
On the efficient representation of isogenies
A survey for NuTMiC 2024

DAMIEN ROBERT

Abstract. We survey different (efficient or not) representations of isogenies, with a
particular focus on the recent “higher dimensional” isogeny representation, and algorithms
to manipulate them.

1. Introduction

The field of isogeny based cryptography changed drastically following the SIDH attacks
[CD23; MMPPW23; Rob23b]. Indeed, the main byproduct of these attacks is a new effi-
cient representation of isogenies, which we will call the higher dimensional representation
or HD representation. This new representation quickly found cryptographic applications:
SQIsignHD [DLRW24], FESTA [BMP23] and QFESTA [NO23], the Deuring VRF [Ler23b],
an isogenyVDF [DMS23], SCALLOP-HD [CLP24], IS-CUBE [Mor23], LIT-SiGamal [Mor24],
SILBE [DFV24], POKE [Bas24], SQIsign2d (West and East) [BDD+24; NO24], SQIPrime
[DF24]…It gave rise to new methods to convert ideals to isogenies, both in the supersingular
case [Ler23b; ON24; BDD+24] and in the oriented case [PR23b]. Apart from protocols, the
HD representation was used to obtain new or better security reductions for isogeny based
cryptography [MW23; ACD+23; PW24; ES24], and also better (classical) security reductions
for the DLP between isogeneous elliptic curves [Gal24]. Finally, it also gave applications
in number theory: computing the endomorphism ring of an ordinary elliptic curve 𝐸 in
polynomial time (if we are provided with the factorisation of the discriminant Δ𝐸), point
counting for 𝐸/𝔽𝑝𝑛 in 𝑂(𝑛2 log𝑂(1) 𝑝), canonical lift of an ordinary 𝐸/𝔽𝑝𝑛 to precision 𝑚
in 𝑂(𝑚𝑛 log𝑂(1) 𝑝), and new algorithms to compute modular polynomials [Rob22b; KR24].

1.1. History. The groundbreaking idea to attack the SIDH supersingular elliptic curve
cryptosystem [JD11; DJP14] using higher dimensional isogenies is due to Castryck and
Decru, and independently to Maino and Martindale.

In 2022, Decru was working on building a VDF (Verifiable Delay Function) using iso-
genies in dimension 2. He realised that exploiting isogenies 𝐸1 × 𝐸2 → 𝐸′

1 × 𝐸′
2 between

products of elliptic curves could potentially be used to attack the SIDH cryptosystem. He
fully worked this attack out with Castryck, and in their preliminary article [CD22] (which
was later published as [CD23]) they gave a working Magma implementation to break SIDH
in (heuristic) polynomial time from the special starting curve 𝐸0. In that attack, they made a
crucial use of a technical result (now called Kani’s lemma) due tu Kani [Kan97, § 2, Proof
of Th. 2.3], and which will be key to derive the HD representation. The reason the attack
works over the special curve 𝐸0 is that it contains many known endomorphisms: notably
endomorphisms of the form 𝑎 + 𝑏𝑖 which are of degrees 𝑎2 + 𝑏2. In the first version of their
paper, Castryck and Decru sketched how their attack could be extended to an arbitrary

Date: November 8, 2024.
1

2 DAMIEN ROBERT

starting supersingular curve 𝐸, but that it would be unlikely to be practical. De Feo1 pointed
out that this still gave an (heuristic) subexponential attack for an arbitrary starting curve 𝐸
with unknown endomorphisms. And Wesolowski, in a note, also explained how Castryck
and Decru’s polynomial attack could extend to such an arbitrary 𝐸, provided that End(𝐸)
was known.

Independently, Maino, who had visited the Cosic group in Leuven earlier, during which
he had discussed the dimension 2 VDF with Castryck and Decru, also had realised that
dimension 2 isogenies could be used to attack SIDH. He first sketched with Martindale
an effective attack path in [MM22], and then they gave a more fledged out attack, along
with a Sage implementation, and with contributions by Panny, Pope and Wesolowski (and
extra help by De Feo and Oudompheng) in [MMPPW23]. The original attack of [CD23],
used a decisional version: they guess part of Alice’s secret isogeny, then check using higher
dimensional isogenies if that guess is correct.This allowed them to reconstruct Alice’s isogeny
step by step. By contrast the version of Maino and Martindale was direct: they used dimen-
sion 2 isogenies to directly recover Alice’s secret isogeny. More precisely, they focused on an
arbitrary starting curve 𝐸, and after a precomputation step to select appropriate parameters,
they gave a direct algorithm to recover the secret isogenies2. The complexity of that direct key
recovery depended on the parameters found, but the same heuristic complexity analysis as
done by De Feo for Castryck and Decru’s attack showed that it gave a subexponential attack.
Combining the direct attack of Maino-Martindale with the exploitation of the special known
endomorphisms of 𝐸0 as in Castryck andDecru’s version considerably improved the practical
key recovery attack when the starting curve was 𝐸0. In the SageMath reimplementation of
the Magma code of Castryck and Decru, contributed by Oudompheng, Panny and Pope
among others, incorporating this direct key recovery made the attack go from minutes or
hours to seconds or minutes3 (depending on the security parameters). This was the first hint
that these attacks could potentially be applied for constructive use.

Once the idea of using dimension 2 isogenies to attack SIDHwas introduced, it was natural
to look at whether using even higher dimensions could improve these attacks: notably for
a starting curve 𝐸 with unknown endomorphisms (Wesolowski had the same idea1). In
[Rob23b], we explained how to combine Kani’s lemma as used in [CD23; MMPPW23] with
Zarhin’s trick [Zar74] to attack SIDH in (proven) polynomial time even with a random
starting curve 𝐸, by going to dimension up to 𝑔 = 8. Indeed, the main obstacle preventing
the polynomial time attack of [CD23] on the special curve 𝐸0 to be applied to a random
curve 𝐸 is the lack of known endomorphisms (apart from integer multiplications) on 𝐸.
Zarhin’s trick solves this problem: we can always build many endomorphisms on 𝐸2 and
𝐸4 respecting the product principal polarisation by using suitable integer matrices. So we
could apply the Castryck-Decru-Maino-Martindale attack replacing 𝐸 by 𝐸4, and using
dimension 8 isogenies rather than dimension 2 isogenies. By luck, we had already used
Zarhin’s trick in our algorithm [CR15] to compute higher dimensional isogenies, so it was
natural to apply it to the SIDH attack too. This also required to extend Kani’s technical lemma
from elliptic curves to abelian varieties, but that extension was completely straightforward4.

1Private communication
2After the first version of [CD23] was published, this direct key recovery improvement had also been

independently found out by Oudompheng, Petit and Wesolowksi.
3With the low level C and Rust implementation we now have of the improved formulas for dimension 2

2𝑒-isogenies [DMPR24], what would take a few seconds in 2022 would now take only a few ms!
4It also helped that we were already familiar with some of Kani’s work which we had used to understand the

denominators of Hilbert modular polynomials [MR19; Rob21, § 5.3.6].

On the efficient representation of isogenies 3

In [Rob23b], the main algorithmic tool used for the attack was the following embedding
lemma: for any 𝑁 > 𝑛 coprime to 𝑛, an 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2 can be efficiently embedded
into an 𝑁-isogeny Φ ∶ 𝐴 → 𝐵 in higher dimension 𝑔 = 2, 4, 8, provided we know how
𝜙 acts on the 𝑁-torsion of 𝐸1. More generally, the embedding lemma allows to embed an
𝑛-isogeny in dimension 𝑔 into an 𝑁-isogeny in dimension 2𝑔, 4𝑔, 8𝑔. (For the embedding
lemma with special curves like 𝐸0, then 𝑔 can often be smaller than for a generic curve, see
Remark 5.17.)

In the conclusion of [Rob23b], we asked the following question: “This tool allows one
to break SIDH efficiently in all cases. Can it also be used to build new isogeny based cryp-
tosystems?” One week after the first version of that article, we made in [Rob22a] the rather
obvious remark that by taking 𝑁 powersmooth above, the embedding lemma proves that any
isogeny admitted an efficient representation, meaning a representation taking polynomial
(in log𝑛 and log 𝑞) space and time: this is the HD representation (although it was not given
a name in that paper)! The conclusion of that article was: “The method presented above
shows that the efficient computation of isogenies for higher dimensional abelian varieties
has interesting algorithmic applications to elliptic curves. Hopefully, this is the start of many
new results in this direction.”

And indeed, as illustrated by all the applications above, the HD representation quickly
found lots of use. Still, these new applications are not immediate: theHD representation shows
that if we know the evaluation of 𝜙 on sufficientlymany nice points, we can efficiently evaluate
𝜙 everywhere. But it seems that we have a bootstrapping problem: how can we evaluate 𝜙
on these nice points to begin with? To answer this question, many new algorithms have
been developed to work directly with these HD representations: divisions, duals, splittings,
pushforwards…

1.2. A survey. Almost two years after the SIDH attack, the NuTMiC (Number-Theoretic
Methods in Cryptology) conference held in Szczecin seemed like a nice occasion to do a
survey on the use of the HD representation and the algorithms developed to work with them.

Of course, the HD representation is not the only useful representation of an isogeny, so
for this survey we will try to briefly explain the many ways we can represent an isogeny, and
how we can convert between all these different representations.

In his invited talk for Eurocrypt 2024, Castryck gave a wonderful talk on: “An Attack
Became a Tool: Isogeny-based Cryptography 2.0”.The aim of this survey is to give an overview
of the algorithms that have been developed for this renewal of isogeny based cryptography,
so that hopefully they become accessible to a broader audience.

We apologize for the length of this survey, which is longer than initially expected.

1.3. Thanks. We thank Andrea Basso for several useful comments, and Julien Soumier for
pointing out some typos.

1.4. Outline. In Section 2, we give an overview of the different isogeny representations we
will describe in this survey, what we mean by an efficient representation, and an overview
of the algorithms we now have to work with efficient representations that may not be given
(anymore!) by kernel generators of smooth order.

In Section 3, we survey the “standard” isogeny representations, meaning the ones that do
not use higher dimension.

In Section 4, we survey the ideal representations of “horizontal” isogenies. Efficient
ideal to isogeny algorithms have been key to develop efficient isogeny based cryptosystems
(like SQIsign [DKLPW20; DLLW23]). The original version of SQIsign relied on the KLPT
algorithm [KLPT14] for this conversion. But newer versions (SQIsignHD, SQIsign2d) have

4 DAMIEN ROBERT

switched to an ideal to isogeny algorithm relying on the HD representation. We give a very
brief overview of these different methods, both for the supersingular case and the oriented
case.

In Section 5, we introduce in more details the HD representation. And then in Section 6,
we describe algorithms to work with efficient representations of isogenies.

Finally in Section 7 we give a list of open questions.
In the appendices, we treat some technical subjects in more details. In Appendix A we

look at the accessible torsion in an elliptic curve (or abelian variety). In Appendix B we
explain how to relax the torsion requirement for the HD representation from 𝑁 > 𝑛 to
𝑁2 > 𝑛. In Appendix C, we give more details on the different generations of the ideal to
isogeny algorithms in the supersingular case, and how they each gave rise to improvements
to SQIsign. In Appendix D we give a geometric interpretation of the usual class group exact
sequence for a non maximal quadratic order 𝑅, and explain the relationship between this
geometric interpretation and the level structure encoded by going up isogenies. Finally in
Appendix E we give some technical remarks on the Kodaira-Spencer isomorphism, which we
need for the deformation representation and modular representation of isogenies in higher
dimension.

2. Overview

In Section 2.1 we define what we mean by an efficient isogeny. Then in Section 2.2
we quickly review the “classical” representations of an isogeny, in Section 2.3 the ideal
representations, and then we look at the HD representation in Section 2.4. We survey existing
algorithms on the HD representation in Section 2.5.

2.1. Efficient representation of an isogeny. Let 𝜙 ∶ 𝐸1 → 𝐸2 be an isogeny of degree 𝑛
between elliptic curves defined over a field 𝑘 (we will also say that 𝜙 is an 𝑛-isogeny). A
representation of 𝜙 is any data that encodes the domain 𝐸1, the codomain 𝐸2, the degree 𝑛,
along with a way (an algorithm) to evaluate the image by 𝜙 of a point 𝑃 ∈ 𝐸1(𝑘′), where
𝑘′/𝑘 is a field extension. It can be useful to relax the condition that 𝑃 is defined over a field,
and allow for points over a 𝑘-algebra, notably to be able to work with formal points and their
images.

In this survey paper, we will contend ourselves to work with this informal definition. For
a more formal definition of the representation of an isogeny, we refer to [Ler22a].

For simplicity, we will assume that 𝑘 is a finite field 𝑘 = 𝔽𝑞, 𝑞 = 𝑝𝑑, and that the degree 𝑛
of 𝜙 is prime to 𝑝. We will also stick to isogenies between elliptic curves, although many of
the constructions we will introduce generalise to principally polarised abelian varieties (and
some of our constructions for elliptic curves will actually use abelian varieties of dimension
𝑔 > 1 as explained in Section 1). In practice, we will also always work with Weierstrass
equations for 𝐸1, 𝐸2. For most applications, one can also assume that 𝜙 is cyclic, that is
that its kernel is isomorphic as a group to ℤ/𝑛ℤ, although for some applications it will be
convenient to treat all cases.

We will say that an isogeny representation is compact, or space efficient, if the data to
encode it is polynomial in log𝑛 and log 𝑞. We will say that it is efficient if, from the encoded
data, it can evaluate the image of a point 𝑃 ∈ 𝐸1(𝔽𝑞′) in time polynomial in log𝑛 (so
polylogarithmic in 𝑛) and log(𝑞′).

Remark 2.1 (Efficient versus practical representations). With our definitions, an isogeny
representation that allows to compute the image of a point in𝑂(log𝐶 𝑛) arithmetic operations
will be an efficient representation, even if 𝐶 is a big constant. For practical applications of

On the efficient representation of isogenies 5

isogeny representations, rather than theoretical results, we will want our representations to
be computable in practice, and as fast as possible.

For instance, the HD representation embeds an 𝑛-isogeny 𝜙 in dimension 1 into an
𝑁 isogeny Φ in dimension 𝑔 = 2, 4, 8. Taking 𝑁 smooth and the 𝑁-torsion accessible (see
Appendix A for this notion), we can decompose Φ into a product of small ℓ-isogenies, with
ℓ = 𝑂(log𝑛). So for this choice of 𝑁, the HD representation is efficient according to our
definitions.

But there will be a huge timing difference, depending on whether we can take 𝑔 = 2 and
𝑁 = 2𝑒 andworkwith rational points of 2𝑒-torsion, or if we need to work in dimension 𝑔 = 8,
with 𝑁 having prime factors up to 𝑂(log𝑛), and needing to work with torsion points defined
over a field extension of degree up to 𝑂(log2 𝑛). For cryptographic applications, we want to
find parameters allowing the former situation rather than the later. We will come back to
this at several points during this survey.

We will explore several representations.

2.2. The classical representations. The function representation encodes 𝐸1, 𝐸2 by their
short Weierstrass equations 𝐸𝑖 ∶ 𝑦2 = 𝑥3 + 𝑎𝑖𝑥 + 𝑏𝑖 (assume 𝑝 > 3 here), and 𝜙 as a rational

function 𝜙(𝑥, 𝑦) = (𝑔(𝑥)
ℎ(𝑥) , 𝑐𝑦 (𝑔(𝑥)

ℎ(𝑥))
′
), where 𝑔, ℎ are polynomials of degree ≤ 𝑛 in 𝑥. This

function representation takes linear space 𝑂(𝑛 log 𝑞) to encode, and linear time 𝑂(𝑛 log 𝑞′)
to evaluate.

The kernel representation encodes 𝜙 by the tuple (𝐸1,Ker𝜙), this takes linear space. Vélu’s
formula can be used to convert from the kernel representation to the rational function
representation (this includes computing a Weierstrass equation for 𝐸2) in linear time. There
is a slight ambiguity here since Ker𝜙 only determines 𝜙 up to post-composition by an auto-
morphism of 𝐸2. Since, unless 𝑗(𝐸2) = 0, 1728, the only automorphisms are multiplication
by ±1, we will ignore this subtlety.

A useful variant is to encode Ker𝜙 by a generator 𝑇, we call this the generator represen-
tation. In general, 𝑇 may live in a field extension of 𝔽𝑞, but when the generator is rational,
this gives a compact (i.e., space efficient) representation of 𝜙: 𝑂(log 𝑞) bits. Furthermore,
in that case the isogeny image can be evaluated in 𝑂(√𝑛 log 𝑞′) by the sqrtVelu algorithm
of [BDLS20]. A variant, if a generator 𝑇 lives in a too large extension, is to use a multigener-
ator representation: Ker𝜙 = ⟨𝑇1, … , 𝑇𝑚⟩. For instance, if 𝑛 = ∏ ℓ𝑒𝑖

𝑖 , we can take for 𝑇𝑖 a
generator of Ker𝜙[ℓ𝑒𝑖

𝑖], by the CRT the 𝑇𝑖 generate the full kernel, and may live in smaller
field extensions than 𝑇.

Given a subgroup 𝐺 of 𝐸1, the question of whether we can find generators of 𝐺 living in a
small enough extension of 𝔽𝑞 (by small we mean polynomial in log𝐺), will appear frequently
in this paper. We say that the 𝐺-torsion is accessible when this is the case. For example, if
𝐸[𝑛] is accessible (for instance, we have 𝐸[ℓ𝑒𝑖

𝑖] ⊂ 𝐸(𝔽𝑞𝑖
) with 𝔽𝑞𝑖

a small field extension
of 𝔽𝑞 for each 𝑖), then all 𝑛-isogenies 𝜙 ∶ 𝐸1 → 𝐸2 have a space efficient (multi) generator
representation. We refer to Appendix A for more details.

An isogeny 𝜙 of degree ≤ 𝑛 is completely determined by its image on 4𝑛 + 1 distinct
points [UJ18]. Let 𝐺 ⊂ 𝐸(𝔽𝑞) be a (rational) subgroup of order 𝑁 > 4𝑛. By additivity of
𝜙, it suffices to know the images 𝜙(𝑃𝑖) of 𝜙 on generators ⟨𝑃𝑖⟩ of 𝐺 to know 𝜙 on 𝐺. We
call this the interpolation representation. Indeed, one can use a standard rational function
reconstruction to reconstruct the rational function 𝑔(𝑥)

ℎ(𝑥) from this interpolation data. If these
generators are rational, this rational reconstruction can be done in quasi-linear time, using

6 DAMIEN ROBERT

standard algorithms [BCG+17]. The space needed for this representation depends on the
fields of definition of the 𝑃𝑖, similarly to the generator representation of the kernel.

An alternative (when 𝑝 is large enough compared to 𝑛), which is always space efficient, is
to represent 𝜙 via the image (P, 𝜙(P)) of a formal point P at precision 2, and reconstruct
𝜙 (in quasi linear time) by solving a differential equation. We call this the deformation
representation, because it encodes how 𝜙 deforms: see Section 3.3.2.

We can also use modular polynomials to represent an isogeny (this is the modular repre-
sentation): if (𝑗(𝐸1), 𝑗(𝐸2)) is a non singular point of the modular polynomial Φ𝑛(𝑋, 𝑌),
this tuple is enough to reconstruct the deformation representation: one can use Φ𝑛 to express
the derivative 𝑗′(𝐸2, 𝑑𝑥/𝑦) in term of 𝑗′(𝐸1, 𝑑𝑥/𝑦) (for normalised differentials), which is
enough to obtain the deformation of 𝐸2 induced by the deformation of 𝐸1 via the isogeny 𝜙.
Since 𝑗(𝐸2) can be described as a specific root of Φ𝑛(𝑗(𝐸1), 𝑌) (via a deterministic ordering
of roots), this representation is the only one, out of those presented in this paper, which, given
𝐸1, only needs 𝑂(log𝑛) extra bits of information to encode 𝜙. However, the best algorithms
currently know to evaluate Φ𝑛(𝑗(𝐸1), 𝑌) cost 𝑂(𝑛2 log 𝑝 + 𝑛 log 𝑞), so are not linear in 𝑛.

If 𝑛 = ∏ ℓ𝑒𝑖
𝑖 , so that 𝜙 is an isogeny of smooth degree (say with smoothness bound

ℓ𝑖 ≤ 𝐵 = 𝑂(log𝐶 𝑛)), we can decompose 𝜙 ∶ 𝐸1 → 𝐸2 as a product of small degree isogenies
𝜙𝑖. Any reasonable representation of the small isogenies 𝜙𝑖 (say linear in their degree 𝑙𝑖) then
gives an efficient representation of 𝜙. We call this the decomposition representation.

Note however that given a representation of 𝜙, computing its decomposition representa-
tion may be expensive; we will come back to this in Section 3.4. In the particular case when 𝑛
is smooth and the 𝑛-torsion is accessible (this is always the case if 𝑛 is powersmooth), then we
can efficiently convert a (multi)generator representation into a decomposed representation,
so the (multi)generator representation is efficient.

2.3. The ideal representations. Another type of representation, which is quite different
from the ones above, is to represent the isogeny 𝜙 by an ideal 𝐼𝜙.

There are two different cases here. When 𝐸1, 𝐸2 are supersingular curves defined over
𝔽𝑝2 (and such that all their geometric endomorphisms are already defined over 𝔽𝑝2), by
Deuring’s correspondence the isogeny 𝜙 is always represented by an ideal 𝐼𝜙 in a quaternion
algebra. We call this the supersingular ideal representation.

The other case concerns oriented isogenies between oriented elliptic curves. Here, an
orientation is an embedding of a quadratic imaginary order𝑅 insideEnd𝑘(𝐸1) andEnd𝑘(𝐸2).
The isogeny 𝜙 is said to be oriented if 𝜙∘𝛾 = 𝛾 ∘𝜙 for all 𝛾 ∈ 𝑅. The embedding of 𝑅 inside
End𝑘(𝐸1) is required to be primitive (or saturated),meaning thatEnd𝑘(𝐸1)∩(𝑅⊗ℤℚ) = 𝑅,
but not the embedding of 𝑅 inside End𝑘(𝐸2). If 𝑅 is primitive in End𝑘(𝐸2), we say that 𝜙 is
an horizontal oriented isogeny, otherwise we say that 𝜙 is an ascending oriented isogeny. In
both cases, 𝜙 can also be represented by an ideal 𝐼𝜙 (this would not necessarily be true if we
allowed isogenies of degree divisible by 𝑝), we call this the oriented ideal representation.

Whenever the Frobenius 𝜋𝑘 is not trivial (not given by a multiplication by some integers),
we can consider the natural ℤ[𝜋𝑘] orientation on 𝐸1, 𝐸2; since 𝜙 is rational it will also be
oriented. This case includes ordinary elliptic curves, or supersingular elliptic curves over
𝑘 = 𝔽𝑝. (Note however that ℤ[𝜋𝑘] may not be saturated in End𝑘(𝐸1), so we may need to
replace it by its saturation 𝑅 to find an ideal representation of 𝜙; such an ideal representation
exists only if 𝜙 is horizontal or ascending.)

The ideal representation is always space efficient; it is even efficient in the supersingular
or horizontal cases (provided we have an efficient representation of the orientation), but
this is much harder to prove (see Section 4). To convert an ideal 𝐼 of norm 𝑁(𝐼) (we define

On the efficient representation of isogenies 7

𝑁(𝐼) to be be the reduced norm in the supersingular case) into an isogeny, one can compute
𝐸[𝐼] ⊂ 𝐸[𝑁(𝐼)], the intersection of the kernel of all endomorphisms 𝛼 ∈ 𝐼. The isogeny
𝜙𝐼 corresponding to 𝐼 is the isogeny with kernel 𝐸[𝐼], so this allows to go from the ideal
representation to the kernel (or generator) representation in polynomial time in 𝑛 = 𝑁(𝐼)
(see Section 4 and Example A.5 for more details). A strategy to find an evaluation algorithm
polylogarithmic in 𝑛 is to find an equivalent ideal 𝐽 of (power)smooth norm, and compute a
decomposed representation of the isogeny 𝜙𝐽 (from which we can derive an algorithm to
evaluate 𝜙𝐼 efficiently if we have an efficient representation of the endomorphism 𝛼 linking 𝐽
to 𝐼). Such a smoothening algorithm in the supersingular case is given by the KLPT algorithm
[KLPT14] (a non heuristic version is proved under GRH in [Wes22]). For the oriented case,
there is no known polynomial time smoothening algorithm. Hence the question of efficiently
converting an arbitrary ideal 𝐼 into an isogeny 𝜙𝐼 had remained an important open problem
in isogeny based cryptography. Thus an efficient evaluation algorithm for an (horizontal)
ideal representation, was only recently given in [PR23b], and makes essential use of the HD
representation which will be the main topic of this survey.

The ideal representation is very convenient, but it has a crucial drawback: in the super-
singular case, publishing 𝐼 leaks the endomorphism ring of 𝐸1 and 𝐸2, which is the one
thing that is supposed to stay secret for isogeny based cryptography. In [Ler22a], Leroux
introduced the suborder representation which leaked less informations; this representation
is now essentially superseded by the HD representation.

2.4. The HD representation. As explained in Section 1, the main byproduct of the SIDH
attacks is that for any 𝑁 ≥ 𝑛 (coprime to 𝑝), by combining a lemma due to Kani in [Kan97]
and Zahrin’s trick, it is always possible to embed 𝜙 into a higher 𝑁-dimensional isogeny Φ
between abelian varieties 𝐴, 𝐵 of dimension 𝑔 = 2 or 4 or 8. Taking 𝑁 to be (power)smooth,
and computing a decomposition representation of Φ, this allows to give an efficient repre-
sentation of 𝜙.

In practice, if 𝑁 is prime to 𝑛, it is enough to know the action of 𝜙 on 𝐸1[𝑁] to be able
to reconstruct KerΦ. From this kernel, one can use a higher dimensional version of Vélu’s
formula [Rob21; LR22] to compute the decomposition of Φ. We remark that, in some cases,
there is an optimisation where we can relax the condition 𝑁 > 𝑛 to 𝑁2 > 𝑛, see [Rob23b,
§ 6.4], [DLRW24, Appendix C.2] or Appendix B. There is also a more recent version when we
just need to know 𝜙 on a large enough subgroup rather than on the full 𝑁-torsion [CDM+24].
To simplify the exposition in this survey, we will mainly stick to the case 𝑁 > 𝑛.

To describe the action of 𝜙 on 𝐸1[𝑁], it suffices to give its action on a basis (𝑃1, 𝑃2). It can
be convenient to replace this basis by generators, like we did for the generator representation
of the kernel: if 𝑁 = ∏ 𝑙𝑒𝑖

𝑖 we give the action of 𝜙 on a basis of each 𝐸1[ℓ𝑒𝑖
𝑖], this can allow

to work with smaller field extensions.
Technically, there are two subvariants of the HD representation, depending on how we

represent Φ (see Definition 5.21): the one where we give the action of 𝜙 on (generators of)
𝐸1[𝑁], which is essentially the kernel generator representation of Φ; and the one where
we represent Φ by its decomposition into a product of smaller isogenies. The key point is
that if 𝑁 is smooth, and the basis of each 𝐸1[ℓ𝑒𝑖

𝑖] live in a small enough extension (which
is always the case if 𝑁 is powersmooth), then going from the kernel representation of Φ to
its decomposition representation can be done efficiently, and then evaluating Φ (hence 𝜙)
amount to evaluating small ℓ𝑖-isogenies (in higher dimension), which is efficient.

We remark that the HD representation (in its kernel version) is very close to the inter-
polation representation of 𝜙: we represent 𝜙 by its images (𝑃1,𝑖, 𝑃2,𝑖, 𝜙(𝑃1,𝑖), 𝜙(𝑃2,𝑖)) on
the basis (𝑃1,𝑖, 𝑃2,𝑖) of the 𝐸1[ℓ𝑒𝑖

𝑖] torsion (say with ℓ𝑖 prime to 𝑛 to simplify), such that

8 DAMIEN ROBERT

∏ ℓ𝑒𝑖
𝑖 > 𝑛. The key point is that, to evaluate 𝜙, rather than reconstruct the function represen-

tation via a generic interpolation algorithm, like we used in the interpolation representation,
there is a much more clever algorithm that uses the higher dimensional isogeny Φ to evaluate
𝜙(𝑃) in time polynomial in log𝑛, ℓ𝑖, log 𝑞′ and the log 𝑞𝑖, where 𝑃1,𝑖, 𝑃2,𝑖 ∈ 𝐸(𝔽𝑞𝑖

). (So not
all HD representations are efficient, but we can always find an efficient HD representation by
selecting the ℓ𝑒𝑖

𝑖 appropriately!) This is probably one of the most complicated structured5
univariate interpolation algorithm in the world, but it works very well in practice!

We can summarize the HD representation as follows: if we know how to evaluate 𝜙 on
enough nice points, we know how to efficiently evaluate it everywhere. Restated like that,
it seems we have a bootstrapping problem: how do we find the evaluation of 𝜙 on these
nice points in the first place? This was the main problem stated in [Rob22a] when this
representation was introduced.

One answer is when we have a supersingular ideal representation 𝐼𝜙 of 𝜙: we want to
publish an efficient representation of 𝜙 without publishing 𝐼𝜙 which would leak the endo-
morphism ring. We can use the HD representation for that. This is the main idea behind
SQIsignHD [DLRW24].

2.5. Algorithms for the HD representation. More generally, since the publication of
[Rob22a], many algorithmic tools have been found to work directly with an efficient repre-
sentation of an isogeny rather than the more customary kernel (or ideal) representation. See
for instance [Rob22b; Ler23b; CLP24; NO23; PR23b]. The main goal of this survey is to give
a convenient reference for these algorithms.

In the following, by efficient we still mean polynomial in log𝑛 and log 𝑞.
(1) Universality: The HD representation is universal6: from any efficient representation

of 𝜙, we can efficiently extract an (efficient) HD representation. This means that an
algorithm available for an HD representation applies to any efficient representation
of 𝜙, by converting it to an HD representation first if necessary. Notably, since the
HD representation can be used to evaluate 𝜙 on a point 𝑃 defined over a 𝑘-algebra,
but we only need to be able to evaluate 𝜙 on points defined over finite field extensions
of 𝑘 to derive an HD representation, we see that any representation able to evaluate
𝜙 over fields 𝑘′/𝑘 can be converted to a representation able to evaluate it over any
𝑘-algebra!

(2) Equality: Given efficient representations of two isogenies 𝜙1, 𝜙2 ∶ 𝐸1 → 𝐸2, one
can efficiently test if 𝜙1 = 𝜙2.

(3) Composition and addition: Given efficient representations of 𝜙1 ∶ 𝐸1 → 𝐸2 and
𝜙2 ∶ 𝐸2 → 𝐸3 (resp. 𝜙2 ∶ 𝐸1 → 𝐸2), one can find7 an efficient representation of
𝜙2 ∘ 𝜙1 ∶ 𝐸1 → 𝐸3 (resp. 𝜙1 + 𝜙2).

(4) Dual isogeny: Given an efficient representation of 𝜙 ∶ 𝐸1 → 𝐸2, one can find7 an
efficient representation of the dual isogeny 𝜙 ∶ 𝐸2 → 𝐸1.

(5) Division: Given efficient representations of 𝜙 ∶ 𝐸1 → 𝐸2 and 𝜓 ∶ 𝐸1 → 𝐸′
1, one can

find7 an efficient representation of an isogeny 𝜙′ ∶ 𝐸′
1 → 𝐸2 such that 𝜙 = 𝜙′ ∘𝜓 if it

exists, or answer ⊥ if such an isogeny 𝜙′ does not exist. Likewise when 𝜓 ∶ 𝐸′
2 → 𝐸2

andwe try to write 𝜙 = 𝜓∘𝜙′. As a particular case, when 𝜓 = [𝑚], we can efficiently
test if 𝜙 is divisible by 𝑚 (equivalently: if Ker𝜙 ⊃ 𝐸[𝑚]), and if so compute an
efficient representation of 𝜙/𝑚.

5Here the structure that is being exploited is that𝜙 commutes with the addition law, and that the interpolation
points have smooth order.

6This term was coined by Benjamin Wesolowski
7 Efficiently!

On the efficient representation of isogenies 9

(6) Lifts and deformations: Given an efficient representation of 𝜙 ∶ 𝐸1 → 𝐸2 over
a finite field 𝔽𝑞, and given 𝑅 = 𝔽𝑞[𝜀]/𝜀𝑚 or 𝑅 = ℤ𝑞/𝑝𝑚ℤ𝑞, one can find7 an
efficient representation of the isogeny 𝜙 deformed/lifted to 𝑅.

(7) Splitting isogenies: If 𝜙 is an isogeny of degree 𝑛 = 𝑛1𝑛2 with 𝑛1 ∧ 𝑛2 = 1, 𝜙
decomposes uniquely as 𝜙 = 𝜙2 ∘ 𝜙1 where 𝜙𝑖 is of degree 𝑛𝑖. If we have an efficient
representation of 𝜙, we can find7 an efficient representation of 𝜙2 and 𝜙1.

(8) Pushforward of isogenies: if 𝜙1 ∶ 𝐸1 → 𝐸2 is of degree 𝑛1, 𝜙2 ∶ 𝐸1 → 𝐸′
2

is of degree 𝑛2, with 𝑛1 ∧ 𝑛2 = 1, and we have an efficient representation of
𝜙1, 𝜙2, then we can find7 an efficient representation of the pushforward isogeny
𝜙 ∶ 𝐸1 → 𝐸3 (this is the isogeny with kernel Ker𝜙 = Ker𝜙1 + Ker𝜙2). We can
write 𝜙 = 𝜙′

2 ∘ 𝜙1 = 𝜙′
1 ∘ 𝜙2 where 𝜙′

2 (resp. 𝜙′
1) is the pushforward of 𝜙2 (resp.

𝜙1) by 𝜙1 (resp. 𝜙2), and, by the splitting algorithm above, we can find7 an efficient
representation of 𝜙′

1, 𝜙′
2.

(9) Kernel: Given an efficient representation of an 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2, we can
recover an equation for its kernel in quasi-linear time 𝑂(𝑛) arithmetic operations.
(Note that the output is of size 𝑂(𝑛 log 𝑞) so we cannot do better than linear time).
If 𝐸2[𝑛] is accessible, we can also find a generator representation of Ker𝜙 in poly-
logarithmic time.

We note the following remarkable feature of the splitting and pushforward algorithms.
By assumption, an isogeny representation of 𝜙 ∶ 𝐸1 → 𝐸2 contains both the domain and
codomain data. But in some of the representations we have discussed, only the domain
is needed; the codomain can be recovered from the data. This is the case for the kernel
representations (via the kernel equation or generators), and also for the ideal representations.
We remark that, as long as we know how to evaluate 𝜙 (say in Weierstrass coordinates), we
can evaluate 𝜙 on some points and recover the Weierstrass equation of 𝐸2 via linear algebra,
or we can evaluate 𝜙 on the formal group at low precision (see Section 3.2.1).

The HD representation of 𝜙 ∶ 𝐸1 → 𝐸2 uses interpolation data (𝑃, 𝑄, 𝜙(𝑃), 𝜙(𝑄)) for a
basis (𝑃, 𝑄) of the 𝑁-torsion, hence in particular require to know the codomain 𝐸2 already.
However, when 𝑛 = 𝑛1𝑛2 with 𝑛1 coprime to 𝑛2, then the splitting algorithm recovers the
middle curve 𝐸1 →𝜙1 𝐸12 →𝜙2 𝐸2 where 𝜙 = 𝜙2 ∘ 𝜙1 and 𝜙𝑖 is a 𝑛𝑖-isogeny. This is a
powerful tool to construct new elliptic curves (see Examples 6.12 and 6.13), and it is amazing
that we can extract 𝐸12 efficiently just from the interpolation data above, which seems on
first sight to be completely unrelated to this curve!

In particular, if 𝜙 admits an efficient representation, then (𝜙, 𝑛1) gives an example of
an efficient representation of 𝜙1 where the codomain 𝐸12 of 𝜙1 is not specified in advance.
For instance to construct such a 𝜙, we can try to find 𝜙2 ∶ 𝐸12 → 𝐸1, of degree coprime to
deg𝜙1, so that 𝜙 is an endomorphism (we often have many convenient ways to represent
endomorphisms, see Example 6.7).

3. The standard representations

In this section, we survey the classical representations: the function representation in
Section 3.1, the kernel representations in Section 3.2, the interpolation representations and
its variants in Section 3.3. An important case is when an isogeny can be decomposed into a
product of isogenies of smaller degree, this is treated in Section 3.4.

3.1. The function representation. Let 𝜙 ∶ 𝐸1 → 𝐸2 be a cyclic isogeny of degree 𝑛 over
𝑘 = 𝔽𝑞, with 𝐸𝑖 ∶ 𝑦2

𝑖 = 𝑥3
𝑖 + 𝑎𝑖𝑥𝑖 + 𝑏𝑖 given by short Weierstrass equations, and 𝑛 prime

to 𝑝. We can write 𝜙 as 𝜙(𝑥1, 𝑦1) = (𝑅1(𝑥1, 𝑦1), 𝑅2(𝑥1, 𝑦1)) for some rational functions

10 DAMIEN ROBERT

𝑅1, 𝑅2 ∈ 𝑘(𝐸1): we have a morphism 𝜙∗ ∶ 𝑘(𝐸2) → 𝑘(𝐸1) and 𝑅1 (resp. 𝑅2) is the image
of 𝑥2 (resp. 𝑦2) by this morphism.

Since the divisor (0𝐸1
) has self intersection 1, and deg 𝑥𝑖 = 2, deg 𝑦𝑖 = 3, the rational

functions 𝑅1, 𝑅2 have total degree 2𝑛 and 3𝑛 respectively (taking into account the point at
infinity).

Since 𝜙(−𝑃) = 𝜙(𝑃), we see that we can rewrite 𝜙(𝑥1, 𝑦1) = (𝑅1(𝑥1), 𝑦1𝑅2(𝑥1)) where
now 𝑅1(𝑥1), 𝑅2(𝑥1) ∈ 𝑘(𝑥1) = 𝑘(ℙ1).

Let 𝜔𝑖 = 𝑑𝑥𝑖/𝑦𝑖 be the “canonical” basis of global differentials on 𝐸𝑖. We have 𝜙∗𝜔2 =
1
𝑐 𝜔1 for some constant 𝑐 ≠ 0, because the space of global differentials is of dimension 1
(an elliptic curve has genus 1), and we only deal with separable isogenies so the action on
differentials is non trivial. Plugging the formulas for 𝜙, we obtain 𝑑𝑅1

𝑦1𝑅2
= 1

𝑐
𝑑𝑥1
𝑦1

, so we can
further simplify the formulas for 𝜙 to: 𝜙(𝑥, 𝑦) = (𝑅(𝑥), 𝑐𝑦𝑅′(𝑥)).

We say that 𝜙 is normalised if 𝑐 = 1. Using the change of variable 𝑥′
2 = 1

𝑐2 𝑥2 and
𝑦′

2 = 1
𝑐3 𝑦2, we have 𝑑𝑥′

2/𝑦′
2 = 𝑐𝑑𝑥2/𝑦2, so 𝜙 ∶ 𝐸1 → 𝐸′

2 becomes normalised where
𝐸′

2 ∶ 𝑦′
2

2 = 𝑥′
2

3 + 𝑎2𝑐4𝑥′
2 + 𝑐6𝑏2.

The kernel of 𝜙 is given, along with 0𝐸1
, by all points that are sent to infinity by 𝜙, hence

by the denominator ℎ(𝑥) = 0 of 𝑅(𝑥) = 𝑔(𝑥)
ℎ(𝑥) . Let 𝐾 = Ker𝜙, we have (since 𝜙 is separable

the geometric points in the kernel have multiplicity one): ℎ(𝑥) = ∏𝑇∈𝐾∖{0}(𝑥 − 𝑥(𝑇)).
We remark that if 𝑛 is odd, ℎ(𝑥) is a square because 𝑇, −𝑇 are two distinct points with the
same 𝑥 coordinate.

The function representation takes space 𝑂(𝑛 log 𝑞), and 𝑂(𝑛 log 𝑞′) to evaluate on a point
𝑃 ∈ 𝐸(𝔽𝑞′).

