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Abstract

We describe an efficient algorithm for the computation of separable isogenies between abelian
varieties represented in the coordinate system given by algebraic theta functions. Our algorithm
decomposes in two principal steps. First, from the knowledge of a subgroup K isotropic for the
Weil pairing of an abelian variety A, we explain how to compute the theta null point corresponding
to the quotient abelian variety A/K . Second, from the knowledge of the theta null point of A/K ,
we give an algorithm to obtain a rational expression for the isogeny from A to A/K . The algorithm
resulting as the combination of these two steps can be viewed as a higher dimensional analog of
the well known algorithm of Vélu to compute isogenies between elliptic curves.

In order to improve the efficiency of our algorithms, we introduce a compressed representation
that allows to encode a point of level 4ℓ of a g dimensional abelian variety using only g (g+1)/2·4g

coordinates. We also give formulas to compute the Weil and commutator pairings given input
points in theta coordinates. All the algorithms presented in this paper work in general for any
abelian variety defined over a field of odd characteristic.
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1 Introduction

 Introduction

The general problem of computing separable isogenies between abelian varieties splits into different
computational sub-problems depending on the expected input and output of the algorithm. These
problems are:

• Given an abelian variety Ak over a field k and an abstract finite abelian group K compute all
the abelian varieties Bk such that there exists an isogeny Ak → Bk whose kernel is isomorphic
to K , and give rational expressions for the corresponding isogenies.

• Given an abelian variety Ak and a finite subgroup K of Ak , recover the quotient abelian variety
Bk =Ak/K as well a rational expression for an isogeny Ak → Bk .

• Given two isogenous abelian varieties, Ak and Bk , compute a rational expression for an isogeny
Ak → Bk .

In the present paper, we are concerned with the first two problems. In the case that the abelian variety
is an elliptic curve, efficient algorithms have been described that solve all the aforementioned problems
[Ler]. In particular, an algorithm proposed by Vélu [Vél71] takes as input a finite subgourp G of
cardinal ℓ of an elliptic curve Ek , and returns the equation of the quotient Ek/G at the cost of O(ℓ)
additions in Ek . The algorithm of Vélu also gives a rational expression for the isogeny Ek → Ek/G in
the coordinate system provided by the Weierstrass form of the elliptic curves.

For higher-dimensional abelian varieties much less is known. Richelot’s formulas [Ric36, Ric37] can
be used to compute (2,2)-isogenies between abelian varieties of dimension 2. The paper [Smi09] also
introduces a method to compute certain isogenies of degree 8 between jacobian of curves of genus
three. In this paper, we present an algorithm to compute (ℓ, . . . ,ℓ)-isogenies between abelian varieties
of dimension g represented in the coordinate system provided by algebraic theta functions for any
ℓ¾ 2 and g ¾ 1 when the characteristic of k is odd and relatively prime to ℓ.

Let n ∈ N be such that 2|n and n ¾ 4. Let n = (n, n, . . . , n) ∈ Zg , and Z(n) = Zg/nZg . We
denote byMn the modular space of marked abelian varieties (Ak ,L ,ΘAk

) where L is a totally
symmetric ample line bundle on Ak and ΘAk

is a symmetric theta structure of type Z(n) forL
(see [Mum66, sec. 2]). In the following, we will also call a theta structure of type Z(n) a theta structure
of level n. The modular spaceMn is well-suited for computing modular correspondences since the
algebraic systems which play the same role in this space as the classical modular polynomials have their
coefficients in {1,−1}, and as a consequence are much more amenable to computations than their
counterparts using the j -invariant in genus 1 or the Igusa invariants in genus 2 . In the article [FLR09],
we have defined a modular correspondence:

ϕ :M
ℓn→Mn ×Mn , (ai )i∈Z(ℓn) 7→ ((ai )i∈Z(n), (

∑

j∈Z(ℓ)

ai+n j )i∈Z(n))

for ℓ ∈N∗ prime to n, which can be seen as a generalization of the classical modular correspondence
X0(ℓ)→X0(1)×X0(1) for elliptic curves (see for instance [Koh03]). To explain it, let p1 and p2 be
respectively the first and second projectionsMn ×Mn→Mn , and let ϕ1 = p1 ◦ϕ, ϕ2 = p2 ◦ϕ.
The mapϕ1 :M

ℓn→Mn is such that (x,ϕ1(x)) for x ∈M
ℓn(k) are modular points corresponding

to ℓ-isogenous abelian varieties.
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1 Introduction

In fact, consider (ai )i∈Z(ℓn) ∈ ϕ
−1
1 ((bi )i∈Z(n)). The modular point (ai )i∈Z(ℓn) defines a triple

(Ak ,L ,ΘAk
) and the classical isogeny theorem for algebraic theta functions [Mum66, th. 4] gives

an explicit isogeny π : Ak → Bk . We denote by π̂ : Bk → Ak the isogeny that makes the following
diagram commutative:

y ∈ Bk

z ∈Akx ∈Ak

π̂π

[ℓ]

The main result of this paper is:

Theorem 1.1:
Let Bk be a dimension g marked abelian variety. Let (T1, . . . ,Tg ) ⊂ Bk[ℓ] be a basis of a maximal
subgroup K of Bk[ℓ] isotropic for the Weil pairing. Let π̂ : Bk → Bk/K be the corresponding isogeny.
One can compute the compressed coordinates of the modular point (ai )i∈Z(ℓn) corresponding to π̂ with
O(log(ℓ)) addition chains in Bk and O(1) ℓt h -roots of unity extractions.

Once we have (ai )i∈Z(ℓn), we can compute the compressed coordinates of the image of a point in Bk by π̂
with O(log(ℓ)) addition chains in Bk . Taking the generic point of Bk , we obtain in particular a rational
expression for the isogeny π̂.

The precise meaning of addition chain and compressed coordinates will be made clear in the course of
the paper. A proof of this theorem is given in Section 4.2 and Section 5.1. It should be remarked that
this result constitute a higher dimensional analog of the classical Vélu’s algorithm since by combining
the two conclusions of the theorem, we obtain an efficient algorithm which takes as input an abelian
variety Bk and a maximal subgroup K of Bk[ℓ] isotropic for the Weil pairing and computes a rational
expression for the isogeny Bk → Bk/K .

Note that the classical isogeny theorem for theta functions is not sufficient for our purpose of
computing isogenies between abelian varieties. Although it is effective, the isogeny theorem can only
be used to compute isogenies from a marked abelian variety of level ℓ to a marked abelian variety of
level n where n divides ℓ, so it only provides us with a way to compute isogenies by “going down” in
the level of the theta structure. At some point, we need a way to compute isogenies by “going up” the
level and this is precisely what gives Theorem 1.1. We can then combine the two theorems: once we
have computed an isogeny π̂ : Bk →Ak , it is possible to compose π̂ with an isogenyπ2 : Ak →Ck
given by the isogeny theorem such thatπ2 ◦ π̂ is an ℓ2-isogeny (see [FLR09, Sec 3] or Section 2.2). In
fact, let Ck be the abelian variety associated to the modular point (ci )i∈Z(n) = ϕ2

�

(ai )i∈Z(ℓn)

�

then
we have the following diagram

6



1 Introduction

Bk

Ak

Bk Ck

[ℓ]

π̂

π π2

The isogenyπ2 ◦ π̂ is then an ℓ2 isogeny between Bk and Ck which are two marked abelian varieties
with a theta structure of level n. Possible applications of our algorithm includes:

• The transfer the discrete logarithm from an abelian variety to another abelian variety where the
discrete logarithm is easy to solve [Smi08]

• The computation of isogeny graphs to obtain a description the endomorphism ring of an abelian
variety.

• The computation of Hilbert class polynomials.

We end up the introduction with some general remarks about the algorithms presented in this paper.
The assumption that n is prime to ℓ is inessential. There is nonetheless one noticeable difference if we
drop this hypothesis. Suppose that we are given Bk[ℓ]. Since Bk is given by a theta structure of level
n, we can recover Bk[n] using the action of the theta group on the theta null point (bi )i∈Z(n). If ℓ is
prime to n, this gives us Bk[ℓn], and we can use the first assertion of Theorem 1.1 to obtain a modular
point of type Z(ℓn). If ℓ is not prime to n, we have to compute Bk[ℓn] directly.

Although we only consider the case of (ℓ, . . . ,ℓ)-isogeny, it is also possible to compute more gen-
eral types of isogenies with our algorithm. With the notations of Section 2, let δ0 = (δ1, . . . ,δg )
be a sequence of integers such that 2|δ1 and δi |δi+1, and let (bi )i∈Z(δ0)

∈ Mδ0
be a modular

point corresponding to an abelian variety Bk . Let δ ′ = (ℓ1, . . . ,ℓg ) (where ℓi |ℓi+1) and define
δ = (δ1ℓ1, . . . ,δgℓg ). Let (ai )i∈Z(δ) ∈Mδ be such that ϕ1

�

(ai )i∈Z(δ)

�

= (bi )i∈Z(δ0)
where ϕ1 is

the natural inclusion of Z(δ0) into Z(δ). The theta null point (ai )i∈Z(δ) corresponds to an abelian
variety Ak , such that there is a (ℓ1, · · · ,ℓg )-isogeny π : Ak → Bk , which can be computed by the
isogeny theorem [Mum66, Th. 4] (see Section 2.2). The isogeny we compute in Step 2 is the con-
tragredient isogeny π̂ : Bk → Ak of type (ℓg/ℓ1,ℓg/ℓ2, · · · , 1,ℓg ,ℓg , · · · ,ℓg ). Using the modular
correspondence ϕ1 to go back to a modular point of type Z(δ0) (see Section 1) gives an isogeny of
type (ℓg/ℓ1,ℓg/ℓ2, · · · , 1,ℓ1ℓg ,ℓ2ℓg , · · · ,ℓgℓg ). For the clarity of the exposition, we will stick to

the caseδ0 = n andδ = ℓn and we leave to the reader the easy generalization.
For an actual implementation, we want to use the smallest n possible to get a compact representation

of the points and a fast addition chain. In fact it is possible to tweak Theorem 1.1 to make it works
with the case n = 2. This case is very important in practice: it allows a more compact representation of
the points than for n = 4 (we gain a factor 2g in space), a faster addition chain (see Section 4.1.1), but
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2 Modular correspondences and theta null points

most importantly it reduces the most consuming part of our algorithm, the computation of the points
of ℓ-torsion, since there are half as much such points on the Kummer variety associated to an abelian
variety. For each algorithm that we use, we give an explanation on how to adapt it for the type Z(2)
case: see Section 3.2.1 and the end of Sections 4.2, 5.1, 5.3 and 6.2.

The paper is organized as follow. In Section 2, we recall the isogeny theorem and we study the
relationship between isogenies and the action of the theta group. We recall the addition relations,
which play a central role in this paper in Section 3. We then explain how to compute the isogeny
associated to a modular point in Section 4. If the isogeny is given by theta functions of type Z(4ℓ), it
requires (4ℓ)g coordinates. We give a point compression algorithm in Section 4.1, showing how to
express such an isogeny with only g (g+1)/2 ·4g coordinates. In Section 5 we give a full generalization
of Vélu’s formulas that constructs an isogenous modular point with prescribed kernel. This algorithm
is more efficient than the special Gröbner basis algorithm from [FLR09]. There is a strong connection
between isogenies and pairings, and we use the above work to explain how one can compute the
commutator pairing and how it relates to the usual Weil pairing in Section 6.

 Modular correspondences and theta null points

In this section, we fix some notations that we use in the rest of the paper. In Section 2.1, we recall the
definition of a theta structure and the projective embedding [Mum66, Sec. 1] deduced from it. In
Section 2.2 we recall the isogeny theorem, which relate the theta functions of two isogenous abelian
varieties with compatible theta structures. In Section 2.3 we study the connection between isogenies
and the action of the theta group on the affine cone of the projective embedding given by the theta
structure.

Let Ak be an abelian variety of dimension g over a perfect field k and denote by K(Ak ) its function
field. An isogeny is a finite surjective map of abelian varietiesπ : Ak → Bk and is said to be separable
if the function field K(Ak ) is a finite separable extension of K(Bk ). A separable isogeny is uniquely
determined by its kernel, which is a finite subgroup of Ak (k). In that case, the cardinality of the kernel
is the degree of the isogeny. Since we will only consider isogenies of degree prime to the characteristic
of k , we will only deal with separable isogenies. In the rest of this paper, by ℓ-isogeny for ℓ > 0, we
always mean a (ℓ, · · · ,ℓ)-isogeny where (ℓ, · · · ,ℓ) ∈Ng .

. Theta structures

Let Ak be a g dimensional abelian variety over a perfect field k . LetL be an ample totally symmetric
line bundle of degree d on Ak . We suppose moreover that d is prime to the characteristic of k . Denote
by K(L ) the kernel of the isogenyϕL : Ak → Âk , defined on geometric points by x 7→ τ∗xL ⊗L

−1

where τx is the translation by x . Letδ = (δ1, . . . ,δg ) be the sequence of integers satisfyingδi |δi+1

such that, as group schemes K(L )≃
⊕g

i=1(Z/δiZ)2k . We say thatδ is the type ofL . In the following
we let Z(δ) =
⊕g

i=1(Z/δiZ)k , Ẑ(δ) be the Cartier dual of Z(δ), and K(δ) = Z(δ)× Ẑ(δ). If
x ∈ Z(δ) and ℓ ∈ Ẑ(δ), we denote 〈x,ℓ〉 := ℓ(x).

Let G(L ) andH (δ) be respectively the theta group of (Ak ,L ) and the Heisenberg group of type
δ [Mum66, p. 294]. In this article, elements of G(L ) will be written as (x,ψx ) with x ∈K(L ) and
ψx :L → τ∗xL is an isomorphism. We know that G(L ) andH (δ) are central extensions of K(L )

8



2 Modular correspondences and theta null points

and K(δ) by the multiplicative groupGm,k . By definition, a theta structureΘAk
on (Ak ,L ) is an

isomorphism of central extensions fromH (δ) to G(L ). We denote by eL the commutator pairing
[Mum66, p. 203] on K(L ) and by eδ the canonical pairing on K(δ) = Z(δ)× Ẑ(δ). We recall that
if (x1, x2) and (y1, y2) are in K(δ) we have eδ ((x1, x2), (y1, y2)) = 〈x1, y2〉/〈y1, x2〉. We remark that
a theta structureΘAk

induces a symplectic isomorphismΘAk
from (K(δ), eδ ) to (K(L ), eL ). Let

K(L ) =K1(L )×K2(L ) be the decomposition into maximal isotropic subspaces induced byΘAk
.

