P’) =1 Fixa
representative { € j1,, of the reduced Tate pairing et , = [{] € p,,/ (77, — 1).

Via the isomorphism Ker f = 1,, above, this { corresponds to the point T" = uP’ & Kerf,
where u is such that { = . Then thereisa point Q" € fN_1 (Q) such that 7, (Q") = Q"+ T".
If Q" is another point in the fiber, then Q" = Q' + T for some T € Kerf. Then m,(Q") =
Q"+ T’ + 7,y(T) — T. Let p,,, be the image of 77, — 1 on pu,,, so the image of 77, — 1 on Kerf

is Kerf[m]. Then as in Remark 4.17,f~_1 (Q) is a disjoint union of m set ofpointst_1 Q)
forT € Kerf[m], where 7T, acts on Q' Ef_l(P)T by nq(Q’) =Q'+T'+T.
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Remark 5.8 (Explicit formula). Over a field k, we can use Lemma 4.15 to give an explicit
isomorphism between f ~1(P) and the torsor {x}! = er ,(P,Q;) }: with the notations of this
Lemma, ¥ : Py € f_l(P) — (8f,ZQ_((P0) — (0))) is an isomorphism betweenf_l(P)
and {x} =eg,(P,Q;) = fn,ZQl.((P) - (0))}. Here we assume that thefn,ZQ’_ and 8.2,
are appropriately normalised thus that g}l,ZQ. =fuz o, ° fsothat g 7 o ((Pg) — (O™ =
fn,ZQ. ((P) — (0)) and ¥ lends in the correct ltorsor.
Usling this formula, the proof of Proposition 5.1 can be reformulated as follows:
(1) Fixany Py € f~1(P). Then Kerf — f~1(P), T ~ Py + T is a bijection (f "1 (P) is
a Ker f-torsor). Similarly, for the y};-torsor {x}' = et ,, (P, Q;)}, given a point (/)
in it, the action of u}; on this point gives a bijection of y}, with this torsor.
(2) The map & : Kerf — pu!, from Proposition 5.1 is an isomorphism.
(3) The map ¥ commutes (above @) with the action of Ker f on the left and of y,
on the right, namely we check that if ¥ (Py) = (xy,...,x,), then ¥ (Py + T) =
(xq eW,f(T, Q1) -ees xrewf(T, Q,). This is immediate from Equation (7).

From these facts, it follows that ¥ is a bijection, and we can use ¥~ to parametrizes the
points inf_1 (P).

The same formula works in the situation of Remark 5.3: ¥ gives then a morphism
F~Y(P) - f~1(P)/K’ above ® : Kerf — Kerf/K' = ul,.

Remark 5.9 (The rational points in the fiber). When S = Speck is a field and the fiber
f ~1(P) is trivial, i.e., has a rational point, it would be interesting to refine Proposition 5.1 to
parametrize all rational points f ~1(P) (k) in the fiber.

We can give such a description if we assume furthermore that the Weil pairing eyy
stays non-degenerate when restricted to Kerf (k) x Kerf(k). Let K' = Kerf(k)L as in
Remark 4.26. Then K’ NKer f (k) = 0 by our hypothesis, so Ker f (k) splits the exact sequence
0 - K' - Kerf — H — 0 of Remark 4.26, i.e,, Ker f = Kerf (k) @ K'. It follows that the
Kerf-torsorf_1 (P) splits canonically asf_1 (P) = X1 @ X, where X is a Ker f (k)-torsor
and X, a K'-torsor.

Factorising f = f, o f; as in Remarks 4.26 and 5.3 with Kerf; = K', we get that
fifHP) = f1(P) = f1 Xy since f; , X, is afi(K') = O-torsor. Since f; restricts to
an isomorphism Ker f (k) — f(Kerf (k)), Xy = f; ,Xj is an isomorphism above f;.

If we fix a basis (Q;) of Kerf(k) and we let @ : Kerf — pj,, P — ew,f(P, Q;), then by
our hypothesis, @ induces an isomorphism of Ker f (k) with y},. So CID,,f_1 (P) =~ &,.X;
is described as a torsor by the Tate pairings et (P, Q;) as in Proposition 5.1. We can even
give an explicit isomorphism ¥ exactly as in Remark 5.8. Thus if f =1 (P) is trivial, then X;
corresponds to the Ker f (k)-torsor given by f ~1(P) (k). We can thus use the isomorphism
Y1 to parametrizes the rational points f 1Py (k).

Remark 5.10 (The case of a finite field). When k = Spec Fyisa finite field, we have a
refinement of Proposition 5.1, Corollary 5.2, and Remark 5.9 if 1, C F,. First, by the non
degeneracy of the Tate pairing over a finite field (Theorem 4.25 and Remark 4.26), to test if
f_1 (P) is trivial we just need to test if eT’f(P, Q) is trivial for all Q € Kerf(]Fq). We do not
need that all the points of Ker f have to be rational as in the hypothesis of Proposition 5.1.

Now assume that ew f is non-degenerate on Kerf(IFq) X Kerf(]Fq), so we are in the
situation of Remark 5.9, and f =1 (P) splits canonically as f 1 (P) = X; ® X, with X; a
Kerf (F ;)-torsor. We will give another argument, in this special case, for non degeneracy on
the left than the one given in Remark 4.26.
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Write f = gy 087 : A » C' — Bwith Kerg; = Kerf(F,), then g; ,f~1(P) =
g (P = 81,+X2,and X, — ¢ ,Xj is an isomorphism above ¢;. But Ker g, =~ K’ has no
rational point. Hence g5 : C’(IE'q) - B([Fq) is injective, and it is bijective because C’ and B
are isogenous hence have the same cardinal. In particular, X is always trivial, so f 1 (P) is
trivial if and only if X is trivial, if and only if the et ,f(P, Q) are trivial for Q € Kerf(F 7)-

We now give some examples of applications of Proposition 5.1 and Remark 5.3 before
proving the multiradical isogeny conjecture.