3.2. The kernel representations.

3.2.1. Kernel equation. Conversely, given the equation ℎ(𝑥) = 0 representing a (cyclic)
kernel 𝐾, we can recover the function representation. Kohel in [Koh96] gives these explicit
formulas, adapted from Vélu [Vél71]: for 𝑓 (𝑥) = 𝑥3 + 𝑎1𝑥 + 𝑏1, and 𝜎1 = ∑𝑇∈𝐾∖{0} 𝑥(𝑇)
the trace of ℎ, we have that

(1)
𝑔
ℎ(𝑥) = 𝑛𝑥 − 𝜎1 − 𝑓 ′(𝑥)

ℎ′

ℎ (𝑥) − 2𝑓 (𝑥) (
ℎ′

ℎ)
′
(𝑥),

is the function representation for a normalised isogeny𝜙 ∶ 𝐸1 → 𝐸2, (𝑥, 𝑦) ↦ (𝑔
ℎ(𝑥), 𝑦 (𝑔

ℎ)
′
(𝑥))

with kernel 𝐾. Here 𝐸2 ∶ 𝑦2 = 𝑥3 + 𝑎2𝑥 + 𝑏2 is given by (see for instance [Feo10, § 8.2]):

𝑎2 = 𝑎1 − 5𝑡, 𝑏2 = 𝑏1 − 7𝑤, 𝑡 = ∑
𝑇∈𝐾∖{0}

𝑓 ′(𝑇), 𝑢 = ∑
𝑇∈𝐾∖{0}

2𝑓 (𝑇) + 𝑥(𝑇)𝑓 ′(𝑇).

The kernel representation takes space 𝑂(𝑛 log 𝑞). More precisely, it is given by a polyno-
mial ℎ(𝑥) in 𝔽𝑞[𝑥] of degree 𝑛 − 1, and if 𝑛 is odd we can write ℎ(𝑥) = ℎ1(𝑥)2, where ℎ1
is a polynomial of degree (𝑛 − 1)/2. Converting to the function representation takes 𝑂(𝑛)
arithmetic operations using Equation (1).

On the efficient representation of isogenies 11

Vélu’s formula from [Vél71] were originally given in term of the generator representation:
if 𝐾 = ⟨𝑇⟩, Vélu argues that the functions

𝑅1(𝑃) ≔ ⎛⎜
⎝

𝑥1(𝑃) + ∑
𝑇∈𝐾∖{0}

𝑥1(𝑃 + 𝑇) − 𝑥1(𝑇)⎞⎟
⎠

,

𝑅2(𝑃) ≔ ⎛⎜
⎝

𝑦1(𝑃) + ∑
𝑇∈𝐾∖{0}

𝑦1(𝑃 + 𝑇) − 𝑦1(𝑇)⎞⎟
⎠

(2)

are invariant by translation by 𝑇 ∈ 𝐾 and have the correct polar divisors to be the pullback
by 𝜙 of Weierstrass coordinates 𝑥2, 𝑦2 on 𝐸2 = 𝐸1/𝐾.

To recover the equation of 𝐸2, Vélu use the formal group law of the elliptic curve. More
precisely, he fixes the uniformiser 𝑧1 = −𝑥1/𝑦1 on 𝐸1, and look at the development of
𝑥1, 𝑦1 along 𝑧1. He then plugs the formula of 𝑅1, 𝑅2 to obtain their development along 𝑧1,
hence the development of 𝑧2 = −𝑅1/𝑅2 in term of 𝑧1. Inversing this to get 𝑧1 in term of
𝑧2, he recover the development of 𝑅1, 𝑅2 in term of 𝑧2, from which he obtain the equation
of 𝐸2. Weierstrass coordinates are not unique; Vélu explains that he made the choice of
normalisations on 𝑅1, 𝑅2 such that 𝑧2 and 𝑧1 coincide up to order 5: 𝑧2 = 𝑧1 + 𝑂(𝑧5

1). In
particular, the resulting isogeny is normalised.

3.2.2. Kernel generator. To evaluate a cyclic isogeny 𝜙 on a point 𝑃 given a generator 𝑇 of
the kernel 𝐾 = ⟨𝑇⟩, one can use the formulas from Equation (2), this costs 𝑂(𝑛) arithmetic
operations in the compositum field of the fields of definition of 𝑃 and 𝑇. An alternative is to
first convert to the kernel equation: ℎ(𝑥) = ∏𝑛−1

𝑖=1 (𝑥 − 𝑥(𝑖 ⋅ 𝑇)), this uses 𝑂(𝑛) arithmetic
operations in the field of definition 𝔽𝑞𝑒 of 𝑇, and then to use Equation (1) to evaluate on 𝑃
in 𝑂(𝑛) arithmetic operation in 𝔽𝑞′ .

When the field of definition 𝔽𝑞𝑒 of 𝑇 is small, the generator representation gives our first
compact isogeny representation: representing 𝑇 takes space 𝑂(𝑒 log 𝑞). In the worst case we
have 𝑒 = Θ(𝑛), so we do not gain anything compared to the 𝑂(𝑛 log 𝑞) size of the kernel
representation, but in the best case 𝑒 = 1 and the isogeny takes 𝑂(log 𝑞) to represent. (Note
that in this case, since 𝑇 is rational we have 𝑛 ∣ #𝐸(𝔽𝑞), so necessarily 𝑛 = 𝑂(𝑞)).

Another advantage of the generator representation is that we can use the sqrtVelu algo-
rithm of [BDLS20], which requires 𝑂(√𝑛) arithmetic operations in the compositum field of
𝑇 and 𝑃 to evaluate 𝜙(𝑃).

Asmentioned in Section 2,we can also use amultigenerator representation𝐾 = ⟨𝑇1, … , 𝑇𝑚⟩.
This is particularly useful when 𝑛 = ∏ ℓ𝑒𝑖

𝑖 is powersmooth, in that case we can take 𝑇𝑖 to be a
generator of 𝐾[ℓ𝑒𝑖

𝑖], which will live in an extension of degree at most ℓ𝑒𝑖
𝑖 . If the powersmooth

bound 𝐵 is 𝐵 = 𝑂(log𝑂(1) 𝑛), this gives a compact representation. By contrast, the generator
𝑇 = 𝑇1 + ⋯ + 𝑇𝑚 live in an extension of degree the compositum of all these fields, which
can only be bounded by 𝑛 in the generic case.

More precisely, since 𝐾 = ⟨𝑇⟩ is cyclic of degree 𝑛, 𝜋𝑞 acts by multiplication by 𝜆 ∈
(ℤ/𝑛ℤ)∗ on 𝑇, and the order 𝑒 of 𝜆 gives the degree of the extension where 𝑇 is defined, so
in particular 𝑒 ∣ 𝜙(𝑛).

Recall that we have defined a torsion subgroup 𝐺 of cardinal 𝑁 to be accessible whenever
we can find generators that live in a small (polynomial in log𝑁) extension of 𝔽𝑞. From this
definition, we see that the multigenerator representation of the kernel 𝐾 is space efficient
whenever the 𝐾-torsion is accessible.

Remark 3.1 (Radical isogenies). Sometimes for applications, like for the CGL hash function
[CLG09], we wish to iterate ℓ-isogenies: we want to compute a cyclic ℓ𝑛-isogeny. As we

12 DAMIEN ROBERT

will see in Section 3.4, the best case happens when we have a rational generator of the big
ℓ𝑛-isogeny, because we can then evaluate it in 𝑂(𝑛 log ℓ). However, it often happens that
only the ℓ-torsion is rational (or lives in a small extension), and that the ℓ𝑛-torsion would
live in a too big extension. The standard solution is then to compute this ℓ-torsion, extract
the first generator of order ℓ from it, compute the first isogeny 𝐸0 → 𝐸1 of degree ℓ, and
iterate, computing the ℓ-torsion on 𝐸1 again (typically by sampling points and multiplying
by the cofactor).

The idea of radical isogenies is to start with the first kernel 𝐾0 = ⟨𝑃0⟩ too, but to compute
the next kernel 𝐾1 = ⟨𝑃1⟩ ⊂ 𝐸1 directly, and to iterate this construction. This idea was
introduced in [CDV20], where the authors showed that 𝑃1 could be computed from a
choice of ℓ-th root of the self Tate pairing 𝑒𝑇,ℓ(𝑃0, 𝑃0). The original motivation of the radical
isogeny formulas were for the CSIDH cryptosystem, and they have been improved in [OM22;
CDHV22; Pri24; Dec24]. The theory of multiradical isogenies (radical isogenies in higher
dimension) was developed in [CD21; Rob23c]

3.3. Interpolation representations.

3.3.1. Standard Lagrange interpolation. By the Cauchy-Schwarz inequality,

deg(𝜙1 + 𝜙2) ≤ (√deg𝜙1 + √deg𝜙2)
2

.

Hence if 𝜙1, 𝜙2 are two 𝑛-isogenies such that 𝜙1 ≠ −𝜙2, deg(𝜙1 − 𝜙2) ≤ 4𝑛. It follows
that if 𝜙1, 𝜙2 coincide on at least 4𝑛 + 1 points, they have to be equal.

The interpolation representation of 𝜙 is given by (𝐸1, 𝐸2, (𝑃𝑖, 𝜙(𝑃𝑖))) for a list of 𝑁 > 4𝑛
points 𝑃𝑖. By the above argument, this completely determines 𝜙.

In practice, we can recover 𝜙 as follows from the interpolation data:
• We first recover interpolation data for 𝑅(𝑥) = 𝑔

ℎ(𝑥), with the notations from Sec-
tion 3.1. Each interpolation data (𝑃𝑖, 𝜙(𝑃𝑖)) gives an interpolation data (𝑥(𝑃𝑖), 𝑅(𝑥(𝑃𝑖))).
Since the points 𝑃𝑖 are distinct, and only ±𝑃𝑖 have the same 𝑥-coordinate, we obtain
at least 2𝑛 + 1 different interpolation points for 𝑅.

• The function 𝑅(𝑥) has total degree 2𝑛 seen as a function on 𝐸 (taking into account
the point at infinity), and since deg(𝑥) = 2 we get that deg𝑥 𝑅 ≤ 𝑛. Hence our
2𝑛 + 1 points of interpolation are enough to recover 𝑅(𝑥) in quasi-linear time 𝑂(𝑛)
by the standard rational function reconstruction algorithms [BCG+17].

• It remains to recover the normalisation constant 𝑐, which we can obtain from any
point 𝑃𝑖 such that 𝜙(𝑃𝑖) is not of 2-torsion. There are at most 4𝑛 such points, and
we have 4𝑛 + 1 points, so we can always find one.

The interpolation representation takes space 𝑂(𝑛 log 𝑞), assuming that all the 𝑃𝑖 are
defined in 𝔽𝑞. On the other hand, if 𝑃𝑖 ∈ 𝐸1(𝔽𝑞𝑒), we can act by the Galois action (i.e., the
Frobenius) on the interpolation data (𝑃𝑖, 𝜙(𝑃𝑖)) to obtain “for free” 𝑒 different interpolation
points.

But in fact, we can do better: by additivity of 𝜙, knowing the interpolation data on some
points 𝑃𝑖 allows to recover the action of 𝜙 on the full subgroup 𝐺 = ⟨𝑃𝑖⟩. So it suffices to
give interpolation data for generators 𝑃𝑖 of a rational (for simplicity) subgroup 𝐺 ⊂ 𝐸1 to
recover 𝜙 by interpolation, as long as #𝐺 > 4𝑛. Assume that #𝐺 = 𝑁, with 𝑁 = ∏ ℓ𝑒𝑖

𝑖 . Like
in the multi generator representation for the kernel, it can be helpful to diminish the size of
the representation to take generators of each of the CRT subgroups 𝐺[ℓ𝑒𝑖

𝑖]. (However, the
complexity of the rational function reconstruction will depend on the degree of the field of
definition of all points of 𝐺.)

On the efficient representation of isogenies 13

Note that here 𝑁 is decoupled from 𝑛. This can be used to find a space efficient repre-
sentation of 𝜙 even if its kernel 𝐾 has its torsion not accessible: we only need to find a large
enough accessible torsion subgroup 𝐺 ⊂ 𝐸.

For instance, if 𝑃 ∈ 𝐸1(𝔽𝑞) is a rational point of 𝑁-torsion, we can use (𝑃, 𝜙(𝑃)) (along
with (𝐸1, 𝐸2, 𝑛) as usual) as a compact interpolation representation of any 𝑛-isogeny 𝜙 with
4𝑛 < 𝑁. We remark that in this case, 𝑁 = 𝑂(𝑞), hence 𝑛 = 𝑂(𝑞).

3.3.2. The deformation representation as an Hermite-Padé interpolation. There is a con-
venient way to find such a rational torsion “point” of large order. Namely, let P be fat
point above 0𝐸1

, that is a point Spec 𝑘[𝜀]/𝜀2 → 𝐸 such that the natural composition
Spec 𝑘 → Spec 𝑘[𝜀]/𝜀2 → 𝐸 gives 0𝐸1

. One can see P as the choice of a tangent vector
𝑣 ∈ 𝑇𝑂𝐸

(𝐸) of 𝐸 at 0𝐸. Then P is a rational “point”, that we can also view as a formal point
in the formal group of 𝐸 truncated to precision 2, which is of order8 𝑝, because [𝑛] acts by
multiplication by 𝑛 on the tangent space at 0𝐸1

.
Concretely, since 𝜙 maps the neutral point to the neutral point, to give the interpolation

data (P, 𝜙(P)) (to precision 2) is equivalent to giving the action of 𝜙 on the tangent space
of 𝐸1 and 𝐸2 at their neutral points, or equivalently to give the normalisation constant 𝑐
such that 𝜙∗𝜔2 = 1

𝑐 𝜔1. Indeed, if we use 𝑧1 = 𝑥1/𝑦1 as a uniformiser on 𝐸1, then a formal
point at precision 𝑚 is given by P = 𝑎1𝑧1 + 𝑎2𝑧2

1 + 𝑎3𝑧3
1 + 𝑂(𝑧𝑚+1

1). We have explicit
formulas for 𝑥1 = 𝑧−2

1 + ⋯, 𝑦1 = 𝑧−3
1 + ⋯, from the curve equation of 𝐸1, so we have

the Weierstrass formal coordinates of P, to which we can apply 𝜙 to obtain the Weierstrass
formal coordinates 𝑥2, 𝑦2 of 𝜙(P). Letting 𝑧2 = 𝑥2/𝑦2, we can thus recover 𝑧2(𝜙(P)) to
precision 𝑚: 𝑧2(𝜙(P)) = 𝑎1

𝑐 𝑧1 + 𝑎′
2𝑧2

1 + … + 𝑂(𝑧𝑚+1
1). In particular, 𝑑𝑧2 ∘ 𝑑𝜙 = 1

𝑐 𝑑𝑧1.
Since 𝑑𝑧𝑖 = 𝑑𝑥𝑖/𝑦𝑖, we see that working at precision 𝑚 = 2 is enough to recover 𝑐 such that
𝜙∗𝜔2 = 1

𝑐 𝜔1.
By the same argument as in the usual interpolation reconstruction, the isogeny 𝜙 is

completely determined from this Hermite-Padé interpolation data 𝑐 as long as 𝑝 is large
enough compared to 𝑛: 𝑝 > 4𝑛. To reconstruct 𝜙 in practice, i.e. recover the rational function
𝑅, one can solve the differential equation
(3) 𝑐2(𝑥3 + 𝑎1𝑥 + 𝑏1)𝑅′(𝑥)2 = 𝑅(𝑥)3 + 𝑎2𝑅(𝑥) + 𝑏2;

derived from the equation 𝜙∗𝜔2 = 1
𝑐 𝜔1.

This differential equation can be solved in quasi-linear time 𝑂(𝑛) arithmetic operations
[BMSS08] using fast methods on power series, to first reconstruct 𝑅 as a power series and
then as a rational function, as long as 𝑝 > 8𝑛 − 5.

When 𝑛 is too large compared to 𝑝, one can instead take a lift 𝜙 ∶ 𝐸1 → 𝐸2 of 𝜙 to
ℤ𝑞/𝑝𝑚ℤ𝑞 (where ℤ𝑞 is the ring of Witt vectors over 𝔽𝑞), at 𝑝-adic precision 𝑚 large enough:
𝑛 = 𝑂(𝑝𝑚). Such a technique is used in [LS08] to reconstruct an isogeny from roots of the
modular polynomial 𝜙𝑛 even in cases where 𝑝 is small compared to 𝑛.

We call this representation the deformation representation; the advantage of this repre-
sentation is that it takes space 𝑂(𝑚 log 𝑞) = 𝑂(log 𝑞 + 𝑑 log𝑛) for any 𝑛-isogeny, where
𝑞 = 𝑝𝑑. The rational function reconstruction takes quasi-linear time. This representation
will (one day) be explained in more details in [KR22], in the meanwhile see [Rob21, § 4.7.3].

8This is not a coincidence, as we will see in Remark 3.2, by [Oda69], the Dieudonnémodule𝔻(𝐸[𝑝]) of𝐸[𝑝]
is canonically isomorphic to the de Rham cohomology𝐻1

𝐷𝑅(𝐸), and the Frobenius filtration on𝐸[𝑝] corresponds
to the Hodge filtration on 𝐻1

𝐷𝑅(𝐸) [Oda69, Corollary 5.11], so in particular 𝐷(𝐸[𝜋𝑝]) ≃ 𝐻0(𝐸, Ω𝐸) (up to a
Frobenius twist). In other words, differentials on 𝐸 corresponds via the Dieudonné anti-equivalence of category
to infinitesimal points of 𝑝-torsion in 𝐸[𝜋𝑝].

14 DAMIEN ROBERT

The reason for the name deformation representation comes from the following useful
reformulation. The Kodaira-Spencer isomorphism gives a canonical isomorphism between
the Sym2 of the tangent space of an elliptic curve 𝐸 at 0𝐸 and the tangent space of the moduli
stack 𝒜1 parametrizing elliptic curves at 𝐸 (see Appendix E). So, reformulating in terms
of differential, the choice of a differential 𝜔𝐸 on 𝐸 is essentially the same as the choice of
a deformation 𝐸/ Spec(𝑘[𝜀]/𝜀2) of 𝐸 (essentially because of the Sym2, which means that
±𝜔𝐸 gives the same deformation). In terms of modular functions, this is just a reformulation
of the fact that the modular function 𝑗′(𝜏) is of weight 2, where 𝑗′(𝜏) = 𝑑𝑗(𝜏)/2𝜋𝑖𝑑𝜏. From
the algebraic interpretation of modular forms as sections of suitable powers of the Hodge
line bundle, a modular function of weight 2 such as 𝑗′ means that 𝑗′ depends (in a functorial
way) on both the choice of 𝐸 and a differential 𝜔𝐸 on 𝐸, and that 𝑗′(𝐸, 𝜆𝜔𝐸) = 𝜆2𝑗′(𝐸, 𝜔𝐸).

All of this can be made very explicit: if 𝜔𝐸 = 𝑑𝑥/𝑦 is the canonical differential form on
𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 we have 𝑗′(𝐸, 𝜔𝐸) = 18𝑗(𝐸)𝑏/𝑎 by [Sch95, § 7]. Conversely, fixing
𝑗′(𝐸, 𝜔𝐸) for some differentials 𝜔𝐸 on 𝐸 fixes 𝜔𝐸 up to a sign because 𝑗′ is of weight 2, hence
in particular fixes 𝑎, 𝑏 such that 𝜔𝐸 = 𝑑𝑥/𝑦 on 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 because 𝑎 is of weight 4
and 𝑏 is of weight 6.

And the deformation 𝐸 associated to (𝐸, 𝜔𝐸) is given by 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎(𝜀)𝑥 + 𝑏(𝜀)
such that 𝑗(𝐸) = 𝑗(𝐸) + 𝑗′(𝐸, 𝜔𝐸)𝜀 modulo 𝜀2, which gives a linear equation between
the coefficients 𝑎′, 𝑏′ of 𝑎(𝜀) = 𝑎 + 𝑎′𝜀 and 𝑏(𝜀) = 𝑏 + 𝑏′𝜀. We cannot do better because
multiplying 𝑎(𝜀) and 𝑏(𝜀) by 𝑢(𝜀)4 and 𝑢(𝜀)6 respectively with 𝑢(𝜀) = 1 + 𝛾𝜀 does not
change the isomorphism class of 𝐸 and the curve still reduces to 𝐸.

In other words, the following data are essentially equivalent for an elliptic curve 𝐸:
• A short Weierstrass equation for 𝐸, and its associated differential 𝜔𝐸 = 𝑑𝑥/𝑦
• The 𝑗-invariant 𝑗(𝐸) and a choice of differential 𝜔𝐸 up to a sign
• 𝑗(𝐸) and 𝑗′(𝐸, 𝜔𝐸)
• The 𝑗-invariant 𝑗(𝐸) of the deformation 𝐸 of 𝐸 to 𝑘[𝜀]/𝜀2 associated to Sym2 𝜔𝐸

Now, given a deformation 𝐸1 of 𝐸1, the isogeny 𝜙 ∶ 𝐸1 → 𝐸2 deforms uniquely to
an isogeny 𝐸1 → 𝐸2. If 𝐸1 is the deformation associated to a differential Sym2 𝜔𝐸1

, then
𝐸2 is the deformation associated to the differential Sym2 𝜔𝐸2

/𝑛 where 𝜙∗𝜔𝐸2
= 𝜔𝐸1

(see [KPR24]). Given two short Weierstrass equations 𝑦2 = 𝑥3 + 𝑎𝑖𝑥 + 𝑏𝑖 for 𝐸1, 𝐸2, the
normalisation constant 𝜙∗𝑑𝑥2/𝑦2 = 1

𝑐 𝑑𝑥1/𝑦1 then shows that if 𝐸1 is the deformation
associated to 𝜔𝐸1

= 𝑑𝑥1/𝑦1, then 𝐸2 is the deformation associated to 𝜔𝐸2
= 𝑐𝑑𝑥2/𝑦2.

In summary, given 𝐸1, 𝐸2, the deformation representation consists of any of these essen-
tially equivalent data (meaning that we can easily switch between them):

• The pullback action of 𝜙 on differentials;
• The datum 𝑗′(𝐸1, 𝜔𝐸1

), 𝑗′(𝐸2, 𝜔𝐸2
) for the modular function 𝑗′, where 𝜔𝐸1

=
𝜙∗𝜔𝐸2

;
• The isogeny normalisation constant;
• The deformation 𝜙 ∶ 𝐸1 → 𝐸2 to any non trivial deformation 𝐸1/(𝑘[𝜀]/𝜀2) of 𝐸1;
• The action of 𝜙 on the formal group to precision 𝑚 = 2;
• The differential equation Equation (3), from which we can recover 𝜙 in 𝑂(𝑛) (if 𝑝

is large enough).

Remark 3.2 (Dieudonné modules, points of 𝑝-torsion and differentials). From the point
of view of Dieudonné modules, the Dieudonné module 𝔻(𝐸[𝑝𝑛]) (in the contravariant

On the efficient representation of isogenies 15

Dieudonné theory) is precisely given by the de Rham cohomology 𝐻1
𝐷𝑅(𝐸) of a lift 𝐸 of𝐸 to 𝑝-

adic precision 𝑛.This is a consequence of the fact that the Dieudonnémodule 𝔻(𝐸(𝑝)) of the
𝑝-divisible group is isomorphic to the crystal 𝐻1

crys(𝐸, ℤ𝑝) associated to 𝐸, which itself can
be computed as the hypercohomology of the de Rham Witt complex [Ill79]. Furthermore,
by the Serre-Tate theorem lifts 𝐸 of 𝐸 corresponds to lifts of the 𝑝-divisible group 𝐸(𝑝),
which themselves correspond by the Grothendieck-Mazur theorem to lifts of their associated
crystals (which over a field is the Dieudonné module), which is encoded by the linear data
of a choice of lift of their Hodge filtration from modulo 𝑝 to modulo 𝑝𝑛. The filtration on
𝔻(𝐸[𝑝𝑛]) modulo 𝑝𝑛 associated to a choice of lift 𝐸 is precisely given by the Hodge filtration
on 𝐻1

𝑑𝑅(𝐸, ℤ/𝑝𝑛ℤ) via the isomorphism above.
This is really a beautiful theory, and unfortunately it is hard to find a concise reference

for all these facts. At the core, Grothendieck’s crystalline topology should be seen as a far
reaching generalisation that an infinitesimal point can be associated to some differential
data.

Also, a very useful fact proved by Tate in [Tat67], is that over a complete Noetherian local
ring 𝑅 with residue field of cararacteristic 𝑝, connected 𝑝-divisible groups correspond to
formal Lie groups (when seen as fppf sheafs; and the Dieudonné module of the group is
the same as the Cartier module of the Lie group). And as expected, the formal Lie group
corresponding to the connected part of the 𝑝-divisible group 𝐸(𝑝) is precisely the formal
group of 𝐸.

All these results extend to an abelian variety 𝐴. For the isogeny practitioner, what the
Dieudonné theory means is that the 𝑝-torsion of 𝐴 corresponds to 𝐻1

𝐷𝑅(𝐴) (and a point
of 𝑝𝑛-torsion to a De Rham differential of a lift of 𝐴 modulo 𝑝𝑛). As mentioned earlier, by
[Oda69, Corollary 5.11], this is refined by the Hodge decomposition 0 → 𝐻0(𝐴, Ω1

𝐴/𝑘) →
𝐻1

𝑑𝑅(𝐴) → 𝐻1(𝐴, 𝑂𝐴) → 0 which corresponds via the Dieudonné functor to the Frobenius
filtration 0 → 𝐴[�̂�] = ℑ𝜋 → 𝐴[𝑝] → 𝐴[𝜋] = Ker𝜋 → 0; more precisely 𝔻(𝐴[�̂�]) ≃
𝐻1(𝐴, 𝑂𝐴) ≃ 𝐻0(𝐴∨, Ω1

𝐴∨/𝑘)∨ while 𝔻(𝐴[𝜋]) is a Frobenius twist of 𝐻0(𝐴, Ω1
𝐴/𝑘). In

particular, the choice of an infinitesimal point in 𝐴[𝜋] (note that this is always a connected
infinitesimal proper group scheme) corresponds to a choice of global differential on 𝐴. And
by the discussion above, the formal group law encodes the connected part 𝐴°(𝑝) of the
𝑝-divisible group.

In some sense, since the global differentials form a vector space of dimension 𝑔 for
an abelian variety of dimension 𝑔 (because it is smooth), we always have a “free” basis of
rank 𝑔 of points of 𝑝-torsion. Furthermore, to any algorithm which is expressed in term of
usual geometric points on 𝐴, as long as it is functorial enough to work as well with points
with multiplicities, so in particular 𝑝-torsion points, then there should exist a traduction of
this algorithm (via Dieudonné’s antiequivalence of category) which can work in terms of
differentials. (This does not mean that the resulting algorithm is still as efficient though).
This is precisely what we have done above: we had an algorithm to interpolate an 𝑛-isogeny
from its value at a point of ℓ-torsion, with ℓ ≫ 𝑛, and we adapted it to an algorithm that
reconstitutes the isogeny from how it acts on the global differential 𝑑𝑥/𝑦, as long as 𝑝 ≫ 𝑛.
The main advantage, as we have noted, is that the global differential is always there, while
the point of ℓ-torsion may live in a large extension. This point of view can often be helpful in
isogeny based cryptography when one need extra points of ℓ-torsion and how isogenies act
on them: using ℓ = 𝑝 allows to work with rational “points”.

The last remark is that, implicitly, many existing isogeny algorithms in the literature track
these points of 𝑝-torsion (i.e. track the global differentials). It is well known that Vélu formula
gives normalised isogenies; and the condition𝜑∗𝜔2 = 𝜔1 for differentials / 𝑝-torsion “points”

16 DAMIEN ROBERT

is the pendant of the equation 𝜑(𝑃1) = 𝑃2 for normal (étale) points. It is a bit less known, but
still true, that the usual isogeny formulas in Mongomery coordinates or theta coordinates still
track differentials. For Vélu formulas, the differential was encoded through a choice of short
Weierstrass equation 𝑦2 = 𝑥3+𝑎𝑥+𝑏, and indeed theWeierstrass coefficients 𝑎, 𝑏 aremodular
forms of weight 4 and 6 respectively. In the Montgomery model 𝑦2 = 𝑥3 + 𝒜𝑥2 + 𝑥, the
coefficient𝒜 is only amodular function (of levelΓ0(4)), so does not keep track of differentials.
Likewise, the level 2 projective theta null point (𝜃0(𝐸) ∶ 𝜃1(𝐸)) = 𝜃1(𝐸)/𝜃0(𝐸) is given by
a modular function (of level Γ(2, 4)). But in practice, during the isogeny algorithms we work
with the numerator 𝐴 and denominator 𝐶 of 𝒜 = 𝐴/𝐶 separately to avoid divisions, and
likewise for the numerator 𝜃1(𝐸), and denominator 𝜃0(𝐸) of the theta null point. This time
we do have modular forms. We refer to [KNRR21, § 4.3] for more details on the modular
interpretation of the theta isogeny formulas, to [KNRR21, § 4.5] for applications on how to
compute Siegel modular forms algebraically, and to [Rob21, § 6.4] for applications to point
counting via canonical lifts.

3.3.3. Modular polynomials. This point of view allows us to make the link with the modular
representation. Recall that the modular polynomial Φ𝑛(𝑋, 𝑌) is a symmetric polynomial
in ℤ[𝑋, 𝑌], such that Φ𝑛(𝑗(𝐸1), 𝑌) = ∏(𝑌 − 𝑗(𝐸1,𝑖)) where 𝐸1,𝑖 are all the 𝑛-isogeneous
codomain curves from 𝐸1. When this evaluated polynomial has no multiplicity, a root
𝑦 = 𝑗(𝐸2) completely determines the 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2.

Elkies algorithm [Elk92; Elk97] gives away to reconstruct𝜙 in practice fromΦ𝑛, 𝑗(𝐸1), 𝑗(𝐸2).
We can reformulate it as follows: start with a short Weierstrass equation for 𝐸1, and look
at the deformation 𝐸1, with 𝑗(𝐸1) = 𝑗(𝐸1) + 𝜀𝑗′(𝐸1, 𝜔𝐸1

) associated with Sym2 𝜔𝐸1
for

the differential 𝜔𝐸1
= 𝑑𝑥1/𝑦1. Then 𝜙 deforms to 𝜙 ∶ 𝐸1 → 𝐸2, where 𝐸2 is associated

to the differential Sym2 𝜔𝐸2
/𝑛, where 𝜙∗𝜔𝐸2

= 𝜔𝐸1
. In other words, 𝑗(𝐸2) = 𝑗(𝐸2) +

𝜀𝑗′(𝐸2, 𝜔𝐸2
/√𝑛) = 𝑗(𝐸2) + 𝜀𝑗′(𝐸2, 𝜔𝐸2

)/𝑛. Plugging the equation Φ𝑛(𝑗(𝐸1), 𝑗(𝐸2)) = 0
amount to differentiating Φ𝑛, and gives the equation 𝑗′(𝐸1, 𝜔𝐸1

)𝜕Φ𝑛/𝜕𝑋(𝑗(𝐸1), 𝑗(𝐸2)) +
𝑗′(𝐸2, 𝜔𝐸2

)/𝑛𝜕Φ𝑛/𝜕𝑌(𝑗(𝐸1), 𝑗(𝐸2)) = 0. This allow us to recover 𝑗′(𝐸2, 𝜔𝐸2
) and also

𝑗(𝐸2) = 𝑗(𝐸2) + 𝜀𝑗′(𝐸2, 𝜔𝐸2
)/𝑛. From 𝑗′(𝐸2, 𝜔𝐸2

), we recover the short Weierstrass equa-
tion of 𝐸2 such that the isogeny 𝜙 is normalised with respect to 𝜔𝐸1

and 𝜔𝐸2
= 𝑑𝑥2/𝑦2.

In other word, we recover the deformation representation of 𝜙 (normalised in this case to
have 𝑐 = 1), from which we can recover 𝜙 by using [BMSS08] in quasi-linear time when
𝑛 = 𝑂(𝑝). See [Rob21, § 5.4.1] for more details, and [KPR24] for a generalisation to abelian
surfaces.

Given 𝐸1, in the case where the codomains of all the 𝑛-isogenies from 𝐸1 are different, 𝜙
is completely determined from (𝐸1, 𝑗(𝐸2), 𝑛) In fact, we could even replace 𝑗(𝐸2) by using a
deterministic numerotation of the roots of Φ𝑛(𝑗(𝐸1), 𝑌), and giving which root number
corresponds to 𝑗(𝐸2); this representation takes 𝑂(log𝑛) space rather than 𝑂(log 𝑝).

On the other hand, to reconstruct the isogeny 𝜙 from this data, we need to compute
Φ𝑛, which takes quasi-linear time in its size 𝑂(𝑛3) [Eng09; BLS12; KR24]: this time the
reconstruction is not quasi-linear in 𝑛. But for the reconstruction we just need the evaluations
Φ𝑛(𝑗(𝐸1), 𝑌) and 𝜕Φ𝑛/𝜕𝑋(𝑗(𝐸1), 𝑌) which can be computed faster [Sut13b; Kie20; Ler23a;
Rob22b]. For instance, we have algorithms in 𝑂(𝑛2 log 𝑝) to recover Φ𝑛 modulo 𝑝 directly.
However, we have no algorithms so far able to compute Φ𝑛(𝑗(𝐸1), 𝑌) in quasi-linear time
𝑂(𝑛 log 𝑞).

An alternative approach to reconstruct 𝜙 given (𝐸1, 𝐸2, 𝑛), without using Φ𝑛, is given in
[DHPS16].

On the efficient representation of isogenies 17

3.4. Decomposing an isogeny. So far, we have seen some representations that were space
efficient, but none able to evaluate 𝜙 on a point 𝑃 in better than linear time. When 𝑛 = ∏ ℓ𝑒𝑖

𝑖
is smooth, the decomposition representation will be our first efficient representation. The
key point is that we can decompose 𝜙 as a product of ℓ𝑖-isogenies: 𝜙 = 𝜙1 ∘ 𝜙2 ∘ ….

To represent 𝜙, it then suffices to give a representation of each of the intermediate 𝜙𝑖; and
any decent representation of 𝜙𝑖 (for instance the kernel representation or even the function
representation), where by decent we mean a representation which takes linear space and
time in the degree, will then give a representation of 𝜙 which takes space 𝑂(𝐵 log𝑛 log 𝑞)
and time 𝑂(𝐵 log𝑛 log 𝑞′) for evaluation, where 𝐵 is a smoothness bound on 𝑛. More pre-
cisely, the decomposed representation takes space 𝑂((∑ 𝑒𝑖ℓ𝑖) log 𝑞) and can be evaluated in
𝑂((∑ 𝑒𝑖ℓ𝑖) log 𝑞′). If 𝑛 is smooth (𝐵 is polynomial in log𝑛), we obtain our fist representation
that is both compact and efficient.

One can also look at the cost of converting from one of the above representations to
the decomposed representation. The main case of interest is the generator representation:
𝐾 = ⟨𝑇⟩. For simplicity, we will focus on the particular case where 𝑛 = 2𝑒 and 𝑇 ∈ 𝐸1(𝔽𝑞)
is a point of 2𝑒-torsion.

The naive way to decompose 𝜙 as a product of 2-isogenies is to start with 𝑇, compute
𝑇1 = 2𝑒−1𝑇 of order 2 which generates the kernel of our first 2-isogeny 𝜙1, compute the
equations for 𝜙1 using Vélu’s formulas from Section 3.2, and then pushforward 𝑇 via 𝜙1 to
get 𝜙1(𝑇) which generates a kernel of order 2𝑒−1 on 𝐸1/⟨𝑇1⟩, and iterate this construction.
This costs 𝑂(𝑒2) arithmetic operations because we need 𝑂(𝑒2) doublings.

A clever solution to achieve a better complexity was introduced in [DJP14]: the authors
show how one can push more (carefully chosen) points along our intermediate isogenies 𝜙𝑖
to obtain a complexity of 𝑂(𝑒 log 𝑒) arithmetic operations to obtain the decomposition of 𝜙.

The same method holds in the general case: provided that 𝑛 is smooth and the kernel
torsion is accessible (e.g., 𝑛 is powersmooth, or 𝑛 = 2𝑒 and 𝑇 lives in a small extension), one
can convert a multigenerator representation of the kernel into a decomposed representation
in polylogarithmic time.

More precisely (restricting to 𝜙 cyclic for simplicity, but the same bounds hold in the
general case):

Proposition 3.3. Let 𝑛 = ∏𝑚
𝑖=1 ℓ𝑒𝑖

𝑖 , 𝑇1, … , 𝑇𝑖, … , 𝑇𝑚 generators of 𝐾[ℓ𝑒𝑖
𝑖], where 𝑇𝑖 ∈

𝐸(𝔽𝑞𝑑𝑖). Then one can compute the decomposed representation of the isogeny 𝜙 with kernel 𝐾
in time 𝑂(∑𝑖 𝑒𝑖ℓ𝑖 log 𝑞(𝑑𝑖 log 𝑒𝑖 + ∑𝑗>𝑖 𝑑𝑗) = 𝑂(𝑚2𝑑𝑒ℓ log 𝑞) where 𝑑 (resp. 𝑒, ℓ) is a bound
on the 𝑒𝑖 (resp. 𝑑𝑖, ℓ𝑖).

An alternative method, using sqrtVelu, cost 𝑂(∑𝑖 𝑒𝑖√ℓ𝑖 log 𝑞(𝑑𝑖 + ∑𝑗>𝑖(𝑑𝑖 ∨ 𝑑𝑗)) =

𝑂(𝑚2𝑑′𝑒√ℓ log 𝑞) where this time 𝑑′ is the maximum of the degree of the compositum field
extension of the fields of definitions of 𝑇𝑖, 𝑇𝑗 for 𝑖, 𝑗.

Proof. We refer to Remark A.2 for our assumptions about the lattice of field extensions used
to represent our accessible CRT basis ⟨𝑇𝑖⟩.

One first decomposes the isogenywith kernel𝐾[ℓ𝑒1
1]using its generator𝑇1 in𝑂(𝑒1 log 𝑒1ℓ1)

arithmetic operations over 𝔽𝑞𝑑1 ; this costs 𝑂(𝑒1 log 𝑒1ℓ1𝑑1 log 𝑞). Then we push the other
generators 𝑇2, … , 𝑇𝑚 and we iterate. Pushing 𝑇𝑖 through this ℓ𝑒1

1 isogeny takes 𝑂(𝑒1ℓ1)
arithmetic operations over 𝔽𝑞𝑑𝑖 , so time 𝑂(𝑒1ℓ1𝑑𝑖 log 𝑞), using the kernel representation.

An alternative to using the kernel representation to represent the intermediate ℓ𝑖-isogenies
𝜙𝑖,𝑢 is to keep the generator representation and use the sqrtVelu formulas. This replaces the

18 DAMIEN ROBERT

𝑂(ℓ𝑖) part by 𝑂(√ℓ𝑖), but on the other hand one has to work with the compositum field of
the field of definition of the generator 𝑇′

𝑖 of the kernel of 𝜙𝑖 (which is included in the field of
definition of 𝑇𝑖), and the field of definition of the current image 𝑇′

𝑗 of 𝑇𝑗 (which is included
in the field of definition of 𝑇𝑗). This compositum is thus of degree at most 𝑑𝑖 ∨ 𝑑𝑗. �

In isogeny based cryptography, for practical reasons we prefer to work with isogenies of
smooth degree defined by rational generators, this is in practice much faster than working
with general accessible torsion, which requires (small) field extensions. Still, it can be con-
venient to take small field extensions for some applications, and the case of non rational
generators has been quite optimised too, see [EPSV; BGDS23]

Example 3.4 (Decomposing an isogeny from its kernel equation). If 𝜙 ∶ 𝐸1 → 𝐸2 is given by
its kernel equation 𝐾 = Ker𝜙∶ 𝐻(𝑥) = 0, we can apply Proposition 3.3 by treating the point
P ∶ 𝑥 mod 𝐻 as a “formal” generator of 𝐾 (working in 𝑥-only coordinates for simplicity).

