Clapotis: Evaluating the isogeny class group action in polynomial time

AUREL PAGE AND DAMIEN ROBERT

ABSTRACT. Let E/Fq be an elliptic curve with an effective primitive orientation by a quadratic
imaginary order R C End(E). Let a be an invertible ideal in R. We give a polynomial time algorithm
in O(log®™ (AR)) arithmetic operations over F, to compute the class group action E — Eq ~ E/Ela].

1. INTRODUCTION

1.1. Class group action in isogeny based cryptography. Since quantum computers threaten
cryptography based on the discrete logarithm problem (DLP), cryptography based on an effective group
action has gained spotlight in post-quantum cryptography. Indeed, many algorithms translate from the
DLP setting to the group action setting, which allows one to get a post-quantum version.

Isogeny based group actions are convenient ways to instantiate group actions in practice. In this case
the group is a class group acting on suitable elliptic curves over a finite field. However, a big drawback
of isogeny based group action is that it only naturally allows us to compute a restricted group action:
i.e., the action of “small” generators with “small” exponents.

This is a problem for many protocols based on group actions, which need the full group action rather
than the restricted group action. Up to now the only solution to get an unrestricted group action in the
isogeny setting was to compute a lattice of relations in the class group, and replace the action of an
ideal a by the action of an equivalent and sufficiently small ideal b.

This is done in two step.

(1) First there is an offline phase which takes a generating set of small prime ideals and computes
the lattice of relations. Then a nice basis of the relation lattice is computed.

(2) Then in the online phase, a closest vector problem (CVP) is solved to reduce the ideal a to an
equivalent nice ideal b.

Such a computation for CSDIH-512 was done in | ]-

In a generic class group, computing the lattice of relation takes subexponential classical time or
quantum polynomial time (all our complexity will be expressed by default in terms of the logarithm
of the discriminant). One solution to this problem is to instead work in a non maximal order of large
conductor inside a maximal order of small discriminant. Finding the lattice of relations then reduces
to solving the DLP in the multiplicative group of a finite field, which is easier than the general case
(I ]), and can even be solved in polynomial time if the corresponding multiplicative group is
sufficiently smooth | ].

The second problem is that to get a solution of CVP of good quality (ie a polynomial time approx-
imation factor), one needs a good basis of the lattice. It is currently not known how to exploit the
fact that the lattice is a lattice of relations in a class group, and the best algorithm is a generic lattice
algorithm that takes exponential time (even with a quantum algorithm). In practice, at the current level
of security the lattice reduction step is not the bottleneck compared to finding the lattice of relations, but
asymptotically this exponential offline computation will become infeasible. Currently the best we can do
asymptotically is spend a subexponential time to obtain a better basis, allowing for a subexponential
approximation factor; computing the corresponding isogeny action will then take subexponential time
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too. In https://yx7.cc/blah/2023-04-14.html, Panny argues that this step can be (heuristically)
made classically in L(1/3) (in contrast to the L(1/2) quantum Kuperberg’s attack).

So currently there are no asymptotically polynomial time instance of an unrestricted group action,
even for specific suborders.

1.2. An equivalence of categories in higher dimension. In this paper, we describe CLAPOTIS: CLass
group Action in POlynomial TIme via Sesquilinear forms. CLAPOTIS is a polynomial time algorithm
that, given an elliptic curve E/F, (supersingular or ordinary) oriented by a quadratic imaginary order
R (with an effective action) and an invertible ideal a, compute the group action of a on E. There are no
restrictions on the order, and in particular our algorithm applies to CSIDH | ].

We recall that if E is oriented by R, and a is an invertible ideal, then the action is given by
a-E = E/E[a]. We use the now standard trick of going to higher dimension. We will describe two
variants of our polynomial time group action algorithm.

In the first variant, we use the fact that Kani’s lemma can be used to efficiently split a N7 No-isogeny
into a Nj-isogeny followed by a Na-isogeny, see the survey | ] for more details. We then construct
a suitable N1 Ny-endomorphism v on F| such that splitting it as above recovers a- E. We call this variant
CrapoTI (CLass group Action in POlynomial TIme), it has already been published in the note [ 1,
and we recall how it works in the appendix. This variant can be seen as a generalisation of the QFesta
trick from | ]. In QFesta, they build an appropriate ¢(2™ — ¢) endomorphism in order to efficiently
generate a g-isogeny starting from Ey. What we did in | ], is first, to extend the QFesta algorithm
into a general splitting algorithm on any N-isogeny, relaxing in particular the degrees condition on N to
simply N = N1 Ny with N7 and Ns being coprime. Secondly, we explained how to build an appropriate
endomorphism on F whose splitting would give £ — aF rather than a random isogeny.

Our second variant is more reminiscent of the KLPT smoothening algorithm. Indeed, in that variant
we explain how we can smoothen the two-dimensional N (a)-isogeny E? — aF @ aFE into an equivalent
but smooth isogeny.

For our smoothening algorithm, we need to have a good description of all isogenies starting from E2.
In this paper, we generalise this to a description of all isogenies starting from a power EY of E. We
prove that there is an equivalence of categories between (the opposite category of) unimodular Hermitian
R-modules and the category of R-oriented principally polarised abelian varieties isogenous to E™ with
isogenies respecting the orientation (and some extra condition when p is inert in R, see Section 2 for
more details). This equivalence of categories is an extension of the work of | ] (see also | ;

; ]) from the non oriented case to the oriented case.

Via this equivalence of categories we can translate our isogeny problem into a linear algebra question.
The isogeny E — FE/FEla] corresponds to the inclusion a — R. Instead of computing this isogeny,
we find a different isogeny in dimension two, corresponding on the Hermitian side to a module map
F:a®a— R® R which is an N-similitude, with N nice (for instance, powersmooth). Translating
back to the algebraic side, this map corresponds to an N-isogeny E? — E/E[a] x E/Ea], which we can
evaluate efficiently if N is nice enough. We then use pairings to distinguish between E/E[a] and E/E][a].

Going to dimension two allows us to solve a smoothening problem for modules of rank 2 rather than
modules of rank 1, and since the similitude group GUs is much larger than GU; this opens up a lot more
possibilities than trying to smoothen ideals. In fact, we are even able to directly use a variant of the
KLPT algorithm | ] thanks to an exceptional isomorphism, the algebraic version of the classical
isomorphism identifying SU5(C) with the group of Hamiltonian quaternions of norm 1. More precisely,
we construct an embedding B* C GUj for a suitable quaternion algebra B. This allows us to apply the
usual toolbox for smoothening ideals in quaternion algebras to the setting of oriented abelian surfaces.
Dimension 2 is therefore already enough to find a nice powersmooth N-isogeny F with N = O(A3%). Our
evaluation of E/FE[a] thus only requires the evaluation of a dimension 2 isogeny.

In summary, our contributions consist on generalising the usual equivalence of category between
isogenies and ideals from dimension 1 to higher dimension, and then deriving a version of the KLPT
algorithm from dimension 1 in the supersingular case to dimension 2 for the oriented case.


https://yx7.cc/blah/2023-04-14.html

Clapotis: Evaluating the isogeny class group action in polynomial time 3

1.3. Outline. Let E/F, be a primitively oriented curve by a quadratic imaginary order R. In Section 2
we describe the equivalence of categories between unimodular R-modules and similitudes on one hand,
and oriented abelian varieties isogenous to E™ and oriented isogenies on the other hand. Then in
Section 3, we explain how to compute this equivalence in practice, notably how to convert a similitude
into an isogeny. Our goal to compute the class group action corresponding to an ideal a is to find a nice
similitude a @ @ — R? corresponding to a dimension 2 isogeny E? — E, x F4. In Section 4 we describe
an exceptional isomorphism which allows us to reduce to a similar problem for a quaternionic ideal, a
problem that has received ample attention in the literature to make the Deuring correspondence ideal
effective. Then, in Section 5, we translate back from the quaternionic world to rank 2 R-Hermitian
modules to compute our group action. In Section 6 we give some applications of our algorithm, and
conclude with some perspectives in Section 7.

