
Radical 2-isogenies and cryptographic hash functions
in dimensions 1, 2 and 3

Sabrina Kunzweiler1, Luciano Maino2, Tomoki Moriya4, Christophe Petit7, Giacomo
Pope2,3, Damien Robert1, Miha Stopar7,8, and Yan Bo Ti5,6

1 Inria Bordeaux, Institut de Mathématiques de Bordeaux, France
sabrina.kunzweiler@math.u-bordeaux.fr, damien.robert@inria.fr,

2 University of Bristol, Bristol, United Kingdom
luciano.maino@bristol.ac.uk

3 NCC Group, Cheltenham, United Kingdom
giacomo.pope@nccgroup.com

4 University of Birmingham, United Kingdom
t.moriya@bham.ac.uk

5 DSO National Laboratories, Singapore
6 National University of Singapore, Singapore

yanbo.ti@gmail.com
7 Université libre de Bruxelles, Belgium

christophe.petit@ulb.be
8 Ethereum Foundation
stopar.miha@gmail.com

Abstract. We provide explicit descriptions for radical 2-isogenies in dimensions
one, two and three using theta coordinates. These formulas allow us to efficiently
navigate in the corresponding isogeny graphs.
As an application of this, we implement different versions of the CGL hash func-
tion. Notably, the three-dimensional version is fastest, which demonstrates yet
another potential of using higher dimensional isogeny graphs in cryptography.

1 Introduction

One of the first isogeny-based cryptographic protocols is the Charles–Goren–
Lauter (CGL) hash function [16]. This hash function utilises the input bits to
generate a random walk on the supersingular elliptic curve 2-isogeny graph, and
outputs the j-invariant of the final vertex. The hard problem that underpins the
security of the hash function is the difficulty of finding isogenies between two
given supersingular elliptic curves.
Methods to compute isogenies in various cryptographic schemes have included
using modular polynomials, Vélu’s formulas, Vélu-sqrt [5] and radical isogenies.
These methods work best for low degree isogenies, which can then be chained
together to produce (smooth) large degree isogenies. The concept of radical
isogenies between elliptic curves was introduced in [14]. A radical N -isogeny
formula inputs a pair (E,P) consisting of an elliptic curve E and an N -torsion
point P ∈ E, and outputs a pair (E′, P ′) such that
– P ′ ∈ E′ = E/⟨P ⟩ is an N -torsion point on the codomain of the isogeny
ϕ : E → E′ with kernel ⟨P ⟩,

2 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

– the isogeny ϕ′ : E′ → E′/⟨P ′⟩ is a good extension of ϕ, i.e. ϕ′ ◦ ϕ is an
N2-isogeny.

These formulas are algebraic expressions in the coefficients of E, the coordinates
of P and a radical N

√
r, where r itself is an algebraic expression in the input.

Furthermore it is required that varying the chosenN -th root changes the isogeny
ϕ′ induced by the output and thereby allows to obtain all N different good
extensions of ϕ.

Elliptic curves are principally polarized (p.p.) abelian varieties of dimension
g = 1. There have been various suggestions to generalize isogeny-based protocols
to higher dimensions [31,62,13]. In this work, we will primarily be interested in
p.p. abelian varieties of dimensions g = 2 and g = 3 which are called p.p. abelian
surfaces and p.p. abelian threefolds, respectively.

There is a natural generalization of radical isogenies to higher dimensions as
conjectured in [10] and proved in [58]. In dimension g, the kernel of an N -isogeny
is isomorphic to the group (Z/NZ)g. Consequently, a radical isogeny formula
takes as input a tuple (A,P1, . . . , Pg) where A is the p.p. abelian variety and
P1, . . . , Pg generate the kernel of an N -isogeny. The output consists of the tuple
(A′, P ′

1, . . . , P
′
g), where similar as above

– P ′
1, . . . , P

′
g ∈ A′ = A/⟨P1, . . . , Pg⟩ generate the kernel of an N -isogeny ϕ′ :

A′ → A′/⟨P ′
1, . . . , P

′
g⟩

– the isogeny ϕ′ is a good extension of ϕ, i.e. ϕ′ ◦ ϕ is an N2-isogeny.

Here, the radical formula will involve g(g+1)/2N -th roots N
√
r1, . . . , N

√
rg(g+1)/2.

Different choices of these roots are in one-to-one correspondence with different
good extensions of the isogeny ϕ.9

1.1 Our contributions

Throughout the paper, we consider p.p. abelian varieties A of dimension g,
equipped with a level-2 theta structure θA. Broadly speaking, this allows us to
identify each A with a point a = (a0...0 : · · · : a1...1) ∈ P2g−1 in the projective
space (indices counted in base two). This is known as the level-2 theta null point
of A w.r.t. θA. More concretely, for dimensions g = 1, 2, 3:

– an elliptic curve is identified with a point a = (a0 : a1) ∈ P1,

– a p.p. abelian surface is identified with a = (a00 : a01 : a10 : a11) ∈ P3,

– a p.p. abelian threefold is identified with a = (a000 : · · · : a111) ∈ P7.

We note that the level-2 theta null point further contains information on the
entire 2-torsion of A.

Radical 2-isogenies in dimensions g = 1, 2, 3 Let ϕ : A → B be a
2-isogeny. A radical formula for ϕ in this setting, transforms a theta null point
a ∈ P2g−1 to a theta null point b ∈ P2g−1. We show that any such isogeny can
be computed as the composition of four simple operations:

a ∈ P2g−1

S
Squaring

H
Hadamard
transform

Ts
Square
roots

H
Hadamard
transform

b ∈ P2g−1

9 We note that this correspondence will be more subtle in our setting (Subsection 3.5).

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 3

The definition of the maps S (coordinatewise squaring) andH (Hadamard trans-
formation) is completely generic. Essentially, the map Ts consists in taking the
square-roots of the coordinates. Here, the subtlety is that only g(g + 1)/2 of
the 2g − 1 square-roots can be chosen arbitrarily, while the remaining ones are
uniquely determined by the others. This requires a dimension specific treatment,
and we find an explicit description of Ts in dimensions g = 1, g = 2 (Corollary
5) and g = 3 (Theorem 8).
By definition, composing n radical 2-isogenies, results in a 2n-isogeny. In the
case g = 1, this task is completely straightforward (one only needs to avoid
backtracking). In higher dimensions, the situation gets more complicated (see
Subsection 3.4) and failure to do this composition correctly has already led to
security gaps in cryptographic constructions. For example, the first instantiation
of the CGL hash function in dimension 2 ([62]) was found to be insecure due to
this problem, as was shown in [31] and fixed in [13]. We show that our formulas
naturally result in the composition with good extensions.
In addition, we also derive new formulas for radical 2k-isogenies for small values
of k. While our simple framework for 2-isogenies lends itself to this task, it still
gets more complicated with increasing dimension. Concretely, we present new
radical formulas for 4- and 8-isogenies in dimension g = 1 (Propositions 12, 13),
as well as an (almost) radical10 4-isogeny in dimension g = 2 (Proposition 14).

Our cryptographic hash function: Theta-CGL As an application of our
new formulas, we propose the cryptographic hash function Theta-CGLg,ℓ with
different variants defined by choosing

(g, ℓ) ∈ {(1, 2), (1, 4), (1, 8), (2, 2), (2, 4), (3, 2)}. (1)

This can be viewed as a generalization of the well known CGL hash function,
[16]. Our hash function Theta-CGLg,ℓ works in the ℓ-isogeny graph of super-
special p.p. abelian varieties of dimension g. This means that for g = 1, we
use the same setting as the original hash function. However, the higher dimen-
sional isogeny graphs provide a richer structure than those of dimension one.
As a consequence, one can significantly decrease the size of the prime p without
compromising the security of the hash function. At the same time, the compu-
tation that has to be done per bit, remains essentially the same. This leads to
considerable speed-ups of the hash function when setting g > 1.
Notably, the 3-dimensional version Theta-CGLg=3,ℓ=2 is the fastest among all
the variants. We highlight that this is in stark contrast with the setting of other
isogeny-based cryptographic primitives for which the generalization to higher
dimensions seems to result in significant slow-downs (SIDH, see G2SIDH in [31])
or seems infeasible with the state-of-the-art methods to compute isogenies (for
example CSIDH [15] or SQISign [22]).

Implementation of Theta-CGLg,ℓ Our paper is accompanied by an opti-
mized implementation of Theta-CGLg,ℓ in the programming language Rust. To

10 We say that our formulas are almost radical, since they require the computation of two
square roots and two fourth roots, while one would expect a formula requiring the compu-
tation of three fourth roots.

4 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

test our hash function, we ran Theta-CGLg,ℓ for all pairs (g, ℓ) as in Eq. 1 with
parameters suggested to obtain λ = 128 bit security. Concretely, this means
that we work with a prime of bit length 256, 128 or 64, when g = 1, g = 2 or
g = 3, respectively.
The observed timings, recorded on an Intel Core i7-9750H CPU with a clock-
speed of 2.6 GHz with turbo-boost disabled, are summarized in the table below
where each entry is the time in microseconds (µs) to hash one bit of a message
(computed as an average of hashing one 324 bit block).

Theta-CGLg,ℓ ℓ = 2 (µs) ℓ = 4 (µs) ℓ = 8 (µs)

g = 1 9.73 6.29 5.36
g = 2 3.05 2.23 —
g = 3 1.33 — —

These timings backup our expectation that the three-dimensional version of
Theta-CGL outperforms the lower dimensional versions.
In addition to the Rust implementation, we provide an implementation in the
computer algebra system SageMath which is meant as an educational resource
to the community. Source code for both implementations is available online:
https://github.com/GiacomoPope/ThetaCGL.

1.2 Comparison to the literature

Using different models of abelian varieties, there already exist radical isogeny
formulas. We discuss how our new formulas compare to the existing ones from
the literature. Moreover, we compare Theta-CGLg,ℓ to previous proposals.

Comparison of radical isogeny formulas A radical N -isogeny formula
requires the computation of g(g+1)/2 Nth roots. Efficient formulas aim at min-
imizing the remaining field operations. A thorough comparison of the different
formulas with our new formulas is provided in Appendix D, here we give a brief
overview.

Dimension g = 1 In the case of elliptic curves, there have been several recent
works focusing on the development of radical isogeny formulas [14,12,50,23]. An
advantage of our formulas is that inversions are naturally avoided by working
with projective coordinates. This makes our 4- and 8-isogeny formulas more
efficient than similar ones from the literature (see Table 3), while the 2-isogeny
formulas for curves in Montgomery form are more efficient than ours (see Table
3).

Dimension g = 2 Prior to our work, explicit formulas for radical N -isogenies
in dimension g = 2 have only been known for N = 2 and N = 3 using Mumford
coordinates, see [10]. Our new formula for the case N = 2 in the theta model
is not only more efficient, but also more generic. The reason is that Mumford
coordinates are specific to working with Jacobians of hyperelliptic curves, hence

https://github.com/GiacomoPope/ThetaCGL

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 5

previous formulas do not apply to reducible abelian surfaces. In contrast to
that, our formulas in theta coordinates naturally include non-generic isogenies
known as gluing and splitting isogenies. Furthermore our formulas for N = 4
are completely new, and compared to the known formulas for N = 3, also
remarkably compact (see Table 4).

Dimension g = 3 The first explicit isogeny formulas for abelian threefolds ap-
peared in a preprint by Ohashi, Onuki, Kudo, Yoshizumi and Nuida in 2024 [49].
In this concurrent work, the methods also rely on working with theta coordi-
nates. The main difference is that we use the level-2 theta structure, while their
work relies on the level-4 structure. The goal of their work is different, as they
aim at walking in the entire 2-isogeny graph, while we we exclusively consider
radical isogenies (i.e. the composition of two 2-isogenies yields a 4-isogeny). This
property is not discussed in [49], but we believe that after potential modifica-
tions, their formulas would fit well in the framework of radical isogenies.
An advantage of our approach is that elements can be represented by merely
8 (projective) coordinates, while their approach requires handling 36 coordi-
nates.11 This results in more compact formulas when using the level-2 theta
structure.