Let’s assume that 𝑛 = 𝑛1𝑛2. We can first compute 𝑛2P, then compute its characteristic
polynomial (for instance via a resultant). To avoid divisions by potentially non invertible
elements modulo 𝐻, one can work with the homogenisation 𝐻(𝑋, 𝑍) of 𝐻(𝑥), and work
in (𝑋 ∶ 𝑍) coordinates; the homogenised characteristic polynomial of 𝑛2P is given by
𝐻1(𝑋, 𝑍) = ∏𝑃∈𝐾(𝑍(𝑛2𝑃)𝑋 − 𝑋(𝑛1𝑃)𝑍) = ∏𝑄∈𝐾[𝑛1](𝑍(𝑄)𝑋 − 𝑋(𝑄)𝑍)𝑛2. Taking
the gcd with 𝐻, we recover 𝐺1(𝑋, 𝑍) = ∏𝑄∈𝐾[𝑛1](𝑍(𝑄)𝑋 − 𝑋(𝑄)𝑍), where 𝐺1 gives the
equation of the kernel 𝐾1 = 𝐾[𝑛1].

We remark that non invertible elements modulo 𝐻 are actually useful since taking a gcd
with 𝐻 allows to partially factorize it. For instance we could recover 𝐺1 directly (without
a resultant) by computing 𝑛1P = (𝑃(𝑋, 𝑍), 𝑄(𝑋, 𝑍)) where 𝑄 is the division polynomial
𝜙𝑛(𝑋, 𝑍) computed modulo 𝐻, and then taking 𝐺1 = 𝑄 ∧ 𝐻. This is essentially the same
as computing 𝜙𝑛 mod 𝐻 via the recurrence formula for 𝜙𝑛 where we reduce modulo 𝐻 at
each step, and this costs 𝑂(log𝑛) arithmetic operations in 𝑘[𝑥]/𝐻(𝑥).

From this equation for 𝐾1, we can compute the isogeny equation for the first step 𝜙1 ∶
𝐸1 → 𝐸′

1 of the isogeny: 𝜙 = 𝜙2 ∘ 𝜙1. We can then compute P2 = 𝜙1(P), and take a
resultant (or better use power projection [Sho99]) to get the kernel equation 𝐻2(𝑋, 𝑍) = 0
of Ker𝜙2. Using [KU11] for the power projection over a finite algebra, this step can be done
in pseudo-linear time in 𝑛.

We refer to [EPSV; BGDS23] for optimisations, like using minimal polynomials rather
than characteristic polynomials or using the Frobenius action.

4. The ideal representations

In this section we survey the ideal representation. We explain the link between ideals and
isogenies in Section 4.1, then we treat the case of supersingular curves in Section 4.2 and the
case of oriented curves (in particular ordinary curves) in Section 4.3.

4.1. Isogenies represented by ideals.

4.1.1. Ordinary isogeny graph: volcanoes. It is well known that if 𝐸/𝔽𝑞 is an ordinary elliptic
curve, its ℓ-isogeny graph form the structure of a volcano, see [Koh96; FM02; Sut13a].

Let 𝜙 ∶ 𝐸1 → 𝐸2 be an 𝑛-isogeny between elliptic curves defined over a finite field 𝔽𝑞.
In the ordinary case, we say that 𝜙 is horizontal if End(𝐸1) = End(𝐸2) (in the ordinary
case End𝔽𝑞

(𝐸) = End𝔽𝑞
(𝐸) is a quadratic imaginary field, so the notation is unambiguous),

ascending if End(𝐸1) ⊂ End(𝐸2) (and it is not horizontal), and descending if End(𝐸1) ⊃
End(𝐸2) (and it is not horizontal). If 𝑛 is not prime we can also have incomparable orders.

On the efficient representation of isogenies 19

An horizontal or ascending isogeny 𝜙 of kernel 𝐾 can always be represented by an ideal 𝐼 ⊂
End(𝐸1): if we let 𝐼 = 𝐼(𝜙) ≔ {𝛼 ∈ End(𝐸1), 𝛼(𝐾) = 0} to be the set of all endomorphisms
that are 0 on 𝐾 = Ker𝜑, then we have 𝐸[𝐼] = 𝐾, where 𝐸[𝐼] ≔ {𝑃 ∈ 𝐸(𝔽𝑞) ∣ 𝛼(𝑃) =
0∀𝛼 ∈ 𝐼} (we have the obvious inclusion 𝐾 ⊂ 𝐸[𝐼] by definition, and one can prove the
converse when 𝜙 is not descending). Note that 𝐸[𝐼] ⊂ 𝐸[𝑁(𝐼)]. In fact, 𝐼 can always be
represented as 𝐼 = (𝛼, 𝑁(𝐼)), and 𝐸[𝐼] = 𝐸[𝛼] ∩ 𝐸[𝑁(𝐼)]. The isogeny 𝜙 is horizontal if
and only if 𝐼 is invertible in End(𝐸1), otherwise 𝜙 is ascending and End(𝐸2) = 𝑂(𝐼) is the
order associated to 𝐼. Note that if 𝜙 is descending, it cannot be represented by an ideal in
End(𝐸1), but its dual 𝜙 ∶ 𝐸2 → 𝐸1 can be represented by a non invertible ideal in End(𝐸2).
For more details, see [Wat69; Koh96; Kan11].

In particular, if 𝑅 = End(𝐸1), we have a commutative group action (which is free and
transitive) from the Picard group Pic(𝑅) of 𝑅 (the class group of invertible ideals, this
is the same as the usual class group when 𝑅 is a maximal quadratic order) on the set of
elliptic curves 𝐸′ horizontal isogeneous to 𝐸1 (meaning that End(𝐸′) = 𝑅). To an invertible
ideal class [𝐼] with representative 𝐼, we associate the codomain 𝐸′

𝐼 of 𝜙𝐼 ∶ 𝐸′ → 𝐸′
𝐼. This

group action was first used in the context of cryptography by Couveignes in 1997 (but
published much later in [Cou06]), and revisited in [RS06; DKS18]. The first practical version
was CSIDH [CLMPR18]. Having a commutative group action allows to translate many
cryptographic constructions coming from the DLP problem. For instance the CSIDH key
exchange is very similar to the Diffie-Helman’s key exchange. However, while Shor’s quantum
polynomial time algorithm for the DLP does not apply to group actions, there exists a
quantum subexponential time algorithm due to Kuperberg [Kup05; Pei20].

4.1.2. Supersingular isogeny graphs. If 𝐸1, 𝐸2 are supersingular elliptic curves defined over
𝔽𝑝2, with all their geometric endomorphisms defined over 𝔽𝑝2 (equivalently End𝔽𝑝2(𝐸𝑖)
is of rank 4), then 𝜙 is “almost horizontal”, in the sense that End(𝐸𝑖) are both maximal
quaternionic order. (By assumption, End𝔽𝑝

(𝐸𝑖) = End𝔽𝑝2(𝐸𝑖) so the notation is also un-
ambiguous). By the “supersingular case”, we will always refer to this situation, i.e. when
considering a supersingular elliptic curve 𝐸/𝔽𝑝2 we will always assume it is a maximal or
minimal curve.

In that case, 𝜙 is also always represented by the ideal 𝐼 = 𝐼(𝜙), i.e. we also have Ker𝜙 =
𝐸[𝐼]: this is the well known Deuring correspondence (see [Ler22b] for a nice overview, and
[Voi21] for a complete reference). Furthermore, End(𝐸1) is the left order associated to 𝐼 and
End(𝐸2) its right order.

In both the oriented and supersingular cases, the dual/contragredient isogeny 𝜙𝐼 ∶ 𝐸2 →
𝐸1 is represented by the ideal 𝐼, and we let 𝑁(𝐼) be the integer such that 𝐼𝐼 = 𝐼𝐼 = 𝑁(𝐼), so
that 𝜙𝐼 is a 𝑁(𝐼)-isogeny. The number 𝑁(𝐼) is the norm of 𝐼 in the quadratic case, and its
reduced norm in the quaternionic case.

It is well known that supersingular isogeny graphs are expander (and even Ramanujan in
dimension 1). This means that following a sufficiently long path of small degree isogenies,
the codomain elliptic curve is close to statically uniform among all supersingular curves.
Furthermore, since the endomorphism rings are not commutative, there is no commutative
group action (we only have a groupoid of ideal classes), so Kuperberg’s attack does not apply
in the supersingular setting. However, this absence of commutativity makes the key exchange
more difficult: given two isogenies 𝜙1 ∶ 𝐸0 → 𝐸1 and 𝜙2 ∶ 𝐸0 → 𝐸2 where the isogenies 𝜙𝑖
are secret and the domains and codomains curve are public, we could still define a common
secret via a pushforward square 𝜙 ∶ 𝐸0 → 𝐸12, but the curve 𝐸12 depends on the choice
of 𝜙1, 𝜙2: using other isogenies 𝜙′

1 ∶ 𝐸0 → 𝐸1, 𝜙′
2 ∶ 𝐸0 → 𝐸2 with the same codomains

20 DAMIEN ROBERT

𝐸1, 𝐸2 could give another result 𝐸′
12. We will go back to this when we look at Eichler orders

in Appendix C.2.2. The SIDH protocol used the clever solution to go around this problem by
publishing extra “torsion information” on 𝜙1, 𝜙2 to allow for Alice and Bob to compute the
pushforward isogenies 𝐸1 → 𝐸12, 𝐸2 → 𝐸12. We refer to [De 17] for a nice introduction.
Unfortunately (but fortunately for the HD representation!), this extra information turned
out to reveal too much information.

4.1.3. Orientations. In [CK20], Colo and Kohel introduce the notion of orientations on the
supersingular isogeny graph. With 𝐸1, 𝐸2 are supersingular curves over 𝔽𝑝2 as above, and
given a quadratic imaginary order 𝑅, an 𝑅-orientation on 𝐸𝑖 is an embedding 𝑅 ↪ End(𝐸𝑖).
The isogeny 𝜙 is said to be 𝑅-oriented if it commutes with the orientations on 𝐸1 and 𝐸2. If
𝑅 is saturated in End(𝐸1) (the orientation is also said to be primitive), we obtain an action
by the class group of 𝑅 on the oriented horizontal isogeny graph from 𝐸1 (like we had for
the horizontal isogeny graph of ordinary curves with 𝑅 = End(𝐸1)). This is convenient
construction to build a group action on elliptic curves with a controlled number of points:
𝐸𝑖(𝔽𝑝2) = ℤ/(𝑝 ± 1)ℤ2 (depending on the quadratic twist used). More generally, allowing
going up 𝑅-oriented isogenies we obtain a volcano structure.

An important example is when 𝐸1 is defined over 𝔽𝑝, in that case End𝔽𝑝
(𝐸1) is only a

quadratic imaginary order containing ℤ[𝜋𝑝] (which is either maximal or of index 2 in its
maximal order 𝑂𝑝), and we have a natural orientation given by the Frobenius endomorphism
𝜋𝑝. This is the orientation at play for the CSIDH cryptosystem, and we have a free transitive
group action on Cl(ℤ[𝜋𝑝]) or Cl(𝑂𝑝) (depending on whether End𝔽𝑝

(𝐸1) = ℤ[𝜋] or 𝑂𝑝)
on the supersingular curves 𝐸/𝔽𝑝 at the same 2-volcano level as 𝐸1. This situation is thus
very similar to the ordinary case, where the Frobenius also provides a natural orientation.
More generally, looking at the graph of supersingular elliptic curves 𝐸 𝑑-isogeneous to their
Galois conjugate: 𝜙𝑑 ∶ 𝐸 → 𝐸(𝑝) (with isogenies respecting this morphism) is essentially
equivalent to looking at an orientation by √−𝑑𝑝. The case 𝑑 = 1 corresponds to the case
supersingular curves defined over 𝔽𝑝 [CS21].

More recently, other orientations on supersingular curves have been considered, for
SCALLOP [FFK+23]. Here the orientation is given by a specific endomorphism 𝛼 ∈ End(𝐸1)
rather than the Frobenius, so one needs to provide an efficient representation of 𝛼.

One can see orientations as a way of providing volcano like graph structure on top of
supersingular isogeny graphs (an orientation is an extra structure in the terminology of
categories). The notion of orientation allows to treat in a unified setting both ordinary curves
and supersingular curves over 𝔽𝑝 (which are both naturally oriented by the Frobenius), and
even more general cases like SCALLOP.

Aword of warning: for general 𝑅-oriented curves, if 𝑝 is inert in 𝑅 (this does not happen in
the ordinary case or for supersingular curves over 𝔽𝑝), then not all horizontal isogenies come
from an ideal: the Frobenius isogeny 𝜋𝑝 is horizontal and has degree 𝑝, and cannot come
from an ideal of 𝑅 since there are none of norm 𝑝. This is essentially the only obstruction
[Onu21]. In particular, the class group action Cl(𝑅) is not quite transitive in that case: there
are two orbits.

Remark4.1. The functor from ideal to isogenies extends to𝑅-modules, where𝑅 is a primitive
orientation on 𝐸. More precisely, one can build a (contravariant) functor from modules to
group schemes and module maps to group morphisms, see [JKP+18] for ordinary and
supersingular elliptic curves, and its extension to the oriented case in [PR23a]. This general
module setting has several advantages. First, this functor, applied to a projective 𝑅-module

On the efficient representation of isogenies 21

of rank 𝑔 produces an abelian variety of dimension 𝑔 isogeneous to 𝐸𝑔; so using modules
allow to understand the higher dimensional isogeny graph of 𝐸𝑔. This was used for instance
to find the formulas for Clapotis [PR23b].

Secondly, non projective modules encode level structure informations. This can be used
to handle level structure at the module level, we will see an example of this in Appendix D.

Finally, for supersingular curves, it can be used to understand the “forgetting the orienta-
tion” functor; from the module point of view if 𝑂 is the full endomorphism ring and 𝑅 an
orientation, forgetting the orientation amount to sending 𝑀 to 𝑀 ⊗𝑅 𝑂. This is, implicitly,
the approach used in [ACL+23; ACL+22] to study the interaction between the 𝑅-oriented
isogeny graph and the full supersingular graph.

4.2. The supersingular case. Recall that if 𝐸1, 𝐸2 are supersingular elliptic curves defined
over 𝔽𝑝2, with all their geometric endomorphisms defined over 𝔽𝑝2 then any isogeny 𝜙 ∶
𝐸1 → 𝐸2 is represented by an ideal 𝐼.

We will assume that we have an efficient representation of the endomorphism ring
End(𝐸1). This means that we both know its representation as an abstract maximal 𝒪1
order in 𝐵𝑝,∞, the quaternion algebra ramified at 𝑝 and infinity, and that we are also able to
evaluate endomorphisms 𝛼 ∈ 𝒪1 on points of 𝐸1. Typically this is done by giving an efficient
representation of a basis (𝛼1, 𝛼2, 𝛼3, 𝛼4) of the ℤ-lattice 𝒪1, basis given by endomorphisms
of reasonable degree (polynomial in 𝑝). (In practice, we take 𝛼1 = 1.)

We remark that given an effective representation of a basis 𝛼𝑖, it is possible to recover the
abstract structure of End(𝐸1) by computing Weil pairings. Conversely, given an abstract
representation of 𝒪1, it is possible to recover an effective representation for the endomor-
phisms: this is done by starting with an elliptic curve 𝐸0 with an effective representation,
computing a suitable effective isogeny between 𝐸0 and 𝐸1, and transporting the effective
endomorphisms representation from 𝐸0 to 𝐸1. We refer to [EHLMP18; Wes22] for more
details.

Given this effective representation of End(𝐸1), the ideal 𝐼 provides a compact representa-
tion of the isogeny 𝜙. Furthermore, Ker𝜙 = 𝐸[𝐼] so, by Section 3.2, this representation is
effective if 𝑛 = 𝑁(𝐼) (where 𝑁 denote the reduced norm) is smooth and the 𝑁-torsion is
accessible. See Example A.5 for more details on how to compute generators for 𝐸[𝐼].

In fact, the ideal representation is always effective, even when 𝑁(𝐼) is a large prime.
Indeed, for isogeny based cryptography, many algorithms of the form IdealToIsogeny have
been proposed, to make the Deuring correspondence between ideals and isogenies not only
effective but practical.

We can broadly distinguish between four (minor) generations of these algorithms (we
refer to Appendix C for more details):

(1) The KLPT [KLPT14] algorithm can be (heuristically) used to smoothen in poly-
nomial time an arbitrary ideal 𝐼 into a smooth equivalent ideal 𝐽 of large norm. A
proven version (under GRH) is given in [Wes22]. The first generation then takes 𝐽 to
be powersmooth (or smooth with accessible 𝑁(𝐽)-torsion). We can then reconstruct
the associated isogeny 𝜙𝐽 from its kernel 𝐸[𝐽]. From 𝜙𝐽, we can recover 𝜙𝐼.

(2) The idea for the second generation is to take 𝐽 to be of (reduced) norm 2𝑒 rather
than powersmooth, and to select a prime 𝑝 such that a large 2𝑓-torsion is rational
on supersingular elliptic curves 𝐸/𝔽𝑝2 . This gives the first version of the Deuring
correspondence that is practical enough to be used in a signature protocol: SQIsign
[DKLPW20].

22 DAMIEN ROBERT

A problem that has to be solved is that since 2𝑓 ∣ 𝑝 ± 1, we have 2𝑓 < 𝑝 while the
KLPT algorithm gives (generically) an ideal of norm 𝑝4.5 ≫ 𝑝. The solution is to
cut the isogeny represented by 𝐽 into chunks of 2𝑓-isogenies, so it gets decomposed
as 𝜙𝐽 ∶ 𝜙𝑚 ∘ … ∘ 𝜙1. The problem is then to find the kernel of the intermediate
isogenies 𝜙𝑖 ∶ 𝐸𝑖 → 𝐸𝑖+1, this is also known as “refreshing the 2𝑓-torsion”.

The solution used by the second generation is to construct isogenies 𝐸0 → 𝐸𝑖
from a special elliptic curve 𝐸0 to refresh the torsion; this is combined with an
improved version of KLPT which use the theory of Eichler orders to decrease the
degree produced by the KLPT smoothening algorithm from ≈ 𝑝6 to ≈ 𝑝4.5.

A further improvement to thismethod is described in [DLLW23], where a suitable
endomorphism is constructed on each intermediate curve 𝐸𝑖 to refresh the torsion,
rather than via a special isogeny 𝐸0 → 𝐸𝐼

We refer to [Ler22b] for more details on this second generation.
(3) In the third generation, one still compute an equivalent ideal 𝐽 of large reduced

norm 2𝑒, which is then split into chunks of 2𝑓-isogenies, but the ideas of the HD
representation are used there to refresh the torsion.

In [Ler23b], Leroux explain how to use a dimension 2 representation of arbitrary
endomorphisms (similar to the techniques of SCALLOP-HD) to refresh the torsion
on 𝐸𝑖, while in [ON24], Onuki and Nakagawa, inspired by SQIsignHD, use isogenies
𝐸0 → 𝐸𝑖 as in the original SQIsign version, but represented in dimension 2.

(4) In the fourth generation, the smoothening KLPT step is completely bypassed, and
the ideal 𝐼 is directly converted into an isogeny, using higher dimensional isogenies
like for the third generation.

This algorithm (Clapotis, see Example 6.13) was introduced in [PR23b] to convert
an ideal in the oriented case (see Section 4.3), and adapted to the supersingular
setting for SQIsign2d in [BDD+24].

In the algorithms above, rather than computing 𝜙𝐼 ∶ 𝐸1 → 𝐸2 directly, we often compute
another equivalent but easier isogeny 𝜙𝐽 ∶ 𝐸1 → 𝐸2. To recover 𝜙𝐼 from 𝜙𝐽, one can use a
double path algorithm, see Appendix C.1.

Conceiving improved ideal to isogeny algorithms that are not only effective in theory,
but really practical, has thus been a subject of intense research that has made tremendous
progress since the HD representation was introduced.

We have seen that in the fourth generation, used in the higher dimensional versions of
SQIsign, like SQIsignHD [DLRW24] or the even more recent SQIsign2d variants [BDD+24;
NO24; DF24], the KLPT “smoothening” algorithm is no longer needed. A hope for a fifth
generation would be to find a way to improve KLPT to generate smooth ideals of norm ≈ 𝑝
rather than ≈ 𝑝4.5, see Appendix C.5.

Remark 4.2. The main drawback of the ideal representation is that it requires the knowledge
of End(𝐸). Furthermore, giving the ideal 𝐼 leaks the endomorphism ring (which is the left
order of 𝐼), so one cannot share this ideal representation in settings where End(𝐸) is supposed
to remain secret, like in isogeny based cryptography. For that reason, Leroux introduced
in [Ler22a] the suborder representation, which is an isogeny representation which is still
efficient while only leaking part of the endomorphism ring. This representation has now
been essentially superseded by the HD representation which leaks no informations on the
endomorphism ring.

4.3. The oriented case. Let’s assume that we have an efficient primitive orientation on 𝐸1
by a quadratic imaginary order 𝑅. We recall that this includes the case of ordinary elliptic

On the efficient representation of isogenies 23

curves and supersingular curves over 𝔽𝑝, where in both cases 𝑅 is given by the saturation of
ℤ[𝜋] in End𝔽𝑞

(𝐸).
Like in the supersingular case, converting an horizontal (i.e. invertible) ideal 𝐼 ⊂ 𝑅 into

an horizontal isogeny 𝜙𝐼 ∶ 𝐸1 → 𝐸2, requires to compute the kernel 𝐸[𝐼] and then use the
algorithms from Section 3.2. This is only effective if 𝑁(𝐼) is smooth and the 𝑁(𝐼)-torsion is
accessible.

In the supersingular case, we saw that it was always possible, thanks to the KLPT algorithm,
to efficiently smoothen 𝐼, i.e., find in polynomial time an equivalent ideal 𝐽 of smooth norm.
In the ordinary case, this is much harder. We know that (under GRH), Cl(𝑅) is generated by
ideals of norm 𝑂(log2 Δ𝑅). So one can definitively decompose 𝐼 into an equivalent smooth
ideal 𝐽 of smoothness bound 𝑂(log2 Δ𝑅), and heuristically this holds for a powersmooth
decomposition too (increasing the smoothness bound if needed). But as we will explain
below, we currently only have subexponential algorithms to smoothen an ideal in the oriented
case.

If we can find 𝐽, then once we evaluate 𝜙𝐽, we can evaluate 𝜙𝐼 if needed as we did in the
supersingular cases, by using the effective 𝑅-orientation on 𝐸1 (like in Appendix C.1, this
may involve constructing a double path or using a division algorithm if we want to evaluate
𝜙𝐼 on points of torsion non coprime to 𝑁(𝐽)).

If 𝑅 is not given by the natural Frobenius orientation, we also need to push the 𝑅-action
into an effective representation on 𝐸2. There are two ways to do that: if we have an effective
orientation from some special curve 𝐸0, then we can build a double path from 𝐸0 to 𝐸1, 𝐸2
in order to propagate the orientation to each. The problem is that this way of representing
the orientation leaks an isogeny path from 𝐸0 to 𝐸𝑖, which we want to avoid in cryptographic
applications of isogenies. The other solution, if 𝑅 = ℤ ⊕ ℤ𝛼 is to simply give an HD
representation of 𝛼 on each 𝐸𝑖.

Like for the supersingular ideal to isogeny algorithms, we can distinguish four minor
generations in the oriented case:

(1) The first generation simply bypass the smoothening problem by considering only
ideals of the form 𝐼 = ∏ 𝔩𝑒𝑖

𝑖 where the 𝔩𝑖 are prime ideals of small norm and
the exponents 𝑒𝑖 are small. In other words: we consider a restricted group action
[ADMP20; DHK+23]. This is sufficient for a key exchange like CSIDH [CLMPR18],
and even for signatures via rejection sampling [DG19].

(2) The second generation is to do a huge class group computation, using the standard
classical subexponential algorithms. This is the approach of CSI-FiSh [BKV19].

(3) The third generation is to take an orientation by a non maximal conductor, in order
to simplify the class group computation. A question is then how to represent the
endomorphism 𝛼 giving the orientation; in SCALLOP 𝛼 is taken to be of smooth-
norm, while in SCALLOP-HD 𝛼 is arbitrary and represented via a dimension 2 HD
isogeny.

(4) The fourth generation, Clapoti(s) [PR23b] completely bypass the smoothening step
(this is the same method as the fourth generation in the supersingular case).

As we will explain below, even when the class group is easy to compute as in SCALLOP-
HD, the smoothening step is still subexponential. By contrast, Clapoti(s) allows to compute
the action of an invertible ideal 𝐼 in polynomial time (in log 𝑝 and logΔ𝑅) through higher
dimensional isogenies. So once again, the HD representation proves crucial.

Like in the supersingular case, we now have a polynomial time algorithm to translate 𝐼
into an isogeny, when 𝐼 is invertible. In summary: the ideal representation is both compact

24 DAMIEN ROBERT

and efficient, both in the supersingular case, or in the oriented horizontal case. It is still
unknown how to ascend or descend a large ℓ-isogeny volcano in polynomial time in log ℓ,
see Section 7.

Remark 4.3. Let 𝑅 be a primitive orientation on 𝐸0, and 𝐼 ⊂ 𝑅 an invertible ideal. Although
we do not know how to smoothen in polynomial time an ideal 𝐼 ⊂ 𝑅 in the oriented case, it
is possible to smoothen in polynomial time the module map 𝐼 ⊕ 𝐼 → 𝑅 ⊕ 𝑅. Technically,
to handle the polarisations, we work with Hermitian modules and similitudes. Here the
Hermitian form on 𝑅 is the one induced by the norm„ the one on 𝑅 ⊕ 𝑅 is the product
Hermitian form and the Hermitian form on 𝐼 ⊕ 𝐼 comes from pullback. And for any 𝑁 large
enough (heuristically9 𝑁 ≫ min(𝑁(𝐼), Δ1/2

𝑅)2Δ2
𝑅), we can find a module map 𝜙 which is

a 𝑁-similitude for these Hermitian form. Taking 𝑁 ≫ 𝑝3 smooth gives our smoothening.
Using the module equivalence of category Remark 4.1, we can convert this smoothened
module map into an 𝑁-isogeny 𝐸0 × 𝐸0 → 𝐸𝐼 × 𝐸𝐼 with respect to the product principal
polarisations. More details will be given in [PR23a].

4.3.1. Smoothening an ideal. We give more details on the smoothening step used by the
second and third generations. We first want to find 𝐼 ∼ 𝐽 = ∏ 𝔩𝑒𝑖

𝑖 for small prime ideals 𝔩𝑖 of
norm ℓ𝑖; this is already hard classically.

Furthermore, if the 𝑒𝑖 are too large, so that the ℓ𝑒𝑖
𝑖 torsion is not accessible, we need to

split the 𝔩𝑒𝑖
𝑖 isogeny into chunks of 𝔩𝑓𝑖𝑖 isogenies, that we compute one by one. The problem is

that if the exponent 𝑒𝑖 is too large, we might need superpolynomially many chunks. We can
reformulate this problem by saying that, even when 𝔩 is small, the action of 𝔩𝑛 takes time 𝑂(𝑛)
to compute rather than 𝑂(log𝑛). So we really want to find a powersmooth decomposition,
i.e. such that the 𝑒𝑖 are small. This is hard even with a quantum computer.

The current solution is as follows:
(1) Find the group structure of Cl(𝑅) with respect to small generators 𝔩𝑖, and in partic-

ular the lattice of relation 𝐿.
(2) Find a decomposition 𝐼 ∼ ∏ 𝔩𝑒𝑖

𝑖 , with potentially very large 𝑒𝑖. In practice, this step
can be bypassed when 𝐼 is directly given as 𝐼 = ∏ 𝔩𝑒𝑖

𝑖 with large 𝑒𝑖 (like for some
signatures schemes).

(3) Solve (an approximation of) the close vector problem on the lattice of relations
𝐿, to obtain 𝐼 ∼ ∏ 𝔩𝑒

′
𝑖

𝑖 where the vector of exponents (𝑒′
𝑖) is small. To get a good

approximation of CVP requires to find a good short basis of the lattice of relations 𝐿
(the better the basis, the better the CVP solution).

4.3.2. Class group computation. For a generic quadratic order, the best classical algorithms
to compute the class group of 𝑅 are in subexponential time 𝐿1/2(Δ𝑅).

The classical algorithm first finds relations between smooth ideals with a 𝐿1/2(Δ𝑅)
smoothness bound. Then a linear algebra step constructs the lattice of relations with re-
spect to generators of norm 𝑂(log𝐶 Δ𝑅) for some appropriate constant 𝐶. We also have
polynomial time quantum algorithms.

In practice, as shown by [BKV19] which gave a record class group computation for the
CSI-Fish signature, this class group computation can be done for Δ𝑅 of around 512 bits.

9The similitude with the KLPT algorithm from Appendix C.2 is not a coincidence, in both case the lattice
of endomorphisms (of the special curve 𝐸0 for KLPT and of 𝑅-oriented endomorphisms on 𝐸0 × 𝐸0 in our
situation) is of rank 4 and has elements of small norms.

On the efficient representation of isogenies 25

To go further (classically), the idea of SCALLOP [FFK+23] is to use special quadratic
orders 𝑅, with conductor 𝑓 carefully chosen inside a maximal order 𝑅0 of small discriminant
Δ𝑅0

.
From the conductor square (see Appendix D), we obtain the exact sequence from Equa-

tion (4), which shows that computing Cl(𝑅) amounts to computing the group structure of
Cl(𝑅0) and of (𝑅0/𝑓 𝑅0)∗/(𝑅/𝑓 𝑅)∗. Since 𝑅0 is chosen to have small discriminant, com-
puting Cl(𝑅0) is easy. If 𝑓 = ℓ is a prime, the second part amount to computing discrete
logarithms in 𝔽∗

ℓ if ℓ splits in 𝑅0, and in 𝔽2,∗
ℓ /𝔽ℓ if ℓ is inert in 𝑅0. Carefully choosing 𝑓

(typically 𝑓 a large prime that splits in 𝑅0 and such that 𝑓 − 1 is smooth so that DLPs in 𝔽ℓ
are easy) allows to compute the large class group Cl(𝑅) in practice.

In SCALLOP [FFK+23], due to the constraints of having to give an efficient representation
of the orientation, 𝑓 could be chosen smooth, but with a quite large smoothness bound. In
SCALLOP-HD [CLP24], the authors show that switching to a dimension 2 HD representation
for the orientation allows to take 𝑓 = ℓ = 2𝑚𝑢 + 1 with a small 𝑢, which allows for very fast
DLPs in 𝔽∗

ℓ .

4.3.3. Decomposing an ideal. Decomposing an ideal 𝐼 into an equivalent ideal 𝐼 ∼ ∏ 𝔩𝑒𝑖
𝑖

(where 𝔩𝑖 are our chosen small generators for Cl(𝑅)) is very similar to the class group
computation, except it needs to be done online, this is not a precomputation. The classical
algorithm is in 𝐿1/2(Δ𝑅) for a generic quadratic order 𝑅, while quantum algorithms are
polynomial time. If 𝑅 is a special order of conductor 𝑓 inside a maximal order 𝑅0 of small
discriminant, and such that 𝑓 = ℓ is a large prime that splits in 𝑅0 and such that ℓ − 1 is
smooth, like in SCALLOP or SCALLOP-HD, the decomposition amounts to a multi-DLP in
𝔽∗

ℓ , which is easy.

4.3.4. Closest vector problem. Since we have constructed the lattice of relations 𝐿 between
the 𝔩𝑖, we can use this lattice to shrink the exponents 𝑒𝑖: this is a closest vector problem. We
can solve (an approximation of) the close vector problem on 𝐿 by first finding a good short
basis of 𝐿.

Heuristically, as explained in https://yx7.cc/blah/2023-04-14.html, using a lattice
reduction algorithm of complexity ≈ 𝐿𝛼(Δ𝑅) allows to find exponents bounded by ≈
𝐿𝛽(Δ𝑅), where 𝛽 = 1

2 − 1
2𝛼 (and neglecting polynomial factors in logΔ𝑅), using 𝑑 ≈

log1−𝛽 Δ𝑅 many small ideals (so working with a lattice of dimension 𝑑). We find out that,
using a lattice reduction which takes polynomial time like LLL, we get exponents of size
𝐿1/2(Δ𝑅). This is because we are in the special case of class groups of quadratic imaginary
field, so we can expect the class group to be almost cyclic, and we heuristically expect it to
be generated by very small elements of norm up to log1/2(Δ𝑅), so even through the LLL
algorithm gives an exponential approximation factor in the dimension of the lattice, this
dimension is small enough that the resulting approximation factor is subexponential in Δ𝑅.
With a lattice reduction taking time 𝐿1/3(Δ𝑅), we get exponents of size 𝐿1/3(Δ𝑅). With a
lattice reduction taking time 𝐿1/2(Δ𝑅), we get exponents of size 𝐿1/4(Δ𝑅), and with a lattice
reduction taking exponential time we get exponents of size 𝑂(1). And quantum algorithms
do not seem to help for this step, because we do not know how to exploit that the lattices
relations come from a class group.

This means that asymptotically, when using the generation 2 algorithm to compute the
full class group of ℤ[√−𝑝] like in CSI-FiSh, since this step takes 𝐿1/2(Δ𝑅) already we can
allow the precomputation phase to be of 𝐿1/2(Δ𝑅) and expect exponents of size 𝐿1/4(Δ𝑅).
However, in a setting like SCALLOP or SCALLOP-HD where the class group computation
is taylored to be easy (polynomial time), we still need a 𝐿1/3(Δ𝑅) precomputation to get

https://yx7.cc/blah/2023-04-14.html

26 DAMIEN ROBERT

exponents of size 𝐿1/3(Δ𝑅) (or we could spend more precomputation time to get smaller
exponents).

In practice, for the specific examples of class group action as computed in CSI-FiSh,
SCALLOP, or SCALLOP-HD, the lattice reduction phase was not the bottleneck (for CSI-
Fish it was computing the lattice itself, step bypassed in SCALLOP or SCALLOP-HD, at the
cost of no longer having a natural orientation). But this asymptotic bottleneck prevents an
asymptotic instantiation of the class group action in polynomial time, even with a quantum
computer.

Only the fourth generation, which bypass the smoothening step, can give a fully unre-
stricted group action.

5. The HD representation

The ideal representation is our first isogeny representation that gives an effective repre-
sentation for horizontal isogenies, provided that we know an effective representation of the
endomorphism ring or orientation of the domain.

We have seen in Section 3.3 that the interpolation representation can give a compact
representation of any isogeny. However, recovering the isogeny from the interpolation data
is at least in 𝑂(𝑛).

Recently, as a side product of the SIDH attacks [CD23; MMPPW23; Rob23b], a much
more sophisticated algorithm has been found to reconstruct the isogeny 𝜙 from suitable
interpolation data, via higher dimensional isogenies.

The most flexible version is the following [CDM+24]:

Theorem 5.1. Let 𝜙 ∶ 𝐸1 → 𝐸2 be an 𝑛-isogeny (with as usual 𝑛 prime to 𝑝). Let 𝐺 be
a subgroup of 𝐸1 of order at least 4𝑛 + 1, and (𝑃1, … , 𝑃𝑟) generators of 𝐺. Given a point
𝑃 ∈ 𝐸1(𝔽𝑞′) and the interpolation data (𝑃𝑖, 𝑓 (𝑃𝑖)), there is an algorithm to evaluate 𝜙(𝑃)
in time polynomial in log𝑛, 𝑟, log 𝑞, the largest prime factor of 𝑛, the extension degrees of the
field of definition of 𝑃 and the points 𝑃𝑖, and the extension degree of the points of ℓ⌊𝑒/2⌋ torsion
for each prime power ℓ𝑒 ∣ #𝐺.

For our applications, we will only need a simplified version where we assume that we
have interpolation data on the full 𝑁-torsion, version contained in [Rob23b] and which
was exploited in [Rob22a] for isogeny representations. In that setting, Theorem 5.1 can be
rephrased as follows: assume that we have interpolation data on the 𝑁-torsion with 𝑁 large
enough (𝑁 > 𝑛, but see Appendix B for a relaxation to 𝑁2 > 𝑛), smooth and the 𝑁-torsion
accessible on 𝐸1. Then we have an efficient representation of the isogeny 𝜙. This is done by
embedding 𝜙 into a 𝑁-isogeny Φ in higher dimension; we call this the HD representation.

Since the HD representation use isogenies of higher dimension, we first review isogenies
between abelian varieties and algorithms to compute them in Section 5.1. We then explain
Kani’s lemma in Section 5.2, and how it can be used to embed isogenies to obtain the HD
representation in Section 5.3.

Remark 5.2 (Level structure). Theorem 5.1 shows that, in the context of isogeny based
cryptography, revealing too much torsion information is insecure. Namely, a secret isogeny
𝜙 ∶ 𝐸1 → 𝐸2 can be reconstructed efficiently if the adversary know its degree 𝑛, and its
action on the 𝑁-torsion (provided that 𝑁 is smooth and the 𝑁-torsion is accessible), as long
as 𝑁2 ≈ 𝑛 (or, by Theorem 5.1, even just the action on a subgroup 𝐺 ⊂ 𝐸1[𝑁] of size ≈ 𝑛).
Still, revealing some torsion information (i.e., suitable image points under 𝜙), as was done in
SIDH, can be very useful to build isogeny based cryptosystems.

We discuss several solutions:

On the efficient representation of isogenies 27

• Mask the torsion revealed. For instance inM-SIDH [FMP23] the torsion information
(𝜙(𝑃1), 𝜙(𝑃2)) is masked by some common scalar 𝜆 (one needs to be careful that
the Weil pairing 𝑒𝑊,𝑁 will reveal 𝜆2 modulo 𝑁). In FESTA [BMP23] the authors
hide the torsion by a diagonal matrix. The correct notion under which to study these
maskings is the concept of level structure, we refer to [DFP24] for an overview. An
alternative, as in [Bas24] is to also hide the degree.

• Only reveal torsion information for a subgroup 𝐺 of size much smaller than the
degree 𝑛. This is for instance the approach for IS-CUBE and LIT-SIGAMAL [Mor23;
Mor24].

We recall that supersingular isogeny graphs are expander. This property remains
true even when adding level structure information [BCC+23; CL23; PW24], at the
condition of increasing the degree of the path relative to the degree of the revealed
level structure. This means that we can heuristically expect that it is not easier to
recover a degree 𝑛′-isogeny for which the action on the 𝑁-torsion is revealed than
to recover a degree 𝑛-isogeny for which no torsion information is revealed, provided
that 𝑛′ ≈ 𝑛𝑁2.

• Reveal the torsion information on the 𝑁-torsion for 𝑁 large with respect to 𝑛, but
prime rather than smooth. Indeed, in that case, while the embedding lemma still
allows to embed 𝜙 into a higher dimensional 𝑁-isogeny Φ, without the smoothness
condition we do not know how to evaluate Φ efficiently. This is an open question
in dimension 1 already, see also Section 7. Still, this is quite a strong cryptographic
assumption tomake (that we don’t know how to evaluate an isogeny from kernel gen-
erators of non smooth order), and we would recommend to use the other solutions
if possible.

5.1. Isogenies between abelian varieties. The key idea behind Theorem 5.1 is to embed the
𝑛-isogeny 𝜙 into a higher dimensional 𝑁-isogeny Φ given by the interpolation data. We first
briefly describe the type of isogenies we will work with, and existing algorithms to compute
them.

If 𝜙 ∶ 𝐴 → 𝐵 is an isogeny, we denote by ̂𝜙 ∶ �̂� → 𝐴 its dual isogeny.

Definition 5.3. An isogeny 𝜙 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) between polarised abelian varieties is
called an 𝑛-isogeny if the polarisation 𝜙∗𝜆𝐵 ≔ ̂𝜙 ∘ 𝜆𝑏 ∘ 𝜙 = 𝑛𝜆𝐴.

We recall the following standard results, see [Rob23b].

Lemma 5.4. Let 𝜙 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) be an isogeny between principally polarised abelian
varieties, and let 𝜙 = 𝜆−1

𝐴 ∘ ̂𝜙 ∘ 𝜆𝐵 ∶ 𝐵 → 𝐴. Then 𝜙 is an 𝑛-isogeny if and only if 𝜙 ∘ 𝜙 = 𝑛
(or equivalently, 𝜙 ∘ 𝜙 = 𝑛).