1.4. History of the paper. It all started with a question by Antonio SANSO in October 04 2023 to the
second author, on whether we could extend the QFesta trick to compute class group actions. Intrigued,
the second author tried to extend the QFesta ideas to build an isogeny E? — (a- E)?, but did not
succeed. As a fallback, he instead considered the strategy of generalizing the KLPT algorithm from
supersingular curves in dimension 1 to oriented elliptic curve products in dimension 2. Indeed, he knew
from | ] that, there was a nice equivalence of categories’ with Hermitian modules, which allowed
one to replace the question of smoothening an isogeny with the question of smoothening an Hermitian
similitude. Now, reasoning in terms of the quadratic form induced by the Hermitian form, the hope was
that moving from dimension 1 to dimension 2, i.e. a rank 2 quadratic form over Z to a rank 4 quadratic
form, would make the smoothening problem much easier. Indeed, while finding a smooth equivalent
R-ideal to a is hard (it takes subexponential time), the equivalent problem for ideals in a quaternion
order (so with a rank 4 quadratic form) had been solved heuristically by the KLPT algorithm | 1,
and under GRH in | ]

At that point, he enlisted the help of the first author, a specialist in quaternion algebras. The first
author was quick to point out that there was more than just an analogy between the smoothening
problem in rank 2 and the ideal smoothening problem for a quaternion algebra, more than just the fact
they were given by rank 4 quadratic forms. As explained above there is an exceptional isomorphism
B* — GUjy, which translated from number fields to orders would allow to directly reduce? to KLPT.
Working out this isomorphism explicitly (see Section 4), he showed that the correct isogeny to smoothen
was B2 — a- E®a- E; because there was a direct translation into the quaternionic world. Implementing
the algorithm in Pari/GP, he had a working cryptographic size example of smoothening on October 26
2023.

At that point, we had a first preliminary version of the current paper, with the proof of the equivalence
of categories, the reduction to KLPT, and a working example. Now the isogeny F2 = a-E @& a- E we
had built is an isogeny between a product of elliptic curves, and the converse of Kani’s lemma implies
that it comes from an isogeny diamond. In October 30 2023, in order to explain why Kani’s lemma
would not help this time and we really needed the full power of the module equivalence of categories, the
second author worked out the corresponding isogeny diamond (see Example 5.5). He found out that the
contrary was true: in fact, we can use Kani’s lemma as a powerful tool to split an IN; Na-isogeny, with Ny
coprime to Na, into a Np-isogeny followed by a Ns-isogeny. This involves computing a N1 + Na-isogeny
in dimension 2, so is only efficient when N; + N5 is smooth. But the general case is easily handled, the

trick, which he had already used in | ] following the ideas of | : ], is simply to pad
the N7 and Ny isogenies with u and v-isogenies (or simply endomorphisms), with u,v chosen such that
uN7 4+ vNy is smooth. As explained in [ ], such an u-endomorphism can always be constructed,

replacing E by E* if needed. The argument was written in October 31 in the short note | 1y
introducing the CLAPOTI algorithm, giving a polynomial algorithm to compute the group action, while
completely bypassing the module equivalence of categories.

Now, CLAPOTI is, a posteriori, an “obvious” generalisation of the QFesta algorithm. So in retrospect,
Antonio SANSO was completely right in his intuition that the QFesta approach could apply to the class

1At least for the Frobenius orientation, but it was clear that it would be easy to extend it to the oriented case.
2Reducing to an already solved problem, a well known mathematical trick!
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group action. However, as the above history shows, this is not at all how we obtained it. In particular,
the crucial observation, due to the first author, that we should consider a- E @ a- E rather than (a- E)?
was obtained from the equivalence of category combined with the special isomorphism mentioned above.

As a side effect of the publication of | ] in November 2023, the current article (describing our
second variant CLAPOTIS) remained unfinished. Part of the reason is that the second author was busy
applying the ideas of CLAPOTI to the supersingular case to construct SQISign2d | ]. The
existence of this draft was however made clear in | ], and the authors shared widely upon request.
As an unfortunate side effect of this delay, other researchers rediscovered (via a more ad hoc approach
compared to our more conceptual point of view) that the smoothening problem inherent in CLAPOTIS
could reduce to the KLPT algorithm.

Although our main motivation for the original article, namely computing class group action in
polynomial time, was solved in [ ], we still feel it is important to publish the full version of the
algorithm.

(1) First, the equivalence of categories, which allows us to recast isogeny problems involving abelian
varieties isogenous to EY into module problems, will certainly prove crucial in the recent trend of
moving away from dimension 1 to higher dimensions in isogeny based cryptography, and notably
to move beyond Kani’s lemma.

Even in dimension 1, as argued by the second author in his talk [ | at the Leuven
Isogeny Days 5, the module point of view is often more convenient than the ideal point of view,
notably to deal with level structure. It his also a fun exercice to translate the usual concepts
from isogeny based cryptography in the module world, see the talk mentioned above for some
examples.

Recently, the second author also introduced a new module action on abelian variety, which
generalises the classical ideal action on elliptic curves. The construction of this module action
makes crucial use of the equivalence of categories.

(2) The exceptional isomorphism we mentioned above gives a systematic way to apply existing tools
from supersingular elliptic curves to ordinary elliptic curves (by moving to dimension 2). Again,
we feel that our presentation of this fact will give a deeper understanding of the relationship
between these two elliptic curve worlds.

1.5. Thanks. The second author thanks Lorenz PANNY for useful discussions on class group computa-
tions. He also gives special thanks to Antonio SANSO, who, as explained above, spurred this project by
asking if the methods of QFesta [ ] could help in computing the class group action.

2. THE EQUIVALENCE OF CATEGORIES

Following the seminal work of Deuring, the link between isogenies and ideals, or more generally
module maps and isogenies, has been amply studied in the literature. See for instance [ ; ;
] and the references in | , § 1]. For our application, we only need the fact that a
Hermitian unimodular R-module gives a principally polarised abelian variety, and that a N-similitude
gives an N-isogeny, which is the easy part of the correspondence (see Theorem 2.11).
In this section, since it can be interesting for other applications, we prove the equivalence of categories
in greater generality that what we need. We rely on [ ] (which uses [ 1), which proves an
equivalence of categories for non oriented isogenies; it suffices to adapt their proof to the oriented case.

Definition 2.1. Let A/k be an abelian variety over a field. Let R be a ring. An orientation of A by
R is an embedding i4: R — Endy(A). The orientation is said to be primitive if i4(R) is saturated in

An R-oriented isogeny f: A1 — Ay between two R-oriented abelian varieties is an isogeny which
commutes with the orientation: if v € R, foia, () =1ia,(7) o f. We denote by Hompg (A1, A2) the
abelian group of oriented isogenies.

Remark 2.2.
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o If f: Ay — A, is an R-oriented isogeny, then Ker f is stable by R. Conversely, if K is a finite
subgroup scheme of A; stable by R, then by the universal property of the quotient Ay = A; /K
there is a unique R-orientation on As making the natural map A; — A, R-oriented.

o If R is a quadratic imaginary order, and E/F, is an R-primitively oriented elliptic curve over a
finite field, then Hompg(E, E) = R. Indeed, End(F) := Endg, (E) is of rank 2 or 4, and in both

cases R C End(F) is its own centralizer (since it is saturated in End(E)).

Definition 2.3. Let E/k be an R-oriented elliptic curve and M a finitely presented (f.p. in the sequel)
R-module. Let R™ — R™ — M — 0 be a presentation of M. The morphism R™ — R" is represented
by an induced matrix X acting by right multiplication. This matrix defines, by left multiplication, a
morphism X : E™ — E™. We define HOM (M, E) to be the kernel of this map. (The same construction
holds to define HOM (M, E) when E/k is any proper group scheme with an action by R).

Theorem 2.4. Assume that R is a primitive orientation of E/k.

(1) The construction above defines a contravariant exact functor HOMRg(-, E) from finitely presented
R-modules to proper group schemes over k. In particular, the isomorphism class of HOMpg(M, E)
does not depend on the presentation.

(2) If ' is a k-algebra, and A = HOMg(M, E), then A(R) ~ Homg(M, E(K')). [Aurel : Je ne
comprends pas, c’est quoi A(R) ¢ Est-ce que c’est une typo pour A(k") 2]

(3) If T is a R-module which is finite (as a set), then HOMpg(T, E) is a finite group scheme of
degree #T2/ rank R

(4) If R is a primitive [Aurel : redondant : tu as supposé primitif dans tout le théoréme] orientation
and M is torsion-free, then HOMRg(M, E) is an abelian variety isogenous to E™ where m is
the R-rank of M. We have A[n] ~ HOMRr(M, E[n]) and T¢(A) ~ Hompr(M,T,E) for every

prime € # p.
(5) If a is a non zero left R-ideal, then HOMpg(R/a, E) ~ Ela] and HOMRg(a, E) ~ E/E]a].
Proof. This is | , Proposition 4.2 and Theorem 4.4]. O

Now let’s assume that R is a quadratic imaginary order.

Lemma 2.5. Let M be a f.p. torsion free R-module. Then there is a decomposition M = Iy ®Io3®- - Iy,
such that O(I1) C O(I2) C --- C O(Iy,) (hence I; is invertible in O(1;)). Furthermore, the isomorphism
class of M only depends on the O(I;) and on the class of Iy - I ... Iy, which is an invertible O(1,,)-ideal.

