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Abstract

We describe an efficient algorithm for the computation of separable isogenies between abelian
varieties represented in the coordinate system given by algebraic theta functions. Our algorithm
decomposes in two principal steps. First, from the knowledge of a subgroup K isotropic for the
Weil pairing of an abelian variety A, we explain how to compute the theta null point corresponding
to the quotient abelian variety A/K. Second, from the knowledge of the theta null point of A/K,
we give an algorithm to obtain a rational expression for the isogeny from A to A/K. The algorithm
resulting as the combination of these two steps can be viewed as a higher dimensional analog of
the well known algorithm of Vélu to compute isogenies between elliptic curves.

In order to improve the efficiency of our algorithms, we introduce a compressed representation
that allows to encode a point of level 4¢ ofa g dimensional abelian variety usingonly g(g+1)/2-48
coordinates. We also give formulas to compute the Weil and commutator pairings given input
points in theta coordinates. All the algorithms presented in this paper work in general for any
abelian variety defined over a field of odd characteristic.
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1 Introduction

1 Introduction

The general problem of computing separable isogenies between abelian varieties splits into different
computational sub-problems depending on the expected input and output of the algorithm. These
problems are:

o Given an abelian variety A;, over a field k& and an abstract finite abelian group K compute all
the abelian varieties By, such that there exists an isogeny A, — B, whose kernel is isomorphic
to K, and give rational expressions for the corresponding isogenies.

o Given an abelian variety A, and a finite subgroup K of A, recover the quotient abelian variety
B, = A, /K as well a rational expression for an isogeny A, — B,,.

e Given two isogenous abelian varieties, A, and B}, compute a rational expression for an isogeny

A/e —>B/€.

In the present paper, we are concerned with the first two problems. In the case that the abelian variety
is an elliptic curve, efficient algorithms have been described that solve all the aforementioned problems
[Ler]. In particular, an algorithm proposed by Vélu [ ] takes as input a finite subgourp G of
cardinal £ of an elliptic curve £}, and returns the equation of the quotient £}, /G at the cost of O({)
additions in E,. The algorithm of Vélu also gives a rational expression for the isogeny £, — E, /G in
the coordinate system provided by the Weierstrass form of the elliptic curves.

For higher-dimensional abelian varieties much less is known. Richelot’s formulas | , ] can
be used to compute (2, 2)-isogenies between abelian varieties of dimension 2. The paper [ ] also
introduces a method to compute certain isogenies of degree 8 between jacobian of curves of genus
three. In this paper, we present an algorithm to compute (¢, ..., {)-isogenies between abelian varieties
of dimension g represented in the coordinate system provided by algebraic theta functions for any
£ >2and g > 1 when the characteristic of k is odd and relatively prime to £.

Let » € Nbesuch that 2|z and n > 4. Let 7 = (n,n,...,n) € Z8,and Z(n) = Z8 [nZ8. We
denote by _#; the modular space of marked abelian varieties (A, £,0,,) where £ is a totally
symmetric ample line bundle on A}, and © 4 is a symmetric theta structure of type Z(7) for £
(see[ ,sec. 2]). In the following, we will also call a theta structure of type Z(7) a theta structure
of level 7. The modular space #; is well-suited for computing modular correspondences since the
algebraic systems which play the same role in this space as the classical modular polynomials have their
coefficients in {1,—1}, and as a consequence are much more amenable to computations than their
counterparts using the j-invariant in genus 1 or the Igusa invariants in genus 2 . In the article [ 1,
we have defined a modular correspondence:

@ My — M X M, (ﬂi)iez(ﬁ) “i)iez( Z “ivny izt

jez(l)

for { € N* prime to 7, which can be seen as a generalization of the classical modular correspondence

Xo(€) — Xo(1) x Xy(1) for elliptic curves (see for instance [ ]). To explain it, let p; and p, be
respectively the first and second projections M5 X M — M, and let o, = p, 0, ¢, = p,0 .
The map @, : M7 — M issuch that (x, ¢, (x)) for x € //l[n(k) are modular points corresponding

to ! -isogenous abelian varieties.
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In fact, consider <ﬂi>ie2(7n) € §91_1<(bi)ieZ(ﬁ))' The modular point (;). iez(tn deﬁnes a triple
(A4, 2,0 Ak) and the classical isogeny theorem for algebraic theta functions [ , th. 4] gives
an explicit isogeny 7z : A, — B;,. We denote by 7 : B, — A, the isogeny that makes the following
diagram commutative:

x €A, A z€A,

N/

y €B,

The main result of this paper is:

Theorem r.1:

Let By, be a dimension g marked abelian variety. Let (T, ..., T,) C By[{] be a basis of a maximal
subgroup K of B, [{] isotropic for the Weil pairing. Let 7t : B, — By, [K be the corresponding isogeny.
One can compute the compressed coordinates of the modular point (a; )ie 2 corresponding to Tt with

O(log(¢)) addition chains in B, and O(1) { th_yoots of unity extractions.

Once we have (a;), _,, Ty We can compute the compressed coordinates of the image of a point in By, by 7t

with O(log({)) addition chains in B,,. Taking the generic point of B, we obtain in particular a rational
expression for the isogeny T.

The precise meaning of addition chain and compressed coordinates will be made clear in the course of
the paper. A proof of this theorem is given in Section 4.2 and Section s.1. It should be remarked that
this result constitute a higher dimensional analog of the classical Vélu’s algorithm since by combining
the two conclusions of the theorem, we obtain an efficient algorithm which takes as input an abelian
variety B;, and a maximal subgroup K of B, [{] isotropic for the Weil pairing and computes a rational
expression for the isogeny B, — B, /K.

Note that the classical isogeny theorem for theta functions is not sufficient for our purpose of
computing isogenies between abelian varieties. Although it is effective, the isogeny theorem can only
be used to compute isogenies from a marked abelian variety of level £ to a marked abelian variety of

level 7 where 7 divides /, so it only provides us with a way to compute isogenies by “going down” in
the level of the theta structure. At some point, we need a way to compute isogenies by “going up” the
level and this is precisely what gives Theorem 1.1. We can then combine the two theorems: once we
have computed an isogeny 77 : B, — Ay, it is possible to compose 7 with an isogeny 7, : A, — C},
given by the isogeny theorem such that 77, o 72 is an £?-isogeny (see [ , Sec 3] or Section 2.2). In

) then

fact, let Cj, be the abelian variety associated to the modular point (¢;); ez ) = @2 <<ﬂi)ieZ(ﬁ)

we have the following diagram
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S

B, G

The isogeny 7,0 7T is then an ¢ 2 isogeny between By, and C,, which are two marked abelian varieties
with a theta structure of level 7. Possible applications of our algorithm includes:

o The transfer the discrete logarithm from an abelian variety to another abelian variety where the
discrete logarithm is easy to solve [ ]

o The computation of isogeny graphs to obtain a description the endomorphism ring of an abelian
variety.

e The computation of Hilbert class polynomials.

We end up the introduction with some general remarks about the algorithms presented in this paper.
The assumption that 7 is prime to £ is inessential. There is nonetheless one noticeable difference if we
drop this hypothesis. Suppose that we are given B, [¢]. Since By, is given by a theta structure of level
n, we can recover B, [ 7] using the action of the theta group on the theta null point (bz’)ieZ(ﬁ)' Ifl is
prime to 72, this gives us B, [{ 7], and we can use the first assertion of Theorem 1.1 to obtain a modular

point of type Z(¢{n). If { is not prime to 7, we have to compute B}, [{ ] directly.

Although we only consider the case of (¢, ..., {)-isogeny, it is also possible to compute more gen-
eral types of isogenies with our algorithm. With the notations of Section 2, let 8y = (&',..., é\g)
be a sequence of integers such that 2|8 and ;|8 , and let (bi)ieZ(é‘o) € M5, be a modular

point corresponding to an abelian variety By,. Let 8" = (¢, ... ,fg) (where ;];_,) and define
S=(84..., Sgﬁg). Let (4,);e7(s) € M s be such that ¢, <(“i)ieZ(é‘)> = (bi)ieZ(é‘o) where ¢, is
the natural inclusion of Z(8) into Z(8'). The theta null point (;);c7(s) corresponds to an abelian
variety Ay, such that thereisa (¢, - ,fg)—isogeny 7 : A, — By, which can be computed by the
isogeny theorem [ , Th. 4] (see Section 2.2). The isogeny we compute in Step 2 is the con-
tragredient isogeny 7 : B, — Ay of type (€, /€, [l5,-++, 1,4, -+ ). Using the modular
correspondence ¢, to go back to a modular point of type Z(8,) (see Section 1) gives an isogeny of
type (fg/fl,fg/fz, e l,flfg,fzfg, e ,fgfg). For the clarity of the exposition, we will stick to

the case 8y, =7 and & = {7 and we leave to the reader the easy generalization.

For an actual implementation, we want to use the smallest 7 possible to get a compact representation
of the points and a fast addition chain. In fact it is possible to tweak Theorem 1.1 to make it works
with the case 7 = 2. This case is very important in practice: it allows a more compact representation of
the points than for 7 = 4 (we gain a factor 28 in space), a faster addition chain (see Section 4.1.1), but
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most importantly it reduces the most consuming part of our algorithm, the computation of the points
of {-torsion, since there are half as much such points on the Kummer variety associated to an abelian
variety. For each algorithm that we use, we give an explanation on how to adapt it for the type Z(2)
case: see Section 3.2.1 and the end of Sections 4.2, 5.1, 5.3 and 6.2.

The paper is organized as follow. In Section 2, we recall the isogeny theorem and we study the
relationship between isogenies and the action of the theta group. We recall the addition relations,
which play a central role in this paper in Section 3. We then explain how to compute the isogeny
associated to a modular point in Section 4. If the isogeny is given by theta functions of type Z(4/), it
requires (4 )8 coordinates. We give a point compression algorithm in Section 4.1, showing how to
express such an isogeny with only g(g+1)/2-48 coordinates. In Section 5 we give a full generalization
of Vélu’s formulas that constructs an isogenous modular point with prescribed kernel. This algorithm
is more efficient than the special Grébner basis algorithm from [ ]. There is a strong connection
between isogenies and pairings, and we use the above work to explain how one can compute the
commutator pairing and how it relates to the usual Weil pairing in Section 6.

2 Modular correspondences and theta null points

In this section, we fix some notations that we use in the rest of the paper. In Section 2.1, we recall the
definition of a theta structure and the projective embedding [ , Sec. 1] deduced from it. In
Section 2.2 we recall the isogeny theorem, which relate the theta functions of two isogenous abelian
varieties with compatible theta structures. In Section 2.3 we study the connection between isogenies
and the action of the theta group on the affine cone of the projective embedding given by the theta
structure.

Let A, be an abelian variety of dimension g over a perfect field # and denote by K(A4},) its function
field. An isogeny is a finite surjective map of abelian varieties 7z : A, — By, and is said to be separable
if the function field K(A}) is a finite separable extension of K(B},). A separable isogeny is uniquely
determined by its kernel, which is a finite subgroup of A, (k). In that case, the cardinality of the kernel
is the degree of the isogeny. Since we will only consider isogenies of degree prime to the characteristic
of k, we will only deal with separable isogenies. In the rest of this paper, by £-isogeny for £ > 0, we
always meana (¢, - - ,{)-isogeny where (,--- ,{) € N&.

2.1 Theta structures

Let A, be a g dimensional abelian variety over a perfect field k. Let £ be an ample totally symmetric
line bundle of degree d on Aj,. We suppose moreover that d is prime to the characteristic of &. Denote
by K(&) the kernel of the isogeny ¢ o, : A, — A, defined on geometric pointsby x — 7L ® £ !
where T is the translation by x. Let § = (&4,..., Sg) be the sequence of integers satisfying &;|8; , ;
such that, as group schemes K(Z) o @f: (Z]8 Z-Z)i . We say that & is the type of £ In the fo}lowing
welet Z(8) = @;g:l(Z/SiZ)k, Z(8) be the Cartier dual of Z(8), and K(8) = Z(8) x Z(8). If
x€Z(8)and/l € 2(8), we denote (x,£) == {(x).