5.2. Divisibility.

Example 5.11 (Divisibility on an abelian variety). Let us explain how to recover some well
known results on divisibility on an abelian variety. Let A /k be a principally polarised abelian
variety, and P € A(k). A natural question is whether P is n-divisible in k (1 prime to the
characteristic).

(1) IfA[n] C A(k) and hasabasis Qq, ..., ng, then by Proposition 5.1, P is n-divisible
ifand only if e , (P, Q1), ..., er,, (P, Qo) are trivial. In that case, one may then
invert the map ¥ from Remark 5.8 to express all the preimages P such that nPy = P.

For instance take 7 = 2 and A = E an elliptic curve, assume that E : y? =
h(x) is given by a short Weierstrass equation and that the three Weierstrass points
Q1,Q2, Q3 are rational. With the notations of Section 4.4, we have f, 5 = (x —
x(Q;)). So we recover the well known result that P is divisible by two if and only if
the three (non reduced) Tate pairings e > (P, Q;) = (x(P) — x(Q;)) are squares
in k. If P itself is a Weierstrass point, then f, p((P) — (0)) is of course not equal
to f, p(P) = 0, we need to change the normalisation of f, p in this case. This is
done by using the uniformiser y which is of valuation 1 at P (any other uniformiser

_ x=x(P) _ x=x(P) _ 1
would work too). We have e (P, P) = 2 (P) = o (P) = h,<x(P)).We

also recover the well known criteria that a point of 2-torsion P is halvable if and
only if i’ (x(P)) is a square in k and the x(P) — x(Q;) are also squares.

(2) IfA[n]hasno rational point in k, then multiplication by 7 is injective, hence bijective
on Ay (k).

(3) Ifk = F, is a finite field, it is of course well known that we can use non degeneracy
to treat the general case of 71-divisibility on an abelian variety A/F, even if A[n] ¢
A(F q) provided thatu,, C F q (thisis a special case of Remark 5.10). Indeed, the Tate
pairing on A(IE'q)/nA(IFq) x A[n] (Fg) = pyis non-degenerate (see Section 4.5),
soP e A(IFq) is divisible by 7 if and only if the ey ,, (P, Q) for Q € A[n] (]Fq) are
not all trivial.

Even if we don’t have such a strong result for a general field k, the examples given
above shows that the Tate pairing is still useful in the case of a generate field to test
for divisibility. And the same argument as in Remark 5.10 shows that we cannot
hope to have such a stronger result for a general field: if A[n] (k) = 0, [n] is injective
on A(k) but will not be surjective if A(k) is infinite.

If P is n-divisible, and the Weil pairing e}y ,, restricted to A[n](k) x A[n](k)
is non-degenerate (see also Remark 4.14), then we can use the Tate pairings to
parametrize [11] 1Py k) by Remark 5.9. Indeed, the rational points in the fiber form
a torsor under A[n](k), and the map 3 from Remark 5.9 gives an explicit bijection
between this torsor and the yj;-torsor {x} = er ,(P,Q;)} where (Qy,...,Q,) isa
basis of A[n] (k).
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Example 5.12 (Montgomery curves). Let E/k : y> = h(x) be an elliptic curve with a
point of 2-torsion P € E[2](k). Then by the computation in Example 5.11, er » (P, P) is
trivial if and only if ' (x(P)) is a square. But the cocycle description of the Tate pairing
is given by ey , (P, P) : 0 € Gal(k) = e (0 Py — Py, P) by Equation (11), where Py, is
any point in E(k) such that P = 2Py. So et »(P, P) is trivial if and only if o (Py) = Py or
0(Pg) = Py+ P = —Pj forall o € Gal(k), if and only if x(Py) is rational (i.e., Py projects
to a rational point on the Kummer line), if and only if the subgroup (P) is rational. In
other words: et , (P, P) is trivial if and only if P lies in a rational cyclic subgroup of order 4.
Note that conversely, if K is a rational cyclic subgroup of order 4, then the unique point of
2-torsion P in K has to be rational.

Note also that since y, C k*, H(k, Hy) = Hom(Gal(k), y»), so a quadratic twist of
E is given by a morphism Gal(k) — p», and if we take the morphism which sends o to 1
if o(Py) = Py, and to —1if o (Py) = —Py, then for the corresponding twist E’, we have
Py € E'(k).

By Proposition 5.1, if f : E — E, = E/(P) is the isogeny with kernel (P), and f the
dual (contragredient) isogeny, then ey , (P, P) = 1if and only if the fiber f —1(P) is a trivial
Ho-torsor, i.e., has a rational point. The isogeneous curve E, always has a rational point of
2-torsion Q; spanning f (E[2]). The remaining two points of 2-torsion Q,, Q3 are given
precisely by the fiber /=1 (P), so E has full rational 2-torsion precisely exactly when f~1(P)
is trivial. So an equivalent condition of e 5 (P, P) = 1 is that E, has its 2-torsion rational.
This can also be seen directly from our previous equivalent condition: if K is rational cyclic
of order 4 containing P, then f(K) is a rational subgroup of order 2 spanned either by
Q, or Qs (and it is easy to check that there is always another cyclic rational subgroup K’
containing P such that f (K") is spanned by the other point). Conversely, if Q, is rational
(equivalently if Qs is), then f =1 (Q,) is rational cyclic of order 4. We see that the Tate pairing
gives information on the Galois action of the isogenous curve, we will expand on this in
Section 5.3.

We recover the well known criterion for when an elliptic curve with a rational point of
2-torsion P can be put in Montgomery form with P sent to (0,0) [ ]. Indeed if we
send P to (0,0) the elliptic curve has equation y2 = x(x?> + Ax + 7),and ¥ = h'(0) and
er »(P, P) are in the same class in k*/ k*2 by the above computation. So there is a change of
variable such that y = 1 if and only if ey , (P, P) is trivial. In particular, we also recover that
an elliptic curve has a Montgomery (with P sent to (0, 0)) form if and only if it has a cyclic
rational subgroup of order four (containing P), if and only if E/(P) has a Legendre model.