Comparison of Theta-CGL with other versions of the CGL hash
function Essentially, there exist three different types of variants of the CGL
hash functions based on: varying the degree ℓ of the radical isogenies, varying
the dimension g, and using chains of 2n-isogenies with n ≈ log(p). The new
variants presented in our paper fall into the first two categories. In contrast
to previous works, we not only compare different variants from a theoretical
perspective, but we also provide implementations in Rust that provide more
insight on the actual benefits of different variants.

Varying the degree of the radical isogenies In the original paper by Charles,
Goren and Lauter [16], the cryptographic hash function was introduced in a
general way relying on walks in an ℓ-isogeny graph in dimension g = 1 for some
integer ℓ. The case of ℓ = 2 seems particularly interesting from an implementa-
tion perspective, since exactly one square-root has to be computed per isogeny
which consumes exactly one message bit. More generally, an ℓ-isogeny requires
the computation of an ℓ-th root, and consumes log2(ℓ) message bits. This offers
potential for speed-ups which has been studied in [35] for ℓ = 4. Our variants
Theta-CGLg=1,ℓ=4 and Theta-CGLg=1,ℓ=8 follow the same spirit as this previous
work and extend it by also considering a degree-8 variant. Our timings obtained
in a cryptographically relevant setting clearly indicate the advantage of using
higher degree isogenies.

Varying the dimension g The original CGL hash function works in the super-
singular isogeny graph of elliptic curves. Another potential for speeding up the
hash function is offered by generalizing this to higher dimensions which allows
to reduce the size of the ground field. There exist two proposals in the literature

11 Technically, there are 64 coordinates in level 4. However, the theta coordinates associated
with odd indices of theta null points are all equal to zero.

6 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

working in dimension g = 2. These are a variant using radical 2-isogenies [62,13],
and a variant using radical 3-isogenies [10]. Similar to this, we propose the vari-
ants Theta-CGLg=2,ℓ=2 and Theta-CGLg=2,ℓ=4 working with 2- and 4-isogenies,
respectively. Finally, our version of Theta-CGLg=3,ℓ=2 is the first variant of the
CGL hash function that works in dimension 3. Our experiments convincingly
backup the claims made in previous works that going to higher dimensions is
computationally advantageous.

Using chains of 2k-isogenies with k ≈ log(p) The idea underlying this variant
is to completely avoid radical isogeny computations and instead sample torsion
subgroups of size ≈ log(p) in a deterministic way. Assume g = 1 and we are
given a messagem = (m1, . . . ,mn) of length n≫ k ≈ log(p). Then this message
would be divided into chunks of length k, i.e. m = (c1, . . . , cn/k). Essentially,
processing one chunk ci requires sampling a 2k-torsion point (deterministically,
depending on ci), and the computation of the 2k-isogeny with this point as kernel
generator. While the sampling of a 2k-torsion point represents an additional cost
necessary after each k bits in the chain, it is in general cheaper to compute an
isogeny with a given kernel generator than using radical formulas. This idea was
brought forward in [27], where it is shown that in dimension 1, this results in a
significant speed-up.
This variant does not immediately fit in our framework of Theta-CGL, since we
work with radical isogenies. However, a potential direction for future research
could be to use the recent algorithm for computing 2k-isogenies in dimension 2
in [21] which also works with level-2 theta coordinates. We note, that working
in dimension 2, it is required to construct a symplectic 2k-torsion basis after
each 2k-isogeny computation. It would be interesting to see how the trade-
off compares to dimension 1. We note that another obstacle with this method
would be finding a constant time method to deterministically construct both the
torsion basis and symplectic basis. As these points are created from codomain
data with rejection sampling, it is not obvious how to efficiently compute all
necessary data without leaking any information about the internal state.

1.3 Future directions and applications

Our results show that the superspecial isogeny graph of abelian threefolds is
better suited for instantiating an isogeny-based hash function than the lower
dimensional graphs. This raises several natural questions.

New constructions in dimension 3 This is the first time, 3-dimensional
isogeny graphs appear in a cryptographic construction. It would be interesting
to see if there are other isogeny-based protocols that can benefit from working in
higher dimensions. This idea is in some sense independent of the current trend
for constructing HD protocols in the isogeny community such as SQISignHD[20].
In these constructions, higher dimensional isogenies are used to represent iso-
genies of dimension 1. In contrast to our hash function, these protocols do not
make use of the full structure of higher dimensional isogeny graphs.

Increasing the dimension Why did we stop in dimension 3? A simple
answer is that instantiating Theta-CGL in dimension 4, requires the availability

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 7

of radical 2-isogeny formulas which is still an open problem in dimension 4.
We believe that it should be possible to find such formulas by generalizing the
techniques that we used to derive the formulas in dimension 3. However, the
resulting formula for the step Ts will be significantly more complicated than in
dimension 3. This comes from the fact that in dimension 4, out of the 2g−1 = 15
square roots that need to be computed, only g(g + 1)/2 = 10 square-roots may
be chosen arbitrarily, and the remaining 5 need to be determined by explicit
formulas (Lemma 3). It would be interesting to see, how a 4-dimensional version
of Theta-CGL compares to our version in dimension 3.
Going even further, one can ask for the optimal dimension in the context of the
CGL hash function. While deriving formulas for radical isogenies in dimension
5 seems even more difficult than in dimension 4, this might still be the more
promising case to look at. The reason being that one could work with a 32-bit
prime in order to achieve 128-bit security (see Subsection 5.2). This looks very
promising from a computational perspective.

Other applications of our radical isogeny formulas For cryptana-
lytic purposes, it is important to have efficient formulas for navigating in isogeny
graphs, for instance, in order to efficiently implement path finding algorithms.
With our new formulas, the navigation in dimension 2 and 3 can be implemented
more efficiently. While there have not been any cryptographic proposals in di-
mension g = 3 prior to our work, it is still important to navigate in this graph in
order to implement efficient attacks on a 4-dimensional protocol. This is because
the fastest attacks in higher dimensional isogeny graphs are so-called splitting
attacks which rely on iteratively reducing the problem to lower dimensions.
Last but not least, the attacks on SIDH [11,44,57] have shown that it is essen-
tial to understand higher dimensional isogeny graphs in order to analyse the
security of isogeny-based protocols - even if these rely on isogenies in dimension
1. However, there are still many open questions in the study of these graphs.
Our new methods can be utilised to obtain numerical data on isogeny graphs,
and thereby help to get insight on open problems in dimensions 2 and 3.

1.4 Notation

The following functions are used in the description of our algorithms.
– CondSelect(a, b, s) for a, b ∈ Fq and s ∈ {1,−1} returns a if s = 1 and b

otherwise in constant time
– CondNeg(a, s) for a ∈ Fq and s ∈ {1,−1} sets a = s · a in constant time.
– Normalise(x) for x ∈ Pn returns (1 : x1/x0 : · · · : xn/x0)
– MessageToChunks(m, g, k) given a message m ∈ {−1, 1}∗ returns n bit-

strings (m1, . . . ,mn) where mi ∈ {−1, 1}g(g+1)/2. The message length (in
bits) is assumed to be a multiple of kg(g + 1)/2.

For finite field operations, we use the following notation.

Sqrt = square root, Crt = cube root, Quart = fourth root,

Eirt = eighth root, M = multiplication, S = squaring,

Mc = scalar multiplication, a = addition, I = inversion.

Furthermore, we assume that we are given canonical functions 2k
√

: Fq → F̄q to
compute 2k-th roots of elements in the field of definition throughout the paper.

8 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

2 Preliminaries on 2-isogenies in the theta model

In this section, we provide some background on the computation of 2-isogenies
of principally polarized (p.p.) abelian varieties in the theta model of level 2. This
model is particularly well suited for this type of computations, for instance it
is used in [18,21]. For more details on the theory, we refer to the survey on the
computation of 2n-isogenies by Robert [54].

2.1 Principally polarized abelian varieties and level-2 theta
structures

In this manuscript, we uniquely focus on p.p. abelian varieties, i.e. abelian vari-
eties endowed with a polarization describing an isomorphism with their duals.
The easiest example of p.p. abelian varieties are elliptic curves.
LetA be a p.p. abelian variety of dimension g, then there exists a double covering
θA : A → P2g−1. Such a double covering is given by a level-2 symmetric theta
structure for A. Let 0A denote the identity point of A, then the value θA(0A) is
called level-2 theta null point. The double covering θA is generically determined
by θA(0A) via a descent to level 2 of the so-called (level-4) Riemann relations.
This motivates the definition of the map

Th : (A, θA) 7→ θA(0A) (2)

which assigns to a p.p. abelian variety (equipped with a level-2 theta structure)
its theta null point. By [32,63], Th defines a local embedding of the moduli
space Ag(2, 4) into P2g−1 at points corresponding to geometrically irreducible
abelian varieties. For g ≤ 3, it even defines a global embedding of the Satake
compactification of this moduli space [46].
The coordinates of θA(0A) are ordered as (a0...0 : . . . : a1...1), where the indices
represent integers expressed in their binary form. In what follows, we consider
these indices as elements ig . . . i1 in (Z/2Z)g, hence defining a group law on
the indices. To a level-2 theta structure, we associate the 2g theta functions
θig...i1 : A → A1, which are the coordinate functions12 of θA. Given a level-2

theta structure θA : A→ P2g−1, we say that θA(P) are the theta coordinates of
a point P ∈ A.
The theta null point Th(A, θA) = θA(0A) is not an isomorphism invariant of A.
Different level-2 theta structures for the same p.p. abelian variety are related by
symplectic transformations. One such transformation is given by the Hadamard
transform H which consists in multiplication by a Hadamard matrix

H : P2g−1 → P2g−1, H : x 7→ Hg · x, (3)

where Hg is the 2g × 2g Hadamard matrix obtained from the inductive descrip-
tion

H0 = (1), Hi+1 =

(
Hi Hi

Hi −Hi

)
for i > 0. (4)

We say that θ̃A := H ◦ θA is the dual theta structure of θA, and for a point
P ∈ A, we say that θ̃A(P) = H(θA(P)) are the dual theta coordinates of P . In

12 Note that these are only well-defined up to multiplication by a constant which needs to be
chosen compatibly.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 9

particular θ̃A(0A) = (ã0...0 : . . . : ã1...1) denotes the dual theta null point. The
remaining symplectic transformations consist in scaling certain theta functions
by a 4-th root of unity, or specific permutations of the indices, see Lemma 17.

2.2 Level-4 theta structures

For the statements of our results, it is enough to work with a level-2 theta
structure. The level-4 structure will only be needed in the proofs. The latter

defines a map θA : A→ P22g−1, and we say that

θA(0A) =

(
a(0 . . . 0

0 . . . 0

) : · · · : a(1 . . . 1
1 . . . 1

)
)
∈ P22g−1,

is the level-4 theta null point. Similar as before, coordinates are indexed by

elements
(

ig . . . i1
jg . . . j1

)
∈ (Z/2Z)2g. For indices i = ig . . . i1, j = jg . . . j1, we denote

⟨i, j⟩ :=
∑g

k=1 ikjk. We say that an index
(

ig . . . i1
jg . . . j1

)
is even if ⟨i, j⟩ = 0, otherwise

we say it is odd. Consequently, there are 2g−1(2g + 1) even and 2g−1(2g − 1)
odd indices in total. Furthermore, the squares of the level-4 coordinates can be
expressed in terms of the level-2 coordinates (see Lemma 18).
Generically, the even coordinates of a level-4 theta null point do not vanish
and they describe geometric properties of the underlying abelian variety. More
details for the cases g = 1, 2, 3 are provided in Appendix A.2.