Proof. This follows from the fact that a quadratic ring is a Bass order, see | , Theorem 3.2]. O

Lemma 2.6. If E/F, admits a primitive orientation by a quadratic imaginary order R, then E is
ordinary if and only if p is split in R, and E is supersingular if and only if p is ramified or inert. There
s mo primitive orientation by an order of conductor divisible by p.

Proof. 1f E/F, is ordinary, by Deuring, Endr, (E) = End(FE) is a quadratic imaginary order of discrimi-
nant prime to p, and p splits into p1po, one ideal corresponding to the Frobenius and the other to the
Verschiebung. If E/F, is supersingular, then End(FE) is a maximal order O in a quaternion algebra
ramified at p and infinity By o. The completion O is the unique valuation ring in By oo ® Qp. If Ris a
primitive orientation, then R is locally maximal at p, and p is either inert or ramified. (I

If E/F, is ordinary, or if E/F, is supersingular defined over k = F,, then if E is primitively R-oriented
we have R = Endg(F), because Endg(F) is of rank 2. In both cases the orientation is given by the
Frobenius endomorphism 7, and every isogeny respecting the orientations [Aurel : Tu n’as pas justement
défini "R-oriented" pour abbrévier "respecting the orientation" ?] is a rational isogeny. In these two
cases, the functor HOMg(+, E) is an equivalence of category:

Theorem 2.7. Let E/F, be an elliptic curve with a primitive orientation by an imaginary quadratic
order R. Assume that either E is ordinary or E is supersingular and that ¢ = p. Then HOMRg(-, E)
is an equivalence of categories between torsion free f.p. R-modules and R-oriented abelian varieties
isogenous to E™ with isogenies respecting the orientation.
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Proof. Let fr = fr be the conductor of R = Endy(E). By | , Theorem 7.5 and Theorem 7.11],
HOMEg(-, E) is an equivalence of categories between torsion free f.p. R-modules and abelian varieties A
isogenous to E™ with conductor f4 | fg. Such abelian varieties split as a product A = Fy x -+ X E,,
and fa | fg is equivalent to fg, | fg for all 4.

In particular, R C Endy(E;) for all 4, and the diagonal action gives a natural orientation on A, which
is induced by the Frobenius endomorphism. The isogeny E™ — A is rational and therefore respects this
orientation.

Conversely, if ¢: E™ — A is an R-oriented rational isogeny, then the first paragraph in the proof of
[ , Theorem 6.5] shows that A is in the image of HOMRg(-, E). O

It remains to treat the case of a supersingular curve E/F,2 with rank 4 endomorphism ring. In this
case, the functor HOMpg(+, E) gives an embedding from torsion free f.p. R-modules to oriented abelian
varieties isogenous to E™, but it is not necessarily surjective.

Theorem 2.8. Let E/F, be an elliptic curve with a primitive orientation by an imaginary quadratic
order R. Then the functor HOMRg(-, E) is fully faithful and admits as an inverse on its image the
functor Hompg(+, E) that sends R-oriented abelian variety A to the module of R-oriented isogenies.

Proof. By the same proof as in | , Theorem 4.8], this reduces to proving that
Homp (b, a) ~ Homp(HOMRg(a, E), HOMEg(b, E))

for two ideals a,b of R. The non oriented case follows from | , Proposition 10 and Proposition 17],
which we need to adapt to the oriented case.

Let K7, K5 be two subgroup schemes of E stable by R such that E/K; is R-isomorphic to E/K>.
Then the proof of | , p. 532] shows that there exists an element v € End®(F) in the centralizer R’
of R in End(E/K,), and an n € Z such that y~1(K;) = [n] 71 (K3). Since R is of rank 2, this centralizer
is the saturation of R in End(E/K7). (By assumption, R is a primitive orientation of E but may not be
saturated in End(E/K;).) So modifying n if necessary we may assume that v € R. This extends [ ,
Equation 17] to the oriented case, and the rest of the proof of | , Proposition 10] applies. O

As mentioned above, there is an obstruction to being in the essential image of HOMRg(+, E). We need
to identify R-oriented abelian varieties A isogenous to E™ that belong to the image of HOMRg(-, E). If
¢: E™ — A is an R-isogeny, its kernel K is stable by R, and by | , Proposition 6.3] the question
is whether K can be built as the kernel of an R-morphism E™ — E™. Note that by fully faithfulness
(see Theorem 2.8), the answer does not depend on the isogeny ¢ [Aurel : Tu veux dire que ¢a dépend
seulement de A?].

Given an R-oriented abelian variety A, we let pa be the F,-representation of R/pR on Lie(A) given
by the action on differentials. If ¢: A — B is an oriented morphism induced by HOMpg(-, FE) from a
module morphism v: Mg — M, then by Theorem 2.4 applied to k' = k[e]/(€?), ¢ induces a morphism
of representations between py and pg. We will show that if A is induced by a torsion free module of
rank n, then p4 has to be equivalent to p’%, and that this is the only obstruction.

Theorem 2.9. Let E be an elliptic curve with a primitive orientation by an imaginary quadratic
order R. If E is supersingular, we assume furthermore that F is defined over Fy, or that it is defined
over Fp2 with full endomorphism ring.

Then the fully faithful exact functor HOMR(-, E) between torsion free f.p. R-modules and R-oriented
abelian varieties isogenous to E™ with isogenies respecting the orientation has essential image consisting
of the abelian varieties A that are R-isogenous to E™ and such that pa ~ p'%. In particular we have an
equivalence of categories whenever p is split in R (which is equivalent to E being ordinary) or ramified.

Proof. Theorem 2.7 already handles the case of E ordinary or E supersingular defined over F,. In
both cases, p is either split (p = pp) or ramified (p = p?), with p(p) = 0: since the Frobenius is
purely inseparable, it acts trivially on the tangent space. Hence the representation p4 descends to a
[F,-representation of [F,, so is automatically compatible.

It remains to handle the case of E supersingular defined over 2. The same argument as in | ,
§ 6.3] shows that a prime-to-p oriented subgroup comes from a module map. Indeed, if ¢ is prime to p,
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the centralizer Cy of R, in End(T,E) is Ry itself by | , (ii) p.16], and if K C E[¢°] is an R-stable
subgroup scheme, K (k;) is a Cy/¢°Cy-submodule of E, and we apply the same proof as in | ,
Proposition 6.8].

So the only obstruction must come from inseparable isogenies. We first look at the case of dimension 1.
Every isogeny is the composition of a separable isogeny with some power of the Frobenius. Since 7r127 = [p],
we need to check whether 7,: E — E®) is induced by an ideal. Its kernel «,, is stable by R since a,, is
the unique subgroup of index p of E[p]. If p = p? is ramified in R, then 7, is induced by p, but if p is
inert, then m, cannot induced by an ideal since there are no ideals of norm p in R. Thus in that case
there are two components in dimension 1: any R-isogeny from E comes from a separable isogeny from
either E or its Galois conjugate E®). Furthermore, pg is a representation of R/pR ~TF,> on Lie E, and
P is its Galois conjugate, which is not equivalent to the first representation. So we can use p to check
on which of the two components we are.

In higher dimension, by the Chinese Remainder Theorem, every oriented isogeny ¢: E™ — A
decomposes as an inseparable oriented isogeny ¢’: E™ — A’, and an oriented isogeny with prime to p
kernel ¢": A — A. Moreover, every inseparable isogeny is a composition of isogenies with kernel a,, by
[ , Lemma 5.9]. If the isogeny ¢’ is oriented, then since R is commutative of discriminant prime
to p, its action on the p-torsion is semisimple so we may always find an «,, that is stable by R.

The group Gl,(R) acts transitively on the non zero elements of Hompg(ay, E™) =~ F (where the
action of R on a, is then one induced by the inclusion o, C E[p] and p is the prime ideal of R above p).
So we may assume that o, is contained in £ x 0 x --- x 0, and that the isogenous curve is isomorphic
to E®) x E... x E. By recurrence, assume that the domain is E®™ x pma By looking at the
Dieudonné modules, we see that there are two possible action of R on our kernel a,, and depending on
the action, either o, has no R-embedding to £™2 or no R-embedding to £ (»"™ We then use the action
of Gl (R) on E®@™" (via its twisted action on E®)) or of Gl,,,(R) on E™ to see that the quotient is

still isomorphic to E®™ x Ema.

Now, if A/ = E®™ x E™ with its natural product R-orientation, then pa ~ pp™ @ PRz
Furthermore, the separable isogeny ¢”: A’ — A induces an equivalence of representation pas ~ p4. In
particular, if pg ~ p’k, then A’ has to be isomorphic to E™. Since the isogeny ¢”: E™ — A is represented
by a module map, we see that A is in the image of HOMg(-, E).