Now if k = F, is a finite field and P is the unique point of 2-torsion, then ez, (P, P) = 1
implies that there is already a rational point of 4-torsion above P by non degeneracy of the Tate
pairing. This can be seen directly: if Q is another point of 2-torsion, then 77,(Q) = Q + P
because ﬂq(Q) # Q by assumption. Since et »(P,P) = 1, if we let Py any point such
that P = 2Py, then either 77,(Pg) = Py already, or 77,(Py) = Pg + P. In the latter case
7, (Po + Q) = Pg+ Q + 2P = Py + Q so Py + Q is a rational point of 4-torsion above P.

However, in the situation where all points of 2-torsion are rational, et » (P, P) = 1 is not
sufficient to have a rational point of 4-torsion above P, we also need et (P, Q) = 1 where
Q is one of the other 2-torsion point. So we also recover the well known fact that either a
Montgomery curve over a finite field either has its full 2-torsion rational, or it has a rational
point of 4-torsion.

Usually these facts are proved using the explicit doubling formula on an elliptic curve.
The advantage of our more conceptual approach is that it can be easily generalised to other
torsion orders or to abelian varieties. For instance, if 1, C kand T is a point of exact order n
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in an elliptic curve E/k, and n = nyn, then the same reasoning as above shows that T is
inside a rational cyclic subgroup K of order 7117 if and only if ey ,, (1, T, T) is trivial. Indeed,
if T" is a point such that n,T" = T, so that n'T’ = n,T, then eg ,,(n,T, T) is trivial if and
only if for each o € Gal(k), o (T") — T" € (T).

Example 5.13 (Iterating divisions). If A/F, is a principally polarised abelian variety, and
#y C Ty, then we can try to iterate divisions by 7 as in Example 4.19. We know that
K A(IE'q)/nA(IE'q) x A[n] (Fg) = py is non-degenerate. If A[n] (Fpn nA(]Fq) =0
(if n is prime this is the same as requiring that A(F ;) has no points of primitive n2-torsion),
then A[n] (Fy) = A(]Fq)/nA(]Fq) (we have injection by hypothesis, and they have the
same cardinality), so e, : A[n](IF'q) X A[n](]Fq) — 1, is non-degenerate (see also
Remark 4.26). Given a basis (Q, ..., Q,) of A[n] (]Fq) (we assume that all Q; have exact
order n for simplicity, see Remark 5.5), then T & A[n](IFq) = er (T, Q;) € pj, is
surjective, since it is injective from our hypothesis and so bijective since both sets have the
same cardinal.

Givenapoint P € nA(F,), Py € A(F) such that P = nP, all other rational preimages
are given by the Py+T,T € A[n] (IF'q). Welet @ = (eyy ,, (-, Q;)). The torsor ®, [n]~1 (Po+
T) differs from the torsor @, [1]71 (Py) by the element (er ,(T, Q;)) € i}, Hence, by the
bijection above, there is exactly one Py € A(]Fq) such that &, [n]~! (Pp) = (e ,,(Po, Q;))
is trivial. By non degeneracy of the Tate pairing over finite fields, this implies that there is
exactly one such Py such that nP, = P and [1n]~'P,, is trivial, i.e., Py € nA(F,).

If we now also assume that the Weil pairing eyy ,, restricted to A[n] (]Fq) x An] (IFq) is
non-degenerate, then by the discussion at the end of Example 5.11, @, [n]~1(P) is isomor-
phic to [n]~1(P) (IFq) when P € nA(]Fq). Now we represent the torsor [n]~1(P) (]Fq) by
the r representatives ¢; € Fj given by P, [n]~1(P). Since this torsor is trivial by assumption,
all the ¢; are n-powers in 7. In the case where 31, N ]F;’" = lalso (i.e., n primeto (g—1)/n),
then by Example 4.19, each ¢; has a unique n-th root §; which is still an n-power. So there
is a canonical choice of ¢/, which corresponds by the isomorphism ¥ of Example 5.11 to a
point P; € [n]~1(P)(F 4)-On the other hand by the discussion above there is also a unique
point Py € (n]~1(P) (IF'q) such that P is still in nA(IF'q).

It is thus natural to ask about the relationship between Py and P;. We leave that as an
open question. Note that we cannot expect P to be equal to P; in all cases because we could
change our representative of the Tate pairing, this can change P; but will not change P,. What
we could hope to do is to find some explicit relationship for some explicit representatives.
This would allow being able to find the iterated division by working entirely on the ,,-side.
Note that [ ] have a conjectural a formula in the very close setting of iterated radical
isogenies.

5.3. The Galois structure of the isogeneous abelian variety.

Example 5.14 (Probing the Galois action on the n-torsion of an isogenous elliptic curve). Let
E/ IFq be an elliptic curve, with a rational point of exact order n, P € E[n](F q). Letf : E -
E’ = E/(P) be the corresponding isogeny. Then using Proposition 5.1 and Example 5.7, from
er ,, (P, P), we can recover the Galois structure on E’[1] as follows. Since f (E'[n]) = Kerf
and Kerf = f(E[n]) C E'[n] we have that E'[n] = UieZ/an_l (iP). Since P is rational,
77 stabilizes each fiber f~1 (iP). These fibers are j1,,-torsors, and their Galois structures are
determined by the Tate pairings e.. lf{iP, P) = er,,(iP, P) by Proposition 5.1. By bilinearity,
the Tate pairing et ,, (P, P) is sufficient to recover the Galois action on each fiber.
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More concretely, we have that Kerf = f~1(0g) is the Galois dual of Kerf ~ Z/nZ,
so Kerjr~ =~ u,. Next, fix a basis (Q;,Q,) € E'[n] (?q). Without loss of generality we can
assume that Q; € Kerfand thatf(Qz) = P. We have nq(Ql) = gQ; by the isomorphism
above. Let {y = eyy (P, Q1), and fix a representative { € p,, of the reduced Tate pairing
ety =[] € py/ (g — 1). I = {§, then by Example 5.7, there is a point Q) ef1(p)
such that 77,Q; = Q5 + uQ;.