2.3 The 2-torsion

For a positive integer N , the N -torsion of a p.p. abelian variety A is denoted by
A[N]. This is a free Z/NZ-module of rank 2g, equipped with the Weil pairing.
For a symplectic basis B = (P1, . . . , Pg, Q1, . . . , Qg) of A[N], we denote

K1 = ⟨P1, . . . , Pg⟩, K2 = ⟨Q1, . . . , Qg⟩,

and call A[N] = K1 +K2 the symplectic decomposition of A[N] defined by B.
Given a level-2 theta structure, it defines a symplectic basis of A[2] as described
below (see also Example 19).

Lemma 1. Let A be a p.p. abelian variety and θA : A→ P2g−1 a level-2 theta
structure on A with θA(0A) = (a0...0 : · · · : a1...1). Then in theta coordinates,
B = (P1, . . . , Pg, Q1, . . . , Qg) is a symplectic basis for A[2], where

Pi = (b0...0 : · · · : b1...1), with big...i1 = ajg...j1 and jk =

{
ik if k ̸= i

1− ik if k = i

and
Qi = (b0...0 : · · · : b1...1), with bjg...j1 = (−1)jiajg...j1 .

Proof. This is an explicit version of the 2-torsion basis defined in [54, §3].

We refer to the symplectic basis from Lemma 1 as the canonical symplectic
basis associated to a level-2 theta null point. Moreover, we refer to the induced
symplectic decomposition A[2] = K1 +K2 as the canonical decomposition. The
choice of symplectic basis is natural [54, §3].

10 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

2.4 Isogenies of principally polarized abelian varieties

An isogeny between abelian varieties ϕ : A → B is a surjective morphism with
finite kernel. An isogeny ϕ : A → B of p.p. abelian varieties, also needs to
preserve the principal polarization. In this case, the kernel K of the isogeny ϕ
is a maximal isotropic subgroup K ⊂ A[N] for some N .

Definition 2. An isogeny ϕ : A → B of p.p. abelian varieties is called a good
N-isogeny if the kernel K satisfies K ≃ (Z/NZ)g.

In a symplectic decomposition A[N] = K1 +K2, the subgroups K1,K2 ⊂ A[N]
are both maximal isotropic and of rank g, hence they both define different N -
isogenies with domain A.
Not every N -isogeny of p.p. abelian varieties is a good N -isogeny. But there
always exist primes ℓ1, . . . , ℓn and good ℓi-isogenies ϕi (possibly over an ex-
tension) so that ϕ = ϕn ◦ · · · ◦ ϕ1. This implies that a composition of good
ℓi-isogenies does not necessarily results in a good N -isogeny. In Subsection 3.4,
this issue is discussed in detail for the case of ℓ = 2 and N = 2n. Since we are
only interested in good N -isogenies, from now on we assume all our N -isogenies
are implicitly good.

2.5 Computing 2-isogenies

From now on, let A be a p.p. abelian variety equipped with a level-2 theta
structure θA. We let A[2] = K1 +K2 be the canonical decomposition induced
by Th(A, θA). Finally, let ϕ : A → B be the 2-isogeny with kernel K2, and
θB the induced level-2 theta structure on B. In the following, we often denote
ϕ : (A, θA) → (B, θB). This isogeny can be described in terms of three simple
operations
– H: the Hadamard transform which consists in multiplication by a Hadamard

matrix (see Subsection 2.1),
– S: the coordinate-wise squaring map,
– Cc: the scaling map for a vector c, i.e. Cc(x) = (x0...0/c0...0 : · · · : x1...1/c1...1).

In the isogeny, the scaling vector will be given by the dual theta null point
of B (which has to be computed by other means). Concretely, the 2-isogeny
ϕ : A→ B can be evaluated as H ◦ Cb̃ ◦ H ◦ S, that is

θB(ϕ(P)) = H ◦ Cb̃ ◦ H ◦ S(θ
A(P)). (5)

This description can be deduced from the duplication formulas (see Remark
20) and has already been used in different other works to compute 2-isogenies
[18,54,21]. We remark that the maps H,S, Cc are all defined for projective co-
ordinates. By slight abuse of notation, we use the same notation for the corre-
sponding maps with affine input.

3 Radical 2-isogenies

Given Th(A, θA), the theta null point of a p.p. abelian variety with level-2
structure, our goal is to find Th(B, θB), so that there exists a 2-isogeny ϕ : A→
B. The result will be a description of the isogeny as the composition of maps
H ◦ Ts ◦ H ◦ S. Note that this is similar to the description of 2-isogenies in the

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 11

previous section with the scaling map Cb̃ replaced by Ts. The latter essentially
consists in computing (compatible) square roots of the coordinates.

The first part of this Section is concerned with the abstract definition of Ts.
Then we provide explicit descriptions of Ts in dimensions g = 1, 2, 3. While the
cases g = 1, 2 are immediately clear from the construction,13 the case g = 3
requires more work. Finally, we explain the composition of radical 2-isogenies
in order to obtain (good) 2n-isogenies.

3.1 Definition of Ts

Let ϕ : (A, θA)→ (B, θB) be a 2-isogeny with kernel K2. Then

(̃b20...0 : · · · : b̃21...1) = H ◦ S((a0...0 : · · · : a1...1)),

are the squares of the (dual) theta null point of B with respect to the induced

theta structure. The map Ts consists in going from (̃b20...0 : · · · : b̃21...1) to (̃b0...0 :

· · · : b̃1...1). The next lemma characterizes the possible choices for such a map.

Lemma 3. Let (A, θA) be a p.p. abelian variety with level-2 theta structure,
A[2] = K1 + K2 the canonical decomposition (see Subsection 2.3), and let ϕ :
(A, θA)→ (B, θB) be the isogeny with kernel K2. Denote

x = (x0...0 : · · · : x1...1) = H ◦ S(Th(A, θA)) ∈ P2g−1.

Further, let I := {i = ig . . . i1 ∈ (Z/2Z)g | #{ij = 1} = 0, 1, 2} be the set of
g(g+1)/2+1 indices i = ig . . . i1 with at most 2 non zero bits ij. Assume xi ̸= 0
for i ∈ I. Let y0...0 = x0...0 and

yi, with y2i = x0...0xi for i ∈ I \ {0}

be an arbitrary choice of square roots. Then there exist unique values yi for i ̸∈ I
so that Th(B, θB

′
) = (y0...0 : · · · : y1...1) for some (compatible) theta structure

θB
′
on B.

Proof. First note that there necessarily exists a choice of square roots so that

(x0...0 :
√
x0...0x0...01 : · · · :

√
x0...0x1...1) = θ(0B) (6)

for some level-2 theta structure θ on B. This follows from the description of
the 2-isogeny ϕ : A → B established in Subsection 2.5. It remains to show the
following.

1. We may choose square roots for the g(g + 1)/2 elements with indices in
I \ {0} arbitrarily.

2. The choice of the square roots in (1.) determines the signs of the remaining
square roots, for a choice of level structure on B compatible with the one
on A.

13 Indeed, the computation of radical 2-isogenies in the theta model in dimensions g = 1, 2 is
already outlined in [54, Appendix C].

12 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

We will repeatedly use Lemma 17 which characterizes equivalent level-2 theta
structures for a given p.p. abelian variety. We note that only the second type
of transformation, scaling by a 4-th roots of unity, is admissible here. This is
clear, when all coordinates are distinct. In this case these are the only trans-
formations that leave the squares of all theta functions invariant (if in addition
the exponents are even). To understand the general case, one needs to consider
the induced action on the symplectic decompositions A[2] = KA,1 +KA,2 and
B[2] = KB,1 +KB,2. The compatibility condition implies that KB,1 = ϕ(KA,1),
which is only preserved by using the second type of transformations.14

Any such transformation can be written as the composition of the following two
types of transformations.

Mj : θig,...,i1 7→

{
θig,...,i1 if ij = 0,

−θig,...,i1 if ij = 1,
for j ∈ {1, . . . , g},

Mj,k : θig...i1 7→

{
θig...i1 if ij = 0 or ik = 0,

−θig...i1 if ij = ik = 1,
for j ̸= k ∈ {1, . . . , g}.

To prove (1.), assume that we are given a level-2 theta structure θ for B as in
Equation 6, and let θig...i1 be the associated theta functions. In what follows, we
demonstrate that the sign of any of the functions θig...i1 with index i = ig . . . i1 ∈
I \ {0} may be changed without affecting the signs of the remaining functions
with indices in I \{i}. First, let i = i1 . . . ig in I with exactly one nonzero index
ij = 1. The action of Mj ·

∏
k ̸=j Mj,k changes the sign of the function θi, but

does not affect the signs of the theta function θi′ with index i′ ∈ I \ {i}. Now,
let i = i1 . . . ig in I with exactly two nonzero indices ij = ik = 1. The action of
Mj,k changes the sign of θi but does not affect the signs of the theta function
θi′ with indices i′ ∈ I \ {i}.
We now prove (2.), the uniqueness of the remaining signs of θ, once a choice for
the signs of the functions with indices in I has been fixed. Suppose that θ is an
admissible choice of square-roots. And let C be a symmetric matrix acting as

θ′ig...i1 = ζ
(ig...i1)C(ig...i1)

t

4 · θig...i1 .

which fixes the theta functions with indices in I. We denote C = (cj,k)j,k. Since
C does not affect θig...i1 with exactly one entry ij = 1, we have that ζ

cj,j
4 = 1

for all j. Furthermore, since C does not affect θ′ig...i1 with exactly two entries
ij = ik = 1, we have

ζ2cj,k+cj,j+ck,k = ζ2cj,k = 1.

This implies that for a general index ig . . . i1, we have

ζ
(ig...i1)·C·(ig...i1)t
4 = ζ

i21c1,1+···+i2gcg,g+
∑

j ̸=k 2cj,kijik
4 = 1,

hence the corresponding theta function is unchanged. This completes the proof
of Lemma 3.

We can now formally define the operation Ts.

14 We refer to [55, Remarque 6.4.3] for more information on the relation between transforma-
tions and the torsion.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 13

Notation 4. Let ϕ : A→ B as in Lemma 3, and in particular x = (x0...0 : · · · :
x1...1) = H◦S(Th(A, θA)) with xℓ ̸= 0 for ℓ ∈ I = {ig . . . i1 ∈ (Z/2Z)g | #{ij =
1} = 0, 1, 2}. We denote

{ℓ1, . . . , ℓg(g+1)/2} := I \ {0 . . . 0}.

For a vector s = (s1, . . . , sg(g+1)/2) ∈ {−1, 1}g(g+1)/2, we then denote

Ts(x) = (y0...0 : · · · : y1...1), where yℓ =

{
x0...0 if ℓ = 0 . . . 0,

sℓj
√
x0...0xℓj if ℓ = ℓj ∈ I,

and the remaining 2g−1−g(g+1)/2 values yℓ with ℓ /∈ I are uniquely determined
as per Lemma 3.

Th(A, θA)
S

Squaring

H
Hadamard
transform

Ts
Square
roots

H
Hadamard
transform

Th(B, θB)

Fig. 1. A radical 2-isogeny

The definition of Ts allows us to describe radical 2-isogenies as the composition
H◦Ts ◦H◦S. This is sketched in Figure 1. This definition can also be extended
to the case where xℓ = 0 for some ℓ ∈ I, see Subsection 3.3.

In the cases g = 1 and g = 2, it holds that 2g − 1 = g(g + 1)/2, hence we
immediately obtain the following simple description for radical 2-isogenies.

