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DAMIEN ROBERT

Abstract. While the Weil pairing is geometric, the Tate pairing is arithmetic: its value
depends on the base field considered. Nevertheless, the étale topology allows to interpret
the Galois action in a geometric manner. In this paper, we discuss this point of view for
the Tate pairing: its natural geometric interpretation is that it gives étale 𝜇𝑛-torsors. While
well known to experts, this interpretation is perhaps less known in the cryptographic
community.

As an application, we explain how to use the Tate pairing to study the fibers of an
isogeny, and we prove a conjecture by Castryck and Decru on multiradical isogenies.

1. Introduction

This paper serves two purpose: first provide a geometric interpretation of the Tate pairing,
namely as étale 𝜇𝑛-torsors, and secondly use this interpretation to study fibers of isogenies.

As an application, we give a short proof of a conjecture by Castryck and Decru on multi-
radical isogenies [CD21, Conjecture 1]. This conjecture is recalled in Section 2, and proven
in Section 5, see Theorem 5.19.

Along the way, we review the theory of twists and torsors in Section 3, then explain how to
define the Tate-Cartier pairing on an arbitrary abelian scheme 𝐴/𝑆 in Section 4, this allows
us to prove the version “in family” of this conjecture. We also give the general compatibility
of the Tate pairing with isogenies in Proposition 4.8, as we haven’t been able to find the
general formula in the literature.

It is actually quite fun to reprove all the standard theory (bilinearity, non degeneracy,
change of base field) of the Tate pairing over finite fields from the torsor point of view. We
explain some of this in Section 4.5: the proof of non degeneracy and bilinearity from the
torsor point of view does offer some insights compared to the standard proofs, especially in
the case where 𝜇𝑛 ⊄ 𝔽𝑞, see Remark 4.5.

There are several different versions of the Tate pairing.When𝐾 is a complete local field, and
𝐴/𝐾 an abelian variety, Tate defines a pairing 𝐻𝑖(𝐾, 𝐴∨) × 𝐻1−𝑖(𝐾, 𝐴) → 𝐻2(𝐾, 𝔾𝑚) =
ℚ/ℤ [Mil06, § I.3]. Instead, we will use the variant (the “Tate-Lichtenbaum-Frey-Ruck”
pairing) introduced in [FR94] in the context of DLP and cryptography of elliptic curves,
that we will denote by 𝑒𝑇,𝑛 and which takes value in 𝐻1(𝑘, 𝜇𝑛), i.e., gives 𝜇𝑛-torsors. This is
essentially the torsion version of the global pairing defined above, and is induced by the cup
product action on cohomology coming from the Weil pairing 𝑒𝑊,𝑛. In this paper we will
call it the Tate pairing, or sometimes the Tate-Cartier pairing 𝑒𝑇,𝑓 when we look at a general
isogeny 𝑓 (hence the cup product induced by the Weil-Cartier pairing 𝑒𝑊,𝑓 of 𝑓) rather than
just the multiplication by [𝑛].

In the context of cryptography, an essential feature of the Tate pairing 𝑒𝑇,𝑛 on an abelian
variety 𝐴/𝔽𝑞 defined over a finite field is that it is non-degenerate if 𝜇𝑛 ⊂ 𝔽𝑞. This needs
not be the case if 𝜇𝑛 ⊄ 𝔽𝑞 (but see Theorem 4.25), nor when the base field 𝑘 is not a finite
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field. Over a general base scheme 𝑆, we do have a weak version of non degeneracy under
certain conditions, see Corollary 5.2. We argue that even if we do not have a strong form
of non degeneracy in these more general contexts, the Tate pairing is still useful. The high
level overview may be stated as follows: the Weil pairing allows to understand the kernel
Ker 𝑓 of an isogeny 𝑓, the Tate pairing to understand its fibers 𝑓 −1(𝑃). See Proposition 5.1
and Remarks 5.3 and 5.8 for more precise statements.

Thanks to the powerful machinery of étale cohomology [AGV72], it is not more difficult
to work over a general scheme1 𝑆 as a base (provided that 𝑛 is invertible on 𝑆). We adopt this
point of view in this text. As mentionned above, this allows to naturally provide statements
“in family”, or to prove that formulas obtained over a generic fiber are valid over points
where they have good reduction (see Example 5.21). The reader who is only interested in
abelian varieties over fields can without harm take 𝑆 = Spec 𝑘 throughout, and use Galois
cohomology (see Example 3.7 and Remark 3.10).

We emphasize that, despite our use of somewhat technical jargon due to our choice of
working over a base scheme rather than a field, all our proofs are very natural and simple.
See for instance Remarks 5.8 and 5.20 where we reformulate the proofs of Proposition 5.1
and Theorem 5.19 in more elementary terms.

1.1. Outline: In Section 2, we briefly review the conjecture by Castryck and Decru on
multiradical isogenies.

In Section 3, we review the theory of torsors and how to interpret the first cohomology
group in terms of torsors. This is well known and we do not make any claim of originality. We
spend a bit of time detailing how to interpret the group structure on the first cohomological
group in terms of torsors in the hope of making this operation as concrete as possible.

Then in Section 4 we explain how the Weil-Cartier pairing allows to define a Tate-Cartier
pairing on an abelian scheme. There is no difficulty in extending the usual definition over a
finite field to a scheme. What is more interesting is to reinterpret and reprove the standard
properties of the Tate pairing in terms of torsors. In particular, we give explicit formula over
a field in Section 4.4 and then reprove the non degeneracy over a finite field in Section 4.5,
and various other standard properties of the Tate pairing over a finite field. As explained in
the introduction, for our applications over a general field 𝑘 we cannot assume that 𝜇𝑛 ⊂ 𝑘∗,
so we need to be careful with our statements.

We finally give applications in Section 5.We show how various properties of elliptic curves
which are usually proven using the explicit addition formula admit a simpler conceptual
proof using the geometric interpretation of the Tate pairing, which allows to extend them to
abelian varieties. Indeed, as explained in Section 5.1, the Tate pairing allows to understand
the Galois structure of the fibers of an isogeny. This allows us to determine criterion for
divisibility in Section 5.2, determine the level of an isogenous elliptic curve on an isogeny
volcano in Section 5.3, and to prove the multiradical isogeny conjecture in Section 5.4.

1.2. Thanks: I benefited from helpful conversations with Baptiste Morin on étale cohomol-
ogy. All errors in this text are mine.

1For simplicity, we will always assume that 𝑆 is Noetherian, or at least qcqs with finitely many connected
components.
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2. Multiradical isogenies

Let (𝐴, ℒ) be a principally polarised abelian variety of dimension 𝑔 over a field 𝑘, and
𝑓 ∶ 𝐴 → 𝐵 an 𝑛-isogeny2 with 𝐾 = Ker 𝑓 of rank 𝑔 in 𝐴[𝑛], and 𝑛 invertible in 𝑘. Assume a
basis (𝑃1, … , 𝑃𝑔) of Ker 𝑓 is given over 𝑘.
Definition 2.1 (Non backtracking isogenies). A non (partially) backtracking isogeny relative
to 𝑓 is an 𝑛-isogeny 𝑔 ∶ 𝐵 → 𝐶 with kernel of rank 𝑔 and such that Ker 𝑔 ∩ Ker ̃𝑓 = 0 where

̃𝑓 ∶ 𝐵 → 𝐴 is the dual (or rather contragredient3) isogeny of 𝑓.
It is not hard to check that there are exactly 𝑛𝑔(𝑔+1)/2 non backtracking isogenies over 𝑘

[CD21, Lemma 2]. This also will be a consequence of Theorem 5.19. Let 𝒯𝑓 be the moduli of
all non backtracking kernels on 𝐵.

Lemma 2.2. 𝒯𝑓 ≃ ℒ𝑓 ≔ {(𝑃′
1, … , 𝑃′

𝑔) ∣ ̃𝑓 (𝑃′
𝑖) = 𝑃𝑖 and the 𝑃′

𝑖 span an isotropic subgroup of
𝐵[𝑛] for the Weil pairing }.
Proof. Let 𝐾′ = Ker 𝑔 be the kernel of a non backtracking 𝑛-isogeny. Then 𝐾′ is isotropic
for the Weil pairing 𝑒𝑊,𝑛 on 𝐵[𝑛]. Since 𝐾′ ∩ Ker ̃𝑓 = 0, ̃𝑓 induces a bijection between 𝐾′

and ̃𝑓 (𝐵[𝑛]) = 𝐾. So there is a unique basis (𝑃′
1, … , 𝑃′

𝑔) of 𝐾′ satisfying the conditions of
the Lemma.

Conversely, if the (𝑃′
𝑖) satisfy the condition, then they span a subgroup 𝐾′ of 𝐵[𝑛] of

cardinal at least 𝑛𝑔 since #𝐾 = 𝑛𝑔, but the isotropy condition ensures that the cardinal
is exactly 𝑛𝑔. Hence ̃𝑓 induces a bijection between 𝐾′ and 𝐾, so 𝐾′ ∩ Ker ̃𝑓 = 0. Then the
isogeny 𝑔 of kernel 𝐾′ is a non backtracking isogeny. �

The conjecture by Castryck and Decru [CD21, Conjecture 1] is that there are explicit
algebraic formulas expressing the locus ℒ𝑓 in terms of radicals 𝑒𝑇,𝑛(𝑃𝑖, 𝑃𝑗)1/𝑛, where 𝑒𝑇,𝑛
denotes the 𝑛-Tate pairing and 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. More precisely, there is an isomorphism
defined over 𝑘 between ℒ𝑓 and the scheme given by the radical formulas {𝑥𝑛

𝑖𝑗 = 𝑒𝑇,𝑛(𝑃𝑖, 𝑃𝑗)}
for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑔. This scheme is our first example of torsor: it is a 𝜇𝑔(𝑔+1)/2

𝑛 -torsor in the
étale topology. They also conjecture that these formulas vary in family, i.e., are valid for an
abelian scheme 𝐴/𝑆 (this is the “good reduction” aspect of their conjecture). Notably by
looking at the universal abelian stack 𝔄/𝒜1

𝑔(𝑛) with a marked maximal isotropic basis of
rank 𝑔 in 𝔄[𝑛], we obtain a universal formula. In this paper we prove these conjectures.

Note that Lemma 2.2 holds for an abelian scheme 𝐴/𝑆 too if we are provided with a basis
𝑃1, … , 𝑃𝑔 of Ker 𝑓 over 𝑆. Indeed since everything is flat over 𝑆, we can test isomorphisms
fibrally, hence the isogeny 𝑔 is non backtracking if and only if it is non backtracking on each
geometric fibers.

This conjecture was already proven (except the case of “good reduction”) for elliptic curves
in [CDV20; CDHV22], and applications for isogeny based cryptography are given in [CDV20;
CD21; CDHV22]. We will first give in Section 4 the interpretation of the Tate pairings above
as étale 𝜇𝑛-torsors. As mentioned in the introduction, this is of course well known to expert,
but probably less known in the cryptographic community. Then in Section 5 we explain how,
using this interpretation, the conjecture essentially follows by unraveling the definitions. The
reader only interested to the proof can look at Theorem 3.8 and Definitions 3.12, 3.15 and 4.3
for the definition of the Tate pairing as a 𝜇𝑛-torsor, then skip directly to Section 5. Or even
go directly to Remark 5.20 for a direct proof when over a field.

2Which means that there is a principal polarisation ℳ on 𝐵 such that 𝑓 ∗ℳ ≃ ℒ𝑛.
3If 𝑓 ∶ (𝐴, ℒ) → (𝐵, ℳ) with ℒ and ℳ principal polarisations with associated isogenies Φℒ ∶ 𝐴 → 𝐴,

Φℳ ∶ 𝐵 → �̂�, and 𝑓 ∗ℳ = ℒ𝑛, we define the contragredient isogeny ̃𝑓 by ̃𝑓 ≔ Φ−1
ℒ ∘ ̂𝑓 ∘ Φℳ.
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3. Torsors

3.1. Torsors and twists. We briefly review the general theory of torsors and twists. As usual,
the reference for all this is [Stacks], see also [Mil16, §III.4; Gir71].

Definition 3.1. A twist of an object 𝑋/𝑆 is an object 𝑌/𝑆 which is locally isomorphic to 𝑋.

Here locally means with respect to some (Grothendieck) topology 𝜏 on 𝑆. When 𝑆 is
a scheme, standard topologies for the study of twists include the fppf, étale and Zariski
topology. In this paper we will mostly use the étale topology. Indeed the étale topology over
a field 𝑘 is essentially the geometric interpretation of Galois theory [Gro71]. In the following
we will always assume that 𝜏 is coarser than the fppf topology (and in practice we will take
the étale topology).

One needs to be careful that we consider twists of 𝑋/𝑆 in some category (where the local
isomorphisms need to be in this category), and that if 𝑋/𝑆 belong to two different categories,
it may have different twists in these categories.

Example 3.2.
• A line bundle is a twist of the affine line 𝔸1

𝑆 for the Zariski topology.
• A twist 𝐸′/𝑘 of an elliptic curve 𝐸/𝑘 over a field 𝑘 is a twist of 𝐸 (in the category of

elliptic curves) for the étale topology: 𝐸′ becomes isomorphic to 𝐸 over some étale
extension of 𝑘.

• If 𝑆 = Spec 𝑘 is a field and 𝜉1, 𝜉2 ∈ 𝑘∗, the schemes 𝑥𝑛 = 𝜉1, 𝑥𝑛 = 𝜉2 (i.e.,
Spec(𝑘[𝑥]/(𝑥𝑛 − 𝜉𝑖)) become isomorphic over the extension 𝑘((𝜉1/𝜉2)1/𝑛), but
they are not isomorphic over 𝑘 unless 𝜉1/𝜉2 is an 𝑛-th power over 𝑘 already. Since
𝑘((𝜉1/𝜉2)1/𝑛) is a flat extension of 𝑘, they are twists for the fppf topology, and also
for the étale topology if 𝑛 is inversible on 𝑘.

Definition 3.3. Given an fppf algebraic group space 𝐺/𝑆, an algebraic space 𝑋/𝑆 with
an action of 𝐺 is a torsor for the topology 𝜏 if 𝑋/𝑆 is 𝜏-locally isomorphic to 𝐺 (with its
canonical action by itself) in the category of 𝐺-spaces. In other words, a torsor is a twist of
𝐺/𝑆.

Remark 3.4 (Representability). Even if 𝐺/𝑆 is a scheme, 𝐺-torsors for the fppf (or étale
topology) need not be schemes, they are only algebraic spaces in general. Many criteria for
representability by schemes are given in [Ray70], see also [Mil16, III Theorem 4.3] for a
summary. This will be the case in the following situations:

• If 𝐺/𝑆 is affine, by effectivity of fppf descent of quasi-coherent sheaves;
• If 𝐺/𝑆 is quasi-affine, by effectivity of fppf descent for quasi-affine morphisms

[Stacks, Tag 0247];
• If 𝐺/𝑆 is smooth and separated and dim𝑆 ≤ 1 (in particular if 𝑆 = Spec 𝑘 is a field);
• If 𝐺/𝑆 is smooth and proper with geometrically connected fibers and 𝐺 is regular;

As a particular case, 𝐺-torsors will be represented by schemes when:
• 𝐴/𝑆 is an abelian scheme and 𝑆 is either regular or of dimension ≤ 1. Note however

that over a general base, Raynaud proves that an abelian algebraic space 𝐴/𝑆 is
represented by a scheme, but its torsors need not be, see [Ray70] for some examples.

• 𝐺/𝑘 is a group scheme4 such that the neutral point 0𝐺 is geometrically reduced over
𝑘 (because 𝐺/𝑘 is always separated as the diagonal is the base change of the identity
section which is assumed to be rational, and if 0𝐺 is geometrically reduced then
𝐺/𝑘 is smooth by [GD64, IV.15.6.10.(iii)]).

4A quasi-separated algebraic group space is a scheme [Art69].

https://stacks.math.columbia.edu/tag/0247
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If 𝑋/𝑆 is a torsor, then it is a formally principal homogeneous space5: the action of 𝐺
is free and transitive. Equivalently, a formally principal homogeneous space is a 𝐺-space,
i.e., a space 𝑋/𝑆 with an action by 𝐺, such that the natural map 𝐺 ×𝑆 𝑋 → 𝑋 ×𝑆 𝑋 is an
isomorphism (this can be checked fpqc locally).

Note that if 𝑋/𝑆 is a (formally) principal homogeneous space, it is isomorphic to 𝐺 (i.e.,
it is trivial) if and only if it admits a global section. Indeed, the action of 𝐺 on this global
section induces an isomorphism of 𝐺 with 𝑋 over 𝑆. So 𝑋/𝑆 is a torsor in the topology 𝜏 if
and only if it admits sections 𝜏-locally, and it is the trivial torsor if and only if it admits a
global section.

Lemma 3.5. If 𝐺/𝑆 is fppf, then fppf-torsors are the same as fppf (formally) principal homo-
geneous spaces. If 𝐺/𝑆 is smooth, then fppf-torsors are already étale torsors and they are the
same as smooth (formally) principal homogeneous spaces. If 𝐺/𝑆 is étale, then fppf torsors are
already étale torsors and are the same as étale (formally) principal homogeneous spaces.

Proof. If 𝑋/𝑆 is a 𝜏-torsor with 𝜏 coarser than the fpqc topology, then since 𝐺/𝑆 is fppf
and 𝑋/𝑆 is locally isomorphic to 𝐺, 𝑋/𝑆 is fppf. By the same reasoning, if 𝐺/𝑆 is smooth
or étale, then a 𝐺-torsor 𝑋/𝑆 will also be smooth or étale because these notions are also
fpqc-local on the base [GD64, p. IV.17.7.3].

Conversely, if 𝑋/𝑆 is an fppf 𝐺-formally principal homogeneous space, then it is an fppf
torsor. Indeed 𝑋/𝑆 always admits sections over itself: the diagonal map 𝑋 → 𝑋 ×𝑆 𝑋 is
such a section, so since 𝑋/𝑆 is fppf, 𝑋/𝑆 admits sections fppf-locally, hence is an fppf torsor.
Likewise, if 𝑋/𝑆 is smooth (resp. étale), then it admits sections smooth-locally (resp. étale
locally), so is a smooth (resp. étale) torsor. But in fact a smooth morphism always admits
étale local sections since it is Zariski locally given by an étale morphism over 𝔸𝑛/𝑈. So if
𝑋/𝑆 is a smooth fppf torsor, it admits section étale locally, so it is an étale torsor. �

If 𝐺/𝑆 is a group space, the category of fppf 𝐺-torsors above 𝑆 is classified by the algebraic
stack ℬ𝐺 = [𝑆/𝐺] [Stacks, Tag 0CQJ], in particular torsors are stable by base change and
satisfy descent under an fppf morphism.

Example 3.6.

• Let 𝜉 ∈ 𝑘∗, then the scheme 𝑥𝑛 = 𝜉 has a natural action multiplicative action by
𝜇𝑛. It is a torsor over 𝑘 in the fppf topology, and even in the étale topology if 𝑛 is
prime to the characteristic 𝑝 of 𝑘. In particular the twists 𝑥𝑛 = 𝜉1 and 𝑥𝑛 = 𝜉2 from
Example 3.2 are not only twists in the category of schemes, but also in the category
of schemes with a 𝜇𝑛-action.

• The archetypical example of a torsor is a quotient: if a fppf group 𝐺/𝑆 acts freely
on a space 𝑋 → 𝑆, then the quotient 𝑋/𝐺 (in the category of fppf sheaves) is an
algebraic space [Ryd13] and 𝑋 → 𝑋/𝐺 is a 𝐺-torsor above 𝑆. Conversely given a
𝐺-torsor 𝑋 → 𝑌 above 𝑆, then 𝑌 is isomorphic to 𝑋/𝐺.

• If 𝐴/𝑘 is an abelian variety and 𝑝 ∶ 𝑋 → 𝐴 a finite étale cover, then 𝑋 is an abelian va-
riety provided that 𝑝−1(0𝐴) has a rational point in 𝑋, and in this case 𝑝 is a separable
isogeny. This is the Serre-Lang theorem, see [EGM12, Theorem 10.36]. In this case, 𝑝
is a Galoisian étale coverwith abelianGalois group ker 𝑝, and 𝑝 ∶ 𝑋 → 𝐴 = 𝑋/Ker 𝑝
is a Ker 𝑝-torsor. As an application, 𝜋1

etale(𝐴𝑘sep, 0𝐴) = lim←− 𝐴[𝑛](𝑘sep) = 𝑇(𝐴) is

5Also called pseudo-torsor in [Stacks, Tag 0497]; in the terminology of [DA70] a principal homogeneous
space is a torsor for the fpqc topology.

https://stacks.math.columbia.edu/tag/0CQJ
https://stacks.math.columbia.edu/tag/0497
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the Tate module, hence 𝐻1
etale(𝐴𝑘sep, ℤℓ) = Hom(𝜋1

etale(𝐴𝑘sep, 0𝐴), ℤℓ) = 𝑇ℓ𝐴∨

[EGM12, § 10.38 and 10.39].

Example 3.7 (The case of a field). If 𝑆 = Spec 𝑘 is a field, a connected finite étale cover is a
finite separable field extension 𝑘′/𝑘. An fppf cover is any non empty scheme of finite type
𝑌 → 𝑘, in particular an inseparable field extension 𝑘′/𝑘 is an fppf cover but not an étale
cover.

If 𝐺/𝑘 is a group scheme then an fppf 𝐺-torsor 𝑋 → 𝑘 is a scheme 𝑋/𝑘 of finite type with
an action by 𝐺 such that the induced action of 𝐺(𝑘) on 𝑋(𝑘) is free and transitive. If 𝐺/𝑘 is
smooth, 𝑋/𝑘 is a torsor in the étale topology, and will be trivialised over 𝑘sep already.

The link between twists, torsors and cohomology is given by:

Theorem 3.8. Let 𝑋/𝑆 be an algebraic space, and 𝐺 = Aut𝑆(𝑋). Then twists of 𝑋/𝑆 in the
𝜏-topology correspond bijectively to 𝐺-torsors in the 𝜏-topology, whose isomorphism classes are
classified by 𝐻1

𝜏(𝑆, 𝐺).
Proof. We will only need the second assertion, which is proven in [Stacks, Tag 03AG].

Note that in the category of 𝐺-spaces, Aut𝑆(𝐺) = 𝐺, so the first assertion of Theorem 3.8
applied to 𝐺-torsors become the tautological statement that a 𝐺-torsor is a twist of 𝐺 (by
definition) is a 𝐺-torsor (by Theorem 3.8).

To show the first assertion, it thus suffices to show that twists of 𝑋/𝑆 are classified by
𝐻1

𝜏(𝑆, 𝐺) (in particular this also proves the second statement). Given a twist 𝑌/𝑆 and a
cover 𝑈 = ⋃ 𝑈𝑖 → 𝑆 in the 𝜏-topology where 𝑌 is locally isomorphic to 𝑋 over each
𝑈𝑖, then these isomorphisms need not coincide on 𝑈𝑖 ∩ 𝑈𝑗 but they differ by an element
𝑔𝑖𝑗 ∈ 𝐺 = Aut𝑆(𝑋). The 𝑔𝑖𝑗 define a cocycle on the Cech cohomology group �̌�1(𝑈, 𝑆),
and conversely a cocycle define a twist of 𝑌 locally isomorphic to 𝑋 on the 𝑈𝑖. We conclude
by the Cech to derived spectral sequence [Stacks, Tag 03OW], which shows that the Cech
cohomology on 𝑋 gives sheaf cohomology for 𝑖 = 0, 1 [AGV72, V Corollaire 3.4; Fu11,
Corollary 5.6.3]. �

Example 3.9.

• For an elliptic curve 𝐸/𝑘 with Aut𝑘(𝐸) = 𝜇2 = ±1, we recover the fact that twists
of 𝐸 are given by 𝜇2-torsors, i.e., quadratic twists.

• If 𝐸/𝑆 is an elliptic curve, then 𝐸-torsors corresponds to twists of 𝐸 in the category
of 𝐸-spaces6 rather than in the category of elliptic curves. In the former category,
as seen in the proof of Theorem 3.8, Aut𝑆(𝐸) = 𝐸. The group 𝐻1(𝑆, 𝐸), classifying
𝐸-torsors, is also called the Weil-Chatelet group. When 𝑆 = Spec𝐾 is a number
field, we also have the closely related Selmer and Tate-Shafarevich groups.

• Since a line bundle is a twist of 𝔸1 whose automorphism group is 𝔾𝑚 we get
that Pic(𝑆) = 𝐻1

Zariski(𝑆, 𝔾𝑚). By Hilbert 90, 𝐻1
Zariski(𝑆, 𝔾𝑚) = 𝐻1

etale(𝑆, 𝔾𝑚) =
𝐻1

fppf(𝑆, 𝔾𝑚): a twist of 𝔸1 for the fppf topology is in fact a line bundle, i.e., a twist
for the Zariski topology.

• The same is true for vector bundles: a vector bundle of rank 𝑑 is a twist of 𝔸𝑑, so a
Gl𝑑-torsor. Since Gl𝑑 is a special group in the terminology of Serre-Grothendieck,
Gl𝑑-torsors for the fppf topology are already torsors for the Zariski topology [Gro71,
IX Proposition 5.1], so a vector bundle of rank 𝑑 for the fppf topology is already a
vector bundle in the Zariski topology.

6These will be schemes if 𝑆 = Spec 𝑘 is a field by Remark 3.4.

https://stacks.math.columbia.edu/tag/03AG
https://stacks.math.columbia.edu/tag/03OW
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• A Severi-Brauer variety 𝑋/𝑘 is a twist of ℙ𝑛−1/𝑘. Since Aut𝑘(ℙ𝑛−1) = PGL𝑛(𝑘),
they are classified by 𝐻1

𝜏(𝑘,PGL𝑛(𝑘)).
• A central simple algebra of rank 𝑛2 is a twist of 𝑀𝑛(𝑘). Since Aut𝑘(𝑀𝑛(𝑘)) =

PGL𝑛(𝑘), they are also classified by 𝐻1
𝜏(𝑘,PGL𝑛(𝑘)).

Remark 3.10 (Galois cohomology). Let 𝑆 be a connected scheme and 𝑠 ∈ 𝑆 a geometric
point. Then Galois theory [Gro71] provides an equivalence between LCC (locally constant
constructible) étale sheaves, finite étale covers and 𝜋1

etale(𝑆, 𝑠)-finite sets [Stacks, Tag 0DV4],
where 𝜋1

etale(𝑆, 𝑠) is the étale fundamental group. For an LCC étale sheaf 𝐹, there is a natural
map 𝐻𝑖(𝜋1

etale(𝑆, 𝑠), 𝐹) → 𝐻𝑖
etale(𝑆, 𝐹) which is an isomorphism for 𝑖 = 0, 1 [AGV72,

§VII.2; Fu11, Proposition 5.7.20]7 (𝑖 = 0 is Galois theory, and for 𝑖 = 1 this also follows from
Theorem 3.8). If 𝑆 = Spec 𝑘 is a field, and 𝑠 corresponds to 𝑘 → 𝑘, the étale fundamental
group is the Galois group Gal(𝑘/𝑘) and the above map is an isomorphism for all 𝑖 (𝑘 is
an algebraic 𝐾(𝜋, 1)-space): étale cohomology is simply Galois cohomology [Stacks, Tag
03QQ].