We remark that, since by | , Corollary 5.11], the Dieudonné module of A[p] of an abelian
variety is canonically isomorphic to its first De Rham cohomology, and the Frobenius filtration on A[p]
corresponds via the Dieudonné functor, to the Hodge filtration (up to a Galois twist), its it not surprising
that we can read off on the differentials of A the information about the inseparable part of the isogeny
E™ — A

Conversely, if A = HOMg(M, E), then by Lemma 2.5, the module M is isomorphic to a sum of ideals
M = ®a;, so A is isomorphic to a product of elliptic curves A = [] E;, with each E; being R-oriented
and A given the natural product orientation. Furthermore, since the conductor of R is not divisible
by p, we can assume that the a; have norm coprime to p, so that the ideals a; give a separable oriented
isogeny E — E;, in particular pg =~ pg,, hence ps ~ p%.

|

Remark 2.10.

e In dimension 1, restricting to invertible ideals, we recover the oriented group action of | ;
]. However our equivalence handles the case of non invertible ideals (which go up in the
oriented volcano), and does not rely on a CM lift to characteristic zero.

e If E/F 2 is a supersingular curve with endomorphism ring O of rank 4, in | , Theorem 5.3],
the authors prove an equivalence of categories HOM (-, E) between abelian varieties and torsion
free f.p. O-modules.

We note that, restricting to rank 1 modules, this corresponds to the original version of
Deuring’s correspondence, between left O-ideals and supersingular curves E’ isogenous to E.
The only difference is that Deuring’s version uses an equivalence, and the inverse map is given
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by Hom(FE, E’) which is a left O-ideal, while we use a contravariant version and the inverse map
is given by Hom(E’, E), which is a right O-ideal.

The Deuring correspondence is often described in terms of maximal orders (a maximal order
giving a supersingular curve), and isogenies described in term of ideals. The link with the
previous description is that with a left O-ideal we associate its right order @', and with an order
O’ we associate a connecting (O, O’)-ideal. For more details we refer to | ; ]

Now, if R C O is a primitive embedding, by the construction of HOMg(+, E) and HOMop (-, E),
if M is a torsion free R-module, then HOMpr(M,E) = HOMo(M @ O, E).

We remark that M ® g O has a natural structure of (R, O)-bimodule, and via the equivalence of
categories HOMg(-, E), an oriented isogeny between HOM o (M1 @O, E) and HOMo(Ma®g
O, E) corresponds to a R-module morphism Ms @ g O — M; ®p O that is also a morphism of
(R, O)-bimodules. Since R is its own centralizer in O, such a morphism descends to a morphism
of R-modules My — M;. This gives an alternative proof of Theorem 2.8.

The functor M — M ®@g O gives a way to study the forgetting of orientation functor (as done
in [ ]) purely at the module level.

Now that we have our equivalence, we want to restrict it to principally polarised abelian varieties and
N-isogenies. If M is a torsion free f.p. left R-module, then the dual M* = Hompg(M, R) has a natural
structure of right R-module. Using the Rosati involution x — Z, M* becomes a left R-module: the
module of R-antilinear maps M — R. [Aurel : Ce paragraphe n’est pas tres clair. On a l'impression que
tu changes la définition de M™*. Je pense qu’il faut que tu écrives explicitement quelle est ta structure de
R-module de M* parce qu’a premiére vue il y en a plusieurs possibles.]| A map ¢: M — M* is said to be
symmetric if ¢*: M** = M — M* is equal to 1. Given such a symmetric 1), we can define a Hermitian
form Hy, by Hy(mi, ma) = 1(ma)(m1) (see Section 4 for more details on Hermitian forms). Conversely,
a Hermitian form H on M induces a symmetric map M — M*. We say that H is an integral Hermitian
form on M, and that (M, H) is unimodular if H induces an isomorphism M ~ M*.

Theorem 2.11. Under the functor above HOMEg(-, E), a polarisation on A = HOMg(M, E)
corresponds to an integral positive definite Hermitian form H on M™*, a principally polarisation to a
unimodular Hermitian form on M* (equivalently an unimodular Hermitian form Hy on M), and a
N-isogeny f: A — B of ppavs to a similitude of multiplier N with respect to the Hermitian forms:
(;5: (MB,HB) — (MA,HA) satz’sfy ¢*HA = NHB.

Proof. We recall that a polarisation A — A is a morphism A — AV that is symmetric (i.e., self-dual),
and is induced by an ample line bundle. We need to translate these conditions on the module side, via
our equivalence of categories.

The same proof as in | , § 4.3] shows that if A = HOMg(M, E), then AY = HOMpr(M*, E),
where M* is the R-dual of M, with R acting on the right on M™*, or on the left via the Rosatti involution.
Via our orientation, the Rosatti involution is given by - on R. The dual of the isogeny associated with
N — M corresponds to the dual map M* — N*. Finally, we have the biduality M ~ M** given by
m = (P = (m)).

By biduality, a symmetric isogeny f: A — AV thus correspond to a Hermitian form H on M*,
interpreted as a morphism M* — M (with the R-module structure on M* given by the Rosatt involution
as mentioned above).

By | , Theorem 3.3], this symmetric isogeny comes from an ample line bundle precisely when
the Hermitian form is positive definite. We sketch the argument: A is isogenous to EY, there is a map
E9 — A which is finite faithfully flat, so by descent we reduce to the case A = EY9. Now on EY we
have the canonical product polarisation, while on the Hermitian side we have the canonical positive
definite Hermitian form (R", Hr & --- @ Hpr). The other polarisations (resp. positive definite Hermitian
forms) are given by the action of totally positive endomorphisms on E? in both cases, and it follows
that ampleness is equivalent to the positive definite condition.

If f: A — B is an isogeny corresponding to the linear map ¢: N — M, and we have principal
polarlsatlons da, QSB on A, B associated with Hermitian forms H,4, Hg, then the contragredient isogeny
f:B— A= (bA ) f o ¢ corresponds to the dual ¢* of ¢ with respect to the Hermitian forms. By
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definition, f is an N-isogeny if and only if fo f = fo f = N, if and only if ¢ is a N-similitude, if and
only if p*H4 = NHp. d

Remark 2.12. If (M, H) is a torsion free Hermitian R-module, the Hermitian form extends to
V =M ® Q. Conversely, if (V, H) is a Hermitian R ® Q vector space, and M a R-sublattice, then H
induces an isomorphism V' — V* and an isomorphism M#% — M* where M* = {m’ € V, H(m', M) C R}.
The module M* is integral if and only if M* C M. In this case, the corresponding polarisation on
A =HOMR(M, E) has kernel HOMr(M/M*, E), so is of degree the cardinal of M/M* by Theorem 2.4.
We refer to | , § 3.1] for more details.

Corollary 2.13. Let A be a principally polarised abelian variety corresponding to the unimodular
Hermitian module (Ma,Hy). Then kernels Ker ¢ of N-isogenies ¢: A — B correspond bijectively to
submodules Mg C My such that M?, = {meMs®@Q,Ha(m,Mp) C R} = %MB.

Proof. By exactness of HOMRg(-, E), since an isogeny is an epimorphism between abelian varieties of
the same dimension, it corresponds to a monomorphism between torsion free modules Mg C M4 of the
same rank. By Theorem 2.11, ¢ is an N-isogeny if and only if Mp is unimodular for Hp = %HA if and
only if the orthogonal of Mg for H 4 is exactly %M 5 (in which case the rank condition is automatic). O

Example 2.14. Let a be an ideal in R. By Theorem 2.4, the map a — R corresponds to the isogeny
¢q: E — E4. By Definition 2.3, if a = RN (a) + Ry, these two generators give a surjection R?> - a C R
hence corresponds to an embedding i4: E, — E?. The map E — E?, ¢: (P,Q) — (N(a)P, uQ), whose
kernel is E[N (a), u| = Ela], factorize through this embedding. We will revisit this in Section 3.1 for the
case of a general module.

The principal polarisation on E corresponds to the canonical Hermitian form on R: Hg(x,x) = 2T =
N (z). Since f [Aurel : Je suis perdu, c’est qui 7 ¢,7] is an N (a)-isogeny, it follows that the principal
polarisation on E, is given by Hr/N(a). This can also be seen from the fact that since a@ = N (a),
then for Hpg, the orthogonal of a is given by a/ N (a).

Let v € R® Q be such that b = ya C R is an integral ideal. We have NV (y) = N(b)/ N (a). The
map v: (a, Hg/ N(a)) = (R, Hr),z — yx is a N'(a)yy = N (b)-similitude. A way to find such a v is to
sample a 7' € a, and take v = '/ N(a). If N'(v') = r N(a), we then have N'(b) = r.