Corollary 5 (Description of Ts for g = 1, 2). Let A be a p.p. abelian variety
of dimension g, and ϕ : A→ B an isogeny as in Notation 4.

1. For g = 1, we have

Ts : (x0 : x1) 7→ (x0 : s1
√
x0x1).

2. For g = 2, we have

Ts : (x00 : x01 : x10 : x11) 7→ (x00 : s1
√
x00x01 : s2

√
x00x10 : s3

√
x00x11).

Corollary 6. Using Algorithm 1, the computation of a radical 2-isogeny in
dimension g = 1 costs 1Sqrt+ 1M+ 2S+ 4a.

Using Algorithm 2, the computation of a radical 2-isogeny in dimension g = 2
costs 3Sqrt+ 3M+ 4S+ 16a.

14 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

Algorithm 1 Radical 2-isogeny for g = 1

Input: A level-2 theta null point Th(A, θA) = (a0 : a1) and a choice bit s ∈ {−1, 1}
Output: A level-2 theta null point Th(B, θB) = (b0 : b1)
1: x0, x1 ← H ◦ S(a0, a1) ▷ 2S+ 2a
2: x′1 ← x0 · x1 ▷ 1M
3: y1 ←

√
x′1 ▷ 1Sqrt

4: y0 ← x0
5: y1 ← CondNeg(y1, s)
6: b0, b1 ← H(y0, y1) ▷ 2a
7: return (b0, b1) ▷ Total Cost: 1Sqrt+ 1M+ 2S+ 4a

Algorithm 2 Radical 2-isogeny for g = 2

Input: A level-2 theta null point Th(A, θA) = (a0 : a1 : a2 : a3) of an irreducible abelian
surface A and choice bits si ∈ {−1, 1}3

Output: A level-2 theta null point Th(B, θB) = (b0 : b1 : b2 : b3)
1: x0, x1, x2, x3 ← H ◦ S(a0, a1, a2, a3) ▷ 4S+ 8a
2: x′1, x

′
2, x

′
3 ← x0 · x1, x0 · x2, x0 · x3 ▷ 3M

3: y1, y2, y3 ←
√
x′1,
√
x′2,
√
x′3 ▷ 3Sqrt

4: y0 ← x0
5: y1, y2, y3 ← CondNeg(y1, s0),CondNeg(y2, s1),CondNeg(y3, s2)
6: b0, b1, b2, b3 ← H(y0, y1, y2, y3) ▷ 8a
7: return (b0, b1, b2, b3) ▷ Total Cost: 3Sqrt+ 3M+ 4S+ 16a

3.2 Explicit description of Ts for g = 3

For abelian varieties of dimension g > 2, it holds that 2g − 1 > g(g + 1)/2
and the description of Ts gets more complicated. In the following, we make this
explicit for the case g = 3, where 2g − 1 = 7 > 6 = g(g + 1)/2. Essentially, this
means that we may choose 6 arbitrary square-roots, and the 7-th square-root
is uniquely determined by this choice. An important ingredient for determining
the last square-root is the following proposition which provides a relation among
the coordinates of a level-2 theta null point.

Proposition 7. Let (a000, . . . , a111) ∈ k8. We define

(β00, . . . , β11, δ00, . . . , δ11) = H ◦ S(a000, . . . , a111)

as well as γi = 2 ·
∑

j∈(Z/2Z)2(−1)
⟨i,j⟩a0ja1j for i = i2i1 ∈ (Z/2Z)2, and set

R1 =
∏
i

βi, R2 =
∏
i

γi, R3 =
∏
i

δi.

Then (a000 : · · · : a111) is a level-2 theta null point of a p.p. abelian variety if
and only if

R2
1 +R2

2 +R2
3 − 2(R1R2 +R1R3 +R2R3) = 0. (7)

Proof. The statement essentially follows from the formula in [63, Example 1.4].
Here, we give some more details on this formula and deduce an explicit descrip-
tion in terms of the coordinates (a000 : · · · : a111).

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 15

In dimension g = 3, the map Th : Ag(2, 4) → P2g−1 as in Equation 2 defines
an embedding of the moduli space of p.p. abelian threefolds into P7. The latter
has dimension g(g + 1)/2 = 6 < 7. Therefore the image Im(Th) ⊂ P7 is a
hypersurface. In the following, we show that this hypersurface is defined by
Equation 7.

We note that the Riemann relations [47, §3] provide relations among the coor-
dinates of level-4 theta null points. One such relation is the following.

a(000
000

)a(000
001

)a(000
010

)a(000
011

)
︸ ︷︷ ︸

r1

= a(100
000

)a(100
001

)a(100
010

)a(100
011

)
︸ ︷︷ ︸

r2

+ a(000
100

)a(000
101

)a(000
110

)a(000
111

)
︸ ︷︷ ︸

r3

.
(8)

This implies∏
0≤i,j≤1

(r1 +(−1)ir2 +(−1)jr3) = R2
1 +R

2
2 +R

2
3−2(R1R2 +R2R3 +R1R3) = 0,

(9)
with Ri = r2i for i = 1, 2, 3.

The Ri, being products of squares of level-4 coordinates, may be expressed in
terms of level-2 coordinates as per Lemma 18. In particular, for any i = i2i1 ∈
(Z/2Z)2, we obtain

a(0 0 0
0 i2 i1

)2 = βi, a(1 0 0
0 i2 i1

)2 = γi, a(0 0 0
1 i2 i1

)2 = δi

with βi, γi, δi as in the statement of the proposition. Substituting these expres-
sions in Equation 9 yields the equation for the hypersurface.

The relation from Proposition 7 allows us to explicitly describe Ts.

Theorem 8. Let A be a p.p. abelian variety of dimension g = 3, and ϕ : A→ B
an isogeny as in Notation 4. In particular 15

(a000, . . . , a111) = Th(A, θA), (x000, . . . , x111) = H ◦ S(Th(A, θA))

and I = {ℓ1, . . . , ℓ6} = (Z/2Z)3 \ {000, 111}. We set

R1 = (16 · a000a001a010a011)2, R3 = (16 · a100a101a110a111)2,

T = (x000x100 − x001x101 + x010x110 − x011x111)2

− 4 (x000x010x100x110 + x001x011x101x111).

Then

Ts : (x000 : · · · : x111) 7→ (x000 : s1
√
x000xℓ1 : · · · : s6

√
x000xℓ6 : y)

with y defined as follows.

15 Note that all vectors are necessarily viewed as affine vectors in this theorem. In particular,
we assume x = H ◦ S(Th(A, θA)) with a = (a000, . . . , a111).

16 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

(i) If R1 +R3 − T ̸= 0, then

y = x3000 ·
(R1 +R3 − T)2 + 64

∏
i∈(Z/2Z)3 xi − 4R1R3

16(R1 +R3 − T) ·
∏6

j=1 sj
√
x000xℓj

.

(ii) If R1 +R3 − T = 0, then

y = −x3000 ·
26
∏

i∈(Z/2Z)3 ai∏6
j=1 sj

√
x000xℓj

.

Proof. We outline the computations to find these formulas below. Symbolic
verification of the computations is provided in our GitHub repository (https:
//github.com/GiacomoPope/ThetaCGL).

Our goal is to recover the vector b̃ = Th(B, θ̃) = (̃b000 : · · · : b̃111). Being a

theta null point, the coordinates of b̃ necessarily satisfy the relation described
in Proposition 7. With the notation of the proposition, we have

(β00, . . . , β11, δ00, . . . , δ11) = H ◦ S (̃b) = H(x0 · x) = 23 · x0 · (a2000, . . . , a2111),

where we used that H ◦ H is multiplication by 23. This implies that R1, R3 as
defined in the theorem correspond to the Rprop

1 , Rprop
2 in Proposition 7 up to

multiplication by 26 · x40, more precisely

Rprop
1 = 26x40 ·R1, Rprop

3 = 26x40 ·R3.

Note that Rprop
2 cannot be expressed in terms of the squares of the coordinates

of b̃. An explicit computation shows that

T = Rprop
2 −

27 ·
∏

i∈(Z/2Z)3 b̃i

x4000
.

This allows us to rewrite the relation from Proposition 7 in terms of R1, R3, T
and

∏
i∈(Z/2Z)3 b̃i. We use this to solve for b̃111. There are two cases to consider.

If R1 + R3 − T ̸= 0, there is a unique solution when solving for b̃111 which is
given by the formula in the theorem.
In the second case, when R1 +R3 − T = 0, we find

b̃2111 = x111x000 =

(
26x3000

∏
i∈(Z/2Z)3 ai∏6

j=1

√
x000xℓj

)2

.

This provides us with a formula for ±b̃111. In order to choose the correct sign,
it is necessary to go back to the proof of Proposition 7. With the notation of
the proof, we have that

r21 = Rprop
1 , r23 = Rprop

3 , and r1r3 = 212
∏

i∈(Z/2Z)3
ai.

The last equality follows from the isogeny formula [47, Theorem 4].
Since r1 − r2 − r3 = 0, we have (r1 − r3)2 − r22 = 0. Therefore,

0 = R1 +R3 − 21+12
∏

i∈(Z/2Z)3
ai − r22.

https://github.com/GiacomoPope/ThetaCGL
https://github.com/GiacomoPope/ThetaCGL

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 17

Using R1 +R3 − T = 0 and R2 = T + 27 ·
∏

i∈(Z/2Z)3 b̃i

x4
000

, we obtain∏
i∈(Z/2Z)3

b̃i = −26 · x4000 ·
∏

i∈(Z/2Z)3
ai.

Theorem 8 is translated into Algorithm 3. We remark that this describes a
constant time implementation, and moreover does not require any inversions.

Algorithm 3 LastSqrt for radical 2-isogenies for g = 3

Input: A level-2 theta null point Th(A, θA) = (a0, . . . , a7), the vector (x0, . . . , x7) = H ◦
S(Th(A, θA)) with xi ̸= 0 for all i, and y0, . . . , y6 so that y2i = x0xi for i = 0, . . . , 6.

Output: (y0, . . . , y7) so that (y0 : · · · : y7) = Th(B, θ̃B).
1: a0123, a4567 ← 16 · a0 · a1 · a2 · a3, 16 · a4 · a5 · a6 · a7 ▷ 6M+ 2Mc

2: R1, R3 ← a0123 · a0123, a4567 · a4567 ▷ 2S
3: x04, x15, x26, x37 ← x0 · x4, x1 · x5, x2 · x6, x3 · x7 ▷ 4M
4: x0246, x1357 ← x04 · x26, x15 · x37 ▷ 2M
5: t0 ← (x04 − x15 + x26 − x37)2 − 4 · (x0246 + x1357) ▷ 1S+ 1Mc + 5a
6: T ← R1 +R3 − t0 ▷ 2a
7: y ←

∏6
i=1 yi ▷ 5M

8: t1 ← T 2 + 64 · x0246 · x1357 − 4 ·R1 ·R3 ▷ 2M+ 1S+ 2Mc + 2a
9: t2 ← 16 · T · y ▷ 1M+ 1Mc

10: t′1 ← −a0123 · a4567 ▷ 1M
11: t′2 ← 4y ▷ 1Mc

12: t1, t2 ← CondSelect(t′1, t1, T = 0),CondSelect(t′2, t2, T = 0)
13: y0, . . . , y6 ← t2 · (y0, . . . , y6) ▷ 7M
14: y7 ← x30 · t1 ▷ 2M+ 1S
15: return y0, y1, y2, y3, y4, y5, y6, y7 ▷ Total Cost: 30M+ 5S+ 7Mc + 9a

As a result, we also obtain an algorithm for computing radical isogenies in
dimension 3. This is summarized in Algorithm 4.