Remark 3.11 (Twists and Galois action). If 𝑋′/𝑆 is a twist of an object 𝑋/𝑆 (in the étale
topology), and 𝑇 → 𝑆 is a Galois finite étale cover where 𝑋′ and 𝑋 become isomorphic,
then the Galois action on 𝑋′(𝑇) is a twist of the Galois action on 𝑋(𝑇) by the cocycle in
𝐻1(𝜋1

etale(𝑆, 𝑠),Aut𝑆(𝑋)) = 𝐻1(𝑆,Aut𝑆(𝑋)) representing 𝑋′ by Theorem 3.8.

3.2. Torsors and cohomology. So torsors give a geometric interpretation of the first co-
homology group. We will use this to describe the first maps in the long exact sequence of
cohomology. We drop the 𝜏 in our notations, for now we do not need to assume anything on
the topology 𝜏.

Given an exact sequence of fppf commutative group spaces over 𝑆:

(1) 0 → 𝐾 𝑖−→ 𝐺 𝛼−→ 𝐻 → 0
seen as abelian sheaves, the long exact sequence of cohomology is given by
(2)
0 → 𝐻0(𝑆, 𝐾) → 𝐻0(𝑆, 𝐺) → 𝐻0(𝑆, 𝐻) → 𝐻1(𝑆, 𝐾) → 𝐻1(𝑆, 𝐺) → 𝐻1(𝑆, 𝐻) → 𝐻2(𝑆, 𝐾) → …
If 𝑓 ∶ 𝑆′ → 𝑆 is a morphism, the preimage functor 𝑓 −1 is exact (it induces a geometric
morphism of topoi Sh𝜏(𝑆′) → Sh𝜏(𝑆)), hence the long exact sequence commutes with the
base change to 𝑆′ (see also [GD64, p. III.0.12.1.6]).

Definition 3.12 (Pushforward/Change of structure group of torsors). If 𝛼 ∶ 𝐺 → 𝐻 is a
group morphism (all our morphisms and maps will be above the base scheme 𝑆), then to a
𝐺-torsor 𝑋 one can associate a 𝐻 torsor 𝑌 = 𝛼∗𝑋 = 𝑋 ×𝐺 𝐻 ≔ (𝑋 × 𝐻)/𝐺, where 𝐺 acts
on 𝑋 × 𝐻 on 𝑇-points via: 𝑔 ⋅ (𝑥, ℎ) = (𝑔.𝑥, ℎ𝛼(𝑔)−1) and 𝐻 acts on itself. Hence 𝛼∗ gives a
pushforward map 𝐻1(𝑆, 𝐺) → 𝐻1(𝑆, 𝐻).

Lemma 3.13. The maps 𝐻1(𝑆, 𝐾) → 𝐻1(𝑆, 𝐺) → 𝐻1(𝑆, 𝐻) are given by the pushforwards
𝑖∗ and 𝛼∗ respectively.

Proof. This is essentially an unraveling of Theorem 3.8 and the definitions. If 𝑋/𝑆 is a 𝐺-
torsor which is trivial over each 𝑈𝑖, where 𝑈 = ⋃ 𝑈𝑖 → 𝑆 is a cover, then 𝛼∗(𝑋) is a 𝐻-torsor
which is trivial over each 𝑈𝑖. Furthermore let 𝑔𝑖𝑗 be the cocycle data on the 𝑈𝑖 ∩𝑈𝑗 associated
to 𝑋, then 𝛼(𝑔𝑖𝑗) is the cocycle data associate to 𝛼∗(𝐺), which is what we wanted. �

7These references give the case of a constant sheaf 𝐹, but the general case of an LCC sheaf reduces to this
case via the Hochschild-Serre spectral sequence [Mil16, Theorem III.2.20].

https://stacks.math.columbia.edu/tag/0DV4
https://stacks.math.columbia.edu/tag/03QQ
https://stacks.math.columbia.edu/tag/03QQ
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Remark 3.14 (Quotient). In the situation of Equation (1), then 𝐺 → 𝐻 is a 𝐾-torsor above
𝑆. If 𝑋 → 𝑌 is a 𝐺-torsor, the pushforward map 𝑋 → 𝛼⋆𝑋 can be interpreted as a quotient
𝑋 → 𝑋/𝐾 by Lemma 3.19 below, and 𝑋 → 𝑌 factorizes as 𝑋 → 𝑋/𝐾 → 𝑌 where 𝑋 → 𝑋/𝐾
is a 𝐾-torsor and 𝑋/𝐾 → 𝑌 a 𝐻-torsor.

Definition 3.15 (Preimage/Fiber). Let 𝛼 ∶ 𝐺 → 𝐻 be a group morphism. Let 𝑃 ∈
𝐻0(𝑆, 𝐻) = 𝐻(𝑆) be a point, it represents a section 𝑃 ∶ 𝑆 → 𝐻 of 𝐻 → 𝑆. To this
section 𝑃 one can associate the pullback of 𝑃 by 𝛼: 𝛼∗𝑃 ∶ 𝛼−1(𝑃) → 𝐺. The space 𝛼−1(𝑃) is
called the preimage or fiber of 𝑃 by 𝛼, and it is a Ker 𝛼-torsor.

Lemma 3.16. The map 𝐻0(𝑆, 𝐻) → 𝐻1(𝑆, 𝐾) is given by 𝑃 ∈ 𝐻(𝑆) ↦ 𝛼−1(𝑃).

Proof. Again, this is an unraveling of the definitions. Since 0 → 𝐾 → 𝐺 → 𝐻 → 0 is
an exact sequence in the category of sheaves for the 𝜏-topology, 𝛼−1(𝑃) admits a section
over a 𝜏-cover 𝑈 of 𝑆. Since it is clearly a 𝐾-principal homogeneous space (we can check
this locally), it is a 𝐾-torsor, which as mentioned is trivial over 𝑈. It is then an exercise
to check that the corresponding cocycle is the one given by the connecting morphism
𝐻0(𝑆, 𝐻) → 𝐻1(𝑆, 𝐾). �

Remark 3.17 (Gerbes). The map 𝐻1(𝑆, 𝐻) → 𝐻2(𝑆, 𝐾) is described similarly. The second
cohomology group classify 𝐾-gerbes. To a 𝐻-torsor 𝑌, one associate the category 𝛼−1𝑌 of
all 𝐺-torsors 𝑋 such that 𝛼∗𝑋 = 𝑌. This category is a 𝐾-gerbe over 𝑆 (𝜏-locally on 𝑆 this
category is isomorphic to the category of 𝐾-torsors), hence an element of 𝐻2(𝑆, 𝐾).

3.3. Properties of the pushforward map. We will need various elementary properties of
the pushforward map defined in Definition 3.12.

Definition 3.18. Let 𝛼 ∶ 𝐺 → 𝐻 be a morphism, 𝑋/𝑆 a 𝐺-torsor and 𝑌/𝑆 a 𝐻-torsor. Via 𝛼,
𝑌 can be seen as a 𝐺-space. A morphism 𝑓 ∶ 𝑋 → 𝑌 (of (𝐺, 𝐻)-torsors) relative to/above 𝛼
is a morphism of 𝐺-spaces 𝑓 ∶ 𝑋 → 𝑌, i.e., a morphism which is compatible with the action
on 𝑇-points: 𝑓 (𝑔.𝑥) = 𝛼(𝑔).𝑓 (𝑥). If 𝛼 is an isomorphism, the morphism 𝑓 is automatically
an isomorphism too (because it is locally an isomorphism).

If 𝛼 = Id, then 𝑓 ∶ 𝑋 → 𝑌 is simply a morphism of 𝐺-torsors, in which case it is
automatically an isomorphism.

Our basic tool for checking various isomorphisms will be given by:

Lemma 3.19. If 𝛼 ∶ 𝐺 → 𝐻 is a morphism, there is a natural map 𝑓 ∶ 𝑋 → 𝛼∗𝑋 of
(𝐺, 𝐻)-torsors above 𝛼.

Conversely, if 𝑋 is a 𝐺 torsor, 𝑌 a 𝐻 torsor, and 𝛼 ∶ 𝐺 → 𝐻 a morphism, then if 𝑓 ∶ 𝑋 → 𝑌
is a morphism above 𝛼, it induces an isomorphism 𝛼∗(𝑋) → 𝑌. More precisely, we have a
bijection between maps 𝑓 ∶ 𝑋 → 𝑌 above 𝛼 and isomorphisms 𝛼∗𝑋 → 𝑌.

Proof. The neutral section 0 → 𝐻 induces a map 𝑋 = 𝑋 × 0 → 𝑋 × 𝐻 compatible with the
action of 𝐺, and composing with 𝑋 × 𝐻 → (𝑋 × 𝐻)/𝐺 we get a map 𝑋 → 𝛼∗𝑋.

Conversely, given 𝑓 ∶ 𝑋 →Y,we have amap𝑋×𝐻 → 𝑌 given on points by (𝑥, ℎ) ↦ ℎ.𝑓 (𝑥),
and the compatibility of 𝑓 with the action shows that the action of 𝐺 on 𝑋 × 𝐻 factor through
this map. Hence this map descends to a morphism of 𝐻-torsor 𝛼∗𝑋 → 𝑌, which as we have
seen is automatically an isomorphism. �

Lemma 3.20. The pushforward is functorial, commutes with base change, direct sums, and
sends the trivial 𝐺-torsor to the trivial 𝐻-torsor. If 𝑋 is a 𝐺-torsor, then 𝑋 × 𝑋 = Δ∗𝑋 is the
𝐺 × 𝐺-torsor induced by the pushforward of the diagonal map Δ ∶ 𝐺 → 𝐺 × 𝐺.



The geometric interpretation of the Tate pairing and its applications 9

Proof. Let 𝛼1 ∶ 𝐺1 → 𝐺2, 𝛼2 ∶ 𝐺2 → 𝐺3 are two morphisms and 𝑋 a 𝐺-torsor. Then 𝛼2
induces amap 𝑋×𝐺2 → 𝑋×𝐺3 and this map commutes with the action of 𝐺1 induced by 𝛼1
and 𝛼 = 𝛼2 ∘𝛼1, hence we get a map 𝛼1,∗𝑋 → 𝛼∗𝑋. Then by Lemma 3.19, 𝛼2,∗𝛼1,∗𝑋 ≃ 𝛼∗𝑋.
Commutativity with base change is similar.

If 𝛼1 ∶ 𝐺1 → 𝐻1, 𝛼2 ∶ 𝐺2 → 𝐻2 are two morphisms and 𝑋1 is a 𝐺1-torsor, 𝑋2
a 𝐺2-torsor, then 𝑋1 × 𝑋2 is a 𝐺1 × 𝐺2-torsor, and the maps 𝑋1 → 𝛼1,∗𝑋1 above 𝛼1,
𝑋2 → 𝛼2,∗𝑋2 above 𝛼2 induce a map 𝑋1 × 𝑋2 → 𝛼1,∗𝑋1 × 𝛼2,∗𝑋2 above 𝛼1 × 𝛼2, hence
(𝛼1 × 𝛼2)∗(𝑋1 × 𝑋2) ≃ 𝛼1,∗𝑋1 × 𝛼2,∗𝑋2 by Lemma 3.19.

Finally, the map 𝛼 ∶ 𝐺 → 𝐻 above itself shows that 𝛼∗𝐺 ≃ 𝐻 still by Lemma 3.19, and the
diagonal map 𝑋 → 𝑋 ×𝑋 above the diagonal map 𝐺 → 𝐺×𝐺 shows that Δ∗𝑋 ≃ 𝑋 ×𝑋. �

Lemma 3.21. If we have a commutative diagram of morphisms

𝐺1 𝐻1

𝐺2 𝐻2

𝛼1

𝛽1 𝛽2

𝛼2

and 𝑓 ∶ 𝑋1 → 𝑋2 a morphism of (𝐺1, 𝐺2)-torsors above 𝛽1, then 𝑓 induces a morphism
𝑔 ∶ 𝛼1,∗𝑋1 → 𝛼2,∗𝑋2 of (𝐻1, 𝐻2)-torsors above 𝛽2.

Proof. From 𝑓 ∶ 𝑋1 → 𝑋2 we get a morphism 𝑋1 × 𝐻1 → 𝑋2 × 𝐻2 → (𝑋2 × 𝐻2)/𝐺2 =
𝛼2,∗𝑋2, and the commutativity of the diagram shows that the action of 𝐺1 on 𝑋1 × 𝐻1
factorizes through this map.

Notice that Lemma 3.19 above is a special case of this with 𝐺1 = 𝐺, 𝐺2 = 𝐻1 = 𝐻2 = 𝐻.
Conversely, Lemma 3.21 could be directly deduced from Lemma 3.19 and the isomorphism
𝛼2,∗𝑋2 ≃ 𝛼2,∗𝛽1,∗𝑋1 ≃ 𝛽2,∗𝛼1,∗𝑋1 given by functoriality. �

Lemma 3.22. Let 𝑓1 ∶ 𝐺1 → 𝐺2, 𝑓2 ∶ 𝐺2 → 𝐺3 be morphisms. Then if 𝑃3 ∈ 𝐺3(𝑆),
𝑓1,∗(𝑓2 ∘ 𝑓1)−1(𝑃3) = 𝑓 −1

2 (𝑃3).
And if 𝑃2 ∈ 𝐺2(𝑆), and 𝑖 ∶ Ker 𝑓1 → Ker 𝑓2 ∘ 𝑓1 is the inclusion, then 𝑖∗𝑓 −1

1 (𝑃2) =
(𝑓2 ∘ 𝑓1)−1(𝑓2(𝑃2)).

Proof. For the first statement, apply Lemma 3.19 to the natural morphism (𝑓2 ∘ 𝑓1)−1(𝑃2) →
𝑓 −1
2 (𝑃) induced by 𝑓1 and above 𝑓1 ∶ Ker(𝑓2 ∘ 𝑓1) → Ker 𝑓2.

For the second statement, we have an inclusion in 𝐺1, 𝑓 −1
1 (𝑃2) → (𝑓2 ∘ 𝑓1)−1(𝑓2(𝑃2))

over 𝑖 and we also conclude by Lemma 3.19. �

3.4. The group structure on torsors. By the abstract theory of cohomology, the maps in
Equation (2) are group morphisms. For Section 4, we need to describe the group structure
on cohomology in order to define the bilinearity of the Tate pairing. We explain the form
this group structure takes on torsors.

Definition 3.23 (Group structure). The canonical map 𝑞 ∶ 𝐺 × 𝐺 → 𝐺 induces a group
structure on 𝐻1(𝑆, 𝐺) via 𝐻1(𝑆, 𝐺)×𝐻1(𝑆, 𝐺) → 𝐻1(𝑆, 𝐺×𝐺) → 𝐻1(𝑆, 𝐺), (𝑋1, 𝑋2) ↦
𝑋1 ⋆ 𝑋2.

By Definition 3.12 and Lemma 3.13, the group structure is explicitly given as follow: if
𝑋1/𝑆 and 𝑋2/𝑆 are two 𝐺-torsors, then 𝑋1 × 𝑋2 is a 𝐺 × 𝐺-torsor, and 𝑋1 ⋆ 𝑋2 is given
by 𝑞∗(𝑋1 × 𝑋2). In summary: (𝑋1 ⋆ 𝑋2)/𝑆 is given by (𝑋1 × 𝑋2 × 𝐺)/(𝐺 × 𝐺) where the
action is given on 𝑇-points by (𝑔1, 𝑔2).(𝑥1, 𝑥2, 𝑔) = (𝑔1.𝑥1, 𝑔2.𝑥2, 𝑔𝑔−1

1 𝑔−1
2 ).

The neutral point is the trivial torsor, and the inverse of 𝑋 is the torsor Hom(𝑋, 𝐺).
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Remark 3.24. It is elementary to check that 𝐺 is the neutral point for the group structure
on 𝐻1(𝑆, 𝐺). It is also easy to check that Hom(𝑋, 𝐺) is a 𝐺-torsor, and the evaluation map
𝑋 × Hom(𝑋, 𝐺) → 𝐺 shows that 𝑋 ⋆ Hom(𝑋, 𝐺) ≃ 𝐺 by Lemma 3.27.

Note however that this is an isomorphism, not an equality. Likewise, associativity only
holds up to isomorphism. There is probably something clever to say about ∞-categories here
to keep track of the coherence conditions, but by lack of familiarity on this subject we will
contend ourselves to work up to isomorphisms. Still, we will try to be careful to keep track
of our isomorphisms, this will be useful for formulas in Section 5.

This group structure behaves as expected:

Lemma 3.25. Let 𝛼 ∶ 𝐺 → 𝐻 be a group morphism, then 𝛼∗ ∶ 𝐻1(𝑆, 𝐺) → 𝐻1(𝑆, 𝐻) is a
group morphism. Namely, given 𝑋1, 𝑋2 two 𝐺-torsors, 𝛼∗(𝑋1 ⋆ 𝑋2) = (𝛼∗𝑋1) ⋆ (𝛼∗𝑋2).

Proof. Both are equal to the pushforward of 𝑋1 × 𝑋2 through 𝐺 × 𝐺 → 𝐻, which can be
written as 𝐺 × 𝐺 → 𝐻 × 𝐻 → 𝐻 or as 𝐺 × 𝐺 → 𝐺 → 𝐻. �

Lemma 3.26. Let 𝛼 ∶ 𝐺 → 𝐻 be a group morphism, 𝑓1 ∶ 𝑋1 → 𝑌1 and 𝑓2 ∶ 𝑋2 → 𝑌2 two
morphisms above 𝛼. Then we have a morphism 𝑓1 ⋆ 𝑓2 ∶ 𝑋1 ⋆ 𝑋2 → 𝑌1 ⋆ 𝑌2 above 𝛼.

Proof. Apply Lemma 3.21 to the diagram

𝐺 × 𝐺 𝐻 × 𝐻

𝐺 𝐻

�

Lemma3.27. Let𝑋1, 𝑋2, 𝑋 be𝐺-torsors and 𝑓 ∶ 𝑋1×𝑋2 → 𝑋 amorphism above𝐺×𝐺 → 𝐺.
Then 𝑓 induces an isomorphism 𝑋1 ⋆ 𝑋2 → 𝑋.

Proof. This is a special case of Lemma 3.19. �

Lemma 3.28. Let 𝛼 ∶ 𝐺 → 𝐻 be a group morphism with kernel 𝐾, 𝑃1, 𝑃2 ∈ 𝐻(𝑆). Then
𝛼−1(𝑃1 + 𝑃2) ≃ 𝛼−1(𝑃1) ⋆ 𝛼−1(𝑃2).

Proof. Addition gives a morphism 𝛼−1𝑃1 × 𝛼−1𝑃2 → 𝛼−1(𝑃1 + 𝑃2) aboveKer 𝛼 ×Ker 𝛼 →
ker 𝛼, so we can apply Lemma 3.27. �

Lemma 3.29. Let 𝛼1, 𝛼2 ∶ 𝐺 → 𝐻 be two group morphisms, and 𝛼 = 𝛼1 + 𝛼2. Let 𝑋/𝑆 be a
𝐺-torsor. Then 𝛼∗𝑋 = 𝛼1,∗𝑋 ⋆ 𝛼2,∗𝑋.

Proof. The map 𝛼 factorizes through 𝐺 → 𝐺 × 𝐺 → 𝐻 × 𝐻 → 𝐻 where the first map is the
diagonal, the second map is given by (𝛼1, 𝛼2), and the last map is the canonical map given
by the group structure. So the pushforward of 𝑋 by 𝛼 along this decomposition is as follow
by Lemma 3.20: first we get 𝑋 × 𝑋 as a 𝐺 × 𝐺 torsor, then 𝛼1,∗𝑋 × 𝛼2,∗𝑋 as a 𝐻 × 𝐻 torsor,
then 𝛼1,∗𝑋 ⋆ 𝛼2,∗𝑋 as a 𝐻-tosor. �

Lemma 3.30. If 𝑋/𝐺 is a 𝐺-torsor, and 𝑋⋆,𝑑 is the torsor induced by the multiplication by 𝑑
via the group structure on 𝐻1(𝑆, 𝐺), and [𝑑] ∶ 𝐺 → 𝐺 is the morphism of multiplication by 𝑑
on 𝐺, then 𝑋⋆,𝑑 = [𝑑]∗𝑋.

If 0 → 𝐾 → 𝐺 𝛼−→ 𝐻 → 0 is an exact sequence and 𝑃 ∈ 𝐻(𝑆), then [𝑑]∗𝛼−1(𝑃) =
𝛼−1(𝑑𝑃).



The geometric interpretation of the Tate pairing and its applications 11

Proof. The first statement is a consequence of Lemma 3.29, and the second of Lemma 3.28.
We can also apply Lemma 3.19 to the multiplication by [𝑑] map on 𝐺 which induces a map
𝛼−1(𝑃) → 𝛼−1(𝑑𝑃) over Ker 𝛼 [𝑑]−−→ Ker 𝛼. �

3.5. 𝜇𝑛-torsors. We conclude this section by the description of 𝜇𝑛-torsors over 𝑆. From
now on, we assume that 𝑛 is invertible on 𝑆, and 𝜏 will be the étale topology. This is merely
for convenience, because in this case 𝜇𝑛 will be étale over 𝑆 rather than just fppf, hence we
can work with étale torsors.

Lemma 3.31. 𝐻1(𝑆, 𝜇𝑛) is in bijection with the isomorphism classes of the pairs (𝐿, 𝛼) where
𝐿 ∈ Pic(𝑆) is an invertible bundle and 𝛼 ∶ 𝐿𝑛 → 𝑂𝑆 an isomorphism, i.e., a trivialisation of
𝐿𝑛.

Proof. The Kummer sequence 1 → 𝜇𝑛 → 𝔾𝑚 → 𝔾𝑚 → 1 induced by 𝑥 ↦ 𝑥𝑛 is exact in
the étale topology. (This is also why we need 𝑛 invertible. In general this sequence is always
exact in the fppf topology.) It induces the sequence

1 → 𝐻0(𝑆, 𝜇𝑛) → 𝐻0(𝑆, 𝔾𝑚) → 𝐻0(𝑆, 𝔾𝑚) → 𝐻1(𝑆, 𝜇𝑛) → 𝐻1(𝑆, 𝔾𝑚) → 𝐻1(𝑆, 𝔾𝑚)
thus we get a map 𝐻0(𝑆, 𝔾𝑚) → 𝐻1(𝑆, 𝜇𝑛) → Pic(𝑆)[𝑛] by Example 3.9. From this map
we obtain the bijection stated in the Lemma by unraveling the definitions, see [Stacks, Tag
040Q]. �

Example 3.32 (𝜇𝑛-torsors over a field). If 𝑆 = Spec 𝑘 is a field (of characteristic prime to 𝑛),
then Pic(𝑆) is trivial, and we obtain that 𝐻1(𝑘, 𝜇𝑛) ≃ 𝐻1(Gal(𝑘/𝑘), 𝜇𝑛) ≃ 𝑘∗/𝑘∗,𝑛: any
𝜇𝑛-torsor over 𝑘 is isomorphic to the torsor 𝑥𝑛 = 𝜉 for a 𝜉 in 𝑘∗. The link with Lemma 3.31
is as follows: to an isomorphism (of 𝑘-vector spaces) 𝛼 ∶ 𝑘 → 𝑘 corresponds the torsor
𝑥𝑛 = 𝜉 ≔ 𝛼(1).

So given a 𝜇𝑛-torsor 𝑋/𝑘 we have two representatives. The element 𝜉 ∈ 𝑘∗/𝑘∗,𝑛 given by
the second isomorphism gives an explicit equation (i.e., an isomorphism) with the torsor
𝑥𝑛 = 𝜉. And the cocycle Ξ ∈ 𝐻1(𝐺, 𝜇𝑛) given by the first isomorphism (see Remark 3.10)
gives the Galois action of 𝐺 = Gal(𝑘/𝑘) on 𝑋 (e.g., by twisting the natural Galois action of
𝐺 on 𝜇𝑛 by Ξ). If two torsors 𝑋1, 𝑋2 are represented by 𝜉1, 𝜉2 ∈ 𝑘∗/𝑘∗,𝑛, then 𝑋1 ⋆ 𝑋2 is
represented by 𝜉1𝜉2, indeed (𝑥𝑛

1 = 𝜉1) × (𝑥𝑛
2 = 𝜉2) → (𝑥𝑛 = 𝜉1𝜉2), (𝑥1, 𝑥2) ↦ 𝑥1𝑥2 is a

morphism above the product 𝜇𝑛 × 𝜇𝑛 → 𝜇𝑛 so we may apply Lemma 3.19.
In particular, 𝑋 corresponds to a twisted Galois structure on 𝜇𝑛, hence by Galois theory

to a field extension 𝑘′/𝑘. We recover Kummer theory (in the more general case where we
don’t assume 𝜇𝑛 ⊂ 𝑘∗).

Example 3.33 (𝜇𝑛-torsors over an elliptic curve). Let 𝐸/𝑘 be an elliptic curve (as always
we assume 𝑛 invertible on 𝑘). By Lemma 3.31, a 𝜇𝑛-torsor 𝑋 is given by an element ℒ of
𝑛-torsion in the Picard group of 𝐸, and an isomorphism 𝑂𝐸 → ℒ𝑛. Via the canonical
identification 𝑅 ↦ (𝑅) − (0𝐸) of 𝐸 with Pic0(𝐸) (the torsion elements of Pic(𝐸) are of
degree 0), the line bundle ℒ corresponds to a point 𝑃 ∈ 𝐸[𝑛](𝑘) of 𝑛-torsion. To fix an
isomorphism of 𝑂𝐸 with ℒ𝑛 then corresponds to a choice of rational function 𝑓𝑛,𝑃 with
divisor 𝑛(𝑃) − 𝑛(0𝐸). The 𝜇𝑛 torsor 𝑋 may informally be interpreted as 𝑓 1/𝑛

𝑛,𝑃 .
Themap [𝑛] ∶ 𝐸 → 𝐸 is a finite étale cover, and 𝑓𝑛,𝑃∘[𝑛]has for divisor𝑛 ∑𝑇∈𝐸[𝑛] ((𝑃1 + 𝑇) − (𝑇))

for any 𝑃1 such that 𝑃 = 𝑛𝑃1.The divisor ∑𝑇∈𝐸[𝑛] ((𝑃1 + 𝑇) − (𝑇)) is principal and ratio-
nal, we let 𝑔𝑛,𝑃 be a rational function representing it. Since 𝑔𝑛

𝑛,𝑃 and 𝑓𝑛,𝑃 ∘ [𝑛] have the same
divisors, they differ by a constant 𝑐 . Let 𝑘′ = 𝑘(𝑐1/𝑛), this is an étale extension of 𝑘. It follows
that 𝑐1/𝑛𝑔𝑛,𝑃 gives a trivialisation of our 𝜇𝑛-torsor over the étale cover [𝑛] ∶ 𝐸𝑘′ → 𝐸.

https://stacks.math.columbia.edu/tag/040Q
https://stacks.math.columbia.edu/tag/040Q
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This example explains why the functions 𝑓𝑛,𝑃 and 𝑔𝑛,𝑃 naturally appear in the algorithmic
computation of the Tate pairing, see Section 4.4.