Thus, up to changing Q, by Q5, we have that on the basis (Qy, Q) of E'[1], 71, is given
by ( q 1;) Hence we know the conjugacy class of 77, acting on E'[1].

0
If (P1,P,) is a basis of E(]Fq), then the same method allows to compute the Galois

structure of f -1 (E([Fq)) from the Tate pairings e, f{Pi, P) = er ,(P;, P), and in particular
to recover the group structure of E’ (IFq) Cf_l (E(]Fq) ).

Example 5.15 (Self pairings on supersingular curves). Let F, = F >, and E/F, a supersin-
gular curve (with all endomorphisms defined over F g)-LetP € E(F ) be oforderr = p+1.
Then the reduced Tate self pairing is trivial: et , (P, P) = 1.

By Equation (15), we have et ,.(P) = ey (P, ;P — Py) where rPy = P. But 77, is a
scalar since E is supersingular, so 77,Po — P and P are both multiples of Py, and so the self
Tate pairing is trivial since the Weil pairing is alternate.

We can recover this result using Example 5.14: since E is supersingular, E has its full
r-torsion rational, and since E/(P) is supersingular too, E/(P) also has its full -torsion
rational. Since Example 5.14 shows how to read of the Galois structure of the r-torsion on
E/{P) by the self Tate pairing, this means that the self Tate pairing is trivial.

Example 5.16 (Pairing the volcano). As a special case of Example 5.14, assume that n = {¢
and that e C IFq. Let P € E[Ee](]Fq), E' = E/(P) and let (Q1,Q,) be the basis of
E'[£°] described above in Example 5.14. Then pge ~ Z/°Z and 71(Q7) = Q7. So by the
description of the action of 77, on Q5 above, if the reduced Tate pairing et ¢ (P, P) is of exact
order €¢', then E’[(%e](IF'q) ~ Z /0 x Z)e¢

More generally, if pge (F ;) = pia, then the reduced Tate pairing eg e (P, P) can be seen
as living in ps by Remark 4.22, and eg ¢ (P, P) = er (P, e—ipy e Hga. Then still by
Example 5.14, if ey ¢ (P,P) € pa is of exact order ¢, then E’[@d](IF'q) ~ Z/07 x
Z/t=¢ 7.

In particular, if E is ordinary, we can use the structure theorem of the torsion on (-
volcanoes of ordinary curves to probe the level of E [ ; , §$2]. We recall that
if E(F,) has a point of order ¢, then the group structure of the rational £ -torsion of the
elliptic curves in the {-volcano is the same at each volcano level. If E) is at the bottom level,
Eo[€°(F,)] =~ Z/VZ is cyclic. If Ey is at level 1, E; [ (F,)] =~ Z/V™'Z x Z/{Z. At
level 2, E5[£%° (]Fq)] ~ 7V 27 x Z /127 and so on. And either the number of level is less
then f/2, or fis even and at each level e above f /2, E,[(= (F )] =~ 7027 x 7.)0127. In
this case the level f /2 is then called the first level of stability, and then the level f, if it exists,
is the second level of stability.

We see in particular that our curve E’ above is at the level d — e’ if e’ > 0, or at level > d
ise’ = 0, i.e., the Tate pairing is trivial. This allows to probe strictly descending isogenies in
the volcano (hence also find the horizontal or ascending {-isogenies). Note also that once an
isogeny starts descending in the volcano, all the remaining steps must be descending, so if
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we know the level of E and E’ and the height of the volcano, we can recover the level of each
of the intermediate curves when decomposing the {°-isogeny as e £-isogenies.
Let us give some examples:

e If we are above the first stability level, E[P,‘”]([Fq) ~ 7027 x 7/¥/27. Then
certainly 7¢r/> C F, by non degeneracy of the Weil pairing. We can probe isogenies

of degree V2P e E[Qf/z],andeT 12(P, P) is of exact order ¢, thenE’ = E/(P)

has for rational ¢/2-torsion E’[Ef/z](IFq) =727 x 71277,

If E is at level > f, i.e., above the second stability level, all isogeneous curves E’
have full rational &/2-torsion, so all self pairings er ¢/2(p p are trivial. We do not
have enough torsion to probe deeper, a solution is to take a field extension of degree
% to get more torsion as in [ , S 4].

If E is at level e with f /2 < e < f, then the strictly descending #/?-isogenies
reach level e — f/2, so their kernel is generated by P with er g1 (P, P) of exact
order £ with ¢’ = f — e. This is the maximal order a self Tate pairing can have: all
other isogenies reach a level > ¢ — f /2 so their corresponding self pairings have

smaller order. In particular, if e} s2(P, P) is of order strictly smaller than ¥-e

for P € E[#/?], then ¢//>~1P generates an ascending or horizontal isogeny (and
conversely).

By bilinearity, this maximal order of the self pairings can be computed from the
Tate pairings (and DLPs) er 2 (Pq, Pq), er g2 (P,, Py), er 12 (Pq, Py), er 2 (P,, Py),
where (P;, P,) is a basis of E[¢//2] [1]13, § 3].

o Ifweareatlevele < f/2,below the first stability level, then E[£*°] (]Fq) = Z/VZx
Z ¥ Z. We have pe C F . The strictly descending {°-isogenies reach level 0, hence
they are exactly those generated by P € E[{°] with e (o (P, P) of exact order £°. If
the self pairing ey ¢ (P, P) is of order strictly less than £ for P € E[£°], then ge-1p
generates an ascending or horizontal isogeny (and conversely).

We can also describe the level of E/(P) when P has order %, u > e:

- If pyyess ¢ T then we are at the top of the volcano (if we could climb up we
would have the full £+!-rational torsion on the isogeneous curve, which would
imply ptger1 C IFq). IfP e E[E”](Fq) is of order €", and et ¢u (P, P) is of order
¢ in H' (F,, pe) = Hge, then the isogeneous curve is at level e — €', so the
first (u — e’) U-steps in the {*-isogeny generated by P have to be horizontal,
and the ¢’ remaining ones are descending.