Let G(£) and A(8) be respectively the theta group of (A, &) and the Heisenberg group of type

, P. 294 ). In this article, elements o will be written as (x, with x € an
S p ] h le, el f G(Z) will b . h K(%)and
: — 7" % is an isomorphism. We know that an are central extensions o
i ;2 ph ki hat G(&) and 2€(8 | fK(Z
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and K(&') by the multiplicative group G, ;. By definition, a theta structure © 4, On (A, &) isan
isomorphism of central extensions from #(8) to G(£). We denote by e, the commutator pairing
[ , p-203] on K(Z) and by e the canonical pairingon K(8') = Z(8) x 2(3) We recall that
if (x;,x,) and (y,7,) are in K(8') we have e ((x, %), (1, 72)) = (x157,2)/ {(¥15 X,). We remark that
a theta structure © 4 induces a symplectic isomorphism 6Ak from (K(8),es) to (K(Z),ey). Let

K(&)=K,(£) x K5(£L) be the decomposition into maximal isotropic subspaces induced by @Ak.

The section K(8') — #(8) defined on geometric points by (x,7) — (1, x,y) can be transported
by the theta structure to obtain a natural section s ¢y : K(£) — G(Z) of the projection x :
G(ZL)— K(Z). We note SK, () (resp. SKz(g)) the restriction of this section to K () (resp. K, (£)).

Recall [ , p- 291] that a level subgroup K of G(&) is a subgroup such that Kis isomorphic to
its image by x.

Let V = T'(A;, ). There is an action of the theta group G(£) on V by v — ¢~'¢%(0) for
v € Vand (x, ¢, ) € G(&). This action can be transported via ©,, toan action ofjf(é\) on V It

can be shown that there is a unique (up to a scalar factor) basis (191-)1-62( 8 of V such that this action is
given by:
NN . W\ q©4
(2,2,/).0, " =a(-i—h,j).0, " (1)
If there is no ambiguity, in this paper, we will sometimes drop the superscript © 4 in the notation
eA

k
This basis gives a projective embedding g 14, — IP’Z_l which is uniquely defined by the theta
b

)

3

structure © 4 . The point (a;) =pg, (0 Ak> is called the theta null point associated to the theta
k

ieZ($
structure. Mumford proves [ ] that if 4|8, %o, (Ay) is the closed subvariety of ]P’Z’ ~! defined
by the homogeneous ideal generated by the Riemann equations:

Theorem 2.1 (Riemann equations):

Forall x,y,n,v € Z(28) that are congruent modulo Z(8), and all y € Z(E), we have

( Z X(t x+y+t x y+t Z )( 14+7)+t u— 7)+t) =

teZ(2) t€Z(2)
Z X t)ﬁx+u+t x—u+t)‘( Z X(t)ﬂy+v+tﬂy—v+t)' (2)
teZ(2) teZ(2)

The data of a triple (4;,.%Z, ®Ak) is called a marked abelian variety of type Z(&'). We denote by
M 5 the quasi-projective variety defined as the locus of all theta null points associated to marked
abelian varieties of type Z(&'). We recall [ , Th. 28] that if # > 4, then .#; is an open subset in
the projective variety described by the following equations in P(k(Z(%))):

Z x(t)ayy, x+t Z x(t)a,y.a u+t)

teZ(2 teZ(2
Z )( t ﬂz—x+tdz—y+l>'( Z X(t)ﬂz—n+tﬂz—v+t) (3)
teZ(2) teZ(2)
ax = ﬂ—x
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forall x,y,u,v,z € Z(n),suchthatx +y+# +v =2z andall y € Z(E)

2.2 Isogenies compatible with a theta structure

Let (4;);e7(5) € M5 be a theta null point associated to a triple (Ak,f,@Ak ). Let 8y € Z¢& be
. In the following we consider Z (&) as a subgroup of Z(J')
via the map ¢ : ( Diel.q] € Z(é\ ) (81x)iep. <] € Z(8). From now on, when considering
Z(8,) C Z(8), we always refer to this map. Let K C K(.Z) be any isotropic subgroup for e, such
that we can write K = K| x K, with K; C K;(%£).

Let B, :Ak/K and 7t : A, — B}, be the associated isogeny. Since K is isotropic, E = SK(,Z)(]Q
is a level subgroup, so by Grothendieck descent theory there exists a polarization %, on B, and an

*(&,)- The theta group G(%,) is isomorphic to Z(K )/K where Z(K) is

isomorphism & ~ Ty

the centralizer of K in GZ)| » Prop. 2]. We say that a theta structure O on (B, %) is
7t-compatible with © A, if it respects this isomorphism. The isogeny theorem ([ , Th. 4]) then

© ) —
gives a way to compute (7(¥, Ok )iez(m) given (¢, % )ieZ(E)' Note @Al(K) =7, X Z,, we call
Z1 X 22 the type of 7. IfZl = 0 we say that 77 is of type 1, and if22 = 0 that 7 is of type 2. We note
le‘ ={x €Z(8)|(x,Z,) = 1}. Then there is a bijection between 7t-compatible theta structures on

(B, %,) and isomorphisms o : le'/Z1 — Z(8y) (see , Th 4]).
Since we are mainly interested with 14 -isogenies, we now specialize to the case S = f_n, S = Z S0
that 8§, =72. We take K = A, [{],, we thenhave Z, =0, Z, = 2(() C Z(fn) sothat m: A, — B,

is an {-isogeny of type 1. In this case we have le‘ = Z(n) C Z({n), and we always consider the
compatible theta structure on B, corresponding to o =1Id [ , Sec. 3]. We recall the following
proposition [ , Prop 4].

Proposition 2.2 (Isogeny theorem for compatible theta structures):

Let(a;),, @ be a theta null point associated to a triple (A, £, © A, ) and (b; )iez(r) 4 theta null point
associated 1o (By,, £y, O3, ). Let @ : Z(n) — Z({n) be the canonical embedding. Then (bi)ieZ(S/) =
91(4;);ez(s") if and only if there is an L -isogeny v of type 1 such that © B, i TO-compatible with © 4 . In

9% 9%
this case, let (3, ™). iex(tn ( resp. (9.7 ) ;e 2(m)) be the canonical basis of L (resp. X, associated to © 5,
(resp. ©p ). There exists some o € & such that forall i € Z(7)

A C Oy
7TK(’(91, k): w'&ga(ik)' (4)
It is easy to describe £- -isogenies of type 2 from Proposmon 2.2. In fact, let J be the automorphism

of the Heisenberg group %(fn) that permutes Z(fn) and Z(fn) Jo(a,x,y) =(a,y,x). We define
JAk = @Ak 0J,0 ®Ak ,where J JAk is the automorphism of the Theta group of A, that permutes K (&)

and K,(£'). (There is a similar automorphism J of the theta group of By ; we will usually note these

automorphisms J since the theta group is clear from the context.) If 77, is a compatible isogeny of
type 2 between (A, £,0, ) and (B, £, ©p ), then 7, is a compatible isogeny of type 1 between

I0
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(Ak,g,jAk ° ®Ak> and (B,, %, Jz0 Op, ). Since the action of J is given by [ , Section 5]
3, 00 e
¥, A — Z e(z,])ﬂ/ R (s)
j€2(tn)

we see that we have for all i € Z(7)

A 0,
m(8,)= D280 (6)

JEZ(0)

Applying Equations (4) and (6) to 6Ak yields the formulas for the modular correspondence ¢ :
M- — Mz X M from Section 1.

2.3 The action of the theta group on the affine cone and isogenies

Let 01 (4;,%,0,,) — (By, £,,©p, ) bean {-isogeny of type 1 between compatible theta structures.
The action by translation p o from K(£') on A}, descends toanactionon By,: if x € K(£), the induced
action on B, is simply the translation by 7t(x). The situation is more interesting if we consider the

action of G(Z). Since G(&£) is a central extension of K(£) by G, ;, it is natural to let G(£) acton a
central extension of Ay by G,,, . More precisely, let V- =T'(A;, £ ) andlet p, 1y : Ap(V) = P (V)

be the canonical projection. Let gk = p&:(v)(Ak) be the affine cone of A, which is a central extension
of A, by G, ;, The action of G(£') on V given by (1), induces an action g, on Zk. This action
is compatible with the action of K(&£') on A, in the following way: if x : G(£) — K(&) is the
projection, Pa,(v)° ﬁg =pgox Similarly we note Ek the affine cone of B, and ﬁi’o the action of
G(Z,) on Ek.

~0O ~ ©
W say that a coordinate system (191. & )ieZ(E) on Ay, lifts the projective system (ﬂi e )ieZ(ﬁ) on

—_— © [C) (€]
A, ifforallj € Z(gn), on the principal open set defined by ﬁj " we have ng(v)(ﬁi A /19]. Ak )=

~0 ~0) ~
¥, e/ 19]. * . Obviously, such a coordinate system (%, ) \is defined up to an action of G, |, and we

i€Z(ln
. O, .
fix such a choice for the rest of the paper. In the same manner, we denote by (192. )iez () a coordinate

~ ) ~0
system on By, that lifts the coordinate system (3, )i 2 We will usually replace (3, ! resp.

i€Z(ln) (
~0 ~ ~
(191. % )iez(m) by (ﬂi)ieZ(Tn) (resp. (ﬂi)ieZ(ﬁ)) when no confusion is possible.
Since . is symmetric, there is an action of the morphism [—1] on V given by f € V — ®(:*f)

where ¢ : A — A maps x to —x and @ is the normalized isomorphism ¢*% — £. This action
extends to an action on A, that we denote also by [—1] : X € A, (k) — —X. Now since G(£) is
a symmetric theta structure we have [—1]*¢;, = §_; [ ,p-331) soif X = (%i)ieZ(E) then

= (x—i)iez@)'

~ ~ ~0) ~0
Let 7T : A, — Bj, be the morphism such that ﬁ*(ﬁi K )= 192. * fori e Z(7). Note that 77 is just a
lift to the affine cone of the isogeny 7 : A, — By, so that the following diagram commutes:

1I
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gkgz)Ak_)Ak

T T

Ek *ka—> Bk
We call 77 the lift of 77 compatible with the choice of affine coordinates on A p and Ek.
We will now study the link between the action g of G(£') on A, and the morphism 7. To
simplify the notations, if (@, 7,i) € #°(8) and X is a geometric point of A, we will note (2, 7,7).X

=P 2(04,((2,7,7)))-%. Let K = @Ak (Z(?)) be the kernel of the isogeny 7t : A, — B}, and recall
(see Section 2.2) that G(%Z,) = g(l?ﬂ)/l?

-
Proposition 2.3:

Lerge ff(]’g ) and note g its image in ff(]?n)/[?n I/Vehaveﬁzo(g) =7Top4(g)

7T

Proof: This is an immediate consequence of the fact that the two theta structures © A, and © B, are
7t-compatible. [ |

Fori € ,%”(E), we can define a mapping 7T; : Zk — gk given on geometric points by X —
ﬁ(ﬁg(@Ak (2)).%). te, (i) e ff(gn), Proposition 2.3 shows that 77; = ﬁ_%(m) o 77, hence 77;
can be recovered from 77 and the action g ¢, . Since Z'(K ;) D sy )(K,(£)), the interesting mappings
to study are then 77; := ﬁ(l,i,o) forieZ (f_n) They are given on geometric points by

~ ~

ﬁi«ﬁj(%))]‘ez(ﬁ,)) = (ﬁi+z./<5))/ezm)-
Corollary 2.4:

Keeping the notations from above, we have

1. Let & be a subset of Z (f_n), such that & + Z(n) = Z (f_n) Then X € gk (E) is uniquely
determined by {7;(X)};c.o-

2. Lety € Zk(E) be such that 7T(y) = T(X). Then there exists | € Z (Z) cZ (Un) such that
7 =(1,0,7).X and
() = e, (4, 7)7,(%)-
In particular 7 ,(V) and 7,(%) differ by an £*" -root of uniry.