Furthermore, if Φ = (𝜙11 𝜙12
𝜙21 𝜙22

) ∶ (𝐴1 × 𝐴2, 𝜆𝐴1
× 𝜆𝐴2

) → (𝐵1 × 𝐵2, 𝜆𝐴2
× 𝜆𝐵2

)

is an isogeny between the product abelian varieties endowed with their product principal

polarisations, then Φ̃ = (𝜙11 𝜙21
𝜙12 𝜙22

).

Remark 5.5. If 𝜙 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) is an 𝑛-isogeny between principally polarised abelian
varieties, the kernel 𝐾 = Ker𝜙 ⊂ 𝐴[𝑛] is maximal isotropic for the (polarised) Weil pairing
𝑒𝑊,𝑛𝜆𝐴

. And if 𝑛 is prime (and 𝑛 ≠ 𝑝), 𝐾(𝑘) ≃ (ℤ/𝑛ℤ)𝑔. Conversely, if 𝐾 ⊂ 𝐴[𝑛] is
maximal isotropic for 𝑒𝑊,𝑛𝜆𝐴

, then the polarisation 𝑛𝜆𝐴 descends to a principal polarisation
𝜆𝐵 on 𝐵 = 𝐴/𝐾. Note however, that unlike the dimension one case, there can be several non
equivalent principal polarisations on an abelian variety, so being an 𝑛-isogeny (with respect

28 DAMIEN ROBERT

to specific principal polarisations) is a stronger condition than just the kernel being maximal
isotropic for 𝑒𝑊,𝑛𝜆𝐴

.

We have partial generalisations of the isogeny representations from Section 3 for elliptic
curves to abelian varieties.

In low dimension, 𝑔 ≤ 3, any principally polarised abelian variety (over an algebraically
closed field) is a Jacobian of a curve or a product of Jacobians. For instance in dimension 2 we
have either a product of two elliptic curves or a Jacobian of an hyperelliptic curve of genus 2.
In dimension 3, if (𝐴, 𝜆𝐴) is a principally polarised abelian variety with an indecomposable
polarisation 𝜆𝐴, then 𝐴 is a Jacobian 𝐴 = Jac(𝐶), with 𝐶 either hyperelliptic of genus 3 or a
quartic curve.

The polarisation is important here: for instance every superspecial abelian variety 𝐴/𝔽𝑞
of dimension 𝑔 > 1 is isomorphic (over the algebraic closure) as an unpolarised abelian
variety to 𝐸𝑔

0, where 𝐸0/𝔽𝑞 is any supersingular curve, but in general a principal polarisation
on 𝐴 won’t be given by the product principal polarisation. In dimension 2 over 𝔽𝑝2 , among
superspecial principally polarised abelian surfaces, there are roughly ≈ 𝑝3/2880 superspecial
Jacobians, and ≈ 𝑝2/288 product of supersingular elliptic curves.

Starting in dimension 4, a generic abelian variety won’t be a Jacobian. We can instead use
the theory of algebraic theta functions, as developed by Mumford in [Mum66; Mum67a;
Mum67b], with useful extensions by Kempf [Kem88; Kem89a; Kem89b; Kem90; Kem92]
(see also [Mum83; Mum84; Mum91] for the analytic theory of theta functions).

5.1.1. Vélu’s like formulas. We have an extension of Vélu’s formula which allows to evaluate
an 𝑛-isogeny 𝜙 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) between principally polarised abelian varieties, given
a generator representation 𝐾 = ⟨𝑇1, … , 𝑇𝑔⟩ of its kernel, which is isotropic for the Weil
pairing 𝑒𝑊,𝑛𝜆𝐴

, in the algebraic theta model induced by a symmetric theta structure of
level 𝑚 on 𝐴 (this algebraic theta model is completely determined by the theta null point of 𝐴
if 𝑚 ≥ 4; and if 𝑚 = 2 we obtain a model for the Kummer variety 𝐴/ ± 1 if the polarisation
is indecomposable). We note that the rank condition on the kernel 𝐾 is similar to having a
cyclic isogeny in dimension 1. Namely, by [LR12; CR15; LR22], in the case that 𝑛 is prime
to the level 𝑚 and the characteristic 𝑝 is coprime10 to 𝑚𝑛, [LR22] gives an algorithm in
𝑂((𝑚𝑛)𝑔) arithmetic operations over the field of definition of the generators 𝑇𝑖 to compute
the theta null point of 𝐵, and also to compute the image of a point 𝑃 (this time over the field
of definition of 𝑃 and the 𝑇𝑖). A sketch of an adaptation of this algorithm to the case when 𝑚
is not coprime to 𝑛 (this includes the important case where 𝑛 = 2 is even) is given in [Rob21].
The formulas of [CR15] have been implemented in Magma [BCR10]; in the repository there
is also a branch which contains the fork ThetaAV written by Anna Somoza and David Lubicz
in Sage. (The faster formulas from [LR22] are currently only in the private development
version.) These isogeny formulas are part of a research effort [LR12; CR15; LR15b; LR22;
LR16; LR10; LR15a] to adapt the usual algorithms on elliptic curves (arithmetic, pairings,
isogenies) to arbitrary abelian varieties represented by algebraic theta functions; see [Rob21]
for an overview.

Remark 5.6 (Level 2 vs level 4). In [Mum67a, § 6], Mumford constructs the universal abelian
scheme of level 𝑚 over ℤ[1/𝑚] via Riemann’s relations, when the level 𝑚 is divisible by 4.

10A symmetric theta structure has even level, so this condition imposes that 𝑝 ≠ 2. But we can use the same
lift and reduce technique as in [GL09] to handle the case 𝑝 = 2. For instance [BCR10] contains code to compute
dimension 2 isogenies in characteristic two, derived by adapting the formulas for characteristic 0 in such a way
that they have good reduction modulo 2.

On the efficient representation of isogenies 29

But level 𝑚 requires 𝑚𝑔 theta coordinates, so for efficiency we prefer to work in level 𝑚 = 2.
This adds some technical difficulties, notably for gluing and splitting, see [DMPR24, § 4.1].

For ℓ-isogenies between Jacobians, we also have an algorithm in𝑂(ℓ𝑔) by [CE14], formulas
which were optimised for 𝑔 = 2, 3 in [Mil20] (see also [Tia24] for gluing and splitting isogeny
formulas).

For small ℓ and in the Jacobian model in dimension 2, formulas for 2-isogenies were
already known by Richelot [Ric36; Ric37], and specific formulas for the case ℓ = 3, 5 were
given in [BFT14; Fly15]. A general method to find ℓ-isogeny formulas in the generic Kummer
model (rather than the theta model; this model was described by Cassel and Flynn [CF+96;
Fly93]), are given in [Nic18] [CCS24]. Smith also gave 2-isogeny formulas in dimension 3
in [Smi08] when the domain is a Jacobian of an hyperelliptic curve (this allows to transfer
the DLP problem to the Jacobian of a non hyperelliptic curve when the codomain is not a
Jacobian of an hyperelliptic curve), see also [FK11]. Smith’s approach to transfer the DLP
from a Jacobian of a genus 3 hyperelliptic curve to a genus 3 quartic was generalized using
the ℓ-isogeny formulas of [CE14; Mil20] in [Tia20].

5.1.2. Decomposing a smooth isogeny. We can then apply the same quasi-optimal strategies
to decompose a smooth 𝑛-isogeny into a product of small isogenies as in dimension 1, when
the 𝑛-torsion is accessible.

We give the statement for the theta model, since it handles all abelian varieties, but the
same strategy works for isogenies between Jacobian models.

Lemma 5.7. Let (𝐴, 𝜆𝐴)/𝔽𝑞 be a principally polarised abelian variety represented by a
symmetric theta structure of level 𝑚. Let 𝐾 ⊂ 𝐴[𝑛] be a maximal isotropic subgroup of rank 𝑔.
Let 𝑛 = ∏𝑎

𝑖=1 ℓ𝑒𝑖
𝑖 , and 𝑇1,𝑖, … , 𝑇𝑔,𝑖 generators of 𝐾[ℓ𝑒𝑖

𝑖], which live in 𝔽𝑞𝑑𝑖 .
If 𝑛 is not coprime to 𝑚, we let 𝑛′ = 𝑛 ∨ 𝑚 if 𝑛 is odd and 𝑛′ = 2(𝑛 ∨ 𝑚) if 𝑛 is even, and

we also need to assume that we are given points 𝑇′
1, … , 𝑇′

𝑔 of 𝑛′-torsion above the generators
of 𝐾, that are compatible with our theta structure. Then the 𝑇′

𝑖 induce a uniquely determined
theta structure of level 𝑚 on 𝐵 = 𝐴/𝐾, and we can compute the theta null point of 𝐵 in time
𝑂(∑𝑖 𝑒𝑖𝑚𝑔ℓ𝑔

𝑖 (𝑑𝑖 log 𝑒𝑖 + ∑𝑗>𝑖 𝑑𝑖 ∨ 𝑑𝑗) log 𝑞) = 𝑂(𝑎2𝑑′𝑒𝑚𝑔ℓ𝑔 log 𝑞), where 𝑒 is a bound on
the 𝑒𝑖, 𝑑′ is a bound on the 𝑑𝑖 ∨ 𝑑𝑗, and ℓ is a bound on the ℓ𝑖.

Given a point 𝑃 ∈ 𝐴(𝔽𝑞𝑑𝑃), represented by its theta coordinates, we can compute the theta

coordinates of Φ(𝑃) in 𝑂(∑𝑖 𝑒𝑖𝑚𝑔ℓ𝑔
𝑖 (𝑑𝑖 ∨ 𝑑𝑃) log 𝑞) = 𝑂(𝑎𝑒𝑚𝑔ℓ𝑔𝑑″ log 𝑞) where 𝑑″ is a

bound on the 𝑑𝑖 ∨ 𝑑𝑃.

Proof. This follows from the general isogeny formulas from [Rob21], and the decomposition
process is explained in more details in [DLRW24, Appendix F]. See Remark A.2 for our
assumptions about the lattice of field extensions used to represent the CRT basis. �

Remark 5.8. The condition on having explicit points of 𝑛′-torsion in Lemma 5.7 is to ensure
that the theta structure of 𝐵 = 𝐴/𝐾 is uniquely determined. We can relax this condition
at the cost of taking some roots. For instance in level 𝑚 = 2, to compute 2𝑒-isogenies in
dimension 2, in [DMPR24; Rob23a] we describe an algorithm to compute them from only
their kernel, by using appropriate square roots at the last two steps where we don’t have
enough information to determine the theta structure uniquely. These square roots are not
needed if we have points of 2𝑒+2-torsion above the kernel.

5.1.3. Fast formulas. Due to the importance of the HD representation for dimension 1
isogenies, the specific case of 2𝑒-isogenies (or ℓ𝑒-isogenies with small ℓ) in dimension 2 and 4
has recently been the focus of optimisations. In dimension 2, [Kun22] Kunzweiler gives

30 DAMIEN ROBERT

efficient 2𝑒-isogeny formulas in the Jacobian model, which she has extended to the Kummer
Jacobian model (private communication). In [DK23], Decru and Kunzweiler give efficient 3𝑒-
isogeny formulas in the Kummer model. Recently, in [CCS24], Corte-Real Santos, Costello,
Smith gave optimised 3-isogeny formula in dimension 2 in the theta squared Kummer model.

Fast 2𝑒-isogeny formulas in dimension 2 in the level 2 theta model (hence with theta
Kummer surfaces) were given in [DMPR24]. These formulas achieve a factor 10 speed up for
the codomain computation compared to Richelot isogenies, and a factor 30 for the image of
points. These fast formulas are the basis of all the recent isogeny based cryptosystems which
use a 2𝑒-HD representation in dimension 2; they are notably used for the verification of the
SQIsign2d variants [BDD+24; NO24; DF24], which currently give the record verification
time for the SQIsign family of signature schemes.

Fast formulas for 2𝑒-isogenies in the level 2 theta model in any dimension were sketched
in the notes [Rob23a]; these have been fully worked out by Dartois in dimension 4 in [Dar24],
along with explicit base change formulas. The main application of Dartois’ work is for the
verification of the SQIsignHD signature [DLRW24], which is done in dimension 4.

The reason we prefer to use as small a dimension as possible for the HD representation
is that the level 2 theta model in dimension 𝑔 requires 2𝑔 coordinates, so we expect an
exponential slow down with respect to the dimension. As a rule of thumb: in dimension 𝑔
we work with 2𝑔 theta coordinates, and to decompose a 2𝑒-isogeny we need to push 𝑔
points in the kernel at each step, so we expect a time of 𝐶𝑔2𝑔 for the decomposition by
step. The formulas are very similar (a combination of Hadamard transforms, squarings, and
multiplication by suitable constants) across all dimensions, so we expect 𝐶 to be roughly
independent of 𝑔. So as a very rough approximation, we can expect dimension 2 2𝑒-isogenies
to be 4 times slower than in dimension 1, dimension 4 isogenies to be 8 times slower than
dimension 2 and 32 times slower than dimension 1, and dimension 8 isogenies to be 32
times slower than dimension 4, 256 times slower than dimension 2 and 1024 times slower
than dimension 1.

In practice, a low level Rust and C implementations of the formulas of [DMPR24] need
around 2 − 3𝑚𝑠 to compute a 2128-isogeny in dimension 2 over a field of 256 bits (the
C implementation was written for SQIsign2d-West and will soon be available, the Rust
implementation is already available). Compared in dimension 1, this is roughly a 4.5 slow
down, this is expected with respect to our factor 4 slow down we argued previously, because
in dimension 1 the best 2𝑒-isogeny formulas use Montgomery coordinates which are slightly
faster than theta coordinates, and decompose the 2𝑒-isogeny into chunks of 4-isogenies,
which is also slightly faster than decomposing into chunks of 2-isogenies.

Remark 5.9 (Fast Kummer surfaces versus generic Kummer surfaces). As mentioned, the
fast 2𝑛 and 3𝑛 isogeny formulas onKummer surfaces from [DMPR24; CCS24] useMumford’s
algebraic theta model (or twisted variants of this model, like the squared theta model of a
Kummer surface). It is quite amazing that this theta model is so fast, since it is also universal
and give models for abelian varieties in any dimension: Dartois Sage’s implementation
[Dar24] for 2𝑛-isogenies in dimension 4 is already very promising. One reason is that the
algebraic theta model is taylored to have very efficient formulas for the map (𝑃, 𝑄) →
(𝑃 + 𝑄, 𝑃 − 𝑄); this is the duplication formula.

This efficient duplication formula (in level 2, hence on the Kummer variety) gives fast
arithmetic: doubling and differential additions. This fast arithmetic has been exploited
since a long time, notably for classical DLP-based cryptography in dimension 1 and 2
[CC86; Gau07; RSSB16; HR19]. This theta model (or its twisted variant given by squared
thetas), is often referred as the fast Kummer model in the literature. It is thus not surprising

On the efficient representation of isogenies 31

that the theta model is also used for fast isogenies in higher dimension. In fact, it was
used even before the HD representation! In supersingular isogeny based cryptography,
an isogeny 𝜙 ∶ 𝐸1 → 𝐸2 over 𝔽𝑝2 induces via the Weil restriction of scalar functor an
isogeny 𝑊𝔽𝑝2/𝔽𝑝

𝜙 ∶ 𝐴1 ≔ 𝑊𝔽𝑝2/𝔽𝑝
𝐸1 → 𝐴2 ≔ 𝑊𝔽𝑝2/𝔽𝑝

𝐸2 defined over 𝔽𝑝, where
𝐴1, 𝐴2 are principally polarised abelian surfaces (which are neither Jacobians nor product
of elliptic curves over 𝔽𝑝!). Furthermore, 𝐴1, 𝐴2 are 2-isogeneous over 𝔽𝑝 to Jacobians
Jac(𝐶1), Jac(𝐶2) of hyperelliptic curves. In [Cos18], Costello explains that, using the squared
theta model, computing the induced isogeny Jac(𝐶1) → Jac(𝐶2) in dimension 2 over 𝔽𝑝 is
potentially faster than computing the original isogeny 𝜙 in dimension 1 but over 𝔽𝑝2 . This
idea was recently revisited in the context of SQIsign in [CR24].

The main drawback of the theta model (of level 2) is that the fast duplication formula is
obtained by splitting the map (𝑃, 𝑄) → (𝑃 + 𝑄, 𝑃 − 𝑄) into two. This requires a specific
Galois structure on the 2-Tate module, more precisely an abelian variety 𝐴/𝔽𝑞 has a rational
theta model of level 2 if and only if there is a symplectic basis of 𝐴[2] for the Weil pairing
with trivial self Tate pairings [Rob21, § 2.11]. For general abelian varieties, the theta model
is thus only defined over a field extension. In that case, at least for abelian surfaces, it can be
useful to work with the Jacobian Kummer model or the generic Kummer model of Cassels
and Flynn [CF+96].

5.1.4. Other isogeny representations for abelian varieties. For the other “classical” isogeny
representations, themain difficulty is that while in dimension 1 we can (almost always) reduce
to question about univariate polynomials or rational functions, in higher dimensions we
need to work with multivariate rational functions, for which it is harder to obtain quasi-linear
algorithms.

For instance, in theory, one could find a function representation of an isogeny 𝜙 in higher
dimension by using any evaluation algorithm on the generic point 𝜂𝐴 of 𝐴, but in practice
equations for 𝐴 are quite involved in higher dimension, so the function representation is not
really used. Still, in dimension 2, when we have an isogeny 𝜙 ∶ Jac(𝐶1) → Jac(𝐶2) between
Jacobian of hyperelliptic curves, it is convenient to express 𝜙 in terms of the Weierstrass
coordinates of 𝐶1, 𝐶2. One method to do that is to evaluate 𝜙 on a formal point at precision 2,
deduce a differential equation for 𝜙, and to solve the differential system [CE14, § 6.2; KPR24;
CMSV19], so at least this case is tractable.

We have the same problem with kernel equations: unlike the dimension 1 case where the
kernel is described by a univariate polynomial, kernel equations in higher dimension are
given by multivariate polynomials, which make them harder to work with. An algorithm to
compute 𝜙 when we have a univariate parametrisation of the kernel 𝐾 is given in [LR15b].

And of course, for the interpolation representation, we need multivariate rational func-
tion reconstruction. Likewise for adapting the sqrtVelu algorithm in higher dimension:
the obstacles were informally worked out in a Ciao workshop meeting in Bordeaux in De-
cember 2022. The sqrtVelu algorithm is described by a resultant in [BDLS20], but can
be reformulated as evaluating a degree 𝑂(√𝑛) univariate polynomial 𝑃 on 𝑂(√𝑛) points,
which can be done in 𝑂(√𝑛) by fast multipoint evaluation algorithms. We can extend this
approach to higher dimension using the known isogeny formulas, but then we need fast
multivariate multipoint evaluations, which exist in theory over finite fields by [KU11], but
without practical implementations.

Finally, we also mention that reconstructing an isogeny from a root of the modular
polynomial Φℓ has been worked out in dimension 2 in [KPR24] (see Example E.1).

5.2. Kani’s lemma and its applications.

32 DAMIEN ROBERT

Definition 5.10. A (𝑛1, 𝑛2)-isogeny diamond is a commutative diagram of isogenies be-
tween polarised abelian varieties:

𝐴0 𝐴1

𝐴2 𝐴12

𝜙1

𝜙2 𝜙′
2

𝜙′
1

where 𝜙1 ∶ 𝐴0 → 𝐴1 and 𝜙′
1 ∶ 𝐴2 → 𝐴12 are 𝑛1-isogenies, 𝜙2 ∶ 𝐴0 → 𝐴2 and 𝜙′

2 ∶ 𝐴1 →
𝐴12 are 𝑛2-isogenies.

Remark 5.11. If 𝑛1 is coprime to 𝑛2, then an isogeny diamond as above is the same thing as
a pushforward square from 𝜙1, 𝜙2 or a pullback square from 𝜙′

1, 𝜙′
2.

We can now state Kani’s lemma, which is contained in [Kan97, § 2, Proof of Th. 2.3].

Theorem 5.12 (Kani’s lemma). Let 𝑛1 and 𝑛2 be two integers. Given a (𝑛1, 𝑛2)-isogeny
diamond, the isogeny Φ ∶ 𝐴0 × 𝐴12 → 𝐴1 × 𝐴2 given matricially by

Φ = (𝜙1 𝜙′
2

−𝜙2 𝜙′
1
)

is a (𝑛1+𝑛2)-isogeny between these product of abelian varieties with their product polarisations.
If 𝑛1 is coprime to 𝑛2, the kernel of Φ is given by

KerΦ = {(𝜙1(𝑃), 𝜙′
2(𝑃)) ∣ 𝑃 ∈ 𝐴1[𝑛1 + 𝑛2]}

= {(−𝜙2(𝑃), 𝜙′
1(𝑃)) ∣ 𝑃 ∈ 𝐴2[𝑛1 + 𝑛2]}

= {(𝑛1𝑃, 𝜙′
2 ∘ 𝜙1(𝑃)) ∣ 𝑃 ∈ 𝐴0[𝑛1 + 𝑛2]}.

Proof. We compute Φ̃ ∘ Φ = (𝜙1 −𝜙2
𝜙′

2 𝜙′
1

) (𝜙1 𝜙′
2

−𝜙2 𝜙′
1
) = (𝑛1 + 𝑛2 0

0 𝑛1 + 𝑛2
) which

shows that Φ is a (𝑛1 + 𝑛2)-isogeny for the product polarisations.
The kernel of Φ, of cardinal (𝑛1+𝑛2)2𝑔, is given by the image of Φ̃ on (𝐴1×𝐴2)[𝑛1+𝑛2].

If 𝑛1 is coprime to 𝑛2, the restriction of Φ̃ to 𝐴1[𝑛1] × 0𝐴2
is injective so its image already

spans the full kernel: KerΦ = {(𝜙1(𝑃), 𝜙′
2(𝑃)) ∣ 𝑃 ∈ 𝐴1[𝑛1 + 𝑛2]}. The second equality

follows by symmetry, and the third by plugging 𝑃 = 𝜙1(𝑃0) with 𝑃0 ∈ 𝐴0[𝑛1 + 𝑛2].
We refer to [MMPPW23, Theorem 1] or [Rob23b] for more details. �

Corollary 5.13 (Embedding an isogeny in dimension 2). Let 𝜙 ∶ 𝐸1 → 𝐸2 be an 𝑛-isogeny.
Let 𝑁 > 𝑛 be coprime to 𝑛, 𝑛′ = 𝑁 − 𝑛, and assume that we know an efficient representation

of an 𝑛′-isogeny 𝜓 ∶ 𝐸1 → 𝐸′
1. Then we can embed 𝜙 into an 𝑁-isogeny Φ = (𝜙 𝜓′

−𝜓 𝜙′) ∶

𝐸1 × 𝐸′
2 → 𝐸2 × 𝐸′

1. Furthermore, if 𝑁 is smooth, the 𝑁-torsion is accessible on 𝐸1, and we
know how 𝜙 acts on 𝐸1[𝑁], then Φ can be efficiently computed.

We have 𝜙 = 𝑝 ∘ Φ ∘ 𝑖 ∶ 𝐸1 → 𝐸1 × 𝐸′
2 → 𝐸2 × 𝐸′

1 → 𝐸2 where 𝑖(𝑃) = (𝑃, 0) and
𝑝(𝑃, 𝑄) = 𝑃, so we can recover 𝜙(𝑃) via Φ((𝑃, 0)) = (𝜙(𝑃), −𝜓(𝑃)).

Similar constructions hold when we have 𝜓 ∶ 𝐸′
1 → 𝐸1, 𝜓′ ∶ 𝐸2 → 𝐸′

2 or 𝜓′ ∶ 𝐸′
2 → 𝐸2.

On the efficient representation of isogenies 33

Proof. Given 𝜓 ∶ 𝐸1 → 𝐸′
1 of degree 𝑛′ coprime to 𝑛, we can look at the pushforward square,

which form a (𝑛, 𝑛′)-isogeny diamond:

𝐸1 𝐸2

𝐸′
1 𝐸′

2

𝜙

𝜓 𝜓′

𝜙′

We then have Φ ∶ 𝐸1 × 𝐸′
2 → 𝐸2 × 𝐸′

1 a 𝑁-isogeny. Furthermore, the kernel of Φ̃ is given
by Ker Φ̃ = {(𝜙(𝑃), −𝜓(𝑃)) ∣ 𝑃 ∈ 𝐸1[𝑁]]}. From our assumption on 𝜙, and since 𝜓 is
supposed to be efficient, we can compute this kernel, then compute Φ̃, and then compute Φ
whose kernel is Φ̃((𝐸′

1 × 𝐸′
2)[𝑁]).

If we now assume that we know an efficient representation of 𝜓 ∶ 𝐸′
1 → 𝐸1, then we can

recover how 𝜓 acts on 𝐸1[𝑁], which is enough to get Ker Φ̃.
If we are given 𝜓′ ∶ 𝐸2 → 𝐸′

2 (or simply its action on the 𝑁-torsion), we can directly
recover KerΦ = {(𝜙(𝑃), 𝜓′(𝑃)) ∣ 𝑃 ∈ 𝐸2[𝑁]]} = {(𝑛1𝑃, 𝜓′ ∘ 𝜙(𝑃)) ∣ 𝑃 ∈ 𝐸1[𝑁]}. (The
first equality requires to extract the action of 𝜙 on 𝐸2[𝑁] from the action of 𝜙 on 𝐸1[𝑁], but
not the second.) Finally if we are given 𝜓′, we can just extract the action of 𝜓′ on 𝐸2[𝑁]. �

Example 5.14. Let 𝑝 ≡ 3 mod 4 and 𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥/𝔽𝑝, this is a supersingular elliptic
curve whose endomorphism ring over 𝔽𝑝2 contains ℤ[𝑖, 𝜋𝑝] with 𝑖2 = −1 and 𝜋2

𝑝 = −𝑝. In
particular, we can build endomorphisms 𝑥 +𝑦𝑖 +𝑢𝜋𝑝 +𝑣𝑖𝜋𝑝 of norm 𝑥2 +𝑦2 +𝑝(𝑢2 +𝑣2).
So on this special curve, if 𝑛′ is a sum of two squares or 𝑛′ is large enough (𝑛′ ≫ 𝑝), we can
build dimension 1 endomorphisms of norm 𝑛′. More generally, a similar strategy works for
a supersingular curve which contains a quadratic order of small discriminant. We will see in
Example 6.12 how to leverage this construction of endomorphisms of large enough degree
to construct isogenies from 𝐸0 of any degree.

It remains to find an efficient representation of some isogeny 𝜓 ∶ 𝐸1 → 𝐸′
1 of some fixed

degree. The main insight is that this is always possible, provided we go in higher dimension
(this is Zahrin’s trick).

Proposition 5.15. Let 𝑛′ be an integer. If 𝑛′ = 𝑎2
1, then [𝑚] ∶ 𝐸1 → 𝐸1 is an 𝑛′-isogeny.

If 𝑛′ = 𝑎2
1 + 𝑎2

2, then (𝑎1 𝑎2
−𝑎2 𝑎1

) ∶ 𝐸2
1 → 𝐸2

1 is an 𝑛′-isogeny.

If 𝑛′ = 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4 (which is always the case), then
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎1 −𝑎2 −𝑎3 −𝑎4
𝑎2 𝑎1 𝑎4 −𝑎3
𝑎3 −𝑎4 𝑎1 𝑎2
𝑎4 𝑎3 −𝑎2 𝑎1

⎞⎟⎟⎟⎟⎟⎟
⎠

∶

𝐸4
1 → 𝐸4

1 is an 𝑛′-isogeny.

Proof. If we let 𝑀 be the matrix of endomorphism appearing in the proposition, then the
contragredient isogeny 𝑀 for the product polarisation is given by 𝑀 = 𝑀𝑇

by Lemma 5.4,
and we check that 𝑀𝑀 = 𝑛′ Id. �

Example 5.16 (Embedding an isogeny in higher dimension). Let 𝛼 be the matrix from
Proposition 5.15, which induces an 𝑛′-endomorphism on 𝐸𝑢

1 and 𝐸𝑢
2 , where 𝑢 = 1, 2, 4

according to whether 𝑛′ is a sum of 1, 2, 4 squares. Then as in Corollary 5.13, we can embed

𝜙 into the dimension 𝑔 = 2𝑢 endomorphism Φ = (𝜙 id𝑢 ̃𝛼
−𝛼 𝜙 id𝑢

) ∶ 𝐸𝑢
1 × 𝐸𝑢

2 → 𝐸𝑢
2 × 𝐸𝑢

1 .

34 DAMIEN ROBERT

Then Φ embeds 𝜙 (and its dual): 𝜙 = 𝑝∘Φ∘𝑖 ∶ 𝐸1 → 𝐸𝑢
1 ×𝐸𝑢

2 → 𝐸𝑢
1 ×𝐸𝑢

2 → 𝐸2, and has
kernel KerΦ = {(− ̃𝛼(𝑃), 𝜙 id𝑢(𝑃)) ∣ 𝑃 ∈ 𝐸𝑢

1[𝑁]} = {(𝑛𝑃, 𝛼𝜑 id𝑢(𝑃)) ∣ 𝑃 ∈ 𝐸𝑢
1[𝑁]}.

Furthermore, in that case we can split Φ in two, see Appendix B, which is not possible in
Corollary 5.13 (unless we already know all four curves 𝐸1, 𝐸2, 𝐸′

1, 𝐸′
2).

Remark 5.17 (Choice of dimension). Due to the cost of computing isogenies in high dimen-
sion, for efficiency we would like to use Example 5.16 with 𝑔 as small as possible. In practice,
there are sufficiently many integers which are sum of two squares that it is very rare that we
need to go all the way to 𝑔 = 8, usually 𝑔 = 4 is sufficient.

Furthermore, in the case where 𝐸1 (or 𝐸2) is the special curve from Example 5.14, then
we can use endomorphisms 𝛾 of the form 𝑎1 + 𝑎2𝑖 on 𝐸1 to relax the dimension 𝑢 in
Proposition 5.15: we can use 𝑢 = 1 when 𝑛′ is a sum of two squares and 𝑢 = 2 in the general
case when 𝑛′ is a sum of four squares. This means that in that case we have 𝑔 = 2 or 4
rather than 4 or 8. However, the pushforward of 𝛾 by 𝜙 will in general be an isogeny rather
than an endomorphism, so this means that we cannot split Φ in two in that case if we use
endomorphisms like 𝛾 rather than integers in our matrix 𝛼 from Example 5.16. A similar
strategy works for a curve containing a quadratic order with small discriminant.

Remark 5.18. It is not always easy to check if an integer 𝑛′ is a sum of two squares (and if
so find the decomposition). This usually requires to know the factorisation of 𝑛′. Once the
factorisation is known, one can then use Cornacchia’s algorithm [Cor07].

When we have flexibility on the choice of 𝑛′ (we will see in Theorem 5.19 that we can take
any 𝑛′ such that 𝑁 = 𝑛 + 𝑛′ is smooth with 𝑁-torsion accessible, e.g., 𝑁 is powersmooth),
the fastest way is to try several 𝑛′ until we find 𝑛′ a prime congruent to 1 modulo 4 (or
possibly a product of small primes congruent to 1 modulo 4 time a prime congruent to 1
modulo 4).

There is a randomized algorithm in time 𝑂(log2 𝑛′) to decompose 𝑛′ as a sum of four
squares [RS86; PT18].

5.3. The HD representation. We have seen in Example 5.16 how we can now use Theo-
rem 5.12 to obtain a special form of Theorem 5.1. We can give a more precise complexity
statement:

Theorem 5.19. Let 𝜙 ∶ 𝐸1 → 𝐸2 be an 𝑛-isogeny, (𝑃1, 𝑄1, … , 𝑃𝑟, 𝑄𝑟) a CRT basis of the
𝑁-torsion, with𝑁 = ∏𝑚

𝑖=1 ℓ𝑒𝑖
𝑖 > 𝑛 coprime to 𝑛. Let 𝑢 = 1, 2, 4 according to whether𝑁 −𝑛 is

a sum of 1, 2, 4 squares. Let (𝑃𝑖, 𝜙(𝑃𝑖), 𝑄𝑖, 𝜙(𝑄𝑖)) be interpolation data of 𝜙 on 𝐸1[𝑁]. Then
𝜙 can be efficiently embedded into a 2𝑢-dimensional 𝑁-isogeny Φ, which can be decomposed
as a product of ℓ𝑖-isogenies in time 𝑂(∑𝑖 𝑒𝑖ℓ2𝑢

𝑖 (𝑑𝑖 log 𝑒𝑖 + ∑𝑗>𝑖(𝑑𝑖∨𝑑𝑗)
) = 𝑂(𝑚2𝑑′𝑒ℓ2𝑢)

arithmetic operations over 𝔽𝑞.
Given a point 𝑃 ∈ 𝐸1(𝔽𝑞′) with 𝑞′ = 𝑞𝑑𝑃, and the decomposed representation of Φ,

evaluating 𝑃 requires 𝑂(∑𝑖 𝑒𝑖ℓ2𝑢
𝑖 (𝑑𝑖 ∨ 𝑑𝑃)) = 𝑂(𝑚𝑒ℓ2𝑢𝑑″) arithmetic operations over 𝔽𝑞.

Proof. We use Proposition 5.15 to build an 𝑛′-endomorphism 𝜓 ∶ 𝐸𝑢
1 → 𝐸𝑢

1 . We can then
use Corollary 5.13 to 𝜓 and 𝜙 Id ∶ 𝐸𝑢

1 → 𝐸𝑢
2 to embed 𝜙 into a 𝑁-isogeny of dimension 2𝑢

Φ ∶ 𝐸𝑢
1 × 𝐸𝑢

2 → 𝐸𝑢
1 × 𝐸𝑢

2 . (We remark that since 𝜓 is a matrix of integers, it commutes with
𝜙 Id and so 𝜓′ ∶ 𝐸𝑢

2 → 𝐸𝑢
2 is given by the same matrix as 𝜓.) Although Corollary 5.13 is

stated for elliptic curves, by Theorem 5.12 which was stated for principally polarised abelian
varieties, it extends to product of elliptic cuves (and their product principal polarisation).

Once we have Φ we can use the higher dimensional Vélu’s like formula to decompose
it. The complexity then follows from Lemma 5.7. See also [Rob22a; Rob22b] for more
details. �

On the efficient representation of isogenies 35

Remark 5.20.
• The complexity of the HD representation depends on the dimension 𝑔 = 2𝑢 of

Φ, the isogeny we embed 𝜙 into, but also the largest prime divisor of 𝑁 and the
field of definition of the points of 𝐸1[ℓ𝑒𝑖

𝑖] torsion. In the best case, we have 𝑔 = 2,
𝑁 = 2𝑒, and 𝐸1[2𝑒] has rational points. We note that to achieve 𝑔 = 2 we need
to find a 𝑛′ = 𝑁 − 𝑛 dimension 1 isogeny 𝜓 ∶ 𝐸1 → 𝐸′

1, which can be hard
(unless 𝑛′ is a square). However, if we know End(𝐸1), it is much easier to build
isogenies of appropriate degree. That’s the main idea behind the algorithms of
SQIsign2d [BDD+24; NO24; DF24], which build an efficient representation of the
response isogeny by embedding it into a 2𝑒-isogeny in dimension 2.

• If 𝑁 is smooth and the 𝑁-torsion on 𝐸1 is accessible, but 𝑁 is not coprime to 𝑛, we
can write 𝑁 = 𝑑𝑁1, 𝑛 = 𝑑𝑛1 with 𝑑 = 𝑁 ∧ 𝑛. Then 𝜙 splits as 𝜙 = 𝜙1 ∘ 𝜙0 where
𝜙0 ∶ 𝐸1 → 𝐸11 is a 𝑑-isogeny whose kernel is efficiently computed since 𝑑 ∣ 𝑁 and
we know how 𝜙 acts on the 𝑁-torsion, and 𝜙1 ∶ 𝐸11 → 𝐸2 is a 𝑛1-isogeny. We can
then apply Theorem 5.19 to 𝜙1 to embed it into an 𝑁1-isogeny.

Definition 5.21. TheHD representation of 𝜙 can use any efficient representation of an higher
dimensional isogeny Φ such that 𝜙 embeds into Φ. In practice, following Theorem 5.19, the
HD representation of 𝜙 can consist:

(1) The interpolation data: (𝑃𝑖, 𝜙(𝑃𝑖), 𝑄𝑖, 𝜙(𝑄𝑖)), with𝑁 smooth and𝐸1[𝑁]-accessible.
By Theorem 5.12, this is essentially equivalent to a multigenerator representation of
KerΦ. We call this the torsion HD-representation.

(2) The decomposition of Φ as a product of small isogenies. This only requires 𝑁-
smooth, but of course to convert from the torsion HD-representation into a decom-
pose HD-representation we also need 𝑁 accessible.

Corollary 5.22. The HD representation is universal. Any other efficient representation of
𝜙 can be efficiently converted (meaning in polynomial time in log𝑛 and log 𝑞) into an HD
representation.

Proof. It suffices to select a smooth integer 𝑁 with accessible 𝑁-torsion (for instance 𝑁
powersmooth), construct a CRT basis of the 𝑁-torsion, and use our efficient representation
to evaluate 𝜙 on this CRT basis. We thus obtain a torsion HD representation. (The HD
representation needs the degree of 𝜙, but we have assumed that this is always part of the data
to represent 𝜙). �

As mentioned in the introduction, we can use Corollary 5.22 to show that we just need to
be able to evaluate 𝜙 efficiently on enough nice points 𝑃 ∈ 𝐸(𝔽𝑞′) to be able to efficiently
evaluate 𝜙 on all points 𝑃, even in 𝑘-algebras.
Remark 5.23. Given an HD like data, say a CRT basis (𝑃𝑖, 𝑄𝑖) of 𝐸1[𝑁], and points
(𝑅𝑖, 𝑆𝑖) ∈ 𝐸2[𝑁] that are the putative images of 𝑃𝑖, 𝑄𝑖 by some isogeny 𝜙, one can ask
whether it really encodes some isogeny.

The HD representation takes the torsion information above, and convert it into the kernel
of an 𝑁-isogeny Φ ∶ 𝐴 → 𝐵, where 𝐴, 𝐵 are supposed to split as product of elliptic curves:
𝐴 = ∏ 𝐸𝑖, 𝐵 = ∏ 𝐸′

𝑗. (The expected decomposition depends on the dimension used, and
whether we used auxiliary endomorphisms or isogenies.)

If the codomain 𝐵 of Φ, does not split as a product of elliptic curves, we know that Φ
does not encodes a dimension one isogeny. When 𝐵 splits, then Φ consists of a matrix of
𝑛𝑖𝑗-isogenies 𝜙𝑖𝑗 ∶ 𝐸𝑖 → 𝐸′

𝑗, with 𝑛𝑖𝑗 ≤ 𝑁 (we can recover 𝑛𝑖𝑗 using pairings, see Lemma 6.2).
In that case, Φ does encode (several!) dimension one isogenies. To check whether it encodes

36 DAMIEN ROBERT

a particular candidate, i.e. whether a 𝜙𝑖𝑗 is equal to some specific isogeny 𝜙 ∶ 𝐸1 → 𝐸2, we
can first look for a 𝐸′

𝑗 isomorphic to 𝐸2, and then (if we know how 𝜙 is supposed to act on
sufficiently many points) use the equality algorithm of Proposition 6.1 to check for equality.

6. Algorithms on efficient representation of isogenies

Using the universality of the HD representation (Corollary 5.22), we can build many
algorithms on efficiently represented isogenies.

6.1. Equality and sum. We start with standard algorithms.

Proposition 6.1. Given two efficient representations of two 𝑛-isogenies 𝜙1, 𝜙2 ∶ 𝐸1 → 𝐸2, we
can efficiently test if 𝜙1 is equal to 𝜙2.

Proof. Here we assume that the degree of 𝜙1, 𝜙2 are the same, otherwise they are clearly not
equal (see Lemma 6.2 on how to recover the degrees if we only have a bound on it). We also
assume that the codomain is the same; it can be useful to test equality up to postcomposition
by an automorphism, but it suffices to apply Proposition 6.1 to all automorphisms.