- I ppess C Fy, we letf —e > d > e such that Hy-e(Fp) = ppa. If (P, Po)

is a basis of E[{*] (Fy) with P; of order ¢~¢ and P, of order (¢, then by
non degeneracy of the Tate pairing, since er yf-e (P,, Pq) is of order at most
t¢, then g s (P1, P1) = eq u(Py, #=¢=9P,) has to be of exact order {4 in
HY(Fy, pyr-e) = pga. Tt follows that if E' = E/(P1), E'[¢?](F,) = Z/#9Z, s
E' is atlevel 0.
Letd’ be the height of the volcano (which means it has d’ + 1 levels). If d" < f/2
(this is the case if d < f/2 because thend’ < d < f/2), the isogeny with kernel
generated by P; has to climb the first 4" — e steps, stay horizontal for f — 24"
steps, and then go down for the last d" steps. Otherwise, f is even and the
volcano has height at least f /2. The isogeny with kernel generated by Py has to
climb the first f /2 — e steps, and then go down the remaining f /2 steps.



The geometric interpretation of the Tate pairing and its applications 33

Anyway, this result is both simpler (once we have Proposition 5.1!) and refines most of the
very interesting results of [I]10; I]13]. (One motivation of this paper, beside the application to
multi-radical isogenies, was to get a better understanding of the underlying reason why Tate
pairings are related to the volcano structure, as was proven in [IJ13]. Note also how [I]13,
Lemma 4.6.a, Lemma 4.7 and Lemma 4.6.b-c] are direct applications of Proposition 4.8 and
Remark 4.24 respectively. This is one advantage in having a more conceptual approach: the
proofs are often simpler, and more general, than by directly using the explicit formulas.)

Example 5.17 (Probing the rational structure of an isogeneous abelian variety). We can
extend Example 5.14 to abelian varieties. Given a principally polarized abelian variety A/F
and an n-isogeny f : A — B spanned by rational points Kerf = (Pq, ... ,Pg>, P, e A(]Fq),
then by Proposition 5.1 the Tate pairings et ,, (P, P;) encode the Galois structure of the fiber
f “1(P).In particular, given a basis Ty, ..., T}, of A(IF'q), we can recover the global Galois
structure of f “1(A(F 7)) from the Tate pairings et ,, (Tj, P;). From this we can then extract
the group structure of B(FF ) (via DLP and linear algebra), since B(F g) C f “1(A(F q) ). Note
how we can probe B(F ) from A(F,) and Ker f without ever having to actually compute B.

The computation does not require j,, C F, but it requires Kerf = Kerf (F,). If that
is not the case, we can work with an extension F ¢ where all the points of the kernel are
defined. The Tate pairings over F s then gives the F s-Galois structure of the fibers (P,
ie,asa Z[T[g ]-module. This may not be enough to recover the F,-Galois structure of
f~1(P). It depends on whether the base change map H' (F,, Kerf) — H! (F e, Ker f) is
injective. If it is, then f ~1 (P) seen as a Ker ftorsor over F 4+ has a unique way to descend as a
Ker f torsor over F q (i.e., it has no non-trivial twists that become isomorphic over F qd)' Via
Proposition 4.16, this map can be rewritten as Kerf/(nq —1) - Kerf/ (nqd 1), E(nq) —
E(7t,4) where E is a cocycle representing the torsor we are pulling back. By the cocycle
property, this maps [P] € Kerf/(r[q —Dto[P+ 7P+ -+ 79 1P] e Kerf/(nqd - 1.
Given the Galois action on Ker f, one can recover the Galois action on Ker f by duality, so
injectivity of the base change map can be checked by linear algebra.

5.4. Multi-radical isogenies. We now prove the multi-radical isogeny conjecture. As a
warm-up, we first obtain:

Corollary 5.18. Under the notations of Section 2, the locus {(P7, ... ,Pé,) | f(Plf) = P;}

2
splits canonically as a 15, -torsor whose components have isomorphism classes given by the
eT’n(Pi, P])

Proof. We apply Proposition 5.1 to each of the g-torsors f~1 (P,); they are described by the
er f{P,-, P;) where we identify A with A via the principal polarisation. But er f{Pi, Py =
er,,(P;, P;) by Proposition 4.8.

We now only need to take into account that we require our (P}) are required to also be
isotropic to define a non backtracking isogeny.

g+1)/2

Theorem 5.19. The locus Ly of Lemma 2.2 splits canonically as a yﬁ( -torsor whose

components are given by the et ,,(P;, Pj), i<j.

Proof. Fix a trivialisation (P}, ... ,Pé) of Lf over an étale extension S’ of S. Then given
T — S', the other elements ofon(T) aregiven by (P} +T1, ..., Pé+Tg) whereT; € Kerf(T)
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and the P} 4 T are still isotropic. Since the P are isotropic, and Ker f also, this condition
amounts to ey ,, (P;, T]-)ewln (T, P]’.) = 1. By Equation (3) and biduality (Equation (4)), this
is the same as requiring

ew £(P;, T;)
(16) W 1
ew f(Pj, T;)
These antisymmetry conditions defines a subgroup H of Ker f& under which Ly is a torsor.

We will show that H is isomorphic to yﬁ(g *hrz,

Indeed, by Equation (16), the matrix of pairings M = ey ((P;, T}) is antisymmetric,
M;; = M]_l1 So M is completely determined by the M, i < j, and it is not hard to check
that H is of degree n€8+1/2,

Let®: H C Kerfg - y§<g+1)/2 given on points by

(Tl,...,T ) — (eWIf<T]’P1))]SZ

We claim that this maps splits H, i.e., is an isomorphism. Indeed, it is injective: by biduality,
ew /(P Tj) = ew,f(Tj' P)~LIfT = (T4, ..., T,) € Ker ®(T), then all eyy ((P;, T1) =1
so T is trivial (since X /S is separated, two sections which coincide fibrally coincide on S). All
ew f(P;, T) for i > 2 are trivial, but also eyy ((P1, T5) = 1 by the antisymmetry condition,
so Ty is trivial, and so on. By considering the degree, P is surjective, hence bijective.