Proof:
1. Since 7?1-((5]-(5))].62(%)) = (51-_,_5'/(%))]«62(5), from {7;(X)},. one can obtain the values

{19j(x)}/ey+z(ﬁ)' If & + Z(n) = Z({ n) this shows that we can recover X = <ﬁj(x)>je2(7n)'

I2



3 'The addition relations

2. If 7(y) = 7(X), then Pa, &) - pAk( x) € K. So there exists j € Z(Z) anda €k such that
y = (,0,7).X. Hence 191»(37) = aeﬁ(i,]')'gi(f). Since 7(X) = 7(y), @ = 1. Moreover, as
JEZ(), e (i +k,j)=e(i,])if k € Z(7) so that 7,(¥) = e(i, /) 7,(). n

Corollary 2.4 shows that g ¢, descends to an action on B, ./ 1y (0) where u,(£) is the group scheme
of {-roots of unity on k.

Example 2.5: . _ .
o If{ is prime to 7, the canonical mappings Z(7) — Z({n) and Z({) — Z({n) induce an
isomorphism Z(7) x Z({) = Z({n), and one can take # = Z({) in Corollary 2..4.

e If/ isnot prime to 7, a possible choice for & is

S ={ D> Aelr 0.l -1}

i€[l.g]

3 The addition relations

In this section we study the addition relations and introduce the notion of addition chain on the
affine cone of an abelian variety. These addition chains will be a basic tool for the isogeny computation
algorithm presented in Section 4 and Vélu’s like formulas of Section s.

In Section 3.1 we use the action of G(£) on the affine cone and the canonical lift s o : K(£) —
G(Z£) to introduce some canonical affine lifts on the affine cone. In Section 3.2 we prove in the
framework of Mumford’s theory a particular presentation of the Riemann relations, and we deduce
from them the addition relations. In Section 3.3 we use the results of Section 2.3 to study the properties
of the addition chain.

3.1 The canonical lift of the action ofK(,,%) to the affine cone

For the rest of this article we suppose that we are given a modular point (4; ), 2() corresponding to a
~® ~ ~

triple (By,, %, O3, ). We choose a coordinate system (ﬁi % )iez(ry on By, anda 03, € 1171;]:(03/e ). We

remark that a choice of SBk S PE;(O 5,) C Ek is nothing but a choice of an evaluation isomorphism:

gy + £(0) ~ k. In this Section and Section 4 we also suppose that we are given a modular point

(a; )zeZ(Z ) corresponding to a triple (A, %, @A ) such that ¢, ((a )zeZ ) )= (bz‘)ieZ(m where ¢, :

'//lfn

. . AI@Ak
have an {-isogeny 7 of type 1 between A, and B),. We choose a coordinate system (791.

— M is the modular correspondence introduced in Section 1. By Proposition 2.2 we then
5 " ° > )iez@) on
Ay and we denote by 0, the unique point in p;:(o A/e) such that Op = (0 Ak) where 77 is given by
7 =87 fori € Z().

We recall that the theta structure © 4 define a section sy ¢y : K(Z)— G(Z£), so that the map
x EK(L) = sg(4)(x).04, €Ay inducesa section K(L) — Ay, of the map p, : A, — Ay. (More

generally this give a canonical section of the action by translation of K(£') on A, to an action on Ay).

13



3 'The addition relations

Thus, once we have chosen 0 4,0 Ve have a canonical way to fix an affine lift for any geometric point in
K(¥).Fori € Z(f_n) letﬁ =(1,2,0) EA andfor j € Z(K_n) let (3 =(1,0,7) 5A We also put
E- = 7r(~ P)= (OA ), and R; = s, ( ) We remark that {R } G 1s the kernel K. of 7 which

explains the important role the points R ; will play in the rest of this paper.

3.2 The general Riemann relations

The Riemann relations (3) for //ZE and the Riemann equations (2) for A, are all particular case of
more general Riemann relations, which we will use to get the addition relations on A;,. An analytic
proof of (a partial fourier transform) of these relations can be found in [ , Tha p. 137].

Theorem 3.1 (Generalized Riemann Relations): _

Let (A,e,.fé’,@Ak) € M and we suppose that 2|n. Let x,,,, 4,0,z € AL(k) be such that x, +
Vo +u +v, =2z Letx, =z—x,y, =2z— Vi My = 2=ty and vy = z — vy. Then there
exist X; € P;;(xl): vy, € P;:(yl)’ i € P;k< ), v € by, ")), %, € PA:(xz): 5, € P;:(J’z)’
i, € p;:(uz), 7, € p;:(vz) that satisfy the following relations: for any 1,7, k, 1, m € Z({n) such that
itj+k+l=2mleti’ =m—i,j'=m—j, K =m—kandl'=m—1, thenforall y € Z2),

we have

Z x(t z+z x1)19]+t yl Z X(t)0k+t(wl)l91+t(vl>)

teZ(2 teZ( 2)
Z x(t z+t 19] +t 3’2 Z x(t 19k’+:(”2)191 +t(7)2)) (7)
teZ(2) t€Z(2)
Proof: Ifx =y = u = v =0, the preceding result gives the algebraic Riemann relations, a proof of
which can be found in [ , P- 333]. We just need to adapt the proof of Mumford for the general
case.

Let p; and p, be the first and second projections from A, XA, toAy. Let 4 = p,*(L)® p,*(ZL).

The theta structure © 4 induces a theta structure © 4 4 such that for (i, /) € Z(¢{n) X Z({n) we
(C]

have ¢ ?]’.*XA = 19 &

Ay x Ay, (x,y)— (x +y, x —). We have {*(M ) = M. Since ©,, isa symmetric theta structure

® 19 % (see [ , Lem. 1 p. 323]). Consider the isogeny & : A, X A, —

i 2 2 .
€] A there exists a theta structure @<~ on %2 such that ©%" and ©% are compatible in the sense

of Mumford [ , p- 317]. The theta structure ¢ * then induces a theta structure /" on /2.
One can check that this theta structure is compatible with the isogeny & [ 2 325]). Applying
the isogeny theorem (see [ , p- 324]), we obtain that there exists A € % such that for all
i,j €Z({n):
EWLed)=2 > (97 88 (8)
u,0€Z(21n)
n+v=1
u—v=j

Considering this equation on the affine cone, we can always choose our affine lifts such that taking
the evaluation at these lifts yield A = 1. In the following we assume this is the case. Using equation (8)

14



3 'The addition relations

we compute forall 7,7 € Z (%) which are congruent modulo Z (E) and X,y €A, (E)
S aWFL L GEnFL == 3 20FL®ICE)

teZ(2) teZ(2)
u,0€Z(2ln)
utv=i+j+t
n—v=1—j+t
— g2
- Z X t1+t2 z+t )19]4—: (N)

ty, zzeZ( )

(g (o)
teZ(2 teZ(2)

(9)
So we have:

Z X z+]+t x+y)191 ]+t Z X k+l+r(”+v> k— 1+t<%_v)) =
teZ(2) teZ(2)

OIPIOLET! Zx DTZE) - (X (1) ﬁ;jl (3 2 FL@) =
teZ( ) teZ(2 teZ(2) teZ(2)

Z x(t Z+Z+t(x+v)19 —I+t x—fv Z x(t /e+;+t u+y)z9/f]+t( u—y)). (1)
teZ(2 teZ(2

Now if we let x = xq+yq, ¥ = xXg — Vo # = g+ Vgand v = ug — vy, wehave x +y + u +v =
2(xo+uo)sowecanchoosez =xq+ugsothatz—x =uyg—y5,z—y =g+ 2z — 4 = Xy — Uy,
Z — v = Xy + v,. By doing the same change of variable for 7, 7, k, [ we see that the theorem is just a
restatement of Equation (10). (see [ ,p-334)) ]

From the generalized Riemann relations it is possible to derive addition relations.
Theorem 3.2 (Addition Formulas):
We suppose that 4|{n. Let x,y € A,(k) and suppose that we are given X € p;kl(x), y e p;: ()
;c—:; € pgkl(x — ), then there is a unique point m € gk (E) such thatfori,j,k,l,m € Z(E)
verifyingi +j +k+1=2m

~

Z x ()0, x+9’)19]+t( )( Z X(t)5k+t(6Ak)’§l+t(6Ak)) =

teZ(2) teZ(2)

(32 2 ie 10 3)-( D 20D (B, (1)

teZ(2) teZ(2)

wherei',j', k', I are defined as in Theorem 3.1. We have pAk(x +y)=x+y.

Thus the addition law on Ay, extends to a psendo addition law on ;f 15 we call it an addition chain and
we note x +7y = chain_add(X,y,x — y).

15



3 'The addition relations

Proof: We apply the Riemann relations (7) to x +y,x — 9,04,0,. We have 2x = (x +y) + (x —
Y)+0,+04—y=x—(x+y),y = x—(x—y),x =x—0,,x = x — 0y so Theorem 3.1
shows that there exist a point m €A k(k) satisfying the addition relations (11). (Remember that
(¢,(— y))zeZ(In (0_l(y))lez Tny S€€ Section 2.3.)

It remains to show that this point is unique. For this, it is enough to prove that forall 7,7, k,[,m €
Z(fn) such that i +7 + k& +/ = 2m and all X € Z( 2) there exist £/, 1/, m’ € Z(%) such that
i+j+k +1"=2m'and Zzez ﬁk’+:(oAk )191 +z(oA # 0. Then, by summing over the characters
the first bracket of the left hand side of equation (11) we obtain the products 191+[(x + y)ﬁ]_H(A;)

fori,j € Z(fn), from which we can recover the coordinates of the point x + .
Now, let /el, ll € Z(Z(n) be such that & = kl + ll and [ = /e1 — ll. Using formula (9), we get:

> 08, BB, @)= Z% OFL,@) || 22 208G | (o)

teZ(2) teZ(2 teZ(2)
Using [ , P- 339 eq. ()], we obtain that forall y € Z(2) there exists /e; €k + Z(f_n) and
11/ el + Z(f_n) such that:

Z X ﬂfj—l(aAk) ' Z X 19;?_:[(614]6) ;éO.

teZ(2 teZ(2
This complete the proof. ]
In order to obtain an efficient algorithm to compute addition chain, we first we reformulate the
addition formulas (see [ ,p-334]). Lee H = Z({n) x Z(E), and for (7, y ) € H define
Z X l+t
teZ(2)

Then we have forall ,7,k,/,m € Hsuchthat2m =1+ +k+!

~

;(x + )i (x — )it (04 )7 (04, ) =
1

2Tg Z <m2+52><2§1> u;_ m+§ %Mm /+5(37)Mm /e+f< ) m— l+§(~) (13)
EeH 26=€Z(2)x0

It is easy to see that (51'(%))1'&2(@)’ is determined by (7;(X));cp-
Algorithm 3.3 (Addition chain):

Input X,y and x —y such that p, (X) = ps (V) = pa,(x — ).
Output x +y = chain_add(X,y,x — ).

16



3 'The addition relations

> Forall: € Z(E), X € Z(E) and X € {x +y,§,)7,6/4k} compute
i, (X)= Z x(£)8,,,(X).
teZ(2)
> Forflli € Z(E),choosej,k,l €Z(ln) suchthati+j+k+1=2m, 4 (x —y) #0, ;k@k) #£0,
EI(OAk) # 0and compute

1
228 ﬁj(m)ﬁk(’a,qk )i (6Ak)
DN CORR 29160/ ) A ) AN € L € N OO0

EeH 28=€Z(2)x0

w(x+y)=

- Forall; € Z(f_n), output

Complexity Analysis 3.4:
Asi;,, = x (), ,, weonly need to consider (€n)8 coordinates and the linear transformation between # and
& can be computed at the cost of (272¢)€ additions in k. We also have ﬁi,l(—f) = ﬁ_i,l(f).

Using the fact that for t € Z(E) the right hand terms of (14) corresponding to & = (&, +¢,&,) and to
& =(£,,&,) are the same up to a sign, one can compute the left hand side of (14) with 4 - 4¢ multiplications and
48 additions in k. In total one can compute an addition chain in 4.(4¢7)8 multiplications, (4¢7)¢ additions and
(¢n)8 divisions in /. We remark that in order to compute several additions using the same point, there is no need
to convert back to the § at cach step so we only need to perform Step 2.