4. The Tate pairing over a scheme

Following the seminal work [FR94; FMR99] introducing the Tate pairing in cryptography
in the context of Jacobians of curves over a finite field for the isogeny of multiplication by
[𝑛], most texts restrict to this context.

An exception is [Bru11] which proves the general case of non degeneracy of the Tate-
Cartier pairing associated to a separable isogeny of abelian varieties over a finite field. How-
ever, Bruin only gives formulas for the Tate pairing for Jacobians over a finite field. In [LR15],
we gave formulas for the Tate pairing for general abelian varieties over a finite field in the
theta model.

In this section, we give a general definition of the Tate pairing related to an isogeny over a
base scheme. Then we specialize to a field and show that the usual formulas still work for
abelian varieties when appropriately adjusted, see Equation (14). Finally we recover the usual
standard results when specializing further to finite fields.

4.1. TheWeil pairing. Let 𝐴/𝑆 be a principally polarised abelian scheme.
We first need the Weil-Cartier pairing (see [EGM12, Chapter XI]):

Theorem 4.1. If 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, the Cartier-Weil pairing 𝑒𝑊,𝑓 is a non-degenerate
pairing Ker 𝑓 × Ker ̂𝑓 → 𝔾𝑚.

Proof. Recall that as an fppf sheaf, 𝐴 is isomorphic to Ext1(𝐴, 𝔾𝑚). For instance an explicit
isomorphism is given by ℒ ∈ Pic0(𝐴) ↦ 𝐺(ℒ) where 𝐺(ℒ) is the theta group; it is an
extension of 𝐴 by 𝔾𝑚 when ℒ is algebraically trivial because its associated polarisation is 0.

Then the exact sequence 0 → Ker 𝑓 → 𝐴 → 𝐵 → 0 induces 0 → Hom(𝐵, 𝔾𝑚) →
Hom(𝐴, 𝔾𝑚) → Hom(𝑓 , 𝔾𝑚) → Ext1(𝐵, 𝔾𝑚) → Ext1(𝐴, 𝔾𝑚) → Ext1(Ker 𝑓 , 𝔾𝑚).
Now Hom(𝐴, 𝔾𝑚) = 0 since 𝔾𝑚 is affine and 𝐴 is proper, we have seen that we can
identify Ext1(𝐴, 𝔾𝑚) with 𝐴, and Ext1(Ker 𝑓 , 𝔾𝑚) = 0 because Ker 𝑓 is finite. So we get
0 → Hom(𝐾, 𝔾𝑚) → �̂� → 𝐴 → 0 and it is an exercise to check that the map �̂� → 𝐴
corresponds to ̂𝑓. So Ker ̂𝑓 ≃ Hom(𝐾, 𝔾𝑚), and the Weil pairing corresponds to Cartier
duality. See also [EGM12, § 7.2] for a sleek direct proof. �

If Ker 𝑓 is of exponent 𝑛 (in particular if 𝑓 is an 𝑛-isogeny), the Weil-Cartier pairing lends
in 𝜇𝑛. We will assume from now that all our isogenies have kernel of exponent dividing 𝑛,
and recall that we also assume that 𝑛 is invertible on 𝑆.

There are many different variants and interpretations of the Weil pairing, see [Rob21b,
§ 4.1.1] for an overview. The Weil pairing is invariant by base change and commutes with
the Galois action (i.e., the action of the étale fundamental group). The compatibility of the
Weil pairing with isogenies is given by [EGM12, Proposition 11.21]:

(3) 𝑒𝑊,ℎ∘𝑔∘𝑓(𝑃, 𝑄) = 𝑒𝑊,𝑔(𝑓 (𝑃), ℎ̂(𝑄))

for any 𝑃 ∈ 𝑓 −1 Ker 𝑔 and 𝑄 ∈ ℎ̂−1 Ker ̂𝑔. And by biduality [EGM12, Proposition 11.17],

(4) 𝑒𝑊,𝑓(𝑃, 𝑄) = 𝑒𝑊, ̂𝑓(𝑄, 𝑃)−1.

In particular, the canonical isomorphism Ker 𝑓 → Ker ̂̂𝑓 coming from biduality is given by
𝑃 ↦ −𝑃.
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The identification of Ker ̂𝑓 with the Cartier dual of Ker 𝑓 from Theorem 4.1 is compatible
with products, so if 𝑓1 ∶ 𝐴1 → 𝐵1 and 𝑓2 ∶ 𝐴2 → 𝐵2 are two isogenies, we have for
𝑃 = (𝑃1, 𝑃2) ∈ Ker 𝑓1 × 𝑓2 and 𝑄 = (𝑄1, 𝑄2) ∈ Ker ̂𝑓1 × ̂𝑓2:
(5) 𝑒𝑊,𝑓1×𝑓2((𝑃1, 𝑃2), (𝑄1, 𝑄2)) = 𝑒𝑊,𝑓1(𝑃1, 𝑄1)𝑒𝑊,𝑓2(𝑃2, 𝑄2).

Example 4.2 (Poincaré bundle). Let 𝑃 be the canonical Poincaré bundle on 𝐴 × 𝐴, and
Φ ∶ 𝐴×𝐴 → 𝐴×𝐴 the associated principal polarisation, which is simply given by (𝑃, 𝑄) ↦
(𝑄, 𝑃) (here we have used the canonical identification of 𝐴 and its bidual). By Equations (4)
and (5), we have 𝑒𝑊,ℓ∘Φ((𝑃1, 𝑄1), (𝑃2, 𝑄2)) = 𝑒𝑊,ℓ(𝑃1, 𝑄2)𝑒𝑊,ℓ(𝑃2, 𝑄1)−1.

4.2. The Tate pairing. We let 𝑓 ∶ 𝐴 → 𝐵 be an isogeny as in Section 4.1, and let 𝐾 = Ker 𝑓.
From the exact sequence 0 → 𝐾 → 𝐴 → 𝐵 → 0 we get a long exact sequence as in
Equation (2):

0 → 𝐻0(𝑆, 𝐾) → 𝐻0(𝑆, 𝐴) → 𝐻0(𝑆, 𝐵) → 𝐻1(𝑆, 𝐾) → 𝐻1(𝑆, 𝐴) → 𝐻1(𝑆, 𝐵).
In particular we obtain a map 𝐻0(𝑆, 𝐵) → 𝐻1(𝑆, 𝐾). This map is described as follows (see
Section 3): to an 𝑆-point 𝑃 ∶ 𝑆 → 𝐵 we associate the 𝐾-torsor 𝑓 −1(𝑃). Now if we are also
given a 𝑆-point 𝑄 ∶ 𝑆 → Ker ̂𝑓 of order 𝑚 ∣ 𝑛, the Weil pairing applied to 𝑄 gives a map
𝜙𝑄 ∶ Ker 𝑓 → 𝜇𝑚. We can pushforward our torsor 𝑓 −1(𝑃) through this map.

Definition 4.3. Let 𝑓 ∶ 𝐴 → 𝐵 be an isogeny of exponent 𝑛, 𝑃 ∈ 𝐵(𝑆) and 𝑄 ∈ Ker ̂𝑓 (𝑆)
a point of order 𝑚 ∣ 𝑛. The Tate pairing 𝑒𝑇,𝑓(𝑃, 𝑄) is the 𝜇𝑚-torsor over 𝑆 given by
𝜙𝑄,∗(𝑓 −1(𝑃)) where 𝜙𝑄 ∶ Ker 𝑓 → 𝜇𝑚 ⊂ 𝜇𝑛 = 𝑒𝑊,𝑓(⋅, 𝑄).

Remark 4.4 (Products). If 𝑓1 ∶ 𝐴1 → 𝐵1 and 𝑓2 ∶ 𝐴2 → 𝐵2 are isogenies of exponent 𝑚, and
𝑓 = 𝑓1 × 𝑓2, 𝑃 = (𝑃1, 𝑃2) ∈ 𝐵1(𝑆)×𝐵2(𝑆), 𝑄 = (𝑄1, 𝑄2) ∈ Ker ̂𝑓1(𝑆)×Ker ̂𝑓2(𝑆) a point
of order 𝑚, then by Equation (5) we have that 𝑒𝑇,𝑓(𝑃, 𝑄) = 𝑒𝑇,𝑓1(𝑃1, 𝑄1) ⋅ 𝑒𝑇,𝑓2(𝑃2, 𝑄2) as
a product of 𝜇𝑚-torsors. If 𝑋1, 𝑋2 are 𝜇𝑚-torsors, their product is the pushforward of the
𝜇𝑚 × 𝜇𝑚-torsor 𝑋1 × 𝑋2 through the map 𝜇𝑚 × 𝜇𝑚 → 𝜇𝑚, (𝜁1, 𝜁2) ↦ 𝜁1𝜁2.

Remark 4.5 (Order). Of course, since 𝑄 is also of order 𝑛, we also get a version of 𝑒𝑇,𝑓(𝑃, 𝑄)
as a 𝜇𝑛-torsor. It is simply given by the image of 𝑒𝑇,𝑓(𝑃, 𝑄) via 𝑖∗ ∶ 𝐻1(𝑆, 𝜇𝑚) → 𝐻1(𝑆, 𝜇𝑛)
where 𝑖 ∶ 𝜇𝑚 → 𝜇𝑛 is the inclusion.

Note however that although 𝑖 is injective, this is not the case in general for the pushforward
map 𝑖∗ ∶ 𝐻1(𝑆, 𝜇𝑚) → 𝐻1(𝑆, 𝜇𝑛). So seeing all our pairings in 𝐻1(𝑆, 𝜇𝑛) lose information!
This is why we were careful to define our pairing in the correct cohomology group. We will
see this situation again when we study bilinearity (see Remark 4.7) and non degeneracy over
a finite field (see Theorem 4.25).

If 𝑆 = Spec𝔽𝑞 is a finite field, then 𝐻1(𝑆, 𝜇𝑚) → 𝐻1(𝑆, 𝜇𝑛) is injective whenever
𝜇𝑛 ⊂ 𝔽𝑞. But in this paper we want to investigate the general case of the Tate pairing when
only a subgroup of 𝜇𝑛 is rational. In this situation, our refined definition will be useful.

Proposition 4.6. The Tate pairing is bilinear.

Proof. Let 𝑃 ∈ 𝐵(𝑆), 𝑄1, 𝑄2 ∈ Ker ̂𝑓 (𝑆), with 𝑄1, 𝑄2 of 𝑛-torsion. Then by bilinearity
of the Weil pairing, 𝑒𝑊,𝑓(⋅, 𝑄) ∶ Ker 𝑓 → 𝜇𝑛 = 𝑒𝑊,𝑓(⋅, 𝑄1)𝑒𝑊,𝑓(⋅, 𝑄2), so by Lemma 3.29,
𝑒𝑇,𝑓(𝑃, 𝑄) = 𝑒𝑇,𝑓(𝑃, 𝑄1) ⋆ 𝑒𝑇,𝑓(𝑃, 𝑄2).

Let 𝑃1, 𝑃2 ∈ 𝐵(𝑆), 𝑄 ∈ Ker ̂𝑓 (𝑆), with 𝑄 of 𝑛-torsion, 𝜙𝑄 = 𝑒𝑊,𝑓(⋅, 𝑄). Then 𝑒𝑇,𝑓(𝑃1 +
𝑃2, 𝑄) = 𝜙𝑄,∗(𝑓 −1(𝑃1+𝑃2)) = 𝜙𝑄,∗(𝑓 −1(𝑃1)⋆𝑓 −1(𝑃2)) = 𝜙𝑄,∗(𝑓 −1(𝑃1))⋆𝜙𝑄,∗(𝑓 −1(𝑃2)) =
𝑒𝑇,𝑓(𝑃1) ⋆ 𝑒𝑇,𝑓(𝑃2) by Lemmas 3.25 and 3.28. �
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Remark 4.7 (Bilinearity). Let 𝑄1 be a point of order 𝑛1 and 𝑄2 = 𝑑𝑄1 where 𝑛1 =
𝑑𝑛2. We have a map 𝜇𝑛1

→ 𝜇𝑛2
given by 𝜁 ↦ 𝜁𝑑. By bilinearity of the Weil pairing,

the map 𝜙𝑄2
∶ Ker 𝑓 → 𝜇𝑛2

is exactly given by the composition of 𝜙𝑄1
∶ Ker 𝑓 → 𝜇𝑛1

with this map. From the definition and the functoriality of the pushforward, we get that
𝑒𝑇,𝑓(𝑃, 𝑄2) ∈ 𝐻1(𝔽𝑞, 𝜇𝑛2

) is the pushforward of 𝑒𝑇,𝑓(𝑃, 𝑄1) ∈ 𝐻1(𝔽𝑞, 𝜇𝑛1
) along this

projection 𝜇𝑛1
→ 𝜇𝑛2

.
This gives a refined version of Proposition 4.6. Indeed, we can also consider the map

𝜁 ↦ 𝜁𝑑 as an application 𝜇𝑛1
→ 𝜇𝑛1

, this is the composition of the exponentiation
𝜇𝑛1

→ 𝜇𝑛2
above with the canonical inclusion 𝜇𝑛2

⊂ 𝜇𝑛1
. As above, we obtain that

𝑒𝑇,𝑓(𝑃, 𝑄2) ∈ 𝐻1(𝔽𝑞, 𝜇𝑛1
) is the pushforward by this “multiplication by 𝑑” of 𝑒𝑇,𝑓(𝑃, 𝑄1).

This is the standard version of bilinearity (on the right) of the Tate pairing, as recovered by
applying Proposition 4.6. But by Remark 4.5 this second version loose information! (Note
also that although the projection map 𝜇𝑛1

→ 𝜇𝑛2
is surjective, it need not stay surjective on

𝐻1(𝑆, 𝜇𝑛1
) → 𝐻1(𝑆, 𝜇𝑛2

). This will be the case however if 𝑆 is of cohomological dimension
≤ 1, e.g., 𝑆 = Spec𝔽𝑞.)

One should be careful that this refined version does not work for bilinearity on the left.
Let 𝑛1 = 𝑑𝑛2 and 𝑄 a point of order 𝑛1. Let 𝑃2 = 𝑑𝑃1. Then a priori 𝑒𝑇,𝑓(𝑃2, 𝑄) lives in
𝐻1(𝑆, 𝜇𝑛1

). Of course, by bilinearity, this is also 𝑒𝑇,𝑓(𝑃1, 𝑑𝑄), which we have seen has a
natural interpretation in 𝐻1(𝑆, 𝜇𝑛2

). Explicitly, multiplication by 𝑑 induces an isomorphism
𝑓 −1(𝑃2) = [𝑑]∗𝑓 −1(𝑃1) by Lemma 3.30. By bilinearity of the Weil pairing, this induces
our isomorphism 𝑒𝑇,𝑓(𝑃2, 𝑄) = 𝑒𝑇,𝑓(𝑃1, 𝑑𝑄) ∈ 𝐻1(𝑆, 𝜇𝑛1

). However, 𝑒𝑇,𝑓(𝑃2, 𝑄) has no
natural interpretation in 𝐻1(𝑆, 𝜇𝑛2

).

The compatibility of the Tate pairing with isogenies is given by:

Proposition 4.8. Let 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶, ℎ ∶ 𝐶 → 𝐷 be isogenies over 𝑆, 𝑃 ∈ 𝐶(𝑆) and
𝑄 ∈ Ker ℎ̂ ∘ 𝑔(𝑆) of order 𝑛. Then

𝑒𝑇,ℎ∘𝑔∘𝑓(ℎ(𝑃), 𝑄) = 𝑒𝑇,𝑔(𝑃, ℎ̂(𝑄)) ∈ 𝐻1(𝑆, 𝜇𝑛).

Proof. This is a nice exercise using Equation (3) and the definitions. We can treat ℎ and 𝑓
separately.

The isogeny 𝑓 induces a morphism Ker 𝑔 ∘ 𝑓 → Ker 𝑔, and by Equation (3) the map
𝑒𝑊,𝑔∘𝑓(⋅, 𝑄) = 𝑒𝑊,𝑔(𝑓 (⋅), 𝑄) ∶ Ker 𝑔 ∘ 𝑓 → 𝜇𝑛 factors through this map. And 𝑓∗(𝑔 ∘
𝑓 )−1(𝑃) ≃ 𝑔−1(𝑃) by Lemma 3.22. So 𝑒𝑇,𝑔∘𝑓(𝑃, 𝑄) = 𝑒𝑇,𝑔(𝑃, 𝑄).

We also have the inclusion 𝑖 ∶ Ker 𝑔 → Ker ℎ ∘ 𝑔. By Equation (3), the map 𝑒𝑊,𝑔(⋅, ℎ̂𝑄) =
𝑒𝑊,ℎ∘𝑔(⋅, 𝑄) ∶ Ker 𝑔 → 𝜇𝑛 factor through this inclusion. Since 𝑖∗𝑔−1(𝑃) ≃ (ℎ ∘ 𝑔)−1(ℎ(𝑃))
by Lemma 3.22, we get that 𝑒𝑇,ℎ∘𝑔(ℎ(𝑃), 𝑄) = 𝑒𝑇,𝑔(𝑃, ℎ̂(𝑄)). �

We remark that the same proof works if we do not assume our isogenies to be separable,
we just need that 𝑄 should be of order 𝑛 with 𝑛 invertible. (Or work with fppf torsors rather
than étale torsors, see Remark 4.12.)

Corollary 4.9. Let 𝛼 ∶ 𝐴 → 𝐵 be a 𝑎-isogeny between principally polarised abelian varieties.
For 𝑃 ∈ 𝐴(𝑆) and 𝑄 ∈ 𝐵[𝑛](𝑆),

𝑒𝑇,𝑛(𝛼(𝑃), 𝑄) = 𝑒𝑇,𝑛(𝑃, ̃𝛼(𝑄))
so in particular, for 𝑃 ∈ 𝐴(𝑆) and 𝑄 ∈ 𝐴[𝑛](𝑆),

𝑒𝑇,𝑛(𝛼(𝑃), 𝛼(𝑄)) = 𝑒𝑇,𝑛(𝑃, 𝑄)𝑎.
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Proof. Since 𝛼 commutes with 𝑛, we have 𝑒𝑇,𝑛(𝛼(𝑃), 𝑄) = 𝑒𝑇,𝑛∘𝛼(𝛼(𝑃), 𝑄) = 𝑒𝑇,𝑛(𝑃, ̃𝛼𝑄)
by Proposition 4.8 and the second equation follows by bilinearity. �

Remark 4.10 (Base change). The Tate pairing commutes with base change and the Galois
action. More precisely, if 𝑆′ → 𝑆 is a map of scheme, and 𝑓 ′ the base change of 𝑓, 𝑃′, 𝑄′ the
base change of 𝑃, 𝑄, then 𝑒𝑇,𝑓 ′(𝑃′, 𝑄′) = 𝑓 ∗𝑒𝑇,𝑓(𝑃, 𝑄) is the base change of 𝑒𝑇,𝑓(𝑃, 𝑄) ∈
𝐻1(𝑆, 𝜇𝑛) via the pullback map 𝐻1(𝑆, 𝜇𝑛) → 𝐻1(𝑆′, 𝜇𝑛).

As a torsor, this is simply the corresponding torsor over 𝑆 base changed to 𝑆′. As a
cocycle (via the isomorphism 𝐻1(𝑆, 𝜇𝑛) ≃ 𝐻1(𝜋1

etale(𝑆, 𝑠), 𝜇𝑛)), it is simply the cocycle in
𝐻1(𝜋1

etale(𝑆′, 𝑠′), 𝜇𝑛) given by composition of the cocycle above and themap𝜋1
etale(𝑆′, 𝑠′) →

𝜋1
etale(𝑆, 𝑠) induced by functoriality of étale fundamental groups.
In particular, if Ker 𝑓 admits a section over 𝑆′, then the Tate pairing becomes trivial over

𝑆′. This is a fundamental difference between the Weil and Tate pairing, the Weil pairing takes
value in 𝜇𝑛, but the Tate pairing takes value in 𝜇𝑛-torsors, and two torsors non isomorphic
over 𝑆 may become isomorphic after base change.

Remark 4.11 (Weil’s restriction of scalar and trace). If 𝜋 ∶ 𝑆′ → 𝑆 is a map, then we
have a pushforward map 𝜋∗ on étale sheaves [Stacks, Tag 03PV]: if 𝐹′/𝑆′ is an étale sheaf,
𝜋∗𝐹′(𝑉) = 𝐹′(𝑉 ×𝑆 𝑆′). For instance, if 𝑋′/𝑆′ is a scheme seen as an étale sheave, then the
pushforward is Weil’s restriction of scalar 𝑅𝑆′/𝑆(𝑋′). It will be represented by an algebraic
space if 𝑓 is proper flat of finite presentation [Ols+06,Theorem 1.5], and by a scheme if 𝑆′ → 𝑆
is finite locally free and 𝑋′ is AF-finite (e.g., quasi-projective) by [BLR12, Theorem 7.6.4].

If 𝜋 is a finite morphism, then 𝜋∗ is exact [Stacks, Tag 03QN], so 𝐻𝑖(𝑆′, 𝐹′) ≃ 𝐻𝑖(𝑆, 𝐹).
In particular,𝐺′-torsors𝑋′/𝑆′ correspond bijectively to𝜋∗𝐺′-torsors𝑋/𝑆, in fact𝑋 = 𝜋∗𝑋′

[DA70, XIV, Proposition 8.4 et Remarques 8.5].
Still for 𝜋 finite, in the context of a Tate pairing 𝑒𝑇,𝑓 ′(𝑃′, 𝑄′)/𝑆′ associated to an isogeny

𝑓 ′ ∶ 𝐴′ → 𝐵′ over 𝑆′, this means that in particular we can consider its pushforward/Weil
restriction to 𝑆, to get a 𝜋∗𝜇𝑛-torsor over 𝑆. By the isomorphisms above, we get that the
Weil restriction commutes with the long exact cohomology sequence, so the end result is the
same if we take the Weil restriction of 𝑓 ′−1(𝑃′) first then map it through the Weil restriction
of the morphism 𝑒𝑊,𝑓 ′(⋅, 𝑄′). And the Weil restriction of 𝑓 ′−1(𝑃′) is also isomorphic to
taking the Weil restriction of 𝑃′ (seen as a morphism 𝑆′ → 𝐴′) and then applying the fiber
functor (𝜋∗𝑓 ′)−1.

Let us now assume that 𝜋 is finite étale. Then since 𝜋 is proper, 𝜋∗ = 𝜋!, and 𝜋∗ is both
a left and right adjoint of 𝜋−1. In particular, 𝜋∗𝜋−1 is a comonad, hence for any étale sheaf
𝐹 we have a natural counit 𝜋∗𝜋−1𝐹 → 𝐹: this is the trace map Tr, see [Stacks, Tag 03SH].

Coming back to the Tate pairing, since 𝜇𝑛 is defined over 𝑆, then we can pushforward
the 𝜋−1𝜇𝑛-torsor 𝑒𝑇,𝑓 ′(𝑃′, 𝑄′)/𝑆′ through 𝜋∗ followed by the trace map 𝜋∗𝜋−1𝜇𝑛 → 𝜇𝑛
to get a 𝜇𝑛 torsor Tr∗ 𝑒𝑇,𝑓 ′(𝑃′, 𝑄′) over 𝑆.

If 𝑓 ′ ∶ 𝐴′ → 𝐵′ is the pullback of an isogeny 𝑓 ∶ 𝐴 → 𝐵 over 𝑆, then we can also apply
the trace map to transform the Ker 𝑓 ′-torsor (𝑓 ′)−1(𝑃′) to a Ker 𝑓-torsor, and by linearity
of 𝑓 we have that Tr∗(𝑓 ′)−1(𝑃′) = 𝑓 −1(Tr𝑃′). If 𝑄′ is the pullback of 𝑄 ∶ 𝑆 → Ker ̂𝑓,
then by bilinearity of the Tate pairing, Tr 𝑒𝑇,𝑓 ′(𝑃′, 𝑄′) = 𝑒𝑇,𝑓(Tr𝑃′, 𝑄) as a 𝜇𝑛-torsor over
𝑆. Likewise, if 𝑃′ ∶ 𝑆′ → 𝐴′ is the pullback of 𝑃 ∶ 𝑆 → 𝐴, then by bilinearity we have
Tr 𝑒𝑇,𝑓 ′(𝑃′, 𝑄′) = 𝑒𝑇,𝑓(𝑃,Tr𝑄′).

Remark 4.12 (The case 𝑛 = 𝑝). If 𝑆 = Spec 𝑘 is a field of characteristic 𝑝 and in the
general case when 𝑛 is not assumed to be prime to 𝑝, the Weil pairing still gives an identifi-
cation between Ker ̂𝑓 and (Ker 𝑓 )∨. So we could still define the Tate pairings as elements of

https://stacks.math.columbia.edu/tag/03PV
https://stacks.math.columbia.edu/tag/03QN
https://stacks.math.columbia.edu/tag/03SH
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𝐻1
fppf(𝑆, 𝜇𝑛) as in Definition 4.3, i.e., as fppf 𝜇𝑛-torsors. However, if 𝑆 = Spec 𝑘 is a perfect

field, infinitesimal group schemes over 𝑘 have no non-trivial torsors [Čes15, Lemma 5.7]. So
𝐻1

fppf(𝑘, 𝜇𝑝𝑚) = 1 and the Tate pairing does not bring any information at the level 𝑝𝑣𝑝(𝑛)

part of 𝜇𝑛.