Corollary 9. Using Algorithm 4, a radical 2-isogeny in dimesnion g = 3 can
be computed in 6Sqrt+ 36M+ 13S+ 7Mc + 57a.

3.3 Description of Ts for vanishing theta null values

In the definition of Ts (Notation 4), we assumed that xℓ ̸= 0 for ℓ ∈ I. When
one or more of the coordinates are zero, one has to be more careful.
We remark that the coordinates of x = (x0...0 : · · · : x1...1) = H ◦ S((a0...0 :
· · · : a1...1)) are the squares of 2g of the 2g−1(2g +1) even theta values of level-4
(Lemma 18). The vanishing of the level-4 theta null values is related to the
geometry of the abelian variety, see Subsection 2.2. For our main application,
Theta-CGL (Section 5), we are only interested in irreducible varieties. In dimen-
sions g = 1 and g = 2, this means that none of the level-4 theta null values
vanishes. In dimension g = 3, it can happen that at most one of the xi vanishes

18 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

Algorithm 4 Radical 2-isogeny for g = 3

Input: A level-2 theta null point Th(A, θA) = (a0 : · · · : a7) of an irreducible abelian threefold
A and a choice bits si ∈ {−1, 1}6

Output: A level-2 theta null point Th(B, θB) = (b0 : · · · : b7)
1: x0, . . . , x7 ← H ◦ S(a0, . . . , a7) ▷ 8S+ 24a
2: i∗ ← 7 ▷ Set i∗ to the value i such that xi = 0 or 7 otherwise
3: for i = 0, . . . , 6 do
4: i∗ ← CondSelect(i, i∗, xi = 0)
5: end for
6: xi∗ , x7 ← x7, xi∗ ▷ Ensure that if present, a zero coordinate is swapped to x7
7: y0 ← x0
8: x′1, . . . , x

′
6 ← y0 · (x1, . . . , x6) ▷ 6M

9: y1, . . . , y6 ←
√
x′1, . . . ,

√
x′6 ▷ 6Sqrt

10: for i = 1, . . . , 6 do
11: yi ← CondNeg(yi, si−1)
12: end for
13: y0, . . . , y7 ← LastSqrt(a0 . . . , a7, x0, . . . , x7, y0, . . . , y6) ▷ Cost: 30M+ 5S+ 7Mc + 9a
14: yi∗ , y7 ← y7, yi∗ ▷ Swap in the case that one of xi were zero
15: b0, . . . , b7 ← H(y0, . . . , y7) ▷ 24a
16: return (b0 : · · · : b7) ▷ Total Cost: 6Sqrt+ 36M+ 13S+ 7Mc + 57a

even when the underlying p.p. abelian variety is irreducible. In this case it is
the Jacobian of a hyperelliptic curve.
When A is the Jacobian of a hyperelliptic genus-3 curve, then exactly one of
the 36 even theta coordinates vanishes. If this is not one of the coordinates
corresponding to (x000 : · · · : x111) = H ◦ S(Th(A, θA)), then we can still apply
Theorem 8. In the other case, let ℓ−1 ∈ (Z/2Z)3 be the index of the vanishing
coordinate and {i0, . . . , i6} = (Z/2Z)3 \ {i−1}. We define

Ts : (x000 : · · · : x111) 7→ (y000 : · · · : y111),

where

yk =


0 if k = ℓ−1,

xk if k = ℓ0,

si
√
xℓ−1xℓi if k = ℓi, with i ∈ {1, . . . , 6}.

Note that this case still requires the computation of 6 = g(g+1)/2 square roots,
and none of the bits of s = (s1, . . . , s6) is redundant. To see that our definition of
Ts still results in an isogeny given by H◦Ts◦H◦S, one can use an argument very
similar to that of Lemma 3 with the indices of nonzero coordinates permuted
appropriately.
Finally, we remark that it is possible to define Ts for the reducible cases as well.
More details are given in Appendix B.

3.4 Composition of 2-isogenies

This part concerns the composition of 2-isogenies to obtain 2n-isogenies. While
this is a trivial task in dimension g = 1 (it only means avoiding dual isogenies

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 19

at any step), the situation is more complicated in dimension g > 1. However, it
turns out that the good composition of 2-isogenies is very natural in the theta
model. In particular, we show that the isogeny computation sketched in Figure
2 is a (good) 2n-isogeny.

Th(A, θA)
S

Squaring

H
Hadamard
transform

Ts
Square
roots

H
Hadamard
transform

Th(B, θB)

n times

Fig. 2. A 2n-isogeny

To make the potential obstructions in dimension g > 1 explicit, let ϕ : A → B
and ψ : B → C be 2-isogenies of p.p. varieties of dimension g. Then the kernel
K = ker(ψ ◦ ϕ) is a 4-isotropic subgroup of A, and in particular

K = ker(ψ ◦ ϕ) ≃ (Z/4Z)m × (Z/2Z)2k, with m+ k = g.

In accordance with [13, Definition 2], we make the following definition, depend-
ing on the values m and k

Definition 10. Let ϕ, ψ and m, k as above.
– We say that ψ is the dual extension of ϕ if k = g,m = 0.
– We say that ψ is a bad extension of ϕ if 0 < k,m < g.
– We say that ψ is a good extension of ϕ if k = 0,m = g.

As the naming suggests, we are only interested in good extensions of isogenies.
Note that the composition ψ ◦ ϕ is a good 4-isogeny if and only if ψ is a good
extension of ϕ. Any given 2-isogeny ϕ : A → B, has exactly 2g(g+1)/2 different
good extensions [10, Section 2.2].
In our framework, one automatically works with good extensions. And in partic-
ular, composing n radical 2-isogenies results in a good 2n-isogeny. More formally,
given an isogeny ϕ = ϕn ◦ · · · ◦ ϕ1 described as the composition of radical 2-
isogenies, where each ϕi : Ai → Ai+1, is described by H ◦ Tsi ◦ H ◦ S for some
si ∈ {−1, 1}g(g+1)/2. Then for all i = 1, . . . , n − 1, the isogeny ϕi+1 is a good
extension of ϕi, and in particular, ϕ is a good 2n-isogeny.

3.5 Relationship between sign choices and isogeny kernels

At each step i in the isogeny chain, one can choose g(g+1)/2 signs, which results
in 2g(g+1)/2 different outcomes at each step. In the context of radical isogenies,
one might expect that these corresponds to the different good extensions of the
isogeny. However, the relation is more subtle.
First of all, we recall that the sign choice at step i has no influence on the kernel
of the computed isogeny. By contrast, the choice of signs determines the next
theta null point Th(Ai+1, θ

Ai+1) which determines the kernel of the isogeny
ϕi+1 : Ai+1 → Ai+2. In order to see the full effect of the sign choices on the
kernel, one needs to go even one step further.

20 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

Lemma 11. Let (A, θA) be a p.p. abelian variety equipped with a theta structure
θA, and consider the 8-isogenies ϕ = ϕ3 ◦ϕ2 ◦ϕ1 : A→ B and ϕ′ = ϕ′

3 ◦ϕ′
2 ◦ϕ′

1 :
A→ B′, each computed as the composition of three 2-isogenies ϕi = H◦Tsi◦H◦S
and ϕ′

i = H ◦ Ts′i ◦ H ◦ S respectively.

Then if ker(ϕ) = ker(ϕ′), then s1 = s′1 (and conversely if s1 = s′1, s2 = s′2 then
ker(ϕ) = ker(ϕ′)). .

Proof. The theta structure θA implicitly fixes a symplectic decomposition
A[2] = KA

1 ⊕ KA
2 . In particular, by construction, we have that ker(ϕ1) =

ker(ϕ′
1) = KA

2 . Even if the isogenies ϕ1 : A→ A1 and ϕ′
1 : A→ A1 coincide, the

theta-null points obtained as output of H ◦ Ts1 ◦ H ◦ S and H ◦ Ts′1 ◦ H ◦ S are

distinct since s1 ̸= s′1; let θ
A1 and θ

′,A1 denote the theta structures resulting
from s1 and s′1, respectively.
By construction, the symplectic decompositions of the two torsion A1[2] =

KA1
1 ⊕K

A1
2 induced by θA1and θ

′,A1 coincide. Now, let us denote by TA1
1 ⊕TA1

2

the symplectic decomposition of the four-torsion inducing θA1 and by T
′,A1
1 ⊕

T
′,A1
2 the one inducing θ

′,A1 .
Let r1, . . . , rg be the generators of TA1

1 corresponding to the theta structure
θA1 , t1, . . . , tg be the generators of TA1

2 , and similarly r′1, . . . , r
′
g and t′1, . . . , t

′
g

for T
′,A1
1 and T

′,A1
2 . In particular ri = r′i.

Since θA1 ̸= θ
′,A1 , there exists ĩ ∈ {1, . . . , g} such that t′

ĩ
= t̃i+2rĩ. This proves

that the kernel of ϕ3 and ϕ′
3 must be distinct.

We provide a more thorough analysis of the situation in Appendix F.3. However,
the statement of Lemma 11 is precise enough for the applications in this paper.

4 Radical 2k-isogenies for small k

As we have seen in the last section, the formulas for radical 2-isogenies in the
theta model are strikingly compact, especially in dimensions one and two. Nat-
urally, this raises the question if this is also true for radical 2k-isogeny formulas
for some small k > 1. Here, we derive such formulas for radical 4- and 8-isogenies
in dimension 1, as well as (almost) radical 4-isogenies in dimension 2. The proofs
of our new formulas are elementary, and essentially only rely on applying the
radical 2-isogeny formulas several times. Here, we provide pseudocode for the
efficient valuations of our new formulas. The symbolic expressions, as well as
detailed proofs can be found in Appendix C.
While the proofs are elementary, the general strategy to derive such formulas
requires more advanced techniques. It relies on cubical arithmetic as presented
in [59]. We outline the general strategy in Subsection 4.3.

4.1 Explicit formulas in dimension g = 1

In dimension g = 1, we found formulas for radical radical 4- and 8-isogenies
(Algorithms 5 and 6).

Proposition 12. On input a level-2 theta null point, (a0 : a1) ∈ P1 of an
elliptic curve A, Algorithm 5 outputs the level-4 theta null point of an elliptic
curve B, so that there exists a 4-isogeny ϕ : A → B with kernel K = ⟨P ⟩ and
θA(P) = (1 : 0). The computational cost is 1Quart+ 1M+ 2S+ 1Mc + 4a.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 21

Proof. See Appendix C.1

Algorithm 5 Radical 4-isogeny for g = 1

Input: A level-2 theta null point Th(A, θA) = (a0 : a1) and choice bits s1, s2 ∈ {−1, 1}
Output: A level-2 theta null point Th(B, θB) = (b0 : b1)
1: x0, x1 ← H ◦ S(a0, a1) ▷ 2S+ 2a
2: x′1 ← x0 · x1 ▷ 1M
3: λ← 4

√
x′1 ▷ 1Quart

4: λ← CondNeg(λ, s1)
5: λ← CondSelect(λ, ζ4 · λ, s2) ▷ 1Mc

6: b0, b1 ← H(a0, λ) ▷ 2a
7: return (b0, b1) ▷ Total Cost: 1Quart+ 1M+ 2S+ 1Mc + 4a

Proposition 13. On input a level-2 theta null point, (a0 : a1) ∈ P1 of an
elliptic curve A and the coordinates θA(P) = (u0 : u1) of an 8-torsion point
satisfying θA(2 · P) = (1 : 0), Algorithm 6 outputs the level-2 theta null point
of an elliptic curve B, so that there exists an 8-isogeny ϕ : A → B with kernel
K = ⟨P ⟩, as well as coordinates θB(Q) = (v0 : v1) pf an 8-torsion point Q with
θB(2 ·Q) = (1 : 0).

The computational cost is 1Eirt+ 7M+ 11S+ 4Mc + 8a.