The section K(δ)→H (δ) defined on geometric points by (x, y) 7→ (1, x, y) can be transported
by the theta structure to obtain a natural section sK(L ) : K(L ) → G(L ) of the projection κ :
G(L )→K(L ). We note sK1(L ) (resp. sK2(L )) the restriction of this section to K1(L ) (resp. K2(L )).

Recall [Mum66, p. 291] that a level subgroup eK of G(L ) is a subgroup such that eK is isomorphic to
its image by κ.

Let V = Γ(Ak ,L ). There is an action of the theta group G(L ) on V by v 7→ ψ−1
x τ
∗
x (v) for

v ∈V and (x,ψx ) ∈G(L ). This action can be transported viaΘAk
to an action ofH (δ) on V . It

can be shown that there is a unique (up to a scalar factor) basis (ϑi )i∈Z(δ) of V such that this action is
given by:

(α, i , j ).ϑ
ΘAk

h
= α.〈−i − h, j 〉.ϑ

ΘAk

h+i
. (1)

If there is no ambiguity, in this paper, we will sometimes drop the superscriptΘAk
in the notation

ϑ
ΘAk

k
.

This basis gives a projective embedding ϕΘAk
: Ak → Pd−1

k
which is uniquely defined by the theta

structureΘAk
. The point (ai )i∈Z(δ) = ϕΘAk

(0Ak
) is called the theta null point associated to the theta

structure. Mumford proves [Mum66] that if 4|δ , ϕΘAk
(Ak ) is the closed subvariety of Pd−1

k
defined

by the homogeneous ideal generated by the Riemann equations:

Theorem 2.1 (Riemann equations):
For all x, y, u, v ∈ Z(2δ) that are congruent modulo Z(δ), and all χ ∈ Ẑ(2), we have
�

∑

t∈Z(2)

χ (t )ϑx+y+tϑx−y+t
�

.
�

∑

t∈Z(2)

χ (t )au+v+t au−v+t
�

=

=
�

∑

t∈Z(2)

χ (t )ϑx+u+tϑx−u+t
�

.
�

∑

t∈Z(2)

χ (t )ay+v+t ay−v+t
�

. (2)

The data of a triple (Ak ,L ,ΘAk
) is called a marked abelian variety of type Z(δ). We denote by

Mδ the quasi-projective variety defined as the locus of all theta null points associated to marked
abelian varieties of type Z(δ). We recall [Kem89, Th. 28] that if n > 4, thenMn is an open subset in
the projective variety described by the following equations in P(k(Z(n))):
�

∑

t∈Z(2)

χ (t )ax+t ax+t
�

.
�

∑

t∈Z(2)

χ (t )au+t au+t
�

=

�

∑

t∈Z(2)

χ (t )az−x+t az−y+t
�

.
�

∑

t∈Z(2)

χ (t )az−u+t az−v+t
�

ax = a−x

(3)
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2 Modular correspondences and theta null points

for all x, y, u, v, z ∈ Z(n), such that x + y + u + v = 2z and all χ ∈ Ẑ(2).

. Isogenies compatible with a theta structure

Let (ai )i∈Z(δ) ∈ Mδ be a theta null point associated to a triple (Ak ,L ,ΘAk
). Let δ0 ∈ Zg be

such that 4|δ0|δ , and writeδ = δ0 ·δ ′. In the following we consider Z(δ0) as a subgroup of Z(δ)
via the map ϕ : (xi )i∈[1..g] ∈ Z(δ0) 7→ (δ ′i xi )i∈[1..g] ∈ Z(δ). From now on, when considering
Z(δ0)⊂ Z(δ), we always refer to this map. Let K ⊂K(L ) be any isotropic subgroup for eL such
that we can write K =K1×K2 with Ki ⊂Ki (L ).

Let Bk =Ak/K andπ : Ak → Bk be the associated isogeny. Since K is isotropic, eK := sK(L )(K)
is a level subgroup, so by Grothendieck descent theory there exists a polarizationL0 on Bk and an
isomorphism L ≃ π∗K (L0). The theta group G(L0) is isomorphic to Z ( eK)/ eK where Z ( eK) is
the centralizer of eK in G(L ) [Mum66, Prop. 2]. We say that a theta structure ΘBk

on (Bk ,L0) is
π-compatible withΘAk

if it respects this isomorphism. The isogeny theorem ([Mum66, Th. 4]) then

gives a way to compute (π∗(ϑ
ΘBk
i ))i∈Z(n) given (ϑ

ΘAk
i )i∈Z(ℓn). Note Θ

−1

A (K) = Z1 × Z2, we call
Z1×Z2 the type ofπ. If Z1 = 0 we say thatπ is of type 1, and if Z2 = 0 thatπ is of type 2. We note
Z⊥1 = {x ∈ Z(δ) | 〈x,Z2〉= 1}. Then there is a bijection betweenπ-compatible theta structures on
(Bk ,L0) and isomorphisms σ : Z⊥1 /Z1→ Z(δ0) (see [Mum66, Th 4]).

Since we are mainly interested with ℓ-isogenies, we now specialize to the caseδ = ℓn,δ ′ = ℓ so
thatδ0 = n. We take K =Ak[ℓ]2, we then have Z1 = 0, Z2 = Ẑ(ℓ)⊂ Ẑ(ℓn) so thatπ : Ak → Bk

is an ℓ-isogeny of type 1. In this case we have Z⊥1 = Z(n) ⊂ Z(ℓn), and we always consider the
compatible theta structure on Bk corresponding to σ = Id [FLR09, Sec. 3]. We recall the following
proposition [FLR09, Prop 4].

Proposition 2.2 (Isogeny theorem for compatible theta structures):
Let (ai )i∈Z(ℓn) be a theta null point associated to a triple (Ak ,L ,ΘAk

) and (bi )i∈Z(n) a theta null point

associated to (Bk ,L0,ΘBk
). Let ϕ : Z(n)→ Z(ℓn) be the canonical embedding. Then (bi )i∈Z(δ ′) =

ϕ1(ai )i∈Z(δ ′) if and only if there is an ℓ-isogenyπ of type 1 such thatΘBk
isπ-compatible withΘAk

. In

this case, let (ϑ
ΘAk
i )i∈Z(ℓn) (resp. (ϑ

ΘBk
i )i∈Z(n)) be the canonical basis ofL (resp.L0) associated toΘAk

(resp.ΘBk
). There exists someω ∈ k

∗
such that for all i ∈ Z(n)

π∗K (ϑ
ΘAk
i ) =ωϑ

ΘBk

ϕ(i) . (4)

It is easy to describe ℓ-isogenies of type 2 from Proposition 2.2. In fact, let I0 be the automorphism
of the Heisenberg groupH (ℓn) that permutes Z(ℓn) and Ẑ(ℓn): I0(α, x, y) = (α, y, x). We define
IAk
=ΘAk

◦I0◦Θ−1
Ak

, whereIAk
is the automorphism of the Theta group of Ak that permutes K1(L )

and K2(L ). (There is a similar automorphism IBk
of the theta group of Bk ; we will usually note these

automorphisms I since the theta group is clear from the context.) If π2 is a compatible isogeny of
type 2 between (Ak ,L ,ΘAk

) and (Bk ,L0,ΘBk
), thenπ2 is a compatible isogeny of type 1 between

10



2 Modular correspondences and theta null points

(Ak ,L ,IAk
◦ΘAk

) and (Bk ,L ,IB ◦ΘBk
). Since the action of I is given by [FLR09, Section 5]

ϑ
IAk
◦ΘAk

i =
∑

j∈Ẑ(ℓn)

e(i , j )ϑ
ΘAk
j , (5)

we see that we have for all i ∈ Z(n)

π∗(ϑ
ΘBk
i ) =
∑

j∈Z(ℓ)

ϑ
ΘAk
i+n j . (6)

Applying Equations (4) and (6) to e0Ak
yields the formulas for the modular correspondence ϕ :

M
ℓn→Mn ×Mn from Section 1.

. The action of the theta group on the affine cone and isogenies

Letπ : (Ak ,L ,ΘAk
)→ (Bk ,L0,ΘBk

) be an ℓ-isogeny of type 1 between compatible theta structures.
The action by translationρL from K(L )on Ak descends to an action on Bk : if x ∈K(L ), the induced
action on Bk is simply the translation by π(x). The situation is more interesting if we consider the
action of G(L ). Since G(L ) is a central extension of K(L ) byGm,k it is natural to let G(L ) act on a
central extension of Ak byGm,k More precisely, let V =Γ(Ak ,L ) and let pAk (V )

:Ak (V )→ Pk (V )

be the canonical projection. Let eAk = p−1
Ak (V )

(Ak ) be the affine cone of Ak which is a central extension

of Ak by Gm,k The action of G(L ) on V given by (1), induces an action eρL on eAk . This action
is compatible with the action of K(L ) on Ak in the following way: if κ : G(L )→ K(L ) is the
projection, pAk (V )

◦ eρL = ρL ◦κ. Similarly we note eBk the affine cone of Bk and eρL0
the action of

G(L0) on eBk .

We say that a coordinate system ( eϑ
ΘAk
i )i∈Z(ℓn) on eAk lifts the projective system (ϑ

ΘAk
i )i∈Z(ℓn) on

Ak if for all j ∈ Z(ℓn), on the principal open set defined by ϑ
ΘAk
j , we have p∗Ak (V )

(ϑ
ΘAk
i /ϑ

ΘAk
j ) =

eϑ
ΘAk
i / eϑ

ΘAk
j . Obviously, such a coordinate system ( eϑi )i∈Z(ℓn) is defined up to an action ofGm,k and we

fix such a choice for the rest of the paper. In the same manner, we denote by ( eϑ
ΘBk
i )i∈Z(n) a coordinate

system on eBk that lifts the coordinate system (ϑ
ΘBk
i )i∈Z(n). We will usually replace ( eϑ

ΘAk
i )i∈Z(ℓn) (resp.

( eϑ
ΘBk
i )i∈Z(n)) by ( eϑi )i∈Z(ℓn) (resp. ( eϑi )i∈Z(n)) when no confusion is possible.
SinceL is symmetric, there is an action of the morphism [−1] on V given by f ∈V 7→ Φ(ι∗ f )

where ι : A → A maps x to −x and Φ is the normalized isomorphism ι∗L → L . This action
extends to an action on eAk that we denote also by [−1] : ex ∈ eAk (k) 7→ −ex . Now since G(L ) is
a symmetric theta structure we have [−1]∗ eϑi = eϑ−i [Mum66, p. 331] so if ex = (exi )i∈Z(ℓn) then
−ex = (ex−i )i∈Z(ℓn).

Let eπ : eAk → eBk be the morphism such that eπ∗( eϑ
ΘBk
i ) = eϑ

ΘAk
i for i ∈ Z(n). Note that eπ is just a

lift to the affine cone of the isogenyπ : Ak → Bk , so that the following diagram commutes:

11



2 Modular correspondences and theta null points

eAk Ak

eBk Bk

pAk

pBk

eπ π

We call eπ the lift ofπ compatible with the choice of affine coordinates on eAk and eBk .
We will now study the link between the action eρL of G(L ) on eAk and the morphism eπ. To

simplify the notations, if (α, i , i) ∈H (δ) and ex is a geometric point of eAk , we will note (α, i , j ).ex :
= eρL (ΘAk

((α, i , j ))).ex . Let Kπ =ΘAk
(Ẑ(ℓ)) be the kernel of the isogeny π : Ak → Bk and recall

(see Section 2.2) that G(L0) =Z ( eKπ)/ eKπ.

Proposition 2.3:
Let g ∈Z ( eKπ) and note g its image inZ ( eKπ)/ eKπ. We have eρL0

(g ) = eπ ◦ eρL (g ).

Proof: This is an immediate consequence of the fact that the two theta structuresΘAk
andΘBk

are
π-compatible. �

For i ∈ H (ℓn), we can define a mapping eπi : eAk → eBk given on geometric points by ex 7→
eπ(eρL (ΘAk

(i)).ex). IfΘAk
(i) ∈Z ( eKπ), Proposition 2.3 shows that eπi = eρL0

(ΘAk
(i))◦ eπ, hence eπi

can be recovered from eπ and the action eρL0
. SinceZ ( eKπ)⊃ sK(L )(K2(L )), the interesting mappings

to study are then eπi := eπ(1,i ,0) for i ∈ Z(ℓn). They are given on geometric points by

eπi (( eϑ j (ex)) j∈Z(ℓn)) = (
eϑi+ℓ. j (ex)) j∈Z(n).

Corollary 2.4:
Keeping the notations from above, we have

1. Let S be a subset of Z(ℓn), such that S + Z(n) = Z(ℓn). Then ex ∈ eAk (k) is uniquely
determined by {eπi (ex)}i∈S .

2. Let ey ∈ eAk (k) be such that eπ(ey) = eπ(ex). Then there exists j ∈ Ẑ(ℓ) ⊂ Ẑ(ℓn) such that
ey = (1,0, j ).ex and

eπi (ey) = e
ℓn(i , j )eπi (ex).

In particular eπi (ey) and eπi (ex) differ by an ℓt h -root of unity.

Proof:

1. Since eπi (( eϑ j (ex)) j∈Z(ℓn)) = (
eϑi+ℓ. j (ex)) j∈Z(n), from {eπi (ex)}i∈S one can obtain the values

n

eϑ j (ex)
o

j∈S +Z(n)
. IfS +Z(n) = Z(ℓn) this shows that we can recover ex = ( eϑ j (ex)) j∈Z(ℓn).

12



3 The addition relations

2. If eπ(ey) = eπ(ex), then pAk
(ey)− pAk

(ex) ∈ Kπ. So there exists j ∈ Ẑ(ℓ) and α ∈ k
∗

such that

ey = (α, 0, j ).ex . Hence eϑi (ey) = αe
ℓn(i , j ) eϑi (ex). Since eπ(ex) = eπ(ey), α = 1. Moreover, as

j ∈ Ẑ(ℓ), e
ℓn(i + k , j ) = e

ℓn(i , j ) if k ∈ Z(n) so that eπi (ex) = e
ℓn(i , j )eπi (ey). �

Corollary 2.4 shows that eρL descends to an action on eBk/µk (ℓ) whereµk (ℓ) is the group scheme
of ℓ-roots of unity on k .

Example 2.5:
• If ℓ is prime to n, the canonical mappings Z(n) → Z(ℓn) and Z(ℓ) → Z(ℓn) induce an

isomorphism Z(n)×Z(ℓ) ∼→ Z(ℓn), and one can takeS = Z(ℓ) in Corollary 2.4.

• If ℓ is not prime to n, a possible choice forS is

S = {
∑

i∈[1..g]

λi ei |λi ∈ [0..ℓ− 1]}.

 The addition relations

In this section we study the addition relations and introduce the notion of addition chain on the
affine cone of an abelian variety. These addition chains will be a basic tool for the isogeny computation
algorithm presented in Section 4 and Vélu’s like formulas of Section 5.