4.3. TheWeil pairing over a field. If 𝑆 = Spec 𝑘 is a field, an explicit definition of the Weil
pairing is as follows: let 𝑄 ∈ Ker ̂𝑓, 𝑄 corresponds to a divisor 𝐷𝑄 on �̂�. The pullback of 𝐷𝑄
by 𝑓 is trivial since 𝑄 is in the kernel of the dual isogeny, so 𝑓 ∗𝐷𝑄 = Div(𝑔𝑓 ,𝑄) for some
function 𝑔𝑓 ,𝑄 ∈ 𝑘(𝐴). Then if 𝑃 ∈ Ker 𝑓, 𝜏∗

𝑃𝑓 ∗𝐷𝑄 = 𝑓 ∗𝐷𝑄, so the function 𝜏∗
𝑃𝑔𝑓 ,𝑄 has the

same divisor as 𝑔𝑓 ,𝑄. They need not be the same but they differ by an invertible constant:
this is 𝑒𝑓(𝑃, 𝑄):

(6) 𝑒𝑓(𝑃, 𝑄) = 𝑔𝑓 ,𝑄(𝑥 + 𝑃)/𝑔𝑓 ,𝑄(𝑥).

If ℒ and ℳ are principal polarisations on 𝐴 and 𝐵 and 𝑓 ∶ (𝐴, ℒ) → (𝐵, ℳ) an 𝑛-isogeny,
then composing the Weil pairing with the polarisation Φℳ gives the Weil pairing associated
to Φℳ ∘ 𝑓: Ker 𝑓 ×Ker ̃𝑓 → 𝜇𝑛. If Θ𝐴, Θ𝐵 are divisors associated to the polarisations, then to
a (0-dimensional) cycle 𝑍 = ∑ 𝑛𝑖(𝑃𝑖) on 𝐴 we can associate the divisor 𝐷𝑍 = ∑ 𝑛𝑖𝜏∗

𝑃𝑖
Θ𝐴.

By the theorem of the square and the definition of the polarisation, the divisor 𝐷𝑍 is principal
if deg𝑍 = 0 and 𝑆(𝑍) ≔ ∑ 𝑛𝑖𝑃𝑖 ∈ KerΦℒ = 0. In this case we let 𝑔𝑍 = 𝑔𝐷𝑍

be an
associated function. Given 𝑄 ∈ Ker ̃𝑓 and 𝑃 ∈ Ker 𝑓, we let 𝑍𝑄, 𝑍𝑃 be any cycle equivalent
to (𝑄) − (0𝐵) and (𝑃) − (0𝐴) respectively. Then 𝐷𝑍𝑄

is a divisor representing the point
Φ𝑀(𝑄), the divisor 𝑓 ∗𝐷𝑍𝑄

is principal and we let 𝑔𝑓 ,𝑍𝑄
be a function associated to it. Then

Equation (6) becomes

(7) 𝑒𝑓(𝑃, 𝑄) = 𝑔𝑓 ,𝑍𝑄
(𝑥 + 𝑃)/𝑔𝑓 ,𝑍𝑄

(𝑥).

Now if 𝑓 = [𝑛] is the multiplication, in the context of elliptic curves and Jacobians it is
possible to use Weil’s reciprocity to give an alternative definition of the Weil pairing. One
can use an extension due to Lang [Lan58] to prove a similar formula for abelian varieties
(see also [LR15; Rob21b, § 4.1.2]): if 𝑍1, 𝑍2 are principal cycles, then 𝑔𝑍1

(𝑍2) = 𝑔𝑍2
(𝑍1)

provided these values are well defined.
Using Lang’s reciprocity, one can show that for 𝑃, 𝑄 ∈ 𝐴[𝑛], 𝑓𝑛,𝑍𝑄

a function associated
to the cycle 𝑛𝑍𝑄 and likewise for 𝑓𝑛,𝑍𝑃

, then (up to a sign) [Lan58, Theorem 6]:

(8) 𝑒𝑊,𝑛(𝑃, 𝑄) = 𝑓𝑛,𝑍𝑄
(𝑍𝑃)/𝑓𝑛,𝑍𝑃

(𝑍𝑄).

Remark 4.13 (Elliptic curves and Jacobians). We recover the usual formula for the Weil
pairing on an elliptic curve by taking 𝑍𝑃 = (𝑃) − (0), 𝑍𝑄 = (𝑄) − (0). In this case the
cycles are already divisors. Let 𝑃, 𝑄 ∈ 𝐸[𝑛], 𝑄0 such that 𝑛𝑄0 = 𝑄. Let 𝑔𝑛,𝑄 be a function
with divisor ∑𝑇∈𝐸[𝑛](𝑄0 + 𝑇) − (𝑇) = [𝑛]∗((𝑄) − (0𝐸)). Let 𝑓𝑛,𝑄 be a function with
divisor 𝑛(𝑄) − 𝑛(0𝐸). Then the formula above become:

(9) 𝑒𝑊,𝑛(𝑃, 𝑄) = 𝑔𝑛,𝑄(𝑃 + 𝑥)/𝑔𝑛,𝑄(𝑃) = 𝑓𝑛,𝑄((𝑃) − (0𝐸))/𝑓𝑛,𝑃((𝑄) − (0𝐸)).

The last definition is used for computations because it is well suited for Miller’s double and
add algorithm [Mil04]. Notice that 𝑓𝑛,𝑄 has a pole at 0𝐸 so cannot be directly evaluated
there, but there is a way to make the formula 𝑓𝑛,𝑄((𝑃) − (0𝐸)) make sense (see [Rob21a,
Lemma 3.5.3]) and equal to 𝑓𝑛,𝑄(𝑃) if 𝑓𝑛,𝑄 is appropriately normalised at infinity.

For Jacobians 𝐽 = Jac(𝐶), a function on 𝐶 induce a function on 𝐽. The functions involved
in the Weil pairing all come from functions on 𝐶, so it is possible to compute the Weil
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pairing on 𝑃, 𝑄 ∈ 𝐽 by seeing them as divisors on 𝐶 and evaluating similar functions as in
Equation (9) on them. This allows to work entirely on the curve.

At least over Jacobians, it is thus possible to make sense of Equation (8) by using Weil’s
extended reciprocity theorem, even if the support of 𝑍𝑃 is not disjoint form the support of
𝐷𝑍𝑄

(and conversely), see [Rob17, § 3.4].

Formula for the Weil pairing on abelian varieties in the theta model are given in [LR10;
LR15].

Remark4.14 (Restricting theWeil pairing to subgroups). Let𝐴/𝔽𝑞 be a principally polarised
abelian variety over a finite field, theWeil pairing 𝑒𝑊,𝑛 ∶ 𝐴[𝑛]×𝐴[𝑛] → 𝜇𝑛 is non degenerate.
Assume for simplicity that 𝑛 is prime. Let 𝑃 be the characteristic polynomial of 𝜋𝑞 on 𝐴[𝑛],
𝑃1 an irreducible factor, and 𝐴[𝑛]𝑃1

the characteristic subspace associated to 𝑃1. Since 𝜋𝑞
is 𝑞-symplectic with respect to 𝑒𝑊,𝑛, if 𝑃2 = 𝑋deg𝑃1𝑃1(𝑞/𝑋) is the 𝑞-reciprocal polynomial
of 𝑃1, then 𝑃2 also divides 𝑃 and we have another characteristic subspace 𝐴[𝑛]𝑃2

. (Note
that we can have 𝑃1 = 𝑃2.)

Let 𝐴′[𝑛] = 𝐴[𝑛]𝑃1
+ 𝐴[𝑛]𝑃2

. Then the Weil pairing 𝑒𝑊,𝑛 is non degenerate when
restricted to 𝐴[𝑛]𝑃1

× 𝐴[𝑛]𝑃2
.

Indeed, let us first assume that 𝑃1 ≠ 𝑃2. Write 𝑃(𝑋) = 𝑃1(𝑋)𝑒𝑃2(𝑋)𝑒𝑅(𝑋), with 𝑅
prime to 𝑃1 and 𝑃2 and 𝑞-reciprocal. The subgroup 𝐴[𝑛]𝑃2

is the image by 𝑃𝑒
1(𝜋𝑞)𝑅(𝜋𝑞) on

𝐴[𝑛]. Let 𝑥 ∈ 𝐴[𝑛]𝑃1
, we want to find 𝑦 ∈ 𝐴[𝑛] such that 𝑒𝑊,𝑛(𝑥, 𝑃𝑒

1(𝜋𝑞)𝑅(𝜋𝑞)(𝑦)) ≠ 1.
But 𝑒𝑊,𝑛(𝑥, 𝑃𝑒

1(𝜋𝑞)𝑅(𝜋𝑞)(𝑦)) = 𝑒𝑊,𝑛(𝑃𝑒
1(𝜋𝑞)𝑅(𝜋𝑞)(𝑥), 𝑦) = 𝑒𝑊,𝑛(𝑃𝑒

2(𝜋𝑞)𝑅(𝜋𝑞)(𝜋− deg𝑃
𝑞 𝑥), 𝑦)

where 𝜋𝑞 = 𝑞/𝜋𝑞 and we have used that 𝑅 is 𝑞-reciprocal, and 𝑃2 is the 𝑞-reciprocal of 𝑃1.
So 𝑦 exists by non degeneracy of the Weil pairing, since (𝑃𝑒

2(𝜋𝑞)𝑅(𝜋𝑞))(𝜋− deg𝑃1
𝑞 𝑥) ≠ 0 as

𝑥 ∈ Ker𝑃𝑒
1(𝜋𝑞) and 𝑃1 is prime to 𝑃𝑒

2𝑅. The same reasoning holds for non degeneracy on
the right. A similar proof holds when 𝑃1 = 𝑃2.

4.4. The Tate pairing over a field. We now unravel Definition 4.3 when 𝑆 = Spec 𝑘 is a
field. We have an isogeny 𝑓 ∶ 𝐴/𝑘 → 𝐵/𝑘 (of exponent 𝑛), a point 𝑃 ∈ 𝐵(𝑘) and a point
𝑄 ∈ Ker ̂𝑓 (𝑘). To 𝑃 we associate the Ker 𝑓-torsor 𝑓 −1(𝑃). Using the Weil pairing with 𝑄,
we have a map 𝜙𝑄 = 𝑒𝑊,𝑛(⋅, 𝑄) ∶ Ker 𝑓 → 𝜇𝑛; the Tate pairing 𝑒𝑇,𝑓(𝑃, 𝑄) is then the
pushforward of 𝑓 −1(𝑃) by 𝜙𝑄.

The Tate pairing takes value in 𝐻1(𝑘, 𝜇𝑛). By Example 3.32, 𝐻1(𝑘, 𝜇𝑛) ≃ 𝑘∗/𝑘∗,𝑛, and
by Remark 3.10, 𝐻1(𝑘, 𝜇𝑛) ≃ 𝐻1(𝐺, 𝜇𝑛) where 𝐺 = Gal(𝑘) is the Galois group of 𝑘. We
explain how to switch between these isomorphisms. If𝑋/𝑘 is a𝜇𝑛-torsor, it is trivialised over 𝑘
(it has a geometric point!), so 𝑋𝑘 ≃ 𝜇𝑛. Thus 𝑋 is the descent of 𝑋𝑘 through Spec 𝑘 → Spec 𝑘,
and this descent is encoded by gluing data on Spec 𝑘 ×Spec 𝑘 Spec 𝑘. Since 𝑘 ⊗𝑘 𝑘 = ∑𝜎∈𝐺 𝑘

𝜎

where 𝑘
𝜎
is the 𝑘-vector space 𝑘 with action twisted by 𝜎, this gluing data is given by a cocycle

Ξ ∶ 𝐺 → 𝜇𝑛. This is the cocycle representing 𝑋/𝑘. Concretely it is given as follows: let 𝑃0 be
any point in 𝑋(𝑘). Then the cocycle representing 𝑋 is given by
(10) Ξ ∶ 𝜎 ∈ 𝐺 ↦ 𝜁𝜎 ∈ 𝜇𝑛 where 𝜎(𝑃0) = 𝜁𝜎 ⋅ 𝑃0.
In the particular case where 𝑋 is the 𝜇𝑛-torsor 𝑋 ∶ 𝑥𝑛 = 𝜉 associated to some 𝜉 ∈ 𝑘∗, if
𝜉𝑛

0 = 𝜉, then this cocycle is 𝜎 ↦ 𝜎(𝜉0)/𝜉0 ∈ 𝜇𝑛.
Conversely, given a cocycle in 𝐻1(𝐺, 𝜇𝑛), then by Galois descent it encodes a scheme

𝑋/𝑘 which will be a 𝜇𝑛-torsor. It is not obvious how to find a 𝜉 ∈ 𝑘∗/𝑘∗,𝑛 representing 𝑋/𝑘
however. But if one can find a 𝜉0 such that the cocycle is given (up to a coboundary) by
𝜎 ↦ 𝜎(𝜉0)/𝜉0 ∈ 𝜇𝑛, then a representative of 𝑋 is 𝜉 = 𝜉𝑛

0 .
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Going back to the Tate pairing associated to an isogeny 𝑓, if 𝐵 is principally polarised
by ℳ, the Tate pairing associated to 𝑓 composed with Φℳ, or equivalently the Tate pairing
associated to Φℳ ∘ 𝑓 gives a pairing 𝑒𝑇,𝑓 ∶ 𝐵(𝑘)/𝑓 (𝐴(𝑘)) × Ker ̃𝑓 (𝑘) → 𝐻1(𝑘, 𝜇𝑛). Let
𝑃 ∈ 𝐵(𝑘), 𝑄 ∈ Ker ̃𝑓 (𝑘), 𝑃0 ∈ 𝐴(𝑘) any point such that 𝑃 = 𝑓 (𝑃0). By Definition 4.3 and
our recipe above, the associated cocycle representing 𝑒𝑇,𝑓(𝑃, 𝑄) in 𝐻1(𝐺, 𝜇𝑛) is given by

(11) 𝑒𝑇,𝑓(𝑃, 𝑄) ∶ 𝜎 ∈ 𝐺 ↦ 𝑒𝑊,𝑓(𝜎(𝑃0) − 𝑃0, 𝑄) ∈ 𝜇𝑛.

Plugging Equation (7), we get

(12) 𝑒𝑇,𝑓(𝑃, 𝑄) ∶ 𝜎 ∈ 𝐺 ↦ 𝜎(𝑔𝑓 ,𝑍𝑄
((𝑃0) − (0)))/𝑔𝑓 ,𝑍𝑄

((𝑃0) − (0)) ∈ 𝜇𝑛,

using that 𝑔𝑓 ,𝑍𝑄
is rational hence commute with 𝜎.

In this situation there is also an explicit formula for identifying this 𝜇𝑛-torsor as rep-
resented by some 𝜉 ∈ 𝑘∗/𝑘∗,𝑛. Indeed, by our recipe above and Equation (12), we have
that 𝜉 = 𝑔𝑓 ,𝑍𝑄

((𝑃0) − (0)))𝑛. Now with the functions we have defined in Section 4.3,
𝑓𝑛,𝑍𝑄

∘ 𝑓 = 𝑔𝑛
𝑓 ,𝑍𝑄

(if appropriately normalized; indeed they have the same divisors). So
𝑓𝑛,𝑍𝑄

((𝑃) − (0)) = 𝑔𝑛
𝑓 ,𝑍𝑄

((𝑃0) − (0)), and we obtain:

(13) 𝑒𝑇,𝑓(𝑃, 𝑄) = 𝑓𝑛,𝑍𝑄
((𝑃) − (0)) ∈ 𝑘∗/𝑘∗,𝑛.

(It is also possible to recover Equation (13) from Equation (8) but this uses Weil’s or Lang’s
reciprocity theorem, it is not as direct as using Equation (7).) In particular, we recover that
𝑒𝑇,𝑓(𝑃, 𝑄) = 𝑒𝑇,𝑛(𝑃, 𝑄), this is a particular case of Proposition 4.8.

Note that if (for instance) 𝐴 = 𝐸 is an elliptic curve, and we take 𝑍𝑄 = (𝑄) − (0), then
if we let 𝑓𝑛,𝑄 = 𝑓𝑛,𝑍𝑄

and we normalize it appropriately at infinity, then 𝑓𝑛,𝑍𝑄
((𝑃) − (0)) =

𝑓𝑛,𝑄(𝑃). Also, if 𝐴 = Jac(𝐶) is a Jacobian, we can work directly over 𝐶 as in Remark 4.13.
More generally on an abelian variety 𝐴, if 𝑍𝑃 is any cycle equivalent to (𝑃) − (0), then

(14) 𝑒𝑇,𝑛(𝑃, 𝑄) = 𝑓𝑛,𝑍𝑄
(𝑍𝑃),

indeed by Lang’s reciprocity this differ from Equation (13) by an 𝑛-th power.

Lemma 4.15. Let 𝑓 ∶ 𝐴 → 𝐵 be an 𝑛-isogeny, 𝑃 ∈ 𝐵(𝑘)/𝑓 (𝐴(𝑘)), 𝑄 ∈ Ker ̃𝑓, 𝑃0 ∈ 𝑓 −1(𝑃).
With the notations above, a representative of 𝑒𝑇,𝑓(𝑃, 𝑄) is given by 𝑓𝑛,𝑍𝑄

((𝑃) − (0)), and
a map 𝑓 −1(𝑃) → 𝑒𝑇,𝑓(𝑃, 𝑄) above the map 𝜙𝑄 = 𝑒𝑓(⋅, 𝑄) ∶ Ker 𝑓 → 𝜇𝑛 is given by
Φ ∶ 𝑃0 ↦ 𝑔𝑓 ,𝑍𝑄

((𝑃0) − (0)), if 𝑓𝑛,𝑍𝑄
and 𝑔𝑓 ,𝑍𝑄

are appropriately normalised so that
𝑓𝑛,𝑍𝑄

∘ 𝑓 = 𝑔𝑛
𝑓 ,𝑍𝑄

.

Proof. The representative comes from the discussion above: 𝑓𝑛,𝑍𝑄
∘ 𝑓 has the same divisor as

𝑔𝑛
𝑓 ,𝑍𝑄

, so they are equal up to renormalisation. So if 𝑃0 ∈ 𝑓 −1(𝑃), we have 𝑔𝑓 ,𝑍𝑄
((𝑃0) −

(0))𝑛 = 𝑓𝑛,𝑍𝑄
((𝑃) − (0)) so the map lends in the torsor 𝑥𝑛 = 𝑒𝑇,𝑓(𝑃, 𝑄). Now translating

𝑃0 by 𝑇 ∈ Ker 𝑓, changes Φ(𝑃0) by Φ(𝑃0 +𝑇) = 𝑒𝑊,𝑓(𝑇, 𝑄)Φ(𝑃0) by Equation (7). Hence
Φ commutes with the action of Ker 𝑓 on the domain and 𝜇𝑛 on the codomain. �

4.5. TheTate pairing over 𝔽𝑞. Let 𝐺/𝔽𝑞 be a finite abelian Galois module. Then a standard
calculation [Ser68], using the inflation-restriction spectral sequence, Tate’s cohomology
groups and the Herbrand quotient shows:

Proposition 4.16. 𝐻0(𝔽𝑞, 𝐺) = 𝐺(𝔽𝑞) = 𝐺[𝜋𝑞 − 1], 𝐻1(𝔽𝑞, 𝐺) = 𝐺/(𝜋𝑞 − 1),
#𝐻0(𝔽𝑞, 𝐺) = #𝐻1(𝔽𝑞, 𝐺), and 𝐻𝑖(𝔽𝑞, 𝐺) = 0 for 𝑖 > 1.
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In fact, one can also see that 𝔽𝑞 is of cohomological dimension 1 because by the Chevalley-
Warning theorem it is a 𝐶1-field and a 𝐶1-field is of cohomological dimension 1 (see e.g.,
[Stacks, Tag 0A2M]).

Remark 4.17 (Representation of 𝜇𝑛-torsors). As a corollary, we get a third interpretation
(compared to Section 4.4) of 𝐻1(𝔽𝑞, 𝜇𝑛): 𝐻1(𝔽𝑞, 𝜇𝑛) ≃ 𝜇𝑛/(𝜋𝑞 − 1). Let 𝐺 = Gal(𝔽𝑞),
it is procyclic generated by 𝜋𝑞. Given a cocyle Ξ ∶ 𝐺 → 𝜇𝑛 in 𝐻1(𝐺, 𝜇𝑛) representing a
𝜇𝑛-torsor 𝑋, the element of 𝜇𝑛/(𝜋𝑞 − 1) associated to 𝑋 is Ξ(𝜋𝑞). If Ξ′ is another cocycle
representing 𝑋, it will differ from Ξ by a coboundary 𝜋𝑛 ↦ 𝜋𝑛(𝜁0)/𝜁0, then Ξ′(𝜋𝑞) =
Ξ(𝜋𝑞)𝜁𝑞−1

0 , hence lies in the same equivalence class of 𝜇𝑛 modulo 𝜋𝑞 − 1. Conversely, if
[𝜁] ∈ 𝜇𝑛/(𝜋𝑞 − 1), and we take any representative 𝜁, then a cocycle corresponding to Ξ
(up to coboundary) is given by Ξ(𝜋𝑞) = 𝜁, i.e., Ξ(𝜋𝑚

𝑞 ) = 𝜁𝜋𝑞(𝜁) … 𝜋𝑚−1
𝑞 (𝜁).

In particular, recall that if 𝜉 ∈ 𝔽∗
𝑞/𝔽∗,𝑛

𝑞 , the 𝜇𝑛-torsor associated to 𝑥𝑛 = 𝜉 has for
cocycle 𝜎 ↦ 𝜎(𝜉0)/𝜉0 for a 𝜉0 such that 𝜉 = 𝜉𝑛

0 . So taking 𝜎 = 𝜋𝑞, we obtain the element
𝜉𝑞−1

0 = 𝜉 (𝑞−1)/𝑛. Here, when 𝑛 ∤ 𝑞 − 1, 𝜉 (𝑞−1)/𝑛 is an abuse of notation for the element
𝜉𝑞−1

0 , it lies in 𝜇𝑛/(𝜋𝑞 − 1) and not in 𝜇𝑛.
In summary (see also Example 3.32), given a𝜇𝑛-torsor𝑋, the first isomorphism𝐻1(𝔽𝑞, 𝜇𝑛) ≃

𝔽∗
𝑞/𝔽∗,𝑛

𝑞 gives explicit equations (i.e., an isomorphism) for 𝑋: 𝑥𝑛 = 𝜉, if 𝜉 represents 𝑋. The
second and third isomorphism, 𝐻1(𝔽𝑞, 𝜇𝑛) ≃ 𝐻1(Gal(𝔽𝑞/𝔽𝑞), 𝜇𝑛) ≃ 𝜇𝑛/(𝜋𝑞 − 1) gives
the Galois structure of 𝑋. Notably, if 𝑋 is represented by 𝜁𝑋, then as a Galois module, 𝑋 is

isomorphic to 𝜇𝑛 with the twisted Galois action ⋆ given by 𝜋𝑚
𝑞 ⋆ 𝜁 = (𝜋𝑚

𝑞 ⋅ 𝜁) × 𝜁
𝑞𝑚−1
𝑞−1

𝑋 .
Let 𝜇𝑚 be the image of 𝜋𝑞 − 1 on 𝜇𝑛. Then there are 𝑚 other distinct representatives

for 𝑋: 𝜁𝑋𝜁 ′ for 𝜁 ′ ∈ 𝜇𝑚. In the twisted Galois action above, 𝜇𝑛 decomposes into a disjoint
union 𝜇𝑛 = ⨆ 𝜇𝑛,𝜁 ′ where 𝜇𝑛,𝜁 ′ = {𝜁 ∈ 𝜇𝑛 ∣ 𝜁𝑞−1 = 𝜁 ′} is of order 𝑑 = 𝑛/𝑚, and for
𝜁 ∈ 𝜇𝑛,𝜁 ′ the twisted action of 𝜋𝑞 on this 𝜁 is given by 𝜋𝑞 ⋆ 𝜁 = (𝜁𝑋𝜁 ′)𝜁.

Example 4.18 (Change of order). Let 𝑛 = 𝑚𝑑 and 𝑖 ∶ 𝜇𝑚 → 𝜇𝑛 denote the inclusion. We
can describe the pushforward map 𝑖∗ ∶ 𝐻1(𝔽𝑞, 𝜇𝑚) → 𝐻1(𝔽𝑞, 𝜇𝑛) on torsor in terms of
our different representatives above as follows. If 𝑋 is a 𝜇𝑚-torsor represented by a cocycle
Ξ with value in 𝜇𝑚, then 𝑖∗𝑋 is the 𝜇𝑛-torsor represented by 𝑖 ∘ Ξ. Taking the image of 𝜋𝑞
by Ξ, we get that 𝑖∗ ∶ 𝜇𝑚/(𝜋𝑞 − 1) → 𝜇𝑛/(𝜋𝑞 − 1) is the natural map [𝜁] ↦ [𝜁]. On the
other hand, if 𝑋 is represented by 𝑥𝑚 = 𝜉, then the cocycle associated comes from any 𝜉0
such that 𝜉𝑚

0 = 𝜉. The same 𝜉0 gives the cocycle associated to 𝑖∗𝑋, hence it is represented by
𝜉𝑛

0 = 𝜉𝑑, i.e., the map 𝑖∗ ∶ 𝔽∗
𝑞/𝔽∗,𝑚

𝑞 → 𝔽∗
𝑞/𝔽∗,𝑛

𝑞 is given by 𝜉 ↦ 𝜉𝑑.
We also have the projection map 𝑝 ∶ 𝜇𝑛 → 𝜇𝑑, 𝜁 ↦ 𝜁𝑚. If 𝑋 is represented by the cocycle

Ξ, 𝑝∗𝑋 is represented by 𝑝 ∘ Ξ, and 𝑝 ∘ Ξ(𝜋𝑞) = Ξ(𝜋𝑞)𝑚, hence 𝑝∗ ∶ 𝜇𝑛/(𝜋𝑞 − 1) →
𝜇𝑚/(𝜋𝑞 − 1) is also the natural map [𝜁] ↦ [𝜁𝑚] induced by 𝑝. On the other hand, if 𝑋
is represented by 𝑥𝑛 = 𝜉, then 𝑥 ↦ 𝑥𝑚 is a morphism between 𝑥𝑛 = 𝜉 and 𝑥𝑑 = 𝜉 above
𝑝, hence 𝑝∗𝑋 is represented by 𝑥𝑑 = 𝜉 by Lemma 3.19. So 𝔽∗

𝑞/𝔽∗,𝑛
𝑞 → 𝔽∗

𝑞/𝔽∗,𝑑
𝑞 is given by

𝜉 ↦ 𝜉.
The exact sequence 1 → 𝜇𝑚 → 𝜇𝑛 → 𝜇𝑑 → 1 induces a long exact sequence of

cohomology:

1 → 𝜇𝑚(𝔽𝑞) → 𝜇𝑛(𝔽𝑞) → 𝜇𝑑(𝔽𝑞) → 𝐻1(𝔽𝑞, 𝜇𝑚) → 𝐻1(𝔽𝑞, 𝜇𝑛) → 𝐻1(𝔽𝑞, 𝜇𝑑) → 0,

using that 𝔽𝑞 is of cohomological dimension 1. If 𝜇𝑛(𝔽𝑞) = 𝜇𝑑(𝔽𝑞) (i.e., the subgroup
of rational roots of unity is 𝜇𝑑), then by Proposition 4.16, #𝐻1(𝔽𝑞, 𝜇𝑛) = 𝑑, and since

https://stacks.math.columbia.edu/tag/0A2M


20 DAMIEN ROBERT

𝐻1(𝔽𝑞, 𝜇𝑛) ≃ 𝜇𝑛/(𝜋𝑞 −1), it follows that (𝜋𝑞 −1)𝜇𝑛 = 𝜇𝑚. In this case, the maps induced
by exponentiation 𝐻1(𝔽𝑞, 𝜇𝑛) = 𝜇𝑛/(𝜋𝑞 − 1) → 𝐻1(𝔽𝑞, 𝜇𝑑) = 𝜇𝑑 is an isomorphism.
And 𝜇𝑚 is the largest subgroup 𝜇′ of 𝜇𝑛 such that the image of 𝐻1(𝔽𝑞, 𝜇′) → 𝐻1(𝔽𝑞, 𝜇𝑛)
is trivial.