Proof. See Appendix C.1.

Algorithm 6 Radical 8-isogeny for g = 1

Input: A level-2 theta null point Th(A, θA) = (a0 : a1), and (u0 : u1) so that (u0 : u1) =
θA(P) for some P with θA(2 · P) = (1 : 0); and choice bits s1, s2, s3 ∈ {−1, 1}

Output: A level-2 theta null point Th(B, θB) = (b0 : b1) and coordinates of an 8-torsion
point (v0 : v1)

1: a00, a01, a11 ← a0 · a0, a0 · a1, a1 · a1 ▷ 1M+ 2S
2: u00, u01, u11 ← u0 · u0, u0 · u1, u1 · u1 ▷ 1M+ 2S
3: λ = 8

√
(u2

00 − u2
11)(u

2
00 + u2

11) ▷ 1Eirt+ 2S+ 1M+ 2a
4: λ← CondNeg(λ, s1)
5: λ← CondSelect(λ, ζ4 · λ, s2) ▷ 1Mc

6: λ← CondSelect(λ, ζ8 · λ, s3) ▷ 1Mc

7: λ2, λ4 ← λ2, λ4 ▷ 2S
8: b0, b1 ← H(u00, λ2) ▷ 2a
9: t← u01 · a01 ▷ 1Mc

10: v0 ← (t+ t) · b1 ▷ 1M+ 1a
11: v1 ← (a00 + a00) · u2

01 + λ4 · a11 −
√
2 · λ · t · u0 ▷ 4M+ 1S+ 1Mc + 3a

12: return (b0, b1), (v0, v1) ▷ Total Cost: 1Eirt+ 8M+ 9S+ 4Mc + 8a

22 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

4.2 Explicit formulas in dimension g = 2

In dimension g = 2, we provide a description of (almost) radical 4-isogenies
(Proposition 14) along with pseudocode for the efficient evaluation of the for-
mula (Algorithm 7). Here, with almost radical, we mean that the formula re-
quires the computation of two fourth roots as well as two square roots. Opti-
mally, one would expect a formula that relies on the computation of three fourth
roots. The intuition behind our findings is explained in Subsection 4.3.

Proposition 14. On input a level-2 theta null point (a00 : a01 : a10 : a11) ∈ P3

of a p.p. abelian surface A, Algorithm 7 outputs the theta null point of a 4-
isogenous p.p. abelian surface B. The 4-isogeny ϕ : A → B is described by
H ◦ Ts2 ◦ H ◦ S ◦ H ◦ Ts1 ◦ H ◦ S for some s1, s2 ∈ {±1}3.
The computational cost is 2Quart+ 2Sqrt+ 14M+ 4S+ 5Mc + 27a.

Proof. See Appendix C.2

Algorithm 7 (Almost) radical 4-isogeny for g = 2

Input: A level-2 theta null point Th(A, θA) = (a0 : a1 : a2 : a3) of an irreducible abelian
surface A and bits si ∈ {−1, 1}6

Output: A level-2 theta null point Th(B, θB) = (b0 : b1 : b2 : b3)
1: x0, x1, x2, x3 ← H ◦ S(a0, a1, a2, a3) ▷ 4S+ 8a
2: x01, x02, x13, x23 ← x0 · x1, x0 · x2, x1 · x3, x2 · x3 ▷ 4M
3: y ← √x01 · x23 ▷ 1Sqrt+ 1M
4: y ← CondNeg(y, s0)
5: α′

1, α
′
2 ← 4 · (y + y + x01 + x23), 4 · (y + y + x02 + x13) ▷ 2Mc + 5a

6: α1, α2 → 4
√
α′
1,

4
√
α′
2 ▷ 2Quart

7: α′
3 ← 8 · (x23 + y) · ((x02 + y) · x23 · x3 + (x13 + y) · x23 · x2) ▷ 5M+ 1Mc + 4a

8: α3 ← 2
√
α′
3 ▷ 1Sqrt

9: α1, α2, α3 ← CondNeg(α1, s1),CondNeg(α2, s3),CondNeg(α3, s5)
10: α1, α2 ← CondSelect(α1, ζ4 · α1, s2),CondSelect(α2, ζ4 · α2, s4) ▷ 2Mc

11: t← x23 · α1 · α2 ▷ 2M
12: y0 ← t · (a0 + a0) ▷ 1M+ 1a
13: y1, y2 ← t · α1, t · α2 ▷ 2M
14: y3 ← α3

15: b0, b1, b2, b3 ← H(y0, y1, y2, y3) ▷ 8a
16: return (b0, b1, b2, b3) ▷ Total Cost: 2Quart+ 2Sqrt+ 14M+ 4S+ 5Mc + 26a

4.3 General strategy

The correct framework to find ℓ-radical isogeny formulas is given by the cubical
arithmetic [59]. Let (A,ΘA) be a p.p. abelian variety, and K = ⟨P1, . . . , Pg⟩ be a
totally isotropic subgroup of A[ℓ]. Let B = A/K, and ϕ : (A,ΘA)→ (B,ΘB) the

corresponding ℓ-isogeny, and ϕ̃ be its contragredient isogeny, so that ϕ̃∗ΘB ∼
ℓΘA. By the general theory of multiradical isogenies [10,58], we know that a

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 23

choice of basis Q1, . . . , Qg in K̃ = ker ϕ̃ such that ϕ̃(Qi) = Pi is given by a
choice of g(g + 1)/2 appropriate ℓ-roots of the Tate pairings eT,ℓ(Pi, Pj).
Now, as explained in [59, § 6.2.3], we can use the cubical arithmetic on A in
level n to represent part of the action of the theta group of level nℓ on B,
whenever ℓ is coprime to n. More precisely, a choice of basis of a symmetric
level subgroup in G(ℓΘB) above K̃ is the same as a choice of symmetric cubical

points P̃i and P̃i + Pj . Furthermore, the obstructions to finding these symmetric
cubical points correspond to the étale torsors xℓ = ζij where the values ζij are
given by the Tate pairings as above [58].
We thus obtain the following strategy to find ℓ-radical formulas using theta

coordinates of level n: we compute symmetric cubical points P̃i and P̃i + Pj

by solving the equations xℓ = ζij , this involve g(g + 1)/2 choice of ℓ-th roots.
Theta coordinates are well adapted to the cubical arithmetic, since the Riemann
relations give cubical relations [59, § 4.8]. Using this cubical arithmetic, we then
obtain a theta null point of level ℓn on (B, ℓnΘB) [30,55], and we use a variant
of the change of level formulas from [43] to obtain the level n theta coordinates
on (B,nΘB) of the points Qi, which form the basis of the next kernel on B.
Unfortunately, for the purpose of this article we want to compute 2k-radical
isogeny formulas, while working with theta functions of level 2. We can only ap-
ply the above strategy partially: first, we need to start with a basis (P1, . . . , Pg)
compatible with our existing theta structure on A. Then by [56, Remark 2.10.3],
we can leverage a choice of g 2k-roots and g(g−1)/2 choice of 2k−1-roots into a
level 2k theta null point on B′ = A/K[2k−1]. Note that while we have access to
the 2k-torsion (and partial information on the 2k+1-torsion, see appendix F) on
B′, A → B′ only gives a 2k−1-isogeny. The question becomes whether we can,
replacing our g(g − 1)/2 choices of 2k−1 roots into 2k-roots, determine enough
2k+1-torsion information on B′ such that it descends on enough 2k-torsion in-
formation on B = A/K via the 2-isogeny B′ → B.
The easiest case to tackle is the case g = 1, because the extra information on the
2k+1-torsion encoded by a level 2k-theta is easier to describe. The above strategy
is how we found the radical 4- and radical 8-isogeny formulas in dimension 1.
In section 4.1, we gave a self contained proof of the formulas. Still, we feel that
the above description of the global framework to find radical isogeny formulas
using cubical arithmetic explains why our formulas do not come out of nowhere,
and could in principle apply to compute 2k-radical isogenies in dimension 1.
It also explains why radical 4-isogeny formulas are harder to find in higher
dimension. As explained, in dimension 2 we can take two 4-th roots and one
square root to obtain a theta null point of level 4 on B′ = A/K[2]. On B′ we
have full information on the 4-torsion and partial information on the 8-torsion.
Using an extra square root we can add enough information on this 8-torsion
to obtain our 4-torsion points Q1, Q2 on B = A/K via the 2-isogeny B′ → B.
However, this means that the 4-radical formulas from Proposition 14 use two
fourth roots and two square roots rather than three fourth roots.

5 Application to cryptography: Theta-CGL

A cryptographic hash function is a hash function H : {0, 1}∗ → {0, 1}r, which
on input a message m ∈ {0, 1}∗, outputs a bit string of fixed length r. The
security of the hash function relies on the following two assumptions:

24 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

– Preimage resistance: Given an element x ∈ {0, 1}r, it is hard to find a
message m ∈ {0, 1}∗ with H(m) = x.

– Collision resistance: It is hard to find two distinct messages m ̸= m′ ∈
{0, 1}∗ with H(m) = H(m′).

In 2006, Charles, Goren and Lauter [16] proposed a cryptographic hash function
(known as the CGL hash function) based on taking a deterministic walk in the
supersingular 2-isogeny graph of elliptic curves over a finite field Fp2 . To make
this more precise, fix some supersingular elliptic curve E0/Fp2 (together with
an incoming isogeny ϕ−1 : E−1 → E0), and let m = (m0, . . . ,mn−1) ∈ {0, 1}n
be the input message. This message determines a walk

E0 → E1 → · · · → En,

where at each step i, the isogeny ϕi : Ei → Ei+1 is determined by the bit
mi. Note that the 2-isogeny graph is 3-regular, and imposing the condition
to construct a non-backtracking walk, there are exactly two options at each
vertex. The output of the hash function is then given by the j-invariant of the
last elliptic curve in the walk, that is H(m) = j(En).

Generalizations of the CGL hash function working in isogeny graphs of two
dimensional p.p. abelian varieties have been proposed in [62] and [13].

In this section, we provide a new framework for instantiating CGL-type hash
functions using our description of radical isogenies in level-2 theta coordinates.
This can be viewed as a simple and uniform framework for the original CGL
hash function as well as its generalization to dimension 2, and it also allows us
to describe a generalization to dimension 3 for the first time.

5.1 Description of our hash function

In the setup, one first chooses parameters

(g, ℓ) ∈ {(1, 2), (1, 4), (1, 8), (2, 2), (2, 4), (3, 2)}.

Here, g stands for the dimension, and ℓ = 2k for the degree of the isogenies.
Then a p.p. abelian variety A of dimension g, and a level-2 theta null point
Th(A, θA) = (a0...0 : · · · : a1...1) are provided as public parameters. The hash
function takes as input a message m ∈ {−1, 1}n·k·g(g+1)/2 for some arbitrary
value n. 16 This message is divided into chunks m1, . . . ,mn of bit length k ·g(g+
1)/2. Then at each step i, a 2k-isogeny is computed, where the choice of 2kth
roots at each step is determined by mi. The output consists of the (normalized)
theta null point of the codomain of the final isogeny.17 A description is provided
in Algorithm 8. This uses the algorithms Radicalg,ℓ from Sections 3 and 4.

16 In the implementation, one of course takes m ∈ {0, 1}n·g(g+1)/2. We intentionally use
{−1, 1}n·g(g+1)/2 in the description, since message bits will correspond to signs in our hash
function.