To test equality, we simply construct a CRT basis of the 𝑁-torsion on 𝐸1 for any 𝑁 > 2√𝑛
where the 𝑁-torsion is accessible. Then 𝜙1 = 𝜙2 if and only if they agree on this CRT
basis. �

If we have an efficient representation of a 𝑛1-isogeny 𝜙1 ∶ 𝐸1 → 𝐸2 and of a 𝑛2-isogeny
𝜙2 ∶ 𝐸2 → 𝐸3 thenwe have an efficient representation of the𝑛1𝑛2-isogeny𝜙2∘𝜙1 ∶ 𝐸1 → 𝐸3
(say by keeping it decomposed as 𝜙1 followed by 𝜙2).

If we have a 𝑛1-isogeny 𝜙1 ∶ 𝐸1 → 𝐸2 and a 𝑛2-isogeny 𝜙2 ∶ 𝐸1 → 𝐸2 that have an
efficient representation, then of course we can also evaluate the sum 𝜙1 + 𝜙2 efficiently on
any point. But a catch is that in our representation data, we require to know the degree of the
isogeny; and Cauchy-Schwarz only gives us a bound on the degree of 𝜙1 + 𝜙2. This is in fact
enough, thanks to pairings:

Lemma 6.2. Let 𝜙 ∶ 𝐸1 → 𝐸2 be an isogeny of degree at most 𝑛. Assume that we know the
evaluation of 𝜙 on a CRT basis of the 𝑁-torsion, with 𝑁 smooth and the 𝑁-torsion accessible,
and 𝑁 > 𝑛. Then we can efficiently recover the degree of 𝜙.

Proof. If deg𝜙 = 𝑑, for 𝑃, 𝑄 ∈ 𝐸[𝑁], we have 𝑒𝑁(𝜙(𝑃), 𝜙(𝑄)) = 𝑒𝑁(𝑃, 𝑄)𝑑. We can thus
recover 𝑑 by computing Weil pairings and discrete logarithms (working separately on each
prime power of 𝑁). �

Corollary 6.3. If we have an efficient representation of two isogenies 𝜙1, 𝜙2 ∶ 𝐸1 → 𝐸2, we
have an efficient representation of their sum.

6.2. Duals and divisions. Now, we describe algorithms that need the HD representation.
These are algorithms that are relatively straightforward, simply using the idea that the HD
representation only needs to know the evaluation of 𝜙 on sufficiently many nice points to
extract from it an HD representation.

Proposition 6.4. If we have an efficient representation of an 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2, then we
also have an efficient representation of the dual 𝑛-isogeny 𝜙 ∶ 𝐸2 → 𝐸1.

Proof. Take a CRT basis (𝑃𝑖, 𝑄𝑖) of 𝐸1[𝑁], with 𝑁 large enough and prime to 𝑛, smooth
and the 𝑁-torsion accessible. Then (𝑃′

𝑖 = 𝜙(𝑃𝑖), 𝑄′
𝑖 = 𝜙(𝑄𝑖)) is a CRT basis of 𝐸2[𝑁]

(because 𝑁 is prime to 𝑛), which can be efficiently evaluated by our assumption on 𝜙. Now,

On the efficient representation of isogenies 37

by definition of the contragredient isogeny, we have 𝜙(𝑃′
𝑖) = 𝑛𝑃𝑖, 𝜙(𝑄′

𝑖) = 𝑛𝑄𝑖. Thus we
have an HD representation of 𝜙.

(We remark that11, if we are given a basis (𝑃, 𝑄) of 𝐸1[𝑁] and the action of 𝜙 on this basis,
and we are given a basis (𝑃′, 𝑄′) of 𝐸2[𝑁], then using that 𝑒𝑊,𝑁(𝜙(𝑅), 𝑆) = 𝑒𝑊,𝑁(𝑅, 𝜙𝑆)
where 𝑅 ∈ 𝐸1[𝑁] and 𝑆 ∈ 𝐸2[𝑁], we can recover how 𝜙 acts on 𝑃′, 𝑄′ via Weil pairings
and dlp computations in 𝜇𝑁, even if 𝑁 is not coprime to 𝑛. This can be useful to reconstruct
the action of 𝜙 on some 𝑁-torsion without going all the way to an HD representation.) �

Example 6.5. If 𝐸/𝔽𝑞 is an elliptic curve, the Frobenius 𝜋𝑝 can be efficiently computed:
𝜋𝑝(𝑥(𝑃), 𝑦(𝑃)) = (𝑥𝑝(𝑃), 𝑦𝑝(𝑃)). Hence its dual, the Verschiebung �̂�𝑝 can also be ef-
ficiently computed in 𝑂(log𝑂(1)(𝑝)). Computing the Verschiebung via its kernel (which
consist of the étale points of 𝑝-torsion if 𝐸 is ordinary) would take 𝑂(𝑝). If 𝐸 is ordinary,
evaluating the Verschiebung on differentials, we can recover the invertible eigenvalue of
the Frobenius modulo 𝑝, hence its trace modulo 𝑝. This gives a polynomial point counting
algorithm if 𝑞 = 𝑝.

Let 𝜙 ∶ 𝐸1 → 𝐸2 be an isogeny, and 𝑚 an integer. The isogeny 𝜙 is divisible by 𝑚 if and
only if 𝜙(𝐸1[𝑚]) = 0. If we have an efficient representation of 𝜙 and the 𝑚-torsion of 𝐸1 is
accessible, we can thus test divisibility by 𝑚 efficiently. Using the HD representation, we can
handle the general case:

Proposition 6.6. If we have an efficient representation of an 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2, then we
can test if 𝜙 is divisible by some integer 𝑚, and if so obtain an efficient representation of 𝜙/𝑚.

Proof. Take a CRT basis (𝑃𝑖, 𝑄𝑖) of 𝐸1[𝑁], with 𝑁 large enough and prime to 𝑛, smooth and
the𝑁-torsion accessible.Then (𝑃𝑖, 𝜙(𝑃𝑖)/𝑚, 𝑄𝑖, 𝜙(𝑄𝑖)/𝑚) gives a torsionHD-representation
of 𝜙/𝑚, if it exists.

To test if this putative HD data is valid for 𝜙/𝑚, we can use Remark 5.23, because we
know how 𝜙/𝑚 is supposed to act if it exists. �

Example 6.7. Assume that we have an efficient representation of an endomorphism 𝛼 ∈
End(𝐸), and let 𝑅 = ℚ[𝛼] ∩ End(𝐸) be the saturation of ℤ[𝛼] in End(𝐸). Assume that
we know the factorisation of the conductor 𝑓𝛼 of ℤ[𝛼] in its maximal order 𝑅0. Then we
can apply the ℓ-division algorithm to suitable endomorphisms on ℤ[𝛼] for ℓ ∣ 𝑓𝛼 to recover
the conductor 𝑓𝑅 of 𝑅 in 𝑅0. In other words, we can recover in polynomial time (in logΔ𝛼)
the saturation of a quadratic order ℤ[𝛼] in End(𝐸), provided we have a factorisation of the
conductor 𝑓𝛼.

When 𝐸 is ordinary, End(𝐸) is the saturation of ℤ[𝜋𝑞], and we can apply the above
algorithm since 𝜋𝑞 has an efficient representation. This gives a polynomial time algorithm to
compute End(𝐸), provided we have a factorisation of the conductor of ℤ[𝜋𝑞]. See [Rob22b]
for more details, and [MW23; PW24; ES24] for other applications of the saturation algorithm.

Similarly, for any elliptic curve, if 𝑅 is the saturation of ℤ[𝜋] in End(𝐸) (this saturation
is the same whether we take End𝔽𝑞

(𝐸) or End𝔽𝑞
(𝐸) for End(𝐸)), then each endomorphism

𝛼 ∈ 𝑅 admits an efficient representation, namely polynomial in logΔ𝛼 and log 𝑞. Indeed,
we can write 𝛼 = (𝑎 + 𝑏𝜋)/𝑓, with 𝑓 dividing the conductor of ℤ[𝜋] (hence at most 𝑂(𝑞)),
and log|𝑎|, log|𝑏| are in 𝑂(Δ𝛼 + log 𝑞). We can evaluate 𝑎 + 𝑏𝜋 efficiently, hence 𝛼 too by the
division algorithm.

11This argument was communicated by Benjamin Wesolowski

38 DAMIEN ROBERT

Corollary 6.8. Given efficient representations of 𝜙 ∶ 𝐸1 → 𝐸2 and of 𝜙𝑟 ∶ 𝐸′
1 → 𝐸2 and

𝜙𝑙 ∶ 𝐸1 → 𝐸′
2, one can efficiently test if 𝜙 = 𝜙′

𝑟 ∘ 𝜙𝑙 and if 𝜙 = 𝜙𝑟 ∘ 𝜙′
𝑙, and if so output an

efficient representation of 𝜙′
𝑟 and 𝜙′

𝑙.

Proof. We treat the case of 𝜙𝑙, the other case being symmetric. We have 𝜙 = 𝜙′
𝑟 ∘ 𝜙𝑙 if

and only if 𝜙 ∘ 𝜙𝑙 = 𝜙′
𝑟 ∘ [deg𝜙𝑙], so, since we know an efficient representation of 𝜙𝑙 by

Proposition 6.4, the question reduces to the question of division by an integer, which is
handled by Proposition 6.6. �

6.3. Advanced algorithms on efficient representations. In this section, we describe some
algorithms that need to delve into how the HD representation works rather than treating it
simply as a black box.

Proposition 6.9. Given an efficient representation of 𝜙 ∶ 𝐸1 → 𝐸2 over a finite field 𝔽𝑞, and
given 𝑅 = 𝔽𝑞[𝜀]/𝜀𝑚 or 𝑅 = ℤ𝑞/𝑝𝑚ℤ𝑞 and a deformation/lift 𝐸1/𝑅 of 𝐸1 to 𝑅, one can find
an efficient representation of the isogeny 𝜙 deformed/lifted to 𝑅.
Proof. The idea is as follows: we compute a decomposed HD representation Φ ∶ 𝐴 → 𝐵 of
𝜙, where Φ is split into a product of small higher dimensional isogenies Φ𝑖. We lift 𝜙 by
lifting Φ, which amount to lifting the kernel of each Φ𝑖.

There is however one technical difficultywith this approach. Let’s sayweuse a 8-dimensional
representation Φ ∶ 𝐸4

1 × 𝐸4
2 → 𝐸4

1 → 𝐸4
2 of 𝜙 ∶ 𝐸1 → 𝐸2. Then when we want to compute

the deformation 𝜙 of 𝜙 to 𝐸1/𝑅, we don’t yet know the codomain 𝐸2 of 𝜙. So if 𝐴 = 𝐸4
1 × 𝐸4

2,
we don’t know which is the correct deformation 𝐴/𝑅 of 𝐴 we need to embed 𝜙!

The solution is to make an arbitrary choice 𝐸2
′
for 𝐸2. If our choice is incorrect, we will

get a 𝐵 = 𝐸1
4 × (𝐸2

″)4 with 𝐸2
″ ≠ 𝐸2

′
. In other words, to get the correct deformation Φ̃,

we want to find 𝐸2
′
such that 𝐸2

″
is equal to 𝐸2

′
. We can solve this by a Newton algorithm,

where each steps reduces to a linear algebra problem on the deformation spaces of 𝐸1 and
𝐸2. The corresponding matrix can be computed by computing the 𝐸2

″
associated to the 𝐸2

′

for a basis of the deformation space. We refer to [Rob22b; KR24] for more details. �

Example 6.10. If 𝐸/𝔽𝑞 is ordinary, one can use Proposition 6.9 to compute the canonical
lift 𝐸/ℤ𝑞 to 𝑝-adic precision 𝑚 in polynomial time in log 𝑝. Combined with Example 6.5,
this gives a point counting algorithm in 𝑂(𝑛2 log𝐶 𝑝) when 𝑞 = 𝑝𝑛 [Rob22b].

One can also use deformations of isogenies to 𝔽𝑞[𝜀]/𝜀𝑚 to computemodular polynomials
efficiently [KR24].

Proposition 6.11. Assume that we have an efficient representation of an isogeny 𝜙 ∶ 𝐸1 → 𝐸2
of degree 𝑛 = 𝑛1𝑛2 with 𝑛1 ∧ 𝑛2 = 1. Then 𝜙 splits uniquely as 𝜙 = 𝜙′

2 ∘ 𝜙1 = 𝜙′
1 ∘ 𝜙2

where 𝜙1, 𝜙′
1 are of degree 𝑛1 and 𝜙2, 𝜙′

2 are of degree 𝑛2. Furthermore, we can efficiently find
an efficient representation of 𝜙1, 𝜙2, 𝜙′

1, 𝜙′
2.

Proof. If 𝐾 = Ker𝜙, we can define 𝜙1 (resp. 𝜙2) to be the isogeny with kernel 𝐾[𝑛1]
(resp. 𝐾[𝑛2]) and 𝜙′

2 (resp. 𝜙′
1) to be the isogeny with kernel 𝜙1(𝐾) (resp. 𝜙2(𝐾)). Then

𝜙1, 𝜙2, 𝜙′
1, 𝜙′

2 form a (𝑛1, 𝑛2)-isogeny diamond, hence embed into a 𝑁-isogeny Φ in di-
mension 2 with 𝑁 = 𝑛1 + 𝑛2. Furthermore, we can recover the kernel of Φ from the action
of 𝜙 on 𝐸1[𝑁]. This solves the problem if 𝑁 is smooth and 𝐸1, 𝐸2 have accessible 𝑁-torsion:
computing Φ gives all four isogenies 𝜙1, 𝜙2, 𝜙′

1, 𝜙′
2 at once (we can distinguish 𝜙1 from 𝜙2

using pairings since they don’t have the same degree).
For the general case, we pad 𝜙 with extra isogenies. Namely we consider 𝜙′ = 𝜓2 ∘ 𝜙 ∘ 𝜓1

where 𝜓1 (resp. 𝜓2) is an efficient isogeny of degree 𝑢 (resp. 𝑣). The goal is to find such

On the efficient representation of isogenies 39

isogenies 𝜓1, 𝜓2 such that 𝑁 = 𝑢𝑛1 + 𝑣𝑛2, with 𝑁 smooth and the 𝑁-torsion accessible, so
that we can apply the splitting algorithm above to split 𝜙′ into 𝜓2 ∘ 𝜙′

2 and 𝜙1 ∘ 𝜓1. Then we
can apply the division algorithm to recover 𝜙′

2, 𝜙1. If we want to recover 𝜙′
1, 𝜙2 instead, we

need to search for 𝑢, 𝑣 such that 𝑁 = 𝑢𝑛2 + 𝑣𝑛1.
A simple pigeonhole argument shows that for any 𝑁 > 𝑛1𝑛2, we can find 𝑢, 𝑣 > 0 such

that 𝑁 = 𝑢𝑛1 + 𝑣𝑛2. We remark that if 𝑁 is coprime to 𝑛1𝑛2 then automatically 𝑢𝑛1 will be
coprime to 𝑣𝑛2.

Once we have fixed 𝑢, 𝑣, we can always find 𝜓1, 𝜓2 by going to higher dimension if needed:
namely we work with 𝐸𝑟

1, 𝐸𝑟
2 with 𝑟 = 1, 2, 4, and letting by abuse of notations 𝜙 ∶ 𝐸𝑟

1 → 𝐸𝑟
2

to be the diagonal isogeny of 𝜙 ∶ 𝐸1 → 𝐸2.
For instance, if 𝑢 = 𝑢2

1 + 𝑢2
2 + 𝑢2

3 + 𝑢2
4 we build a quaternion matrix for 𝜓1, and then

using the algorithm above in dimension 4 (so using a Φ in dimension 8), we recover 𝜙1 ∘ 𝜓1.
This means that we obtain 𝜙𝑢𝑖 for 𝑖 = 1, 2, 3, 4, hence we can directly recover 𝜙1 gcd(𝑢𝑖).
Thus we don’t even need to apply the division algorithm to recover 𝜙1 in the cases where we
can find 𝑢𝑖 coprime. This includes all odd integers. However if 𝑢 has 2-adic valuation 𝑒, then
2𝑓 has to divide all the 𝑢𝑖 for 𝑓 = ⌊(𝑒 − 1)/2⌋ (and conversely we can find a solution with
gcd(𝑢𝑖) = 2𝑓). �

Example 6.12 (QFESTA). The first application of splitting isogenies was given in QFESTA
[NO23]. Namely we have seen in Example 5.14 that on 𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥/𝔽𝑝2 , with 𝑝 ≡ 3
mod 4, we can efficiently build endomorphisms of norm 𝐷 ≫ 𝑝. Suppose that we want
to build an efficient isogeny of degree 𝑛. We first look for an endomorphism 𝛾 of norm
𝐷 = 𝑛(𝑁 − 𝑛) where 𝑁 is chosen to be prime to 𝑛, and smooth with accessible 𝑁-torsion
on 𝐸0. Then a direct application of Proposition 6.11 allows to split 𝛾 into 𝛾 = 𝛾2 ∘ 𝛾1 where
𝛾1 is a 𝑛-isogeny. Our 𝐷 is chosen so that the splitting can be done directly in dimension 2
without any padding required for 𝛾. To find 𝛾, we require that 𝐷 is large enough (𝐷 ≫ 𝑝);
but on the other hand for efficiency we also want to take 𝑁 = 2𝑒 where 2𝑒 ∣ 𝑝 ± 1 so that the
2𝑒-torsion is rational over 𝔽𝑝2 , this already imposes 𝑁 < 𝑝. For some applications, we might
have only have available 2𝑒-torsion with 2𝑒 significantly smaller than 𝑝, making the condition
𝐷 ≫ 𝑝 hard to satisfy. A solution is to simply iterate the splitting: we take 𝐷1 = 𝑛(𝑁1 − 𝑛),
𝐷2 = 𝐷1(𝑁2 − 𝐷1), 𝐷3 = 𝐷2(𝑁3 − 𝐷2) for appropriately chosen divisors 𝑁1, 𝑁2, 𝑁3 …
of 𝑁, until we can find an endomorphism 𝛾𝑖 of norm 𝐷𝑖. Then we successively split 𝛾𝑖 to
obtain an isogeny 𝛾𝑖−1 of degree 𝐷𝑖−1, then 𝛾𝑖−2 of degree 𝐷𝑖−2 until we find 𝛾1 of degree 𝑛.

In [NO24], Nakagawa and Onuki extend this construction to build an isogeny of degree 𝑛
from an arbitrary supersingular elliptic curve 𝐸, provided that the connecting ideal 𝐼 between
𝐸0 and 𝐸 is known. The idea is to sample 𝛾 in the Eichler order of 𝐸0 and 𝐸, using the tools
introduced for the original SQIsign scheme (see [Ler22b] for a nice overview of these tools).

Example 6.13 (Clapotis). The full power of the splitting algorithm of Proposition 6.11
was introduced for the Clapotis group action in [PR23b]. We want to compute the isogeny
𝜙𝐼 ∶ 𝐸1 → 𝐸2 associated to an invertible class group ideal 𝐼, provided that we know an
efficient representation of End(𝐸1). It suffices to find two equivalent ideals 𝐽1, 𝐽2 to 𝐼 of
coprime degree. Then 𝜙 = 𝜙𝐽2

∘ 𝜙𝐽1
is an endomorphism of 𝐸1, which we know how to

efficiently evaluate. We can thus apply Proposition 6.11 to recover an efficient representation
of 𝜙𝐽1

, 𝜙𝐽2
; this build a double path from 𝐸1 → 𝐸2 from which it is easy to get an efficient

representation of 𝜙𝐼 too (but for the class group action usually we only need to recover the
codomain 𝐸2 rather than the full 𝜙𝐼).

The same idea apply to convert an ideal to isogeny in the supersingular setting, and is the
basis of [BDD+24] (see Appendix C for more details).

40 DAMIEN ROBERT

Example 6.14. Let 𝐸1/𝔽𝑞 be an elliptic curve of cardinal divisible by a prime ℓ, and assume
that #𝐸(𝔽𝑞) is not divisible by ℓ2. Let 𝐾 = ⟨𝑇⟩ be the kernel generated by a point 𝑇 ∈
𝐸1[ℓ](𝔽𝑞). Then we can efficiently compute 𝜙 ∶ 𝐸1 → 𝐸2 = 𝐸1/𝐾. Indeed, 𝜋𝑞 − 1 is
efficient (see Example 6.7) of degree #𝐸(𝔽𝑞), and we can recover 𝜙 by splitting it.

Similarly, assume that 𝜒𝜋 mod ℓ splits and is separable: 𝜒𝜋(𝑋) = (𝑋 − 𝜆1)(𝑋 − 𝜆2)
modulo ℓ with 𝜆1 ≠ 𝜆2; in other words the Frobenius has two distincts eigenvalues. Then ℓ
split in ℤ[𝜋], hence splits in 𝑅 as ℓ = 𝔩1𝔩2, the saturation of ℤ[𝜋] in End𝔽𝑞

(𝐸1), because
from our assumptions ℓ does not divide the conductor of ℤ[𝜋]. In that case there are only two
rational kernels 𝐾 in 𝐸1[ℓ] (given by the eigenvectors of 𝜆𝑖), and we can apply Example 6.13
to compute the corresponding isogenies efficiently. The preceding example is a special case
of this when 𝜆1 = 1 and 𝜆2 = 𝑞 ≠ 1 mod ℓ.

When 𝜆1 = 𝜆2 = 𝜆, but 𝜋𝑞 is not diagonal, then 𝜋𝑞 = (𝜆 1
0 𝜆), and there is a unique

rational kernel 𝐾 in 𝐸1[ℓ]. Either 𝐸1 is at the top of the volcano and ℓ = 𝔩2 is ramified in
𝑅, or we are at the bottom of the volcano: 𝑅 = ℤ[𝜋𝑞] and 𝐾 is the kernel of the unique
ascending isogeny (see Example A.4). In the first case we can apply Example 6.13 to compute
efficiently the associated isogeny, but not in the second case because the ideal associated to 𝐾
is not invertible.

Proposition 6.15. Assume that we have an efficient representation of a 𝑛1-isogeny 𝜙1 ∶ 𝐸0 →
𝐸1 of degree 𝑛1 and of a 𝑛2-isogeny 𝜙2 ∶ 𝐸0 → 𝐸2 with 𝑛1 ∧ 𝑛2 = 1. Then we have a
pushforward square, with 𝜙′

2 ∶ 𝐸1 → 𝐸12 the pushforward of 𝜙2 by 𝜙1, and 𝜙′
1 ∶ 𝐸2 → 𝐸12

the pushforward of 𝜙1 by 𝜙2. And we can efficiently find an efficient representation of 𝜙′
1, 𝜙′

2.

Proof. Let 𝜙 = 𝜙2 ∘ 𝜙1 ∶ 𝐸1 → 𝐸2, which admits an efficient representation by Proposi-
tion 6.4. Then we can split 𝜙 as 𝜙 = 𝜙″

1 ∘ 𝜙″
2 by Proposition 6.11, and we have 𝜙′

2 = 𝜙″
2,

𝜙′
1 = 𝜙″

1. �

Example 6.16. In the setting of Proposition 6.15, if 𝜙2 has smooth accessible kernel 𝐾2 =
Ker𝜙2, then the pushforward 𝜙′

2 of 𝜙2 by 𝜙1 is given by the kernel 𝐾′
2 = 𝜙1(𝐾2) (even if

𝑛1 is not coprime to 𝑛2). So we can directly compute 𝜙′
2 from its kernel 𝐾′

2.
Furthermore, since 𝜙′

1 ∘ 𝜙2 = 𝜙′
2 ∘ 𝜙1, we can find the evaluation of 𝜙′

1 on nice points,
hence we can easily build an HD representation of 𝜙′

1.
Thus, pushforwards in an hybrid setting, where 𝜙1 is given by an HD representation and

𝜙2 by a smooth accessible kernel allows for easier pushfowards; this is exploited to great
effect in the POKE framework of [Bas24].

Example 6.17. Proposition 6.15 allows to generalise the “SIDH proof of knowledge” of
isogenies from [DDGZ22; BCC+23; GPV24] from smooth isogenies to arbitrary efficient
isogeny representations.

Namely, to prove the knowledge of an efficient 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2, provided that
we have an algorithm to sample efficient isogenies of large degrees (coprime to deg𝜙) from
𝐸1 (for instance because we know its endomorphism ring), one could build a pushforward
square:

𝐸1 𝐸2

𝐸′
1 𝐸′

2

𝜙

𝜓 𝜓′

𝜙′

On the efficient representation of isogenies 41

and commit the efficient representations of 𝜓, 𝜙′, 𝜓′, where the pushforwards 𝜓′, 𝜙′ are
computed by Proposition 6.15. Then the verifier ask to reveal one out of the three of 𝜓, 𝜙′, 𝜓′,
verify it encodes a valid isogeny representation, and this protocol is repeated sufficiently
many times.

The soundness associated to this protocol is that the Prover knows some isogeny 𝐸1 → 𝐸2.
The Zero-Knowledge property is harder, since revealing 𝜙′ could leak informations on 𝜙,
that’s why 𝜓 is required to be of large enough degree.

A subtlety appear when the prover wants to prove that he knows an isogeny 𝜙 ∶ 𝐸1 → 𝐸2
of explicit degree 𝑛 = 𝑛1. Even if he publicly commit to the degrees 𝑛2 of 𝜓, 𝜓′ and 𝑛1 of 𝜙′

(which the verifier can check if the corresponding isogeny is revealed), he can only prove
that he knows an isogeny 𝜓′ ∘ 𝜙′ ∘ 𝜓 of degree 𝑛1𝑛2

2.
Indeed, the verification process does not allow to prove that 𝜓′ is the pushforward of

𝜓 by 𝜙 (or equivalently, that 𝜙′ is the pushforward of 𝜙 through 𝜓, or equivalently that
𝜓′ ∘ 𝜙 = 𝜙′ ∘ 𝜓, or equivalently that 𝜓′ ∘ 𝜙′ ∘ 𝜓 is divisible by [𝑛2]).

In the SIDHproof of isogeny knowledge, to prove the degree of𝜙, the authors of [DDGZ22]
explain how the prover can commit informations about the kernels of 𝜓, 𝜓′ (or more pre-
cisely their duals) to convince the verifier that they form a pushforward square. See also
the survey [BDGP23] and [DFP24, § 5.5]. However, their solution requires that if 𝑛2 is the
degree of 𝜙, then 𝑛2 should be smooth and the 𝑛2-torsion accessible on 𝐸1, 𝐸2, 𝐸′

1, 𝐸′
2. So

we cannot use an arbitrary efficient isogeny for 𝜓 anymore.
Still, themethod of [DDGZ22] only require to be able to construct the pushforward 𝜙′ and

to evaluate it on points, so by Proposition 6.15 it still works for any efficient representation of
𝜙. In fact, since this proof of knowledge with explicit degree requires taking 𝜓 to be smooth
with accessible torsion, we could simply use Example 6.16 directly instead of Proposition 6.15.
We remark also that, using Proposition 6.15, we can generalize the method of [DDGZ22]
to any 𝜓 such that the 𝑛2-torsion is accessible on 𝐸′

1, 𝐸′
2, provided that we can find an

efficient representation of 𝜓 (since we are relaxing the constraint 𝑛2-smooth, we cannot use
the decomposed representation anymore). Although this constraint on 𝜓 is not too big in
practice, as far as we know it remains an open question to handle the case of an arbitrary
efficient representation for 𝜓, where the 𝑛2-torsion might not be accessible. Maybe a solution
would be to use many distinct degrees 𝑛2 for 𝜓: if the prover can convince the verifier that
he knows isogenies of degree 𝑛1𝑛2

2 between 𝐸1 and 𝐸2 for sufficiently many distinct degrees
𝑛2, then maybe this is enough to prove that he knows an isogeny of degree 𝑛2, because the
quadratic lattice (Hom(𝐸1, 𝐸2), deg) is of rank at most four.

6.4. Kernel. Given an efficient representation of a cyclic 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2, one can
ask whether we can recover its kernel. If the 𝑛-torsion is accessible on 𝐸1, we can evaluate 𝜙
on a basis of the 𝑛-torsion, and solve a DLP in 𝐸2 (or in 𝜇𝑛 if the 𝑛-torsion is also accessible
on 𝐸2 so that we use the Weil pairing) to recover Ker𝜙. This is efficient if 𝑛 is smooth.

If the 𝑛-torsion is accessible on 𝐸2, we can compute a basis (𝑅, 𝑆) of 𝐸2[𝑛], and compute
(𝑃, 𝑄) = (𝜙(𝑅), 𝜙(𝑆)) by Proposition 6.4. Then (𝑃, 𝑄) is a multigenerator representation
of Ker𝜙. If we know the factorisation of 𝑛, we can even compute the orders of 𝑃, 𝑄 and from
that extract a generator. This can allow to relax the condition that 𝑛 is smooth.

In all cases, we can at least recover the kernel in time 𝑂(𝑛):

Lemma 6.18. If we have an efficient representation of an 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2, we can
recover its function representation and an equation for its kernel in 𝑂(𝑛) arithmetic operations.

Proof. Since we know how to evaluate 𝜙 on every point, in principle it would be enough
to evaluate it on the generic point P ∈ 𝐸1(𝑘(𝐸1)) of 𝐸1. The problem is that 𝑘(𝐸1) is

42 DAMIEN ROBERT

a rational function field over 𝑘, and the cost on the arithmetic on 𝑘(𝐸1) depends on the
degrees of the intermediate functions in 𝑘(𝐸1) computed during the evaluation. To bound
these intermediate degrees, a solution is to work with the formal group to some precision
𝑚 = Θ(𝑛), and do a rational reconstruction at the end. But we have seen in Section 3.3
that it is enough to work in precision 𝑚 = 2 to obtain the deformation representation, from
which we can reconstruct the isogeny. (An alternative strategy would be to try to interpolate
from the evaluation on several rational points).

Let us detail this formal group strategy. We evaluate 𝜙 on a fat point P ∈ 𝐸1(𝑘[𝜀]/𝜀2)
to recover the action of 𝜙 on differentials, hence recover the deformation representation.
We then solve a differential equation in 𝑂(𝑛) to recover the function representation, from
which we can extract the kernel. This assumes that 𝑝 > 8𝑛 − 5. For large 𝑛, we just need to
lift 𝐸1 arbitrarily to ℤ𝑞/𝑝𝑚ℤ𝑞 with 𝑚 = 𝑂(log𝑛) and then lift 𝜙; we know how to do that
efficiently thanks to Proposition 6.9. �

7. Open questions

Although the toolbox to manipulate efficient representations of isogenies has considerably
expended, there are still many open questions.

We discuss some of these here:
(1) The most important one is to find in polynomial time in log𝑛 an efficient representa-

tion of an 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2 represented by a rational generator Ker𝜙 = ⟨𝑇⟩,
𝑇 ∈ 𝐸1[𝑛](𝔽𝑞). The best available algorithm (if 𝑛 is not smooth, e.g. when 𝑛 is a
large prime), sqrtVelu, takes “exponential” time 𝑂(𝑛1/2).

(2) If 𝜙 ∶ 𝐸1 → 𝐸1 is a cyclic ℓ2-isogeny, then it decomposes uniquely as 𝜙 = 𝜙′
2 ∘ 𝜙1

with 𝜙1, 𝜙′
2 ℓ-isogenies. But Proposition 6.11 needs the coprimality condition to split

𝜙 efficiently.Thus, assuming that we have an efficient representation of 𝜙, computing
(efficient representations of) 𝜙′

2, 𝜙1 efficiently remains an open question.
(3) We have the same question about computing the pushforward of isogenies 𝜙1, 𝜙2

whose degree are not coprime.
In certain cases, we can give some answers. If 𝜙1 ∶ 𝐸0 → 𝐸1 is an ℓ-isogeny and

𝜙2 ∶ 𝐸0 → 𝐸2 is also an ℓ-isogeny, with ℓ prime, then either they have the same
kernel in which case their pushforwards are given by an isomorphism 𝐸1 ≃ 𝐸2, or
they have disjoint kernel in which case their pushforwards are 𝜙1 and 𝜙2.Thus, when
𝜙1 is a 𝑛1 isogeny and 𝜙2 is a 𝑛2-isogeny, we can still compute their pushfoward in
some cases even where 𝑛1 is not coprime to 𝑛2. Namely we split them into isogenies
of coprimary degree, and use pushout squares to reduce to the case 𝑛1 = ℓ𝑒1 and
𝑛2 = ℓ𝑒2 . We have seen how to handle the case 𝑒1 ≤ 1 and 𝑒2 ≤ 1. We can assume
𝑒1 ≤ 𝑒2. We can use Corollary 6.8 to test if 𝜙2 is divisible by 𝜙1: 𝜙2 = 𝜙′

2 ∘ 𝜙1,
in which case the pushforward of 𝜙1 is the identity and the pushforward of 𝜙2
is 𝜙′

2. But to handle the general case, we would need to know how to split 𝜙1, 𝜙2
into chunks of ℓ-isogenies. Thus the pushforward question reduces to the splitting
question.

(4) Given a supersingular elliptic curve 𝐸/𝔽𝑝2 , it admits rational isogenies of any degree.
Can we efficiently construct one of fixed arbitrary degree 𝑛 (or even random large
degree)? Currently we only know how to do that for 𝑛 smooth (by taking a product of
small isogenies) or when we know End(𝐸) (by using an IdealToIsogeny algorithm).

(5) Can we climb up in a 𝑅-oriented ℓ-isogeny volcano when ℓ is large, i.e., can we
find an efficient way to compute an ascending isogeny? We do not know how to
compute the climbing up isogeny efficiently, even if we already know the codomain

On the efficient representation of isogenies 43

(but see [Gal24] for a speed up when the codomain is known). Solving the climbing
up problem with known codomain would have important implications on the post-
quantum security of SCALLOP and SCALLOP-HD, due to [CII+23].

For the climbing up isogeny, we do have a compact representation given by a
non invertible ideal. Indeed, the conductor ideal 𝔣 = ℤ + 𝑓 𝑅0 ⊂ 𝑅 of 𝑅 = End(𝐸)
encodes the isogeny ascending all the way to the top, so (ℓ, 𝔣) is the ideal representing
one step up. In that case, due to the non invertibility, Clapoti(s) does not apply and
we do not now how to convert this ideal to an isogeny, other than by computing
it from its kernel, which takes time 𝑂(ℓ2 log2 𝑞). But see [Gal24] again for some
improvements to this naive method in some cases.

Solving the ℓ2-splitting problem would give an algorithm to climb: climbing
up from 𝐸1 to 𝐸2 and then descending back down to some 𝐸′

1 corresponds to an
invertible ideal 𝔞 of norm ℓ2 in Cl(End(𝐸1)), and thanks to Clapotis we know how
to convert 𝔞 into an ℓ2-isogeny 𝜙. Splitting 𝜙 would then give us 𝐸2.

(6) The same question holds for a descending isogeny, but in that case we do not even
have an ideal representation.

(7) Can we find an improvement to the KLPT algorithm that produces powersmooth
ideals of norm ≈ 𝑝 rather than ≈ 𝑝4.5 (see Appendix C.5)?

Finally, as we have illustrated several times, having a theoretical polynomial time algorithm
is often not good enough: for isogeny based cryptography wewant fast algorithms. In practice,
this means finding elliptic curves with large accessible 2𝑒-torsion, and embedding isogenies
into higher dimensional 2𝑒-isogenies of dimension 𝑟, with 𝑟 as small as possible (and ideally
𝑟 = 2). So even through the algorithms in Section 6 are polynomial time, there are probably
many tricks still open to speed them up.

Appendix A. On the accessible 𝑁-torsion of an abelian variety

In this section, we define the notion of accessible torsion.

Definition A.1. The 𝑁-torsion of an elliptic curve 𝐸/𝔽𝑞 is said to be accessible if we can
work with points of 𝑁-torsion by using field extensions of small degree (meaning polynomial
in log𝑁).

In practice, this means that if 𝑁 = ∏ ℓ𝑒𝑖
𝑖 , we want to find CRT generators (𝑃𝑖, 𝑄𝑖) ∈

𝐸[ℓ𝑒𝑖
𝑖] which live in extensions of (uniform) degree 𝑂(log𝑂(1) 𝑁).
This definition extends to an abelian variety (and to subgroups 𝐺): the 𝑁-torsion (resp.

𝐺-torsion) on 𝐴/𝔽𝑞 is accessible if we can find CRT generators (𝑃1, … , 𝑃𝑔) ∈ 𝐴[ℓ𝑒𝑖
𝑖] (resp.

𝐺[ℓ∞
𝑖]) which live in extensions of (uniform) degree 𝑂(log𝑂(1) 𝑁) (resp. 𝑂(log𝑂(1) #𝐺)).

Remark A.2. We remark that while the (𝑃𝑖, 𝑄𝑖) are assumed to live in small extensions, the
basis of 𝑁-torsion 𝑃 = ∑ 𝑃𝑖, 𝑄 = ∑ 𝑄𝑖 could be defined over an extension of large degree.
So to work with accessible 𝑁-torsion, we need to work with the CRT basis directly.

Sometimes it will be useful to be able to work with linear combinations of the points
(𝑃𝑖, 𝑄𝑖, 𝑃𝑗, 𝑄𝑗). Let 𝑑𝑖 (resp. 𝑑𝑗) be the degree of the field extension where (𝑃𝑖, 𝑄𝑖) (resp.
(𝑃𝑗, 𝑄𝑗)) are defined.

If 𝑑𝑖 is coprime to 𝑑𝑗, then one can construct the compositum field of degree 𝑑𝑖𝑑𝑗 in
quasi-linear time 𝑂(𝑑𝑖𝑑𝑗) along with embeddings 𝔽𝑞𝑑𝑖 → 𝔽

𝑞𝑑𝑖𝑑𝑗 and 𝔽
𝑞𝑑𝑗 → 𝔽

𝑞𝑑𝑖𝑑𝑗 in

quasi-linear time 𝑂(𝑑𝑖𝑑𝑗) too [DDS14]. Switching between the bivariate representation
𝔽

𝑞𝑑𝑖𝑑𝑗 = 𝔽𝑞[𝑋, 𝑌]/⟨Φ𝑑𝑖
(𝑋), Φ𝑑𝑗

(𝑌)⟩ and the univariate representation of 𝔽
𝑞𝑑𝑖𝑑𝑗 , where

44 DAMIEN ROBERT

Φ𝑑𝑖
(𝑋) (resp. Φ𝑑𝑗

(𝑌)) are irreducible defining polynomials for 𝔽𝑞𝑑𝑖 (resp. 𝔽
𝑞𝑑𝑗), can be

done by modular composition, which can be computed in pseudo-linear time in the bit
model by [KU11].

In the general case, if 𝑑′ = 𝑑𝑖 ∧ 𝑑𝑗, we can construct the subfield 𝔽𝑞𝑑′ ⊂ 𝔽𝑞𝑑𝑖 by taking
a random element 𝛼 ∈ 𝔽𝑞𝑑𝑖 , applying the trace 𝛽 = Tr𝔽

𝑞𝑑𝑖/𝔽
𝑞𝑑′ (𝛼), and computing the

minimal polynomial of 𝛽 by power projection [Sho99] which can be done in pseudo-linear
time by the transposition principle. Doing the same to construct 𝔽′

𝑞𝑑′ ⊂ 𝔽
𝑞𝑑𝑗 , we can find

an isomorphism 𝔽′
𝑞𝑑′ ≃ 𝔽𝑞𝑑′ by computing the factorisation of the degree 𝑑′ polynomial

defining 𝔽′
𝑞𝑑′ over 𝔽𝑞𝑑′ ; this costs 𝑂(𝑑′3 log2 𝑞). For better algorithms for the isomorphism

problem, we refer to [BDDFS19]. Evaluating the isomorphism is then again done by modular
composition.

To simplify the complexity statements when decomposing an 𝑁-isogeny into product of
ℓ𝑖-isogenies using accessible 𝑁-torsion, we will always suppose that we have precomputed
the embedding of 𝑃𝑖, 𝑄𝑖, 𝑃𝑗, 𝑄𝑗 into their common overfield 𝔽

𝑞𝑑𝑖∨𝑑𝑗 . And similarly to push
a point 𝑃 defined over 𝔽𝑞𝑑𝑃 , we will assume that we have precomputed the embedding of
𝑃, 𝑃𝑖, 𝑄𝑖 into 𝔽𝑞𝑑∨𝑑𝑖 . (This last point is only needed if we represent the small isogenies by
the generator of their kernel rather than by a kernel equation.) This step can be done in
pseudo-linear time using fast modular composition.