Letp; : H - Kerf, (T, ..., Ty) — Tj denote the j-th projection. If j < i, the component
ew J,(p/(-),Pi) of the map ® factorizes through p;. We also have a j-th projection map
Ly - f1 (P;) above pj, hence an isomorphism p; , Ly = f:l(P]-) by Lemma 3.19. It
follows by functoriality that ewlf{pj(-),Pi)*Lf = ev\,,f{-,Pl-),rf‘1 (Pj) = eTf{Pj, P,). By
Proposition 4.8, eT,f{Pj' P;) = eT,n(Pj, P;). Taking all the components ew,f{p]-(-), P;) of @,

we obtain that @, Lyisa y;‘;(g /2 _torsor whose components are given by the et ,, (P}, P;),

j<i O
Remark 5.20 (Formula). It follows from Theorem 5.19, Lemma 3.31, and Example 3.32
that the locus L giving the non backtracking isogenies is described by n-radicals of the
Tate pairings. When S = Speck is a field, by Example 3.32, the g(g + 1)/2 Tate pairings
correspond to torsors given by XZ' = Gij» Gij € k™. If S is a scheme, then from Lemma 3.31 we
know that a p,,-torsor corresponds to a pair (L, &) where & is an isomorphism of L” — Og.
The radical interpretation is that we take n-radicands of the section a~1(1) e L", the only
difference is that these radicands will live in L rather than in Og.

Over a field, we can use Lemma 4.15 and Remark 5.8 to give an explicit isomorphism
between Lf and the torsors induced by the eT,n(Pi,Pj) = ep ,f{Pi, Pp,i <j, namely:
Y: (P, ..., Py) € Lpo gf,zp_((P;) —(0)).

(It may be more conveniené to use the torsors given by the er ,, (P;, —P;), in order to
be able to evaluate the functions above without trouble. If X is a y,,-torsor represented by
x" = er,(P;,P;), then x — 1/x induces an isomorphism with y,,-torsor represented by
X" = er ,(P;, —P;) above the map pt,, — jt,, { = (1)

Like in Remark 5.8, we can use ¥ to reformulate the proof of Theorem 5.19 as follows:

(1) Fixany (P3,...,P;) € Lf, namelny(Pg) = P; and the P; are isotropic. Let H be

the subgroup of Ker 2 satisfying by the antisymmetry conditions of Equation (16).
Then all other points of (L’f are given by (P} + T;), (T;) € H.
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(2) Themapd : H — y%,(g”)/z from Theorem 5.19 is an isomorphism.
(3) The map ¥ commutes (above @) with the action of H on the left and of yﬁ(g +1/2
on the right, namely we check that if ¥ ((P, ..., P’g)) = (xjj)s then ¥(P; + T;) =

(xjjep J&Pi, T]-) ). This is immediate from Equation (7).

However, for applications to cryptography, we really want the inverse isomorphism ¥~1.
Explicit formula will depend on the model chosen of course. In an upcoming work we will
use [ ; ] to give explicit formulas for multi-radical isogenies of abelian varieties in
the theta model.

Example 5.21 (Families). Let X; (1)/Q(Z,,) be the modular curve associated to the level
subgroup I'; (). We will assume that 7 is large enough so that the corresponding modular
stack has no inertia, so the universal elliptic curve with a point of order 11 does exists over the
scheme X (n). (In fact n > 3 is enough if we remove the curves with j-invariant 0 or 1728.)

Let (&, P) /X (n) be the universal elliptic curve and f the isogeny of kernel (P). Then by
Theorem 5.19 there are universal radical formula i parametrizing the fiber f ~1(P) via the
py-torsor e (P, P) € HY (X1 (n), p,).

Assume we have computed a radical formula ¢, ,, over the generic point 77 of X; (n). Since
we can act on ¢y by the automorphism group j,,, we can assume that ¢; ,, = ¢, ,,. Now
assume that there is an open U over which we can extend ¢, ,, to a morphism ¢, (i.e., points
in U are points of “good reduction” of our formula). Then the locus ¥y = 1, is a closed
subscheme of U by separateness, it contains the generic point, so since X; (1) is reduced
(because it is smooth over Z[1/n]), ; = 1, on U. So , gives correct radical formula over
u.

Note also that since we know that 1 is defined everywhere, it is always possible to tweak
our explicit formula for ¥, ,, so that they have good reduction on any point x (i.e., on a small
affine neighborhood V of x) of X; (n).

Finally working over a familly S also allows for an evaluation/interpolation approach
to compute radical isogeny formulas. Namely, we can evaluate ¥ on some fibers of S via
Remark 5.20, and then invert it. This gives radical formulas on these fibers, that may not glue
together because the automorphism group is p,,. However, if we choose a rigidification over
S, and we compute the radical formulas over fibers corresponding to this rigidification, then
we can glue the formula together by interpolation.

Of course, the same reasoning holds in higher dimension.

REFERENCES

[AGV72] M. Artin, A. Grothendieck, and J. Verdier. Théorie des topos et cohomologie
étale des schémas. (SGA4). 1972 (cit. on pp. 2, 6, 7).

[Art69] M. Artin. “Algebraization of formal moduli. I. In: Global analysis (papers in
honor of K. Kodaira) (1969), pp. 21-71 (cit. on p. 4).

[BLR12] S.Bosch, W. Litkebohmert, and M. Raynaud. Néron models. Vol. 21. Springer
Science & Business Media, 2012 (cit. on p. 15).

[Bruii] P. Bruin. “The Tate pairing for abelian varieties over finite fields”. In: J. de
theorie des nombres de Bordeaux 23.2 (2011), pp. 323-328 (cit. on pp. 12,
23).

[CD21] W. Castryck and T. Decru. “Multiradical isogenies”. In: Cryptology ePrint

Archive (2021) (cit. on pp. 1, 3).