17 In our implementation of the hash function, we normalized the coordinates. This was done
for two reasons: to make the output more compact, and as a precaution against the pos-
sibility that unnormalized coordinates may leak information on the action on differentials
which might provide information on the isogeny.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 25

Algorithm 8 Theta-CGLg,ℓ=2k

Input: A level-2 theta null point Th(A, θA) and a message m

Output: A normalised level-2 theta null point Th(A′, θA
′
) with a0...0 = 1

1: (m0, . . . ,mn)← MessageToChunks(m, g, k) ▷ mi ∈ {−1, 1}kg(g+1)/2

2: for i = 0 to n do
3: θ(0A)← Radicalg,ℓ(θ(0A),mi)
4: end for
5: θ(0′A)← Normalise(θ(0A))
6: return θ(0′A)

Underlying isogeny graph To allow for an efficient implementation of the
hash function, we instantiate it in the superspecial 2-isogeny graph Γg(2; p) in
dimension g = 1, 2, 3, respectively. The vertices of this graph are isomorphism
classes of superspecial p.p. abelian varieties of dimension g defined over F̄p, and
the edges represent 2-isogenies. We denote Sg,p = V (Γg(2; p)) for the vertex
set which has size O(pg(g+1)/2) (see Theorem 25 for a more precise statement).
Furthermore, it is known that the graph Γg(2; p) is an expander graph [2].
The output of a random walk on an expander graph with N vertices tends to
the uniform distribution after O(log(N)) steps, hence we require that our hash
function takes at least O(log p) steps. For a discussion on the constant factor,
we refer to Remark 26.

Base field As the base field for our computations, we choose a finite field
Fp2 with p ≡ 3 (mod 4). This guarantees that any element A ∈ Sg,p has an
Fp2 -model whose 4-torsion is fully in Fp2 . It follows that all 2-isogenies are Fp2 -
rational, and the level-2 theta null points are Fp2 -rational as well. The size of
the prime depends on the dimension g and the required security level λ. We let
log(p) ≈ 2λ if g = 1, log(p) ≈ λ if g = 2, and log(p) ≈ λ/2 if g = 3. A detailed
security analysis justifying these values is provided in Subsections 5.2 and 5.3.

Initial vertex The public parameter Th(A, θA) is a level-2 theta null point of
an element A ∈ Sg,p. We require that the endomorphism ring of A is unknown,
cf. Remark 15. Generating such an element is still an open problem, even in
dimension g = 1, therefore we rely on a trusted setup to generate the initial
vertex in the graph.
For the trusted setup, we suggest to start with an arbitrary vertex A0 ∈ Sg,p
(potentially with known endomorphism ring), perform a sufficiently long random
walk in the graph Sg,p starting at A0, and outputting the last vertex in this walk.
For this random walk, one may use the radical 2-isogeny formulas developed in
this work. For g = 1, more sophisticated methods are available to compute an
elliptic curve with unknown endomorphism ring in a trusted setup [4].

Admissible messages Thus far, we have presented a function that performs
a walk in the 2-isogeny graph that makes k·g(g+1)/2 choices for each step of the
walk. This results in a compression function that takes in fixed-length inputs.
Hence, we need to perform a domain extension to handle arbitrary-length in-
puts. To do so, we will use a variant of the Merkle–Damg̊ard transform with the

26 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

compression function that have a set of theta coordinates and k · g(g+1)/2 bits
as input and outputs a set of theta coordinates. Since the compression function
is preimage resistant (c.f. Theorem 27) and collision resistant (c.f. Theorem 16),
we can conclude that the hash function obtained after the Merkle–Damg̊ard
transform will also retain those properties [40, Thm. 5.4].
The padding scheme that we propose for this hash function is to append a 1 to
the message before padding with 0 and finally adding the 64-bit representation
of the message length. This is in line with the padding scheme used in SHA-2,
for example.

Isomorphism invariants versus theta null points Strictly speaking,
we do not work with isomorphism classes of p.p. abelian varieties. The reason is
that we represent the elements by their theta null point which are not invariant
under isomorphism.
A practical advantage for using the theta null point as input and output, is that
it is a value that we naturally compute during the execution of the hash function.
Moreover, the theta null point provides us with a uniform representation of
p.p. abelian varieties, whereas isomorphism invariants depend on the type of
object. For instance in dimension g = 2, one would need to distinguish between
Jacobians of hyperelliptic curves which can be represented by Igusa invariants,
and products of elliptic curves represented by a pair of j-invariants.
On the other hand, an advantage for using isomorphism invariants would be
that it makes the output size smaller. An isomorphism class is determined by
g(g + 1)/2 invariants, while the (normalized) theta null point consists of 2g − 1
values. We remark that this argument only becomes interesting in dimension
g = 3 and higher.

5.2 Preimage resistance of CGL-Hashg

In our setting, preimage resistance essentially boils down to the problem of
finding isogenies between p.p. abelian varieties. To make this more precise,
let Th(A1, θ

A1) be the public theta null point used in the hash function, let
m ∈ {−1, 1}kg(g+1)/2 and Th(A2, θ

A2) = Theta-CGL(m). This means that there
exists a 2k-isogeny ϕ : A1 → A2. Finding the pre-image m in the context of this
hash function requires finding such a 2k-isogeny ϕ, hence solving Problem 1.

Problem 1. Given two superspecial p.p. abelian varieties of dimension g, A1

and A2 defined over Fp2 , find a 2k-isogeny ϕ : A1 → A2.

The best known algorithm to find isogenies between two superspecial p.p. abelian
varieties of dimension g > 1 is known as the splitting attack by Costello and
Smith [19] which has classical complexity O(pg−1). This is significantly faster
than generic attacks on the path finding problem in a graph which have com-
plexity O(pg(g+1)/4) for all g ≥ 1. We remark that the splitting attack might
not directly yield a solution to Problem 1, since the output is most likely not a
2k-isogeny. However, it provides a useful bound for the security of the problem.
A summary of the state-of-the-art can be found in Appendix E.2.
In conclusion, to reach (classical) security level of λ bits, we need to work over
a finite field Fp2 with p a prime of size λ/cg where cg = max(1/2, g − 1) as
suggested in Subsection 5.1.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 27

5.3 Collision resistance of Theta-CGL

Collision resistance in our setting essentially corresponds to finding two different
2k-isogenies between two p.p. abelian varieties. This is captured in Problem 2.

Problem 2. Given a superspecial p.p. abelian variety of dimension g, A1 de-
fined over Fp2 , find a 2k-isogeny ϕ : A1 → A2 and a 2k

′
-isogeny ϕ′ : A1 → A′

2,
such that A2

∼= A′
2 and ker(ϕ) ̸= ker(ϕ′).

First, we note that Problem 2 can be reduced to Problem 1. The idea underlying
this reduction is to compute a random 2k-isogeny ϕ : A1 → A2 for some large
k and then use an oracle to solve Problem 1 on input A1, A2. This returns
an isogeny ϕ′ : A1 → A2, and with overwhelming probability ϕ1 and ϕ2 are
different isogenies. Generically, the best known method to solve Problem 2 is
indeed to solve Problem 1.
Furthermore, we note that a solution to Problem 2, that is isogenies ϕ, ϕ′ :
A1 → A2, provides us with the non-scalar endomorphism ϕ̂ ◦ ϕ′ ∈ End(A1).
We remark that finding a non-scalar endomorphism of a random supersingular
elliptic curve is a common hardness assumption in isogeny-based cryptography,
since [51] shows that it can be reduced to the problem of computing the entire
endomorphism ring of an elliptic curve is the basis of essentially all of isogeny-
based cryptography.

Remark 15. Recall that we assume that the starting p.p. abelian variety in our
hash function has unknown endomorphism ring. In the light of Problem 2, this
means that a priori no information on the endomorphism ring of A1 is avail-
able. We argue that this is necessary, since knowledge of the endomorphism ring
may be used to construct collisions. Explicit methods for such a construction
are known for elliptic curves, [4], but have not been considered in the higher
dimensional setting g > 1 yet. In our implementation, we began with an abelian
variety which is isomorphic to Eg, hence one is able to represent the endomor-
phism ring of A abstractly using the endomorphism ring of E.

Theorem 16. The hash function Theta-CGLg,ℓ with g ∈ {1, 2, 3} is collision
resistant if Problem 2 is hard.

Proof. Let Th(A, θA) be the public theta null point used in the hash function.
In order to obtain a collision, the adversary has to find two distinct messages
m ̸= m′ so that Theta-CGL(m) = Theta-CGL(m′) = Th(B, θB) for some B ∈
Sg,p. By construction of the hash function, this means that a collision provides
us with two isogenies ϕ, ϕ′ : A → B. If ker(ϕ) ̸= ker(ϕ′), then this provides
us with a solution to Problem 2 and we are done. From now on assume that
ker(ϕ) = ker(ϕ′). Furthermore, we assume that ℓ = 2. The statement for ℓ = 2k

follows immediately from this case. This means, that we may decompose the
isogenies into chains of 2-isogenies

ϕ = ϕt ◦ · · · ◦ ϕ1, ϕ′ = ϕ′
t ◦ · · · ◦ ϕ′

1,

we necessarily have that t = t′ and moreover ϕi and ϕ
′
i are equal up to isomor-

phism for all i.

28 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

We write m = (m1, . . . ,mk) and m′ = (m1, . . . ,mk). Let i ∈ {1, . . . , k} be
minimal with mi ̸= m′

i, and denote ϕi, ϕ
′
i : Ai → Ai+1. At this step, the hash

function performs the computations

Th(Ai+1, θ
Ai+1) = H ◦ Tmi ◦ H ◦ S(Th(Ai, θ

Ai)),

Th(Ai+1, θ
Ai+1

′
) = H ◦ Tm′

i
◦ H ◦ S(Th(Ai, θ

Ai)),

respectively. We remark that the input theta null point at this step Th(Ai, θ
Ai)

coincides. There are two cases to distinguish now.
Case 1: Th(Ai+1, θ

Ai+1) = Th(Ai+1, θ
Ai+1

′
). In other words, the output at this

step coincides in both cases despite the fact that mi ̸= m′
i ∈ {−1, 1}g(g+1)/2.

We write
mi = (s1, . . . , sg(g+1)/2), m′

i = (s′1, . . . , s
′
g(g+1)/2),

and let sℓ ̸= s′ℓ for some index ℓ. Going back to the definition of Ts : x 7→ y,
this implies xℓ = 0. As explained in Subsection 3.3, this can only happen if
Ai is a non-generic vertex of the isogeny graph. The prime p is chosen large
enough so that reducible elements are only encountered with probabilityO(2−λ),
hence these types of non-generic objects can be excluded. In the case g = 3,
there is one more type of non-generic objects, Jacobians of hyperelliptic genus-3
curves, where exactly one theta coordinate vanishes. However, in this case the
definition of Ts still ensures that 6 = g(g+1)/2 bits are consumed without any
redundancies (Subsection 3.3).

Case 2: Th(Ai+1, θ
Ai+1) ̸= Th(Ai+1, θ

Ai+1
′
). We will show that this contra-

dicts the assumption that Th(Ak+1, θ
k+1) = Th(Ak+1, θ

A′
k+1) (which is the

output of the hash function). We know from Lemma 11 that a different choice
of bits at step i results in a non-isomorphic codomain in step i + 2. Since
this cannot be the case, we necessarily have i = k − 1. So at step i + 1, we
have two different theta null points sandwiched between two identical theta
null points at step i and k + 1 respectively; but the compatibility of the theta
structures at each isogeny step impose them to have the same level structure,
hence the same theta constant, which is a contradiction. A more direct argu-
ment is as follows. First compute the possible preimages of the theta null point
Th(B, θB) = (b0...0 : · · · : b1...1) under the last isogenies ϕk and ϕ′

k. This compu-

tation reveals that the coordinates of Th(Ak, θ
Ak) and Th(Ak, θ

Ak
′
) only differ

by signs. On the other hand, we also know that the coordinates of the dual
theta null point of Ak with respect to θAk and θAk

′
also only differ by signs.