In Section 3.1 we use the action of G(L ) on the affine cone and the canonical lift sK(L ) : K(L )→
G(L ) to introduce some canonical affine lifts on the affine cone. In Section 3.2 we prove in the
framework of Mumford’s theory a particular presentation of the Riemann relations, and we deduce
from them the addition relations. In Section 3.3 we use the results of Section 2.3 to study the properties
of the addition chain.

. The canonical lift of the action of K(L ) to the affine cone

For the rest of this article we suppose that we are given a modular point (bi )i∈Z(n) corresponding to a

triple (Bk ,L0,ΘBk
). We choose a coordinate system ( eϑ

ΘBk
i )i∈Z(n) on eBk and ae0Bk

∈ p−1
Bk
(0Bk
). We

remark that a choice ofe0Bk
∈ p−1

Bk
(0Bk
)⊂ eBk is nothing but a choice of an evaluation isomorphism:

ϵ0 : L (0) ≃ k . In this Section and Section 4 we also suppose that we are given a modular point
(ai )i∈Z(ℓn) corresponding to a triple (Ak ,L ,ΘAk

) such that ϕ1((ai )i∈Z(ℓn)) = (bi )i∈Z(n) where ϕ1 :
M

ℓn →Mn is the modular correspondence introduced in Section 1. By Proposition 2.2 we then

have an ℓ-isogenyπ of type 1 between Ak and Bk . We choose a coordinate system ( eϑ
ΘAk
i )i∈Z(ℓn) on

eAk and we denote bye0Ak
the unique point in p−1

Ak
(0Ak
) such thate0Bk

= eπ(e0Ak
) where eπ is given by

eπ∗( eϑ
ΘBk
i ) = eϑ

ΘAk
i for i ∈ Z(n).

We recall that the theta structureΘAk
define a section sK(L ) : K(L )→G(L ), so that the map

x ∈K(L ) 7→ sK(L )(x).e0Ak
∈ eAk induces a section K(L )→ eAk of the map pAk

: eAk →Ak . (More

generally this give a canonical section of the action by translation of K(L ) on Ak to an action on eAk ).
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3 The addition relations

Thus, once we have chosene0Ak
, we have a canonical way to fix an affine lift for any geometric point in

K(L ). For i ∈ Z(ℓn), let ePi = (1, i , 0).e0Ak
, and for j ∈ Ẑ(ℓn), let eQ j = (1,0, j ).e0Ak

. We also put
eRi = eπ(ePi ) = eπi (e0Ak

), and Ri = pBk
(eRi ). We remark that {Ri}i∈Z(ℓ) is the kernel Kπ̂ of π̂ which

explains the important role the points eRi will play in the rest of this paper.

. The general Riemann relations

The Riemann relations (3) forM
ℓn and the Riemann equations (2) for Ak are all particular case of

more general Riemann relations, which we will use to get the addition relations on Ak . An analytic
proof of (a partial fourier transform) of these relations can be found in [Igu72, Th.1 p. 137].

Theorem 3.1 (Generalized Riemann Relations):
Let (Ak ,L ,ΘAk

) ∈ Mn and we suppose that 2|n. Let x1, y1, u1, v1, z ∈ Ak (k) be such that x1 +
y1 + u1 + v1 = 2z . Let x2 = z − x1, y2 = z − y1, u2 = z − u1 and v2 = z − v1. Then there
exist ex1 ∈ p−1

Ak
(x1), ey1 ∈ p−1

Ak
(y1), eu1 ∈ p−1

Ak
(u1), ev1 ∈ p−1

Ak
(v1), ex2 ∈ p−1

Ak
(x2), ey2 ∈ p−1

Ak
(y2),

eu2 ∈ p−1
Ak
(u2), ev2 ∈ p−1

Ak
(v2) that satisfy the following relations: for any i , j , k , l , m ∈ Z(ℓn) such that

i + j + k+ l = 2m, let i ′ = m− i , j ′ = m− j , k ′ = m− k and l ′ = m− l , then for all χ ∈ Ẑ(2),
we have
�

∑

t∈Z(2)

χ (t ) eϑi+t (ex1) eϑ j+t (ey1)
�

.
�

∑

t∈Z(2)

χ (t ) eϑk+t (eu1) eϑl+t (ev1)
�

=

�

∑

t∈Z(2)

χ (t ) eϑi ′+t (ex2) eϑ j ′+t (ey2)
�

.
�

∑

t∈Z(2)

χ (t ) eϑk ′+t (eu2) eϑl ′+t (ev2)
�

. (7)

Proof: If x = y = u = v = 0A, the preceding result gives the algebraic Riemann relations, a proof of
which can be found in [Mum66, p. 333]. We just need to adapt the proof of Mumford for the general
case.

Let p1 and p2 be the first and second projections from Ak×Ak to Ak . LetM = p1
∗(L )⊗ p2

∗(L ).
The theta structureΘAk

induces a theta structureΘAk×Ak
such that for (i , j ) ∈ Z(ℓn)×Z(ℓn)we

have ϑΘA×A

i , j = ϑ
ΘAk
i ⊗ϑ

ΘAk
j (see [Mum66, Lem. 1 p. 323]). Consider the isogeny ξ : Ak ×Ak →

Ak ×Ak , (x, y) 7→ (x+ y, x− y). We have ξ ∗(M ) =M 2. SinceΘAk
is a symmetric theta structure

ΘAk
, there exists a theta structureΘL 2

onL 2 such thatΘL 2
andΘL are compatible in the sense

of Mumford [Mum66, p. 317]. The theta structureΘL 2
then induces a theta structureΘM 2

onM 2.
One can check that this theta structure is compatible with the isogeny ξ [Mum66, p. 325]. Applying
the isogeny theorem (see [Mum66, p. 324]), we obtain that there exists λ ∈ k

∗
such that for all

i , j ∈ Z(ℓn):
ξ ∗(ϑLi ⊗ϑ

L
j ) = λ
∑

u,v∈Z(2l n)
u+v=i
u−v= j

(ϑL
2

u ⊗ϑ
L 2

v ). (8)

Considering this equation on the affine cone, we can always choose our affine lifts such that taking
the evaluation at these lifts yield λ= 1. In the following we assume this is the case. Using equation (8)
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3 The addition relations

we compute for all i , j ∈ Z(2ℓn) which are congruent modulo Z(ℓn) and ex,ey ∈Ak (k):
∑

t∈Z(2)

χ (t ) eϑLi+ j+t (àx + y) eϑLi− j+t (àx − y) =
∑

t∈Z(2)
u,v∈Z(2l n)

u+v=i+ j+t
u−v=i− j+t

χ (t ) eϑL
2

u (ex)
eϑL

2

v (ey)

=
∑

t1,t2∈Z(2)

χ (t1+ t2) eϑ
L 2

i+t1
(ex) eϑL

2

j+t2
(ey)

=







∑

t∈Z(2)

χ (t ) eϑL
2

i+t (ex)






·







∑

t∈Z(2)

χ (t ) eϑL
2

j+t (ey)






.

(9)

So we have:
�

∑

t∈Z(2)

χ (t ) eϑLi+ j+t (àx + y) eϑLi− j+t (àx − y)
�

.
�

∑

t∈Z(2)

χ (t ) eϑLk+l+t (àu + v) eϑLk−l+t (àu − v)
�

=

�

∑

t∈Z(2)

χ (t ) eϑL
2

gi+t
(ex)
�

·
�

∑

t∈Z(2)

χ (t ) eϑL
2

Þj+t
(ey)
�

·
�

∑

t∈Z(2)

χ (t ) eϑL
2

Þk+t
(eu)
�

·
�

∑

t∈Z(2)

χ (t ) eϑL
2

Þl+t
(ev)
�

=

�

∑

t∈Z(2)

χ (t ) eϑLi+l+t (àx + v) eϑLi−l+t (àx − v)
�

.
�

∑

t∈Z(2)

χ (t ) eϑLk+ j+t (àu + y) eϑLk− j+t (àu − y)
�

. (10)

Now if we let x = x0+ y0, y = x0− y0, u = u0+ v0 and v = u0− v0, we have x + y + u + v =
2(x0+ u0) so we can choose z = x0+ u0, so that z− x = u0− y0, z− y = u0+ y0, z− u = x0−v0,
z − v = x0+ v0. By doing the same change of variable for i , j , k , l we see that the theorem is just a
restatement of Equation (10). (see [Mum66, p. 334]). �

From the generalized Riemann relations it is possible to derive addition relations.

Theorem 3.2 (Addition Formulas):
We suppose that 4|ℓn. Let x, y ∈ Ak (k) and suppose that we are given ex ∈ p−1

Ak
(x), ey ∈ p−1

Ak
(y),

àx − y ∈ p−1
Ak
(x − y), then there is a unique pointàx + y ∈ eAk (k) such that for i , j , k , l , m ∈ Z(ℓn)

verifying i + j + k + l = 2m

�

∑

t∈Z(2)

χ (t ) eϑi+t (àx + y) eϑ j+t (àx − y)
�

.
�

∑

t∈Z(2)

χ (t ) eϑk+t (e0Ak
) eϑl+t (e0Ak

)
�

=

�

∑

t∈Z(2)

χ (t ) eϑ−i ′+t (ey) eϑ j ′+t (ey)
�

.
�

∑

t∈Z(2)

χ (t ) eϑk ′+t (ex) eϑl ′+t (ex)
�

, (11)

where i ′, j ′, k ′, l ′ are defined as in Theorem 3.1. We have pAk
(àx + y) = x + y .

Thus the addition law on Ak extends to a pseudo addition law on eAk ; we call it an addition chain and
we noteàx + y = chain_add(ex,ey,àx − y).
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Proof: We apply the Riemann relations (7) to x + y, x − y, 0A, 0A. We have 2x = (x + y) + (x −
y) + 0A + 0A, −y = x − (x + y), y = x − (x − y), x = x − 0A, x = x − 0A so Theorem 3.1
shows that there exist a pointàx + y ∈ eAk (k) satisfying the addition relations (11). (Remember that
(ϑi (−y))i∈Z(ℓn) = (ϑ−i (y))i∈Z(ℓn), see Section 2.3.)

It remains to show that this point is unique. For this, it is enough to prove that for all i , j , k , l , m ∈
Z(ℓn) such that i + j + k + l = 2m and all χ ∈ Ẑ(2) there exist k ′, l ′, m′ ∈ Z(ℓn) such that
i+ j +k ′+ l ′ = 2m′ and

∑

t∈Z(2)
eϑk ′+t (e0Ak

) eϑl ′+t (e0Ak
) ̸= 0. Then, by summing over the characters

the first bracket of the left hand side of equation (11) we obtain the products eϑi+t (àx + y) eϑ j+t (àx − y)

for i , j ∈ Z(ℓn), from which we can recover the coordinates of the pointàx + y .
Now, let k1, l1 ∈ Z(2ℓn) be such that k = k1+ l1 and l = k1− l1. Using formula (9), we get:

∑

t∈Z(2)

χ (t ) eϑLk1+l1
(e0Ak
) eϑLk1−l1

(e0Ak
) =







∑

t∈Z(2)

χ (t ) eϑL
2

k1+l (
e0Ak
)






.







∑

t∈Z(2)

χ (t ) eϑL
2

l1+t (
e0Ak
)






(12)

Using [Mum66, p. 339 eq. (*)], we obtain that for all χ ∈ Z(2) there exists k ′1 ∈ k1 + Z(ℓn) and

l ′1 ∈ l1+Z(ℓn) such that:






∑

t∈Z(2)

χ (t ) eϑL
2

k1+l (
e0Ak
)






.







∑

t∈Z(2)

χ (t ) eϑL
2

l1+t (
e0Ak
)






̸= 0.

This complete the proof. �

In order to obtain an efficient algorithm to compute addition chain, we first we reformulate the
addition formulas (see [Mum66, p. 334]). Let H = Z(ℓn)× Ẑ(2), and for (i ,χ ) ∈H define

eui ,χ (ex) =
∑

t∈Z(2)

χ (t ) eϑi+t (ex).

Then we have for all i , j , k , l , m ∈H such that 2m = i + j + k + l

eui (àx + y)eu j (àx − y)euk (e0Ak
)eul (e0Ak

) =
1

22g

∑

ξ∈H ,2ξ=∈Z(2)×0

(m2+ ξ2)(2ξ1)eui−m+ξ (ey)eum− j+ξ (ey)eum−k+ξ (ex)eum−l+ξ (ex). (13)

It is easy to see that ( eϑi (ex))i∈Z(ℓn), is determined by (eui (ex))i∈H .

Algorithm 3.3 (Addition chain):
Input ex,ey andàx − y such that pAk

(ex)− pAk
(ey) = pAk

(àx − y).

Outputàx + y = chain_add(ex,ey,àx − y).
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: For all i ∈ Z(ℓn), χ ∈ Ẑ(2) and X ∈ {àx + y,ex,ey,e0Ak
} compute

eui ,χ (X ) =
∑

t∈Z(2)

χ (t ) eϑi+t (X ).

: For all i ∈ Z(ℓn), choose j , k , l ∈ Z(ℓn) such that i+ j+k+ l = 2m, eu j (àx − y) ̸= 0, euk (e0Ak
) ̸= 0,

eul (e0Ak
) ̸= 0 and compute

eui (àx + y) =
1

22g
eu j (àx − y)euk (e0Ak

)eul (e0Ak
)

∑

ξ∈H ,2ξ=∈Z(2)×0

(m2+ ξ2)(2ξ1)eui−m+ξ (ey)eum− j+ξ (ey)eum−k+ξ (ex)eum−l+ξ (ex). (14)

: For all i ∈ Z(ℓn), output
eϑi (àx + y) =

1

2g

∑

ξ∈Ẑ(2)

eui ,χ (àx + y).

Complexity Analysis 3.4:
As eui+t ,χ = χ (t )eui ,χ we only need to consider (ℓn)g coordinates and the linear transformation between eu and
eϑ can be computed at the cost of (2nℓ)g additions in k . We also have eui ,χ (−ex) = eu−i ,χ (ex).

Using the fact that for t ∈ Z(2) the right hand terms of (14) corresponding to ξ = (ξ1 + t ,ξ2) and to
ξ = (ξ1,ξ2) are the same up to a sign, one can compute the left hand side of (14) with 4 · 4g multiplications and
4g additions in k . In total one can compute an addition chain in 4.(4ℓn)g multiplications, (4ℓn)g additions and
(ℓn)g divisions in k . We remark that in order to compute several additions using the same point, there is no need
to convert back to the eϑ at each step so we only need to perform Step 2.