The addition chain formula is a basic step for all the algorithms to be presented in the sequel of this paper and
we will use it as an unit of time for all our running time analysis. In some cases it is possible to greatly speed up
this computation. See for instance [ ] which uses the duplication formula between theta functions to speed
up the addition chain of level two. See also Section 4.1 where it is explained how to use isogenies to compute the
addition chain for a general level by using only addition chains of level two, so that we can use the speed up of
[ ] in general whatever the level of the theta structure is.

Remark 3.5:
The addition formulas can also be used to compute the usual addition law in A, by choosing j =0in
Equation (14) for every i.

The addition chain law on A, induces a multiplication by a scalar law which reduces via p,

to the multiplication by a scalar deduced from the group law of 4. Let X,y € gk andx+7y €

pA_l(x + »), then we can compute 2x +y := chain_add(x +,X,y). More generally there is a
k

recursive algorithm to compute for every m = 2:

mx +y:=chain_add((m — D)x+y,%,(m —2)x +7y)

17



3 'The addition relations

We put chain_multadd(z,x +y,%,7):= mx + y and define

chain_mult(m,X):= chain_multadd(m,X,X, 6Ak ).

We have p, (chain_mult(m,%))=m.p, (X). We call chain multadd a multiplication chain.

Algorithm 3.6 (Multiplication chain):
Input meN,x+7y,X,5€A,.
Output chain multadd(m,x +7y,%,%).
= Compute the binary decomposition of m := > 5,2'. Set m" := 0,xy, = y,xy_; =
chain_add(y,—%,x +7) %, := 0, andx,:=X.
- Foriin[/..0] do
If bi = 0 then compute
X,,, ‘= chain_add(x,,,x,,’,X)
X,,,/,1 = chain_add(x,,,,X,,/,%;)
XY,,, = chain_add(xy,,X,,/,Xy,)

m =2m'.
Else compute

X,,,/41 = chain_add(x,,,,X,,,%,)
Xy, 42 i=chain_add(x,,,,X,,/,1,X,)
XY,,,/41 := chain_add(xy,,,X,,,Xy_;)

m':==2m' +1.

- Outputxy, .

Correction and Complexity Analysis 3.7:
It is not completely trivial to see that 72x + y does not depend on the Lucas sequence used to compute it. We
prove this in Corollary 3.13 where we show that multiplication chains are associative. In order to do as few division
as possible, we use a Montgomery ladder [ , Alg. 9.5] for our Lucas sequence, hence the algorithm.

We see that a multiplication chain requires O(log(2)) addition chains.

3.2.1 Thecasen =2

Let &, be a principal polarization associated to a symmetric irreductible divisor ©. Then £ = .,5,”02 is

of degree 2 and we have for all i € Z(2), (— 1)*8, = ¥,, where (—1) is the inverse automorphism on
Ay. As a consequence, £ gives an embedding of the Kummer variety K, = A, / & 1. Suppose that
the even theta nulls for © are non zero. Then the embedding given by £ in the projective space is an
immersion. (See [ ,Cor.s]and [ ,Th.1] or [ , Cor. 4.5.2].)

There is no properly defined addition law on K ;: from +x € K, and &y € K;, we may compute
#£x =% y which gives two points on K. However, if we are also given +x—y)eK 4> then we can
identify £(x +y) € {£x £ y}. Thus the addition chain law from Theorem 3.2 extends to a pseudo
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addition on the Kummer variety. With our hypothesis, by looking at the proof of Theorem 11 we see
that we can use it to compute the pseudo addition law on the Kummer variety.

Letx,y € K. To compute x £y without £(x — ) we can proceed as follows: let X = (X; )ieZ(E)’

7

Y = <Yi)ieZ(§) be the two projections of the generic point on K4 X K. Then the addition re-
lations X = chain_add(x,y,Y") describe a system of degree 2 in K, X K, whose solutions are
(E(x +y),£(x —»)) and (£(x — »),£(x +)). From this system, it is easy to recover the points
{%(x +y),£(x — v)}, but this involves a square root in k. (The preceding claims are proved in the
preprint [ , Lemma 3].) W call this a normal addition, coming back to isogenies computations,
it means that when working with 7z = 2, we have to avoid computing normal additions, since they
require a square root and are much slower than addition chains.

Finally, to make our algorithms work with 7 = 2, we have to introduce the notion of compatible
additions. Suppose that we are given &x, %y, £z € K, together with =(x 4 y), and £(y + z). Using
a normal addition we can compute {£(x + z),+(x — z)}; we want to find +(x + z). If we apply
the normal addition to x +y and x + z we find {£(2x + y + z),£(y — z)} while the normal
addition applied to £x +y and +x — z give {#=(2x + y — z), £(y + 2z)}. This allows us to identify
+(x + z) if we suppose 2x ;é 0,2y 76 0,2z 75 O,and 2(x +y +z) 75 0. W call this the compatible
addition £(x + z) with &(x +y) and £(y + z).

3.3 Theta group and addition relations

In this Section, we study the action of the theta group on the addition relations. We also show that
addition relations are compatible with isogenies between two abelian varieties with compatible theta
structures. By combining this we find the addition relations linking the coordinates of the points
{]Néi }ieZ(E) on Ek' By considering different modular point (ai)ieZ(ﬁ) € 991_1((1’1‘):'62(5)) and the
associated isogenies 7z : A, — By, we can then understand the addition chains between any isotropic
subgroup of B}, [£] (see Section 1). In particular we exploit this to show that we can compute the chain
multiplication by £ in O(log(¢)) addition chains.

Given the way the addition relations are set up as a consequence of the isogeny theorem, there
should be no surprise that they are compatible with the action of the theta group. Still, some care must

be taken, if we have X, )7, x+yandx—y € Zk (E) such that

x +7y = chain_add(X,y,x —y),

and we take g;, g, € G(&), then by looking at the projections in A;, we certainly have

(§0&)-x+y = Achain_add(g,.X,g7,(g;0g )-x—)

where A € B*. However for trivial reasons, A 75 1 in general (See Lemma 3.10), so we have to work a
bit to determine A.
We begin with two easy lemmas.

Lemma 3.8:

Suppose that X, 57, 11, V1, %Xy, Yy, Uy, Uy € A b (E) satisfy the general Riemann relations (7).

o Forevery g € G(X), g.X1,8.5, 8- Hy1> 8015 §-Xss § V> - Uy, 8.0y also satisfy the Riemann
relations.
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o For every {-isogeny of type 1 7t : (A, £, O 1) = (B, %4, Op,) such that ©y is rt-compatible
with © 4 , then (%)), 7)), w(3,), 7 (07), T(%,), T, (3, ), 7T (T,) € Ek also satisfy the

Riemann relations.
Pmof: This is an immediate computation. ]

Lemma 3.9: -
Let(a,i,7) € %(f Yand X € Ay,. Then we have —(a,1,7).X = (a,—i,—]).(—=X), and 7T(—X) =
—7(%)

In particular —(a,1,7).04 = (2, —1,—7).0,,.
Proof: IfX =(x;).

,we recall that we have defined =X = (x_;). The factthan —(a,7,7).X =

iez(Tn)

(a,—1,—7).(—X) is a direct consequence of the fact than the coordmates (19 ) of X are the
i/ieZ(ln)

theta functions associated to a symmctric theta structure. We can also check this with a direct com-

eZ(

putation: Ifu € Z((n) we have by (1): ((,7,7).X), = a{—u —i,j)a, ;. (a,—i,—]).X)_, =

a{n+i,—j)x_,_; =a,,; =x,. The rest of the lemma is trivial.

We now turn to the action of%(fn) on Ak Since %(fn) is generated by & Z(fn) and Z((n)

(where we embed Z (f n)and VA (f n)in S (f ) with the usual sections), it is enough to study separately
the action of these subgroup on the addition relation. The action of &* is immediate:

Lemma 3.10:

For Ay Ay Ay , € & and X,y €A, (E), we have:

x0 by
22
chain_add(A,X, A, 5,4, x —y)= * 2 chain_add(%,5,x —y), (15)
x—y
An n—1) /171
chain_multadd(r, /1x+}x +7,4,%, /1},)7) = /{n—l"' chain multadd(z,x +y %,9),
y
(x6)
chain_mult(n,A %)= AZZ chain mult(n,X). (17)

Proof: Formula (15) is an immediate consequence of the addition formulas (1 1). The rest of the lemma
follows by an easy recursion. [ |

A more interesting result is the compatibility between the addition formulas and the action of

Z(n)onA,:

Proposition 3.11 (Compatibility of the pseudo-addition law):
ForX,y,x —y € Ay(k), and i,j € Z({ n), we have:

(1,i+/,0).chain_add(X,y,x —y) = chain_add((1,7,0).,(1,7,0).%,(1,i—7,0).x —y) (18)
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In particular if we set 13;- =(1,,0).0 4, we have:

~

i = chain_add(ﬁ ﬁ P;—/)

Proof: Letx +7y = chain_add(¥,y,x — y). By Theorem 3.2, we have foreverya, b, c,d, e € Z(E)
such thata + b +c+d = 2e:

Z )( a+t x+y>79b+z x=y Z )( c+z ﬁd+z( ))

teZ(2) teZ(2)
Z XU —€+a+t(.)7)19e b+t 37) Z )( e c+t )ﬁe—d+t(§))' (19)
teZ(2) teZ(2)

Applying (19)toa’ =a+i+j,b'=b+i—j,c’=c,d =d,e’ =e+1i,it comes:

( Z x(t) l+]+a+t(x+y)1‘9b+z ]+: Z x(t c+: ﬁdﬂ( )) =

teZ(2) teZ(2)
Z X —] e+a+t(.)7)19 +e—b 57) Z )( z+e c+t )0i+e—d+t(§))' (ZO)
teZ(2) teZ(2)

Thus (1,:+7,0).x +v,(1,7,0).X,(1,7,0).5 and (1,7 —,0).x — v satisfy the additions relations.l
By applying 77, we obtain the following corollary:

Corollarz§ 2:
ForX,y,x —y €Ay, and 1, ]EZ(gn) we have:

7;4j(chain_add(X,y,x —y)) = chain add(7,(X), 7;(¥), 7,_;(x —¥)).

Proof: Remember that by definition 77;(X) = 7((1,7,0).X). The lemma is then a trivial consequence
of Proposition 3.11 and Lemma 3.8. [

We remark that by settingX =5 = 0 4, in Corollary 3.12, we find

~

Ri.;=chain_saa(R, K .R, ).

By considering different isogenies 7 : A, — By, we can use Corollary 3.12 to study the associativity of
chain additions:

Corollary 3.13:
Let x € B,[{] and y € B,. Choose any affine lifis X, § and x x+y Y of respectively x, y and x +y.
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1. Foralln € N*, weput nx = chain_mult(n,X)andnx +y = chain_multadd(n,x +7y,%,7).
Then for all ny, n, € N* such that ny > n,, we have

(n, +n,)x = chain_add(7n,x, n,x,(n; — n,)x), (21)
(1, +n,)x +y = chain_add(n,x + 7y, 7,%,(n; — n,)x +y). (22)

In particular, we see that nx + y and nx do not depend on the particular sequence of chain_add
used to compute them.

2. Foralln € N*, —nx +vy = chain_add(n,—(x +y),—%,—%)

Proof: First we prove assertion 1. Let Kbea subgroup of B, [¢] containing x which is maximal and
isotropic for the Weil pairing. Consider the isogeny 7 : B, — D, =B, /K andlet v : D, — B, be
the contragredrent isogeny. We choose any theta structure on (Dy,, 7%%,) compatible with 7. There

existi,j € Z({)and A, A €k suchthat ¥ = AT, (OD )andy = A;7T; (OD )-IfA; = A; =1, then
the assertion 1. of Corollary 3.13 is a consequence of Corollary 3.12. But it is easy (see Lemma 3.10) to
see that (21) is homogeneous in A, hence the result.