Alternatively, the map b — R induces a N/ (b)-isogeny E — Fy, and v: (a, Hr/ N (a)) — (b, Hr/ N (b))
induces an isomorphism Ey, — F, since v is an 1-similitude.

The element 7' € a gives an endomorphism of R which factorize as a map (R, Hg) — (a, Hr/ N (a)) —
(R, Hg), which corresponds to a map £ — E, — E, with ¢,: E — FE, the canonical N (a)-isogeny
associated with a and ¢, : E; — E a N(y')/ N (a)-isogeny. Taking duals, we get that the adjoint
of v: (R,HR) — (a,Hr/N(a)) is v = v//N(a): (a, Hr/ N(a)) — (R, Hg) giving the dual isogeny
¢~7'1 E — E,, which corresponds exactly to ¢ where b = ~va as above. And in fact, given the
presentation R? — a given by the two generators (N (a), 1) as above, composing this map with 7'/ N (a)
we get a presentation R? — b = (N(b), u7// N (a)). Composing further with the canonical inclusion
b C R, we get the map E — E?% (P,Q) — (N(b)P, uy’/ N(a)) whose kernel is precisely E[b], hence
whose image is Fp. So our equivalence of categories HOMg(+, E) behaves as expected on ideals, and in
particular correctly associates with 7/ € a the N'(v")/ N (a)-isogeny E — E, associated with b = va.

The adjoint of the inclusion (a, Hg/ N (a)) — (R, Hg) is [N(a)]: (R, Hg) — (a, Hr/ N (a)) corre-
sponding to the isogeny ¢q: Eq — E which factorizes through [N(a)]: E — E, and the composition
N (a)] o ¢y : E — Eq — E gives the dual endomorphism 7/ of 7' as expected.

3. TRANSLATING BETWEEN MODULES AND ABELIAN VARIETIES

In this section we explain how to translate a module map into an oriented isogeny. Again for our
application to the class group action, we only need a very special case, but since it may be useful in
other context, we treat the general case here.

Most of the problems in the Deuring correspondence have a similar version in our setting. We only
sketch them briefly in this section, and raise some open questions along the way.
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Let E/F, be an R-oriented elliptic curve, with the orientation effective. This means that we should be
able to evaluate the action of some endomorphism v € R\ Z in polynomial time (in the discriminant of R
and log ¢). Every other endomorphism is of the form a/f +b/f - v, and we can use the division algorithm
of | ] to evaluate it efficiently. (We will only need to compute the action of endomorphisms in
R on points defined over F, or a small field extension, so we can always reduce our integers modulo
#E(F,) to reduce the height of our endomorphisms).

In particular, if E/FF, is ordinary or a supersingular curve defined over F,, then the Frobenius 7, is
an efficient endomorphism, and since the orientation is induced by , it is always effective. However, if
E/F, is a supersingular curve defined over F,2, we do need an efficient representation of our orientation
(such an efficient representation always exists by | ). Such an efficient representation can be
found if End(E) is known.

3.1. Presentations of abelian varieties.

Definition 3.1. Let M be a torsion free f.p. R-module, and let R™ — R™ — M be a presentation
of M. By Section 2, the abelian variety A = HOMpr(M, E) is the kernel of the matrix (acting on the
right) X: E™ — E™ associated with this presentation.

An effective (full) presentation of A is a given explicit model of A, along with an efficient way to
compute the embedding i4: A < E™ — E™. We will often only need the first map i4: A < E™ which
we still call a (partial) presentation.

Technically, we should consider i 4 as a copresentation, but we will use the term presentation for the
sake of simplicity. Notice that since A is the kernel of an explicit matrix of endomorphisms E™ — E™,
we always have an implicit description of the torsion points A[¢] as the kernel of the induced map
E"[¢] — E™[{]. Having an efficient representation is a way to map between a concrete model of A and
the implicit model as the kernel of E™ — E™.

Lemma 3.2. If A=HOMRg(M,E) andis: A— E™ — E™ is an effective presentation of A, then
any other presentation X': R™ — R" - M gives an effective presentation iy: A — E" — E™ of A.

Proof. The map R™ — M factorizes through R" — M, hencei/y: A — E" factorizesas A — E™ — E™,
where i4: A — E™ is effective by hypothesis, and E™ — E" is given by a matrix of endomorphisms. [

Example 3.3. We revisit Example 2.14. Let a C R be an ideal, we can always find an element
p € a such that a = (M(a), ). We have a presentation R™ — R? —» a, where the map on the right is
(z,y) — 2 N(a) + yu. Let E, = E/E|a] be the elliptic curve corresponding to a, the map R> - a C R
induces E — E, — E? whose composition ¢: (P, Q) — (N(a)P, uQ) factorizes through the embedding
iq: Eq — E?. And the image of ¢, whose kernel is E[N(a), i), is precisely Eq.

This gives an explicit embedding of E, into E? which we call a presentation, we can thus work on
torsion points of E, abstractly. However in general the resulting image curve will be of very high degree,
so it seems hard to directly recover a Weierstrass equation for E, (e.g. by interpolation). In Section 5,
we will give another approach to compute F.

Example 3.4. It is customary in effective versions of the Deuring correspondence to construct
two paths ¢1: E — Ey, ¢o: E — Ey of coprime degrees, where Ej is some special nice supersingular
curve. The map (¢1,¢2): E — E2 can be seen as a presentation of E for the equivalence of categories
HOMEnd(EO)('a Ey) of Remark 2.10.

Let ¢p: My — M; be a map of torsion free f.p. R-modules, and ¢: A; — Ay the corresponding
morphism of oriented abelian varieties. When ¢ is an N-isogeny (so M7, My are unimodular Hermitian
modules and ¢ an N-similitude), then given an effective presentation of A;, we will use the same
techniques as in | , § 3.3] to compute ¢.

Lemma 3.5. Let ¢: My — My be a map of torsion free f.p. R-modules, and ¢: Ay — As the
corresponding morphism of oriented abelian varieties. Given presentations ia, : A1 — E™ of A1, and
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T4, Ag — E™ of Ay, the map ia, o ¢ factorize through a map ¢: E™ — E"2:

iAl ny
A M R

b b

Ay —25 Em2
We say that ¢ is a presentation of ¢.

Proof. The presentation A; — E™ is induced by a surjective map R™ — M;, and Ay — E™ by a
surjective map R"2 — M. Since the module R™? is projective, the map R™? — My — M; factorize as a
map R"* — R" — M;. (I

Note that Ker ¢ = Ker ¢Ni4, (A1). Since ¢ is given by a matrix of endomorphisms and the orientation
is effective, we can compute its kernel; so if we have an effective presentation of A; we can compute the
kernel of ¢.

3.2. Submodules, kernels, and isogenies. Let A = HOMp(M, E) be an abelian variety represented
by the module M. An element m € M corresponds to a morphism R — M: r — r - m, hence to a

morphism ¢,,: A — E. We can thus interpret m as a “function map” on A via ¢,,, and we denote by
A[m)] the kernel of ¢,.

Lemma 3.6. Let M’ C M be a submodule of M, let A= HOMRr(M,E) and B=HOMgr(M', E).
The surjective morphism ¢: A — B corresponding to the inclusion M’ — M has kernel Ker ¢ ~
HOMR(M/M',E) ~ A[M'] .= NA[m;] for any generating set (my,...,m;) of M'.

Proof. By exactness, the kernel of ¢ corresponds to the cokernel M/M’. The generators m; induce a
presentation R” —» M’ which, composed with the inclusion, yields a map ¢ : R" — M whose cokernel
is isomorphic to M/M’. On the abelian variety side, the presentation of M’ gives an embedding
ip: B — E" as in Section 3.1, and the kernel of ¢ is the kernel of i5 0 ¢. A point P € A is in this kernel
if and only if m;(ip o ¢(P)) = O for all projections m;: E” — E, but by construction m; o iy o ¢ is the
map corresponding to the module element m;. Hence Ker ¢ = NA[m;]. (|

Conversely, given a subgroup K of A, we can let Mk C M be the submodule {m € M, K C A[m]}.
By definition, we have K C A[M].

Lemma 3.7. With the notations above, K = A[M'] for some submodule M' C M if and only if
B = A/K is represented by a module Mp. In this case, M' = Mg ~ Mp and B ~ HOMg(Mg, E),
K ~HOMgr(M/Mg, E).

Proof. This follows immediately from our equivalence of categories from Section 2. [Aurel : peut-étre
citer le thm précis ici 7] O

Corollary 3.8. Let K C A be a finite subgroup scheme stable by R. Assume that either p is not inert
in R, or that K is étale. Then K = A[Mk].