The addition chain formula is a basic step for all the algorithms to be presented in the sequel of this paper and
we will use it as an unit of time for all our running time analysis. In some cases it is possible to greatly speed up
this computation. See for instance [Gau07] which uses the duplication formula between theta functions to speed
up the addition chain of level two. See also Section 4.1 where it is explained how to use isogenies to compute the
addition chain for a general level by using only addition chains of level two, so that we can use the speed up of
[Gau07] in general whatever the level of the theta structure is.

Remark 3.5:
The addition formulas can also be used to compute the usual addition law in Ak by choosing j = 0 in
Equation (14) for every i .

The addition chain law on eAk induces a multiplication by a scalar law which reduces via pAk

to the multiplication by a scalar deduced from the group law of Ak . Let ex,ey ∈ eAk andàx + y ∈
p−1

Ak
(x + y), then we can computeâ2x + y := chain_add(àx + y,ex,ey). More generally there is a

recursive algorithm to compute for every m ¾ 2:

ämx + y := chain_add( å(m− 1)x + y,ex, å(m− 2)x + y)

17
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We put chain_multadd(n,àx + y,ex,ey) :=ämx + y and define

chain_mult(m,ex) := chain_multadd(m,ex,ex,e0Ak
).

We have pAk
(chain_mult(m,ex)) = m. pAk

(ex). We call chain_multadd a multiplication chain.

Algorithm 3.6 (Multiplication chain):
Input m ∈N,àx + y,ex,ey ∈ eAk .
Output chain_multadd(m,àx + y,ex,ey).

: Compute the binary decomposition of m :=
∑I

i=0 bi 2
i . Set m′ := 0, xy0 := ey , xy−1 :=

chain_add(ey,−ex,àx + y), x0 :=e0Ak
and x1 := ex .

: For i in [I ..0] do
If bi = 0 then compute

x2m′ := chain_add(xm′ ,xm′ ,x0)
x2m′+1 := chain_add(xm′+1,xm′ ,x1)
xy2m′ := chain_add(xym′ ,xm′ ,xy0)

m′ := 2m′.

Else compute

x2m′+1 := chain_add(xm′+1,xm′ ,x1)
x2m′+2 := chain_add(xm′+1,xm′+1,x0)
xy2m′+1 := chain_add(xym′ ,xm′ ,xy−1)

m′ := 2m′+ 1.

: Output xym .

Correction and Complexity Analysis 3.7:
It is not completely trivial to see thatämx + y does not depend on the Lucas sequence used to compute it. We
prove this in Corollary 3.13 where we show that multiplication chains are associative. In order to do as few division
as possible, we use a Montgomery ladder [CFA+06, Alg. 9.5] for our Lucas sequence, hence the algorithm.

We see that a multiplication chain requires O(log(m)) addition chains.

.. The case n = 2

LetL0 be a principal polarization associated to a symmetric irreductible divisorΘ. ThenL =L 2
0 is

of degree 2 and we have for all i ∈ Z(2), (−1)∗ϑi = ϑi , where (−1) is the inverse automorphism on
Ak . As a consequence,L gives an embedding of the Kummer variety KA=Ak/± 1. Suppose that
the even theta nulls forΘ are non zero. Then the embedding given byL in the projective space is an
immersion. (See [Kem88, Cor. 5] and [Kem92, Th. 1] or [Koi76, Cor. 4.5.2].)

There is no properly defined addition law on KA: from±x ∈KA and±y ∈KA, we may compute
±x ± y which gives two points on KA. However, if we are also given±(x − y) ∈ KA, then we can
identify±(x + y) ∈ {±x ± y}. Thus the addition chain law from Theorem 3.2 extends to a pseudo
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addition on the Kummer variety. With our hypothesis, by looking at the proof of Theorem 11 we see
that we can use it to compute the pseudo addition law on the Kummer variety.

Let x, y ∈KA. To compute±x±y without±(x−y)we can proceed as follows: let X = (Xi )i∈Z(2),
Y = (Yi )i∈Z(2) be the two projections of the generic point on KA × KA. Then the addition re-
lations X = chain_add(x, y,Y ) describe a system of degree 2 in KA× KA, whose solutions are
(±(x + y),±(x − y)) and (±(x − y),±(x + y)). From this system, it is easy to recover the points
{±(x + y),±(x − y)}, but this involves a square root in k . (The preceding claims are proved in the
preprint [LR10, Lemma 3].) We call this a normal addition, coming back to isogenies computations,
it means that when working with n = 2, we have to avoid computing normal additions, since they
require a square root and are much slower than addition chains.

Finally, to make our algorithms work with n = 2, we have to introduce the notion of compatible
additions. Suppose that we are given±x,±y,±z ∈KA, together with±(x+ y), and±(y+ z). Using
a normal addition we can compute {±(x + z),±(x − z)}; we want to find±(x + z). If we apply
the normal addition to±x + y and±x + z we find {±(2x + y + z),±(y − z)} while the normal
addition applied to±x + y and±x − z give {±(2x + y − z),±(y + z)}. This allows us to identify
±(x + z) if we suppose 2x ̸= 0, 2y ̸= 0, 2z ̸= 0, and 2(x + y + z) ̸= 0. We call this the compatible
addition±(x + z) with±(x + y) and±(y + z).

. Theta group and addition relations

In this Section, we study the action of the theta group on the addition relations. We also show that
addition relations are compatible with isogenies between two abelian varieties with compatible theta
structures. By combining this we find the addition relations linking the coordinates of the points
{eRi}i∈Z(ℓn) on eBk . By considering different modular point (ai )i∈Z(ℓn) ∈ ϕ

−1
1 ((bi )i∈Z(n)) and the

associated isogeniesπ : Ak → Bk , we can then understand the addition chains between any isotropic
subgroup of Bk[ℓ] (see Section 1). In particular we exploit this to show that we can compute the chain
multiplication by ℓ in O(log(ℓ)) addition chains.

Given the way the addition relations are set up as a consequence of the isogeny theorem, there
should be no surprise that they are compatible with the action of the theta group. Still, some care must
be taken, if we have ex,ey,àx + y andàx − y ∈ eAk (k) such that

àx + y = chain_add(ex,ey,àx − y),

and we take g1, g2 ∈G(L ), then by looking at the projections in Ak we certainly have

(g1 ◦ g2).àx + y = λchain_add(g1.ex, g2.ey, (g1 ◦ g−1
2 ).àx − y)

where λ ∈ k×. However for trivial reasons, λ ̸= 1 in general (See Lemma 3.10), so we have to work a
bit to determine λ.

We begin with two easy lemmas.

Lemma 3.8:
Suppose that ex1,ey1, eu1, ev1,ex2,ey2, eu2, ev2 ∈ eAk (k) satisfy the general Riemann relations (7).

• For every g ∈ G(L ), g .ex1, g .ey1, g .eu1, g .ev1, g .ex2, g .ey2, g .eu2, g .ev2 also satisfy the Riemann
relations.
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• For every ℓ-isogeny of type 1 π : (A,L ,ΘAk
)→ (B ,L0,ΘBk

) such that ΘBk
is π-compatible

with ΘAk
, then eπ(ex1), eπ(ey1), eπ(eu1), eπ(ev1), eπ(ex2), eπ(ey2), eπ(eu2), eπ(ev2) ∈ eBk also satisfy the

Riemann relations.

Proof: This is an immediate computation. �

Lemma 3.9:
Let (α, i , j ) ∈H (ℓn) and ex ∈ eAk . Then we have−(α, i , j ).ex = (α,−i ,− j ).(−ex), and eπ(−ex) =
−eπ(ex).

In particular−(α, i , j ).e0Ak
= (α,−i ,− j ).e0Ak

.

Proof: Ifex = (xi )i∈Z(ℓn), we recall that we have defined−ex = (x−i )i∈Z(ℓn). The fact than−(α, i , j ).ex =

(α,−i ,− j ).(−ex) is a direct consequence of the fact than the coordinates ( eϑi )i∈Z(ℓn) of ex are the
theta functions associated to a symmetric theta structure. We can also check this with a direct com-
putation: If u ∈ Z(ℓn) we have by (1): ((α, i , j ).ex)u = α〈−u − i , j 〉au+i , ((α,−i ,− j ).ex)−u =
α〈u + i ,− j 〉ex−u−i = au+i = xu . The rest of the lemma is trivial. �

We now turn to the action ofH (ℓn) on eAk . SinceH (ℓn) is generated by k∗, Z(ℓn) and Ẑ(ℓn)
(where we embed Z(ℓn) and Ẑ(ℓn) inH (ℓn)with the usual sections), it is enough to study separately
the action of these subgroup on the addition relation. The action of k∗ is immediate:

Lemma 3.10:
For λx ,λy ,λx−y ∈ k

∗
and ex,ey ∈Ak (k), we have:

chain_add(λxex,λyey,λx−y
àx − y) =

λ2
xλ

2
y

λx−y
chain_add(ex,ey,àx − y), (15)

chain_multadd(n,λx+y
àx + y,λxex,λyey) =

λn(n−1)
x λn

x+y

λn−1
y

chain_multadd(n,àx + y,ex,ey),

(16)

chain_mult(n,λxex) = λ
n2

x chain_mult(n,ex). (17)

Proof: Formula (15) is an immediate consequence of the addition formulas (11). The rest of the lemma
follows by an easy recursion. �

A more interesting result is the compatibility between the addition formulas and the action of
Z(ℓn) on eAk :

Proposition 3.11 (Compatibility of the pseudo-addition law):
For ex,ey,àx − y ∈ eAk (k), and i , j ∈ Z(ℓn), we have:

(1, i+ j , 0).chain_add(ex,ey,àx − y) = chain_add((1, i , 0).ex, (1, j , 0).ey, (1, i− j , 0).àx − y) (18)
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3 The addition relations

In particular if we set ePi = (1, i , 0).e0Ak
we have:

ePi+ j = chain_add(ePi , eP j , ePi− j )

Proof: Letàx + y = chain_add(ex,ey,àx − y). By Theorem 3.2, we have for every a, b , c , d , e ∈ Z(ℓn)
such that a+ b + c + d = 2e :

�

∑

t∈Z(2)

χ (t )ϑa+t (àx + y)ϑb+t (àx − y)
�

.
�

∑

t∈Z(2)

χ (t )ϑc+t (e0)ϑd+t (e0)
�

=

�

∑

t∈Z(2)

χ (t )ϑ−e+a+t (ey)ϑe−b+t (ey)
�

.
�

∑

t∈Z(2)

χ (t )ϑe−c+t (ex)ϑe−d+t (ex)
�

. (19)

Applying (19) to a′ = a+ i + j , b ′ = b + i − j , c ′ = c , d ′ = d , e ′ = e + i , it comes:

�

∑

t∈Z(2)

χ (t )ϑi+ j+a+t (àx + y)ϑb+i− j+t (àx − y)
�

.
�

∑

t∈Z(2)

χ (t )ϑc+t (e0)ϑd+t (e0)
�

=

�

∑

t∈Z(2)

χ (t )ϑ− j−e+a+t (ey)ϑ j+e−b (ey)
�

.
�

∑

t∈Z(2)

χ (t )ϑi+e−c+t (ex)ϑi+e−d+t (ex)
�

. (20)

Thus (1, i+ j , 0).àx + y , (1, i , 0).ex , (1, j , 0).ey and (1, i− j , 0).àx − y satisfy the additions relations.�

By applying eπ, we obtain the following corollary:

Corollary 3.12:
For ex,ey,àx − y ∈ eAk , and i , j ∈ Z(ℓn), we have:

eπi+ j (chain_add(ex,ey,àx − y)) = chain_add(eπi (ex), eπ j (ey), eπi− j (àx − y)).

Proof: Remember that by definition eπi (ex) = eπ((1, i , 0).ex). The lemma is then a trivial consequence
of Proposition 3.11 and Lemma 3.8. �

We remark that by setting ex = ey =e0Ak
in Corollary 3.12, we find

eRi+ j = chain_add(eRi , eR j , eRi− j ).

By considering different isogeniesπ : Ak → Bk , we can use Corollary 3.12 to study the associativity of
chain additions:

Corollary 3.13:
Let x ∈ Bk[ℓ] and y ∈ Bk . Choose any affine lifts ex , ey andàx + y of respectively x , y and x + y .
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1. For all n ∈N∗, we putfnx = chain_mult(n,ex) andãnx + y = chain_multadd(n,àx + y,ex,ey).
Then for all n1, n2 ∈N∗ such that n1 > n2, we have

å(n1+ n2)x = chain_add(gn1x,gn2x,å(n1− n2)x), (21)

å(n1+ n2)x + y = chain_add(än1x + y,gn2x, å(n1− n2)x + y). (22)

In particular, we see thatãnx + y andfnx do not depend on the particular sequence of chain_add
used to compute them.

2. For all n ∈N∗,−ãnx + y = chain_add(n,−(àx + y),−ex,−ey)

Proof: First we prove assertion 1. Let K̂ be a subgroup of Bk[ℓ] containing x which is maximal and
isotropic for the Weil pairing. Consider the isogeny π̂ : Bk →Dk = Bk/K̂ and letπ : Dk → Bk be
the contragredient isogeny. We choose any theta structure on (Dk ,π∗L0) compatible withπ. There
exist i , j ∈ Z(ℓ) and λi ,λ j ∈ k

∗
such that ex = λi eπi (e0Dk

) and ey = λ j eπ j (e0Dk
). If λi = λ j = 1, then

the assertion 1. of Corollary 3.13 is a consequence of Corollary 3.12. But it is easy (see Lemma 3.10) to
see that (21) is homogeneous in λi , hence the result.

Next we prove assertion 2. Once again, let i ∈ Z(ℓ) be such that ex = λi eπ
�

(1, i , 0).e0Dk

�

, and
let ey ′ be any point in eπ−1(ey). By homogeneity we may suppose that λi = 1. By Corollary 3.12 and
Proposition 3.11, we haveãnx + y = eπ

�

(1, n.i , 0).ey ′
�

. Now by Lemma 3.9, we have −ãnx + y =
eπ
�

−(1, n.i , 0).ey ′
�

= eπ
�

(1,−n.i , 0).− ey ′
�

= chain_add(n,−(àx + y),−ex,−ey). �

The following remark concerning Corollary 3.12 is a useful fact to study the case ℓ not prime to n:

Remark 3.14:
Let ex ∈ eAk , i ∈ Z(ℓn) and let ey = eπ(ex). Let m ∈ Z be such that ℓ|m. By Proposition 3.11 and
Corollary 3.12, we have

eπ ((1, mi , 0).ex) = chain_multadd(m, eπi (ex), eRi ,ey).

But if ℓ|m, then mi ∈ Z(n)⊂ Z(ℓn). By Proposition 2.3 we have eπ ((1, mi , 0).ex) = (1, mi , 0).ey ,
and (1, mi , 0).ey can be computed with the formulas (1). Hence

(1, mi , 0).ey = chain_multadd(m, eπi (ex), eRi ,ey).