Next we prove assertion 2. Once again, let 7 € Z(Z) be such that X = A, 7@ ((1, i,O).SDk), and
let " be any point in 5_1(37). By homogeneity we may suppose that A; = 1. By Corollary 3.12 and
Proposition 3.11, we have nx +y = T ((1 n., O) y ) Now by Lemma 3.9, we have —nx +y =

7 (—(1,7.1,0).5") = 7 ((1,—n.1,0). —3") = chain_add(n, —(x +9),—x,—9). [ |
The following remark concerning Corollary 3.12 is a useful fact to study the case £ not prime to 7:

Remark 3.14:
LetX € Ak, 1 € Z(fn) and let j = 7(X). Let m € Z be such that £|m. By Proposition 3.11 and
Corollary 3.12, we have

7((1,m1,0).X) = chain_multadd(m,7,;(X),R 1,5)

But if {|m, then mi € Z(n) C Z(E) By Proposition 2.3 we have 7 ((1,m2,0).X) = (1,mi,0).y,
and (1,m1,0).) can be computed with the formulas (1). Hence

(1,m1,0).y = chain_multadd(m, 7T;(X), 1,37)

¢

In order to have a complete picture of the action of S (ﬁ) onA &> we have yet to describe the

action of Z({n) on A, In order to do so, we recall from Section 2.2 that J is the automorphism of the
Theta group that permutes K, and K. Since SK,(2) = Jo Sk, (%) © J, we just have to explain what is
the action of of J on the addition relations.

22



3 'The addition relations

Proposition 3.15:
Suppose that x,y,u,v,x",y',u',v' € Ak(k) satisfy the general Riemann equations (7). Then J.x, 3.y,

Jou, 3.0, 3.x, 3.y, Tou’, T alsomtz:ﬂ(ﬂ

we recall (see (5)) that

Jox=( Z e(i:j)x/>i52(f7)

j€z(tn)

Proof: Ifx = (xi)ieZ(ﬁ)

where e = e, is the commutator pairing.

By hypothesis, we have for , 7, k,l e Z(f_n) such thatz + 7 + B+ =2m:

Z 19z+t ]+t Z 19/€+t 191+z )>

teZ(2) teZ(2)
Z 191 +z ]+: Z ﬁk +z 191/ /)) (23)
teZ(2) teZ(2)
LetA, i = (Zzez(i)X(t)5i+t<x>7§j+:(y))' If1,],K,Le Z(f_n) are such that / +J + K +
L =2M, we have:
Ayanasrg= 25 x(T Z U+T,i)0,(0))( 23 el +T.5)5;(x)
TeZ(2) eZ(ln) JEZ(ln)

= 2(T)e(T i+ el e, /)8,(x)8;(7)

TeZ(2),i,jeZ(ln)

A;{,S.x,ﬁ.y,[JA 2,330 KL=

ST T+ T)e(Tyi+)e(Tyk+De(l,ie(], )e(K, k)e(L, )T, ()3 (), ()8, (v)
T,,T,EZ(2)
ijk,l€Z(ln)

= 2 eli)el, el R)e(L, D (x)F,0)F()5(2)
i ke l€Z(ln)
Z 2T+ T)e(Ty,i + j)e(Ty, k +1))
T,,T,€Z(2)

But

48 ife( i+ )=e(k+[)=
(3 2T +T)e(Ti+ e (Tz’k‘H)):{o feboit )=kt
T, T,eZ(3)
and e(-,i 4 j) = e(-,k + 1) (as characters on Z(2)) if and only if there exists 72 € Z(f_n) such that
i+j+k+1=2m Nowsincel +]+ K+ L =2M wehavee(I +],-)=e(K+L,-)andasa

otherwise
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3 'The addition relations

consequence:

A it ), +8)e(Kok+ )e(L L+ 6)0,,, ()5, ()84, (1)8)4,, (2) =

t,6EZ(2)

Ae(,1)e(], je(K,k)e(L D) > .0 (008,14 0)F ()81, (0) =

t,LE€Z(2)

Ae(L,i)e(], [)e(K,R)e(L,D) > Gy (N se 0Ty ()04 (0) =

ty, :ZeZ( )

/16(1/, i/)e(]/,j/) ( (L/ Z 291 "+t (x i+t O )ﬂk "+t (u /)51/-442(7})

1,5,€Z(2)
where A =48 if i + j + k + [ = 2m and A = 0 otherwise. By combining these relations we find that
A)(,j.x,j.y,]JA)(,j.u,j.v,K,L = A)(,j.x’,j.y/,]/J/A)(,fi.u/,3.7/,K,L‘
which concludes the proof. n

Corollary3.16:  _ - R
LetX,y,x —y €Ay(k), andleti,j € Z({n), k,l € Z({n). Then we have:

(1,i+j,k+1).chain_add(X,y,x —7v)
=chain_add((1,7,£).X,(1,7,0).5,(1,: = j, k= ).x —y). (24)

Proof: By Propositions 3.11 and 3.15 we have

(1,0,k +I).chain_add(X,y,x —y) = chain_add((1,0,%).X,(1,0,/).5,(1,0,k — I).x — y)

(25)
Now since (1,7,%k) =(1,0,k)(1,,0), we conclude by combining Equations (18) and (25). [ |

Using Proposition 3.15, we can prove that the addition relations are compatible with any isogeny.

Corollary 3.17:

Suppose that X1,771, #1, Dy, Xy, Vy» Hyy Vg € Ak satisfy the Riemann relations (7). If w : (A, %, @Ak)
(B, %L, ©p,) is an isogeny such that ©p_is m-compatible with © 5 , then 7(%,), 7(3,), 7(#,), 7(07),
(%), (yz) 71y, 7(T,) € Bk also satisfy the general Riemann Relations. In particular, for all
XY, x—y EAk, we have

7i(chain_add(X,y,x —y) = chain_add(7(X), (), T(x — y)).
Proof: ltis easy to see that Lemma 3.8 is valid for any compatible isogenies of type 1 (it is not restricted

to {-isogenies). By Proposition 3.15, we can apply Lemma 3.8 also in the case of compatible isogenies of
type 2, which concludes since every compatible isogeny is a composition of isogenies of type 1 or 2.1
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4 Application of the addition relations to isogenies

4 Application of the addition relations to isogenies

In this Section we apply the results of Section 3 to the computation of isogenies (see Section 4.2).
More precisely, we present an algorithm to compute the isogeny 7 : B, — A, from the knowledge of
the modular point 0 4, We give in Section s algorithms to compute O A, from the kernel of 7.

But first, we remark that since the embedding of A, that we consider is given by a theta structure of

level {7, a point 72(x) is given by ({7)8 coordinates, which get impractical because of memory con-
sumption when £ is big. In order to mitigate this problem, in Section 4.1, we give a point compression
algorithm such that the number of coordinates of a compressed point does not depend on £.

We recall that we have chosen in Section3.10, =(4;). ., 5~ such that 7(0, ) =0 , and that we
k tlie k &

Z({n)
have defined for i € Z({n), Ei =(a;4))jezim) € Ek(/e).

4.1 Point compression

o iez(fy by

(”Z)ni+€j = (ﬁl(f))] If(d;, -, dg) is a basis of Z(¢), we can prove that X can be easily computed

Suppose that £ is prime to 7. We know that X € Zk (E) can be recovered from (77;(X))

from just (77 (’}Z))ie[l..g] and (7 +d‘(§))i,j€[1..g])' Ife,-, e, ) is the canonical basis on(f_n), in

 as abasis of Z(£).

the following, we take (d; = n¢;);p; o

Proposition 4.1:

LetX € Ay(k)andi,j € Z(f_n) We have

ﬁiﬂ,(f) = chain_add(ﬁi(f),ﬁj, 771'_]‘(;))-

Proof: We apply Corollary 3.12 with j = 5Ak, x —y = X, so that we have chain_add(X,y,x —y) =
X. We obtain:

Definition 4.2:

Let S C G be a subset of a finite abelian group G such that O, € S. We denote by S’ the smallest
subset of G (for the inclusion) such that S’ D S and §' = S/U{x +ylxeS,yes,x—yes'}
We say that  is a chain basis of G if S’ = G.

Example 4.3:
Let G=Z({). Let (e},--, e, ) be the canonical basis of G. If { is odd, a chain basis of G is given by

§=1{0g:¢;e; +e}; jeri glicj
If/ is even, a chain basis of G is given by

S= {OG, €€ + i€ +oet eig }il,m,ige[l..g],i1<~-~<ig'

In each case, the chain basis § is minimal, we call it the canonical chain basis &(G) of G.
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4 Application of the addition relations to isogenies

We recall that, in Example 2.5, we have defined & C Z (E) suchthat S +Z(n)=72 (f_n) To S
we associate a canonical chain basis & C . as follow: if € is prime to 72, then & = Z({) C Z({n),and
wedefineS =6&(Z(0))=1{d,,---, dg,dl-i-dg, N dg_l—i-dg}. Otherwise we take S = &(Z({n)).

Theorem 4.4 (Point compression): ~ -

Let X € Ay(k). The point X is uniquely determined by O, and {7,(X)};c. Moreover, Oy is uniquely
determined by {7T;(04, )} ies = {R;}ice-

Proof: By Proposition 3.11 we have ﬁi+]-(§) = chain_add(7;(X), ﬁj@k ), ﬁi_]-(f),aBk ). So by
induction, from {77;(x)},ce We can compute every {7;(x)};ce - Since & =& (or contains . if n

~

is not prime to /), Corollary 2.4 shows that X is entirely determined by { 77;(x)},c s and {7, Oy, Vics-

In particular, 0 4, is entirely determined by {77; (’OVA,e M} ics. But 7; (SAk) = 77(131) by Proposition 2.3
and we are done. [ |

In the description of the algorithms, we suppose that £ is prime to 7, so that & = Z (Z) cZ (f_n)

Algorithm 4.5 (Point compression):
Input X = (¥, (i))ieZ(E) €A, (k)
Output The compressed coordinates (77;(X)), e -

~

- Foreach i € G, output (7;(X)) = (ﬂni-%—[j(;))jez(ﬁ)

Algorithm 4.6 (Point decompression):
Input 'The compressed coordinates 7T(X);cg of X.
Ouput X = (ﬁi(f))iez(ﬁ) €A, (k).
> (Step1)Set ' :=G.
> (Step 2) While &' # .
e Choosei,j €. suchthati+j €.\ S andi —j €S
* Compute 77, .(X) = chain_add(7;(X),R;, 7;_;(X)).

o S ::y’U{i+j}.

> (Step3)Foralli € Z(f_n) write i = niy+ £ and output 5i(x) = (ﬁlo(f» .
j

Correction and Complexity Analysis 4.7:
By using repeatedly the formula from Proposition 3.11:

7..;(%) = chain_add(7,(%), K, 7,_,(%),0,)

we can reconstitute every 77;(X) for i € Z({) in Step 2 since & is a chain basis of Z(£). We can then trivially

recover the coordinates of X in Step 3 since they are just a permutation of the coordinates of the {77, (%), € Z({)}
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4 Application of the addition relations to isogenies

(see Section 2.4). To recover X, we need to do #% — #& = O({¢) chain additions. The compressed point
{7;(X)} ;e is given by #& x 78 coordinates. ~

If {n = 2ny and 7, is odd we see that we can store a point in A, with 2¢ (14 g(g + 1)/2) coordinates (4¢ if
714 is even) rather than (27,)3.

411 Addition chains with compressed coordinates

LetX,yandx —y € gk- Suppose that we have the compressed coordinates (77;(X)) ;e (7;(7))jcs»
(T;(x —¥));es- Then if i € & we have by Corollary 3.12

7T;(x +y) = chain_add(7;(X), T,(¥), 7T;(x — ),

hence we may recover the compressed coordinates ofm.

We can compare the running time of addition chain with the full coordinates representation (of
level £72) and the compressed representation. By the formulas from Theorem 3.2, since 2|7 and the
formulas sum over points of 2-torsion, we see that we are doing #.% addition chains in B}, using
representations of level 72. The additions chains with the compressed representation are much faster
than the addition chains with the full representation since we need to do only #& addition chains
of level 7. In particular, since we can compute the multiplication by 7 with chain additions, we
see that the cost of a multiplication by 72 is O(#& log(m)) addition chains of level 72 (and a point
decompression if we want to recover the full coordinates).

Since we can take 7 = 2, the additions formulas of level 2 allows us to compute addition chains of
any level. In particular the speed up for these formulas given by [ ] can be used for all levels.