To know whether the 𝑁-torsion is accessible, we can look at the smallest degree where the
points of ℓ𝑒𝑖

𝑖 torsion on an elliptic curve 𝐸 are defined. This is well known, and we summarize
this in the following lemma (which we state for abelian varieties since this case is not harder
than for elliptic curves).

Lemma A.3. Let 𝐴/𝔽𝑞 be an abelian variety, and ℓ ≠ 𝑝 a prime. The minimal degree 𝑑0 such
that all points of ℓ-torsion in 𝐴 are defined satisfy 𝑑0 ≤ ℓ2𝑔 − 1. Let 𝑒 > 0 be the highest integer
such that all points of ℓ𝑒-torsion of 𝐴 are defined over 𝔽𝑞𝑑0 . Then the minimal degree 𝑑 such

that all points of ℓ𝑒+𝑓-torsion of 𝐴 are defined is 𝑑 = 𝑑0ℓ𝑓.

Proof. Let 𝜒𝜋(𝑋) be the characteristic polynomial of the Frobenius, this is a monic polyno-
mial of degree 2𝑔. The degree 𝑑0 is the minimal integer such that 𝜋𝑑0

𝑞 − 1 ≡ 0 mod ℓ. The
minimal polynomial Φ𝜋,ℓ of the Frobenius acting on the ℓ-torsion 𝐴[ℓ] divides 𝜒𝜋 mod ℓ,
hence the order 𝑑0 of 𝜋𝑞 modulo ℓ is at most ℓ2𝑔 − 1.

Now we look at the action of 𝜋𝑞 on the Tate module 𝑇ℓ𝐴. By assumption, we have that
𝜋𝑑0

𝑞 −1 is of ℓ-adic valuation 𝑒: 𝜋𝑑0
𝑞 = 1+ℓ𝑒𝑃+𝑂(ℓ𝑒+1). Then 𝜋𝑑0𝑟

𝑞 = 1+𝑟ℓ𝑒𝑃+𝑂(ℓ𝑒+1),
so 𝜋𝑑0𝑟

𝑞 −1 is of ℓ-adic valuation at least 𝑒+1 if and only if ℓ ∣ 𝑟. It follows that the ℓ𝑒+1-torsion
is defined over 𝔽𝑑0ℓ

𝑞 , and not over a smaller subfield. We conclude by recurrence. �

Example A.4. Let 𝜒𝜋 = 𝑋2 − 𝑡𝑋 + 𝑞 be the characteristic polynomial of the Frobenius
𝜋𝑞 acting on an elliptic curve 𝐸/𝔽𝑞, then 𝜒𝜋 mod ℓ is the characteristic polynomial of 𝜋𝑞
acting on 𝐸[ℓ] (ℓ ≠ 𝑝).

• If this polynomial is irreducible modulo ℓ, then we have two distinct eigenvalues
𝜆1, 𝜆2 of 𝜋𝑞 defined over 𝔽2

ℓ . We let 𝑑𝑖 be the order of 𝜆𝑖, and 𝑑𝑞 the order of 𝑞
modulo ℓ (this is called the embedding degree in pairing based cryptography). There
are no rational cyclic kernel in 𝐸[ℓ], and the ℓ-torsion becomes defined over an

On the efficient representation of isogenies 45

extension of degree 𝑑1 ∨𝑑𝑞 = 𝑑2 ∨𝑑𝑞. In that case the ℓ-isogeny volcano is of height
1: the conductor of ℤ[𝜋] is not divisible by ℓ, and in particular if 𝑅 is the saturation
of ℤ[𝜋] in End(𝐸), the index [𝑅 ∶ ℤ[𝜋]] is not divisible by ℓ. Furthermore, ℓ is
inert in ℤ[𝜋] and 𝑅.

• If 𝜋𝑞 = (𝑋 − 𝜆1)(𝑋 − 𝜆2) mod ℓ splits with no multiplicity, we have two distinct
eigenvalues 𝜆1, 𝜆2 ∈ 𝔽ℓ, we have two rational kernels (formed by the eigenvectors
for 𝜆𝑖), whose points are defined over an extension of degree 𝑑1 and 𝑑2 respectively.
The full ℓ-torsion is defined over 𝑑1 ∨ 𝑑𝑞 = 𝑑2 ∨ 𝑑𝑞. Like in the above example the
ℓ-isogeny volcano is of height 1, but in this case ℓ splits in ℤ[𝜋] and 𝑅, and the two
kernels corresponds to the two ideals 𝔩𝑖 where ℓ = 𝔩1𝔩2 in 𝑅.

• If 𝜋𝑞 = (𝑋 − 𝜆)2 mod ℓ, then either 𝜋𝑞 = (𝜆 0
0 𝜆) or 𝜋𝑞 = (𝜆 1

0 𝜆). We can

distinguish these two cases by testing whether 𝜋 − 𝜆 is divisible by ℓ, this is a special
case of the endomorphism ring algorithm of Example 6.7.

In the first case all kernels are rational, and in the second case only one is rational.
If 𝑑 is the order of 𝜆, then since 𝜆2 = 𝑞 we have that 𝑑 = 𝑑𝑞 or 𝑑 = 2𝑑𝑞. In the first
case the full ℓ-torsion is defined over the extension of degree 𝑑, while in the second
case over the extension of degree ℓ𝑑.

In the first case, we have descending isogenies so we are not at the bottom of
the volcano. In the second case, either the isogeny volcano is of height 1, ℓ = 𝔩2 is
ramified in 𝑅 (and ℤ[𝜋]), and the unique kernel is 𝐾 = 𝐸[𝔩], with 𝔩 inversible. Or
the isogeny volcano is of height > 1, we are on the bottom of the ℓ-isogeny volcano,
and 𝐾 = 𝐸[𝔩] where 𝔩 is the unique ideal of norm ℓ in 𝑅 (necessarily non invertible
in 𝑅 whose conductor is divisible by ℓ). Climbing up via 𝐾, the Frobenius become
diagonal on the codomain.

To generate a basis of the 𝑁-torsion of an elliptic curve, there are several methods.

• The simplest is to factorize the division polynomial 𝜓𝑁; this is a polynomial of
degree 𝑂(𝑁2). Using [KU11], this costs 𝑂(𝑁3).

• If the 𝑁-torsion lives in a small extension 𝑑, a more efficient way is to sample points
in 𝐸(𝔽𝑞𝑑) and then multiply by appropriate cofactors to get points of 𝑁-torsion.

This can be more tricky than it looks if we want a basis rather than simply points
of 𝑁-torsion: imagine that 𝑁 = ℓ is a large prime and that 𝐸(𝔽𝑞𝑑)[ℓ∞] = ⟨𝑃1, 𝑃2⟩
with 𝑃1 of order ℓ2 and 𝑃2 of order ℓ. Then sampling a random point in 𝐸(𝔽𝑞𝑑) and
multiplying by the cofactor, we get a random linear combination 𝑃 = 𝑎𝑃1 + 𝑏𝑃2
which is of order ℓ2 (unless by luck ℓ ∣ 𝑎), and so to get a point of ℓ torsion we need
to look at ℓ𝑃 which is a multiple of ℓ𝑃1. So the naive algorithm only produce points
in ⟨ℓ𝑃1⟩ with overwhelming probability.

A general solution to this problem is given in [Sut11], for a specific solution
on elliptic curves using the Weil or Tate pairing to speed up this computation,
see [Rob21, § 5.6.2]. Using the Tate pairing and Pollard’s rho to solve the DLP in
𝜇𝑁 ⊂ 𝔽𝑞𝑑 , the complexity of this method is bounded by 𝑂(𝑑2 log2 𝑞 + √𝑁𝑑 log 𝑞).

Rather than multiplying by a cofactor (an integer), it can be helpful to multiply
our random point by a suitable endomorphism, see [Cou09; BGDS23].

• In supersingular isogeny based cryptography, we work with elliptic curves 𝐸/𝔽𝑝2

such that 𝐸(𝔽𝑝2) = (ℤ/𝑝 ± 1)2 (depending on which quadratic twist we take).

46 DAMIEN ROBERT

So it is very easy to find 𝑝 such that the 𝑁-torsion is accessible (and even rational
over 𝔽𝑝2): simply take 𝑁 such that 𝑁 ∣ 𝑝 + 1 or 𝑁 ∣ 𝑝 − 1. One can even split 𝑁 as
𝑁 = 𝑁1𝑁2 where 𝑁1 ∣ 𝑝 + 1 and 𝑁2 ∣ 𝑝 + 2, and work on 𝐸 or its quadratic twist
𝐸′ whenever appropriate (in practice we work with their Kummer line, which does
not depend on the twist, over 𝔽𝑝2). This is enough as long as we can treat points of
𝑁1-torsion independently from the points of 𝑁2-torsion (otherwise we need to go
to 𝔽𝑝4).

Furthermore, to generate a basis of the 𝑁-torsion it suffice to sample random
points and multiply by the appropriate cofactor: the problem mentioned above
does not appear in that case. We can use the Weil pairing to test when we have
found generators. Thus we do not need DLPs, and the complexity is bounded by
𝑂(𝑑2 log2 𝑞).

For the special case when 𝑁 = 2𝑒, efficient algorithms to sample a deterministic
basis of the 2𝑒-torsion have been developed using the Tate pairing (this is often
called an entangled basis in the literature), see for instance [CJL+17; ZSPDB18;
CEMR24, § 5.1].

Example A.5 (The kernel of an isogeny represented by an ideal 𝐼). If a cyclic 𝑛-isogeny
𝜙 is represented by an ideal 𝐼, then both in the oriented and supersingular cases we have
Ker𝜙 = 𝐸[𝐼] ⊂ 𝐸[𝑁(𝐼)]. We will assume that we have an efficient representation of the
order associated to 𝐼. To find a multigenerator representation of the kernel, we have two
methods. First we factorize 𝑁(𝐼) = ∏ ℓ𝑒𝑖

𝑖 , then a CRT basis of 𝐸[𝐼] consists of finding a
generator 𝑃𝑖 of each 𝐸[𝐼, ℓ𝑒𝑖

𝑖], so we can reduce to the case 𝑛 = 𝑁(𝐼) a prime power. We can
write 𝐼 = (𝑁(𝐼), 𝛼).

• The first idea is to work over the field 𝔽𝑞𝑑 where the points of 𝐸[𝐼] are defined:
𝐸[𝐼](𝔽𝑞) ⊂ 𝐸[𝑁(𝐼)](𝔽𝑞𝑑). We sample generators of 𝐸[𝑁(𝐼)](𝔽𝑞𝑑) using the
methods above, and then eventually solve a DLP (combined with pairings) to find
the kernel of 𝛼.

• The second idea, used in [EPSV, § 4.1], relies on selecting 𝛼 such that 𝑁(𝛼) ∧
𝑁(𝐼)2 = 𝑁(𝐼), then 𝐸[𝐼] = 𝛼(𝐸[𝑁(𝐼)]). So sampling a basis of 𝐸[𝑁(𝐼)] and
applying 𝛼 to this basis, we recover generators for 𝐸[𝐼].

Appendix B. Relaxing the torsion requirement for the HD representation

In this section, we explain how splitting the HD isogeny Φ in two can allow to reduce the
torsion information we need on 𝜙 to recover Φ.

B.1. Splitting a smooth cyclic isogeny in two. Let 𝜙 ∶ 𝐸1 → 𝐸2 be a cyclic 𝑛-isogeny with
kernel 𝐾, and assume that 𝑛 = 𝑛1𝑛2. Then we can split 𝜙 as 𝜙 = 𝐸1 →𝜙1 𝐸12 →𝜙2 𝐸2
where 𝐾1 = Ker𝜙1 = 𝐾[𝑛1], and Ker𝜙2 = 𝜙1(𝐾).

If 𝜙 is smooth and the kernel 𝐾 is accessible, we can efficiently find these kernels (see
Proposition 6.11 for the general case, but the general case needs 𝑛1 coprime to 𝑛2)). It is
convenient to work with 𝜙2 instead, whose kernel is given by 𝐾2 = 𝜙(𝐸1[𝑛]).

From the kernels 𝐾1, 𝐾2 of 𝜙1, 𝜙2, we can recover 𝜙: we compute a decomposed rep-
resentation of 𝜙1 ∶ 𝐸1 → 𝐸12 from 𝐾1, 𝜙2 ∶ 𝐸2 → 𝐸′

12 from 𝐾2, and we glue in the
middle, i.e., compute an isomorphism 𝐸12 ≃ 𝐸′

12. Then we just need to compute the dual
of the decomposed representation of 𝜙2 to obtain a way to evaluate 𝜙. In other words:
(𝐾1 ⊂ 𝐸1, 𝐾2 ⊂ 𝐸2) gives a representation of 𝜙 (the split representation), which is efficient
if 𝑛 is smooth, 𝐾1 is accessible in 𝐸1, and 𝐾2 accessible in 𝐸2.

On the efficient representation of isogenies 47

For a supersingular curve over 𝔽𝑝2, since the Frobenius is 𝜋𝑞 = ±[𝑝] acts like a scalar
on the 𝑛-torsion, and furthermore all supersingular curves have the same torsion structure,
asking for 𝐾 to be accessible is the same as asking the 𝑛-torsion to be accessible. In particular,
the split representation relax the conditions on accessibility: if the 𝑛-torsion is accessible
then certainly the 𝑛1 and 𝑛2-torsion are, but not conversely.

We will apply the same strategy to Φ in higher dimension for the HD representation.

B.2. Splitting the HD representation in two. In Section 5.3, we embed the 𝑛-isogeny
𝜙 ∶ 𝐸1 → 𝐸2 into a higher dimensional 𝑁-isogeny Φ ∶ 𝐴 = 𝐸𝑢

1 × 𝐸𝑢
2 → 𝐵 = 𝐸𝑢

1 × 𝐸𝑢
2 of

dimension 𝑔 = 2𝑢 by using an auxiliary 𝑁 − 𝑛-endomorphism 𝛼 on 𝐸𝑢
1 given by a suitable

matrix of integers, where 𝑢 = 1, 2, 4 depending on whether 𝑁 − 𝑛 is a sum of 1, 2, 4 squares.
As usual, we assume 𝑁 smooth and the 𝑁-torsion accessible.

To recover the full kernel 𝐾 of Φ, we need to know how 𝜙 acts on the 𝑁-torsion. But in
fact, we need less information, because 𝐾 is of rank 𝑔. First we remark that if we know how 𝜙
acts on the 𝑁-torsion, then we also have the full kernel of 𝐾′ = Φ̃ = Φ(𝐴[𝑁]). If we write
𝑁 = 𝑁1𝑁2, and we only require to know how 𝜙 acts on the 𝑁1 ∨ 𝑁2-torsion, we can still
recover 𝐾[𝑁1] and 𝐾′[𝑁2] = Φ(𝐴[𝑁2]). This is enough to compute Φ: we decompose
Φ as Φ = Φ2 ∘ Φ1, a 𝑁1-isogeny followed by a 𝑁2-isogeny. The kernel of Φ1 is given by
𝐾[𝑁1], which is indeed of degree 𝑁𝑔

1 since 𝐾 is of rank 𝑔, while the kernel of Φ̃2 is given by
𝐾′[𝑁2]. So we can compute Φ1 ∶ 𝐴 → 𝐶 and Φ̃2 ∶ 𝐶 → 𝐴, and glue together in the middle
at 𝐶 to reconstruct Φ.

In summary, we just need to know how 𝜙 acts on the 𝑁-torsion, with 𝑁2 > 𝑛, to be able
to efficiently represent it via an 𝑁2-isogeny Φ, because we can split Φ in two: Φ = Φ2 ∘ Φ1
with Φ𝑖 a 𝑁-isogeny, and glue in the middle. We refer to [Rob23b; DLRW24] for more
details.

We warn the reader that this strategy works only if the auxiliary isogeny 𝛼 is given by a
matrix of integers. That’s because in that case we know the pushforward of 𝛼 by 𝜙 Id (this is
simply the same matrix because it commutes with 𝜙 Id), and we know the codomain of Φ
already. Using a general auxiliary isogeny 𝛼 in order to embed 𝜙 in Φ requires (in general)
to know 𝜙 on the 𝑁 > 𝑛 torsion.

Remark B.1. The group 𝐸[𝑁] is of cardinality 𝑁2, so the condition 𝑁2 > 𝑛 is not enough
to uniquelty determine 𝜙. By Section 3.3 we would need 𝑁2 > 4𝑛 instead. The reason for
this discrepancy is as follows.

First, we describe Φ by its kernel, but that only determines Φ up to postcomposition by
an automorphism of its codomain. When a principally polarised abelian variety (𝐴, 𝜆𝐴)
splits as 𝐴 = 𝐴𝑒1

1 × 𝐴𝑒2
2 × … as a product of principally polarised abelian varieties (𝐴𝑖, 𝜆𝐴𝑖

)
with 𝜆𝐴 the product polarisation of the 𝜆𝐴𝑖

and (𝐴𝑖, 𝜆𝐴𝑖
) not isomorphic to (𝐴𝑗, 𝜆𝐴𝑗

), then
by the polarised Poincare’s decomposition theorem, polarised automorphisms of (𝐴, 𝜆𝐴)
are generated by the polarised automorphisms of the (𝐴𝑖, 𝜆𝐴𝑖

) along with the permutations
of the 𝑒𝑖 factors of each 𝐴𝑖. In our setting, the codomain of Φ is a product of elliptic curve,
whose automorphisms are ±1 (unless we are in the special case of 𝑗 = 0, 1728), so there is
only a sign ambiguity for the individual isogenies composing Φ, hence in particular for 𝜙.
This is the same situation as if we only had the kernel of 𝜙 rather than 𝜙.

Secondly, Φ embed several isogenies at once (in particular it embeds 𝜙 and its dual),
and sometimes we require the extra information to identify 𝜙 among these isogenies. For
instance, take a curve 𝐸 with complex multiplication by √−2, and take the endomorphism
𝜙 = 3+√−2. Then 𝜙 and −𝜙 = −3+√−2 have norm 11 and act the same on the 6-torsion

48 DAMIEN ROBERT

(remark that 11 < 62 < 4 × 11). So while we can embed both of them at the same time into
a higher dimensional 6-isogeny, to distinguish between them we need to evaluate them on
more points.

We have seen in Section 6 ways to embed an isogeny 𝜙 ∶ 𝐸1 → 𝐸2 into a higher di-
mensional isogeny without even knowing its codomain. For instance, if we have an efficient
representation of an𝑛1𝑛2-isogeny𝜙with𝑛1∧𝑛2 = 1, we can split𝜙 in𝜙 = 𝜙2∘𝜙1 = 𝜙′

1∘𝜙′
2

and we can embed 𝜙1, 𝜙′
2, 𝜙′

1, 𝜙2 at the same time into some higher dimensional isogeny Φ.
One solution to identify which isogeny is which is to use pairings, see Lemma 6.2.

B.3. Thecodomain product theta structure. Whenwe embed 𝜙 into an higher dimensional
smooth 𝑁-isogeny Φ, and we compute Φ from its kernel using the theta isogeny algorithm
described in Section 5.1.2, we have the following technical difficulty: by construction of the
HD representation, the domain 𝐴 and codomain 𝐵 of Φ are a product of elliptic curves
with their product polarisations. So we start with the product theta structure on 𝐴: we can
efficiently convert between Weierstrass coordinates on 𝐸 and level 2 or 4 theta coordinates
on 𝐸 (taking a small extension if needed to make the theta structure rational), and then we
take the product theta structure to work on 𝐴: the resulting theta embedding on 𝐴 is simply
the Segre embedding.

However, when applying Lemma 5.7 to compute 𝐵, there is no reason that the resulting
theta structure Θ𝐵 on 𝐵 is the product theta structure. Since we need to project back to
elliptic curves to recover 𝜙 from Φ, as a first step we first need to convert Θ𝐵 to a product
theta structure Θ′

𝐵 (this is a linear change of variable). For this, we could simply test all the
automorphisms of theta structure until we find a product theta structure. But, under the
conditions of Lemma 5.7, we can actually predict which theta structure we will obtain on 𝐵,
and know in advance which automorphism to apply to get a product theta structure in the
end, see [DLRW24, Appendix F] for the technical details.

In dimension 2, the situation is simpler, because we can detect when we are on a product
by the annulation of some even level 4 theta constant 𝜃𝑖, and we are on a product theta
structure precisely when 𝑖 = 𝑖0 = (11; 11), and so it suffices to take any automorphism
sending 𝑖 to 𝑖0 to recover a product theta structure (see [DMPR24, § 4]).

We note also that while Φ is completely determined by its kernel, to decompose Φ via the
theta isogeny algorithm as in Lemma 5.7, we might need a bit more information. Typically,
we embed 𝜙 into a 2𝑒-isogeny Φ in dimension 𝑔, and we work in level 𝑚 = 2. To get a
well defined theta structure on the codomain of Φ, we need points of 2𝑒+2-torsion above
its kernel, and for that the most convenient way is to require to know how 𝜙 acts on the
2𝑒+2-torsion, not only the 2𝑒-torsion (of course we could guess it from the information we
have).

B.4. Gluing in the middle. The same remark applies when we can split Φ in two: Φ =
Φ2 ∘ Φ1, and we compute Φ1 ∶ 𝐴 → 𝐶 and Φ̃2 ∶ 𝐵 → 𝐶. For instance, if Φ is a 2𝑒-isogeny,
we only need to know the action of 𝜙 on the 2𝑒/2-torsion to recover the kernel of Φ1 and Φ̃2.
But to be sure we recover the same theta structure on 𝐶 from 𝐴 and from 𝐵, we need to know
(or guess) the action of 𝜙 on the 2𝑒/2+2-torsion. We refer again to [DLRW24, Appendix F]
and [Dar24, Appendices A, B] for more details. The advantage of imposing a theta structure
of level 𝑚 on 𝐶 is that it kills the automorphisms of 𝐶 (all automorphisms if 𝑚 ≥ 3, but
if 𝑚 = 2 there remain the ±1 automorphisms), which solves the problem of gluing up to
automorphisms we would have had if we had not rigidified 𝐶 thusly.

On the efficient representation of isogenies 49

Appendix C. Ideal to isogeny algorithms in the supersingular case and
applications to the SQIsign family

In this section we give more details on the ideal to isogeny algorithms in the supersingular
case. Among its many cryptographic applications, we can mention the SQIsign family of
signature scheme, which we describe in Appendix C.6.

C.1. Double paths. In Section 4.2, we gave an overview of different algorithms to convert
an ideal 𝐼 to an isogeny 𝜙𝐼 ∶ 𝐸1 → 𝐸2, assuming that we know an efficient representation of
the endomorphism ring End(𝐸1) of 𝐸1.

Actually, what we explained is only how to convert an equivalent ideal 𝐽 into an isogeny
𝜙𝐽 ∶ 𝐸1 → 𝐸2; where 𝐽 is a smoothening of 𝐼 in the first generations, and simply the smallest
equivalent ideal in the fourth generation.

There remains two questions: how do we compute 𝜙𝐼 once we know how to compute 𝜙𝐽?
And how can we compute an efficient representation of End(𝐸2), which would be needed if
we want to convert a new ideal 𝐼2 from 𝐸2?

For the first question, since we know 𝐼 and 𝐽, we know the endomorphism 𝛼 = 𝜙𝐽 ∘ 𝜙𝐼; in
terms of ideal this is a generator of the principal ideal 𝐽𝐼. Furthermore, by assumption we
know how to evaluate it on 𝐸1. And if 𝑃 ∈ 𝐸1, we have 𝜙𝐽(𝛼(𝑃)) = 𝑁(𝐽)𝜙𝐼(𝑃). We can
thus recover the image of 𝑃 by 𝜙𝐼 up to the factor 𝑁(𝐽). This at least allow us to evaluate
𝜙𝐼 on all points 𝑃 of torsion prime to 𝑁(𝐽). We have seen in Proposition 6.6 that we have a
division algorithm which allows to evaluate 𝜙𝐼 efficiently when we know how to evaluate
𝑁(𝐽)𝜙𝐼 efficiently.

Another solution is to simply compute another “nice” ideal 𝐽′ equivalent to 𝐼, of norm
prime to 𝑁(𝐽). In other words: we build a double path of isogenies 𝜙𝐽, 𝜙𝐽′ ∶ 𝐸1 → 𝐸2
where both isogenies have an efficient representation and are of coprime degrees. In fact, the
Clapotis algorithm used in the fourth generation already directly constructs a double path.
From this double path, we can translate any other ideal 𝐼 into an isogeny 𝜙𝐼 efficiently, by
evaluating a suitable endomorphism on 𝐸1 first and then applying 𝜙𝐽 or 𝜙𝐽′ .

The same solution works to evaluate endomorphisms on 𝐸2. First we know that abstractly
End(𝐸2) is the right order of 𝐼. Next, given𝛽 ∈ End(𝐸2), we can consider the endomorphism
𝛼 = 𝜙𝐽 ∘ 𝛽 ∘ 𝜙𝐽, which we know how to evaluate efficiently on 𝐸1 by assumption. Since
we know an efficient representation of 𝜙𝐽, then by Proposition 6.4 we can build an efficient
representation of 𝜙𝐽. But in fact, in our setting, when 𝐽 is taken to be a smoothening of 𝐼, then
it decomposes as a product of small degree isogenies so it is easy to compute its dual directly;
and in the fourth generation where we use the Clapotis algorithm to embed a double path
𝜙𝐽1

, 𝜙𝐽2
∶ 𝐸1 → 𝐸2 into a smooth HD isogeny Φ, then Φ is also decomposed into a product

of small HD isogenies; hence we can also directly compute Φ̃, and so 𝜙𝐽1
, 𝜙𝐽2

too. In any
case we can compute 𝜙𝐽 ∘ 𝛼 ∘ 𝜙𝐽(𝑄) = 𝑁(𝐽)2𝛽(𝑄), hence recover 𝛽(𝑄) at points of order
prime to 𝑁(𝐽). The general case to evaluate 𝛽 proceed by division or via a double path like
for 𝜙𝐼 above.

In fact, it is often more practical to build everything from a special nice curve 𝐸0, with
particularly nice endomorphism evaluation (typically𝐸0 will be a supersingular curve defined
over 𝔽𝑝 and with small discriminant). Assume that we have built a isogenies 𝜙𝐽1

∶ 𝐸0 → 𝐸1
and 𝜙𝐽2

∶ 𝐸0 → 𝐸2 represented by ideals 𝐽1, 𝐽2. Then if 𝑃 ∈ 𝐸1, we have 𝑁(𝐽1𝐽2)𝜙𝐼(𝑃) =
𝜙𝐽2

∘ 𝜃 ∘ 𝜙𝐽1
, where 𝜃 = 𝜙𝐽2

∘ 𝜙𝐼 ∘ 𝜙𝐽1
is an endomorphism on 𝐸0. This allows to evaluate

any isogeny 𝜙𝐼 on points of order coprime to 𝑁(𝐽1𝐽2). The same technique holds to evaluate
endomorphisms on 𝐸1 and 𝐸2 at points of order coprime to 𝑁(𝐽1) and 𝑁(𝐽2) respectively.
We can then invoke the division algorithm for the general case. Or, simpler, we only need

50 DAMIEN ROBERT

to compute a double “double path”, i.e. an efficient double path 𝜙𝐽1
, 𝜙𝐽′

1
between 𝐸0 and 𝐸1,

and another 𝜙𝐽2
, 𝜙′

𝐽2
between 𝐸0 and 𝐸2 (with 𝑁(𝐽1𝐽2) coprime to 𝑁(𝐽′

1𝐽′
2)).

C.2. The KLPT algorithm and Eichler orders.

C.2.1. KLPT. The first generation of an ideal to isogeny algorithm is the KLPT smoothening
algorithm from [KLPT14]. The idea is to find an ideal 𝐽 equivalent to 𝐼, but of smooth norm.

If 𝐽 is equivalent to 𝐼, 𝜙𝐼, 𝜙𝐽 are both isogenies from 𝐸1 to 𝐸2, so 𝜙𝐽 ∘ 𝜙𝐼 is an endomor-
phism 𝛼 ∈ End(𝐸1), which is in 𝐼 because the endomorphisms factorizes through 𝜙𝐼 by
construction. It follows that 𝐽 = 𝐼 𝛼

𝑁(𝐼) , which is of norm 𝑁(𝛼)/𝑁(𝐼). So the goal is to find
𝛼 ∈ 𝐼 such that 𝑁(𝛼)/𝑁(𝐼) is of smooth norm.

The KLPT algorithm shows that, if End(𝐸1) is a special quadratic order (called special
extremal order), it is heuristically always possible to find (in polynomial time!) 𝛼 ∈ 𝐼 such
that 𝑁(𝛼)/𝑁(𝐼) = 𝑁 for any 𝑁 large enough: 𝑁 ≫ 𝑝3. A proven algorithm (under GRH)
was given in [Wes22], for 𝑁 = 𝑝𝐶 but with no explicit bound on 𝐶. An example of a
special extremal order is the elliptic curve 𝐸0 ∶ 𝑦2 = 𝑥3 − 𝑥 when 𝑝 ≡ 3 mod 4, whose
endomorphism ring contains ℤ[𝑖].

For the general case where 𝐸1 is not special extremal, one can instead build a smooth
connecting ideal 𝐽1 between 𝐸0 and 𝐸1, and another 𝐽2 between 𝐸0 and 𝐸2. Then 𝐽 = 𝐽2𝐽1 is
a smooth connecting ideal between 𝐸1 and 𝐸2. But we can only expect to find such a 𝐽 of
norm 𝑁 ≫ 𝑝6, because 𝑁(𝐽𝑖) ≫ 𝑝3.

Taking 𝑁 powersmooth, this gives an algorithm which is efficient in theory, but not in
practice (but see [EPSV] for several tricks). Indeed, the size of 𝑁 means that we cannot
expect to find rational 𝑁-torsion, we need to take field extensions.

C.2.2. Eichler orders. The first practical algorithm to convert an arbitrary ideal to an isogeny
was given in [DKLPW20]: using the theory of Eichler order, it is proven that one can (heuris-
tically) always find a smooth ideal 𝐽 connecting 𝐸1 and 𝐸2 of norm 𝑁 ≫ 𝑝4.5. More precisely,
let 𝐼0 be an ideal connecting 𝐸0 to 𝐸1. Then one can (heuristically) find an ideal 𝐽 equivalent
to 𝐼 and of norm 𝑁 as long as 𝑁 ≫ 𝑝1.5𝑁(𝐼)3𝑁(𝐼0)3. By Minkowski’s bound, the (reduced)
norm of the smallest ideal connecting two supersingular curves is in 𝑂(√𝑝). Replacing 𝐼 and
𝐼0 by small equivalent ideals, we obtain the 𝑝4.5 bound mentioned above. And the closer 𝐸1
is to 𝐸0 (compared to a uniform supersingular curve), the better the bound, up to 𝑝3 when
𝐸1 = 𝐸0.

Let us quickly explain how Eichler orders are used. Let 𝐸0 be a special extremal curve, and
𝐼0 the ideal connecting 𝐸0 to 𝐸1, and assume that it is coprime to 𝐼 for simplicity. Let 𝐼′ = 𝐼∗

0𝐼
be the pullback ideal of 𝐼 (in term of isogeny this corresponds to the isogeny 𝜙𝐼 ∶ 𝐸1 → 𝐸2
pullbacked to 𝜙𝐼′ ∶ 𝐸0 → 𝐸′

0 via 𝜙𝐼0
∶ 𝐸0 → 𝐸1). Since 𝐸0 is special extremal, by KLPT we

can find a nice equivalent ideal 𝐽′ to 𝐼′ of norm 𝑁 for 𝑁 ≈ 𝑝3. We thus have two isogenies:
𝜙𝐼′, 𝜙𝐽′ ∶ 𝐸0 → 𝐸′. But while 𝜙𝐼 ∶ 𝐸1 → 𝐸2 is the pushforward of 𝜙𝐼′ to 𝐸1, the pushforward
𝜙𝐽 of 𝜙𝐽′ to 𝐸1 may give an isogeny 𝐸1 → 𝐸′

2 with a different codomain than 𝐸2!
Let 𝐾 = 𝐸0[𝐼0] be the kernel of 𝜙𝐼0

∶ 𝐸0 → 𝐸1. We have an endomorphism 𝛼 = 𝜙𝐽′ ∘𝜙𝐼′ ,
and in term of ideals 𝐽′ = 𝐼′𝛼/𝑁(𝐼′). One can show that the codomain of 𝜙𝐽 is still the same
𝐸2 if and only if 𝛼(𝐾) = 𝐾 [Ler22b, Proposition 2.3.11]. Thus, for the above construction to
work, 𝐽′ cannot be taken to be any ideal equivalent to 𝐼′, it has to come from some 𝛼 such
that 𝛼(𝐾) = 𝐾.

The endomorphisms of 𝐸0 such that 𝛼(𝐾) = 𝐾 form precisely the Eichler order 𝑂 =
𝑂0 ∩ 𝑂1 where 𝑂0 = End(𝐸0) and 𝑂1 = End(𝐸1). We refer to [Ler22b; Arp22] for more
details on Eichler order and their relationship with kernel of isogenies.

On the efficient representation of isogenies 51

Thus the KLPT algorithm has to be adapted to sample elements 𝛼 that are in the Eichler
order 𝑂, in order for the pushfoward strategy to work. We refer to [Ler22b; DKLPW20] for
these algorithms, which give the bound described above.

C.3. Ideal to isogeny: splitting a large dimension one 2𝑒-isogeny. For practical instancia-
tion of KLPT, we would like to:

(1) Use smooth ideals with a very small smoothness bound, ideally take 𝑁 = 2𝑒

(2) Work over 𝔽𝑝2 and avoid taking any field extension.

Unfortunately, this cannot happen because, even with a carefully chosen 𝑝, 𝐸(𝔽𝑝2) =
(ℤ/(𝑝 ± 1)ℤ)2 can fit at most the 2𝑓 torsion with 2𝑓 ∣ 𝑝 ± 1. While the KLPT algorithm (the
improved version with Eichler orders) can only generate 2𝑒-isogenies with 2𝑒 ≈ 𝑝4.5.

C.3.1. Using 𝐸0 to refresh the torsion. As mentioned in Section 4.2, the first SQIsign paper
[DKLPW20] introduced the idea of splitting the large 2𝑒-isogeny into chunks of 2𝑓-isogenies.
First, select a 𝑝 with large available rational (over 𝔽𝑝2) 2𝑓-torsion, and search for 𝐽 equivalent
to 𝐼 of norm 2𝑒, 2𝑒 ≈ 𝑝15/4 (this is better than the bound of 𝑝4.5 above, because in the context
of SQIsign 𝐸1 is only at distance 𝑝1/4 from 𝐸0 and 𝑝3𝑝3/4 = 𝑝15/4 = 𝑝3.75).

If we split the isogeny 𝜙𝐽 into chunks of 2𝑓-isogenies, then 𝐽1 = 𝐽 + (2𝑓) is the ideal
corresponding to the first chunk: 𝜙𝐽1

∶ 𝐸1 → 𝐸1,1. Let 𝐽′ = 𝐽1,∗𝐽 the pushforward of 𝐽 by 𝐽1,
we now need to split 𝐽′ into chunks to evaluate the next step 𝜙𝐽2

∶ 𝐸1,1 → 𝐸1,2 from 𝐸1,1,
where 𝐽2 = 𝐽′ +(2𝑓). The problem is that to compute the next kernel, 𝐸1,1[𝐽2] = 𝐸1,1[2𝑓, 𝐽′],
we need to evaluate 𝐽′ on the 2𝑓-torsion, and we cannot go back to 𝐸1 because 𝐽1 is of reduced
norm 2𝑓, so we have “consumed” all our available torsion when we evaluated 𝜙𝐽1

.
We need to “refresh” the 2𝑓-torsion on 𝐸1,1. The solution in SQIsign is to build a 𝑇-isogeny

𝜙𝑇 ∶ 𝐸0 → 𝐸1,1 with 𝑇 smooth and odd. We can then use this isogeny from 𝐸0 to evaluate
the action of 𝐽′ on the 2𝑓-torsion of 𝐸1,1, since it is of degree coprime to 2𝑓. Since 𝐸0 is special
extremal we can build an isogeny 𝜙𝑇 as long as 𝑇 ≫ 𝑝3. This is still bigger than the available
torsion, but we are saved by two things.

The first one, is that in that case we already know the codomain 𝐸1,1, we don’t need to
construct it. This means that we can split 𝜙𝑇 in two: write 𝑇 = 𝑇1𝑇2, 𝜙𝑇 as 𝜙𝑇2

∘ 𝜙𝑇1
∶

𝐸0 → 𝐸′ → 𝐸1,1 for some random intermediate curve 𝐸′. We can compute 𝜙𝑇1
from its

kernel in 𝐸0[𝑇1], and 𝜙𝑇2
from its kernel in 𝐸1,1[𝑇2]. In that case, since 𝑇2 is odd we can

use 𝜙𝐽1
to go back to 𝐸1 to evaluate suitable endomorphisms on 𝐸1,1[𝑇2] to obtain Ker𝜙𝑇2

(in practice, by also using a suitable isogeny connecting 𝐸0 to 𝐸1). We then just need to glue
things in the middle at 𝐸′. This trick of splitting an isogeny in two, when both the domain
and codomain are already know is very useful, and allows to get a square factor in the amount
of effective available torsion (see Appendix B for the same trick for the HD representation).

So we can expect 𝑇1, 𝑇2 to be of size roughly 𝑝3/2, which is still bigger than 𝑝. The next
trick is to work both with the curves 𝐸0, 𝐸1,1 and their quadratic twists. This allows to have
both the 𝑝 − 1-torsion and the 𝑝 + 1-torsion available, while still working over 𝔽𝑝2 (the
only condition is to not use them at the same time, which would involve working over the
quadratic extension 𝔽𝑝4).

Example C.1. In the original SQIsign, one use available 2𝑓-torsion with 2𝑓 ≈ 𝑝1/8 (so that
the response is split into ≈ 30 blocks of 2𝑓-isogenies), and 𝑇2

1-torsion (i.e., 𝑇2 = 𝑇1) with
𝑇1 ≈ 𝑝3/2, split into one part dividing 𝑝 − 1 and the other part dividing 𝑝 + 1. There remain

52 DAMIEN ROBERT

approximatively ≈ 𝑝1/4 available torsion not used, because it is very hard to find such smooth
primes with smoothness conditions both on 𝑝 − 1 and 𝑝 + 1 already, see [BSC+23].

For a security parameter 𝜆, 𝑝 has size 2𝜆, and the signature has size around 23/2 ⋅ 𝜆.

C.3.2. Using an endomorphism to refresh the torsion. In [DLLW23], a novel idea is to use
an endomorphism 𝛾 of reduced norm 𝑇 on 𝐸1,1 instead to refresh the 2𝑓-torsion. This
endomorphism 𝛾 (which need to satisfy some technical conditions) can be evaluated from
the 2𝑓-isogeny 𝜙𝐽1

∶ 𝐸1 → 𝐸1,1 because 𝑇 is odd. The advantage compared to building a
𝑇-isogeny 𝐸0 → 𝐸1,1 is that one can find a suitable endomorphism 𝛾 of smooth norm 𝑇 for
𝑇 ≈ 𝑝2.5, compared to 𝑝3 for the isogeny; splitting it in two we only need accessible torsion
of size ≈ 𝑝1.25 compared to ≈ 𝑝1.5. This leaves more room for the rest of the torsion, makes
it easier to find good primes 𝑝, and allows to increase the available 2𝑓-torsion.

We briefly explain how the algorithm works. The idea is that we know the kernel 𝐾1
of the contragredient isogeny 𝐸1,1 → 𝐸1, it is given by 𝜙𝐽1

(𝐸1[2𝑓]). What we want is to
find the kernel 𝐾 = 𝐸1,1[𝐽2] of the next isogeny 𝐸1,1 → 𝐸1,2. If we can find an effective
representation of any endomorphism 𝛾 ∈ End(𝐸1,1) such that 𝛾(𝐾1) ∩ 𝐾1 = 0 (this
condition can be translated into the fact that 𝛾 should not be in some Eichler order), then by
linear algebra we can find an endomorphism 𝛾′ = 𝑎𝛾 + 𝑏 such that 𝛾′(𝐾1) = 𝐾. Evaluating
𝛾 on 𝐾1 thus allow us to find our next kernel 𝐾.