♦

In order to have a complete picture of the action ofH (ℓn) on eAk , we have yet to describe the
action of Ẑ(ℓn) on eAk . In order to do so, we recall from Section 2.2 that I is the automorphism of the
Theta group that permutes K1 and K2. Since sK2(L ) = I ◦ sK1(L ) ◦I, we just have to explain what is
the action of of I on the addition relations.
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Proposition 3.15:
Suppose that x, y, u, v, x ′, y ′, u ′, v ′ ∈ eAk (k) satisfy the general Riemann equations (7). Then I.x , I.y ,
I.u , I.v , I.x ′, I.y ′, I.u ′, I.v ′ also satisfy (7).

Proof: If x = (xi )i∈Z(ℓn) we recall (see (5)) that

I.x = (
∑

j∈Z(ℓn)

e(i , j )x j )i∈Z(ℓn)

where e = eL is the commutator pairing.
By hypothesis, we have for i , j , k , l ∈ Z(ℓn) such that i + j + k + l = 2m:

�

∑

t∈Z(2)

eϑi+t (x) eϑ j+t (y)
�

.
�

∑

t∈Z(2)

eϑk+t (u) eϑl+t (v)
�

=

�

∑

t∈Z(2)

eϑi ′+t (x
′) eϑ j ′+t (y

′)
�

.
�

∑

t∈Z(2)

eϑk ′+t (u
′) eϑl ′+t (v

′)
�

. (23)

Let Aχ ,x,y,i , j =
�∑

t∈Z(2)χ (t )
eϑi+t (x) eϑ j+t (y)
�

. If I , J ,K , L ∈ Z(ℓn) are such that I + J +K +
L= 2M , we have:

Aχ ,I.x,I.y,I ,J =
∑

T∈Z(2)

χ (T )
�

∑

i∈Z(ℓn)

e(I +T , i) eϑi (x)
��

∑

j∈Z(ℓn)

e(J +T , j ) eϑ j (x)
�

=
∑

T∈Z(2),i , j∈Z(ℓn)

χ (T )e(T , i + j )e(I , i)e(J , j ) eϑi (x) eϑ j (y)

Aχ ,I.x,I.y,I ,J Aχ ,I.u,I.v,K ,L =
∑

T1,T2∈Z(2)
i , j ,k ,l∈Z(ℓn)

χ (T1+T2)e(T1, i+ j )e(T2, k+ l )e(I , i)e(J , j )e(K , k)e(L, l ) eϑi (x) eϑ j (y) eϑk (u) eϑl (v)

=
∑

i , j ,k ,l∈Z(ℓn)

e(I , i)e(J , j )e(K , k)e(L, l ) eϑi (x) eϑ j (y) eϑk (u) eϑl (v)

�

∑

T1,T2∈Z(2)

χ (T1+T2)e(T1, i + j )e(T2, k + l )
�

But

�

∑

T1,T2∈Z(2)

χ (T1+T2)e(T1, i + j )e(T2, k + l )
�

=
¨

4g if e(·, i + j ) = e(·, k + l ) = χ
0 otherwise

and e(·, i + j ) = e(·, k + l ) (as characters on Z(2)) if and only if there exists m ∈ Z(ℓn) such that
i + j + k + l = 2m. Now since I + J +K + L = 2M we have e(I + J , ·) = e(K + L, ·) and as a
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consequence:

λ
∑

t1,t2∈Z(2)

e(I , i + t1)e(J , j + t1)e(K , k + t2)e(L, l + t2) eϑi+t1
(x) eϑ j+t1

(y) eϑk+t2
(u) eϑl+t2

(v) =

λe(I , i)e(J , j )e(K , k)e(L, l )
∑

t1,t2∈Z(2)

eϑi+t1
(x) eϑ j+t1

(y) eϑk+t2
(u) eϑl+t2

(v) =

λe(I , i)e(J , j )e(K , k)e(L, l )
∑

t1,t2∈Z(2)

eϑi ′+t1
(x ′) eϑ j ′+t1

(y ′) eϑk ′+t2
(u ′) eϑl ′+t2

(v) =

λe(I ′, i ′)e(J ′, j ′)e(K ′, k ′)e(L′, l ′)
∑

t1,t2∈Z(2)

eϑi ′+t1
(x ′) eϑ j ′+t1

(y ′) eϑk ′+t2
(u ′) eϑl ′+t2

(v)

where λ= 4g if i + j + k + l = 2m and λ= 0 otherwise. By combining these relations we find that

Aχ ,I.x,I.y,I ,J Aχ ,I.u,I.v,K ,L =Aχ ,I.x ′,I.y ′,I ′,J ′Aχ ,I.u ′,I.v ′,K ,L.

which concludes the proof. �

Corollary 3.16:
Let ex,ey,àx − y ∈ eAk (k), and let i , j ∈ Z(ℓn), k , l ∈ Ẑ(ℓn). Then we have:

(1, i + j , k + l ).chain_add(ex,ey,àx − y)

= chain_add((1, i , k).ex, (1, j , l ).ey, (1, i − j , k − l ).àx − y). (24)

Proof: By Propositions 3.11 and 3.15 we have

(1,0, k + l ).chain_add(ex,ey,àx − y) = chain_add((1,0, k).ex, (1,0, l ).ey, (1,0, k − l ).àx − y)
(25)

Now since (1, i , k) = (1,0, k)(1, i , 0), we conclude by combining Equations (18) and (25). �

Using Proposition 3.15, we can prove that the addition relations are compatible with any isogeny.

Corollary 3.17:
Suppose that ex1, ey1, eu1, ev1, ex2, ey2, eu2, ev2 ∈ eAk satisfy the Riemann relations (7). Ifπ : (A,L ,ΘAk

)→
(B ,L0,ΘBk

) is an isogeny such thatΘBk
isπ-compatible withΘAk

, then eπ(ex1), eπ(ey1), eπ( eu1), eπ( ev1),
eπ(ex2), eπ(ey2), eπ( eu2), eπ( ev2) ∈ eBk also satisfy the general Riemann Relations. In particular, for all
ex,ey,àx − y ∈ eAk , we have

eπ(chain_add(ex,ey,àx − y) = chain_add(eπ(ex), eπ(ey), eπ(àx − y)).

Proof: It is easy to see that Lemma 3.8 is valid for any compatible isogenies of type 1 (it is not restricted
to ℓ-isogenies). By Proposition 3.15, we can apply Lemma 3.8 also in the case of compatible isogenies of
type 2, which concludes since every compatible isogeny is a composition of isogenies of type 1 or 2.�
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 Application of the addition relations to isogenies

In this Section we apply the results of Section 3 to the computation of isogenies (see Section 4.2).
More precisely, we present an algorithm to compute the isogeny π̂ : Bk →Ak from the knowledge of
the modular pointe0Ak

. We give in Section 5 algorithms to computee0Ak
from the kernel of π̂.

But first, we remark that since the embedding of Ak that we consider is given by a theta structure of
level ℓn, a point π̂(x) is given by (ℓn)g coordinates, which get impractical because of memory con-
sumption when ℓ is big. In order to mitigate this problem, in Section 4.1, we give a point compression
algorithm such that the number of coordinates of a compressed point does not depend on ℓ.

We recall that we have chosen in Section 3.1e0Ak
= (ai )i∈Z(ℓn) such that eπ(e0Ak

) =e0Bk
, and that we

have defined for i ∈ Z(ℓn), eRi = (ai+ j ) j∈Z(n) ∈ eBk (k).

. Point compression

Suppose that ℓ is prime to n. We know that ex ∈ eAk (k) can be recovered from (eπi (ex))i∈Z(ℓ), by

(ex)ni+ℓ j = (eπi (ex)) j . If (d1, · · · , dg ) is a basis of Z(ℓ), we can prove that ex can be easily computed

from just (eπdi
(ex))i∈[1..g] and (eπdi+d j

(ex))i , j∈[1..g]). If (e1, · · · , eg ) is the canonical basis of Z(ℓn), in

the following, we take (di = nei )i∈[1..g] as a basis of Z(ℓ).

Proposition 4.1:
Let ex ∈ eAk (k) and i , j ∈ Z(ℓn). We have

eπi+ j (ex) = chain_add(eπi (ex), eR j , eπi− j (ex)).

Proof: We apply Corollary 3.12 with ey =e0Ak
,àx − y = ex , so that we have chain_add(ex,ey,áx − y) =

ex . We obtain:
eπi+ j (ex) = chain_add(eπi (ex), eπ j (e0Ak

), eπi− j (ex)). �

Definition 4.2:
Let S ⊂ G be a subset of a finite abelian group G such that 0G ∈ S . We denote by S ′ the smallest
subset of G (for the inclusion) such that S ′ ⊃ S and S ′ = S ′

⋃

{x + y|x ∈ S ′, y ∈ S ′, x − y ∈ S ′}.
We say that S is a chain basis of G if S ′ =G.

Example 4.3:
Let G = Z(ℓ). Let (e1, · · · , eg ) be the canonical basis of G. If ℓ is odd, a chain basis of G is given by

S = {0G , ei , ei + e j }i , j∈[1..g],i< j .

If ℓ is even, a chain basis of G is given by

S = {0G , ei1
, ei1
+ ei2

, · · · , ei1
+ · · ·+ eig

}i1,··· ,ig∈[1..g],i1<···<ig
.

In each case, the chain basis S is minimal, we call it the canonical chain basis S(G) of G.

25



4 Application of the addition relations to isogenies

We recall that, in Example 2.5, we have definedS ⊂ Z(ℓn) such thatS +Z(n) = Z(ℓn). ToS
we associate a canonical chain basisS⊂S as follow: ifℓ is prime to n, thenS = Z(ℓ)⊂ Z(ℓn), and
we defineS=S(Z(ℓ)) = {d1, · · · , dg , d1+dg , · · · , dg−1+dg }. Otherwise we takeS=S(Z(ℓn)).

Theorem 4.4 (Point compression):
Let ex ∈ eAk (k). The point ex is uniquely determined bye0Ak

and {eπi (ex)}i∈S. Moreover,e0Ak
is uniquely

determined by {eπi (e0Ak
)}i∈S = {eRi}i∈S.

Proof: By Proposition 3.11 we have eπi+ j (ex) = chain_add(eπi (ex), eπ j (e0Ak
), eπi− j (ex),e0Bk

). So by
induction, from {eπi (x)}i∈S we can compute every {eπi (x)}i∈S′ . Since S′ =S (or containsS if n
is not prime toℓ), Corollary 2.4 shows that ex is entirely determined by {eπi (x)}i∈S and {eπi (e0Ak

)}i∈S.

In particular,e0Ak
is entirely determined by {eπi (e0Ak

)}i∈S. But eπi (e0Ak
) = eπ(ePi ) by Proposition 2.3

and we are done. �

In the description of the algorithms, we suppose that ℓ is prime to n, so thatS = Z(ℓ)⊂ Z(ℓn).

Algorithm 4.5 (Point compression):
Input ex = ( eϑi (ex))i∈Z(ℓn) ∈ eAk (k)
Output The compressed coordinates (eπi (ex))i∈S.

: For each i ∈S, output (eπi (ex)) = ( eϑni+ℓ j (ex)) j∈Z(n)

Algorithm 4.6 (Point decompression):
Input The compressed coordinates eπ(ex)i∈S of ex .

Ouput ex = ( eϑi (ex))i∈Z(ℓn) ∈ eAk (k).

: (Step 1) SetS ′ :=S.
: (Step 2) WhileS ′ ̸=S .

• Choose i , j ∈S ′ such that i + j ∈S \S ′ and i − j ∈S ′.
• Compute eπi+ j (ex) = chain_add(eπi (ex), eR j , eπi− j (ex)).

• S ′ :=S ′
⋃

{i + j }.

: (Step 3) For all i ∈ Z(ℓn), write i = ni0+ ℓ j and output eϑi (x) =
�

eπi0
(ex)
�

j
.

Correction and Complexity Analysis 4.7:
By using repeatedly the formula from Proposition 3.11:

eπi+ j (ex) = chain_add(eπi (ex), eR j , eπi− j (ex),e0Bk
)

we can reconstitute every eπi (ex) for i ∈ Z(ℓ) in Step 2 since S is a chain basis of Z(ℓ). We can then trivially
recover the coordinates of ex in Step 3 since they are just a permutation of the coordinates of the {eπi (ex), i ∈ Z(ℓ)}
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4 Application of the addition relations to isogenies

(see Section 2.4). To recover ex , we need to do #S − #S = O(ℓg ) chain additions. The compressed point
{eπi (ex)}i∈S is given by #S× n g coordinates.

If ℓn = 2n0 and n0 is odd we see that we can store a point in eAk with 2g (1+ g (g + 1)/2) coordinates (4g if
n0 is even) rather than (2n0)

g .

.. Addition chains with compressed coordinates

Let ex , ey andàx − y ∈ eAk . Suppose that we have the compressed coordinates (eπi (ex))i∈S, (eπi (ey))i∈S,
(eπi (àx − y))i∈S. Then if i ∈S we have by Corollary 3.12

eπi (àx + y) = chain_add(eπi (ex), eπ0(ey), eπi (àx − y),

hence we may recover the compressed coordinates ofàx + y .
We can compare the running time of addition chain with the full coordinates representation (of

level ℓn) and the compressed representation. By the formulas from Theorem 3.2, since 2|n and the
formulas sum over points of 2-torsion, we see that we are doing #S addition chains in Bk using
representations of level n. The additions chains with the compressed representation are much faster
than the addition chains with the full representation since we need to do only #S addition chains
of level n. In particular, since we can compute the multiplication by m with chain additions, we
see that the cost of a multiplication by m is O(#S log(m)) addition chains of level n (and a point
decompression if we want to recover the full coordinates).

Since we can take n = 2, the additions formulas of level 2 allows us to compute addition chains of
any level. In particular the speed up for these formulas given by [Gau07] can be used for all levels.