Example 4.19 (Iterating 𝑛-th roots). Assume that 𝜉 ∈ 𝔽∗,𝑛
𝑞 , i.e., the torsor 𝑥𝑛 = 𝜉 is trivial.

Among all the rational roots of 𝑥𝑛 = 𝜉, is there one such that the associated torsor 𝑦𝑛 = 𝑥 is
still trivial? If 𝑥 is a rational root, the other ones are given by 𝑥𝜁, where 𝜁 ∈ 𝜇𝑛(𝔽𝑞). The
element 𝑥 induces the element 𝑥(𝑞−1)/𝑛 in 𝐻1(𝔽𝑞, 𝜇𝑛) = 𝜇𝑛/(𝜋𝑞 −1). So if 𝜁 ∈ 𝜇𝑛(𝔽𝑞) ↦
𝜁 (𝑞−1)/𝑛 ∈ 𝜇𝑛/(𝜋𝑞 − 1) is surjective, we can always correct our 𝑥 to get a trivial torsor.
Furthermore, since both set have the same cardinal by Proposition 4.16, the map above is
then an isomorphism: there is a unique 𝑥 with 𝑥𝑛 = 𝜉 such that 𝑦𝑛 = 𝑥 is a trivial torsor.
We might call this 𝑥 the canonical 𝑛-th root of 𝜉, and we can then iterate it.

For instance, if 𝜇𝑛(𝔽𝑞) = 𝜇𝑑, then (𝜋𝑞 − 1)(𝜇𝑛) = 𝜇𝑚 with 𝑛 = 𝑑𝑚. If furthermore
𝑚 is prime to 𝑑, then 𝑚 is prime to 𝑞 − 1 because 𝑑 = 𝑛 ∧ (𝑞 − 1). Hence 𝑥 ↦ 𝑥𝑚 is an
isomorphism on 𝔽∗

𝑞: every element has a unique rational 𝑚-th root. Via the isomorphism
𝜇𝑛/(𝜋𝑞 −1) → 𝜇𝑑, 𝜁 ↦ 𝜁𝑚, the map above has the same image as themap 𝜇𝑛(𝔽𝑞) = 𝜇𝑑 →
𝜇𝑑, 𝜁 ↦ 𝜁 (𝑞−1)/𝑑. Hence if (and only if) (𝑞 − 1)/𝑑 is prime to 𝑑 (if 𝑑 is prime, an equivalent
condition is that 𝔽∗

𝑞 has no points of primitive order 𝑑2), each trivial torsor 𝑥𝑛 = 𝜉 has a
unique element 𝑥 such that 𝑦𝑛 = 𝑥 is trivial. A well known example concern square roots on
𝔽∗

𝑞 when 𝑞 = 3 mod 4.

Definition 4.20 (The reduced Tate pairing). Given a principally polarised abelian variety
𝐴/𝔽𝑞, 𝑃 ∈ 𝐴(𝔽𝑞) and 𝑄 ∈ 𝐴[𝑛](𝔽𝑞), we call the reduced Tate pairing the Tate pairing
𝑒𝑇,𝑛(𝑃, 𝑄) ∈ 𝐻1(𝔽𝑞, 𝜇𝑛) seen in 𝜇𝑛/(𝜋𝑞 − 1) via Proposition 4.16. By Equations (11)
to (14), the reduced Tate pairing is given by

(15) 𝑒𝑇,𝑛(𝑃, 𝑄) = 𝑒𝑊,𝑛(𝜋𝑞𝑃0 − 𝑃0, 𝑄) = 𝑔ℓ,𝑍𝑄
((𝑃0) − (0))𝑞−1

= 𝑓𝑛,𝑍𝑄
((𝑃) − (0))(𝑞−1)/𝑛 = 𝑓𝑛,𝑍𝑄

(𝑍𝑃)(𝑞−1)/𝑛 ∈ 𝜇𝑛/(𝜋𝑞 − 1)

where 𝑛𝑃0 = 𝑃.
When 𝑛 ∣ 𝑞−1, we recover the usual process of the final exponentiation in the Tate pairing,

which gives the reduced Tate pairing. In general, we let 𝑑 = 𝑛 ∧ (𝑞 − 1), then 𝜇𝑛(𝔽𝑞) ≃ 𝜇𝑑
and 𝜇𝑛/(𝜋𝑞 −1) → 𝜇𝑑, 𝜁 ↦ 𝜁𝑛/𝑑 is an isomorphism, and via this isomorphism the reduced
Tate pairing is given by 𝑒𝑇,𝑛(𝑃, 𝑄) = 𝑓𝑛,𝑍𝑄

(𝑍𝑃)(𝑞−1)/𝑑 ∈ 𝜇𝑑.

Remark 4.21 (The reduced Tate pairing as a Weil-Cartier pairing). We have the Weil-Cartier
pairing 𝑒𝑊,𝜋−1 ∶ 𝐴(𝔽𝑞) × Ker(�̂� − 1) → 𝔾𝑚. We have Ker(�̂� − 1) = Ker(𝜋 − 𝑞). So
when 𝜇𝑛 ⊂ 𝔽𝑞, Ker(�̂� − 1)[𝑛] = Ker(𝜋 − 1)[𝑛] = 𝐴[𝑛](𝔽𝑞). Using Equation (15) and
the compatibility of the Weil pairing with isogenies from Equation (3), we get that for 𝑃 ∈
𝐴(𝔽𝑞), 𝑄 ∈ 𝐴[𝑛](𝔽𝑞), the reduced Tate pairing is given by: 𝑒𝑇,𝑛(𝑃, 𝑄) = 𝑒𝑊,𝑛(𝜋𝑞𝑃0 −
𝑃0, 𝑄) = 𝑒𝑊,𝜋−1(𝑛𝑃0, 𝑄) = 𝑒𝑊,𝜋−1(𝑃, 𝑄).

Hence the reduced Tate pairing can be seen as the restriction of the Weil-Cartier pairing
𝑒𝑊,𝜋−1 to 𝐴(𝔽𝑞) × 𝐴[𝑛](𝔽𝑞). Since the Weil-Cartier pairing is non degenerate and the
orthogonal of 𝐴[𝑛](𝔽𝑞) in 𝐴(𝔽𝑞) is given by 𝑛𝐴(𝔽𝑞), we obtain that the reduced Tate
pairing is non degenerate on 𝐴(𝔽𝑞)/𝑛𝐴(𝔽𝑞) × 𝐴[𝑛](𝔽𝑞) → 𝜇𝑛. This is essentially the
argument of [Gar02]. We will give a refined proof of non degeneracy of the Tate pairing in
Theorem 4.25.
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Remark 4.22 (Change of order in the Tate pairing). If 𝑑 = 𝑛 ∧ (𝑞 − 1), 𝑛 = 𝑑𝑚, 𝑃 ∈ 𝐴(𝑘),
𝑄 ∈ 𝐴[𝑛], and 𝑒𝑇,𝑛(𝑃, 𝑄) is interpreted as being in 𝜇𝑑 by the isomorphism 𝐻1(𝔽𝑞, 𝜇𝑛) ≃
𝜇𝑑 from Example 4.18, then by the refined version of bilinearity of Remark 4.7, 𝑒𝑇,𝑛(𝑃, 𝑄) =
𝑒𝑇,𝑑(𝑃, 𝑚𝑄) ∈ 𝜇𝑑.

Remark 4.23 (Base change over 𝔽𝑞). We can refine Remark 4.10 over a finite field. The Tate
pairing 𝑒𝑇,𝑓(𝑃, 𝑄) seen as a torsor 𝑥𝑛 = 𝜉 over 𝔽𝑞 is still represented by the same torsor
𝑥𝑛 = 𝜉 when seen over 𝔽𝑞𝑑 where 𝜉 ∈ 𝔽∗

𝑞 ⊂ 𝔽∗
𝑞𝑑. However the isomorphism class of this

torsor can change: the pullback map 𝐻1(𝔽𝑞, 𝜇𝑛) → 𝐻1(𝔽𝑞𝑑, 𝜇𝑛) corresponds via the iso-
morphisms 𝐻1(𝔽𝑞, 𝜇𝑛) = 𝜇𝑛/(𝜋𝑞−1), 𝐻1(𝔽𝑞𝑑, 𝜇𝑛) = 𝜇𝑛/(𝜋𝑑

𝑞 −1) to the exponentiation

𝜇𝑛/(𝜋𝑞 − 1) → 𝜇𝑛/(𝜋𝑑
𝑞 − 1), 𝜁 ↦ 𝜁 (𝑞𝑑−1)/(𝑞−1). Indeed, remember by Remark 4.17 that

the isomorphism 𝐻1(𝔽𝑞, 𝜇𝑛) ≃ 𝜇𝑛/(𝜋𝑞 − 1) correspond to taking the cocycle representing
the torsor and to evaluate it at 𝜋𝑞. If 𝜉𝑛

0 = 𝜉, then the element representing 𝑒𝑇,𝑓(𝑃, 𝑄) over
𝔽𝑞 in 𝜇𝑛/(𝜋𝑞 − 1) is then 𝜋𝑞(𝜉0)/𝜉0, while the element representing 𝑒𝑇,𝑓(𝑃, 𝑄) over 𝔽𝑞𝑑

in 𝜇𝑛/(𝜋𝑞𝑑 − 1) is 𝜋𝑞𝑑(𝜉0)/𝜉0.
Since (𝑞𝑑 − 1)/(𝑞 − 1) = 1 + 𝑞 + 𝑞2 + ⋯ + 𝑞𝑑−1, and 𝜁𝑞 ≡ 𝜁 in 𝜇𝑛/(𝜋𝑞 − 1), then,

if (𝜋𝑑
𝑞 − 1)(𝜇𝑛) = (𝜋𝑞 − 1)(𝜇𝑛), i.e., if 𝜇𝑛(𝔽𝑞) = 𝜇𝑛(𝔽𝑞𝑑) (this is of course the case if

𝜋𝑞 = 1 on 𝜇𝑛, i.e., 𝑛 ∣ 𝑞 − 1), this exponentiation map corresponds to 𝜁 ↦ 𝜁𝑑.

Remark 4.24 (Trace map over finite fields). We can refine the form Weil’s scalar restriction
from Remark 4.11 takes from torsors over 𝔽𝑞𝑑 to torsors over 𝔽𝑞 (note that 𝔽𝑞𝑑/𝔽𝑞 is finite
étale). Recall that if 𝐺/𝔽𝑞 is a finite étale group, and 𝑋′/𝔽𝑞𝑑 is a 𝐺′-torsor over 𝔽𝑞𝑑 (where
𝐺′ is the base change of 𝐺 to 𝔽𝑞𝑑), then we can build a 𝐺-torsor over 𝔽𝑞 by first taking the
Weil restriction of 𝑋′ to get a 𝑅𝔽𝑞𝑑/𝔽𝑞

𝐺′ torsor, then mapping it through the natural counit
morphism 𝑅𝔽𝑞𝑑/𝔽𝑞

𝐺′ → 𝐺. Via Proposition 4.16, the corresponding map on cohomology is

the natural projection 𝐻1(𝔽𝑞𝑑, 𝐺′) ≃ 𝐺/(𝜋𝑑
𝑞 − 1) → 𝐻1(𝔽𝑞, 𝐺) ≃ 𝐺/(𝜋𝑞 − 1).

In the special case where 𝐺 = 𝜇𝑛, so we can also represent a 𝜇𝑛-torsors by 𝜉 ∈ 𝑘∗/𝑘∗,𝑛,
then the morphism corresponds to 𝜉 ∈ 𝔽∗

𝑞𝑑/𝔽∗,𝑛
𝑞𝑑 ↦ 𝜉𝜋𝑞(𝜉) ⋯ 𝜋𝑑−1

𝑞 (𝜉) ∈ 𝔽∗
𝑞/𝔽∗,𝑛

𝑞 , i.e.,
in this case the trace map Tr is the norm of 𝔽𝑞𝑑/𝔽𝑞.

As mentioned in Remark 4.11, by bilinearity of the Weil pairing, if 𝑃′ ∈ 𝐵(𝔽𝑞𝑑) and 𝑄
is rational, and we let 𝑃 = Tr𝑃′ = 𝑃′ + 𝜋𝑞(𝑃′) + ⋯ 𝜋𝑑−1

𝑞 (𝑃′), then looking at the non
reduced Tate pairings in 𝔽∗

𝑞𝑑 and 𝔽∗
𝑞 respectively,Tr 𝑒𝑇,𝑓(𝑃′, 𝑄) ≔ 𝑒𝑇,𝑓(𝑃′, 𝑄)1+𝑞+⋯+𝑞𝑑−1 =

𝑒𝑇,𝑓(𝑃, 𝑄) ∈ 𝔽∗
𝑞/𝔽∗,𝑛

𝑞 . Taking this equality to the power (𝑞 − 1)/𝑛, and remarking that
(𝑞𝑑 − 1)/𝑛 = (1 + 𝑞 + ⋯ + 𝑞𝑑−1)(𝑞 − 1)/𝑛, then the reduced Tate pairings satisfies
Tr 𝑒𝑇,𝑓(𝑃′, 𝑄) = 𝑒𝑇,𝑓(𝑃, 𝑄) ∈ 𝜇𝑛/(𝜋𝑞 − 1) where as explained above, for the reduced Tate
pairing the trace is simply the projection 𝜇𝑛/(𝜋𝑑

𝑞 − 1) → 𝜇𝑛/(𝜋𝑞 − 1).
We have similar formulas if 𝑃 is rational but 𝑄′ is defined above 𝔽𝑞𝑑 with 𝑄 = Tr𝑄′:

for the non reduced Tate pairings, Tr 𝑒𝑇,𝑓(𝑃, 𝑄′) ≔ 𝑒𝑇,𝑓(𝑃, 𝑄′)1+𝑞+⋯+𝑞𝑑−1 = 𝑒𝑇,𝑓(𝑃, 𝑄) ∈
𝔽∗

𝑞/𝔽∗,𝑛
𝑞 , and for the reduced Tate pairing: Tr 𝑒𝑇,𝑓(𝑃, 𝑄′) = 𝑒𝑇,𝑓(𝑃, 𝑄) ∈ 𝜇𝑛/(𝜋𝑞 − 1).

We now prove non degeneracy of the Tate pairing; this is a special feature of finite fields.

Theorem 4.25. Let 𝑓 ∶ 𝐴 → 𝐵, 𝑃 ∈ 𝐵(𝔽𝑞), 𝑄 ∈ Ker ̂𝑓 of exact order 𝑑 ∣ 𝑛. Then 𝑒𝑇,𝑓(⋅, 𝑄) ∶
𝐵(𝔽𝑞)/𝑓 (𝐴(𝔽𝑞)) → 𝐻1(𝔽𝑞, 𝜇𝑑) is surjective.
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Hence if 𝑄 ∈ Ker ̂𝑓 is of order dividing 𝑛, 𝐻1(𝔽𝑞, 𝜇𝑛) is not trivial and 𝑒𝑇,𝑓(𝑃, 𝑄) ∈
𝐻1(𝔽𝑞, 𝜇𝑛) is trivial for all 𝑃 ∈ 𝐵(𝔽𝑞)/𝐴(𝔽𝑞), then 𝑄 is of order 𝑑 a strict divisor of 𝑛.

Proof. First by Lang’s theorem on triviality of torsors of a smooth connected algebraic group
𝐺/𝔽𝑞 [Lan56], 𝐻1(𝔽𝑞, 𝐴) = 0: all 𝐴-torsors have a rational points hence are trivial. So
𝐵(𝔽𝑞) → 𝐻1(𝔽𝑞,Ker 𝑓 ) is surjective: all Ker 𝑓-torsors comes from the preimage by 𝑓 of a
point 𝑃 ∈ 𝐵(𝔽𝑞). Secondly, given a point 𝑄 ∈ Ker ̂𝑓 (𝔽𝑞) of exact order 𝑑 ∣ 𝑛, since the
application 𝜙𝑄 = 𝑒𝑊,𝑛(⋅, 𝑄) ∶ Ker 𝑓 → 𝜇𝑑 is surjective by non degeneracy of the Weil
pairing, and 𝔽𝑞 is of cohomological dimension 1 (in particular all gerbes are trivial), then
𝜙𝑄,∗ ∶ 𝐻1(𝔽𝑞,Ker 𝑓 ) → 𝐻1(𝔽𝑞, 𝜇𝑑) is surjective. Combining these two surjections, we get
that 𝑒𝑇,𝑓(⋅, 𝑄) ∶ 𝐵(𝔽𝑞) → 𝐻1(𝔽𝑞, 𝜇𝑑) is surjective. �

Remark 4.26 (Non degeneracy). By the proof above, 𝐻1(𝔽𝑞,Ker 𝑓 ) ≃ 𝐵(𝔽𝑞)/𝐴(𝔽𝑞).
Furthermore, 𝐻1(𝔽𝑞,Ker 𝑓 ) has the same cardinal as 𝐻0(𝔽𝑞,Ker 𝑓 ) = Ker 𝑓 (𝔽𝑞) by Propo-
sition 4.16. Now suppose that Ker 𝑓 is of exact exponent 𝑛 and that 𝜇𝑛 ⊂ 𝔽𝑞 so that
𝐻1(𝔽𝑞, 𝜇𝑛) = 𝜇𝑛.Then the Tate pairing𝐵(𝔽𝑞)/𝐴(𝔽𝑞)×Ker 𝑓 (𝔽𝑞) → 𝜇𝑛 is non-degenerate
on the right by Theorem 4.25, and since both groups on the left have same cardinal and are
of exponent 𝑛, they are dual to each other. Hence the Tate pairing is also non-degenerate on
the left.

More generally, if 𝜇𝑑 is the subgroup of 𝜇𝑛 generated by 𝜇𝑛(𝔽𝑞), then 𝐻1(𝔽𝑞, 𝜇𝑛) ≃ 𝜇𝑑
by Example 4.18. And if 𝑒𝑇,𝑛(𝑃, 𝑄) is trivial for all 𝑃 ∈ 𝐵(𝔽𝑞)/𝐴(𝔽𝑞), then 𝑄 is of order
dividing 𝑚 = 𝑛/𝑑 by Theorem 4.25. Of course this can be recovered from the refined
version of bilinearity, as explained in Remark 4.22, 𝑒𝑇,𝑛(𝑃, 𝑄) seen in 𝜇𝑑 is naturally equal to
𝑒𝑇,𝑑(𝑃, 𝑚𝑄), and since 𝑑 ∣ 𝑞 − 1, we can apply the usual non degeneracy of the Tate pairing
over a finite field.

Let us give a direct proof that the Tate pairing over 𝔽𝑞 is non-degenerate on the left
when 𝜇𝑛 ⊂ 𝔽𝑞. This is instructive to see why the argument does not work over a more
general field 𝑘. Let 𝐾′ ⊂ Ker 𝑓 be the orthogonal of Ker ̂𝑓 (𝔽𝑞) under the Weil pairing
𝑒𝑊,𝑓. We have an exact sequence 0 → 𝐾′ → Ker 𝑓 → 𝐻 → 0 where 𝐻 = Ker 𝑓 /𝐾′ ≃
(Ker ̂𝑓 (𝔽𝑞))∨ by non degeneracy of the Weil pairing. The isogeny 𝑓 ∶ 𝐴 → 𝐵 decomposes
as 𝑓 = 𝑓2 ∘ 𝑓1 ∶ 𝐴 → 𝐶 → 𝐵 where Ker 𝑓1 = 𝐾′ and Ker 𝑓2 ≃ Ker 𝑓 /𝐾′ ≃ 𝐻. If 𝑃 ∈ 𝐵(𝔽𝑞),
𝑓1,∗𝑓 −1(𝑃) = 𝑓 −1

2 (𝑃) by Lemma 3.22. Taking a basis (𝑄1, … , 𝑄𝑟) of Ker ̂𝑓 (𝔽𝑞) (we assume
that Ker ̂𝑓 (𝔽𝑞) ≃ (ℤ/𝑛ℤ)𝑟 for simplicity, the general case can be treated similarly, see
Remark 5.5 below), the map Φ ∶ Ker 𝑓 → 𝜇𝑟

𝑛, 𝑃 ↦ 𝑒𝑊,𝑟(𝑃, 𝑄𝑖) induces an isomorphism
between 𝐻 = ker 𝑓 /𝐾′ and 𝜇𝑟

𝑛. Since Φ factorizes though 𝑓1, and by definition of the Tate
pairing, Φ∗𝑓 −1(𝑃) = Φ∗𝑓 −1

2 (𝑃) is the 𝜇𝑟
𝑛-torsor represented by the (𝑒𝑇,𝑓(𝑃, 𝑄𝑖) (this is

the same argument as in Proposition 5.1 below). Since Φ is an isomorphism from 𝐻 to
𝜇𝑟

𝑛, we see that Φ∗ is an isomorphism above Φ of 𝑓 −1
2 (𝑃) with the 𝜇𝑟

𝑛-torsor given by the
(𝑒𝑇,𝑓(𝑃, 𝑄𝑖)). In conclusion: 𝑒𝑇,𝑓(𝑃, 𝑄) is trivial for all 𝑄 ∈ Ker ̂𝑓 (𝔽𝑞) is equivalent to
𝑓 −1
2 (𝑃) is trivial. It remains to show that in this case, 𝑓 −1(𝑃) is trivial too. We thus need to
prove that 𝑓1,∗ ∶ 𝐻1(𝔽𝑞,Ker 𝑓 ) → 𝐻1(𝔽𝑞, 𝐻) is injective. Up to now, the whole argument
did not need that 𝜇𝑛 ⊂ 𝔽𝑞 or even that 𝑘 is a finite field, this is where we will need these
hypothesises.

By the long exact sequence in cohomology, to prove that 𝑓1,∗ is injective is the same as
requiring that 𝐻(𝔽𝑞) → 𝐻1(𝔽𝑞, 𝐾′) = 𝐾′(𝔽𝑞)/(𝜋𝑞 − 1) is surjective. If ℎ ∈ 𝐻(𝔽𝑞),
and 𝑔 ∈ 𝑓 −1

2 (ℎ), the image of ℎ in 𝐾′(𝔽𝑞)/(𝜋𝑞 − 1) is represented by 𝜋𝑞(𝑔) − 𝑔 ∈ 𝐾′.
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Since 𝜇𝑛 ⊂ 𝔽𝑞, 𝜇𝑛 = (ℤ/𝑛ℤ)∨ ≃ (ℤ/𝑛ℤ), hence 𝐻 ≃ Ker ̂𝑓 (𝔽𝑞) as a Galois module,
and 𝐻(𝔽𝑞) = 𝐻(𝔽𝑞). In particular, 𝑓 −1

2 𝐻(𝔽𝑞) = Ker 𝑓 (𝔽𝑞), so we just need to show
that the image of 𝜋𝑞 − 1 ∶ Ker 𝑓 → 𝐾′ is surjective. But #𝐾′#𝐻 = #Ker 𝑓 = #(𝜋𝑞 −
1)(Ker 𝑓 )#Ker 𝑓 (𝔽𝑞). Since #𝐻 = #Ker ̂𝑓 (𝔽𝑞) = #Ker 𝑓 (𝔽𝑞) (because Ker 𝑓 and Ker ̂𝑓 are
Galois dual and 𝑞 = 1 mod 𝑛), we get that #𝐾′ = #(𝜋𝑞 − 1)(Ker 𝑓 ) as we wanted.

Remark 4.27 (Restriction to subgroups). All proofs I know [FMR99; Heß04; Sch05; Bru11]
of non degeneracy of the Tate pairing suppose that 𝜇𝑛 ⊂ 𝔽𝑞. Indeed, for non degeneracy, by
Remark 4.26 it is harmless to only deal with this case.

Furthermore, when 𝜇𝑛 ⊄ 𝔽𝑞, 𝑛 is prime and 𝑑 is the embedding degree, they have a
refined version of the 𝑛-Tate pairing restricted to subgroups of 𝐴[𝑛](𝔽𝑞𝑑). Indeed, they
define the subgroups 𝔾1, 𝔾2 to be the subgroups of 𝐴(𝔽𝑞𝑑) where 𝜋𝑞 has eigenvalue 1
and 𝑞 respectively, and show that the 𝑛-Tate pairing 𝐴(𝔽𝑞𝑑)/𝑛𝐴(𝔽𝑞𝑑) × 𝐴[𝑛](𝔽𝑞𝑑) → 𝜇𝑛
over 𝔽𝑞𝑑 is still non-degenerate (under certain conditions) when restricted to 𝔾1 × 𝔾2 or
𝔾2 × 𝔾1 (provided that they are not empty).

We can recover this result as follows. Let 𝐴 be principally polarised, assume that 𝑛 is
prime and 𝐴[𝑛](𝔽𝑞) is non empty. So 𝔾1 is non empty, and 𝔾2 its Galois dual (thanks
to the Weil pairing) is non empty too over 𝔽𝑞𝑑. Let 𝜙 ∶ 𝐵 → 𝐴 be the dual isogeny of the
quotient 𝐴 → �̂� ≔ 𝐴/𝔾2 (here we identify 𝐴 with 𝐴 via the principal polarisation). Then
we get a non-degenerate pairing 𝐴(𝔽𝑞𝑑)/𝜙(𝐵)(𝔽𝑞𝑑) × 𝔾2(𝔽𝑞𝑑) → 𝜇𝑛 by Theorem 4.25.
But Ker𝜙 is the Galois dual of 𝔾2 hence is isomorphic to 𝔾1, so 𝐴(𝔽𝑞𝑑)/𝜙(𝐵)(𝔽𝑞𝑑) ≃
𝐻1(𝔽𝑞𝑑, 𝔾1) ≃ 𝐻1(𝔽𝑞, 𝔾1) ≃ 𝐴(𝔽𝑞)/𝜙(𝐵)(𝔽𝑞), hence we have a non-degenerate pair-
ing 𝐴(𝔽𝑞)/𝜙(𝐵)(𝔽𝑞) × 𝔾2(𝔽𝑞𝑑) → 𝜇𝑛. Since 𝑛 is prime, then if 𝐴(𝔽𝑞) does not have
points of 𝑛2-torsion, the inclusion 𝔾1(𝔽𝑞) → 𝐴(𝔽𝑞) induces an isomorphism 𝔾1(𝔽𝑞) ≃
𝐴(𝔽𝑞)/𝑛𝐴(𝔽𝑞) ≃ 𝐴(𝔽𝑞)/𝜙(𝐵)(𝔽𝑞), so we get a non-degenerate pairing

𝔾1(𝔽𝑞) × 𝔾2(𝔽𝑞𝑑) → 𝜇𝑛.