36

[CDHV22]

[CDV2o0]

[Ces15]

[DA70]

[EGM12]

[FLR11]

[FMRo9]

[FRo4]

[Fui1]

[Garoz]

[Gir71]
[GD64]
[Gro71]
[Hef304]
(IJ10]
(IJ13]
[Lans8]

[Lans6]

REFERENCES

W. Castryck, T. Decru, M. Houben, and E Vercauteren. “Horizontal racewalk-
ing using radical isogenies”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 2022, pp. 67-96
(cit. on pp. 3, 30).

W. Castryck, T. Decru, and F. Vercauteren. “Radical isogenies” In: Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2020, pp. 493-519 (cit. on p. 3).

K. Cesnavic¢ius. “Topology on cohomology of local fields”. In: Forum of
Mathematics, Sigma. Vol. 3. Cambridge University Press. 2015, e16 (cit. on
p- 16).

M. Demazure and M. Artin. Schémas en groupes (SGA3). Springer Berlin,
Heidelberg, New York, 1970 (cit. on pp. 5, 15).

B. Edixhoven, G. van der Geer, and B. Moonen. Abelian varieties. Book
project, 2012. URL: http://van-der-geer.nl/~gerard/AV.pdf (cit. on
pp- 5, 6, 12).

J.-C. Faugere, D. Lubicz, and D. Robert. “Computing modular correspon-
dences for abelian varieties”. In: Journal of Algebra 343.1 (Oct. 2011), pp. 248-
277. DOI: 10.1016/j.jalgebra.2011.06.031. arXiv: 0910.4668 [cs.SC].
URL: http://www . normalesup . org/ ~robert / pro/ publications /
articles/modular.pdf. HAL: hal-00426338. (Cit. on p. 35).

G. Frey, M. Muller, and H.-G. Ruck. “The Tate pairing and the discrete
logarithm applied to elliptic curve cryptosystems”. In: Information Theory,
IEEE Transactions on 45.5 (1999), pp. 1717-1719 (cit. on pp. 12, 23).

G. Frey and H.-G. Riick. “A remark concerning m-divisibility and the dis-
crete logarithm in the divisor class group of curves” In: Mathematics of
computation 62.206 (1994), pp. 865-874 (cit. on pp. 1, 12).

L. Fu. Etale cohomology theory. Vol. 13. World Scientific, 2011 (cit. on pp. 6,
7).

T. Garefalakis. “The generalized Weil pairing and the discrete logarithm
problem on elliptic curves”. In: LATIN 2002: Theoretical Informatics. Springer,
2002, pp. 118-130 (cit. on p. 20).

J. Giraud. Cohomologie non abélienne. Vol. 179. Springer Nature, 1971
(cit. on p. 4).

A. Grothendieck and J. Dieudonné. “Eléments de géométrie algébrique” In:
Publ. math. IHES 20.24 (1964), p. 1965 (cit. on pp. 4, 5, 7).

A. Grothendieck. “Revétement étales et groupe fondamental (SGA1)”. In:
Lecture Note in Math. 224 (1971) (cit. on pp. 4, 6, 7).

E Hef3. “A note on the Tate pairing of curves over finite fields”. In: Archiv
der Mathematik 82.1 (2004), pp. 28-32 (cit. on p. 23).

S. Ionica and A. Joux. “Pairing the volcano”. In: Algorithmic number theory.
Springer, 2010, pp. 201-218 (cit. on p. 33).

S.Tonica and A. Joux. “Pairing the volcano”. In: Mathematics of Computation
82.281 (2013), pp. 581-603 (cit. on pp. 31-33).

S. Lang. “Reciprocity and Correspondences”. In: American Journal of Mathe-
matics 80.2 (1958), pp. 431-440 (cit. on p. 16).

S. Lang. “Algebraic groups over finite fields”. In: American Journal of Mathe-
matics 78.3 (1956), pp- 555-563 (cit. on p. 22).


http://van-der-geer.nl/~gerard/AV.pdf
https://doi.org/10.1016/j.jalgebra.2011.06.031
https://arxiv.org/abs/0910.4668
http://www.normalesup.org/~robert/pro/publications/articles/modular.pdf
http://www.normalesup.org/~robert/pro/publications/articles/modular.pdf
http://hal.archives-ouvertes.fr/hal-00426338

REFERENCES 37

[LR10] D. Lubicz and D. Robert. “Efficient pairing computation with theta functions”.
In: ed. by G. Hanrot, F. Morain, and E. Thomé. Vol. 6197. Lecture Notes in
Comput. Sci. 9th International Symposium, Nancy, France, ANTS-IX, July
19-23, 2010, Proceedings. Springer—Verlag, July 2010. poI: 10.1007/978-
3-642-14518-6 21. URL: http://www.normalesup.org/~robert/
pro/publications/articles/pairings . pdf. Slides: 2010-07-ANTS-
Nancy.pdf (30min, International Algorithmic Number Theory Symposium
(ANTS-IX), July 2010, Nancy), HAL: hal-00528944. (Cit. on p. 17).

[LR15] D. Lubicz and D. Robert. “A generalisation of Miller’s algorithm and appli-
cations to pairing computations on abelian varieties”. In: Journal of Symbolic
Computation 67 (Mar. 2015), pp. 68-92. DOI: 10.1016/].jsc.2014.08.
001. URL: http://www.normalesup.org/~robert/pro/publications/
articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192. (Cit. on
pp- 12, 16, 17).

[LR22] D. Lubicz and D. Robert. “Fast change of level and applications to isogenies”
In: Research in Number Theory (ANTS XV Conference) 9.1 (Dec. 2022). DOL:
10.1007 /540993 - 022 - 00407 -9. URL: http://www.normalesup.org/
~robert/pro/publications/articles/change level.pdf. HAL: hal-
03738315. (Cit. on p. 35).