. Computing the dual isogeny

We recall that we have the following diagram:

y ∈ Bk (k)

z ∈Ak (k)x ∈Ak (k)

π̂π

[ℓ]

Let ey ∈ p−1
Bk
(y) and let ex ∈ eAk (k) be such that eπ(ex) = ey . Let i ∈ Z(ℓ). In this section, we describe

an algorithm to compute eπi (ℓ.ex) efficiently from the knowledge of ey ande0Ak
(i.e. without using ex

which may be hard to compute). By using this algorithm for i ∈ {d1, · · · , dg , d1+ d2, · · ·dg−1+ dg },
we can then recover π̂(y) = pAk

(ℓ.ex) (see Theorem 4.4), where (di )i∈[1..g] is the basis of Z(ℓ) defined

in Section 4.1). We know thatπi (x) = y +Ri where x = pAk
(ex). For i ∈ Z(ℓ), we choose a point

πa
i (x) ∈ p−1

A (y +Ri ) so that for each i ∈ Z(ℓ) there exists λi ∈ k
∗

such that eπi (ex) = λiπ
a
i (x). If

ex ′ is another point in eπ−1(ey), then we have eπi (ex
′) = λ′iπ

a
i (x), with λ′i = ζ λi , ζ a ℓt h -root of unity

by Section 2.3. As a consequence, it is possible to recover λi only up to an ℓt h -root of unity, but this
information is sufficient to compute eπi (ℓ.ex):
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4 Application of the addition relations to isogenies

Theorem 4.8:
Let ey ∈ eBk (k) and let ex ∈ eAk (k) be such that eπ(ex) = ey . For all i ∈ Z(ℓ),

eπi (ℓ.ex) = λℓi chain_multadd(ℓ,πa
i (x),ey, eRi )),

where λℓi is determined by:

ey = λℓi chain_multadd(ℓ,πa
i (x),
eRi ,ey).

Proof: By Proposition 3.11 and Lemma 3.10 we have:

eπi (ℓ.ex) = chain_multadd(ℓ, eπi (ex), eπ(ex), eπ(ePi )) = λ
ℓ
i chain_multadd(ℓ,πa

i (x),ey, Ri ).

Now we only need to find the λℓi for i ∈ Z(ℓ). But by Proposition 3.11 and an easy recursion, we
have ex = sK1(L )(i)

ℓ.ex so that by Corollary 3.12 and Lemma 3.10

eπ(ex) = chain_multadd(ℓ, eπi (ex), Ri ,ey) = λ
ℓ
i .chain_multadd(ℓ,πa

i (x), Ri ,ey). �

Remark 4.9:
We can use the preceding theorem recover the equations of the isogeny by taking for y the generic
point of Bk . ♦

Algorithm 4.10 (The image of a point by the isogeny):
Input y ∈ Bk (k).
Output The compressed coordinates of π̂(y) ∈Ak (k).

: For each i ∈S
• (Step 1) Compute y +Ri and choose an affine lift yi of y +Ri .
• (Step 2) Compute ylRi := chain_multadd(ℓ, yi , eRi , y0)

Let λi be such that y0 = λi ylRi .
• Output λi chain_multadd(ℓ, yi , y0, eRi )).

Correction and Complexity Analysis 4.11:
Let ey = y0, and ex ∈ eAk (k) be such that eπ(ex) = ey , and let ez = ℓex . Then pAk

(ez) = π̂(y) and we note ez = π̂(ey).

In the Output, Theorem 4.8 show that we compute eπi (π̂(ey)) = λ
ℓ
i chain_multadd(ℓ, yi , y0, eRi )) since λℓi is

given in Step 2 by y0 = λ
ℓ
i chain_multadd(ℓ, yi , eRi ,ey).

We can easily recover π̂(y) from the eπi (π̂(ey)), i ∈ Z(ℓ), but we note that it is faster to compute the eπi (π̂(ey))
only for i ∈S (with the notations of Example 4.3 in the preceding section). and then use Algorithm 4.7 to obtain
the full coordinates of π̂(y). This last step is unnecessary if we only need the compressed coordinates of π̂(y).

To compute eπi (π̂(ey)), we need to do two multiplication chains of length ℓ. We obtain the compressed
coordinates of ℓ.x after g (g + 1)/2 such operations. In total we can compute the compressed coordinates of a
point in O( 1

2 g (g + 1) log(ℓ)) additions in Bk (with 1
2 g (g + 1)n g divisions in k) and the full coordinates in

O(ℓg ) additions in Bk .
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5 The computation of a modular point

The kernel of the isogeny We know that the kernel of the isogeny π̂ : Bk → Ak is the subgroup
K generated by {Rdi

}i∈[1..g]. For y ∈ Bk[ℓ], let ey ∈ p−1
Bk
(y). Up to a projective factor, we may

suppose that chain_mult(ℓ,ey) = e0Bk
. Then y is in K if and only if for all i ∈ Z(ℓ) we have

eπi (π̂(ey)) = eRi . Letây +Ri be any affine point above y +Ri . Since y and Ri are points of ℓ-torsion,

for all i ∈ Z(ℓ), there exist αi ,βi ∈ k
∗

such that chain_multadd(ℓ,ây +Ri ,ey, eRi )) = αi
eRi and

chain_multadd(ℓ,ây +Ri , eRi ,ey) = βiey . By Theorem 4.8, we know that eπi (π̂(ey)) =
αi
βi

eRi . In

particular y ∈ K if and only if αi
βi
= 1 for all i ∈ Z(ℓn). In fact, we will show in Section 6 that

αi/βi = eL ℓ
0
(y, Ri ) where eL ℓ

0
is the commutator pairing onL ℓ

0 . This is coherent with the fact that
y is in K if and only if eL ℓ

0
(y, Ri ) = 1 for i ∈ {d1, · · · , dg }.

The case (n,ℓ)> 1 In this case we have to take S= {e1, · · · , eg , e1+ e2, · · · }. If i ∈S, eRi is a point
of ℓn-torsion and we have by Remark 3.14

(1,ℓi , 0).ey = λℓi chain_multadd(ℓ,πa
i (x),
eRi ,ey),

so that we can still recover λℓi .

The case n = 2 The only difficult part here is the ordinary additions y+Ri , since the addition chains
do not pose any problems with n = 2. In particular, we first choose one of the two points±(x ±Re1

),
which requires a square root. Now, since we havee0Ak

given by a theta structure of degree ℓn > 2, we
have the coordinates of Re1

+Ri on Bk . This means that we can compute the compatible additions
x +Ri from x +Re1

and Re1
+Ri .

 The computation of a modular point

We recall that (Ak ,L ,ΘAk
) and (Bk ,L0,ΘBk

) are marked abelian varieties and we letπ : Ak → Bk

be an isogeny of type 1. In Section 5.1, we explain how to compute the theta null pointe0Ak
from the

knowledge of the kernel of π̂ the contragredient isogeny ofπ. This section introduces the notion of an
excellent point of ℓ-torsion, which is an affine lift of a point of ℓ-torsion that satisfy Equation (29). We
study this notion in Section 5.2, and use it in Section 5.3 in order to compute all (or just one) modular
points.

. An analog of Vélu’s formulas

We have seen in Section 4.2 how to use the addition formula to compute the isogeny π̂ : Bk →Ak . The
theta null point (ai )i∈Z(ℓn) corresponding to (Ak ,L ,ΘAk

) is an input of this computation. In this

section, we explain how to recover the theta null point (ai )i∈Z(ℓn), given the kernel K̂ = {Ti}i∈Z(ℓ) of
π̂, by using only the addition relations. By combining this result with the algorithm of Section 4.2,
we obtain an analog of Vélu’s formulas for higher dimensional abelian varieties since we are able to
compute an isogeny from the data of its kernel just by using addition relations. As in the course of the
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5 The computation of a modular point

algorithm we have to take ℓt h -root in k , we suppose that k is algebraically closed. (If k = Fq , with
ℓ|q−1 so that the ℓt h -root of unity are in k , we only have to work over an extension of degree ℓ of k).

Let {Td1
, · · · ,Tdg

} be a basis of K̂ . Let (ai )i∈Z(ℓn) be the theta null point corresponding to any
theta structure on Ak π-compatible with the theta structure of (Bk ,L0,ΘBk

). We recall that to
e0Ak
= (ai )i∈Z(ℓn), one can associate the points (eRi )i∈Z(ℓ) = eπi (e0Ak

) and Corollary 2.4 shows that
this correspondence is one on one. By [FLR09, Prop. 7], we recover all the theta null points of the
π-compatible theta structures on Ak , by acting overe0Ak

= (eRi )i∈Z(ℓ) by

(eRi )i∈Z(ℓ) 7→ (
eRψ1(i)

)i∈Z(ℓ), (26)

(eRi )i∈Z(ℓ) 7→ (e(ψ2(i), i)eRi )i∈Z(ℓ), (27)

where ψ1 is an automorphism of Z(ℓ) and ψ2 is a symmetric endomorphism of Z(ℓ). We remark
that the results of Section 4.1 show thate0Ak

is completely determined by {eRdi
, eRdi+d j

}i , j∈[1..g] where

d1, · · · , dg is a basis of Z(ℓ).

Up to an action (26) we may suppose thate0Ak
is such that eπdi

(e0Ak
) = Tdi

. Let i ∈ Z(ℓ) and let eTi

be any affine point above Ti , we have eRi = λi
eTi . Write ℓ= 2ℓ′+ 1, since Ri = pBk

(eRi ) is a point of

ℓ-torsion, we have (1,ℓ′+ 1,0).eRi =−(1,ℓ′, 0).eRi . By Proposition 3.11 and Lemma 3.10, we have

chain_mult(ℓ′+ 1, eRi ) =−chain_mult(ℓ′, eRi ),

λ(ℓ
′+1)2

i chain_mult(ℓ′+ 1, eTi ) =−λ
ℓ′2

i chain_mult(ℓ′, eTi ),

λℓi chain_mult(ℓ′+ 1, eTi ) =−chain_mult(ℓ′, eTi ). (28)

Hence we may find λi up to an ℓt h -root of unity. If we apply this method for i ∈ {d1, · · · , dg , d1+
d2, · · · , dg−1+ dg }, we find eRi up to an ℓt h -root of unity. But the action (27) shows that every such

choice of eRi gives a valid theta null pointe0Ak
via the correspondence of Corollary 2.4.

Algorithm 5.1 (Vélu’s like formula):
Input Td1

, · · ·Tdg
a basis of the kernel K̂ of π̂.

Output The compressed coordinates ofe0Ak
, the theta null point of level ℓn corresponding to π̂.

Let S= {d1, · · · , dg , d1+ d2, · · ·dg−1+ dg }.

: Let ℓ′ such that ℓ= 2ℓ′+ 1.
: For i , j ∈ [1..g], compute the points Tdi

+Td j
.

: For each i ∈S,

• Choose any affine lift T ′i of Ti , and compute (βi
j ) j∈Z(n) := chain_mult(ℓ′,T ′i ), and (γ i

j ) j∈Z(n) :=
chain_mult(ℓ′+ 1,T ′i ).

• Compute αi such that (γ i
j ) j∈Z(n) = αi (β

i
− j ) j∈Z(n).

• Output eRi := (αi )
1
ℓ ·T ′i .
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5 The computation of a modular point

Correction and Complexity Analysis 5.2:
In the Output we compute eRi , one of theℓ affine lift of Ti such that: chain_mult(ℓ′+1, eRi ) =−chain_mult(ℓ′, eRi ).
Then {eRi}i∈S give the compressed coordinates ofe0Ak

, we can then recovere0Ak
by doing a point decompression

(see Algorithm 4.7).
To find eRi , we need to do two chain multiplications of length ℓ/2, and then take an ℓt h -root of unity. After

g (g + 1)/2 such operations, we obtain the compressed coordinates of ae0Ak
, and we may recover the full coor-

dinates of the correspondinge0Ak
using the point decompression algorithm 4.7. We remark that we only need

the compressed coordinates ofe0Ak
to compute the compressed coordinates of π̂. In total we need to compute

g (g + 1)/2 ℓt h -roots of unity and O( 1
2 g (g + 1) log(ℓ)) additions in Bk to recover the compressed coordinates

ofe0Ak
. We can then recover the full coordinates ofe0Ak

at the cost of O(ℓg ) additions in Bk .

The case (n,ℓ) > 1. In this case once again we have to recover eRi for i ∈ S = {e1, · · · , eg , e1 +
e2, · · · , e1+eg }. Suppose that we have {Ti}i∈Z(ℓ),ℓ

g points ofℓn-torsion such thatℓ.Ti = (1,ℓi , 0).0B .

If i ∈S, we may suppose that eRi = λi
eTi .

If ℓ= 2ℓ′+ 1 is odd, we have:

λℓi chain_mult(ℓ′+ 1, eTi ) =−(1,ℓ(n− 1), 0).chain_mult(ℓ′, eTi )

so that once again we can find λℓi .
The kernel of π̂ is then K̂ = {nTi}i∈Z(ℓ). Even if K̂ is isotropic, it may be {Ti}i∈Z(ℓ) are not isotropic,

so some care must be taken when we choose the {Ti}i∈Z(ℓ).
If ℓ= 2ℓ′ is even, we have:

λ2ℓ
i chain_mult(ℓ′+ 1, eTi ) =−(1,ℓ(n− 1), 0).chain_mult(ℓ′− 1, eTi ),

so that we can recover onlyλ2ℓ
i . But every choice still corresponds to a valid theta null point (ai )i∈Z(ℓn),

because when 2|ℓ, to the actions (26) and (27) we have to add the action given by the change of the
maximal symmetric level structure [FLR09, Prop. 7].

The case n = 2 Once again, the only difficulty rests in the standard additions. Using standard
additions, we may compute Re1

±Re2
, · · · , Re1

±Reg
, making a choice each time. Then we can compute

Rei
+Re j

by doing an addition compatible with Re1
+Rei

and Re1
+Re j

.

. Theta group and ℓ-torsion

Let ex ∈ eBk (k) be such that pBk
(x) is a point of ℓ-torsion. We say that x is an excellent point of

ℓ-torsion if ex satisfy:

chain_mult(ℓ′+ 1,ex) =−chain_mult(ℓ′,ex). (29)

Remark 5.3:
If ex is an excellent point of ℓ-torsion, then Lemma 3.10 shows it is also the case for λ.ex for any λ an
ℓt h -root of unity. ♦
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5 The computation of a modular point

We have seen in the preceding section the importance of taking lifts that are excellent points of
ℓ-torsion. The aim of this section is to use the results of Section 3.3 to show that the addition chain
of excellent points of ℓ-torsion is again an excellent-point of ℓ-torsion. This result will be used in
Section 5.3 to compute excellent affine lifts of Bk[ℓ] by taking as few ℓt h -roots as possible.

LetM0 = [ℓ]
∗L0 on Bk . AsL0 is symmetric, we have thatM0 ≃ L ℓ2

0 [Mum70, p. 59] and

K(M0), the kernel ofM0 is isomorphic to K(ℓ2n). LetΘBk ,M0
be a theta structure on (Bk ,M0)

[ℓ]-compatible with the theta structureΘBk
on (Bk ,L0). As in Section 2.3, we can define the affine

conefBk
′

associated to the canonical sections ofM0 defined by the theta structureΘBk ,M0
. We choose

a system of affine coordinates onfBk
′

above the projective coordinates given byΘBk ,M0
, and we let

Ý[ℓ] :fBk
′
→ eBk be the lift to the affine cone of [ℓ] compatible with these coordinates. Finally, we note

e0
fBk
′ ∈fBk

′
the affine lift of the theta null point associated toΘBk ,M0

such thatÝ[ℓ]e0
fBk
′ =e0Bk

. Since

M0 ≃ L ℓ2

0 , the natural action of G(M0) on H 0(M0) gives via ΘBk ,M0
an action ofH (ℓ2n) on

H 0(M0).