More generally, if 𝑛 is prime and 𝑑 > 1, then 𝑞 is a primitive 𝑑-th root of unity modulo 𝑛
by the definition of the embedding degree. Since 𝜋𝑑

𝑞 = 1 on 𝐴[𝑛](𝔽𝑞𝑑) and 𝑑 is prime
to 𝑛, 𝜋𝑞 splits 𝐴[𝑛](𝔽𝑞𝑑) into eigenspaces with eigenvalues 1, 𝑞, … , 𝑞𝑑−1, that we denote
by 𝔾1, 𝔾2, … , 𝔾𝑑. The Galois dual of 𝔾𝑖 is 𝔾3−𝑖 (because 𝜋𝑞 acts by 𝑞𝑖−1 on 𝔾𝑖 and
𝑞/𝑞𝑖−1 on 𝔾∨

𝑖 ), with the convention that 𝔾0 = 𝔾𝑑, 𝔾−1 = 𝔾𝑑−1, … Incidentally, the
Weil pairing 𝑒𝑊,𝑛 is non degenerate on 𝔾𝑖 × 𝔾3−𝑖 by Remark 4.14. We can look at the
Tate-Cartier pairing given by the dual isogeny 𝜙2 of 𝐴 → 𝐶 = 𝐴/𝔾3−𝑖, to obtain a non-
degenerate pairing 𝐴(𝔽𝑞𝑑)/𝜙2(𝐶)(𝔽𝑞𝑑) × 𝔾3−𝑖(𝔽𝑞𝑑) → 𝜇𝑛 by Theorem 4.25. Assume
that 𝐴(𝔽𝑞𝑑) does not have points of 𝑛2-torsion. Then 𝐴[𝑛](𝔽𝑞𝑑) ≃ 𝐴(𝔽𝑞𝑑)/𝑛𝐴(𝔽𝑞𝑑),
because the map is injective by assumption and they have the same cardinal over 𝔽𝑞. Now
Ker𝜙2 ≃ 𝔾∨

3−𝑖 ≃ 𝔾𝑖 as a Galois module. Furthermore, since 𝐴(𝔽𝑞𝑑)/𝜙2(𝐶)(𝔽𝑞𝑑) is
isomorphic as a Galois module to 𝐻1(𝔽𝑞𝑑,Ker𝜙2) ≃ 𝐻1(𝔽𝑞𝑑, 𝔾𝑖) ≃ 𝔾𝑖, we get that the
projection 𝐴[𝑛] → 𝐴(𝔽𝑞𝑑)/𝜙2(𝐶)(𝔽𝑞𝑑) kills all the 𝔾𝑗 with 𝑗 ≠ 𝑖. Hence the injection
𝔾𝑖 → 𝐴(𝔽𝑞𝑑)/𝜙2(𝐶)(𝔽𝑞𝑑) is a bijection, and we obtain a non-degenerate pairing 𝔾𝑖 ×
𝔾3−𝑖 → 𝜇𝑛. As a special case, in this situation, the Tate pairing restricted to 𝔾2 × 𝔾1 → 𝜇𝑛
is non-degenerate.

Similarly, let 𝔽𝑞𝑒 be the smallest extension such that 𝐴[𝑛] ⊂ 𝐴[𝑛](𝔽𝑞𝑒). Let 𝐺′ be one
of the characteristic subspace of 𝐴[𝑛] and 𝐺" its Galois dual (i.e., the characteristic space
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associated to the 𝑞-reciprocal of the irreducible polynomial associated to 𝐺′). Then if 𝐴(𝔽𝑞𝑒)
does not contain a point of 𝑛2-torsion, by the same reasoning as above, the Tate pairing
restricted to 𝐺′ × 𝐺" is non-degenerate.

Example 4.28. Let𝐸/𝔽𝑞 be an elliptic curvewhose ℓ-Sylow𝐸(𝔽𝑞)[ℓ∞] of𝐸(𝔽𝑞) is generated
by (𝑃, 𝑄) where 𝑃 is of order ℓ2 and 𝑄 of order ℓ.

Assume first that 𝜇ℓ2 ⊂ 𝔽𝑞. Then 𝑒𝑇,ℓ2(𝑄, 𝑃) is of order ℓ by bilinearity, hence 𝑒𝑇,ℓ2(𝑃, 𝑃)
has to be of primitive order ℓ2 bynondegeneracy, so (the reducedTate pairings) 𝑒𝑇,ℓ2(𝑄, ℓ𝑃) =
1, 𝑒𝑇,ℓ2(𝑄, ℓ𝑃) ≠ 1. And 𝑒𝑇,ℓ2(𝑄, 𝑄) = 𝑒𝑇,ℓ(𝑄, 𝑄), 𝑒𝑇,ℓ2(𝑃, 𝑄) = 𝑒𝑇,ℓ(𝑃, 𝑄), they are of
order at most ℓ by bilinearity and one of them is non-trivial by non degeneracy.

Now if 𝜇ℓ ⊂ 𝔽𝑞 but 𝔽𝑞 does not contains all of 𝜇ℓ2 , the situation is very different. If 𝜁 is a
primitive ℓ2 root of unity, 𝜋𝑞(𝜁) = 𝜁 ℓ𝑚 for some 𝑚 invertible modulo ℓ, and 𝐻1(𝔽𝑞, 𝜇ℓ2) ≃
𝜇ℓ2/(𝜋 − 1) ≃ 𝜇ℓ (where the last isomorphism is given by exponentiation by ℓ). Both
𝑒𝑇,ℓ2(𝑄, 𝑃) and 𝑒𝑇,ℓ2(𝑃, 𝑃) are of order at most ℓ in 𝐻1(𝔽𝑞, 𝜇ℓ2), hence 𝑒𝑇,ℓ2(𝑄, ℓ𝑃) =
𝑒𝑇,ℓ2(𝑃, ℓ𝑃) = 1 ∈ 𝐻1(𝔽𝑞, 𝜇ℓ2). However, when seen in 𝐻1(𝔽𝑞, 𝜇ℓ) (see Remark 4.7),
𝑒𝑇,ℓ2(𝑄, ℓ𝑃) = 𝑒𝑇,ℓ(𝑄, ℓ𝑃) need not be trivial, and likewise for 𝑒𝑇,ℓ2(𝑃, ℓ𝑃) = 𝑒𝑇,ℓ(𝑃, ℓ𝑃).

5. Application to fibers and radical isogenies

In this section we will use the Tate pairings to study fibers of an isogeny. As an application,
we will prove the multiradical conjecture. We will work over a base scheme 𝑆, but since
everything in sight is flat over 𝑆, it is essentially harmless to work fibrally over 𝑆, i.e., to
assume that 𝑆 is a field.

5.1. TheGalois structure of fibers of isogenies. The basic idea is as follows. Let 𝑓 ∶ 𝐴 → 𝐵
be an isogeny (of exponent 𝑛 as usual) over 𝑆. Assume we have a primitive 𝑛-root of unity 𝜁
over 𝑆, i.e., a section 𝜁 ∶ 𝑆 → 𝜇𝑛 that is fibrally primitive. Given 𝜁 and a basis (𝑄1, … , 𝑄𝑟)
of Ker ̂𝑓 (i.e., given sections of Ker ̂𝑓 /𝑆 which form a basis fibrally), the Weil pairing gives a
canonical dual basis on Ker 𝑓, and can be used to express a point 𝑃 ∈ Ker 𝑓 in terms of this
dual basis.

When 𝑃 ∈ 𝐵(𝑆), the Tate pairing gives a similar description on the Ker 𝑓-torsor 𝑓 −1(𝑃):

Proposition 5.1. Given a basis (𝑄1, … , 𝑄𝑟) ∈ �̂�(𝑆) ofKer ̂𝑓, the torsor 𝑓 −1(𝑃) splits (canoni-
cally8) as a 𝜇𝑟

𝑛-torsor whose isomorphism classes are given by (𝑒𝑇,𝑓(𝑃, 𝑄1), … , 𝑒𝑇,𝑓(𝑃, 𝑄𝑟)) =
(𝑒𝑇,𝑛(𝑃, 𝑄1), … , 𝑒𝑇,𝑛(𝑃, 𝑄𝑟)).

Proof. The basis (𝑄1, … , 𝑄𝑟) gives a canonical splitting
Φ ∶ Ker 𝑓 → 𝜇𝑟

𝑛, 𝑃 ↦ (𝑒𝑊,𝑓(𝑃, 𝑄1), … , 𝑒𝑊,𝑓(𝑃, 𝑄𝑟)).

Transporting the torsor 𝑓 −1(𝑃) under Φ gives a canonical splitting as a 𝜇𝑟
𝑛 torsor, and its

individual components are given by the 𝑒𝑇,𝑓(𝑃, 𝑄𝑖) by the definition of the Tate pairing. The
last equality comes from Proposition 4.8. �

Corollary 5.2. If the Tate pairings 𝑒𝑇,𝑓(𝑃, 𝑄1), … , 𝑒𝑇,𝑓(𝑃, 𝑄𝑟) are all trivial, then 𝑃 ∈
𝑓 (𝐴(𝑆)).

Proof. The torsor 𝑓 −1(𝑃) is then isomorphic to the trivial 𝜇𝑟
𝑛-torsor by Proposition 5.1,

hence has a section over 𝑆. �

8Once we have fixed the basis (𝑄1, … , 𝑄𝑟).



The geometric interpretation of the Tate pairing and its applications 25

Remark 5.3 (Partial fiber information). In the case where our sections 𝑄1, … , 𝑄𝑟 do not
span the full Ker ̃𝑓, we only have partial information on the fiber 𝑓 −1(𝑃). This is similar to
what happens with the Weil pairing. Let 𝐻 ⊂ Ker ̃𝑓 be the subgroup spanned by the 𝑄𝑖 and
𝐾′ ⊂ Ker 𝑓 be its orthogonal under theWeil pairing. Since the 𝑄𝑖 are rational, 𝐻 is isomorphic
to (ℤ/ℓℤ)𝑟. HenceKer 𝑓 /𝐾′ ≃ 𝐻∨ is isomorphic, via themapΦ ∶ 𝑃 ∈ Ker 𝑓 ↦ 𝑒𝑊,𝑓(𝑃, 𝑄𝑖)
induced by the Weil pairing, to 𝜇𝑟

ℓ .
Now we can decompose 𝑓 as 𝑓 = 𝑓2 ∘ 𝑓1 with Ker 𝑓1 = 𝐾′. Then as in Proposition 5.1,

𝑓 −1(𝑃)/𝐾′ ≃ Φ∗𝑓 −1(𝑃) ≃ 𝑓 −1
2 (𝑃) (see also Remarks 3.14 and 4.26). So the 𝑟 Tate pairings

above give theKer 𝑓 /𝐾′ ≃ 𝐻∨ ≃ 𝜇𝑟
ℓ torsor isomorphic to (i.e., parametrizing) 𝑓 −1(𝑃)/𝐾′ ≃

𝑓 −1
2 (𝑃). The larger 𝐻 is, the smaller 𝐾′ will be, and the more information we will have on
𝑓 −1(𝑃).

One should be careful that the situation is different than with the Weil pairing above. Over
a field 𝑘, for the Weil pairing, Φ(𝑃) ∈ 𝜇𝑟

ℓ describes a point in 𝑃 ∈ Ker 𝑓 /𝐾′ given by the 𝑟
coordinates 𝑒𝑊,𝑓(𝑃, 𝑄𝑖) in 𝜇ℓ(𝑘). By contrast, for 𝑃 ∈ 𝐵(𝑘), 𝑓 −1(𝑃)/𝐾′ ≃ Φ∗𝑓 −1𝑃 is a 𝜇𝑟

𝑛-
torsor, whose isomorphism class is given by the 𝑟 Tate pairings 𝑒𝑇,𝑛(𝑃, 𝑄𝑖). These pairings
should really be seen individually as representing 𝜇𝑛-torsors, they are not coordinates!
When given by an element 𝜉 ∈ 𝑘∗/𝑘∗,𝑛 the Tate pairing represents the 𝑛-points in 𝑘

∗
such

that 𝑥𝑛 = 𝜉, and when 𝑘 = 𝔽𝑞 and the (reduced) Tate pairing is given by an element
[𝜁] ∈ 𝜇𝑛/(𝜋𝑞 − 1), it represents the torsor whose associated cocycle Ξ evaluated at 𝜋𝑞 is 𝜁
(see Remarks 3.10 and 4.17).

Example 5.4. Let 𝑓 ∶ 𝐸1 → 𝐸2 be an 𝑛-isogeny of elliptic curves defined over a field 𝑘.
Assume that Ker ̃𝑓 ⊂ 𝐸2[𝑁] is generated by 𝑃 ∈ 𝐸2(𝑘), and let 𝑅 ∈ 𝐸2(𝑘). Then by
Proposition 5.1, 𝑓 −1(𝑅) is isomorphic to the 𝜇𝑛-torsor 𝑒𝑇,𝑛(𝑅, 𝑃), above the isomorphism
𝑒𝑊,𝑛(⋅, 𝑃) ∶ Ker 𝑓 → 𝜇𝑛. We will come back to this in Example 5.14.

Let 𝑄 be another generator ofKer ̃𝑓. Then the sameKer 𝑓-torsor 𝑓 −1(𝑅) is also isomorphic
to the 𝜇𝑛-torsor 𝑒𝑇,𝑛(𝑅, 𝑄), above the isomorphism 𝑒𝑊,𝑛(⋅, 𝑄) ∶ Ker 𝑓 → 𝜇𝑛.

Notice that 𝑒𝑇,𝑛(𝑅, 𝑃) and 𝑒𝑇,𝑛(𝑅, 𝑄) need not be isomorphic as 𝜇𝑛-torsors (in fact,
if 𝜇𝑛 ⊂ 𝑘, they won’t be isomorphic unless 𝑃 = 𝑄). Recall that if 𝑋 is a 𝐺-torsor, then
isomorphisms of 𝑋 are given on points by 𝑥 ↦ 𝑔 ⋅ 𝑥 for a 𝑔 ∈ 𝐺. These are isomorphisms
of 𝑋 where the action of 𝐺 is fixed. On the other hand, if 𝛼 ∈ Aut(𝐺), there is also an
isomorphism 𝑋 → 𝛼∗𝑋 above 𝛼, which changes the action of 𝐺 through 𝛼, hence is not an
isomorphism of 𝐺-torsors.

Remark 5.5 (Basis). In the statement of Proposition 5.1, we have implicitly assumed that all
our 𝑄𝑖 are of exact order 𝑛, this is the case for instance if 𝑛 is prime. In general, if Ker 𝑓 has
all its points rational, we can find a basis (𝑄1, … , 𝑄𝑟) of order (𝑛1, … , 𝑛𝑟) with 𝑛𝑖 ∣ 𝑛𝑖+1.
(By the equivalence of category between finite étale covers 𝑇 → 𝑆 and finite sets with an
action by 𝜋1

etale(𝑆, 𝑠), a finite étale abelian group 𝑇 → 𝑆 corresponds to a finite ℤ-module 𝐺
with an action by 𝜋1

etale(𝑆, 𝑠), and the points are rational when this action is trivial. There
is certainly a basis as above for 𝐺 seen as a ℤ-module, which we translate back via our
equivalence of category.) Then the isomorphism of Proposition 5.1 should be amended to
take Φ(𝑃) = (𝑒𝑇,𝑛𝑖

(𝑃, 𝑄𝑖)) and it lends in 𝜇𝑛1
⊗ … ⊗ 𝜇𝑛𝑟

. We’ll stick to our simplifying
assumption above for the rest of this section, the general case is easy to adapt.

Remark 5.6 (The Galois structure of the fiber). By Example 3.32, the interpretation of
Proposition 5.1 over a field 𝑘 is as follows. The map Φ from the proof gives an isomorphism
of Ker 𝑓 with 𝜇𝑟

𝑛, and to give a point 𝑇 ∈ Ker 𝑓 is the same as to give Φ(𝑇) = (𝑒𝑊,𝑓(𝑇, 𝑄𝑖)).
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Now if 𝑃 ∈ 𝐵(𝑘) and the torsor 𝑓 −1(𝑃) is described by the Tate pairings 𝑒𝑇,𝑓(𝑃, 𝑄𝑖),
then if these pairings are given by elements 𝜉𝑖 ∈ 𝑘∗/𝑘∗,𝑛, 𝑓 −1(𝑃) is canonically isomorphic
(via Φ∗ and our choice of basis) to the scheme {𝑥𝑛

𝑖 = 𝜉𝑖}. (Warning: this scheme describes
𝑓 −1(𝑃) as an abstract étale scheme over 𝑘, not as embedded inside 𝐴!) To give a point of
𝑓 −1(𝑃) over some étale extension 𝑘′/𝑘 is then the same thing as to give a tuple (𝜉 ′

𝑖 ) in 𝑘′

such that 𝜉 ′
𝑖
𝑛 = 𝜉𝑖.

Conversely, if the pairings are represented by cocycles in 𝐻1(Gal(𝑘/𝑘), 𝜇𝑛), then these
cocycles give the Galois structure of 𝑓 −1(𝑃). Namely, if 𝑃′ ∈ 𝑓 −1(𝑃) and 𝜎 ∈ Gal(𝑘/𝑘),
we have 𝜎(𝑃′) − 𝑃′ ∈ Ker𝜙, and via the isomorphism Ker 𝑓 ≃ 𝜇𝑟

𝑛 given by the choice of
basis (𝑄𝑖) of Ker ̃𝑓, we obtain an element 𝜉(𝜎) = (𝜉1(𝜎), … , 𝜉𝑟(𝜎)) ∈ 𝜇𝑟

𝑛. The equivalence
classes of these 𝑟 cocycles 𝜉𝑖 are precisely the values 𝑒𝑇,𝑓(𝑃, 𝑄𝑖) of the 𝑟 Tate pairings viewed
as cocycles. In the other direction, take 𝜉 = (𝜉1, … , 𝜉𝑟) = (𝑒𝑇,𝑓(𝑃, 𝑄𝑖)) a cocycle represen-
tative of the Tate pairings (viewed as cocycles). Then there exists 𝑃′ ∈ 𝑓 −1(𝑃), such that for
all 𝜎 ∈ Gal(𝑘/𝑘), if (𝜁1, … , 𝜁𝑟) = (𝜉1(𝜎), … , 𝜉𝑟(𝜎)), and we let 𝑇 ∈ Ker 𝑓 be the unique
element such that 𝑒𝑓(𝑇, 𝑄𝑖) = 𝜁𝑖, then 𝜎(𝑃′) − 𝑃′ = 𝑇. We remark that replacing 𝑃′ by
another element 𝑃″ ∈ 𝑓 −1(𝑃) would change the cocyles 𝜉𝑖 by coboundaries, and we can
obtain all representatives in the equivalence class of 𝜉 this way.

In particular, if 𝑘 = 𝔽𝑞, then by Remark 4.17, if the reduced Tate pairings are given by
classes [𝜁𝑖] ∈ 𝜇𝑛/(𝜋𝑞 − 1), then the Galois module structure of 𝑓 −1(𝑃) is isomorphic to 𝜇𝑟

𝑛
together with the twisted action of 𝜋𝑞 given by: 𝜋𝑞 ⋆(𝑠1, … , 𝑠𝑟) = (𝜋𝑞(𝑠1)𝜁1, … , 𝜋𝑞(𝑠𝑟)𝜁𝑟).
If 𝜇𝑛 ⊂ 𝔽𝑞 (to simplify), the cocycle description give above shows that (𝑒𝑇,𝑓(𝑃, 𝑄𝑖)) =
(𝜁1, … , 𝜁𝑟) if and only if for one (resp. any) 𝑃′ ∈ 𝑓 −1(𝑃), we have 𝜋𝑞(𝑃′) − 𝑃′ = 𝑇, where
𝑇 ∈ Ker 𝑓 be the unique element such that 𝑒𝑊,𝑓(𝑇, 𝑄𝑖) = 𝜁𝑖. We note that in the case of finite
fields, by the non degeneracy of the Tate pairing (Theorem 4.25), 𝑃 ↦ 𝑒𝑇,𝑓(𝑃, 𝑄𝑖) induces a
canonical isomorphism (once we have fixed the basis 𝑄𝑖 which gives an isomorphism, as Ga-
lois modules, between Ker ̃𝑓 and (ℤ/𝑛ℤ)𝑟) between 𝐴(𝔽𝑞)/𝑓 (𝐵(𝔽𝑞)) and the Cartier dual
Hom((ℤ/𝑛ℤ)𝑟, 𝔾𝑚) ≃ 𝜇𝑟

𝑛. Assuming again that 𝜇𝑛 ⊂ 𝔽𝑞, so that the only coboundary is
the trivial one and there is only one cocycle by class in 𝐻1(𝔽𝑞, 𝜇𝑛), we find that all Galois
module types encoded by the (𝜁1, … , 𝜁𝑟) ∈ 𝜇𝑟

𝑛 appear exactly once in 𝐴(𝔽𝑞)/𝑓 (𝐵(𝔽𝑞)), as
the fiber 𝑓 −1(𝑃) for 𝑃 a representative of 𝑃 + 𝑓 (𝐵(𝔽𝑞)) ∈ 𝐴(𝔽𝑞)/𝑓 (𝐵(𝔽𝑞)).
Example 5.7 (The Galois structure of the fiber of an isogeny between elliptic curves over
a finite field). Let 𝐸/𝔽𝑞 be an elliptic curve, with a rational point of exact order 𝑛, 𝑃 ∈
𝐸[𝑛](𝔽𝑞). Let 𝑓 ∶ 𝐸 → 𝐸′ = 𝐸/⟨𝑃⟩ be the corresponding isogeny, and 𝑄 ∈ 𝐸(𝔽𝑞). Then
by Proposition 5.1, from 𝑒𝑇, ̃𝑓(𝑄, 𝑃) = 𝑒𝑇,𝑛(𝑄, 𝑃), we can recover the Galois structure on
𝑓 −1(𝑄) as follows.

Fix 𝜁0 a primitive 𝑛-th root of unity in 𝔽𝑞, this fixes (via the Weil pairing) an isomorphism
Ker ̃𝑓 ≃ 𝜇𝑛, and in particular a generator 𝑃′ of Ker ̃𝑓 determined by 𝑒𝑊,𝑓(𝑃, 𝑃′) = 1. Fix a
representative 𝜁 ∈ 𝜇𝑛 of the reduced Tate pairing 𝑒𝑇,𝑛 = [𝜁] ∈ 𝜇𝑛/(𝜋𝑞 − 1).

Via the isomorphismKer ̃𝑓 ≃ 𝜇𝑛 above, this 𝜁 corresponds to the point 𝑇′ = 𝑢𝑃′ ∈ Ker ̃𝑓,
where 𝑢 is such that 𝜁 = 𝜁𝑢

0 .Then there is a point 𝑄′ ∈ ̃𝑓 −1(𝑄) such that 𝜋𝑞(𝑄′) = 𝑄′ +𝑇′.
If 𝑄″ is another point in the fiber, then 𝑄″ = 𝑄′ + 𝑇 for some 𝑇 ∈ Ker ̃𝑓. Then 𝜋𝑞(𝑄″) =
𝑄″ + 𝑇′ + 𝜋𝑞(𝑇) − 𝑇. Let 𝜇𝑚 be the image of 𝜋𝑞 − 1 on 𝜇𝑛, so the image of 𝜋𝑞 − 1 on Ker ̃𝑓
is Ker ̃𝑓 [𝑚]. Then as in Remark 4.17, ̃𝑓 −1(𝑄) is a disjoint union of 𝑚 set of points ̃𝑓 −1(𝑄)𝑇
for 𝑇 ∈ Ker ̃𝑓 [𝑚], where 𝜋𝑞 acts on 𝑄′ ∈ ̃𝑓 −1(𝑃)𝑇 by 𝜋𝑞(𝑄′) = 𝑄′ + 𝑇′ + 𝑇.
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Remark 5.8 (Explicit formula). Over a field 𝑘, we can use Lemma 4.15 to give an explicit
isomorphism between 𝑓 −1(𝑃) and the torsor {𝑥𝑛

𝑖 = 𝑒𝑇,𝑛(𝑃, 𝑄𝑖) }: with the notations of this
Lemma, Ψ ∶ 𝑃0 ∈ 𝑓 −1(𝑃) ↦ (𝑔𝑓 ,𝑍𝑄𝑖

((𝑃0) − (0))) is an isomorphism between 𝑓 −1(𝑃)
and {𝑥𝑛

𝑖 = 𝑒𝑇,𝑛(𝑃, 𝑄𝑖) = 𝑓𝑛,𝑍𝑄𝑖
((𝑃) − (0))}. Here we assume that the 𝑓𝑛,𝑍𝑄𝑖

and 𝑔𝑓 ,𝑍𝑄𝑖
are appropriately normalised thus that 𝑔𝑛

𝑓 ,𝑍𝑄𝑖
= 𝑓𝑛,𝑍𝑄𝑖

∘ 𝑓 so that 𝑔𝑓 ,𝑍𝑄𝑖
((𝑃0) − (0))𝑛 =

𝑓𝑛,𝑍𝑄𝑖
((𝑃) − (0)) and Ψ lends in the correct torsor.

Using this formula, the proof of Proposition 5.1 can be reformulated as follows:
(1) Fix any 𝑃0 ∈ 𝑓 −1(𝑃). Then Ker 𝑓 → 𝑓 −1(𝑃), 𝑇 ↦ 𝑃0 + 𝑇 is a bijection (𝑓 −1(𝑃) is

a Ker 𝑓-torsor). Similarly, for the 𝜇𝑟
𝑛-torsor {𝑥𝑛

𝑖 = 𝑒𝑇,𝑛(𝑃, 𝑄𝑖)}, given a point (𝜉 ′
𝑖 )

in it, the action of 𝜇𝑟
𝑛 on this point gives a bijection of 𝜇𝑟

𝑛 with this torsor.
(2) The map Φ ∶ Ker 𝑓 → 𝜇𝑟

𝑛 from Proposition 5.1 is an isomorphism.
(3) The map Ψ commutes (above Φ) with the action of Ker 𝑓 on the left and of 𝜇𝑟

𝑛
on the right, namely we check that if Ψ(𝑃0) = (𝑥1, … , 𝑥𝑟), then Ψ(𝑃0 + 𝑇) =
(𝑥1𝑒𝑊,𝑓(𝑇, 𝑄1), … , 𝑥𝑟𝑒𝑊,𝑓(𝑇, 𝑄𝑟). This is immediate from Equation (7).