Example C.2. For SQIsign, using an endomorphism rather than an isogeny from 𝐸0 drops
the requirement on the smooth accessible torsion 𝑇 from 𝑇 ≈ 𝑝3/2 to 𝑇 ≈ 𝑝5/4. The
relaxed torsion requirement makes finding suitable 𝑝 easier and improves the signing time
by enabling the use of primes 𝑝 with 2𝑓 ≈ 𝑝1/4 accessible torsion, which increases the size
of each block of 2𝑓-isogenies and reduces the number of steps to ≈ 15. Furthermore, the
signature is compressed further and has size around 17/2 ⋅ 𝜆. See Appendix C.6.1 for more
details.

C.3.3. Using an endomorphism represented by a dimension 2 isogeny. In [Ler23b], using tools
from [CLP24], Leroux introduces the first version of an ideal to isogeny algorithm using the
newer HD representation. Namely, rather than searching for 𝛾 of smooth norm in order to
be able to evaluate it efficiently, he uses a dimension two 2𝑓-representation of 𝛾. As we have
seen in Section 5, an HD representation allows to efficiently represent any 𝛾 of odd norm
𝑇 < 2𝑓 (even non smooth), as long as we know how 𝛾 acts on the 2𝑓 torsion. In fact, by the
same splitting trick as above, we can work up to 𝛾 of norm 𝑇 < 22𝑓. Since we need to be
able to evaluate 𝛾 on the 2𝑓-torsion to obtain this representation, the only change is that 𝐽 is
taken to be a 3ℎ-isogeny rather than a 2𝑒-isogeny as previously, and it is split into chunks
of 3𝑔-isogenies rather than chunks of 2𝑓-isogeny. For instance, one can take 𝑝 = 2𝑓3𝑔𝑢 − 1
for a small cofactor 𝑢. Since we relax the smoothness bound on 𝛾, one can find a suitable
endomorphism 𝛾 of reduced norm 𝑇 ≈ 𝑝2/3. We thus only require 2𝑓 ≈ 𝑝1/3 to represent 𝛾,
leaving ample room for the chunks of 3𝑔-isogenies.

Rather than computing chunks of 3𝑔-isogenies in dimension 1, and using𝑇-endomorphisms
embedded in 2𝑓-isogenies in dimension 2, we could reverse the role of 2 and 3, but going
from 2-isogenies to 3-isogenies is less expensive in dimension 1 than dimension 2.

C.3.4. Using anHD representation for isogenies from𝐸0. A recent alternative, in [ON24], is to
go back to the original SQIsign protocol, using isogenies from𝐸0 rather than endomorphisms,
but like in [Ler23b] to use anHD representation to relax the smoothness requirement on these
isogenies, as was pioneered in SQIsignHD [DLRW24]. In that version, one take 𝑝 = 2𝑓𝑢 − 1

On the efficient representation of isogenies 53

for a small cofactor 𝑢, so that the full 2𝑓 ≈ 𝑝 is available, and we write 𝑓 = 𝑓1 + 𝑓2. The
isogeny 𝜙𝐽 is split into chunks of 2𝑓1-isogenies, and the refreshing isogenies 𝜙𝑇 ∶ 𝐸0 → 𝐸1,1
of degree 𝑇 are represented by anHD 2𝑓2-representation, which requires to be able to evaluate
𝜙𝑇 on the 2𝑓2-torsion.

Using a previously built isogeny 𝜙′
𝑇 ∶ 𝐸0 → 𝐸1, and the isogeny 𝜙𝐽1

∶ 𝐸1 → 𝐸1,1, we can
indeed recover the action of 𝜙𝑇 on the 2𝑓2-torsion: 𝜙𝐽1

is a 2𝑓1-isogeny, so only consumes
2𝑓1 out of our available 2𝑓1+𝑓2-torsion!

One can use a dimension 4 HD representation, like in SQIsignHD. This allows to split 𝜙𝑇
in two and allows to use any 𝑇 such that 𝑇 < 22𝑓2 . Or we can use the fact that 𝐸0 contains
ℤ[𝑖] to build a dimension two representation, which will bemore efficient that the dimension
four representation (see Remark 5.17); but we cannot split in two in this case, so we need
𝑇 < 2𝑓2. We already mentioned that Minkowski’s bound show that we can always find an
isogeny 𝜙𝑇 ∶ 𝐸0 → 𝐸1,1 of (non smooth) norm 𝑇 for 𝑇 = 𝑂(√𝑝). So even the dimension 2
representation leaves ample room to split 𝜙𝐽 into chunks of 2𝑓1-isogenies.

C.4. The Clapotis algorithm. Another recent alternative is given in [BDD+24], inspired
by the Clapoti(s) algorithm from [PR23b], see Example 6.13. It allows to directly convert
any isogeny 𝜙𝐼 ∶ 𝐸1 → 𝐸2 in one go by using a dimension 4 HD-representation embedding
at the same time two isogenies 𝜙𝐽1

, 𝜙𝐽2
∶ 𝐸1 → 𝐸2, with 𝑁(𝐽1) coprime to 𝑁(𝐽2). In other

words this algorithm builds a double path from 𝐸1 to 𝐸2 in one go by using a dimension 4
2𝑒-isogeny. The constraint on torsion is 2𝑒 ≈ 𝑁(𝐽1)𝑁(𝐽2), and taking small equivalent ideals
𝐽1, 𝐽2 ∼ 𝐼 we can have 𝑁(𝐽1)𝑁(𝐽2) ≈ 𝑝, which is barely enough to fit into the available
2𝑓-torsion (we cannot split in two in that case because we don’t know 𝐸2 yet). Then 𝜙𝐼 can be
recovered from this double path and the effective endomorphism representation End(𝐸1)
on 𝐸1.

In practice, it is better, as explained in [BDD+24], to build a double path between 𝐸0 and
𝐸1, and another between 𝐸0 and 𝐸2. Because End(𝐸0) contains ℤ[𝑖], which gives a lot of
small endomorphisms, this allows to find a dimension 2 representation of the double paths
(again, see Remark 5.17). This replaces the need to compute one dimension 4 isogeny by two
dimension 2 isogeny, which is much faster in practice.

Of course, the parameters given in the discussions above, like splitting a big 2𝑒-isogeny
into chunks of 2𝑓-isogeny, or using HD representations to embed 𝑇-isogenies into higher
dimensional 2𝑓-isogeny could be generalised to any 𝐵 ∣ 𝐵′ with 𝐵, 𝐵′ smooth (in our examples,
𝐵 = 2𝑓 and 𝐵′ = 2𝑒). This replaces the constraint of having accessible 2𝑓-torsion to having
accessible 𝐵-torsion. But 2𝑒-isogenies are the one we prefer to use in practice, because they
are the most convenient, especially in higher dimension. When we have the choice of the
prime 𝑝, so when building protocols, we might as well choose 𝑝 to have large accessible
2𝑓-torsion.

C.5. Improving KLPT?. From the diameter of the supersingular ℓ-isogeny graph, we know
that there exist isogenies of norm ℓ𝑒 ≈ 𝑝 between any two elliptic curves 𝐸1, 𝐸2. But currently
the KLPT algorithm, even using the improved variant via Eichler orders, can only generate
isogenies of norm ℓ𝑒 ≈ 𝑝4.5 for generic elliptic curves (for SQIsign the parameters allow
to reach ℓ𝑒 ≈ 𝑝15/4). This is too big to fit into the available 2𝑓-rational torsion, even taking
𝑝 = 𝑢2𝑓 − 1 a pseudo-Mersenne prime. So for the SQIsign signature, this large 2𝑒-isogeny
has to be split into chunks of 2𝑓-isogenies as we have seen. And even for the verification,

54 DAMIEN ROBERT

taking 𝑓 as large as possible like in AprèsSQI [CEMR24] (which impacts the signature time),
the verifier still has to compute several 2𝑓-isogenies in dimension 1 with 2𝑓 ≈ 𝑝.

By contrast, the Clapotis algorithm can directly convert the smallest ideal between 𝐸1 and
𝐸2, which is of norm ≈ √𝑝 (or less) by Minkowski’s theorem, and this ideal can be efficiently
found by the LLL algorithm. Hence the ideal can be converted into an isogeny in one step,
which drastically speeds up the signature; and the verification only needs a 2𝑒-isogeny in
dimension 2 with 2𝑒 ≈ √𝑝. From the current state of the art, it seems that computing this
smaller 2𝑒 ≈ √𝑝-isogeny for verification in dimension 2 is faster than computing a degree
2𝑒 ≈ 𝑝15/4 isogeny in dimension 1. Still, [CEMR24] gives several tricks using uncompressed
signatures and hints to speed up verification in dimension 1, so SQIsign might still stay
competitive with SQIsign2d for verification, thanks to AprèsSQI (but in any case the signature
will be much faster in SQIsign2d, see Appendix C.6).

However, being able to generate directly an equivalent smooth ideal 𝐽 of norm 2𝑒 ≈ 𝑝
would be enough to fit into the available 2𝑓-torsion, and allow to convert it into an isogeny in
one step, as is also currently done in the fourth generation, all the while staying in dimension 1
rather than going in dimension 2. The verification would also be faster: since we expect a
factor ≈ ×4 (at least) slowdown between dimension 1 and 2 as explained in Section 5.1, we
expect an isogeny of dimension 1 of norm ≈ 𝑝 to be at least twice as fast to compute as a
≈ √𝑝-isogeny in dimension 2.

C.6. The SQIsign family. We conclude this section by comparing different versions of
SQIsign (which use different generations of an ideal to isogeny algorithm), along with their
concrete instantiation for NIST level 1 (which means that the security parameter is 𝜆 = 128
bits). In all cases, for a security parameter 𝜆, we work with supersingular curves over 𝔽𝑝2

with 𝑝 of size 2𝜆.
We recall the general structure of the SQIsign identification protocol: the Prover wants

to prove the knowledge of a secret isogeny 𝜑sk ∶ 𝐸0 → 𝐸pk; where only the codomain 𝐸pk is
public. He computes a secret commitment isogeny 𝜑com ∶ 𝐸0 → 𝐸com, and publishes 𝐸com.
The verifier challenges by an isogeny 𝜑chl ∶ 𝐸pk → 𝐸chl. The prover responds by an isogeny
𝜑rsp ∶ 𝐸chl → 𝐸com connecting the challenge curve to the commitment curve. See for instance
[BDD+24] for more details.

𝐸0 𝜑sk
𝐸pk

𝜑com

𝐸com

𝜑rsp 𝐸chl

𝜑chl
Public
Secret

C.6.1. SQIsign. This is the version in [DKLPW20] with the improvements of [DLLW23].
This version uses dimension 1 both for the signature and the verification, and the signature
takes ≈ 17/2 ⋅ 𝜆 bits. The verification is reasonably fast but the signature is very slow, and is
very hard to implement in constant time due to the many operations on the quaternion side
required. Furthermore the security assumptions rely on many ad-hoc heuristics.

The public key is given by an isogeny of degree ≈ 𝑝1/4, which is not enough to reach the
whole supersingular keyspace (this would require a degree ≈ 𝑝1/2). In particular, it is not
statically uniform (a provable bound to reach the uniform distribution up to 2−𝜆 would even
require a degree ≈ 𝑝2). The commitment is a smooth isogeny of degree ≈ 𝑝. The response

On the efficient representation of isogenies 55

is an isogeny of degree 2𝑒 ≈ 𝑝3.75 which is split into 15 isogenies of degree 2𝑓 ≈ √𝑝. The
torsion is refreshed using 15 endomorphisms of smooth degree 𝑇 ≈ 𝑝5/4.

For the NIST submission, at level 1, we have 𝑝 with accessible 2𝑓-torsion and 𝑇-torsion
with 𝑓 = 75 and 𝑇 = 336 ⋅ 74 ⋅ 11 ⋅ 13 ⋅ 232 ⋅ 37 ⋅ 592 ⋅ 89 ⋅ 97 ⋅ 1012 ⋅ 107 ⋅ 1092 ⋅ 131 ⋅ 137 ⋅
1972 ⋅ 223 ⋅ 239 ⋅ 383 ⋅ 389 ⋅ 4912 ⋅ 499 ⋅ 607 ⋅ 7432 ⋅ 1033 ⋅ 1049 ⋅ 1193 ⋅ 19132 ⋅ 1973. The
commitment is of degree 𝑇/3𝑔 (𝑔 = 36), and the challenge is of degree 2𝑓3𝑔. The available 2𝑓

torsion is enough to split the response in 14 rather than 15, so the signature needs to compute
14 2𝑓-isogenies and 13 endomorphisms of degree 𝑇. The verification needs to compute the
challenge again along with the 14 2𝑓-isogenies in dimension 1. The signature takes 177 Bytes.

C.6.2. SQIsignHD. This is the version in [DLRW24], which actually describes two variants.
FastSQIsignHD: this version uses dimension 1 for the signature and dimension 4 for

the verification, and the signature takes ≈ 13/2 ⋅ 𝜆 bits. The prime 𝑝 is a SIDH prime of the
form 𝑝 = 2𝑓3𝑔 − 1, with 2𝑓 ≈ 3𝑔 ≈ √𝑝. The public key and commitment are generated by
a double path procedure, which generates a double path of degree 22𝑓 and 32𝑔 ≈ 𝑝 to the
same codomain. In practice, the double path is computed via three 2𝑓-isogenies and three
3𝑔-isogenies in dimension 1. This double path procedure is assumed to be computationally
uniform. The challenge is generated by an isogeny of degree 3𝑔. The response is an isogeny
of degree 𝑞 ≤ 22𝑒 such that 22𝑒 − 𝑞 is a sum of two squares, this allows to find a dimension 4
HD representation of this response. In practice, we take 2𝑒 ≈ log2(𝑝) + 16.

The signature only needs to compute the commitment, the challenge is represented by
its kernel, and the response by its action on the 2𝑓-torsion. The verification computes the
challenge from its kernel, and compute the response via its dimension 4 representation,
namely it needs to compute two 2𝑒-isogenies in dimension 4 with 𝑒 ≈ log2(𝑝)/2 + 8 ≤ 𝑓.

For NIST level 1, we have 𝑝 = 13 ⋅ 2126378 − 1, and the signature takes 109 Bytes.
The commitment needs three 2126-isogenies and three 378-isogenies in dimension 1.The
verification computes the challenge of degree 378 and checks the response via two 273-
isogenies in dimension 4.

RigorousSQIsignHD: this version uses dimension 1 for the signature and dimension 8
for verification. This version is optimised for security: the public key, and commitment are
provably statically uniform, and the zero knowledge property has a clean proof which relies
on a RADIO oracle. However, while this protocol is polynomial time with respect to the
security parameter 𝜆, it is much too slow to be used in practice and no serious instantiation
has been proposed.

Indeed, the public key, challenge and commitments are given by isogenies of degree
≈ 𝑝3, this requires accessible 𝑇-torsion with 𝑇 ≈ 𝑝3, hence imposes to work with field
extensions. The response is an isogeny of degree 𝑞 ≈ 𝑝2 ≤ 22𝑒, which will be computed
during the verification via two 2𝑒-isogenies in dimension 8, with 2𝑒 ≈ 𝑝. This imposes
to take 𝑝 = 𝑐2𝑒 − 1, and 𝑇 to be powersmooth. The signature thus needs to split large
degree isogenies into block of 𝑇-isogenies with the 𝑇-torsion defined over extensions, so
is much slower than in SQIsign. The verification needs to compute two 2𝑒 ≈ 𝑝-isogenies
in dimension 8, compared to FastSQIsignHD which only needs two 2𝑒 ≈ √𝑝-isogenies in
dimension 4. A 2𝑛-isogeny in dimension 8 is expected to be roughly 32 times slower than a
2𝑛-isogeny in dimension 4, so the verification time of RigorousSQIsignHD would also be
much slower than in FastSQIsignHD.

56 DAMIEN ROBERT

C.6.3. SQIsign2d. . In this section, wewill focus on the variant SQIsign2d-West of [BDD+24],
but see also [NO24; DF24]. This version has faster signature and verification times than
SQIsign, a shorter signature and a cleaner security proof.

The prime 𝑝 is chosen to be a Montgomery friendly prime of the form 𝑝 = 𝑐2𝑒 − 1 so
that the 2𝑒-torsion is accessible, with 2𝑒 ≈ 𝑝. The signature takes ≈ 8 ⋅ 𝜆 bits. The public
key is provably statically uniform and computed via the Clapotis version of the ideal to
isogeny algorithm applied a uniformly random ideal class. The Clapotis algorithm requires
one 2𝑒-isogeny in dimension 2, and between zero and two 2𝑓-isogenies in dimension 2, with
and 2𝑓 ≈ √𝑝, depending on the chosen trade off between work on the quaternion side and
on the isogeny side. The commitment is also statically uniform and use the same algorithm.
Like in RigorousSQIsignHD, there is a clean zero knowledge proof which relies on a slightly
different oracle.

Like in FastSQIsignHD the signature only generates the kernel of the challenge, which
is computed during the verification. This challenges is a 2𝑒-isogeny in dimension 1. The
verification also checks the response, via a 2𝑓-isogeny in dimension 2. Compared to FastSQI-
signHD, the signature step also needs to compute an auxiliary isogeny 𝛽 ∶ 𝐸chl → 𝐸aux of
appropriate degree to embed the response into a 2𝑓-isogeny Φ ∶ 𝐸chl × 𝐸aux → 𝐸com × 𝐸′

aux in
dimension 2, this is also done via the Clapotis version of the ideal to isogeny algorithm. More
precisely, it is Φ̃ which is computed first from the commitment curve and 𝛽′ ∶ 𝐸com → 𝐸′

𝑎𝑢𝑥,
and then Φ̃ is evaluated to recover Φ. The reason we want Φ rather than Φ̃ to embed the
response is to compress the signature by using commitment recoverability. See [BDD+24,
Figure 2] for the full diagram.

There is a slightly more heuristic version where the commitment is computed using the
QFESTA algorithm (Example 6.12) rather than Clapotis (Example 6.13), which is faster but
lack the provable statical uniform property. The challenge is also taken to be of degree 2𝑓,
this allows to compute 𝛽 hence Φ directly from 𝐸chl.

For NIST level 1, we have 𝑝 = 5 ⋅ 2248 − 1 and the signature takes 148 Bytes using hints
to speed up the verification. Removing hints could reduce the signature size up to 128 Bytes,
at the cost of a slight increase (5 to 10 percent) to the verification time.

The signature computes the commitment via Clapotis, which uses a 2248-isogeny and
two 2126-isogenies in dimension two. The auxiliary isogeny 𝛽′ is also generated by Clapotis,
this gives a 2126-isogeny Φ̃ in dimension 2, and computing it allows to recover Φ. The
verification computes the challenge, which is a 2248-isogeny in dimension one, and the
response is checked via a 2126-isogeny in dimension two.

In the heuristic version the commitment only needs one 2248-isogeny in dimension 2.
The challenge is a 2122-isogeny in dimension 1 which is computed during the verification.
This allows to build Φ directly from 𝛽, computed via Clapotis. This heuristic version gives a
signature roughly 60 percent faster than the cleaner version. The response is checked via a
2126-isogeny in dimension two too, so the verification time does not change much (only the
challenge is smaller).

The verification time of SQIsign2d is the fastest out of all the variants described in this
section, and the signature is only slightly slower and less compact than FastSQIsignHD
and much faster than SQIsign. But as explained in [BDD+24, Remark 24], we can adapt
FastSQIsignHD to the prime used in SQIsign2d, this gives an even faster signature time
than the original FastSQIsignHD. That version has a signature time roughly 3× faster than
the heuristic version of SQIsign2d. However, this comes at the cost of the verification time,
which needs to compute an isogeny in dimension 4 rather than 2, for an expected slow down
of roughly ×8.

On the efficient representation of isogenies 57

Appendix D. The class group of a non maximal order

Let 𝑅 be an order in some number field 𝐾, 𝑅0 be the maximal order of 𝐾, and 𝔣 the
conductor ideal of 𝑅: 𝔣 = (𝑅 ∶ 𝑅0). This is both an ideal in 𝑅 and in 𝑅0.

The conductor square

𝑅 𝑅0

𝑅/𝔣 𝑅0/𝔣

is a Milnor square (also called an excision datum): it is both a pullback and a pushforward.
In particular, Spec𝑅 = Spec𝑅0 ∐Spec𝑅0/𝔣 Spec𝑅/𝔣 is given by the gluing of Spec𝑅0 and

Spec𝑅/𝔣 over Spec𝑅0/𝔣. This is a pushout in the category of schemes, and gives an explicit
description of Spec𝑅 as a blow down of the regular scheme Spec𝑅0.

As shown byMilnor, finitely presented vector bundles (so in particular line bundles) satisfy
excision, which means that that to specify a line bundle ℒ on Spec𝑅 is the same thing as
specifying a line bundleℒ0 on Spec𝑅0 andℒ𝔣 on Spec𝑅/𝔣, alongwith an isomorphismℒ0 ≃
ℒ𝔣 over Spec𝑅0/𝔣. For vast generalisations of this result, see [BM21; EHIK21; AHHR24].

From this we obtain a Mayer-Vietoris exact sequence:

1 → 𝑈(𝑅) → 𝑈(𝑅/𝔣) ⊕ 𝑈(𝑅0) → 𝑈(𝑅0/𝔣) → Pic(𝑅) → Pic(𝑅0) ⊕ Pic(𝑅0/𝔣) → 0,

which gives the usual exact sequence between Pic(𝑅) and Cl(𝑅0):

(4) 1 → 𝑅∗
0/𝑅∗ → (𝑅0/𝔣)∗/(𝑅/𝔣)∗ → Pic(𝑅) → Cl(𝑅0) → 0.

This geometric derivation of Equation (4)might seem overkill, but it has the following nice
application for isogenies between elliptic curves. Let 𝜙 ∶ 𝐸1 → 𝐸2 be an horizontal isogeny
between 𝑅-oriented elliptic curves, so that 𝜙 = 𝜙𝐼 for some invertible ideal 𝐼 ∈ Pic(𝑅). The
conductor ideal 𝔣 of 𝑅 ⊂ 𝑅0 gives ascending isogenies 𝜙𝔣,1 ∶ 𝐸1 → 𝐸′

1 and 𝜙𝔣,2 ∶ 𝐸2 → 𝐸′
2.

Looking at the image 𝐼′ = 𝐼𝑅0 ∈ Cl(𝑅0) of 𝐼 under Equation (4), we also have an horizontal
isogeny 𝜙𝐼′ ∶ 𝐸′

1 → 𝐸′
2, which commutes with 𝜙𝐼 under the ascending isogenies (and in fact

is a pushforward: Ker𝜙𝔣,2 = 𝜙𝐼(Ker𝜙𝔣,1)).
Conversely, take some ideal class [𝐼′] ∈ Cl(𝑅0) represented by 𝐼′ giving some isogeny

𝜙𝐼′ ∶ 𝐸′
1 → 𝐸′

2. Let 𝐾1 be the kernel of the descending isogeny 𝜙𝔣,1 ∶ 𝐸′
1 → 𝐸1. If we take

𝐼′ to be of prime norm to the conductor of 𝑅, the image 𝐾2 = 𝜙𝐼′(𝐾1) of 𝐾1 by 𝜙𝐼′ is the
kernel of a descending isogeny 𝜙𝔣,2 ∶ 𝐸′

2 → 𝐸2, and we obtain an isogeny 𝜙𝐼 ∶ 𝐸1 → 𝐸2
completing the pushforward square. Changing the class of 𝐼′ amount to postcomposing by
an endomorphism 𝛼 ∶ 𝐸′

2 → 𝐸′
2; in general we obtain a different isogeny 𝐸1 → 𝐸2 unless

𝛼(𝐾2) = 𝐾2. We can thus reinterpret isogenies 𝐸1 → 𝐸2 as isogenies 𝐸′
1 → 𝐸′

2 with some
extra level structure information (namely the image of the kernel 𝐾1). In other words: 𝐸′

2 is
determined from 𝐸2 and 𝐾2, and it is also determined by the class of 𝐼. From the conductor
square, we know that the class of 𝐼 is determined by the class of some invertible ideal 𝐼′ in
𝑅0, along with some invertible ideal in 𝑅/𝔣 and some gluing data. But we know that 𝐸2 is
given by the class of 𝐼′, so this means that the data of 𝐾2 should correspond to some module
over 𝑅/𝔣. One can make this statement rigourous by using the fact that the usual ideal to
isogeny functor extends to modules, see Remark 4.1.

More generally, there are two ways to extend the usual relationship between ideals and
isogenies to include level structure information. The first is to consider ideals with respect
to a suborder whose conductor is related to the level structure. For instance, extending
the Deuring’s correspondence to keep track of the kernel of a specific isogeny 𝐸0 → 𝐸1

58 DAMIEN ROBERT

corresponds to looking at ideals in the Eichler order 𝑂0 ∩ 𝑂1. This is the point of view
adapted in [Ler22b; Arp22].

Another approach is to use again that the ideal to isogeny functor extend to modules.
For instance, if 𝑅 = End(𝐸), the map associated to the module 𝑅 ↪ 𝑅/𝐼 is the inclusion
𝐸[𝐼] ⊂ 𝐸; in particular 𝐸[𝑛] corresponds to the module 𝑅/𝑛𝑅. Keeping track of level
structure along isogenies corresponds to looking at modules over 𝑅 along with modules
over the endomorphism data of the level structure, with some compatible gluing conditions.
Again, the conductor square allows to go back and forth between the two approaches (for
sufficiently nice modules).

In other words, as argued in [PR23a], the module point of view, which extends the usual
relationship between ideals and isogenies (as described in Section 4), is very fruitful since
it can handle in a unified framework level structures and the higher dimensional isogeny
graph starting from 𝐸𝑔. And the geometric description of Spec𝑅 as an excision datum of
Spec𝑅0 and Spec𝑅/𝔣 over Spec𝑅0/𝔣 allows to better understand modules on 𝑅.

Appendix E. The Kodaira-Spencer isomorphism for abelian varieties

In this section, we briefly recall the Kodaira-Spencer isomorphism. IF 𝐴/𝑘 is an abelian
variety, the Kodaira-Spencer map is a canonial isomorphism between Sym2(𝑇0(𝐴)) and
the tangent 𝑇𝐴𝒜𝑔 to 𝐴 on the moduli space of principally polarised abelian varieties 𝒜𝑔. In
other words, deformations of 𝐴 are controlled by the Sym2 of differentials on 𝐴.

Let 𝑝∶ 𝐴 → 𝑆 be an abelian scheme over a smooth base. Recall that we have a canonical
flat connection on the De Rham (hyper)cohomology, the Gauss-Manin connection:

∇∶ 𝑅1𝑝∗Ω𝐴/𝑆 → 𝑅1𝑝∗Ω𝐴/𝑆 ⊗ Ω1
𝑆.

Combining the Gauss-Manin connection with the Hodge filtration, one can define the
Kodaira–Spencer map (see [And17, § 1.4; FC90, § III.9]):

𝜅∶ 𝑇𝑆 → 𝑅1𝑝∗𝑇𝐴/𝑆,

where 𝑇𝐴/𝑆 denotes the dual of Ω1
𝐴/𝑆. Since Lie𝑆 𝐴 = 𝑝∗𝑇𝐴/𝑆 = 𝑠∗𝑇𝐴𝑆

where 𝑠 ∶ 𝑆 → 𝐴 is
the zero section [EGM12, Prop. 3.15], by the projection formula [Stacks, Tag 0943], we have

𝑅1𝑝∗𝑇𝐴/𝑆 = Lie𝑆(𝐴) ⊗𝒪𝑆
𝑅1𝑝∗𝒪𝐴.

Moreover, 𝑅1𝑝∗𝒪𝐴 is naturally isomorphic to Lie𝑆(𝐴∨), where 𝐴∨ → 𝑆 denotes the dual
of 𝐴. Therefore, we can also write the Kodaira–Spencer map as

𝜅∶ 𝑇𝑆 → 𝑅1𝑝∗𝑇𝐴/𝑆 ≃ Lie𝑆(𝐴) ⊗𝒪𝑆
Lie𝑆(𝐴∨).

The Kodaira-Spencer map 𝜅 is invariant by duality. A polarization 𝐴 → 𝐴∨ induces another
version of the Kodaira–Spencer map:

𝜅∶ 𝑇𝑆 → Sym2 Lie𝑆(𝐴) = HomSym(Ω1
𝐴/𝑆, Ω1 ∨

𝐴∨/𝑆) = HomSym(Lie𝑆(𝐴)∨, Lie𝑆(𝐴∨)).

If we apply this construction to the universal abelian scheme 𝒳𝑔 → 𝒜𝑔, the Kodaira–
Spencer map is an isomorphism [And17, § 2.1.1]. In particular, if 𝑥∶ Spec 𝑘 → 𝒜𝑔 is a point
represented by a principally polarised abelian variety 𝐴/𝑘, we have a canonical isomorphism
𝑇𝑥𝒜𝑔 ≃ Sym2(𝑇0(𝐴)). Moreover, if 𝑗 is a modular invariant (i.e. a rational map 𝒜𝑔 → 𝔸1),
then via the Kodaira–Spencer isomorphism, its differential 𝑑𝑗 becomes a Siegel modular
function of weight Sym2.

https://stacks.math.columbia.edu/tag/0943

REFERENCES 59

Example E.1. In [KPR24], we use the Kodaire-Spencer isomorphism to work with deforma-
tion representations of isogenies in dimension 2.

Namely, if 𝐻 ∶ 𝑦2 = 𝑓 (𝑥) is an hyperelliptic curve, with deg 𝑓 = 6, we can asso-
ciate a canonical basis of differentials (𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦) on Jac(𝐻), via the canonical isomor-
phism Ω1(Jac(𝐶)) ≃ 𝐻1(𝐶). Then the curve equation gives a universal vectorial modular
(Jac(𝐻), 𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦) ↦ 𝑓 (𝑥) form of weight Sym6. If (𝑗1, 𝑗2, 𝑗3) are the Igusa invariants,
we can thus express the vectorial modular functions 𝑑𝑗1, 𝑑𝑗2, 𝑑𝑗3 of weight Sym2 in terms of
the coefficients of the curve equation 𝑓 (𝑥): explicit formulas are in [KPR24].

We can then proceed as in Section 3.3 to reconstruct an isogeny from the modular
polynomial: letting 𝐽 = (𝑗1, 𝑗2, 𝑗3), and Φℓ the modular polynomial(s) in dimension 2,
if Φℓ(𝐽(𝐴), 𝐽(𝐵)) = 0, differentiatig Φℓ gives the relationship between 𝑑𝐽(𝐴, 𝜔𝐴) and
𝑑𝐽(𝐵, 𝜔𝐵) where 𝜔𝐴, 𝜔𝐵 are normalised basis of differentials on 𝐴, 𝐵, i.e., if 𝜙 ∶ 𝐴 → 𝐵 is
the associated ℓ-isogeny, we have 𝜙∗𝜔𝐵 = 𝜔𝐴. Using the formulas expressing 𝑑𝐽 in terms of
the curve equation, we can find equations for 𝐻𝐴, 𝐻𝐵 such that the isogeny is normalised
with respect to the canonical basis (𝑑𝑥/𝑦, 𝑥𝑑𝑥/𝑦). We can then solve a differential equation
to recover 𝜙 in Mumford coordinates. See [Rob21, § 5.4.2] for a summary, and [KPR24] for
all details.

In theory, the heat equation

2𝜋𝑖(1 + 𝛿𝑗𝑘)
𝜕𝜃𝑖
𝜕𝜏𝑗𝑘

=
𝜕2𝜃𝑖

𝜕𝑧𝑗𝜕𝑧𝑘
.

gives the Kodaira-Spencer isomorphism for theta functions. So we could extend the approach
of [KPR24] to the theta model in higher dimension. The main problem is that the size of
the modular polynomial explodes in higher dimension (see [Kie22b] for bounds on the
degree and height). For instance, the Siegel modular polynomial in dimension 𝑔 is of size
𝑂(ℓ𝑁(𝑁+2)) where 𝑁 = 𝑔(𝑔 + 1)/2 is the dimension of the moduli space 𝒜𝑔; and the
evaluated modular polynomial Φℓ(𝐽(𝐴), 𝑌) for 𝐴/𝔽𝑞 is of size 𝑂(ℓ𝑁 log 𝑞). When 𝑔 = 1,
we recover that 𝜙ℓ is of size 𝑂(ℓ3), and the evaluated modular polynomial of size 𝑂(ℓ log 𝑞).
In dimension 2, the Siegel modular polynomial Φℓ is of size 𝑂(ℓ15), and the evaluated
modular polynomial is of size 𝑂(ℓ3 log 𝑞), but the best algorithm we have to evaluate it
[Kie20] uses analytic method and cost time 𝑂(ℓ6 log 𝑞), if 𝑞 = 𝑝 (see also [Rob22b] for CRT
and 𝑝-adic variants which use the HD representation). In dimension 3, the Siegel modular
polynomial Φℓ is of a staggering size 𝑂(ℓ48), and even the evaluated modular polynomial of
size 𝑂(ℓ6 log 𝑞).

In higher dimension, using Hilbert modular polynomials to parametrize 𝛽-isogenies,
with 𝑁(𝛽) = ℓ, is more reasonable: they take space 𝑂(ℓ𝑔+2) and their evaluation take space
𝑂(ℓ log 𝑞). We refer to [Kie22a; Kie21] for applications to point counting in dimension 2.

References

[ADMP20] N. Alamati, L. De Feo, H. Montgomery, and S. Patranabis. “Cryptographic
group actions and applications”. In: Advances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of Cryp-
tology and Information Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part II 26. Springer. 2020, pp. 411–439 (cit. on p. 23).

60 REFERENCES

[AHHR24] J. Alper, J. Hall, D. Halpern-Leistner, and D. Rydh. “Artin algebraization for
pairs with applications to the local structure of stacks and Ferrand pushouts”.
In: Forum of Mathematics, Sigma. Vol. 12. Cambridge University Press.
2024, e20 (cit. on p. 57).

[And17] Y. André. “On the Kodaira–Spencer map of abelian schemes”. In: Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5) 17.4 (2017), pp. 1397–1416 (cit. on p. 58).

[Arp22] S. Arpin. “Adding level structure to supersingular elliptic curve isogeny
graphs”. In: arXiv preprint arXiv:2203.03531 (2022) (cit. on pp. 50, 58).

[ACL+23] S. Arpin, C. Camacho-Navarro, K. Lauter, J. Lim, K. Nelson, T. Scholl, and J.
Sotáková. “Adventures in supersingularland”. In: Experimental Mathematics
32.2 (2023), pp. 241–268 (cit. on p. 21).

[ACL+22] S. Arpin, M. Chen, K. E. Lauter, R. Scheidler, K. E. Stange, and H. T. Tran.
“Orientations and cycles in supersingular isogeny graphs”. In: Proceedings of
Women in Number Theory 5 (2022) (cit. on p. 21).

[ACD+23] S. Arpin, J. Clements, P. Dartois, J. K. Eriksen, P. Kutas, and B. Wesolowski.
“Finding orientations of supersingular elliptic curves and quaternion orders”.
In: arXiv preprint arXiv:2308.11539 (2023) (cit. on p. 1).

[BGDS23] G. Banegas, V. Gilchrist, A. L. Dévéhat, and B. Smith. “Fast and Frobenius:
Rational Isogeny Evaluation over Finite Fields”. In: International Conference
on Cryptology and Information Security in Latin America. Springer. 2023,
pp. 129–148 (cit. on pp. 18, 45).

[Bas24] A. Basso. “POKE: A Framework for Efficient PKEs, Split KEMs, and OPRFs
from Higher-dimensional Isogenies”. In: Cryptology ePrint Archive (2024)
(cit. on pp. 1, 27, 40).

[BCC+23] A. Basso, G. Codogni, D. Connolly, L. De Feo, T. B. Fouotsa, G. M. Lido,
T. Morrison, L. Panny, S. Patranabis, and B. Wesolowski. “Supersingular
curves you can trust”. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer. 2023, pp. 405–437
(cit. on pp. 27, 40).

[BDD+24] A. Basso, L. De Feo, P. Dartois, A. Leroux, L. Maino, G. Pope, D. Robert,
and B. Wesolowski. “SQIsign2D-West: The Fast, the Small, and the Safer”.
Accepted for publication at Asiacrypt 2024. Aug. 2024 (cit. on pp. 1, 22, 30,
35, 39, 53, 54, 56).

[BMP23] A. Basso, L.Maino, andG. Pope. “FESTA: fast encryption from supersingular
torsion attacks”. In: International Conference on the Theory and Application
of Cryptology and Information Security. Springer. 2023, pp. 98–126 (cit. on
pp. 1, 27).

[BDLS20] D. Bernstein, L. De Feo, A. Leroux, and B. Smith. “Faster computation of
isogenies of large prime degree”. In: Algorithmic Number Theory Symposium
(ANTS XIV). Vol. 4. 1. Mathematical Sciences Publishers, 2020, pp. 39–55.
arXiv: 2003.10118. url: https://msp.org/obs/2020/4/p04.xhtml
(cit. on pp. 5, 11, 31).

[BDGP23] W. Beullens, L. De Feo, S. D. Galbraith, and C. Petit. “Proving knowledge
of isogenies: a survey”. In: Designs, Codes and Cryptography 91.11 (2023),
pp. 3425–3456 (cit. on p. 41).

https://asiacrypt.iacr.org/2024/
https://arxiv.org/abs/2003.10118
https://msp.org/obs/2020/4/p04.xhtml

REFERENCES 61

[BKV19] W. Beullens, T. Kleinjung, and F. Vercauteren. “CSI-FiSh: efficient isogeny
based signatures through class group computations”. In: International Con-
ference on theTheory and Application of Cryptology and Information Security.
Springer. 2019, pp. 227–247 (cit. on pp. 23, 24).

[BM21] B. Bhatt and A. Mathew. “The arc-topology”. In:Duke Mathematical Journal
170.9 (2021), pp. 1899–1988 (cit. on p. 57).

[BCR10] G. Bisson, R. Cosset, andD. Robert. AVIsogenies. Magma package devoted to
the computation of isogenies between abelian varieties. 2010. url: https:
/ / www . math . u - bordeaux . fr / ~damienrobert / avisogenies/. Free
software (LGPLv2+), registered to APP (reference IDDN.FR.001.440011.-
000.R.P.2010.000.10000). Latest version 0.7, released on 2021-03-13. (Cit.
on p. 28).

[BMSS08] A. Bostan, F. Morain, B. Salvy, and E. Schost. “Fast algorithms for computing
isogenies between elliptic curves”. In: Mathematics of Computation 77.263
(2008), pp. 1755–1778 (cit. on pp. 13, 16).

[BCG+17] A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, and É.
Schost. Algorithmes efficaces en calcul formel. Published by the authors,
2017. url: https://hal.inria.fr/hal-01431717/document (cit. on
pp. 6, 12).

[BDDFS19] L. Brieulle, L. De Feo, J. Doliskani, J.-P. Flori, and É. Schost. “Computing iso-
morphisms and embeddings of finite fields”. In:Mathematics of Computation
88.317 (2019), pp. 1391–1426 (cit. on p. 44).

[BLS12] R. Bröker, K. Lauter, and A. Sutherland. “Modular polynomials via isogeny
volcanoes”. In: Mathematics of Computation 81.278 (2012), pp. 1201–1231.
arXiv: 1001.0402 (cit. on p. 16).

[BFT14] N. Bruin, E. V. Flynn, and D. Testa. “Descent via (3, 3)-isogeny on Jacobians
of genus 2 curves”. In: Acta Arithmetica 165.3 (2014), pp. 201–223 (cit. on
p. 29).

[BSC+23] G. Bruno, M. C.-R. Santos, C. Costello, J. K. Eriksen, M. Meyer, M. Naehrig,
and B. Sterner. “Cryptographic smooth neighbors”. In: International Confer-
ence on the Theory and Application of Cryptology and Information Security.
Springer. 2023, pp. 190–221 (cit. on p. 52).

[CF+96] J. W. S. Cassels, E. V. Flynn, et al. Prolegomena to a middlebrow arithmetic
of curves of genus 2. Vol. 230. Cambridge University Press, 1996 (cit. on
pp. 29, 31).

[CD21] W. Castryck and T. Decru. “Multiradical isogenies”. In:Arithmetic, Geometry,
Cryptography, and Coding Theory 779 (2021), pp. 57–89 (cit. on p. 12).