Lemma 5.4:
Let y ∈ Bk[ℓ](k), ey ∈ p−1

Bk
(y) and ex ∈Ý[ℓ]

−1
(ey). Then there exists (α, ni , n j ) ∈ kℓ ×Z(ℓ2n)×

Ẑ(ℓ2n) such that ex = (α, ni , n j ).e0
fBk
′ . Moreover, ey is an excellent point of ℓ-torsion if and only if

α= λi , jµ whereµ is an ℓt h -root of unity and λi , j = 〈i , j 〉ℓ
′n(ℓ−1).

(If x ′ ∈fBk
′
(k), then x ′ ∈Ý[ℓ]

−1
(y) if and only if x ′ = (1,ℓi ′,ℓ j ′).x where (i ′, j ′) ∈ Z(ℓ2n)×

Ẑ(ℓ2n)), so the class of α in k∗/k∗ℓ does not depend on ex but only on ey).

Proof: Since p
fBk
′(ex) ∈ Bk[ℓ

2], there is an element h ∈ H (ℓ2n) such that ex = h.0
fBk
′ , with h =

(α, ni , n j ). By Remark 5.3, we only need to check that (λi , j , ni , n j ).0
fBk
′ is an excellent point of ℓ-

torsion. Let m ∈Z, and let exm = chain_mult(m,ex), eym = chain_mult(m,ey). By Corollary 24
we have exm = (λ

m2

i , j , m · i , m · j ).0
fBk
′ , and by Corollary 3.17 eym =Ý[ℓ](λ

m2

i , j , m · i , m · j ).0
fBk
′ . So by

Lemma 3.9

eyℓ′ =Ý[ℓ](λ
ℓ′2

i , j ,ℓ
′ · i ,ℓ′ · j ).0
fBk
′ =Ý[ℓ](1,ℓn(ℓ− 1)i ,ℓn(ℓ− 1) j )(λℓ

′2

i , j ,ℓ
′i ,ℓ′ j+).0
fBk
′

= 〈ℓ′i ,ℓn(ℓ− 1) j 〉Ý[ℓ](λℓ′2i , j , (ℓ
′+ ℓn(ℓ− 1)) · i , (ℓ′+ ℓn(ℓ− 1)) · j ).0

fBk
′

= λℓi , j
Ý[ℓ](λ(ℓ

′+1)2

i , j /λℓi , j ,−(ℓ
′+ 1) · i ,−(ℓ′+ 1) · j ).0

fBk
′

=Ý[ℓ](−exℓ′+1) =−eyℓ′+1. �

Proposition 5.5:
Let ey1, ey2,ây1− y2 ∈ eBk (k)be excellent points ofℓ-torsion. Thenây1+ y2 := chain_add(ey1, ey2,ây1− y2)
is an excellent point of ℓ-torsion.
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5 The computation of a modular point

Proof: Let (α1, i1, j1) ∈H (ℓ2n), (α2, i2, j2) ∈H (ℓ2n), (α3, i3, j3) ∈H (ℓ2n), be such that

Ý[ℓ](α1, i1, j1).0fBk
′ = ey1, Ý[ℓ](α2, i2, j2).0fBk

′ = ey2, Ý[ℓ](α3, i3, j3).0fBk
′ =ây1− y2

By the Remark at the end of Lemma 5.4, we may suppose that i3 = i1− i2, j3 = j1− j2. Since ey1, ey2

andây1− y2 are excellent points of ℓ-torsion, by Remark 5.3 and Lemma 5.4 we may suppose that
α1 = λi1, j1

, α2 = λi2, j2
and α3 = λi1−i2, j1− j2

.
By Corollary 24 and Lemma 3.10, we have

ây1+ y2 =
λ2

i1, j1
λ2

i2, j2

λi1−i2, j1− j2

(1, i1+ i2, j1+ j2).0fBk
′ = (λi1+i2, j1+ j2

, i1+ i2, j1+ j2).0fBk
′ ,

soây1+ y2 is indeed an excellent point of ℓ-torsion by Lemma 5.4. �

. Improving the computation of a modular point

In [FLR09], to compute the modular pointse0Ak
, the following algorithm is used: lete0Bk

= (bi )i∈Z(n),
consider the algebraic system S defined by the Riemann and symmetry relations (3) with (ai )i∈Z(ℓn)
considered as unknown and where we put ai = bi for i ∈ Z(n). The algebraic system S define a 0-
dimensional algebraic variety which contains the set of modular pointse0Ak

. We then present algorithm
to compute efficiently a Gröbner basis of the system S .

In this section, in order to improve the algorithm of [FLR09], we explain how, using the “Vélu’s”-like
formulas of Section 5.1, it is possible to recover all the modular pointse0Ak

solution of the system S from
the knowledge of the ℓ-torsion of Bk . We then discuss different methods to compute the ℓ-torsion in
Bk .

Algorithm 5.6 (Computing all modular points):
Input T1, · · · ,T2g a basis of the ℓ-torsion of Bk .
Output All ℓ-isogenies.

We only give an outline of the algorithm, since we give a detailed description in Example 5.7. We suppose
that we know how to compute eL ℓ0

on Bk[ℓ]. We will explain how to do this in the next section.

: Compute any affine excellentℓ-torsion lifts eT1, · · · , eT2g ,äT1+T2, · · · ,åTg−1+Tg , and then use addition

chains to compute affine lifts eT for every point T ∈ Bk[ℓ]. By Proposition 5.5 eT is an excellent point
of ℓ-torsion.

: For every isotropic subgroup K ⊂ Bk[ℓ], take the corresponding lifts and use them to reconstitute the
corresponding theta null pointe0Ak

(see Section 5.1).

Example 5.7:
Suppose that {T1, . . . ,T2g } is a symplectic basis of Bk[ℓ]. (A symplectic basis is easy to obtain from a
basis of the ℓ-torsion, we just need to compute the discrete logarithms of some of the pairings between
the points, where the pairings can be computed with Algorithm 6.5).
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5 The computation of a modular point

LetΘBk ,M0
be any theta structure of level ℓ2n on Bk compatible withΘBk

, ande0′Bk
be the corre-

sponding theta null point (see Section 5.2). We may suppose (see Section 5.1) that

eT1 =Ý[ℓ](1, (n, 0, · · · , 0), 0).e0′Bk

eT2 =Ý[ℓ](1, (0, n, · · · , 0), 0).e0′Bk
, . . .

ßTg+1 =Ý[ℓ](1,0, (n, 0, · · · , 0)).e0′Bk

ßTg+2 =Ý[ℓ](1,0, (0, n, · · · , 0)).e0′Bk
, . . .

åT1+Tg+2 =Ý[ℓ](1, (n, 0, · · · , 0), (0, n, 0, · · · , 0)).e0′Bk
, . . .

Then by Corollary 24, using Algorithm 5.6, we compute the following affine lifts of the ℓ-torsion:

{Ý[ℓ](1, i n, j n).e0′Bk
: i , j ∈ {0,1, · · · ,ℓ− 1}g ⊂ Z(ℓ2n)}. (30)

Now if K ⊂ Bk[ℓ] is an isotropic group, in the reconstruction algorithm 5.1 we need to compute
points of the formÝ[ℓ](1, i n, j n).e0′Bk

for i , j ∈ Z(ℓ2n). But we have

Ý[ℓ](1, i n, j n).e0′Bk
=Ý[ℓ]ζ ℓβn·(i−ℓα)n(1,ℓαn,ℓβn).(1, (i − ℓα)n, ( j − ℓβ)n).e0′Bk

=Ý[ℓ]ζ ℓβn·(i−ℓα)n(1, (i − ℓα)n, ( j − ℓβ)n).e0′Bk
,

where α,β ∈ Z(ℓ2n), and ζ is a (ℓ2n)t h -root of unity. As a consequence, we can always go back to a
point computed in (30) up to an ℓt h -root of unity.

We give a detailed example with g = 1, ℓ = 3, n = 4. Let Bk be an elliptic curve, with a theta

structureΘBk
of level n. Let T1, T2 be a basis of Bk[ℓ], and choose excellent affine lifts eT1, eT2,äT1+T2.

LetΘBk ,M0
be any theta structure of levelℓ2n compatible withΘBk

, ande0′Bk
be the corresponding theta

null point (see Section 5.2). We takeΘBk ,M0
such that eT1 =Ý[ℓ](1, n, 0).e0′Bk

, eT2 =Ý[ℓ](1,0, n).e0′Bk
,

andäT1+T2 =Ý[ℓ](1, n, n).e0′Bk
.

We have seen in (30) that in the Algorithm 5.6 we compute the points:Ý[ℓ](1, i n, j n).e0′Bk
for

i , j ∈ 0,1, · · · ,ℓ− 1⊂Z/ℓ2nZ.
Now let T =Ý[ℓ](1, n, 2n).e0′Bk

, K =< pBk
(T ) > is an isotropic subgroup of Bk[ℓ]. Let Ak =

Bk/K , choose a compatible theta structureΘAk
on A, and lete0Ak

be the associated theta null point.

As usual, we define eRi = eπi (e0Ak
) if i ∈Z/ℓZ ⊂Z/ℓnZ, and we may suppose (Section 5.1) that

ΘAk
is such that R1 = T . More explicitly, if n = 4 we have (Remember that we always choose e0Ak
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5 The computation of a modular point

such that eπ(e0Ak
) =e0Bk

):

e0Ak
= (a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11)

eπ(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = (x0, x3, x6, x9)
eR0 = (a0,a3,a6,a9) =e0Bk

eR1 = (a4,a7,a10,a1)
eR2 = (a8,a11,a2,a5)

Now by Theorem 4.4 we know that e0Ak
is entirely determined by eR1 (and e0Bk

), in fact we have:
eR2 = chain_add(R1, R1,e0Bk

). By Corollary 24, we have

eR2 =Ý[ℓ](1,2n, 4n).e0′Bk
=Ý[ℓ]ζ 2n·3n(1,0,3n).(1,2n, n).e0′Bk

= ζ 2n·3n
Ý[ℓ](1,2n, n).e0′Bk

,

where ζ is a (ℓ2n)t h -root of unity.
This shows that in the reconstruction step, we have to multiply the pointÝ[ℓ](1,2n, n).e0′Bk

which

we have already computed by the ℓ-root of unity ζ 2n·ℓn .

Complexity Analysis 5.8:
To compute an affine lift eTi , we have to compute an ℓt h -root of unity (and do some addition chains but we can
reuse the results for the next step). Once we have computed the ℓ(2ℓ+ 1)t h -root, we compute the whole (affine
lifts of ) ℓ-torsion by using O(ℓ2g ) addition chains. We can now compute the pairings e(Ti ,T j ) with just one
division since we have already computed the necessary addition chain (see Section 6). From these pairings we can
compute a symplectic basis of Bk[ℓ]. This requires to compute the discrete logarithm of the pairings and can be
done in O(ℓ) time. Using this basis, we can enumerate every isotropic subgroup K ⊂ Bk[ℓ], and reconstruct the
corresponding theta null point with O(ℓg )multiplications by an ℓt h -root of unity.

The case (n,ℓ > 1) In this case, the only difference is that we have to compute Bk[ℓn] rather than
Bk[ℓ], and when Ti is a point of ℓn-torsion, we compute an affine lift eTi such that:

chain_mult(ℓ′+ 1, eTi ) =−(1,ℓ(n− 1), 0).chain_mult(ℓ′, eTi ).

The case n = 2: This works as in Section 5.1, once we have computed the fTe1
+fTei

, we have to take

compatible additions to compute thefTei
+fTe j

.

Computing the points ofℓ-torsion in Bk : By applying the addition relations of Section 3.2 on the generic
point of Bk , we obtain an algebraic system of equations of degree ℓ2g in n g unknown defining Bk[ℓ].
We can compute the solutions of this system by using the general purpose Gröbner basis computation
algorithm.

In general we prefer to work with Kummer surfaces (so with n = 2), since it cuts the degree of the
system by two. In genus 2, Gaudry and Schost [GS08] have an algorithm to compute the ℓ-torsion
on the Kummer surface using resultants rather than a general purpose Gröbner basis algorithm. The
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6 Pairing computations

points are given in Mumford coordinates, but we can use the results of Wamelen [Wam99] to have
them in theta coordinates. This algorithm is in eO(ℓ6) (where we use the notation eO to mean we forget
about the log factors). The computation of the excellent affine points of ℓ-torsion from Algorithm 5.6
is in eO(ℓ4), and each of the O(ℓ3) isogeny requires O(ℓ2)multiplication by an ℓt h -root of unity. In
total we see that we can compute all (ℓ,ℓ)-isogenies in eO(ℓ6) in genus 2.

Isogenies graph: A possible application of the algorithms presented in this paper is the computation
of isogenies graphs. In fact, the Vélu like algorithm of Section 5.1 allows to compute a theta null point
e0Ak

for a theta structure on Ak of level ℓn from a point corresponding to a theta structure of level n.
We can then use the modular correspondence described in Section 2.2, taking an isogeny, to obtain
a theta null point e0Ck

corresponding to an abelian variety Ck with a marking of level n. With this
method, it is possible to compute ℓ2-isogenies graphs.

In this manner, when we compute a sequence of ℓ2-isogenies it is possible to benefit from the
computation of the intermediate stepe0Ak

: sincee0Ak
is a theta null point of levelℓn, we can recover from

it all points in Ak[ℓ]. Denote byπ2 : Ak →Ck the isogeny defined by the modular correspondence.
Then K2 :=π2(Ak[ℓ]) gives half the ℓ-torsion of Ck (to get an explicit description of K2, just apply
I to the results of Section 2.3). Since K2 is the kernel of the contragredient isogeny of π2, we have
a way to compute isogeny graph of ℓ2-isogenies where the composition of two such isogenies give
an ℓ4-isogeny and not, for instance if g = 2, a (1,ℓ2,ℓ2,ℓ4)-isogeny (it is enough to consider the
isotropic subgroups of Ck[ℓ] that intersect K2 trivially).