From these facts, it follows that Ψ is a bijection, and we can use Ψ−1 to parametrizes the
points in 𝑓 −1(𝑃).

The same formula works in the situation of Remark 5.3: Ψ gives then a morphism
𝑓 −1(𝑃) → 𝑓 −1(𝑃)/𝐾′ above Φ ∶ Ker 𝑓 → Ker 𝑓 /𝐾′ ≃ 𝜇𝑟

𝑛.
Remark 5.9 (The rational points in the fiber). When 𝑆 = Spec 𝑘 is a field and the fiber
𝑓 −1(𝑃) is trivial, i.e., has a rational point, it would be interesting to refine Proposition 5.1 to
parametrize all rational points 𝑓 −1(𝑃)(𝑘) in the fiber.

We can give such a description if we assume furthermore that the Weil pairing 𝑒𝑊,𝑓
stays non-degenerate when restricted to Ker 𝑓 (𝑘) × Ker ̂𝑓 (𝑘). Let 𝐾′ = Ker ̂𝑓 (𝑘)⟂ as in
Remark 4.26.Then 𝐾′∩Ker 𝑓 (𝑘) = 0 by our hypothesis, soKer 𝑓 (𝑘) splits the exact sequence
0 → 𝐾′ → Ker 𝑓 → 𝐻 → 0 of Remark 4.26, i.e., Ker 𝑓 = Ker 𝑓 (𝑘) ⊕ 𝐾′. It follows that the
Ker 𝑓-torsor 𝑓 −1(𝑃) splits canonically as 𝑓 −1(𝑃) = 𝑋1 ⊕ 𝑋2 where 𝑋1 is a Ker 𝑓 (𝑘)-torsor
and 𝑋2 a 𝐾′-torsor.

Factorising 𝑓 = 𝑓2 ∘ 𝑓1 as in Remarks 4.26 and 5.3 with Ker 𝑓1 = 𝐾′, we get that
𝑓1,∗𝑓 −1(𝑃) = 𝑓 −1

2 (𝑃) ≃ 𝑓1,∗𝑋1 since 𝑓1,∗𝑋2 is a 𝑓1(𝐾′) = 0-torsor. Since 𝑓1 restricts to
an isomorphism Ker 𝑓 (𝑘) → 𝑓 (Ker 𝑓 (𝑘)), 𝑋1 ↦ 𝑓1,∗𝑋1 is an isomorphism above 𝑓1.

If we fix a basis (𝑄𝑖) of Ker ̂𝑓 (𝑘) and we let Φ ∶ Ker 𝑓 → 𝜇𝑟
𝑛, 𝑃 ↦ 𝑒𝑊,𝑓(𝑃, 𝑄𝑖), then by

our hypothesis, Φ induces an isomorphism of Ker 𝑓 (𝑘) with 𝜇𝑟
𝑛. So Φ∗𝑓 −1(𝑃) ≃ Φ∗𝑋1

is described as a torsor by the Tate pairings 𝑒𝑇,𝑓(𝑃, 𝑄𝑖) as in Proposition 5.1. We can even
give an explicit isomorphism Ψ exactly as in Remark 5.8. Thus if 𝑓 −1(𝑃) is trivial, then 𝑋1
corresponds to the Ker 𝑓 (𝑘)-torsor given by 𝑓 −1(𝑃)(𝑘). We can thus use the isomorphism
Ψ−1 to parametrizes the rational points 𝑓 −1(𝑃)(𝑘).
Remark 5.10 (The case of a finite field). When 𝑘 = Spec𝔽𝑞 is a finite field, we have a
refinement of Proposition 5.1, Corollary 5.2, and Remark 5.9 if 𝜇𝑛 ⊂ 𝔽𝑞. First, by the non
degeneracy of the Tate pairing over a finite field (Theorem 4.25 and Remark 4.26), to test if
𝑓 −1(𝑃) is trivial we just need to test if 𝑒𝑇,𝑓(𝑃, 𝑄) is trivial for all 𝑄 ∈ Ker ̂𝑓 (𝔽𝑞). We do not
need that all the points of Ker ̂𝑓 have to be rational as in the hypothesis of Proposition 5.1.

Now assume that 𝑒𝑊,𝑓 is non-degenerate on Ker 𝑓 (𝔽𝑞) × Ker ̂𝑓 (𝔽𝑞), so we are in the
situation of Remark 5.9, and 𝑓 −1(𝑃) splits canonically as 𝑓 −1(𝑃) = 𝑋1 ⊕ 𝑋2 with 𝑋1 a
Ker 𝑓 (𝔽𝑞)-torsor. We will give another argument, in this special case, for non degeneracy on
the left than the one given in Remark 4.26.
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Write 𝑓 = 𝑔2 ∘ 𝑔1 ∶ 𝐴 → 𝐶′ → 𝐵 with Ker 𝑔1 = Ker 𝑓 (𝔽𝑞), then 𝑔1,∗𝑓 −1(𝑃) ≃
𝑔−1

2 (𝑃) ≃ 𝑔1,∗𝑋2, and 𝑋2 → 𝑔1,∗𝑋2 is an isomorphism above 𝑔1. But Ker 𝑔2 ≃ 𝐾′ has no
rational point. Hence 𝑔2 ∶ 𝐶′(𝔽𝑞) → 𝐵(𝔽𝑞) is injective, and it is bijective because 𝐶′ and 𝐵
are isogenous hence have the same cardinal. In particular, 𝑋2 is always trivial, so 𝑓 −1(𝑃) is
trivial if and only if 𝑋1 is trivial, if and only if the 𝑒𝑇,𝑓(𝑃, 𝑄) are trivial for 𝑄 ∈ Ker 𝑓 (𝔽𝑞).

We now give some examples of applications of Proposition 5.1 and Remark 5.3 before
proving the multiradical isogeny conjecture.

5.2. Divisibility.

Example 5.11 (Divisibility on an abelian variety). Let us explain how to recover some well
known results on divisibility on an abelian variety. Let 𝐴/𝑘 be a principally polarised abelian
variety, and 𝑃 ∈ 𝐴(𝑘). A natural question is whether 𝑃 is 𝑛-divisible in 𝑘 (𝑛 prime to the
characteristic).

(1) If 𝐴[𝑛] ⊂ 𝐴(𝑘) and has a basis 𝑄1, … , 𝑄2𝑔, then by Proposition 5.1, 𝑃 is 𝑛-divisible
if and only if 𝑒𝑇,𝑛(𝑃, 𝑄1), … , 𝑒𝑇,𝑛(𝑃, 𝑄2𝑔) are trivial. In that case, one may then
invert themap Ψ fromRemark 5.8 to express all the preimages 𝑃0 such that 𝑛𝑃0 = 𝑃.

For instance take 𝑛 = 2 and 𝐴 = 𝐸 an elliptic curve, assume that 𝐸 ∶ 𝑦2 =
ℎ(𝑥) is given by a short Weierstrass equation and that the three Weierstrass points
𝑄1, 𝑄2, 𝑄3 are rational. With the notations of Section 4.4, we have 𝑓2,𝑄𝑖

= (𝑥 −
𝑥(𝑄𝑖)). So we recover the well known result that 𝑃 is divisible by two if and only if
the three (non reduced) Tate pairings 𝑒𝑇,2(𝑃, 𝑄𝑖) = (𝑥(𝑃) − 𝑥(𝑄𝑖)) are squares
in 𝑘. If 𝑃 itself is a Weierstrass point, then 𝑓2,𝑃((𝑃) − (0)) is of course not equal
to 𝑓2,𝑃(𝑃) = 0, we need to change the normalisation of 𝑓2,𝑃 in this case. This is
done by using the uniformiser 𝑦 which is of valuation 1 at 𝑃 (any other uniformiser
would work too). We have 𝑒𝑇,2(𝑃, 𝑃) = 𝑥−𝑥(𝑃)

𝑦2 (𝑃) = 𝑥−𝑥(𝑃)
ℎ(𝑥) (𝑃) = 1

ℎ′(𝑥(𝑃)) . We
also recover the well known criteria that a point of 2-torsion 𝑃 is halvable if and
only if ℎ′(𝑥(𝑃)) is a square in 𝑘 and the 𝑥(𝑃) − 𝑥(𝑄𝑖) are also squares.

(2) If 𝐴[𝑛] has no rational point in 𝑘, thenmultiplication by 𝑛 is injective, hence bijective
on 𝐴tors(𝑘).

(3) If 𝑘 = 𝔽𝑞 is a finite field, it is of course well known that we can use non degeneracy
to treat the general case of 𝑛-divisibility on an abelian variety 𝐴/𝔽𝑞 even if 𝐴[𝑛] ⊄
𝐴(𝔽𝑞) provided that 𝜇𝑛 ⊂ 𝔽𝑞 (this is a special case of Remark 5.10). Indeed, the Tate
pairing on 𝐴(𝔽𝑞)/𝑛𝐴(𝔽𝑞) × 𝐴[𝑛](𝔽𝑞) → 𝜇𝑛 is non-degenerate (see Section 4.5),
so 𝑃 ∈ 𝐴(𝔽𝑞) is divisible by 𝑛 if and only if the 𝑒𝑇,𝑛(𝑃, 𝑄) for 𝑄 ∈ 𝐴[𝑛](𝔽𝑞) are
not all trivial.

Even if we don’t have such a strong result for a general field 𝑘, the examples given
above shows that the Tate pairing is still useful in the case of a generate field to test
for divisibility. And the same argument as in Remark 5.10 shows that we cannot
hope to have such a stronger result for a general field: if 𝐴[𝑛](𝑘) = 0, [𝑛] is injective
on 𝐴(𝑘) but will not be surjective if 𝐴(𝑘) is infinite.

If 𝑃 is 𝑛-divisible, and the Weil pairing 𝑒𝑊,𝑛 restricted to 𝐴[𝑛](𝑘) × 𝐴[𝑛](𝑘)
is non-degenerate (see also Remark 4.14), then we can use the Tate pairings to
parametrize [𝑛]−1(𝑃)(𝑘) byRemark 5.9. Indeed, the rational points in the fiber form
a torsor under 𝐴[𝑛](𝑘), and the map 𝜓 from Remark 5.9 gives an explicit bijection
between this torsor and the 𝜇𝑟

𝑛-torsor {𝑥𝑛
𝑖 = 𝑒𝑇,𝑛(𝑃, 𝑄𝑖)} where (𝑄1, … , 𝑄𝑟) is a

basis of 𝐴[𝑛](𝑘).
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Example 5.12 (Montgomery curves). Let 𝐸/𝑘 ∶ 𝑦2 = ℎ(𝑥) be an elliptic curve with a
point of 2-torsion 𝑃 ∈ 𝐸[2](𝑘). Then by the computation in Example 5.11, 𝑒𝑇,2(𝑃, 𝑃) is
trivial if and only if ℎ′(𝑥(𝑃)) is a square. But the cocycle description of the Tate pairing
is given by 𝑒𝑇,2(𝑃, 𝑃) ∶ 𝜎 ∈ Gal(𝑘) ↦ 𝑒𝑊,2(𝜎𝑃0 − 𝑃0, 𝑃) by Equation (11), where 𝑃0 is
any point in 𝐸(𝑘) such that 𝑃 = 2𝑃0. So 𝑒𝑇,2(𝑃, 𝑃) is trivial if and only if 𝜎(𝑃0) = 𝑃0 or
𝜎(𝑃0) = 𝑃0 + 𝑃 = −𝑃0 for all 𝜎 ∈ Gal(𝑘), if and only if 𝑥(𝑃0) is rational (i.e., 𝑃0 projects
to a rational point on the Kummer line), if and only if the subgroup ⟨𝑃0⟩ is rational. In
other words: 𝑒𝑇,2(𝑃, 𝑃) is trivial if and only if 𝑃 lies in a rational cyclic subgroup of order 4.
Note that conversely, if 𝐾 is a rational cyclic subgroup of order 4, then the unique point of
2-torsion 𝑃 in 𝐾 has to be rational.

Note also that since 𝜇2 ⊂ 𝑘∗, 𝐻1(𝑘, 𝜇2) = Hom(Gal(𝑘), 𝜇2), so a quadratic twist of
𝐸 is given by a morphism Gal(𝑘) → 𝜇2, and if we take the morphism which sends 𝜎 to 1
if 𝜎(𝑃0) = 𝑃0, and to −1 if 𝜎(𝑃0) = −𝑃0, then for the corresponding twist 𝐸′, we have
𝑃0 ∈ 𝐸′(𝑘).

By Proposition 5.1, if 𝑓 ∶ 𝐸 → 𝐸2 = 𝐸/⟨𝑃⟩ is the isogeny with kernel ⟨𝑃⟩, and ̃𝑓 the
dual (contragredient) isogeny, then 𝑒𝑇,2(𝑃, 𝑃) = 1 if and only if the fiber ̃𝑓 −1(𝑃) is a trivial
𝜇2-torsor, i.e., has a rational point. The isogeneous curve 𝐸2 always has a rational point of
2-torsion 𝑄1 spanning 𝑓 (𝐸[2]). The remaining two points of 2-torsion 𝑄2, 𝑄3 are given
precisely by the fiber ̃𝑓 −1(𝑃), so 𝐸2 has full rational 2-torsion precisely exactly when ̃𝑓 −1(𝑃)
is trivial. So an equivalent condition of 𝑒𝑇,2(𝑃, 𝑃) = 1 is that 𝐸2 has its 2-torsion rational.
This can also be seen directly from our previous equivalent condition: if 𝐾 is rational cyclic
of order 4 containing 𝑃, then 𝑓 (𝐾) is a rational subgroup of order 2 spanned either by
𝑄2 or 𝑄3 (and it is easy to check that there is always another cyclic rational subgroup 𝐾′

containing 𝑃 such that 𝑓 (𝐾′) is spanned by the other point). Conversely, if 𝑄2 is rational
(equivalently if 𝑄3 is), then 𝑓 −1(𝑄2) is rational cyclic of order 4. We see that the Tate pairing
gives information on the Galois action of the isogenous curve, we will expand on this in
Section 5.3.

We recover the well known criterion for when an elliptic curve with a rational point of
2-torsion 𝑃 can be put in Montgomery form with 𝑃 sent to (0, 0) [OKS00]. Indeed if we
send 𝑃 to (0, 0) the elliptic curve has equation 𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 𝛾), and 𝛾 = ℎ′(0) and
𝑒𝑇,2(𝑃, 𝑃) are in the same class in 𝑘∗/𝑘∗,2 by the above computation. So there is a change of
variable such that 𝛾 = 1 if and only if 𝑒𝑇,2(𝑃, 𝑃) is trivial. In particular, we also recover that
an elliptic curve has a Montgomery (with 𝑃 sent to (0, 0)) form if and only if it has a cyclic
rational subgroup of order four (containing 𝑃), if and only if 𝐸/⟨𝑃⟩ has a Legendre model.

Now if 𝑘 = 𝔽𝑞 is a finite field and 𝑃 is the unique point of 2-torsion, then 𝑒𝑇,2(𝑃, 𝑃) = 1
implies that there is already a rational point of 4-torsion above𝑃 by non degeneracy of the Tate
pairing. This can be seen directly: if 𝑄 is another point of 2-torsion, then 𝜋𝑞(𝑄) = 𝑄 + 𝑃
because 𝜋𝑞(𝑄) ≠ 𝑄 by assumption. Since 𝑒𝑇,2(𝑃, 𝑃) = 1, if we let 𝑃0 any point such
that 𝑃 = 2𝑃0, then either 𝜋𝑞(𝑃0) = 𝑃0 already, or 𝜋𝑞(𝑃0) = 𝑃0 + 𝑃. In the latter case
𝜋𝑞(𝑃0 + 𝑄) = 𝑃0 + 𝑄 + 2𝑃 = 𝑃0 + 𝑄 so 𝑃0 + 𝑄 is a rational point of 4-torsion above 𝑃.

However, in the situation where all points of 2-torsion are rational, 𝑒𝑇,2(𝑃, 𝑃) = 1 is not
sufficient to have a rational point of 4-torsion above 𝑃, we also need 𝑒𝑇,2(𝑃, 𝑄) = 1 where
𝑄 is one of the other 2-torsion point. So we also recover the well known fact that either a
Montgomery curve over a finite field either has its full 2-torsion rational, or it has a rational
point of 4-torsion.

Usually these facts are proved using the explicit doubling formula on an elliptic curve.
The advantage of our more conceptual approach is that it can be easily generalised to other
torsion orders or to abelian varieties. For instance, if 𝜇𝑛 ⊂ 𝑘 and 𝑇 is a point of exact order 𝑛
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in an elliptic curve 𝐸/𝑘, and 𝑛 = 𝑛1𝑛2 then the same reasoning as above shows that 𝑇 is
inside a rational cyclic subgroup 𝐾 of order 𝑛1𝑛 if and only if 𝑒𝑇,𝑛(𝑛2𝑇, 𝑇) is trivial. Indeed,
if 𝑇′ is a point such that 𝑛1𝑇′ = 𝑇, so that 𝑛𝑇′ = 𝑛2𝑇, then 𝑒𝑇,𝑛(𝑛2𝑇, 𝑇) is trivial if and
only if for each 𝜎 ∈ Gal(𝑘), 𝜎(𝑇′) − 𝑇′ ∈ ⟨𝑇⟩.

Example 5.13 (Iterating divisions). If 𝐴/𝔽𝑞 is a principally polarised abelian variety, and
𝜇𝑛 ⊂ 𝔽𝑞, then we can try to iterate divisions by 𝑛 as in Example 4.19. We know that
𝑒𝑇,𝑛 ∶ 𝐴(𝔽𝑞)/𝑛𝐴(𝔽𝑞) × 𝐴[𝑛](𝔽𝑞) → 𝜇𝑛 is non-degenerate. If 𝐴[𝑛](𝔽𝑞) ∩ 𝑛𝐴(𝔽𝑞) = 0
(if 𝑛 is prime this is the same as requiring that 𝐴(𝔽𝑞) has no points of primitive 𝑛2-torsion),
then 𝐴[𝑛](𝔽𝑞) ≃ 𝐴(𝔽𝑞)/𝑛𝐴(𝔽𝑞) (we have injection by hypothesis, and they have the
same cardinality), so 𝑒𝑇,𝑛 ∶ 𝐴[𝑛](𝔽𝑞) × 𝐴[𝑛](𝔽𝑞) → 𝜇𝑛 is non-degenerate (see also
Remark 4.26). Given a basis (𝑄1, … , 𝑄𝑟) of 𝐴[𝑛](𝔽𝑞) (we assume that all 𝑄𝑖 have exact
order 𝑛 for simplicity, see Remark 5.5), then 𝑇 ∈ 𝐴[𝑛](𝔽𝑞) ↦ 𝑒𝑇,𝑛(𝑇, 𝑄𝑖) ∈ 𝜇𝑟

𝑛 is
surjective, since it is injective from our hypothesis and so bijective since both sets have the
same cardinal.

Given a point 𝑃 ∈ 𝑛𝐴(𝔽𝑞), 𝑃0 ∈ 𝐴(𝔽𝑞) such that 𝑃 = 𝑛𝑃0, all other rational preimages
are given by the 𝑃0+𝑇, 𝑇 ∈ 𝐴[𝑛](𝔽𝑞).We let Φ = (𝑒𝑊,𝑛(⋅, 𝑄𝑖)).The torsor Φ∗[𝑛]−1(𝑃0+
𝑇) differs from the torsor Φ∗[𝑛]−1(𝑃0) by the element (𝑒𝑇,𝑛(𝑇, 𝑄𝑖)) ∈ 𝜇𝑟

𝑛. Hence, by the
bijection above, there is exactly one 𝑃0 ∈ 𝐴(𝔽𝑞) such that Φ∗[𝑛]−1(𝑃0) = (𝑒𝑇,𝑛(𝑃0, 𝑄𝑖))
is trivial. By non degeneracy of the Tate pairing over finite fields, this implies that there is
exactly one such 𝑃0 such that 𝑛𝑃0 = 𝑃 and [𝑛]−1𝑃0 is trivial, i.e., 𝑃0 ∈ 𝑛𝐴(𝔽𝑞).

If we now also assume that the Weil pairing 𝑒𝑊,𝑛 restricted to 𝐴[𝑛](𝔽𝑞) × 𝐴[𝑛](𝔽𝑞) is
non-degenerate, then by the discussion at the end of Example 5.11, Φ∗[𝑛]−1(𝑃) is isomor-
phic to [𝑛]−1(𝑃)(𝔽𝑞) when 𝑃 ∈ 𝑛𝐴(𝔽𝑞). Now we represent the torsor [𝑛]−1(𝑃)(𝔽𝑞) by
the 𝑟 representatives 𝜉𝑖 ∈ 𝔽∗

𝑞 given by Φ∗[𝑛]−1(𝑃). Since this torsor is trivial by assumption,
all the 𝜉𝑖 are 𝑛-powers in 𝔽∗

𝑞. In the case where 𝜇𝑛 ∩𝔽∗,𝑛
𝑞 = 1 also (i.e., 𝑛 prime to (𝑞−1)/𝑛),

then by Example 4.19, each 𝜉𝑖 has a unique 𝑛-th root 𝜉 ′
𝑖 which is still an 𝑛-power. So there

is a canonical choice of 𝜉 ′
𝑖 , which corresponds by the isomorphism Ψ of Example 5.11 to a

point 𝑃1 ∈ [𝑛]−1(𝑃)(𝔽𝑞). On the other hand by the discussion above there is also a unique
point 𝑃0 ∈ [𝑛]−1(𝑃)(𝔽𝑞) such that 𝑃0 is still in 𝑛𝐴(𝔽𝑞).

It is thus natural to ask about the relationship between 𝑃0 and 𝑃1. We leave that as an
open question. Note that we cannot expect 𝑃0 to be equal to 𝑃1 in all cases because we could
change our representative of the Tate pairing, this can change 𝑃1 but will not change 𝑃0.What
we could hope to do is to find some explicit relationship for some explicit representatives.
This would allow being able to find the iterated division by working entirely on the 𝜇𝑛-side.
Note that [CDHV22] have a conjectural a formula in the very close setting of iterated radical
isogenies.

5.3. TheGalois structure of the isogeneous abelian variety.

Example 5.14 (Probing the Galois action on the 𝑛-torsion of an isogenous elliptic curve). Let
𝐸/𝔽𝑞 be an elliptic curve, with a rational point of exact order 𝑛, 𝑃 ∈ 𝐸[𝑛](𝔽𝑞). Let 𝑓 ∶ 𝐸 →
𝐸′ = 𝐸/⟨𝑃⟩ be the corresponding isogeny.Then using Proposition 5.1 and Example 5.7, from
𝑒𝑇,𝑛(𝑃, 𝑃), we can recover the Galois structure on 𝐸′[𝑛] as follows. Since ̃𝑓 (𝐸′[𝑛]) = Ker 𝑓
and Ker ̃𝑓 = 𝑓 (𝐸[𝑛]) ⊂ 𝐸′[𝑛] we have that 𝐸′[𝑛] = ⋃𝑖∈ℤ/𝑛ℤ

̃𝑓 −1(𝑖𝑃). Since 𝑃 is rational,
𝜋 stabilizes each fiber ̃𝑓 −1(𝑖𝑃). These fibers are 𝜇𝑛-torsors, and their Galois structures are
determined by the Tate pairings 𝑒𝑇, ̃𝑓(𝑖𝑃, 𝑃) = 𝑒𝑇,𝑛(𝑖𝑃, 𝑃) by Proposition 5.1. By bilinearity,
the Tate pairing 𝑒𝑇,𝑛(𝑃, 𝑃) is sufficient to recover the Galois action on each fiber.
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More concretely, we have that Ker ̃𝑓 = ̃𝑓 −1(0𝐸) is the Galois dual of Ker 𝑓 ≃ ℤ/𝑛ℤ,
so Ker ̃𝑓 ≃ 𝜇𝑛. Next, fix a basis (𝑄1, 𝑄2) ∈ 𝐸′[𝑛](𝔽𝑞). Without loss of generality we can
assume that 𝑄1 ∈ Ker ̃𝑓 and that ̃𝑓 (𝑄2) = 𝑃. We have 𝜋𝑞(𝑄1) = 𝑞𝑄1 by the isomorphism
above. Let 𝜁0 = 𝑒𝑊,𝑓(𝑃, 𝑄1), and fix a representative 𝜁 ∈ 𝜇𝑛 of the reduced Tate pairing
𝑒𝑇,𝑛 = [𝜁] ∈ 𝜇𝑛/(𝜋𝑞 − 1). If 𝜁 = 𝜁𝑢

0 , then by Example 5.7, there is a point 𝑄′
2 ∈ ̃𝑓 −1(𝑃)

such that 𝜋𝑞𝑄′
2 = 𝑄′

2 + 𝑢𝑄1.
Thus, up to changing 𝑄2 by 𝑄′

2, we have that on the basis (𝑄1, 𝑄2) of 𝐸′[𝑛], 𝜋𝑞 is given

by (𝑞 𝑢
0 1). Hence we know the conjugacy class of 𝜋𝑞 acting on 𝐸′[𝑛].

If (𝑃1, 𝑃2) is a basis of 𝐸(𝔽𝑞), then the same method allows to compute the Galois
structure of ̃𝑓 −1(𝐸(𝔽𝑞)) from the Tate pairings 𝑒𝑇, ̃𝑓(𝑃𝑖, 𝑃) = 𝑒𝑇,𝑛(𝑃𝑖, 𝑃), and in particular
to recover the group structure of 𝐸′(𝔽𝑞) ⊂ ̃𝑓 −1(𝐸(𝔽𝑞)).

Example 5.15 (Self pairings on supersingular curves). Let 𝔽𝑞 = 𝔽𝑝2 , and 𝐸/𝔽𝑞 a supersin-
gular curve (with all endomorphisms defined over 𝔽𝑞). Let 𝑃 ∈ 𝐸(𝔽𝑞) be of order 𝑟 = 𝑝±1.
Then the reduced Tate self pairing is trivial: 𝑒𝑇,𝑟(𝑃, 𝑃) = 1.

By Equation (15), we have 𝑒𝑇,𝑟(𝑃) = 𝑒𝑊,𝑟(𝑃, 𝜋𝑞𝑃0 − 𝑃0) where 𝑟𝑃0 = 𝑃. But 𝜋𝑞 is a
scalar since 𝐸 is supersingular, so 𝜋𝑞𝑃0 − 𝑃0 and 𝑃 are both multiples of 𝑃0, and so the self
Tate pairing is trivial since the Weil pairing is alternate.