Proof. If B= A/K, then the R-orientation on A descends to B, and B is R-isogenous to EY since A is.
By Theorem 2.9, under our assumptions B is induced by a module, so we can apply Lemma 3.7. Il

Example 3.9. Let ¢): M7 — M> be a map of R-modules, it factorizes as My — M} — Ms, and
the corresponding map of abelian varieties ¢: Ay — A; factorizes as Ay — A, — Ay. The kernel of
As — A} is given by As[M)).

Example 3.10. By Theorem 2.11, an isogeny ¢: A — A corresponds to a Hermitian form Hy on
V = M ® Q, along with an inclusion M* C M. In this case Hy induces an isomorphism M* ~ M¥ and
we have Ker ¢ = A[M?].

A presentation is: A — E™ induced by R® — M induces by duality a surjection E" — A via
M* — R™.
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Example 3.11. Let (M, Hy;) be a unimodular Hermitian R-module, V = M ® Q. Since M* = M,
a submodule M’ C M satisfies M’ C M C M'*, since the restriction of Hy; to M’ is still integral. By
Corollary 2.13, the inclusion M’ C M corresponds to a N-similitude, with Hy; = %HM, if and only if
Mt = LM

N

Given an explicit presentation i4: A — E™ of A, corresponding to generators my, ..., m, of M, then
any element m can be written m = Y r;m;. Since the presentation i, is effective and the orientation
by R on E is effective too, we can compute the action of m on the N-torsion on A. This gives a way
to compute the kernel associated with an isogeny of exponent N (in particular associated with an
N-similitude) whenever N is smooth and the N-torsion of E' is accessible.

Conversely, if we have an isogeny ¢: A — B that we know is represented by a module map M’ C M
and Ker ¢ C A[N], we can find M’ by looking at the action of the m; on A[N] and solving some DLPs.
If m’ € M’, and we want to evaluate m’ on some point @ € B, by construction we have m’(Q) = m’(P)
for any P € ¢~ 1(Q). Indeed, since m’ € M’, Kerm' D Ker ¢ so m’ factorizes through B. Finding P
however might be difficult if ¢ has large degree, and we will come back to this question in Section 3.3.

3.3. Smooth similitude to isogeny. Let ¢: (M, H;) — (M2, H) be an N-similitude of unimodular
Hermitian R-modules, ¢: Ay — A; the corresponding N-isogeny of ppavs. Taking a presentation 1
of ¢ as in Lemma 3.5; we recover the kernel of ¢, alternatively we have Ker ¢ = A[)(M7)]. Since we
can compute the kernel of ¢, we can use an isogeny algorithm (such as [ ) to compute it. The
complexity of this computation will depend on the smoothness bound on N and whether the N-torsion
is accessible.

Now if we want to iterate our construction (typically to split a large isogeny into several blocks), we
also need a way to describe the presentation i4,: A3 — E™ (or any other presentation by Lemma 3.2).

We note that our construction above gives the value of i4, on ¢(P) for P € A;; however given @) € As,
recovering P € ¢~1(Q) may be expensive.

We will rely on the efficient representation of isogenies of [ ]. However, since it is only
stated there for N-isogenies rather than for general S-isogenies (with 8 symmetric under the Rosatti
involution and totally positive), we need to assume in this section that we can find a presentation
ia,: Ay X E5'® — E™ that is a product of Nj-isogenies 4, ;: As x E™23 — E™i. We say that such a
presentation is admissible. For instance if we have a Nj-isogeny As x E™21 — E™2.1 and a N»-isogeny
Ay x E™22 — E™22 with N prime to Ny, then we have an embedding Ay x E™21Tm22 _ pn2atnzz,
Extending [ ] to B-isogenies is out of scope of this paper (but see | ]). So we will be content
with the assumption above, and refer to | , Theorem 2.16] for a precise description of when we
can find such isogenies.

By the discussion above, we can evaluate the i4, ; on the image of ¢(A1), so in particular on the Ay[¢]
torsion for small primes ¢ prime to the degree of the i, ;. We can also evaluate i4, ; on the E™23[{],
since it will be given by a matrix of endomorphisms. By | ], this is enough to represent the i, ;,
hence the presentation 74, — E™2.

3.4. Similitude to isogeny. Let ¢: (M, Hy) — (Ms, Hs) be a N-similitude between unimodular
Hermitian R-modules. This time we do not assume N smooth. We would like to compute the associated
N-isogeny ¢: A3 — As between ppavs. We assume that we have an effective presentation for A;.

Following a similar strategy in Deuring correspondence, such an isogeny could be computed in two
steps:

(1) Find another N’-similitude v’: (M3, Hy) — (Ms, Hy), with N’ smooth and the N’-torsion
accessible, and use Section 3.3 to evaluate the corresponding isogeny ¢’ (and if necessary find an
effective presentation for As).

(2) We can now evaluate ¢ as follow. The map v = ¢ o @ is an endomorphism of Ay, which can
be lifted via presentation i4,: Ay < E™ to an endomorphism of £™ via Lemma 3.5. Since
~ can be efficiently evaluated, ¢ can be evaluated on the image of ¢’. In particular, ¢ can
be evaluated on the ¢-torsion (for small ¢ prime to N, N’), hence hence ¢ can be evaluated
everywhere thanks to [ ]. (An alternative approach which does not require a presentation
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of A,, is to instead use the presentation of A; to evaluate the endomorphism ¢ o ¢’, hence find
an efficient representation of ¢, hence find an efficient representation of ¢, still by [ D-

In Section 5, we will explain how to smoothen the isogeny corresponding to an invertible ideal a — R
by smoothening the embedded isogeny a & @ — R & R, for a an invertible R-ideal.

However, we probably cannot hope to get a general smoothening result as needed in Item 1 in the
general case. Indeed, there is a first obstruction related to the conductor. For instance, if a is the
conductor ideal (or divides the conductor ideal), then the corresponding isogeny E — E, is the going
up isogeny. Any other isogeny F — F, factorizes through this going up isogeny, so need to be of
norm divisible by A(a). At the level of ideals, this is seen from the fact that every element = € a is of
norm A (x) divisible by NV'(a)?. By the converse of Kani’s lemma, any N-isogeny F': E? — E2? comes
from an isogeny diamond. By the above remark, the component morphisms in dimension 1 are either 0
or of degree divisible by A/ (a), so deg F' is divisible by N '(a) too. We say that 1 is an horizontal isogeny
if the orders appearing in Lemma 2.5 are the same for M; and Mo.

A second obstruction, even in the case that A; = E9, is that we may have no N-similitude at all between
(RY, HY,) and (M, Hyr), because of the arithmetic obstructions described in | , Theorem 2.16].
This can be fixed, in the general case, by trying to find a smooth N-isogeny A; x E™ — Ay x E™ (for
the product polarisations) instead.

Open question: can we find an effective smoothening for an horizontal isogeny?

The main contribution of this paper is a positive answer to this question in the case of dimension 1
(by going to dimension 2); indeed in this case horizontal isogenies corresponds to invertible ideals.

Remark 3.12. By Lemma 2.5, the abelian variety A = HOM g (M, E) is isomorphic to a product
A =[] E;. Our solution in dimension 1 also gives a solution for horizontal isogenies in higher dimension
when the principal polarisations are product of principal polarisations of dimension 1. But of course in
general, a principal polarisation on A will not be a product polarisation.

3.5. Abelian varieties to modules. We can also look at the converse: translating from abelian
varieties and isogenies to modules and module maps.

Given an abelian variety A, which we know is in the image of HOMg(-, E), can we find the torsion
free module M representing A? In the case of dimension 1, the question boils down to finding from
E, an ideal equivalent to a, so can be done in quantum subexponential time thanks to Kuperberg’s
algorithm.

Open question: Is there an abelian variety to module subexponential quantum algorithm in higher
dimension? What if we suppose that we are also given some explicit R-endomorphisms on A, not induced
by the R-orientation?

Another related question is finding an effective presentation i4: A < E™ of A. If we know the module
M corresponding to A, we can try to find as in Section 3.3 a presentation R™ — M given by a product
of N;-similitudes, and apply a smoothening step to compute the presentation as in Section 3.4.

Conversely, if we are given a full presentation i4: A — E™ — E™ of A, where the map X: E" — E™
is given by any effective representations of isogenies, then it suffices to identify X as a matrix of
endomorphisms to recover the map R™ — R", hence the module M as the cokernel of this map. One
way to do that is compute the norm and trace of the endomorphism ~, and distinguish between v and 7
by evaluating it on a point.

If we are only given i4: A — E™, but not the map E™ — E™, we can try to construct it by looking
at how matrix of endomorphisms of E acts on the image of A[¢] by i4 for small ¢. This gives us a
relation matrix on the morphisms A — E given by i4. We could then use the fact that A is principally
polarised to detect when we have found enough relations (via pairings).