The knowledge of K2 can also be used to speed up the computation of Ck[ℓ]. In the following
section, we describe an algorithm to compute the Weil pairing eW on Ck[ℓ]. Let (G1, · · · ,Gg ) be a
basis of K2, and consider the system of degree ℓg+1 given by the ideal of ℓ-torsion and the relations
e(Gi , ·) = 1 (which have a rational expression) for i ∈ [2..g]. Let H1 be a point solution of this
algebraic system different from<G1 > (which can be tested be verifying that eW (G1, H1) ̸= 1). We
can now construct the system of degree ℓg given by the ideal of ℓ-torsion and the relations eW (Gi , ·) =
1 for i ̸= 2 and eW (H1, ·) = 1; and look for a solution H2 such that e(G2, H2) ̸= 1. Continuing this
process, we obtain an algorithm to construct a basis G1, · · · ,Gg , H1, · · · , Hg o f Ck[ℓ] by solving a
system of degree ℓg+1, then of degree ℓg , …, then of degree ℓ2. This is faster than solving the ideal of
ℓ-torsion which is a system of degree ℓ2g .

 Pairing computations

In this section, we explain how to use the addition chains introduced in Section 3.2 in order to compute
the commutator pairings on abelian varieties. We recall the definition of the commutator pairing and
its link with the Weil pairing in Section 6.1.

. Weil pairing and commutator pairing

Since Bk[ℓ]⊂K(L0)
ℓ the commutator pairing eL ℓ

0
gives a non degenerate pairing on Bk[ℓ] (if n

is prime to ℓ), we call eL ℓ
0

the extended commutator pairing on Bk[ℓ]. We can give another inter-
pretation of this pairing, more suitable for computation: letM0 = [ℓ]

∗L0 on Bk . We know that
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6 Pairing computations

K(M0) is isomorphic to K(ℓ2n) (see Section 5.2). AsM0 descends toL0 via the isogeny [ℓ], the
commutator pairing eM0

induced by the polarizationM0 is trivial on Bk[ℓ]. For x1, x2 ∈ Bk[ℓ], let
x ′1, x ′2 ∈ Bk[ℓ

2] be such that ℓ.x ′i = xi for i = 1,2. The extended commutator pairing is then
eL ℓ

0
(x1, x2) = eM0

(x ′1, x2) = eM0
(x1, x ′2) = eM0

(x ′1, x ′2)
ℓ. Indeed by [Mum70, p. 228] we have

eM0
(x ′1, x2) = eL ℓ

0
(ℓx ′1, x2) = eL ℓ

0
(x1, x2).

The isogeny ϕL0
: Bk → B̂k has kernel Bk[n] and by composing ϕL0

on the right side of eL ℓ
0

, we

obtain a perfect pairing e ′W : Bk[ℓ]× B̂k[ℓ]→µℓ whereµℓ is the subgroup of ℓt h -roots of unity of

k .
The following proposition is well known

Proposition 6.1:
The pairing e ′W is the Weil pairing eW .

Proof: A proof can be found in [Mum70, p. 228]. We give here a quick proof using the definition of
eL ℓ

0
given in term of the polarizationM0 since it will be instructive for our algorithm in Section 6.2.

For y ∈ B̂k[ℓ], we denote byΛy the degree-0 line bundle on Bk associated to y . A possible definition
of the Weil pairing eW is as follows: Let (x, y) ∈ Bk[ℓ]× B̂k[ℓ]. Let OBk

be the structural sheaf of
Bk , and as y ∈ B̂k[ℓ] there is an isomorphismψ′y : [ℓ]∗Λy ≃OBk

. As a consequence,Λy is obtained
as the quotient of the trivial bundle Bk ×A1

k
over Bk by an action g of Bk[ℓ] on Bk ×A1

k
given by

gx (t ,α) = (t + x,χ (x).α)where (t ,α) ∈ (Bk ×A1
k
)(k), x ∈ Bk[ℓ] and χ is a character of Bk[ℓ].

By definition [Mum70], we have eW (x, y) = χ (x).
We can reformulate this definition as follow: we choose an isomorphism OBk

(0)≃ k from which
we deduce viaψ′y (resp. τ∗xψ

′
y ) an isomorphismψ0 : [ℓ]∗Λy (0)≃ k (resp.ψ1 : τ∗x[ℓ]

∗Λy (0)≃ k).
There exists a unique isomorphismψx : [ℓ]∗Λy → τ∗x[ℓ]

∗Λy compatible on the 0 fiber withψ0 and
ψ1, i.e. we have thatψ1 ◦ψx ◦ψ−1

0 is the identity of k . Then, the following diagram commutes up to a
multiplication by eW (x, y):

[ℓ]∗Λy OBk

τ∗x[ℓ]
∗Λy τ∗xOBk

ψ′y

τ∗xψ
′
y

ψx eW (x, y)

The polarizationL0 gives the natural isogeny ϕL0
, defined on geometric points by

ϕL0
(k) : Bk (k)→ B̂k (k)

y 7→Λy =L0⊗ (τ
∗
yL0)

−1.

As a consequence, for y ∈ B̂k[ℓ] there exists y0 ∈ Bk (k) such that Λy = L0 ⊗ (τ∗y0
L0)
−1. Let

y ′ ∈ Bk[ℓ
2] be such that ℓ.y ′ = y0. As [ℓ]∗L0 =M0, we have [ℓ]∗Λy = [ℓ]

∗(L0⊗ (τ∗y0
L0)
−1) =
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M0⊗ (τ∗y ′M0)
−1. We remark that the isomorphismψ′y : [ℓ]∗Λy =M0⊗ (τ∗y ′M0)

−1→OBk
gives

by tensoring on the right byτ∗
y ′
M0 an isomorphismψy ′ :M0→ τ∗y ′M0. Thus, the following diagram

is commutative up to a multiplication by eW (x, y):

M0 τ∗
y ′
M0

τ∗xM0 τ∗
x+y ′
M0

ψy ′

τ∗xψy ′

ψx τ∗
y ′
ψx

�

But this is exactly the definition of e ′W (x, y) thus we have e ′W (x, y) = eW (x, y).

. Commutator pairing and addition chains

In this paragraph, we explain how to compute the Weil pairing using addition chains. All known
algorithms to compute efficiently the Weil pairing on an abelian variety Bk are based on a Miller
loop [Mil04] which can be used only in the case that Bk is a jacobian. We choose a theta structure
ΘBk ,M0

forM0 compatible withΘBk
and we let e0

fBk
′ be an affine lift of the theta null point corre-

sponding toΘBk
as in Section 5.2. Let x, y ∈ Bk[ℓ], and x ′, y ′ ∈ Bk[ℓ

2] be such that ℓ.x ′ = y and

ℓ.y ′ = y . There exist (α1,α2), (β1,β2) ∈ Z(ℓ2n)× Ẑ(ℓ2n) such that (1,α1,α2).e0fBk
′ is an affine lift

of x ′ and (1,β1,β2).e0fBk
′ is an affine lift of y ′. We note x ′i =ΘBk ,M0

(αi ) and y ′i =ΘBk ,M0
(βi ) for

i = 1,2, we have x ′ = x ′1+x ′2 and y ′ = y ′1+y ′2 is the decomposition of x ′ and y ′ in the decomposition
K(M0) =K1(M0)×K2(M0) into isotropic subspaces induced by the theta structureΘBk ,M0

.

Lemma 6.2:
Let i ∈ Z(ℓ2n) and put

s(1) =
((1,α1, 0).(1,β1, 0). eϑi )(e0fBk

′)

((1,α1, 0). eϑi )(e0fBk
′)

.
eϑi (e0fBk

′)

((1,β1, 0). eϑi )(e0fBk
′)

.

For all k ∈N, we have

s(k) =
((1, k .α1, 0).(1,β1, 0). eϑi )(e0fBk

′)

((1, k .α1, 0). eϑi )(e0fBk
′)

.
eϑi (e0fBk

′)

((1,β1, 0). eϑi )(e0fBk
′)
= s(1)k . (31)

Proof: Consider the degree-0 line bundleΛ= τ∗
y ′1
M0⊗M−1

0 . We remark that as y ′1 ∈K(M0),Λ is

isomorphic to the trivial line bundle on Bk . Let K be the subgroup of K1(M0) generated by x ′1 and
let Ck be the quotient of Bk by K . The line bundleΛ descends to a line bundleΛ′ over Ck . AsΛ′ has
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degree 0, it is the quotient of Bk ×A1
k

by an action of the form g ′x (t ,α) = (t + x,χ0(x).α), where
(t ,α) ∈ Bk ×A1

x , x ∈K , and χ0 is a character of K .

As eϑ ∈H 0(M0), we remark that f = ((1,β1, 0). eϑ)/( eϑ) is a section ofΛ′. Thus, we have s(k) =
f (k .x ′1)/ f (0Bk

) = χ0(k) and s(k) = s(1)k . �

Remark 6.3:
We remark that in the preceding lemma, α1 andβ1 play the same role and as a consequence can be
permuted. ♦

We keep the notation of the beginning of this paragraph to state the

Proposition 6.4:
We put:

L=
((1,ℓ.α1+β1,ℓ.α2+β2) eϑ)(e0Bk

)

((1,β1,β2) eϑ)(e0Bk
)

.
eϑ(e0Bk

)

((1,ℓ.α1,ℓ.α2) eϑ)(e0Bk
)
.

R=
((1,α1+ ℓ.β1,α2+ ℓ.β2) eϑ)(e0Bk

)

((1,α1,α2) eϑ)(e0Bk
)

.
eϑ(e0Bk

)

((1,ℓ.β1,ℓ.β2) eϑ)(e0Bk
)
.

We have :
eL ℓ

0
(x, y) = L−1.R. (32)

Proof: First, we compute L. We have:

(1,ℓ.α1+β1,ℓ.α2+β2) eϑ = 〈ℓ.α1+β1,−ℓ.α2−β2〉(1,ℓ.α+β1, 0)(1,0,ℓ.α2+β2) eϑ

= 〈ℓ.α1+β1− i ,−ℓ.α2−β2〉(1,ℓ.α1+β1, 0) eϑ.

In the same way, we have:

(1,β1,β2) eϑ = 〈β1,−β2− i〉(1,β1, 0) eϑ,

(1,ℓ.α1,ℓ.α2) eϑ = 〈ℓ.α1,−ℓ.α2− i〉(1,ℓ.α1, 0) eϑ.

Taking the product, we obtain that

L= 〈ℓ.α1,−β2〉.L
′,

with

L′ =
((1,β1, 0).(1,ℓ.α1, 0) eϑ)(e0Bk

)

(1,β1, 0) eϑ(e0Bk
)

eϑ(e0Bk
)

(1,ℓ.α1, 0) eϑ(e0Bk
)
.

In the same manner, we have:
R= 〈ℓ.β1,−α2〉.R

′,
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with

R′ =
((1,α1, 0).(1,ℓ.β1, 0) eϑ)(e0Bk

)

(1,α1, 0) eϑ(e0Bk
)

eϑ(e0Bk
)

(1,ℓ.β1, 0) eϑ(e0Bk
)
.

Using lemma 6.2 and the fact that (1,α1, 0) commutes with (1,β1, 0) we get that L′ = R′. Therefore,

L−1.R=
〈ℓ.α2,β1〉
〈ℓ.α1,β2〉

= eL ℓ
0
(x, y). �

The preceding proposition gives us an algorithm to compute the pairing:

Algorithm 6.5 (Pairing computation):
Input P,Q ∈ Bk[ℓ]
Output eL ℓ0

(P,Q)

Let P,Q ∈ Bk[ℓ], and choose any affine lift eP , eQ andâP +Q , we can compute the following via addition
chains:

e0Bk
eP 2eP . . . ℓeP = λ0

P
e0Bk

eQ âP +Q 2eP + eQ . . . ℓeP + eQ = λ1
P
eQ

2 eQ eP + 2 eQ

. . . . . .

ℓ eQ = λ0
Q
e0Bk
eP + ℓ eQ = λ1

Q P

: Namely we compute:

ℓeP := chain_mult(ℓ, eP ) ℓ eQ := chain_mult(ℓ, eQ)

ℓeP + eQ := chain_multadd(ℓ,âP +Q, eP , eQ) eP + ℓ eQ := chain_multadd(ℓ,âP +Q, eQ, eP ).

: Then we have:

eL ℓ0
(P,Q) =

λ1
Pλ

0
Q

λ1
Qλ

0
P

(33)

Proof: Assume that eP , eQ andâP +Q are such that eP =Ý[ℓ](1,α1,β1)e0
′
Bk

, eQ =Ý[ℓ](1,α2,β2)e0
′
Bk

,

andâP +Q =Ý[ℓ](1,α1+α2,β1+β2)e0
′
Bk

. Then by Corollary 24, we find thatλ0
P =
eϑ(e0Bk

)

((1,ℓ.α1,ℓ.α2) eϑ)(e0Bk
)
=

1 and that λ1
P =

((1,ℓ.α1+β1,ℓ.α2+β2) eϑ)(e0Bk
)

((1,β1,β2) eϑ)(0)
, so that by Proposition 6.4, we have:

eL ℓ
0
(P,Q) =

λ1
Pλ

0
Q

λ1
Qλ

0
P
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7 Conclusion

Now by Lemma 3.10, it is easy to see that (33) is homogeneous and does not depend on the affine

lifts eP , eQ andâP +Q , which concludes the proof. �

Complexity Analysis 6.6:
By using a Montgomery ladder, we see that we can compute eL ℓ0

(P,Q) with four fast addition chains of length ℓ,
hence we need O(log(ℓ)) additions. It should be noted that we can reuse a lot of computation between the
addition chains P, 2P, 4P, . . . and P +Q, 2P +Q, 4P +Q, . . . since we always add the same point at the same
time between the two chains.

The case n = 2 Let ±P,±Q ∈ KB , then we have eL ℓ
0
(±P,±Q) = {eL ℓ

0
(P,Q), eL ℓ

0
(P,Q)−1}.

Thus the pairing on the Kummer variety is a bilinear pairing KB ×KB → k∗,± where k∗,± = k∗/{x =
1/x}. We represent a class x ∈ k∗,± by x+1/x ∈ k , and we define the symmetric pairing e ′s (±P,±Q) =
eL ℓ

0
(P,Q)+ eL ℓ

0
(P,−Q). We can use the addition relations to compute P ±Q and then use Algo-

rithm 6.5 to compute eL ℓ
0
(P,Q), eL ℓ

0
(P,−Q).

 Conclusion

We have described an algorithm that give a modular point from an isotropic kernel, and another one
that can compute the isogeny associated to a modular point. By combining these two algorithms,
we can compute any isogeny between abelian varieties. However, the level of the modular space that
we use depend on the degree of the isogeny. Still, we can go back to a modular point of level n by
using the modular correspondence introduced in [FLR09]. This mean that we can compute isogeny
graphs if we restrict to ℓ2-isogenies. We have also introduced a point compression algorithm, that
allows to drastically reduce the number of coordinates of a projective embedding of level 4ℓ. This new
representation can be useful when one has to work with such a projective embedding, rather than the
usual one of level 4 (for instance if one need a quick access to the translation by a point of ℓ-torsion).
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