[CD22] W. Castryck and T. Decru. An efficient key recovery attack on SIDH (pre-
liminary version). Cryptology ePrint Archive, Paper 2022/975. 2022. url:
https://eprint.iacr.org/2022/975 (cit. on p. 1).

[CD23] W. Castryck and T. Decru. “An efficient key recovery attack on SIDH”. In:
Springer-Verlag (Eurocrypt 2023), Apr. 2023, pp. 423–447. doi: 10.1007/
978-3-031-30589-4_15 (cit. on pp. 1, 2, 26).

[CDHV22] W. Castryck, T. Decru, M. Houben, and F. Vercauteren. “Horizontal race-
walking using radical isogenies”. In: International Conference on the Theory
and Application of Cryptology and Information Security (Asiacrypt). Springer.
2022, pp. 67–96 (cit. on p. 12).

https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/
https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/
https://hal.inria.fr/hal-01431717/document
https://arxiv.org/abs/1001.0402
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15

62 REFERENCES

[CDM+24] W. Castryck, T. Decru, L.Maino, C.Martindale, L. Panny, G. Pope, D. Robert,
and B. Wesolowski. “Interpolating isogenies and breaking the SIDH cryp-
tosystem”. June 2024 (cit. on pp. 7, 26).

[CDV20] W. Castryck, T. Decru, and F. Vercauteren. “Radical isogenies”. In: Inter-
national Conference on the Theory and Application of Cryptology and Infor-
mation Security (Asiacrypt). Lecture Notes in Computer Sciencie 12492.
Springer. 2020, pp. 493–519 (cit. on p. 12).

[CLMPR18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. “CSIDH:
an efficient post-quantum commutative group action”. In: International
Conference on the Theory and Application of Cryptology and Information
Security (Asiacrypt 2018). Springer. 2018, pp. 395–427 (cit. on pp. 19, 23).

[CLG09] D. Charles, K. Lauter, and E. Goren. “Cryptographic hash functions from
expander graphs”. In: Journal of Cryptology 22.1 (2009), pp. 93–113. issn:
0933-2790 (cit. on p. 11).

[CII+23] M. Chen, M. Imran, G. Ivanyos, P. Kutas, A. Leroux, and C. Petit. “Hidden
stabilizers, the isogeny to endomorphism ring problem and the cryptanalysis
of pSIDH”. In: International Conference on the Theory and Application of
Cryptology and Information Security. Springer. 2023, pp. 99–130 (cit. on
p. 43).

[CLP24] M. Chen, A. Leroux, and L. Panny. “SCALLOP-HD: group action from
2-dimensional isogenies”. In: IACR International Conference on Public-Key
Cryptography. Springer. 2024, pp. 190–216 (cit. on pp. 1, 8, 25, 52).

[CS21] M. Chenu and B. Smith. “Higher-degree supersingular group actions”. In:
arXiv preprint arXiv:2107.08832 (2021) (cit. on p. 20).

[CC86] D. Chudnovsky and G. Chudnovsky. “Sequences of numbers generated by
addition in formal groups and new primality and factorization tests”. In:
Advances in Applied Mathematics 7.4 (1986), pp. 385–434. issn: 0196-8858.
doi: https://doi.org/10.1016/0196-8858(86)90023-0 (cit. on p. 30).

[CL23] G. Codogni and G. Lido. “Spectral theory of isogeny graphs”. In: arXiv
preprint arXiv:2308.13913 (2023) (cit. on p. 27).

[CK20] L. Colo and D. Kohel. “Orienting supersingular isogeny graphs”. In: Journal
of Mathematical Cryptology 14.1 (2020), pp. 414–437 (cit. on p. 20).

[Cor07] G.Cornacchia. Su di unmetodo per la risoluzione in numeri interi dell’equazione
∑𝑛

ℎ=0 𝐶ℎ𝑥𝑛−ℎ𝑦ℎ = 𝑃. Vol. 46. 1907, pp. 33–90 (cit. on p. 34).
[CCS24] M. Corte-Real Santos, C. Costello, and B. Smith. “Efficient (3, 3)-isogenies

on fast Kummer surfaces”. In: arXiv preprint arXiv:2402.01223 (2024) (cit. on
pp. 29, 30).

[CEMR24] M. Corte-Real Santos, J. K. Eriksen, M. Meyer, and K. Reijnders. “AprésSQI:
extra fast verification for SQIsign using extension-field signing”. In: Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2024, pp. 63–93 (cit. on pp. 46, 54).

[CR24] M. Corte-Real Santos and K. Reijnders. Return of the Kummer: a toolbox for
genus 2 cryptography. Cryptology ePrint Archive, Paper 2024/948. 2024.
url: https://eprint.iacr.org/2024/948 (cit. on p. 31).

[CR15] R. Cosset and D. Robert. “An algorithm for computing (ℓ, ℓ)-isogenies
in polynomial time on Jacobians of hyperelliptic curves of genus 2”. In:
Mathematics of Computation 84.294 (Nov. 2015), pp. 1953–1975. doi:
10.1090/S0025-5718-2014-02899-8 (cit. on pp. 2, 28).

https://doi.org/https://doi.org/10.1016/0196-8858(86)90023-0
https://eprint.iacr.org/2024/948
https://doi.org/10.1090/S0025-5718-2014-02899-8

REFERENCES 63

[CMSV19] E. Costa, N. Mascot, J. Sijsling, and J. Voight. “Rigorous computation of the
endomorphism ring of a Jacobian”. In: Mathematics of Computation 88.317
(2019), pp. 1303–1339 (cit. on p. 31).

[Cos18] C. Costello. “Computing supersingular isogenies on Kummer surfaces”. In:
Advances in Cryptology–ASIACRYPT 2018: 24th International Conference on
the Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2–6, 2018, Proceedings, Part III 24. Springer. 2018,
pp. 428–456 (cit. on p. 31).

[CJL+17] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik. “Efficient
compression of SIDH public keys”. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer. 2017,
pp. 679–706 (cit. on p. 46).

[Cou09] J. Couveignes. “Linearizing torsion classes in the Picard group of algebraic
curves over finite fields”. In: Journal of Algebra 321.8 (2009), pp. 2085–2118.
issn: 0021-8693 (cit. on p. 45).

[Cou06] J. M. Couveignes. “Hard Homogeneous Spaces.” In: IACR Cryptology ePrint
Archive 2006 (2006), p. 291 (cit. on p. 19).

[CE14] J.-M. Couveignes and T. Ezome. “Computing functions on Jacobians and
their quotients”. In: LMS Journal of Computation and Mathematics 18.1
(2014), pp. 555–577. arXiv: 1409.0481 (cit. on pp. 29, 31).

[Dar24] P. Dartois. “Fast computation of 2-isogenies in dimension 4 with the theta
model and cryptographic applications”. 2024 (cit. on pp. 30, 48).

[DLRW24] P. Dartois, A. Leroux, D. Robert, and B. Wesolowski. “SQISignHD: New
Dimensions in Cryptography”. In: LectureNotes in Computer Science 14651
(May 2024). Ed. by M. Joye and G. Leander, pp. 3–32. doi: 10.1007/978-3-
031-58716-0_1 (cit. on pp. 1, 7, 8, 22, 29, 30, 47, 48, 52, 55).

[DMPR24] P. Dartois, L. Maino, G. Pope, and D. Robert. “An Algorithmic Approach
to (2, 2)-isogenies in the Theta Model and Applications to Isogeny-based
Cryptography”. Accepted for publication at Asiacrypt 2024. Aug. 2024
(cit. on pp. 2, 29, 30, 48).

[De 17] L. De Feo. Mathematics of Isogeny Based Cryptography. 2017. arXiv:
1711.04062 (cit. on p. 20).

[DDGZ22] L. De Feo, S. Dobson, S. D. Galbraith, and L. Zobernig. “SIDH proof of
knowledge”. In: International Conference on the Theory and Application of
Cryptology and Information Security. Springer. 2022, pp. 310–339 (cit. on
pp. 40, 41).

[DDS14] L. De Feo, J. Doliskani, and É. Schost. “Fast arithmetic for the algebraic
closure of finite fields”. In: Proceedings of the 39th International Symposium
on Symbolic and Algebraic Computation. 2014, pp. 122–129 (cit. on p. 43).

[DFP24] L. De Feo, T. B. Fouotsa, and L. Panny. “Isogeny problems with level struc-
ture”. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 2024, pp. 181–204 (cit. on pp. 27, 41).

[DG19] L. De Feo and S. D. Galbraith. “SeaSign: compact isogeny signatures from
class group actions”. In: Advances in Cryptology–EUROCRYPT 2019: 38th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings,
Part III 38. Springer. 2019, pp. 759–789 (cit. on p. 23).

https://arxiv.org/abs/1409.0481
https://doi.org/10.1007/978-3-031-58716-0_1
https://doi.org/10.1007/978-3-031-58716-0_1
https://asiacrypt.iacr.org/2024/
https://arxiv.org/abs/1711.04062

64 REFERENCES

[DHPS16] L. De Feo, C. Hugounenq, J. Plût, and É. Schost. “Explicit isogenies in
quadratic time in any characteristic”. In: LMS Journal of Computation and
Mathematics 19.A (2016), pp. 267–282 (cit. on p. 16).

[DJP14] L. De Feo, D. Jao, and J. Plût. “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies”. In: Journal of Mathematical
Cryptology 8.3 (2014), pp. 209–247 (cit. on pp. 1, 17).

[DKS18] L. De Feo, J. Kieffer, and B. Smith. “Towards practical key exchange from
ordinary isogeny graphs”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 2018, pp. 365–
394. arXiv: 1809.07543 (cit. on p. 19).

[DKLPW20] L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. “SQISign:
compact post-quantum signatures from quaternions and isogenies”. In:
International Conference on the Theory and Application of Cryptology and
Information Security (Asiacrypt 2020). Springer. 2020, pp. 64–93 (cit. on
pp. 3, 21, 50, 51, 54).

[DLLW23] L. De Feo, A. Leroux, P. Longa, and B. Wesolowski. “New algorithms for
the Deuring correspondence: towards practical and secure SQISign signa-
tures”. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer. 2023, pp. 659–690 (cit. on pp. 3, 22,
52, 54).

[Dec24] T. Decru. “Radical Vélu N-Isogeny Formulae”. In: Annual International
Cryptology Conference (Eurocrypt). Springer. 2024, pp. 107–128 (cit. on
p. 12).

[DK23] T. Decru and S. Kunzweiler. “Efficient Computation of (3 n, 3 n)-Isogenies”.
In: International Conference on Cryptology in Africa. Springer. 2023, pp. 53–
78 (cit. on p. 30).

[DMS23] T. Decru, L. Maino, and A. Sanso. “Towards a quantum-resistant weak
verifiable delay function”. In: International Conference on Cryptology and
Information Security in Latin America. Springer. 2023, pp. 149–168 (cit. on
p. 1).

[DHK+23] J. Duman, D. Hartmann, E. Kiltz, S. Kunzweiler, J. Lehmann, and D. Riepel.
“Generic models for group actions”. In: IACR International Conference on
Public-Key Cryptography. Springer. 2023, pp. 406–435 (cit. on p. 23).

[DF24] M.Duparc andT. B. Fouotsa. “SQIPrime:Adimension 2 variant of SQISignHD
with non-smooth challenge isogenies”. In: Cryptology ePrint Archive (2024)
(cit. on pp. 1, 22, 30, 35, 56).

[DFV24] M. Duparc, T. B. Fouotsa, and S. Vaudenay. “Silbe: an updatable public
key encryption scheme from lollipop attacks”. In: Cryptology ePrint Archive
(2024) (cit. on p. 1).

[EGM12] B. Edixhoven, G. van der Geer, and B. Moonen. Abelian varieties. Book
project, 2012. url: http://van-der-geer.nl/~gerard/AV.pdf (cit. on
p. 58).

[ES24] K. Eisentraeger and G. Scullard. “Connecting Kani’s Lemma and path-
finding in the Bruhat-Tits tree to compute supersingular endomorphism
rings”. In: (2024). arXiv: 2402.05059 (cit. on pp. 1, 37).

[EHLMP18] K. Eisenträger, S. Hallgren, K. Lauter, T. Morrison, and C. Petit. “Supersin-
gular isogeny graphs and endomorphism rings: reductions and solutions”.
In: Advances in Cryptology–EUROCRYPT 2018: 37th Annual International

https://arxiv.org/abs/1809.07543
http://van-der-geer.nl/~gerard/AV.pdf
https://arxiv.org/abs/2402.05059

REFERENCES 65

Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29-May 3, 2018 Proceedings, Part III 37. Springer. 2018,
pp. 329–368 (cit. on p. 21).

[Elk92] N. Elkies. “Explicit isogenies”. In: manuscript, Boston MA (1992) (cit. on
p. 16).

[Elk97] N. Elkies. “Elliptic and modular curves over finite fields and related compu-
tational issues”. In:Computational perspectives on number theory: proceedings
of a conference in honor of AOL Atkin, September 1995, University of Illinois
at Chicago. Vol. 7. Amer Mathematical Society. 1997, p. 21 (cit. on p. 16).

[EHIK21] E. Elmanto, M. Hoyois, R. Iwasa, and S. Kelly. “Cdh descent, cdarc descent,
and Milnor excision”. In: Mathematische Annalen 379.3 (2021), pp. 1011–
1045 (cit. on p. 57).

[Eng09] A. Enge. “Computing modular polynomials in quasi-linear time”. In: Math.
Comp 78.267 (2009), pp. 1809–1824 (cit. on p. 16).

[EPSV] J. K. Eriksen, L. Panny, J. Sotáková, and M. Veroni. “Deuring for the people:
Supersingular elliptic curves with prescribed endomorphism ring in general
characteristic”. In: Contempory Mathematics 796 (). LuCaNT: LMFDB,
computation, and number theory (Providence), Proceedings, pp. 339–373
(cit. on pp. 18, 46, 50).

[FC90] G. Faltings and C.-L. Chai. Degeneration of abelian varieties. Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) 22. Springer-Verlag, Berlin, 1990
(cit. on p. 58).

[Feo10] L. de Feo. “Algorithmes Rapides pour les Tours de Corps Finis et les
Isogénies”. PhD thesis. Ecole Polytechnique X, Dec. 2010. url: http:
//hal.inria.fr/tel-00547034/en (cit. on p. 10).

[FFK+23] L. D. Feo, T. B. Fouotsa, P. Kutas, A. Leroux, S.-P. Merz, L. Panny, and B.
Wesolowski. “SCALLOP: scaling the CSI-FiSh”. In: IACR International
Conference on Public-Key Cryptography. Springer. 2023, pp. 345–375 (cit.
on pp. 20, 25).

[Fly15] E. V. Flynn. “Descent via (5, 5)-isogeny on Jacobians of genus 2 curves”. In:
Journal of Number Theory 153 (2015), pp. 270–282 (cit. on p. 29).

[Fly93] E. V. Flynn. “The group law on the jacobian of a curve of genus 2.” In:
Journal für die reine und angewandte Mathematik 439 (1993), pp. 45–69
(cit. on p. 29).

[FMP23] T. B. Fouotsa, T. Moriya, and C. Petit. “M-SIDH and MD-SIDH: countering
SIDH attacks by masking information”. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer. 2023,
pp. 282–309 (cit. on p. 27).

[FM02] M. Fouquet and F. Morain. “Isogeny volcanoes and the SEA algorithm”.
In: Algorithmic number theory (Sydney, 2002). Vol. 2369. Lecture Notes in
Comput. Sci. Berlin: Springer, 2002, pp. 276–291. doi: 10.1007/3-540-
45455-1_23 (cit. on p. 18).

[FK11] G. Frey and E. Kani. “Correspondences on hyperelliptic curves and ap-
plications to the discrete logarithm”. In: International Joint Conferences on
Security and Intelligent Information Systems. Springer. 2011, pp. 1–19 (cit. on
p. 29).

http://hal.inria.fr/tel-00547034/en
http://hal.inria.fr/tel-00547034/en
https://doi.org/10.1007/3-540-45455-1_23
https://doi.org/10.1007/3-540-45455-1_23

66 REFERENCES

[Gal24] S. Galbraith. Climbing and descending tall volcanos. Cryptology ePrint
Archive, Paper 2024/924. 2024. url: https://eprint.iacr.org/2024/
924 (cit. on pp. 1, 43).

[Gau07] P. Gaudry. “Fast genus 2 arithmetic based on Theta functions”. In: Journal
of Mathematical Cryptology 1.3 (2007), pp. 243–265 (cit. on p. 30).

[GL09] P. Gaudry and D. Lubicz. “The arithmetic of characteristic 2 Kummer
surfaces and of elliptic Kummer lines”. In: Finite Fields andTheir Applications
15.2 (2009), pp. 246–260 (cit. on p. 28).

[GPV24] W. Ghantous, F. Pintore, and M. Veroni. “Efficiency of SIDH-based sig-
natures (yes, SIDH)”. In: Journal of Mathematical Cryptology 18.1 (2024),
p. 20230023 (cit. on p. 40).

[HR19] H.Hisil and J. Renes. “On kummer lines with full rational 2-torsion and their
usage in cryptography”. In: ACM Transactions on Mathematical Software
(TOMS) 45.4 (2019), pp. 1–17 (cit. on p. 30).

[Ill79] L. Illusie. “Complexe de de Rham-Witt et cohomologie cristalline”. In:
Annales scientifiques de l’École Normale Supérieure. Vol. 12. 4. 1979, pp. 501–
661 (cit. on p. 15).

[JD11] D. Jao and L. De Feo. “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies”. In: International Workshop on Post-
Quantum Cryptography (PQCrypto 2011). Springer. 2011, pp. 19–34 (cit. on
p. 1).

[JKP+18] B. W. Jordan, A. G. Keeton, B. Poonen, E. M. Rains, N. Shepherd-Barron,
and J. T. Tate. “Abelian varieties isogenous to a power of an elliptic curve”.
In: Compositio Mathematica 154.5 (2018), pp. 934–959 (cit. on p. 20).

[Kan97] E. Kani. “The number of curves of genus two with elliptic differentials.” In:
Journal für die reine und angewandte Mathematik 485 (1997), pp. 93–122
(cit. on pp. 1, 7, 32).

[Kan11] E. Kani. “Products of CM elliptic curves”. In: Collectanea mathematica 62.3
(2011), pp. 297–339 (cit. on p. 19).

[KU11] K. S. Kedlaya and C. Umans. “Fast polynomial factorization and modular
composition”. In: SIAM Journal on Computing 40.6 (2011), pp. 1767–1802
(cit. on pp. 18, 31, 44, 45).

[Kem88] G. Kempf. “Multiplication over abelian varieties”. In: American Journal of
Mathematics 110.4 (1988), pp. 765–773 (cit. on p. 28).

[Kem89a] G. Kempf. “Linear systems on abelian varieties”. In: American Journal of
Mathematics 111.1 (1989), pp. 65–94 (cit. on p. 28).

[Kem92] G. Kempf. “Equations of Kümmer Varieties”. In: American Journal of
Mathematics 114.1 (1992), pp. 229–232 (cit. on p. 28).

[Kem89b] G. Kempf. “Projective coordinate rings of abelian varieties”. In: Algebraic
analysis, geometry and number theory (1989), pp. 225–236 (cit. on p. 28).

[Kem90] G. R. Kempf. “Some wonderful rings in algebraic geometry”. In: Journal of
Algebra 134.1 (1990), pp. 222–224 (cit. on p. 28).

[Kie20] J. Kieffer. “Evaluating modular polynomials in genus 2”. 2020. arXiv:
2010.10094 [math.NT]. HAL: hal-02971326. (Cit. on pp. 16, 59).

[Kie21] J. Kieffer. “Higher-dimensional modular equations, applications to isogeny
computations and point counting”. Thèse de doctorat dirigée par Damien
Robert, Mathématiques Pures, Université de Bordeaux. PhD thesis. 2021.
url: http://www.theses.fr/2021BORD0188 (cit. on p. 59).

https://eprint.iacr.org/2024/924
https://eprint.iacr.org/2024/924
https://arxiv.org/abs/2010.10094
http://hal.archives-ouvertes.fr/hal-02971326
http://www.theses.fr/2021BORD0188

REFERENCES 67

[Kie22a] J. Kieffer. “Counting points on abelian surfaces over finite fields with Elkies’s
method”. In: (2022). arXiv: 2203.02009 [math.NT] (cit. on p. 59).

[Kie22b] J. Kieffer. “Degree and height estimates for modular equations on PEL
Shimura varieties”. 2022 (cit. on p. 59).

[KPR24] J. Kieffer, A. Page, and D. Robert. “Computing isogenies from modular
equations between Jacobians of genus 2 curves”. Accepted for publication
at Journal of Algebra. June 2024. arXiv: 2001.04137 [math.AG] (cit. on
pp. 14, 16, 31, 59).

[KR22] J. Kieffer and D. Robert. “Fast evaluation of modular polynomials and
compact representation of isogenies between elliptic curves”. Aug. 2022
(cit. on p. 13).

[KNRR21] M. Kirschmer, F. Narbonne, C. Ritzenthaler, and D. Robert. “Spanning the
isogeny class of a power of an elliptic curve”. In:Mathematics of Computation
91.333 (Sept. 2021), pp. 401–449. doi: 10 . 1090 / mcom / 3672. arXiv:
2004.08315 (cit. on p. 16).

[Koh96] D. Kohel. “Endomorphism rings of elliptic curves over finite fields”. PhD
thesis. University of California, 1996 (cit. on pp. 10, 18, 19).

[KLPT14] D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. “On the quaternion-isogeny
path problem”. In: LMS Journal of Computation and Mathematics 17.A
(2014), pp. 418–432 (cit. on pp. 3, 7, 21, 50).

[Kun22] S. Kunzweiler. “Efficient Computation of (2𝑛, 2𝑛)-Isogenies”. In: Cryptology
ePrint Archive (2022) (cit. on p. 29).

[KR24] S. Kunzweiler and D. Robert. “Computing modular polynomials by defor-
mation”. Accepted for publication at ANTS XVI Conference. June 2024
(cit. on pp. 1, 16, 38).

[Kup05] G. Kuperberg. “A subexponential-time quantum algorithm for the dihedral
hidden subgroup problem”. In: SIAM Journal on Computing 35.1 (2005),
pp. 170–188 (cit. on p. 19).

[LS08] R. Lercier and T. Sirvent. “On Elkies subgroups of ℓ-torsion points in elliptic
curves defined over a finite field.” In: Journal de théorie des nombres de
Bordeaux 20.3 (2008), pp. 783–797 (cit. on p. 13).

[Ler22a] A. Leroux. “A new isogeny representation and applications to cryptography”.
In: International Conference on theTheory and Application of Cryptology and
Information Security. Springer. 2022, pp. 3–35 (cit. on pp. 4, 7, 22).

[Ler22b] A. Leroux. “Quaternion algebras and isogeny-based cryptography ”. PhD
thesis. LIX, 2022 (cit. on pp. 19, 22, 39, 50, 51, 58).

[Ler23a] A. Leroux. “Computation of Hilbert class polynomials and modular poly-
nomials from supersingular elliptic curves”. In: Cryptology ePrint Archive
(2023) (cit. on p. 16).

[Ler23b] A. Leroux. “Verifiable random function from the Deuring correspondence
and higher dimensional isogenies”. In: (2023) (cit. on pp. 1, 8, 22, 52).

[LR10] D. Lubicz and D. Robert. “Efficient pairing computation with theta func-
tions”. In: ed. by G. Hanrot, F. Morain, and E. Thomé. Vol. 6197. Lecture
Notes in Computer Science. 9th International Symposium, Nancy, France,
ANTS-IX, July 19-23, 2010, Proceedings. Springer–Verlag, July 2010. doi:
10.1007/978-3-642-14518-6_21 (cit. on p. 28).

https://arxiv.org/abs/2203.02009
https://arxiv.org/abs/2001.04137
https://doi.org/10.1090/mcom/3672
https://arxiv.org/abs/2004.08315
 https://antsmath.org/ANTSXVI/
https://doi.org/10.1007/978-3-642-14518-6_21

68 REFERENCES

[LR12] D. Lubicz and D. Robert. “Computing isogenies between abelian varieties”.
In: Compositio Mathematica 148.5 (Sept. 2012), pp. 1483–1515. doi: 10.
1112/S0010437X12000243. arXiv: 1001.2016 [math.AG] (cit. on p. 28).

[LR15a] D. Lubicz and D. Robert. “A generalisation of Miller’s algorithm and appli-
cations to pairing computations on abelian varieties”. In: Journal of Symbolic
Computation 67 (Mar. 2015), pp. 68–92. doi: 10.1016/j.jsc.2014.08.001
(cit. on p. 28).

[LR15b] D. Lubicz and D. Robert. “Computing separable isogenies in quasi-optimal
time”. In: LMS Journal of Computation and Mathematics 18 (1 Feb. 2015),
pp. 198–216. doi: 10.1112/S146115701400045X. arXiv: 1402.3628 (cit. on
pp. 28, 31).

[LR16] D. Lubicz and D. Robert. “Arithmetic on Abelian and Kummer Varieties”.
In: Finite Fields and Their Applications 39 (May 2016), pp. 130–158. doi:
10.1016/j.ffa.2016.01.009 (cit. on p. 28).

[LR22] D. Lubicz and D. Robert. “Fast change of level and applications to isogenies”.
In: Research in Number Theory (ANTS XV Conference) 9.1 (Dec. 2022). doi:
10.1007/s40993-022-00407-9 (cit. on pp. 7, 28).

[MM22] L. Maino and C. Martindale. An attack on SIDH with arbitrary starting
curve. Cryptology ePrint Archive, Paper 2022/1026. 2022. url: https:
//eprint.iacr.org/2022/1026 (cit. on p. 2).

[MMPPW23] L.Maino, C.Martindale, L. Panny, G. Pope, and B.Wesolowski. “A direct key
recovery attack on SIDH”. In: Annual International Conference on theTheory
and Applications of Cryptographic Techniques. Springer. 2023, pp. 448–471
(cit. on pp. 1, 2, 26, 32).

[MW23] A. H. L. Merdy and B. Wesolowski. “The supersingular endomorphism ring
problem given one endomorphism”. In: arXiv preprint arXiv:2309.11912
(2023) (cit. on pp. 1, 37).

[Mil20] E. Milio. “Computing isogenies between Jacobians of curves of genus 2 and
3”. In: Mathematics of Computation 89.323 (2020), pp. 1331–1364. arXiv:
1709.06063 (cit. on p. 29).

[MR19] E. Milio and D. Robert. “Denominators of modular polynomials on Hilbert
surfaces”. June 2019 (cit. on p. 2).

[Mor23] T. Moriya. “IS-CUBE: An isogeny-based compact KEM using a boxed SIDH
diagram”. In: Cryptology ePrint Archive (2023) (cit. on pp. 1, 27).

[Mor24] T. Moriya. “LIT-SiGamal: An efficient isogeny-based PKE based on a LIT
diagram”. In: Cryptology ePrint Archive (2024) (cit. on pp. 1, 27).

[Mum66] D. Mumford. “On the equations defining abelian varieties. I”. In: Invent.
Math. 1 (1966), pp. 287–354 (cit. on p. 28).

[Mum67a] D. Mumford. “On the equations defining abelian varieties. II”. In: Invent.
Math. 3 (1967), pp. 75–135 (cit. on p. 28).

[Mum67b] D. Mumford. “On the equations defining abelian varieties. III”. In: Invent.
Math. 3 (1967), pp. 215–244 (cit. on p. 28).

[Mum83] D.Mumford. Tata lectures on theta I. Vol. 28. Progress inMathematics. With
the assistance of C. Musili, M. Nori, E. Previato and M. Stillman. Boston,
MA: Birkhäuser Boston Inc., 1983, pp. xiii+235. isbn: 3-7643-3109-7 (cit.
on p. 28).

[Mum84] D. Mumford. Tata lectures on theta II. Vol. 43. Progress in Mathematics.
Jacobian theta functions and differential equations, With the collaboration

https://doi.org/10.1112/S0010437X12000243
https://doi.org/10.1112/S0010437X12000243
https://arxiv.org/abs/1001.2016
https://doi.org/10.1016/j.jsc.2014.08.001
https://doi.org/10.1112/S146115701400045X
https://arxiv.org/abs/1402.3628
https://doi.org/10.1016/j.ffa.2016.01.009
https://doi.org/10.1007/s40993-022-00407-9
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://arxiv.org/abs/1709.06063

REFERENCES 69

of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. Boston,
MA: Birkhäuser Boston Inc., 1984, pp. xiv+272. isbn: 0-8176-3110-0 (cit.
on p. 28).

[Mum91] D. Mumford. Tata lectures on theta III. Vol. 97. Progress in Mathematics.
With the collaboration of Madhav Nori and Peter Norman. Boston, MA:
Birkhäuser Boston Inc., 1991, pp. viii+202. isbn: 0-8176-3440-1 (cit. on
p. 28).

[NO23] K. Nakagawa andH. Onuki. “QFESTA: Efficient Algorithms and Parameters
for FESTA using Quaternion Algebras”. In: Cryptology ePrint Archive (2023)
(cit. on pp. 1, 8, 39).

[NO24] K. Nakagawa and H. Onuki. “SQIsign2D-East: A New Signature Scheme
Using 2-dimensional Isogenies”. In:Cryptology ePrint Archive (2024) (cit. on
pp. 1, 22, 30, 35, 39, 56).

[Nic18] C. Nicholls. “Descent methods and torsion on Jacobians of higher genus
curves”. PhD thesis. University of Oxford, 2018 (cit. on p. 29).

[Oda69] T. Oda. “The first de Rham cohomology group and Dieudonné modules”.
In: Annales scientifiques de l’École Normale Supérieure. Vol. 2. 1. 1969,
pp. 63–135 (cit. on pp. 13, 15).

[Onu21] H. Onuki. “On oriented supersingular elliptic curves”. In: Finite Fields and
Their Applications 69 (2021), p. 101777 (cit. on p. 20).

[OM22] H. Onuki and T. Moriya. “Radical isogenies on Montgomery curves”. In:
IACR International Conference on Public-Key Cryptography. Lecture Notes
in Computer Science 13177. Springer. 2022, pp. 473–497 (cit. on p. 12).

[ON24] H.Onuki andK.Nakagawa. “Ideal-to-isogeny algorithmusing 2-dimensional
isogenies and its application to SQIsign”. In:Cryptology ePrint Archive (2024)
(cit. on pp. 1, 22, 52).

[PR23a] A. Page and D. Robert. “Clapotis: Evaluating the isogeny class group action
in polynomial time”. Nov. 2023 (cit. on pp. 20, 24, 58).

[PR23b] A. Page and D. Robert. “Introducing Clapoti(s): Evaluating the isogeny class
group action in polynomial time”. Nov. 2023 (cit. on pp. 1, 7, 8, 21–23, 39,
53).

[PW24] A. Page and B. Wesolowski. “The supersingular endomorphism ring and
one endomorphism problems are equivalent”. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2024, pp. 388–417 (cit. on pp. 1, 27, 37).

[Pei20] C. Peikert. “He gives C-sieves on the CSIDH”. In: Annual international con-
ference on the theory and applications of cryptographic techniques. Springer.
2020, pp. 463–492 (cit. on p. 19).

[PT18] P. Pollack and E. Treviño. “Finding the Four Squares in Lagrange’s Theorem.”
In: Integers 18 (2018), A15 (cit. on p. 34).

[Pri24] V. Pribanic. “Radical isogenies and modular curves.” In: Advances in
Mathematics of Communications 18 (2024), pp. 1748–1767 (cit. on p. 12).

[RS86] M. O. Rabin and J. O. Shallit. “Randomized algorithms in number theory”.
In: Communications on Pure and Applied Mathematics 39.S1 (1986), S239–
S256 (cit. on p. 34).

[RSSB16] J. Renes, P. Schwabe, B. Smith, and L. Batina. “𝜇Kummer: Efficient Hyperel-
liptic Signatures and Key Exchange on Microcontrollers”. In: International
Conference on Cryptographic Hardware and Embedded Systems. Lecture

70 REFERENCES

Notes in Computer Science 9813. Springer. 2016, pp. 301–320. doi:
10.1007/978-3-662-53140-2_15 (cit. on p. 30).

[Ric36] F. Richelot. “Essai sur une méthode générale pour déterminer la valeur des
intégrales ultra-elliptiques, fondée sur des transformations remarquables de
ces transcendantes”. In: C. R. Acad. Sci. Paris 2 (1836), pp. 622–627 (cit. on
p. 29).

[Ric37] F. Richelot. “De transformatione Integralium Abelianorum primiordinis
commentation”. In: J. reine angew. Math. 16 (1837), pp. 221–341 (cit. on
p. 29).

[Rob21] D. Robert. “Efficient algorithms for abelian varieties and their moduli
spaces”. HDR thesis. Université Bordeaux, June 2021. url: http : / /
www.normalesup.org/~robert/pro/publications/academic/hdr.pdf.
Slides: 2021-06-HDR-Bordeaux.pdf (1h, Bordeaux). (Cit. on pp. 2, 7, 13,
16, 28, 29, 31, 45, 59).

[Rob22a] D. Robert. “Evaluating isogenies in polylogarithmic time”. Aug. 2022 (cit. on
pp. 3, 8, 26, 34).

[Rob22b] D. Robert. “Some applications of higher dimensional isogenies to elliptic
curves (overview of results)”. Dec. 2022 (cit. on pp. 1, 8, 16, 34, 37, 38, 59).

[Rob23a] D. Robert. “A note on optimising 2ⁿ-isogenies in higher dimension”. June
2023. url: http://www.normalesup.org/~robert/pro/publications/
notes/2023-06-optimising_isogenies.pdf (cit. on pp. 29, 30).

[Rob23b] D. Robert. “Breaking SIDH in polynomial time”. In: Eurocrypt 2023 (Apr.
2023). Ed. by C. Hazay and M. Stam, pp. 472–503. doi: 10.1007/978-3-
031-30589-4_17 (cit. on pp. 1–3, 7, 26, 27, 32, 47).

[Rob23c] D. Robert. “The geometric interpretation of the Tate pairing and its applica-
tions”. Feb. 2023 (cit. on p. 12).

[RS06] A. Rostovtsev and A. Stolbunov. “Public-key cryptosystem based on iso-
genies”. In: International Association for Cryptologic Research. Cryptology
ePrint Archive (2006). eprint: http://eprint.iacr.org/2006/145 (cit. on
p. 19).

[Sch95] R. Schoof. “Counting points on elliptic curves over finite fields”. In: J. Théor.
Nombres Bordeaux 7.1 (1995), pp. 219–254 (cit. on p. 14).

[Sho99] V. Shoup. “Efficient computation of minimal polynomials in algebraic ex-
tensions of finite fields”. In: Proceedings of the 1999 international symposium
on Symbolic and algebraic computation. 1999, pp. 53–58 (cit. on pp. 18, 44).

[Smi08] B. Smith. “Isogenies and the discrete logarithm problem in Jacobians of
genus 3 hyperelliptic curves”. In:Annual International Conference on theThe-
ory and Applications of Cryptographic Techniques. Springer. 2008, pp. 163–
180. arXiv: 0806.2995 [math.NT] (cit. on p. 29).

[Stacks] T. Stacks Project Authors. Stacks Project. https://stacks.math.columbia.
edu. 2018 (cit. on p. 58).

[Sut11] A. Sutherland. “Structure computation and discrete logarithms in finite
abelian 𝑝-groups”. In: Mathematics of Computation 80.273 (2011), pp. 477–
500 (cit. on p. 45).

[Sut13a] A. Sutherland. “Isogeny volcanoes”. In: The Open Book Series 1.1 (2013),
pp. 507–530 (cit. on p. 18).

[Sut13b] A. Sutherland. “On the evaluation of modular polynomials”. In: The Open
Book Series 1.1 (2013), pp. 531–555 (cit. on p. 16).

https://doi.org/10.1007/978-3-662-53140-2_15
http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2021-06-HDR-Bordeaux.pdf
http://www.normalesup.org/~robert/pro/publications/notes/2023-06-optimising_isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/notes/2023-06-optimising_isogenies.pdf
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
http://eprint.iacr.org/2006/145
https://arxiv.org/abs/0806.2995
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

REFERENCES 71

[Tat67] J. T. Tate. “p-Divisible groups”. In: Proceedings of a conference on Local Fields.
Springer. 1967, pp. 158–183 (cit. on p. 15).

[Tia20] S. Tian. “Translating the discrete logarithm problem on Jacobians of genus
3 hyperelliptic curves with (ℓ, ℓ, ℓ)-isogenies”. 2020. arXiv: 2007.03172
[math.AG] (cit. on p. 29).

[Tia24] S. Tian. “Computing gluing and splitting (ℓ, ℓ)-isogenies”. In:Designs, Codes
and Cryptography (2024), pp. 1–21 (cit. on p. 29).

[UJ18] D. Urbanik and D. Jao. “SoK: The problem landscape of SIDH”. In: Pro-
ceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop. 2018,
pp. 53–60 (cit. on p. 5).

[Vél71] J. Vélu. “Isogénies entre courbes elliptiques”. In: Compte Rendu Académie
Sciences Paris Série A-B 273 (1971), A238–A241 (cit. on pp. 10, 11).

[Voi21] J. Voight. Quaternion algebras. Springer Nature, 2021 (cit. on p. 19).
[Wat69] W. Waterhouse. “Abelian varieties over finite fields”. In: Ann. Sci. Ecole

Norm. Sup 2.4 (1969), pp. 521–560 (cit. on p. 19).
[Wes22] B. Wesolowski. “The supersingular isogeny path and endomorphism ring

problems are equivalent”. In: 2021 IEEE 62nd Annual Symposium on Foun-
dations of Computer Science (FOCS). IEEE. 2022, pp. 1100–1111 (cit. on
pp. 7, 21, 50).

[ZSPDB18] G. H. Zanon, M. A. Simplicio, G. C. Pereira, J. Doliskani, and P. S. Barreto.
“Faster isogeny-based compressed key agreement”. In: International Con-
ference on Post-Quantum Cryptography. Vol. 68. 5. Springer. IEEE, 2018,
pp. 688–701 (cit. on p. 46).

[Zar74] J. G. Zarhin. “A remark on endomorphisms of abelian varieties over function
fields of finite characteristic”. In: Mathematics of the USSR-Izvestiya 8.3
(1974), p. 477 (cit. on p. 2).

INRIA Bordeaux–Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE
Email address: damien.robert@inria.fr
URL: http://www.normalesup.org/~robert/

Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex
FRANCE

https://arxiv.org/abs/2007.03172
https://arxiv.org/abs/2007.03172

	1. Introduction
	1.1. History
	1.2. A survey
	1.3. Thanks
	1.4. Outline

	2. Overview
	2.1. Efficient representation of an isogeny
	2.2. The classical representations
	2.3. The ideal representations
	2.4. The HD representation
	2.5. Algorithms for the HD representation

	3. The standard representations
	3.1. The function representation
	3.2. The kernel representations
	3.3. Interpolation representations
	3.4. Decomposing an isogeny

	4. The ideal representations
	4.1. Isogenies represented by ideals
	4.2. The supersingular case
	4.3. The oriented case

	5. The HD representation
	5.1. Isogenies between abelian varieties
	5.2. Kani's lemma and its applications
	5.3. The HD representation

	6. Algorithms on efficient representation of isogenies
	6.1. Equality and sum
	6.2. Duals and divisions
	6.3. Advanced algorithms on efficient representations
	6.4. Kernel

	7. Open questions
	Appendix A. On the accessible N-torsion of an abelian variety
	Appendix B. Relaxing the torsion requirement for the HD representation
	B.1. Splitting a smooth cyclic isogeny in two
	B.2. Splitting the HD representation in two
	B.3. The codomain product theta structure
	B.4. Gluing in the middle

	Appendix C. Ideal to isogeny algorithms in the supersingular case and applications to the SQIsign family
	C.1. Double paths
	C.2. The KLPT algorithm and Eichler orders
	C.3. Ideal to isogeny: splitting a large dimension one 2e-isogeny
	C.4. The Clapotis algorithm
	C.5. Improving KLPT?
	C.6. The SQIsign family

	Appendix D. The class group of a non maximal order
	Appendix E. The Kodaira-Spencer isomorphism for abelian varieties
	References