4.2 Computing the dual isogeny

We recall that we have the following diagram:

x €A, (k) 14, c A, (k)

T T
y € B (k)

Lety € pgkl (y)andletX € gk (E) be such that 7(x) =y. Leti € Z(Z) In this section, we describe
an algorithm to compute 7;(¢.X) efficiently from the knowledge of J and 0 4, (Le. without using X
which may be hard to compute). By using this algorithm for i € {d},--- ,d,,d, +d,,--d,_; +d,},

i[1..g] is the basis on(Z) defined

in Section 4.1). We know that 77;(x) =y + R; wherex = p,, (X). For i € Z({), we choose a point
ni(x) € p;l(y +R;)so thatforeach i € Z(Z) there exists A; € % such that 7;(%) = At (x). I

X" is another point in 77~ !(%), then we have 77;(X") = /1; 7t?(x), with /1;. ={ A, { al*’-root of unity

we can then recover 71(y) = py (£.%) (see Theorem 4.4), where (d;)

by Section 2.3. As a consequence, it is possible to recover /L- only up to an 05 oot of unity, but this
information is sufficient to compute 7, (¢.X):
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4 Application of the addition relations to isogenies

Theorem 4.8: o _
Lety € B (k) and let X € Ay (k) be such that 7(X) =7. For all i € Z({),

T,(0.X)= /1{ chain multadd(/, n?(x),f},ﬁl-)),
where /\f is determined by:

5= Af chain_multadd(, n?(x),ﬁi )

Proof: By Proposition 3.11 and Lemma 3.10 we have:

7;({.X) = chain_multadd(’, 7,(X), 7(X), ﬁ(ﬁl)) = /lf chain_multadd({, 7{(x),y,R;).

Now we only need to find the Af for i € Z({). But by Proposition 3.11 and an easy recursion, we

have X = SKl(Z)(iy'% so that by Corollary 3.12 and Lemma 3.10

7(X) = chain_multadd({, 7,(X),R,,y) = Af. chain_multadd(/, ﬂ?(x),Rl-,y). [ ]

Remark 4.9:
W can use the preceding theorem recover the equations of the isogeny by taking for y the generic

point of By,.

Algorithm 4.10 (The image of a point by the isogeny):
Input y € B, (k).

Output The compressed coordinates of 72(y) € A, (k).

> Foreach: €S
e (Step 1) Compute y + R; and choose an affine lift y; of y + R,.
e (Step2) Compute y1R, := chain_multadd(f,yi,ﬁi,yo)
Let A, be such that y, = A, y1R,.
e Output A, chain_multadd(f,yi,yo,ﬁi)).

Correction and Complexity Analysis 4.11:

Let y =y, and X € A, (k) be such that 7(X) =¥, and let 7 = £X. Then Pa, (Z) = #(y) and we note Z = ().
In the Output, Theorem 4.8 show that we compute 7, (7())) = /{f chain_multadd({,y;,%,, iél- )) since Af is
given in Step 2 by y, = Xf chain_multadd(ﬂ,yi,ﬁi,jf).

We can easily recover 72(y) from the 77, (7())), i € Z(Z), but we note that it is faster to compute the 77;(7()))
only for 7 € & (with the notations of Example 4.3 in the preceding section). and then use Algorithm 4.7 to obtain
the full coordinates of 7z(y). This last step is unnecessary if we only need the compressed coordinates of 7Z(y).

To compute 77;(72(})), we need to do two multiplication chains of length £. We obtain the compressed
coordinates of £ .x after g(g + 1)/2 such operations. In total we can compute the compressed coordinates of a
point in O(%g(g + 1)log(?)) additions in B, (with %g(g + 1)n¢ divisions in &) and the full coordinates in
O(¢¢) additions in B,
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s The computation of a modular point

The kernel of the isogeny ~ We know that the kernel of the isogeny 7 : B, — A}, is the subgroup
K generated by {Rd } .Fory € B, [f], let 37 S p;; (y). Up to a projective factor, we may

suppose that chain mult( ,y) = OB Then v is in K if and only if for all 7 € Z(Z) we have
(7)) = R Lety + R be any afﬁne point above y + R;. Since y and R; are points of {-torsion,
forallz € Z(Z) there exist  exist @ B, € % such that chain _multadd({,y +Rl,y,R N =2¢; R and
chain_multadd(?,y +Rl,Rl,5/') [3;7. By Theorem 4.8, we know that 7T;(7(y)) = ’R In
particular y € K if and only if /3_11 =1foralli € Z (f n). In fact, we will show in Sectlon 6 that

a;/B;=e ! (y,R;) wherc e gl is the commutator pairing on foz . This is coherent with the fact that
yisin K ifand onlylfegz(y, j)=1forie{d,,---,d,}.

Thecase (72,£) > 1  In this case we have to take & = {e,, -+ e,te, --LIfi e G,]Nii isa point

of { n-torsion and we have by Remark 3.14

3eg3

(1,4i,0).y = /1? chain_multadd({, ﬂ?(x),ﬁi,@,
so that we can still recover /1?.

Thecasez =2 The only difficult part here is the ordinary additions y + R;, since the addition chains
do not pose any problems with 7 = 2. In particular, we first choose one of the two points £(x + R e] ),
which requires a square root. Now, since we have 0 A given by a theta structure of degree In>2 we
have the coordinates of R e T R; on B,,. This means that we can compute the compatible additions

x+R; fromx+Re1 andReI +R,.

5 The computation of a modular point

We recall that (4, %, ®Ak) and (B,,, %, @Bk) are marked abelian varieties and we let 77 : A, — B,

be an isogeny of type 1. In Section 5.1, we explain how to compute the theta null point GAk from the
knowledge of the kernel of 7% the contragredient isogeny of 7t. This section introduces the notion of an
excellent point of {-torsion, which is an affine lift of a point of {-torsion that satisfy Equation (29). We
study this notion in Section 5.2, and use it in Section 5.3 in order to compute all (or just one) modular
points.

5.1 An analog of Vélu's formulas

We have seen in Section 4.2 how to use the addition formula to compute the isogeny 77 : B, — A, The

theta null point (4;). corresponding to (4, % ,© A, ) is an input of this computation. In this

2(Tny , given the kernel K = {T:}. iez(@) ©

7T, by using only the addition relations. By combining this result with the algorithm of Section 4.2,
we obtain an analog of Vélu’s formulas for higher dimensional abelian varieties since we are able to

icz(tn)
section, we explain how to recover the theta null point (4,),_

compute an isogeny from the data of its kernel just by using addition relations. As in the course of the
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s The computation of a modular point

algorithm we have to take £* h_rootin k, we suppose that k is algebraically closed. (If £ =T 7 with

{|q — 1 s that the £*"-root of unity are in &, we only have to work over an extension of degree £ of k).
Let {7, ,---,T; } beabasis of K. Let (a;).

1 g GZ(

theta structure on A, 7-compatible with the theta structure of (By, £, 0p ). We recall that to

be the theta null point corresponding to any

GAk = <di>ieZ(€7)’ one can associate the points (ﬁi)i = ﬁ.(SA ) and Corollary 2.4 shows that

ez(l)
this correspondence is one on one. By [ Prop 7], we recover all the theta null points of the
mt-compatible theta structures on Ay, by acting over OA = (R )zEZ @ by
(R; )zezaf) = (Ry, ('))iez@)’ (26)
(R;) zeZ (e(¢a(i): )R, zeZ(Z)’ (27)

where ¢, is an automorphism of Z (f and gbz is a symmetric endomorphism of Z (Z) We remark
that the results of Section 4.1 show that 0 4, is completely determined by {R d R d+d, }

dy,-- ,dg is a basis on(f).
Up to an action (26) we may suppose that 6Ak is such that 77; (GAk) =T, . Leti € Z(Z) and let i

ije[l.g] where

be any affine point above 7}, we have ﬁi =4 ﬁ Write { = 20"+ 1,since R, = P, (ﬁl) is a point of
{-torsion, we have (1, +1, O).Ei =—(1,¢, O).ﬁl—. By Proposition 3.11 and Lemma 3.10, we have

chain_mult({’ + 1,]~€l-) =— chain_mult(f/,ﬁi),
AEFH)Z chain_mult({’ +1, i) = —/lf/z chain_mult({’, i),
/lf chain_mult({’ +1, ﬁ) = —chain_mult(¢’, i) (28)

Hence we may find A; up to an £*?-root of unity. If we apply this method for i € {d,, -, dg .y +
dyy-e+, dg_1 + dg }, we find R; up to an £*”-root of unity. But the action (27) shows that every such

choice ofﬁi gives a valid theta null point aAk via the correspondence of Corollary 2.4.

Algorithm s.1 (Vélw’s like formula):
Input le , Td a basis of the kernel K of #.

Output The compressed coordinates of 0 Ay the theta null point of level In corresponding to 7.
Leae&={d,,---,dy,d, +d,,---d,_,+d}.
> Let ¢/ suchthat { =2¢' + 1.
> Fori,j €[1..g], compute the points 7, + Td]--
- Foreach: €6,
e Choose any affinelift 77 of 7;,and compute (,3 )
chain_mult({’ +1, T’)
e Compute @; such that (}/ )]€Z<n) (,6_] )iezy-
o Output R, := (ai)/ -T.

jez@m) = =chain mult(f’ T/) and(]/ )/EZ( )=
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s The computation of a modular point

Correction and Complexity Analysis s.2: - -
In the Output we compute R;, one of the £ affinelift of 7, such that: chain_mult({'+1,R;) = —chain_mult({,R;).

Then {]Aé ;}ice give the compressed coordinates of 0 4, We can then recover SAk by doing a point decompression
(see Algorithm 4.7).
To find R;, we need to do two chain multiplications of length £ /2, and then take an £*”-root of unity. After

g(g + 1)/2 such operations, we obtain the compressed coordinates ofaaA/e , and we may recover the full coor-
dinates of the corresponding 04 using the point decompression algorithm 4.7. We remark that we only need
the compressed coordinates of 04 to compute the compressed coordinates of 7. In total we need to compute
g(g +1)/2 £*"-roots of unity and O(%g(g + 1)log(¢)) additions in By, to recover the compressed coordinates

of 6Ak . We can then recover the full coordinates of 5Ak at the cost of O(£#) additions in B,,.

The case (72,£) > 1. In this case once again we have to recover ﬁi fori € G ={e,--- s€g €1+
€ el+eg}. Suppose that we have { 7 }ieZ(?)’gg points of { 7-torsion such that /. T, = (1,£1,0).0.

If; € G, we may suppose that ﬁi = /11- i
If{ =20’ + 1 is odd, we have:

Af chain_mult({’ +1, i) =—(1,4(n —1),0).chain_mult({’, ﬁ)

so that once again we can find Xf.
The kernel of 7 is then K = {nT, }ieZ(Z)

so some care must be taken when we choose the {T>}. -
ezl

.EvenifK isisotropic, it may be { T; }ieZ(Z) are not isotropic,

3

If{ =2/’ is even, we have:
A?Z chain_mult({’ +1, i) =—(1,{(n —1),0).chain_mult({' —1, ﬁ),

so that we can recover only /112.[. But every choice still corresponds to a valid theta null point (4; )ieZ @y
because when 2|¢, to the actions (26) and (27) we have to add the action given by the change of the
maximal symmetric level structure [ , Prop. 7].

The case # = 2 Once again, the only difficulty rests in the standard additions. Using standard
additions, we may compute R o +R e R o £R, , makinga choice each time. Then we can compute
g

R, + R, by doingan addition compatible with R, +R, andR, +R, .
i ] i ]
5.2 Theta group and £-torsion

LetX € Ek (E) be such that py (x) is a point of {-torsion. We say that x is an excellent point of

{-torsion if X satisfy:

chain_mult({’41,X) = —chain_mult({’,%). (29)
Remark 5.3:
If X is an excellent point of {-torsion, then Lemma 3.10 shows it is also the case for A.X for any Aan
0% root of unity. &
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s The computation of a modular point

We have seen in the preceding section the importance of taking lifts that are excellent points of
{-torsion. The aim of this section is to use the results of Section 3.3 to show that the addition chain
of excellent points of {-torsion is again an excellent-point of £-torsion. This result will be used in
Section 5.3 to compute excellent affine lifts of B, [¢] by taking as few £*”-roots as possible.