We now look at the question of converting an isogeny ¢: A; — Ao into a module map : My — M;.
The discussion of Section 3.2 handles the case of a “small” isogeny, and Section 3.3 handles the case of
smooth isogenies as long as we can find effective accessible presentations of the intermediate abelian
varieties.

For the general case, if we have effective presentations 4; — EJ" and Ay — E3?, we know by
Lemma 3.5 that ¢ lifts to a map ¢: El" — EJ?. If we can find an effective representation of b, we can
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try to identify it as a matrix X of endomorphisms as in the question above; this gives a representation
of the module map ¢: My — M.

Open question: can we find such a lift efficiently?

We remark that a similar problem is solved for the Deuring correspondence in | ].

4. HERMITIAN FORMS AND QUATERNIONS

Let F' be a field of characteristic not 2.
Let K/F be a quadratic extension. We will denote x + T the nontrivial automorphism of K/F.

4.1. Hermitian forms. A K/F-sesquilinear form on a K-vector space V is a map
(,):VxV =K

such that

e (. -) is F-bilinear,

e (-,-) is K-linear on the left, and

o (v,u) = (u,v) for all u,v € V.
The associated Hermitian form is the map H: V — F defined by

H(v) = (v,v).

The sesquilinear form can be recovered from the Hermitian form by polarisation: if i € K is such
that i2 = c € F* and K = F(i), then
1 )
(uv) = 7 (H(u o) — H(u—v) + S(H(iu +v) — H(iu — v))).
c

A similitude of multiplier A is a K-linear map A: V. — V such that H(Av) = AH(v) for all v
(equivalently, (Au, Av) = A(u,v) for all u,v). Write GU(H) the group of invertible similitudes. A
strict similitude (nonstandard terminology, I don’t know if there is a standard one) is a similitude A of
multiplier det(A). Write GU'(H) the group of invertible strict similitudes. An isometry is a similitude
of multiplier 1. Write U(H) the group of isometries. We have GU'(H) N U(H) = SU(H), the group of
isometries of determinant 1.

We say that the sequilinear (or the Hermitian) form is nondegenerate if its left kernel is trivial.

From now on, all our vector spaces will be finite dimensional and all our forms will be nondegenerate.

For every K-linear map V — V| there exists a unique K-linear map A*: V — V, the adjoint of A,
such that

(Au,v) = (u, A*v) for all u,v.
We then also have
(u, Av) = (A*u,v) for all u,v,
and (A*)* = A. We have det A* = det A. We have
A € GU(H) of multiplier A iff A*A = A1d iff AA* = \1d.
In particular, a similitude A of multiplier A satisfies
Nip(det A) = N2, ie. Ng/p(A " det A) = 1.
By Hilbert 90 we then have A~'det A = =71 for some p € K, and therefore ;1A is a strict similitude.
We therefore have
GU(H) = K*-GU'(H)

(and GU'(H) N K* = FX).

Let d € F* and V = K? equipped with the Hermitian form

H((.’L‘,y)) = 2T — dyy.

Then the adjoint of a 2 X 2 matrix acting on V is given by

G- )
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4.2. Quaternion algebras. A quaternion algebra over F is an F-algebra with basis 1,1, j,1j satisfying

2

i?=¢, j2=d, ij = —ji for some ¢,d € F*.

Such an algebra B = (Cﬁd) has a unique F-linear involution b ~— b such that

eb=>bforallbe B,

o b =D for all b,V € B,
e i=—i,and

«j=—j.

The reduced trace trd: B — F is defined by trd(b) = b+ b. The reduced norm nrd: B — F is defined
by nrd(b) = bb = bb and is multiplicative.

The matrix algebra My (F') is a quaternion algebra over F', and we write the corresponding quaternionic
involution M — M (to avoid confusion with application of = to the coefficients):

6\%) - (—ty j)'

The reduced trace is the usual trace of matrices, and the reduced norm is the usual determinant of
matrices.

Assume ¢ ¢ (F*)? and let K = F(i) C B. The quaternionic involution induces Galois conjugation
on K. Right multiplication by K gives B the structure of a 2-dimensional K-vector space with basis (1, 5):

B =K +jK.

Left multiplication by B induces an injective morphism of F-algebras ®: B < Endg(B) = My(K)
given by

. dy
<I>:x—|—jyl—><x y) for x,y € K.
y
The reduced norm is a Hermitian form on the K-vector space B:

nrd(z + jy) = 2T — dyy for z,y € K.

We have ®(b)* = ®(b) = ®(b) for all b € B, and in fact for all M € My(K), we have M € ®(B) if and
only if M* = M (and in that case M = ®(b) with b = M (1)).

Since for all b € B, ®(b)®(b)* = ®(bb) = ®(nrd(b)) = det ®(b), the map ® induces a group
homomorphism

®: B* — GU'(nrd),

and this map is an isomorphism: if MM* = det(M)Id and M is invertible, then MM* = MM
so M* = M and M € ®(B*) as claimed.

Reformulating, we get:

Lemma 4.1. An element b € B* is a nrd(b)-similitude for the norm form on B; it induces a
nrd(b)-strict similitude ®(b) on K ® K (for the product norm form on each copy of K ).

5. COMPUTING THE IDEAL GROUP ACTION

Let a be an invertible ideal. Via our equivalence of categories, we need to compute the isogeny
corresponding to the inclusion of a — R which is an N = A(a)-isogeny. In particular, the principal
Hermitian form on a is Hg/ N (a) by Example 2.14.

We try instead to build a dimension 2 isogeny corresponding a @@ — R@® R (orthogonal sum). Rather
than computing the corresponding isogeny, we can use any equivalent isogeny. We thus look for a
unimodular module equivalent to a @ a.

Let R = Z[6], and consider the quaternion order O = Z[i, j,4j] with i2 = —1, j = 4.
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Lemma 5.1. Let Hg be the canonical Hermitian form on R given by the norm Hg(z) = N(x) = 27,
and Ho the canonical R-Hermitian form on O given by the quaternionic norm Hp(x) = N(x) = zZ.
Let T = a @ ia The Hermitian module (a, Hgr/ N (a)) & (a, Hr/ N (a)) is equivalent to the Hermitian
module (Z, Ho/ nrd(Z)).

Proof. The order O is a rank 2 free R-module, and via this identification, by Section 4.2, since i2 = —1,
the form Hp is the Hermitian form Hgr @ Hpg. Since nrd(Z) = N (a), the conclusion follows. O

Proposition 5.2. Let Z C O be as above. Let J be an O-ideal equivalent to Z: J = PZL for some
B € O®Q. Then B induces a morphism 5: T — J C O, which is a nrd(J)-similitude for the O-
Hermitian modules (Z, Ho/nrd(Z)) — (O, Hp)), and ®(8) (where @ is defined in Section 4.2) induces
a nrd(J)-similitude for the R-Hermitian modules (a, Hr/ N (a)) @ (@, Hr/ N (a)) — (R, Hg) ® (R, Hg).

Proof. The same reasoning as in Example 2.14 shows that § is an nrd(J)-similitude, so ®(f) is a
nrd(J)-similitude too by Lemma 4.1. O

We have thus reduced our smoothening problem from a rank 2 R-module to a rank 1 O-module. For
any N’ large enough (N’ = O(A%)), applying KLPT gives a morphism 3: Z — J C O. (The order O is
not necessarily a maximal quaternion order, but KLPT still applies with only minimal adaptations.)

TODO insert here adapted KLPT.

By Proposition 5.2, this morphism corresponds to an N’-similitude of Hermitian modules, hence an
N'-isogeny of principally polarised abelian surfaces: E* — E/a x E/a. [Aurel : Notation? FE,? E/E[a]?]

The KLPT algorithm is heuristic, for a proven polynomial time algorithm under GRH (but with a
worse bound), we refer to | ]

We compute the kernel of this isogeny using Section 3: let R* — Z be a surjection, composing with
the map § above, we get a morphism R* -7 — O ~ R?, hence a 4 x 2 matrix X. Passing to abelian
varieties, we have a morphism F: E? — E*, whose image is precisely F, x Fg; since the matrix X is
explicit, we can recover the kernel of F' and evaluate it as a N’-isogeny.

It remains to distinguish between E, and Eg. Since we have an N’-isogeny F: E? — E, x Eg, we can
also compute its contragredient isogeny F, and compute 4/ = F o~y o F: E? — E?_ where v acts by —1
on one of our unknown curve and by 1 on the other. Evaluating v’ and comparing with the matrix we
were supposed to get, allows us to identify which curve is which. An alternative (simpler) method is to
use pairings to compute the degree of the two individual isogenies from E — F,, and the two isogenies
FE — F7 and distinguish the two codomain.