We can recover this result using Example 5.14: since 𝐸 is supersingular, 𝐸 has its full
𝑟-torsion rational, and since 𝐸/⟨𝑃⟩ is supersingular too, 𝐸/⟨𝑃⟩ also has its full 𝑟-torsion
rational. Since Example 5.14 shows how to read of the Galois structure of the 𝑟-torsion on
𝐸/⟨𝑃⟩ by the self Tate pairing, this means that the self Tate pairing is trivial.

Example 5.16 (Pairing the volcano). As a special case of Example 5.14, assume that 𝑛 = ℓ𝑒

and that 𝜇ℓ𝑒 ⊂ 𝔽𝑞. Let 𝑃 ∈ 𝐸[ℓ𝑒](𝔽𝑞), 𝐸′ = 𝐸/⟨𝑃⟩ and let (𝑄1, 𝑄2) be the basis of
𝐸′[ℓ𝑒] described above in Example 5.14. Then 𝜇ℓ𝑒 ≃ ℤ/ℓ𝑒ℤ and 𝜋(𝑄1) = 𝑄1. So by the
description of the action of 𝜋𝑞 on 𝑄2 above, if the reduced Tate pairing 𝑒𝑇,ℓ𝑒(𝑃, 𝑃) is of exact
order ℓ𝑒′ , then 𝐸′[ℓ𝑒](𝔽𝑞) ≃ ℤ/ℓ𝑒 × ℤ/ℓ𝑒−𝑒′ .

More generally, if 𝜇ℓ𝑒(𝔽𝑞) = 𝜇ℓ𝑑 , then the reduced Tate pairing 𝑒𝑇,ℓ𝑒(𝑃, 𝑃) can be seen
as living in 𝜇ℓ𝑑 by Remark 4.22, and 𝑒𝑇,ℓ𝑒(𝑃, 𝑃) = 𝑒𝑇,ℓ𝑑(𝑃, ℓ𝑒−𝑑𝑃) ∈ 𝜇ℓ𝑑. Then still by
Example 5.14, if 𝑒𝑇,ℓ𝑒(𝑃, 𝑃) ∈ 𝜇ℓ𝑑 is of exact order ℓ𝑒′, then 𝐸′[ℓ𝑑](𝔽𝑞) ≃ ℤ/ℓ𝑑ℤ ×
ℤ/ℓ𝑑−𝑒′ℤ.

In particular, if 𝐸 is ordinary, we can use the structure theorem of the torsion on ℓ-
volcanoes of ordinary curves to probe the level of 𝐸′ [MMSTV06; IJ13, §2]. We recall that
if 𝐸(𝔽𝑞) has a point of order ℓ, then the group structure of the rational ℓ∞-torsion of the
elliptic curves in the ℓ-volcano is the same at each volcano level. If 𝐸0 is at the bottom level,
𝐸0[ℓ∞(𝔽𝑞)] ≃ ℤ/ℓ𝑓ℤ is cyclic. If 𝐸1 is at level 1, 𝐸1[ℓ∞(𝔽𝑞)] ≃ ℤ/ℓ𝑓 −1ℤ × ℤ/ℓℤ. At
level 2, 𝐸2[ℓ∞(𝔽𝑞)] ≃ ℤ/ℓ𝑓 −2ℤ × ℤ/ℓ2ℤ and so on. And either the number of level is less
then 𝑓 /2, or 𝑓 is even and at each level 𝑒 above 𝑓 /2, 𝐸𝑒[ℓ∞(𝔽𝑞)] ≃ ℤ/ℓ𝑓 /2ℤ × ℤ/ℓ𝑓 /2ℤ. In
this case the level 𝑓 /2 is then called the first level of stability, and then the level 𝑓, if it exists,
is the second level of stability.

We see in particular that our curve 𝐸′ above is at the level 𝑑 − 𝑒′ if 𝑒′ > 0, or at level ≥ 𝑑
is 𝑒′ = 0, i.e., the Tate pairing is trivial. This allows to probe strictly descending isogenies in
the volcano (hence also find the horizontal or ascending ℓ-isogenies). Note also that once an
isogeny starts descending in the volcano, all the remaining steps must be descending, so if
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we know the level of 𝐸 and 𝐸′ and the height of the volcano, we can recover the level of each
of the intermediate curves when decomposing the ℓ𝑒-isogeny as 𝑒 ℓ-isogenies.

Let us give some examples:
• If we are above the first stability level, 𝐸[ℓ∞](𝔽𝑞) ≃ ℤ/ℓ𝑓 /2ℤ × ℤ/ℓ𝑓 /2ℤ. Then

certainly 𝜇ℓ𝑓 /2 ⊂ 𝔽𝑞 by non degeneracy of the Weil pairing. We can probe isogenies
of degree ℓ𝑓 /2: if 𝑃 ∈ 𝐸[ℓ𝑓 /2], and 𝑒𝑇,ℓ𝑓 /2(𝑃, 𝑃) is of exact order ℓ𝑒′ , then𝐸′ = 𝐸/⟨𝑃⟩
has for rational ℓ𝑓 /2-torsion 𝐸′[ℓ𝑓 /2](𝔽𝑞) = ℤ/ℓ𝑓 /2ℤ × ℤ/ℓ𝑓 /2−𝑒′ℤ.

If 𝐸 is at level ≥ 𝑓, i.e., above the second stability level, all isogeneous curves 𝐸′

have full rational ℓ𝑓 /2-torsion, so all self pairings 𝑒𝑇,ℓ𝑓 /2(𝑃,𝑃) are trivial. We do not
have enough torsion to probe deeper, a solution is to take a field extension of degree
ℓ𝑣 to get more torsion as in [IJ13, § 4].

If 𝐸 is at level 𝑒 with 𝑓 /2 ≤ 𝑒 < 𝑓, then the strictly descending ℓ𝑓 /2-isogenies
reach level 𝑒 − 𝑓 /2, so their kernel is generated by 𝑃 with 𝑒𝑇,ℓ𝑓 /2(𝑃, 𝑃) of exact
order ℓ𝑒′ with 𝑒′ = 𝑓 − 𝑒. This is the maximal order a self Tate pairing can have: all
other isogenies reach a level ≥ 𝑒 − 𝑓 /2 so their corresponding self pairings have
smaller order. In particular, if 𝑒𝑇,ℓ𝑓 /2(𝑃, 𝑃) is of order strictly smaller than ℓ𝑓 −𝑒

for 𝑃 ∈ 𝐸[ℓ𝑓 /2], then ℓ𝑓 /2−1𝑃 generates an ascending or horizontal isogeny (and
conversely).

By bilinearity, this maximal order of the self pairings can be computed from the
Tate pairings (andDLPs) 𝑒𝑇,ℓ𝑓 /2(𝑃1, 𝑃1), 𝑒𝑇,ℓ𝑓 /2(𝑃2, 𝑃2), 𝑒𝑇,ℓ𝑓 /2(𝑃1, 𝑃2), 𝑒𝑇,ℓ𝑓 /2(𝑃2, 𝑃1),
where (𝑃1, 𝑃2) is a basis of 𝐸[ℓ𝑓 /2] [IJ13, § 3].

• If we are at level 𝑒 < 𝑓 /2, below the first stability level, then𝐸[ℓ∞](𝔽𝑞) = ℤ/ℓ𝑓 −𝑒ℤ×
ℤ/ℓ𝑒ℤ. We have 𝜇ℓ𝑒 ⊂ 𝔽𝑞. The strictly descending ℓ𝑒-isogenies reach level 0, hence
they are exactly those generated by 𝑃 ∈ 𝐸[ℓ𝑒] with 𝑒𝑇,ℓ𝑒(𝑃, 𝑃) of exact order ℓ𝑒. If
the self pairing 𝑒𝑇,ℓ𝑒(𝑃, 𝑃) is of order strictly less than ℓ𝑒 for 𝑃 ∈ 𝐸[ℓ𝑒], then ℓ𝑒−1𝑃
generates an ascending or horizontal isogeny (and conversely).

We can also describe the level of 𝐸/⟨𝑃⟩ when 𝑃 has order ℓ𝑢, 𝑢 > 𝑒:
– If 𝜇ℓ𝑒+1 ⊄ 𝔽𝑞 then we are at the top of the volcano (if we could climb up we

would have the full ℓ𝑒+1-rational torsion on the isogeneous curve, which would
imply 𝜇ℓ𝑒+1 ⊂ 𝔽𝑞). If 𝑃 ∈ 𝐸[ℓ∞](𝔽𝑞) is of order ℓ𝑢, and 𝑒𝑇,ℓ𝑢(𝑃, 𝑃) is of order
ℓ𝑒′ in 𝐻1(𝔽𝑞, 𝜇ℓ𝑢) ≃ 𝜇ℓ𝑒, then the isogeneous curve is at level 𝑒 − 𝑒′, so the
first (𝑢 − 𝑒′) ℓ-steps in the ℓ𝑢-isogeny generated by 𝑃 have to be horizontal,
and the 𝑒′ remaining ones are descending.

– If 𝜇ℓ𝑒+1 ⊂ 𝔽𝑞, we let 𝑓 − 𝑒 ≥ 𝑑 > 𝑒 such that 𝜇ℓ𝑓 −𝑒(𝔽𝑞) = 𝜇ℓ𝑑. If (𝑃1, 𝑃2)
is a basis of 𝐸[ℓ∞](𝔽𝑞) with 𝑃1 of order ℓ𝑓 −𝑒 and 𝑃2 of order ℓ𝑒, then by
non degeneracy of the Tate pairing, since 𝑒𝑇,ℓ𝑓 −𝑒(𝑃2, 𝑃1) is of order at most
ℓ𝑒, then 𝑒𝑇,ℓ𝑓 −𝑒(𝑃1, 𝑃1) = 𝑒𝑇,ℓ𝑑(𝑃1, ℓ𝑓 −𝑒−𝑑𝑃1) has to be of exact order ℓ𝑑 in
𝐻1(𝔽𝑞, 𝜇ℓ𝑓 −𝑒) ≃ 𝜇ℓ𝑑 . It follows that if 𝐸′ = 𝐸/⟨𝑃1⟩, 𝐸′[ℓ𝑑](𝔽𝑞) ≃ ℤ/ℓ𝑑ℤ, so
𝐸′ is at level 0.
Let 𝑑′ be the height of the volcano (whichmeans it has 𝑑′+1 levels). If 𝑑′ ≤ 𝑓 /2
(this is the case if 𝑑 ≤ 𝑓 /2 because then 𝑑′ ≤ 𝑑 ≤ 𝑓 /2), the isogeny with kernel
generated by 𝑃1 has to climb the first 𝑑′ − 𝑒 steps, stay horizontal for 𝑓 − 2𝑑′

steps, and then go down for the last 𝑑′ steps. Otherwise, 𝑓 is even and the
volcano has height at least 𝑓 /2. The isogeny with kernel generated by 𝑃1 has to
climb the first 𝑓 /2 − 𝑒 steps, and then go down the remaining 𝑓 /2 steps.
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Anyway, this result is both simpler (once we have Proposition 5.1!) and refines most of the
very interesting results of [IJ10; IJ13]. (One motivation of this paper, beside the application to
multi-radical isogenies, was to get a better understanding of the underlying reason why Tate
pairings are related to the volcano structure, as was proven in [IJ13]. Note also how [IJ13,
Lemma 4.6.a, Lemma 4.7 and Lemma 4.6.b-c] are direct applications of Proposition 4.8 and
Remark 4.24 respectively. This is one advantage in having a more conceptual approach: the
proofs are often simpler, and more general, than by directly using the explicit formulas.)

Example 5.17 (Probing the rational structure of an isogeneous abelian variety). We can
extend Example 5.14 to abelian varieties. Given a principally polarized abelian variety 𝐴/𝔽𝑞
and an 𝑛-isogeny 𝑓 ∶ 𝐴 → 𝐵 spanned by rational points Ker 𝑓 = ⟨𝑃1, … , 𝑃𝑔⟩, 𝑃𝑖 ∈ 𝐴(𝔽𝑞),
then by Proposition 5.1 the Tate pairings 𝑒𝑇,𝑛(𝑃, 𝑃𝑖) encode the Galois structure of the fiber

̃𝑓 −1(𝑃). In particular, given a basis 𝑇1, … , 𝑇𝑚 of 𝐴(𝔽𝑞), we can recover the global Galois
structure of ̃𝑓 −1(𝐴(𝔽𝑞)) from the Tate pairings 𝑒𝑇,𝑛(𝑇𝑗, 𝑃𝑖). From this we can then extract
the group structure of 𝐵(𝔽𝑞) (via DLP and linear algebra), since 𝐵(𝔽𝑞) ⊂ ̃𝑓 −1(𝐴(𝔽𝑞)). Note
how we can probe 𝐵(𝔽𝑞) from 𝐴(𝔽𝑞) and Ker 𝑓 without ever having to actually compute 𝐵.

The computation does not require 𝜇𝑛 ⊂ 𝔽𝑞 but it requires Ker 𝑓 = Ker 𝑓 (𝔽𝑞). If that
is not the case, we can work with an extension 𝔽𝑞𝑑 where all the points of the kernel are
defined. The Tate pairings over 𝔽𝑞𝑑 then gives the 𝔽𝑞𝑑-Galois structure of the fibers ̃𝑓 −1(𝑃),
i.e., as a ℤ[𝜋𝑑

𝑞 ]-module. This may not be enough to recover the 𝔽𝑞-Galois structure of
̃𝑓 −1(𝑃). It depends on whether the base change map 𝐻1(𝔽𝑞,Ker ̃𝑓 ) → 𝐻1(𝔽𝑞𝑑,Ker ̃𝑓 ) is

injective. If it is, then ̃𝑓 −1(𝑃) seen as a Ker ̃𝑓 torsor over 𝔽𝑞𝑑 has a unique way to descend as a
Ker ̃𝑓 torsor over 𝔽𝑞 (i.e., it has no non-trivial twists that become isomorphic over 𝔽𝑞𝑑). Via
Proposition 4.16, this map can be rewritten asKer ̃𝑓 /(𝜋𝑞 −1) → Ker ̃𝑓 /(𝜋𝑞𝑑 −1), Ξ(𝜋𝑞) ↦
Ξ(𝜋𝑞𝑑) where Ξ is a cocycle representing the torsor we are pulling back. By the cocycle
property, this maps [𝑃] ∈ Ker ̃𝑓 /(𝜋𝑞 − 1) to [𝑃 + 𝜋𝑃 + ⋯ + 𝜋𝑑−1𝑃] ∈ Ker ̃𝑓 /(𝜋𝑞𝑑 − 1).
Given the Galois action on Ker 𝑓, one can recover the Galois action on Ker ̃𝑓 by duality, so
injectivity of the base change map can be checked by linear algebra.

5.4. Multi-radical isogenies. We now prove the multi-radical isogeny conjecture. As a
warm-up, we first obtain:

Corollary 5.18. Under the notations of Section 2, the locus {(𝑃′
1, … , 𝑃′

𝑔) ∣ ̃𝑓 (𝑃′
𝑖) = 𝑃𝑖}

splits canonically as a 𝜇𝑔2

𝑛 -torsor whose components have isomorphism classes given by the
𝑒𝑇,𝑛(𝑃𝑖, 𝑃𝑗).

Proof. We apply Proposition 5.1 to each of the 𝑔-torsors ̃𝑓 −1(𝑃𝑖); they are described by the
𝑒𝑇, ̃𝑓(𝑃𝑖, 𝑃𝑗) where we identify 𝐴 with 𝐴 via the principal polarisation. But 𝑒𝑇, ̃𝑓(𝑃𝑖, 𝑃𝑗) =
𝑒𝑇,𝑛(𝑃𝑖, 𝑃𝑗) by Proposition 4.8. �

We now only need to take into account that we require our (𝑃′
𝑖) are required to also be

isotropic to define a non backtracking isogeny.

Theorem 5.19. The locus ℒ𝑓 of Lemma 2.2 splits canonically as a 𝜇𝑔(𝑔+1)/2
𝑛 -torsor whose

components are given by the 𝑒𝑇,𝑛(𝑃𝑖, 𝑃𝑗), 𝑖 ≤ 𝑗.

Proof. Fix a trivialisation (𝑃′
1, … , 𝑃′

𝑔) of ℒ𝑓 over an étale extension 𝑆′ of 𝑆. Then given
𝑇 → 𝑆′, the other elements ofℒ𝑓(𝑇) are given by (𝑃′

1+𝑇1, … , 𝑃′
𝑔+𝑇𝑔)where𝑇𝑖 ∈ Ker ̃𝑓 (𝑇)
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and the 𝑃′
𝑖 + 𝑇𝑖 are still isotropic. Since the 𝑃′

𝑖 are isotropic, and Ker ̃𝑓 also, this condition
amounts to 𝑒𝑊,𝑛(𝑃′

𝑖, 𝑇𝑗)𝑒𝑊,𝑛(𝑇𝑖, 𝑃′
𝑗) = 1. By Equation (3) and biduality (Equation (4)), this

is the same as requiring

(16)
𝑒𝑊,𝑓(𝑃𝑖, 𝑇𝑗)
𝑒𝑊,𝑓(𝑃𝑗, 𝑇𝑖)

= 1.

These antisymmetry conditions defines a subgroup 𝐻 of Ker ̃𝑓 𝑔 under which ℒ𝑓 is a torsor.
We will show that 𝐻 is isomorphic to 𝜇𝑔(𝑔+1)/2

𝑛 .
Indeed, by Equation (16), the matrix of pairings 𝑀 = 𝑒𝑊,𝑓(𝑃𝑖, 𝑇𝑗) is antisymmetric,

𝑀𝑖𝑗 = 𝑀−1
𝑗𝑖 . So 𝑀 is completely determined by the 𝑀𝑖𝑗, 𝑖 ≤ 𝑗, and it is not hard to check

that 𝐻 is of degree 𝑛𝑔(𝑔+1)/2.
Let Φ ∶ 𝐻 ⊂ Ker ̃𝑓 𝑔 → 𝜇𝑔(𝑔+1)/2

𝑛 given on points by

(𝑇1, … , 𝑇𝑔) ↦ (𝑒𝑊, ̃𝑓(𝑇𝑗, 𝑃𝑖))𝑗≤𝑖.

We claim that this maps splits 𝐻, i.e., is an isomorphism. Indeed, it is injective: by biduality,
𝑒𝑊,𝑓(𝑃𝑖, 𝑇𝑗) = 𝑒𝑊, ̃𝑓(𝑇𝑗, 𝑃𝑖)−1. If 𝑇 = (𝑇1, … , 𝑇𝑔) ∈ KerΦ(𝑇), then all 𝑒𝑊,𝑓(𝑃𝑖, 𝑇1) = 1
so 𝑇1 is trivial (since 𝑋/𝑆 is separated, two sections which coincide fibrally coincide on 𝑆). All
𝑒𝑊,𝑓(𝑃𝑖, 𝑇2) for 𝑖 ≥ 2 are trivial, but also 𝑒𝑊,𝑓(𝑃1, 𝑇2) = 1 by the antisymmetry condition,
so 𝑇2 is trivial, and so on. By considering the degree, Φ is surjective, hence bijective.

Let 𝑝𝑗 ∶ 𝐻 → Ker ̂𝑓 , (𝑇1, … , 𝑇𝑔) ↦ 𝑇𝑗 denote the 𝑗-th projection. If 𝑗 ≤ 𝑖, the component
𝑒𝑊, ̃𝑓(𝑝𝑗(⋅), 𝑃𝑖) of the map Φ factorizes through 𝑝𝑗. We also have a 𝑗-th projection map
ℒ𝑓 → ̃𝑓 −1(𝑃𝑗) above 𝑝𝑗, hence an isomorphism 𝑝𝑗,∗ℒ𝑓 ≃ ̃𝑓 −1(𝑃𝑗) by Lemma 3.19. It
follows by functoriality that 𝑒𝑊, ̃𝑓(𝑝𝑗(⋅), 𝑃𝑖)∗ℒ𝑓 = 𝑒𝑊, ̃𝑓(⋅, 𝑃𝑖)∗ ̃𝑓 −1(𝑃𝑗) = 𝑒𝑇, ̃𝑓(𝑃𝑗, 𝑃𝑖). By
Proposition 4.8, 𝑒𝑇, ̃𝑓(𝑃𝑗, 𝑃𝑖) = 𝑒𝑇,𝑛(𝑃𝑗, 𝑃𝑖). Taking all the components 𝑒𝑊, ̃𝑓(𝑝𝑗(⋅), 𝑃𝑖) of Φ,

we obtain that Φ∗ℒ𝑓 is a 𝜇𝑔(𝑔+1)/2
𝑛 -torsor whose components are given by the 𝑒𝑇,𝑛(𝑃𝑗, 𝑃𝑖),

𝑗 ≤ 𝑖. �

Remark 5.20 (Formula). It follows from Theorem 5.19, Lemma 3.31, and Example 3.32
that the locus ℒ𝑓 giving the non backtracking isogenies is described by 𝑛-radicals of the
Tate pairings. When 𝑆 = Spec 𝑘 is a field, by Example 3.32, the 𝑔(𝑔 + 1)/2 Tate pairings
correspond to torsors given by 𝑥𝑛

𝑖𝑗 = 𝜉𝑖𝑗, 𝜉𝑖𝑗 ∈ 𝑘∗. If 𝑆 is a scheme, then from Lemma 3.31 we
know that a 𝜇𝑛-torsor corresponds to a pair (𝐿, 𝛼) where 𝛼 is an isomorphism of 𝐿𝑛 → 𝑂𝑆.
The radical interpretation is that we take 𝑛-radicands of the section 𝛼−1(1) ∈ 𝐿𝑛, the only
difference is that these radicands will live in 𝐿 rather than in 𝑂𝑆.

Over a field, we can use Lemma 4.15 and Remark 5.8 to give an explicit isomorphism
between ℒ𝑓 and the torsors induced by the 𝑒𝑇,𝑛(𝑃𝑖, 𝑃𝑗) = 𝑒𝑇, ̃𝑓(𝑃𝑖, 𝑃𝑗), 𝑖 ≤ 𝑗, namely:
Ψ ∶ (𝑃′

1, … , 𝑃′
𝑔) ∈ ℒ𝑓 ↦ 𝑔 ̃𝑓 ,𝑍𝑃𝑗

((𝑃′
𝑖) − (0)).

(It may be more convenient to use the torsors given by the 𝑒𝑇,𝑛(𝑃𝑖, −𝑃𝑗), in order to
be able to evaluate the functions above without trouble. If 𝑋 is a 𝜇𝑛-torsor represented by
𝑥𝑛 = 𝑒𝑇,𝑛(𝑃𝑖, 𝑃𝑗), then 𝑥 ↦ 1/𝑥 induces an isomorphism with 𝜇𝑛-torsor represented by
𝑥𝑛 = 𝑒𝑇,𝑛(𝑃𝑖, −𝑃𝑗) above the map 𝜇𝑛 → 𝜇𝑛, 𝜁 ↦ 𝜁−1.)

Like in Remark 5.8, we can use Ψ to reformulate the proof of Theorem 5.19 as follows:
(1) Fix any (𝑃′

1, … , 𝑃′
𝑔) ∈ ℒ𝑓, namely ̃𝑓 (𝑃′

𝑖) = 𝑃𝑖 and the 𝑃′
𝑖 are isotropic. Let 𝐻 be

the subgroup of Ker ̃𝑓 𝑔 satisfying by the antisymmetry conditions of Equation (16).
Then all other points of ℒ𝑓 are given by (𝑃′

𝑖 + 𝑇𝑖), (𝑇𝑖) ∈ 𝐻.
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(2) The map Φ ∶ 𝐻 → 𝜇𝑔(𝑔+1)/2
𝑛 from Theorem 5.19 is an isomorphism.

(3) The map Ψ commutes (above Φ) with the action of 𝐻 on the left and of 𝜇𝑔(𝑔+1)/2
𝑛

on the right, namely we check that if Ψ((𝑃′
1, … , 𝑃′

𝑔)) = (𝑥𝑖𝑗), then Ψ(𝑃′
𝑖 + 𝑇𝑖) =

(𝑥𝑖𝑗𝑒𝑊, ̃𝑓(𝑃𝑖, 𝑇𝑗)). This is immediate from Equation (7).

However, for applications to cryptography, we really want the inverse isomorphism Ψ−1.
Explicit formula will depend on the model chosen of course. In an upcoming work we will
use [FLR11; LR22] to give explicit formulas for multi-radical isogenies of abelian varieties in
the theta model.

Example 5.21 (Families). Let 𝑋1(𝑛)/ℚ(𝜁𝑛) be the modular curve associated to the level
subgroup Γ1(𝑛). We will assume that 𝑛 is large enough so that the corresponding modular
stack has no inertia, so the universal elliptic curve with a point of order 𝑛 does exists over the
scheme 𝑋1(𝑛). (In fact 𝑛 ≥ 3 is enough if we remove the curves with 𝑗-invariant 0 or 1728.)

Let (ℰ, 𝑃)/𝑋1(𝑛) be the universal elliptic curve and 𝑓 the isogeny of kernel ⟨𝑃⟩. Then by
Theorem 5.19 there are universal radical formula 𝜓1 parametrizing the fiber ̃𝑓 −1(𝑃) via the
𝜇𝑛-torsor 𝑒𝑇,𝑛(𝑃, 𝑃) ∈ 𝐻1(𝑋1(𝑛), 𝜇𝑛).

Assume we have computed a radical formula 𝜓2,𝜂 over the generic point 𝜂 of 𝑋1(𝑛). Since
we can act on 𝜓1 by the automorphism group 𝜇𝑛, we can assume that 𝜓1,𝜂 = 𝜓2,𝜂. Now
assume that there is an open 𝑈 over which we can extend 𝜓2,𝜂 to a morphism 𝜓2 (i.e., points
in 𝑈 are points of “good reduction” of our formula). Then the locus 𝜓1 = 𝜓2 is a closed
subscheme of 𝑈 by separateness, it contains the generic point, so since 𝑋1(𝑛) is reduced
(because it is smooth over ℤ[1/𝑛]), 𝜓1 = 𝜓2 on 𝑈. So 𝜓2 gives correct radical formula over
𝑈.

Note also that since we know that 𝜓1 is defined everywhere, it is always possible to tweak
our explicit formula for 𝜓2,𝜂 so that they have good reduction on any point 𝑥 (i.e., on a small
affine neighborhood 𝑉 of 𝑥) of 𝑋1(𝑛).

Finally working over a familly 𝑆 also allows for an evaluation/interpolation approach
to compute radical isogeny formulas. Namely, we can evaluate Ψ on some fibers of 𝑆 via
Remark 5.20, and then invert it. This gives radical formulas on these fibers, that may not glue
together because the automorphism group is 𝜇𝑛. However, if we choose a rigidification over
𝑆, and we compute the radical formulas over fibers corresponding to this rigidification, then
we can glue the formula together by interpolation.

Of course, the same reasoning holds in higher dimension.
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