Let My = [{]* %, on By,. As %} is symmetric, we have that ./, ~ .Sfoéz [ ,p- 59] and
K(AM,), the kernel of A, is isomorphic to K(fz_n) Let O, be atheta structure on (By, )
[£]-compatible with the theta structure © 3, On (B, %,)- Asin Section 2.3, we can define the affine
cone E;/ associated to the canonical sections of ./, defined by the theta structure ©5 . We choose
a system of affine coordinates on B~/€/ above the projective coordinates given by © B tly? and we let

ij : E,: - Ek be the lift to the affine cone of [¢] compatible with these coordinates. Finally, we note

T~

63;: € E,: the affine lift of the theta null point associated to © Bootly such that [¢ ]OEZ = E)'Bk. Since

My~ foﬁ, the natural action of G(.4,) on H°(#,) gives via ©4p,, 4, an action ofﬁf([z_n) on
HO(Ay).
Lemmas.q4: —1 _
Lety € B,[l](k), y € pB_:(y) and X € [{] (). Then there exists (a,ni,nj) € k' x Z({*n) x
502 ~ _ N ~ . o .
Z(0°n) such that X = (a,ni,nj ).OE;/. Moreover, ¥ is an excellent point of {-torsion if and only if
_ . b : s A n(=1)
a=A; ; pwhere pisan L* —rooto]fumty and A; ; = (i,]) .
—~ — —_—~— N
(Ifx' € By (k), then x' € [£] (y) if and only if x' = (1,1’ ,£]").x where (i',]') € Z({*n) x
Z(fzn)), 50 the class of a in k* | k** does not depend on X but only on 5.

Proof: Since pE;/(f) € B,[¢?*], there is an element b € %(fz_n) such that ¥ = b'OE,:’ with b =
(a,ni,n]). By Remark 5.3, we only need to check that (4; ;, 7, nj).Ol»;;/ is an excellent point of £-
torsion. Let 72 € Z, and let X, = chain_mult(m,X),y,, = chain_mult(m,Y). By Corollary 24
we have X,, = (/1:”/2, m-i,m -]').OE:, and by Corollary 3.17y,, = @i(/lzmj, m-i,m -]').OE:. So by

Lemma 3.9
Fo =[O 5,0" .05 = [0 Ln(€ = V)i, En(€ = D) 5, j+).05
= {(0',£n(C = D)€+ £n(€ = 1)) -5, (¢ +Ln(l — 1)) /)05
=2 TO A A (1) i, = +1)- )0
1,] 1,] 1,] B/e

—_—

= [f](_@/ﬂ) = _37Z’+1' u

Propositions.s:
Lety,,93,y1 — V2 € By, (k) be excellent points of U -torsion. Theny, + v, := chain_add(}}, 75, Y1 — ¥,)
is an excellent point of € -torsion.
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s The computation of a modular point

Proofs Let(ay, iy, j,) € H(Cn), (ay, iy, o) € HE(C0), (a3, s, J5) € H0(€*n), be such that

[[](‘7‘1’ ip]})-%;/ :371’ [g](a2>i2>f2)-0§;’ :37;’ [ﬂ(as’isa/'s)-og;’ =)1=)2

By the Remark at the end of Lemma 5.4, we may suppose that i; = i; — i,, j3 = j; — J,. Since 371,37}

and y, — ¥, are excellent points of {-torsion, by Remark 5.3 and Lemma 5.4 we may suppose that
4= /11'1,/'1’ %= Aizyfz and = Ail"b/l‘fz'
By Corollary 24 and Lemma 3.10, we have
2 /12
isji ol (

——

Y1ty = L+, + ]ﬁ)-oj;;’ = (Aippiyjap it His 1 + /2)-%;6

il_iz’jl _jZ
50 ), + 7, is indeed an excellent point of £-torsion by Lemma s.4. [ |

5.3 Improving the computation of a modular point

In [ ], to compute the modular points 5Ak, the following algorithm is used: let 6Bk = (bl- )ieZ(E)’
consider the algebraic system § defined by the Riemann and symmetry relations (3) with (4,). _, @)
considered as unknown and where we put a; = b; for i € Z(7). The algebraic system § define a 0-
dimensional algebraic variety which contains the set of modular points 0 4,- We then present algorithm
to compute efficiently a Grobner basis of the system S.

In this section, in order to improve the algorithm of | ], we explain how, using the “Vélu’s”-like
formulas of Section s.1, it is possible to recover all the modular points 0 A, solution of the system § from

the knowledge of the {-torsion of B,. We then discuss different methods to compute the £-torsion in
B,.

Algorithm 5.6 (Computing all modular points):
Input 7,,---, ng abasis of the {-torsion of B,,.
Output All {-isogenies.
We only give an outline of the algorithm, since we give a detailed description in Example 5.7. We suppose
that we know how to compute e 4t On B, [{]. We will explain how to do this in the next section.

- Compute any affine excellent {-torsion lifts ? IEEEN ig I+ T, Tg_1 + Tg ,and then use addition

chains to compute affine lifts T for every point T € B, [{]. By Proposition 5.5 T is an excellent point
of {-torsion.
> For every isotropic subgroup K C B, [¢], take the corresponding lifts and use them to reconstitute the

corresponding theta null point 5Ak (see Section 5.1).

Example 5.7:

Suppose that {7}, ..., T,,} is a symplectic basis of B, [{]. (A symplectic basis is easy to obtain from a
basis of the £-torsion, we just need to compute the discrete logarithms of some of the pairings between
the points, where the pairings can be computed with Algorithm 6.5).
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s The computation of a modular point

Let©p 4 beany theta structure of level 0?7 on B, compatible with © 3,»and O%k be the corre-

sponding theta null point (see Section s5.2). We may suppose (see Section s.1) that

= [01(1,(n,0,-- ,0),0).6/Bk

~

7, ={0,0m,0,03, ...

T = 000.010.-.0)3,

—_— o~

T2 = [0)(1,0,(0,7,--,0)).0 ...

—_—

Ty + Ty = [()(L,(2,0,-+-,0),(0,,0,-+,0)).0, ...

Then by Corollary 24, using Algorithm 5.6, we compute the following affine lifts of the {-torsion:
ﬂ@ngpm@ﬁgjemewz—ugczw%». (30)

Now if K C B, [f ] is an isotropic group, in the reconstruction algorithm s.1 we need to compute

—_—

points of the form [¢](1, in,jn).agk fori,7 € Z({*n). But we have

m(Lin,fﬂ)-a;;k = ’[-ngmn'(i_[a)n(l,fan,[ﬁn).(l,(i —Lla)n,(j —fﬁ)n).agk

:[QZ“”“J”%LU—%aMAj—ZﬁM)QV

where @, 3 € Z({?n),and { is a ({>n)""-root of unity. As a consequence, we can always go back to a
point computed in (30) up to an 0t oot of unity.
We give a detailed example with g =1, { =3, n=4 Let By, be an elliptic curve, with a theta

structure © B, oflevel 7. Let Tl, T2 be abasisof B, [[ ], and choose excellent affine lifts i:l , i, Tl + T2~

Let ®Bk M, be any theta structure of level {?n compatible with G)Bk’ andajgk be the corresponding theta

null point (see Section 5.2). We take O, such that ﬁ = Ez-j(l, n, 0).6;/@, i = m(l, 0, n)ﬁ;k,

~

and T+ 7, = m(l, n, n).OjBk.

We have seen in (30) that in the Algorithm 5.6 we compute the points: m(l, in,]’n).ag,k for
i,j €0,1,--- L —1CZJ(*nZ.

Now let T = [-Z-j(l, n,Zn).agk, K =< pg (T) > is an isotropic subgroup of By, [{]. Let A, =
B, /K, choose a compatible theta structure © 4, ON A, and let O A, be the associated theta null point.

As usual, we define R; = 77,(0, ) if i € Z/{Z C Z[{nZ, and we may suppose (Section s.1) that

C) 4, is such that R; = T More explicitly, if 7 = 4 we have (Remember that we always choose 0 A,
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s The computation of a modular point

such that ﬁ(6Ak) = 68,6 ):

Oy, = (@0s @195 @35 84, s, Ay A7, gy Aoy A1, A1 1)
TE(Xg5 215 X5 X35 X4 X5, X X7 Xgs Xg X105 X11) = (Xg5 X35 X5 Xg )

R, :<“o’“3’“6"’9):63k
Ry =(ay,a7,a10,4,)
R

2= (ag,ayy,45,a5)

Now by Theorem 4.4 we know that 6Ak is entirely determined by R | (and GBk ), in fact we have:
jéz = c:hain_add(Rl,Rl,hOJB,e ). By Corollary 24, we have

—_—

7301, 2m, n).

X

OBk =

R,= @(1,2n,4n).6;k = [0]¢*"3(1,0,3n).(1,2n, n). 5,

where { isa (£21)"”-root of unity.

This shows that in the reconstruction step, we have to multiply the point [£](1,27, n)aj9 which
3

we have already computed by the £-root of unity 27",
Complexity Analysis 5.8:_
To compute an affine lift 7}, we have to compute an £**-root of unity (and do some addition chains but we can
reuse the results for the next step). Once we have computed the £(2¢ + 1)*”-root, we compute the whole (affine
lifts of ) £-torsion by using O(¢?¢) addition chains. We can now compute the pairings (7}, T;) with just one
division since we have already computed the necessary addition chain (see Section 6). From these pairings we can
compute a symplectic basis of B, [¢]. This requires to compute the discrete logarithm of the pairings and can be
done in O(¢) time. Using this basis, we can enumerate every isotropic subgroup K C B;,[¢], and reconstruct the
corresponding theta null point with O(£2) multiplications by an £**-root of unity.

The case (12,4 > 1) In this case, the only difference is that we have to compute B}, [{7] rather than

B, [( ], and when Tl is a point of { n-torsion, we compute an affine lift i such that:
chain_mult({’ +1, i) =—(1,4(n — 1),0).chain_mult({’, i)

The case 7 =2: 'This works as in Section 5.1, once we have computed the Te1 + Te‘, we have to take
;

compatible additions to compute the 7, + 7, .
4 7

Computing the points of {-torsionin B,: By applying the addition relations of Section 3.2 on the generic
point of By, we obtain an algebraic system of equations of degree 028 in n8 unknown defining B, [f ]
We can compute the solutions of this system by using the general purpose Grébner basis computation

algorithm.
In general we prefer to work with Kummer surfaces (so with 7z = 2), since it cuts the degree of the
system by two. In genus 2, Gaudry and Schost [ ] have an algorithm to compute the /-torsion

on the Kummer surface using resultants rather than a general purpose Grobner basis algorithm. The
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6 Pairing computations

points are given in Mumford coordinates, but we can use the results of Wamelen [ ] to have
them in theta coordinates. This algorithm is in 6(( ®) (where we use the notation O to mean we forget
about the log factors). The computation of the excellent affine points of £-torsion from Algorithm s.6
isin 6(( #), and each of the O(£?) isogeny requires O(£?) multiplication by an £*”-root of unity. In

total we see that we can compute all (£, ¢)-isogenies in 6@ 6) in genus 2.

Isogenies graph: A possible application of the algorithms presented in this paper is the computation
of isogenies graphs. In fact, the Vélu like algorithm of Section s.1 allows to compute a theta null point
0 4, for a theta structure on A, of level {7 from a point corresponding to a theta structure of level 7.
We can then use the modular correspondence described in Section 2.2, taking an isogeny, to obtain
a theta null point Sck corresponding to an abelian variety C), with a marking of level 2. With this
method, it is possible to compute £2-isogenies graphs.

In this manner, when we compute a sequence of {%-isogenies it is possible to benefit from the
computation of the intermediate step 0 4, since 0 4, isa theta null point of level {1, we can recover from
itall points in A, [£]. Denote by 77, : A »— C, the isogeny defined by the modular correspondence.
Then K, := 7t,(A [£]) gives half the {-torsion of C}, (to get an explicit description of K,, just apply
J to the results of Section 2.3). Since K}, is the kernel of the contragredient isogeny of 7z,, we have
a way to compute isogeny graph of £-isogenies where the composition of two such isogenies give
an f“—isogeny and not, for instance if g = 2,2 (1,[2,52,54)—isogeny (it is enough to consider the
isotropic subgroups of C}, [¢] that intersect K, trivially).