We remark that we can also evaluate the inclusion map E, x Ez — E* on points prime to N’/ by
going through E? — E*; by [ ] this is enough to reconstitute the individual isogenies Fq, — E
and Ez — E (given by projection from E*).

Theorem 5.3. Computing the action by a can be done by evaluating a N'-isogeny F': E*> — E/ax E/a

in dimension 2, where N' can be taken to be powersmooth of norm (AR min(m,N(a)))Q, The kernel
of F' can be recovered from evaluating the action of R on E[N'] and some pairings + DLPs. Using a
powersmooth bound of O(log(A)) for N', the corresponding isogeny in dimension 2 can then be evaluated
in O(log®(AR)) arithmetic operations.

Proof. The complexity of the isogeny is given by [ , Proposition 2.9 and Corollary 2.10]. O

Example 5.4. We have implemented in PARI/GP our algorithm to find an equivalent isogeny
F: E? - E/a x E/a which is an N-isogeny with N powersmooth in a CSIDH setting over F, with
p a prime number of around 1024 bits. We note that for this size of primes, computing the lattice
of relations of the corresponding class group is completely out of reach. We take a random (split)
prime ideal a of norm 512 bits (which is the approximate size of the class group). Our non optimised
KLPT implementation finds on average in less than 1s a powersmooth equivalent isogeny with average
smoothness bound of 2586. The code is available at TODO.

Using the results of Section 3 to compute the corresponding powersmooth isogeny remains a work
in progress. However, an old unpublished “record computation” from 2010 which used AVIsogenies
[ | to compute a 1321-isogeny in dimension 2 (so an isogeny of degree 1745041) took around 5h
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back then. Although the state of the art of isogeny computation in higher dimension has improved
somewhat since, this computation was specifically done on an example where the 1321-torsion was
rational; in our class group application we will need in general to work over an extension. So although
we have a general polynomial time algorithm, we cannot hope to have an efficient algorithm. However,
by carefully selecting the parameters (so that we have many accessible torsion), it is plausible that we
may find practical instances (the situation is very similar to making the Deuring correspondence from
polynomial time to effective). We refer to Section 7 for more details and to Appendix A for an explicit
example.

Example 5.5 (An elementary description of CLAPOTIS). As explained in Section 1, the powersmooth
isogeny E? — E, x Fg that we construct using our equivalence of categories Section 2 with Hermitian
R-modules, can also be described as follows as the isogeny attached by Kani’s lemma to an isogeny
diamond.

Given R = Z[d] and an invertible ideal a C R, construct as above the quaternion order O = Z[i, j, ij]
with 2 = —1, j = §, and the ideal Z = a @ ia of O of reduced norm nrd(Z) = N (a). Find a smoothening
integral ideal J = BZ of T of reduced norm N (e.g. via an adapted version of KLPT). Since J is
integral, 8 =7/ nrd(Z) for some element v € Z of reduced norm nrd(y) = N nrd(Z). Write v = = + iy,
with € a and y € @. We have nrd(y) = vy = 27 + vy = N (z) + N(y) = N N (a).

To the element x, we can attach as in Example 2.14 the isogeny ¢, : E — FE, corresponding to the ideal
b =7/ N (a)a, isogeny of degree N'(b) = N'(x)/ N (a), and whose kernel is E[b]. The endomorphism 77 is
divisible by M (a), and 75/ N (a) € b so the endomorphism Zg/ N (a) of norm N(z)/ N (a) x N'(y)/ N (b)
factorizes as E — FE, — E, a N'(z)/ N (a)-isogeny followed by a N'(y)/ N (a) isogeny.

Applying the same factorization to the element y, we get that Ty/ N (a) factorizes as E — Fz — FE, a
N (y)/ N (a)-isogeny followed by a N'(x)/ N (a) isogeny.

We thus have an isogeny diamond, hence by Kani’s lemma an isogeny F': £ x E — E,; x Fgz which is
a (N(z) + N(y))/ N(a) = N-isogeny. If N(z)/ N (a) is prime to N'(y)/ N (a), the kernel of F is simply
given by (N(x)/ N (a)P,TyP) for P € E[N].

The general case can be treated as in Section 3. We refer to | ] or the appendix for a self contained
treatment of this elementary approach.

6. APPLICATIONS

The main application is of course signatures and zero knowledge proofs of oriented isogenies. We refer
to [ | for a nice survey on existing signatures and ZK-schemes. The main difference of CLAPOTIS
with a signature scheme like SeaSign | | which is also polynomial time, is that like CSI-Fish | ]
we are able to prove knowledge of an isogeny corresponding to an arbitrary ideal a, whereas SeaSign can
only prove knowledge of a random ideal sampled as a = [[ a;* with small ideals a; and exponents e;.

We discuss a second application about computing an isogeny with known generator kernel. Assume
that E/F, is an ordinary curve, or a supersingular curve defined over k = F,. If K = (T) C E/F, is
generated by a rational generator T' € E(F,) of order IV, and K corresponds to an horizontal isogeny
(for instance this is automatically the case if uy NF, = 1), then, assuming the factorisation of N is
known, we can apply Section 5 to compute the isogeny ¢: F — E/K in polynomial time in logg.

Indeed, we need to compute the ideal a C End(FE) corresponding to K. We can compute Z[r] C
Endy(F) in polynomial time by point counting, and since we know the factorisation of N, we can find in
polynomial time the N-primary part of the conductor of Endy(FE) using | ]. In particular we get
the order Z[n] C R C Endy(F) such that the index [Endg(F) : R] is prime to N; this is enough to apply
the methods of Section 5, as long as we are careful to use isogenies of degree prime to the conductor f
of R in Endg(E).

For each prime ¢ | N, we know that ¢ = ¢1/ splits in R, and compute which of the two prime ideal is
zero on (£/€;)T. If N = (¢°N’, then (a,¢°) N R = (5. This allows us to recover a N R, and then we can
apply Section 5.
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7. PERSPECTIVES

Although we have a polynomial time algorithm to compute the ideal class group action, the bound
of Theorem 5.3 is rather impractical. However, it is probably that by selecting appropriate primes p,
especially ones with large easily accessible 2™ or 3™-torsion, we can make the algorithm much more
practical, especially when combined with the ideas of splitting the isogeny in several blocks using
Section 3.

Our technique in Section 5 to compute the class group action is to reduce to KLPT. There is a
lot of literature in making the Deuring correspondence practical [ ; ;

]. Cleary all these techniques (selecting a nice “SQISign” prime, refreshing the torsmn w1th
an endomorphism when splitting the isogeny in blocks) could extend to our settings. We hope that by
appropriately selecting parameters, we will be able to make the CSIDH group action not only polynomial
time, but also practical.

While our equivalence of categories applies to non invertible ideal, our algorithm to find a suitable
isogeny in dimension 2 requires the ideal a to be invertible. In particular, it does not apply to the
conductor ideal of R (see Section 3.4), hence we do not have a polynomial algorithm to climb in the
volcano when the conductor is divisible by a large prime number. There thus seems to be a strong
algorithmic gap between computing horizontal ideal isogenies and vertical ones. In fact, the module
representation can only describe horizontal or ascending isogenies, so descending the volcano cannot be
described by an ideal. So moving vertically efficiently in the volcano will require new ideas.

More generally, we hope that the results of Section 2 will help develop higher dimensional isogeny
based cryptography beyond simply using Kani’s lemma. Using a similar method as in Section 5, it might
also be possible to improve the bounds on the KLPT algorithm by going to higher dimension, using the
equivalence of categories described in [ | (see Remark 2.10).
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APPENDIX A. AN EXPLICIT EXAMPLE

We work with a quadratic order R = Z[4], with discriminant A = —pq, with
p = 693097151489577169008672217912084052214809976903253232857439

q = 1440142799453329926006673041416897496815561790394412607217999

two large primes of around 200 bits.
We take a random prime ideal of norm around
a = (1186892866599125331799827393043, § + 562463914750828188674631388488).

We find the corresponding N’-similitude (R® R, Hg ® Hg) — (a®a,1/ N (a)(Hr & Hg):
al ag
o —a
with

a1 = 730594377336378409258208129615094829324651597292118719029127132479947334614738396732690462773929709811310289562069071998485+
239138920366495643822436943904896735642540491010143844930656444899207383116259620297039498968810541239735635138084059477053560711057268511"
az = 114155504161919358119344632422213146022144428116077667107470114109708474263601497365460072137180639005673846382636237257276026—
387659205644547192157915897414205420630533588822373999565979849161300384020793015572121919703684564680400468276590637565187124420599258998"

which is B-powersmooth with B = 827.
[Aurel : TODO ajouter la note CLAPOTT en appendice 7]
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