[Milo4] V. S. Miller. “The Weil Pairing, and Its Efficient Calculation” In: J. Cryptology

17.4 (2004), pp. 235-261. DOIL: 10.1007/s00145-004-0315-8 (cit. on p. 16).
[Milo6] J. S. Milne. Arithmetic duality theorems. Vol. 20. Citeseer, 2006 (cit. on p. 1).
[Mil16] J. S. Milne. “Etale Cohomology (PMS-33), Volume 33”. In: Etale Cohomology

(PMS-33), Volume 33. Princeton university press, 2016 (cit. on pp. 4, 7).

[MMSTVo6] J. Miret, R. Moreno, D. Sadornil, J. Tena, and M. Valls. “An algorithm to
compute volcanoes of 2-isogenies of elliptic curves over finite fields” In:
Applied Mathematics and Computation 176.2 (2006), pp. 739-750 (cit. on
p-31).

[OKSoo] K. Okeya, H. Kurumatani, and K. Sakurai. “Elliptic curves with the Montgomery-
form and their cryptographic applications” In: Public Key Cryptography.
Vol. 1751. Springer. 2000, pp. 238-257 (cit. on p. 29).

[Ols+06] M. C. Olsson et al. “Hom-stacks and restriction of scalars”. In: Duke Mathe-
matical Journal 134.1 (2006), pp. 139-164 (cit. on p. 15).

[Ray7o] M. Raynaud. Faisceaux amples sur les schémas en groupes et les espaces
homogenes. Vol. 119. Springer, 1970 (cit. on p. 4).

[Rob17] D. Robert. Guide to Pairing-Based Cryptography. 2017. URL: https://www.

worldcat.org/title/gquide-to-pairing-based-cryptography/oclc/
971264380. Chapter 3 on « Pairings » with Sorina Ionica, and Chapter 10
on « Choosing Parameters » with Sylvain Duquesne, Nadia El Mrabet, Safia
Haloui and Franck Rondepierre (cit. on p. 17).

[Rob21a] D. Robert. “Efficient algorithms for abelian varieties and their moduli spaces”
HDR thesis. Université Bordeaux, June 2021. URL: http://www.normalesup.
org/~robert/pro/publications/academic/hdr.pdf. Slides: 2021-06-
HDR-Bordeaux.pdf (1h, Bordeaux). (Cit. on p. 16).

[Rob21b] D. Robert. General theory of abelian varieties and their moduli spaces. Mar.
2021. URL: http://www.normalesup.org/~robert/pro/publications/
books/avtheory.pdf. Draft version. (Cit. on pp. 12, 16).


https://doi.org/10.1007/978-3-642-14518-6_21
https://doi.org/10.1007/978-3-642-14518-6_21
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-ANTS-Nancy.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-ANTS-Nancy.pdf
http://ants9.org/
http://ants9.org/
http://hal.archives-ouvertes.fr/hal-00528944
https://doi.org/10.1016/j.jsc.2014.08.001
https://doi.org/10.1016/j.jsc.2014.08.001
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://hal.archives-ouvertes.fr/hal-00806923
http://eprint.iacr.org/2013/192
https://doi.org/10.1007/s40993-022-00407-9
http://www.normalesup.org/~robert/pro/publications/articles/change_level.pdf
http://www.normalesup.org/~robert/pro/publications/articles/change_level.pdf
http://hal.archives-ouvertes.fr/hal-03738315
http://hal.archives-ouvertes.fr/hal-03738315
https://doi.org/10.1007/s00145-004-0315-8
https://www.worldcat.org/title/guide-to-pairing-based-cryptography/oclc/971264380
https://www.worldcat.org/title/guide-to-pairing-based-cryptography/oclc/971264380
https://www.worldcat.org/title/guide-to-pairing-based-cryptography/oclc/971264380
http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2021-06-HDR-Bordeaux.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2021-06-HDR-Bordeaux.pdf
http://www.normalesup.org/~robert/pro/publications/books/avtheory.pdf
http://www.normalesup.org/~robert/pro/publications/books/avtheory.pdf

38 REFERENCES

[Ryd13] D. Rydh. “Existence and properties of geometric quotients”. In: Journal
of Algebraic Geometry 22.4 (May 13, 2013), pp. 629—-669. ISSN: 1056-3911,
1534-7486. DOI: 10.1090/51056-3911-2013-00615-3. arXiv: 0708.3333
(cit. on p. 5).

[Schos] E. E Schaefer. “A new proof for the non-degeneracy of the Frey-Riick pairing
and a connection to isogenies over the base field”. In: Computational aspects
of algebraic curves 13 (2005), pp. 1-12 (cit. on p. 23).

[Ser68] J. Serre. Corps locaux. Hermann Paris, 1968 (cit. on p. 18).

[Stacks] T. Stacks Project Authors. Stacks Project. https://stacks.math.columbia.
edu. 2018 (cit. on pp. 4-7, 11, 15, 19).

INRIA BORDEAUX-SUD-OUEST, 200 AVENUE DE LA VIEILLE TOUR, 33405 TALENCE CEDEX FRANCE
Email address: damien. robert@inria.fr
URL: http://www.normalesup.org/~robert/

INSTITUT DE MATHEMATIQUES DE BORDEAUX, 351 COURS DE LA LIBERATION, 33405 TALENCE CEDEX
FRANCE


https://doi.org/10.1090/S1056-3911-2013-00615-3
https://arxiv.org/abs/0708.3333
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

	1. Introduction
	1.1. Outline:
	1.2. Thanks:

	2. Multiradical isogenies
	3. Torsors
	3.1. Torsors and twists
	3.2. Torsors and cohomology
	3.3. Properties of the pushforward map
	3.4. The group structure on torsors
	3.5. µn-torsors.

	4. The Tate pairing over a scheme
	4.1. The Weil pairing
	4.2. The Tate pairing
	4.3. The Weil pairing over a field
	4.4. The Tate pairing over a field
	4.5. The Tate pairing over Fq

	5. Application to fibers and radical isogenies
	5.1. The Galois structure of fibers of isogenies
	5.2. Divisibility
	5.3. The Galois structure of the isogeneous abelian variety
	5.4. Multi-radical isogenies

	References