The knowledge of K, can also be used to speed up the computation of C, [¢]. In the following
section, we describe an algorithm to compute the Weil pairing ey, on C, [{]. Let (G, -, G,)bea
basis of K,, and consider the system of degree £87! given by the ideal of -torsion and the relations
e(G,,-) = 1 (which have a rational expression) for i € [2..g]. Let H, be a point solution of this
algebraic system different from < G, > (which can be tested be verifying that ey, (G, H,) # 1). We

can now construct the system of degree £¢ given by the ideal of {-torsion and the relations ey, (G, -) =
1forz #2and ey (H,,-) = 1; and look for a solution H, such that e(G,, H,) # 1. Continuing this
process, we obtain an algorithm to construct a basis G, -+, Gg H H’g of C,[¢] by solvinga

system of degree £8%! then of degree /8, ... then of degree £2. This is faster than solving the ideal of
{-torsion which is a system of degree £2¢.

6 Pairing computations

In this section, we explain how to use the addition chains introduced in Section 3.2 in order to compute
the commutator pairings on abelian varieties. We recall the definition of the commutator pairing and
its link with the Weil pairing in Section 6.1.

6.1 Weil pairing and commutator pairing

Since B,[{] C K(%,)" the commutator pairing e ¢ gives a non degenerate pairing on B, [{] (if 7
0
is prime to 0), wecalle ot the extended commutator pairing on By, [f ]- We can give another inter-
0

pretation of this pairing, more suitable for computation: let #, = [{]* %, on B,. We know that
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6 Pairing computations

K(A,) is isomorphic to K(E) (see Section 5.2). As M, descends to %, via the isogeny [£], the
commutator pairing e A, induced by the polarization .4, is trivial on B, [f ]- For X, %y €EBy [f ] let
xi,x; € B, [£?] be such that fx; = x; for i = 1,2. The extended commutator pairing is then

eqt (x15%,) = € 4. (x1,%) = € 4 (x1,%)) = e 4 (x], x,)¢. Indeed by [ , p- 228] we have
e, (X}, %)) = ez,oz(fx;,xz) = ep%/(xl,xz).
The isogeny ¢ o : B, — Bk has kernel B;, [ 7] and by composing @, on theright side of e,¢, we
0
obtain a perfect pairing e(v : B[] x B[] — w, where u, is the subgroup of £**-roots of unity of

k.

The following proposition is well known
Proposition 6.1:
The pairing e(x/ is the Weil pairing ey,
Proof: A proof can be found in [ , p- 228]. W give here a quick proof using the definition of
eyt given in term of the polarization ., since it will be instructive for our algorithm in Section 6.2.
Fory € B, [f] ,we denote by Ay the degree-0 line bundle on By, associated to y. A possible definition
of the Wil pairAing ey is as follows: Let (x,y) € B,[{] x B, [{]. Let Op, be the structural sheaf of
By,andasy € B, [[] there is an isomorphism gﬁ; : [f]*Ay ~ 0Bk' As a consequence, Ay is obtained
as the quotient of the trivial bundle B, x Alle over B, by an action g of B, [{] on B, x Ai given by

g.(t,a)=(t +x, y(x).a) where (¢,a) € (B, x A}e)(k), x € B,[{] and y is a character of B [{].
By definition [ ], we have ey, (x,y) = y(x).

We can reformulate this definition as follow: we choose an isomorphism Oy (0) ~ k from which
we deduce via ¢/y (resp. T gb;) an isomorphism ¢, : [f]*Ay (0) ~ & (resp. ¢, : T [f]*Ay(O) ~ k).
There exists a unique isomorphism ¢, : [£]*A, — =7 [¢]*A, compatible on the O fiber with ¢, and
¢1, i.e. we have that ¢1 o ¢x o gﬁgl is the identity of k. Then, the following diagram commutes up to a
multiplication by ey, (x, y):

/

[{TA, —— G,
e ew(x,7)
x [/
T [f]*Ay —X— 10

The polarization £} gives the natural isogeny ¢ Py defined on geometric points by

0.0, (k): By (k) = By(k)
y—= A =40 (T;ZO)_l.
As a consequence, for y € B, [{] there exists y, € B, (E) such that A, = £, ® (T;o,%o)_l. Let

y" € B,[{?] be such that £.y" = y,. As [{]* £y = My, we have [f]*Ay =[{1"(% ®(T;O.ffo)_1) =
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6 Pairing computations

My ® (T;, My)~'. We remark that the isomorphism gﬁ; : [f]*Ay =M (T;///lo)_l — O, gives
by tensoring on the right by T;, My an isomorphism ¢ y i My — ’L’;, M. Thus, the following diagram

is commutative up to a multiplication by ey, (x,y):
W/ j'_) M
0 Ty¥o

¢ s

y

T*¢ /
* ES
Tx//lo x Tx+y,//lo

But this is exactly the definition of ey, (x,y) thus we have ef, (x,7) = ey, (x, 7).

6.2 Commutator pairing and addition chains

In this paragraph, we explain how to compute the Weil pairing using addition chains. All known
algorithms to compute efficiently the Weil pairing on an abelian variety B, are based on a Miller
loop [ ] which can be used only in the case that By, is a jacobian. We choose a theta structure

(C] Bvtl, for .M, compatible with © B, and we let 63;«/ be an affine lift of the theta null point corre-
> 3

sponding to @Bk asin Section s.2. Let x,y € B, [(], and x’,y" € B, [¢*] be such that £.x" = y and

0.y =y. There exist (@, a,), (81, 3,) € Z({*n) x 2((272) such that (1, 2, az).ab;;/ is an affine lift

of x” and (1,,51,,52).023;/ is an affine lift of y’. We note xl{ = @Bk)/ﬂo(ai) and yl{ = GB/@)/ﬂo(/Bi) for

; ! ! / /I 7 /. . . / /. ..
1=1,2,wehavex’' = x4 andy’ = Y+, is the decomposition of x and y” in the decomposition

K(My) =K, (M) X Ky(M,) into isotropic subspaces induced by the theta structure Op,..u,

Lemma 6.2:

Leti € Z({*n) and pur
((1,24,0)(1, 5,,0). O~/ 5;'(6;/)

<<1,a1,o>.0i><og;> ((1.8,,08)05)

5(1):

Forallk €N, we have
(1,k.2;,0).(1, 8,,0)8,)( 0~,) 9,(
((l,k.al,O).ﬁi)(OE/) ((1,81,0)

)
o~/

B,
s(k)= ~ =s(D". (31)
0).9,)
Proof: Consider the degree-0 line bundle A = T* //lo ® .//l . We remark that as yl eK(AM,), Nis

isomorphic to the trivial line bundle on By,. Let K be the subgroup of K| (.#,) generated by x; and
let C, be the quotient of B}, by K. The line bundle A descends to a line bundle A’ over C,,. As A has
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6 Pairing computations

degree 0, it is the quotient of B}, X A}e by an action of the form g;(t, a)=(t+x, )(O(x).a), where
(t,a) € B, x Ai, x €K, and Y, is a character of K.

Asd e HO( M), we remark that £ = ((1, B, 0)5)/(5) is a section of A. Thus, we have s(k)

fkx])[f(05,) = xo(k) and s(k) = s(1)F. [
Remark 6.3:

We remark that in the preceding lemma, o, and /3 1 play the same role and as a consequence can be
permuted. &

We keep the notation of the beginning of this paragraph to state the

Proposition 6.4:

We put:
_ (Llay+ By l.ay+ By) )(6Bk> 79(63,)
(1,31, )90, (1, L2y, L.2,) )y
(Lo +0.B,2,+£.8,)8)Ty,) 90,
((1,2;,2,))@,) ((1,£.81,£.8,)9)05,)
We have :
egg(x,y) =L"'R. (32)

Proof: First, we compute L. We have:

(L,0a,+ Blay+B)8 = (Lay+ By, —l.ay— Bo)(1,La+ B,,0)(1,0,0.a,+ B,)5
= ({lay+p,—i,—l.a,— B,)(1,{.a;+ 3,,0)8.

In the same way, we have:

(1’/61’/62)5: (161»_/62 - i)(1>/81>0>7§;’

~

(L,l.ay,l.ay)0 = (l.a;,—L.ay—i)(1,{.a,0)0.
Taking the product, we obtain that
L={l.a;,—[3,).L,

with

,_(L5,0(,L2,09)C,) 5,

~ o~

L ~ ~
(L6,030,)  (1,L.a,090,,)

In the same manner, we have:

R={(.,,—a,).R
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6 Pairing computations

with

((1,24,0).(1,2. /31’

o ) )

(1’(11’0)0(0&) (1,£.61,0)9(0g,)

Using lemma 6.2 and the fact that (1, @, 0) commutes with (1, 3,

-1 (€a2’ﬁ>
L™ R= ——e (x,
gal’ﬁz _f[( y)

The preceding proposition gives us an algorithm to compute the pairing

Algorithm 6.5 (Pairing computation):
Input P,Q € B,[{]
Output e,/(P,Q)

0

—_—

Let P, Q € B, [{], and choose any affine lift P, Q and P 4 Q, we can compute the following via addition
chains:

0, p 2P . AP=200,
Q P+Q 2P+Q (P+Q=2.Q
20 P+2Q

- Namely we compute:

(P := chain_mult({,P) (Q:=chain_mult(/,Q)
(P + Q :=chain_multadd({,P + Q,I’;, 6) P+ KQ = chain_multadd({,P + Q, 6,1'3')

- Then we have:

AL
»7Q
e,‘fof (P> Q) /llQ/l?, (33)
Proof: Assume that D, (NQ and P + Q are such that P = m(l,al,/ﬁl)agk, Q= ‘7‘2»/62
(s,
0 _ x —
andP+Q [ 11, a4y, B1+3,) O ThcnbyCorollaryz4,wcﬁndthat/1 e
((1,¢. Wl ﬂ 0,
1 and that AL = “th 0!2+N,32) Xs,) , so that by Proposition 6.4, we have:
((1,81,5)9)(0)
ALAQ
PQ
eyt (P, Q)= T
o”p

40

0) we get that L' = R’. Therefore,



7 Conclusion

Now by Lemma 3.10, it is casy to sce that (33) is homogencous and does not depend on the affine

lifes P R (3 and P + Q, which concludes the proof. ]

Complexity Analysis 6.6:

By using a Montgomery ladder, we sec that we can compute e ¢ (P, Q) with four fast addition chains of length Z,
0

hence we need O(log({)) additions. It should be noted that we can reuse a lot of computation between the

addition chains P,2P,4P,...and P+ Q,2P + Q,4P + Q, ... since we always add the same point at the same

time between the two chains.

The case 7 =2 Let £P,+Q € Kp, then we have e,(£P, £Q) = {e,¢(P,Q),e,«(P,Q)™'}.
0 0 0

Thus the pairing on the Kummer variety is a bilinear pairing K X K — k*% where "% = k* /{x =

1/x}. We representaclass x € k% by x+1/x € k,and we define the symmetric pairing e/(£P, Q)=

eyt (P,Q)+e ! (P,—Q). We can use the addition relations to compute P £ Q and then use Algo-

rithm 6.5 to compute eyt (P,Q), eyt (P,—Q).

7 Conclusion

We have described an algorithm that give a modular point from an isotropic kernel, and another one
that can compute the isogeny associated to a modular point. By combining these two algorithms,
we can compute any isogeny between abelian varieties. However, the level of the modular space that
we use depend on the degree of the isogeny. Still, we can go back to a modular point of level 7 by
using the modular correspondence introduced in [ ]. This mean that we can compute isogeny
graphs if we restrict to £2-isogenies. We have also introduced a point compression algorithm, that
allows to drastically reduce the number of coordinates of a projective embedding of level 4. This new
representation can be useful when one has to work with such a projective embedding, rather than the
usual one of level 4 (for instance if one need a quick access to the translation by a point of £-torsion).
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