The latter condition is obtained by looking at the isogeny ϕk−1 : Ak−1 → Ak.
These two conditions imply Th(Ak, θ

Ak) = Th(Ak, θ
Ak

′
) which contradicts our

assumption.

Finally, we discuss two collision attacks that did not appear in Theorem 16,
since these are naturally avoided by our setup.

Collisions through trivial cycles The graph Γg(p; 2) with g > 1 naturally
has many small (trivial) cycles that can lead to collisions if the hash function is
not designed carefully.
To make this more precise, let G ⊂ A1[2

k] be a maximal isotropic subgroup, and
ϕ : A1 → A2 be the isogeny with kernel G. Then ϕ can be decomposed into a
chain of 2-isogenies, ϕ = ϕk ◦ · · · ◦ϕ1. If G ∼= (Z/2kZ)g, that is ϕ is a 2k-isogeny,

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 29

then the decomposition is unique. On the contrary, if the rank of G is greater
than g, then the decomposition is not unique, hence there are different paths in
the isogeny graph connecting A1 and A2 [31, Prop. 4].
It was noted in [31] that this made the first proposal of a CGL hash function in
dimension 2 [62] insecure. In [13] this problem is fixed by restricting the paths
in the CGL hash functions to 2k-isogenies, hence only allow kernels of rank g.
This is naturally the case in hash function as well (Subsection 3.4).

Trivial collisions with isomorphism invariants Finally, we would like
to point out that replacing the output of Theta-CGL with isomorphism invariants
will lead to trivial collisions in the hash function. The reason is that in terms of
isomorphism classes, the first isogeny computation is already completely deter-
mined by the input. However, it is easy to avoid such collisions by altering the
definition of Theta-CGL slightly. This is explained in Appendix F.

6 Implementation and Experimental Results

We have implemented the Theta-CGLg,ℓ hash function for

(g, ℓ) = {(1, 2), (1, 4), (1, 8), (2, 2), (2, 4), (3, 2)},

in both the programming language Rust and computer algebra system Sage-
Math.
The Rust implementation has been written with cryptographic use in mind and
so is written to both be performant as well as “constant-time” (information
about the bits consumed by the hash function are not leaked through timing
side-channels). In contrast, the purpose of the SageMath implementation is to
offer an educational resource for our 2k-radical isogeny formulas and additionally
contains symbolic proofs of various statements in this paper.
In this section, we outline parameter selection for dimensions one, two and
three. In Table 2 we present the performance of Theta-CGLg,ℓ for all variants by
benchmarking the number of kilobits (1000 bits) hashed per second (Kbps).
The Rust and SageMath code is made available at the following GitHub link:
https://github.com/GiacomoPope/ThetaCGL.

6.1 Picking explicit parameters

Picking the characteristic for our fields is motivated firstly by the security con-
siderations presented in Section 5.1, where to reach λ = 128 bits of security we
require the base field to have a characteristic of size 256, 128, 64-bits in dimen-
sions one, two and three respectively. Secondly, our choice is made to optimize
the cost of the arithmetic in Fp2 . The only restriction coming from the hash
function is p ≡ 3 mod 4 so that the theta null point and the isogenies are all
Fp2 -rational. Apart from this, the focus is on picking a base field to allow for

efficient arithmetic and 2k-roots in Fp2 .
Note that the restriction p ≡ 3 mod 4 further allows for the extension field
Fp2 to have modulus x2 + 1 for faster arithmetic [42]. Additionally, if we pick
p ≡ 15 mod 16, then we can efficiently compute square-roots, fourth-roots and

https://github.com/GiacomoPope/ThetaCGL

30 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

eighth-roots in Fp with a single exponentiation. This (not-necessary) congruence
condition is the only restriction we put in place, meaning there is an abundance
of possible primes for the base field to be picked from with the size required to
meet our security goals.
At the level of arithmetic in the base field Fp, we can ask for efficient modu-
lar arithmetic by looking for primes with particularly efficient modular reduc-
tion, allowing for faster addition and multiplications. For dimension two, we are
particularly lucky as we are in the best-case scenario with a Mersenne prime
p = 2127 − 1, where modular reduction in Fp is particularly efficient as 2127 ≡ 1
mod p and we represent elements with two 64-bit words. For dimensions one
and three we are less lucky, but are still able to pick primes to allow for op-
timized modular reduction. This is a very common problem for elliptic curve
and isogeny-based cryptography and there is is a wealth of references on the
various choices we could make [6,3,60]. From experimentation, we found that
for dimension one the “Montgomery friendly” [3] prime p = 5 · 2248 − 118 rep-
resented by four 64-bit words had the best performance whereas for dimension
three we picked the Solinas prime p = 264 − 28 − 1, which is represented by a
single 64-bit word. Details on our implementation of finite field arithmetic, we
refer to Appendix G. The main complexities are summarized in Table 1.

Table 1. The characteristic picked for dimensions one, two and three together with the
arithmetic cost of square-roots, inversions and Legendre symbols in the base field. For the
256-bit prime, inversion and Legendre symbols are computed using the binary GCD algorithm
[52] and so is cheaper in practice than the arithmetic cost reported.

Characteristic Square-root (Fp) Inversion (Fp) Legendre Symbol (Fp)

5 · 2248 − 1 1M+ 248S ≤ 13M+ 249S ≤ 13M+ 248S
2127 − 1 125S 10M+ 127S 10M+ 126S

264 − 28 − 1 7M+ 61S 9M+ 63S 9M+ 62S

All finite field arithmetic has been written to be constant time to avoid side-
channels in our hash-function. This engineering restriction is carried through to
the hash-function itself with no secret dependent branching or table look ups.
Bits of the message which are hashed are consumed in constant time by using
conditional negation and conditional swaps.

6.2 Performance

All variants of the Theta-CGLg,ℓ hash function described in this paper have
been implemented in Rust. The reported times in Table 2 were measured using
an Intel Core i7-9750H CPU with a clock-speed of 2.6 GHz with turbo-boost
disabled. The Rust code was compiled using version 1.80.0-nightly with the
additional flag -C target-cpu=native to allow the use of Intel specific opcodes,
especially useful for the finite field arithmetic.19

18 One could write 5 = 22 + 1 and then this prime is also in Solinas form p = 2250 + 2248 − 1.
19 For the interested reader, details on how to reproduce the benchmarks are included with

the implementation code https://github.com/GiacomoPope/ThetaCGL.

https://github.com/GiacomoPope/ThetaCGL

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 31

Table 2. Performance of the Theta-CGLg,ℓ function measured by kilobits per second (Kbps)
hashed in dimensions one, two and three. Times were recorded on an Intel Core i7-9750H CPU
with a clock-speed of 2.6 GHz with turbo-boost disabled.

Theta-CGLg,ℓ ℓ = 2 (Kbps) ℓ = 4 (Kbps) ℓ = 8 (Kbps) Output (bytes)

g = 1 81 126 149 64
g = 2 261 374 — 192
g = 3 597 — — 448

Experimentally, we see that there is a moderate performance benefit from work-
ing with 2k-radical isogenies for larger k, but a more significant speed-up is found
by working in higher dimension. The reason for this is two-fold. Firstly, the un-
derlying cost of 2k-roots in Fp2 are k+3 exponentiations with O(log(p)) squares
in Fp, which becomes cheaper as the size of p diminishes. Secondly, as the size
of p decreases, the number of limbs required to represent a single element in
Fp is reduced. A single multiplication requires O(n2) word operations and on
a 64-bit machine we represent elements of Fp with four, two and one word(s)
respectively for dimensions one, two and three. As a result there is a significant
speed-up for the base arithmetic for the smaller prime.
One could push further and consider 2-radical isogenies in dimensions four and
above, but we conjecture that the resulting hash-function would be less efficient
than our dimension three proposal. Firstly, the cost of the arithmetic itself
in dimension four would only be marginally faster as the prime would have
approximately 43 bits to match our λ = 128 bit security goal, and so would
still require elements represented using a single u64 word. More costly though
is that points in dimension four require 16 coordinates and although g(g +
1)/2 = 10 bits could be consumed for each 2-radical isogeny, we would need
many more multiplications in each step after computing 10 roots to ensure
the other coordinates are correct (contrast in dimension three where we need
about 30 multiplications to fix only one additionally root). Additionally, as
the dimension increases, one is more likely to walk through the graph onto
“edge-case” nodes which would require special treatment and a constant time
implementation would have to gracefully handle cases where there are zero, one
or many zero-coordinates in the null point of the variety. However, as these
radical formulae are not currently known, future work in this area may show
that moving to higher dimension is indeed more efficient.

References

1. Gora Adj and Francisco Rodŕıguez-Henŕıquez. Square root computation
over even extension fields. Cryptology ePrint Archive, Paper 2012/685,
2012.

2. Yusuke Aikawa, Ryokichi Tanaka, and Takuya Yamauchi. Isogeny graphs
on superspecial abelian varieties: Eigenvalues and connection to bruhat-tits
buildings, 2022.

3. Jean Claude Bajard and Sylvain Duquesne. Montgomery-friendly primes
and applications to cryptography. Journal of Cryptographic Engineering,
11(4):399–415, Nov 2021.

32 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

4. Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris
Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Pa-
tranabis, and Benjamin Wesolowski. Supersingular curves you can trust. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology - EURO-
CRYPT 2023 - 42nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023,
Proceedings, Part II, volume 14005 of Lecture Notes in Computer Science,
pages 405–437. Springer, 2023.

5. Daniel Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
Faster computation of isogenies of large prime degree. In Algorithmic Num-
ber Theory Symposium (ANTS XIV), volume 4, pages 39–55. Mathematical
Sciences Publishers, 2020.

6. Joppe W. Bos and Simon J. Friedberger. Arithmetic considerations for
isogeny-based cryptography. IEEE Transactions on Computers, 68(7):979–
990, 2019.

7. Bradley W. Brock. Superspecial curves of genera two and three. Phd thesis,
Princeton University, 1993.

8. Nils Bruin, E Flynn, and Damiano Testa. Descent via (3, 3)-isogeny on
jacobians of genus 2 curves. Acta Arithmetica, 3(165):201–223, 2014.

9. Wouter Castryck and Thomas Decru. CSIDH on the surface. In Jintai
Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, pages 111–129, Paris, France,
April 15–17, 2020. Springer, Cham, Switzerland.

10. Wouter Castryck and Thomas Decru. Multiradical isogenies. Cryptology
ePrint Archive, Paper 2021/1133, 2021.

11. Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
– EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes in Computer
Science, pages 423–447, Lyon, France, April 23–27, 2023. Springer, Cham,
Switzerland.

12. Wouter Castryck, Thomas Decru, Marc Houben, and Frederik Vercauteren.
Horizontal racewalking using radical isogenies. In Shweta Agrawal and
Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022, Part II,
volume 13792 of Lecture Notes in Computer Science, pages 67–96, Taipei,
Taiwan, December 5–9, 2022. Springer, Cham, Switzerland.

13. Wouter Castryck, Thomas Decru, and Benjamin Smith. Hash functions
from superspecial genus-2 curves using Richelot isogenies. Journal of Math-
ematical Cryptology, 14(1):268–292, 2020.

14. Wouter Castryck, Thomas Decru, and Frederik Vercauteren. Radical iso-
genies. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryp-
tology – ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes in
Computer Science, pages 493–519, Daejeon, South Korea, December 7–11,
2020. Springer, Cham, Switzerland.

15. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: An efficient post-quantum commutative group action. In
Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –
ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Computer
Science, pages 395–427, Brisbane, Queensland, Australia, December 2–6,
2018. Springer, Cham, Switzerland.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 33

16. Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic
hash functions from expander graphs. Journal of Cryptology, 22(1):93–113,
January 2009.

17. Maria Corte-Real Santos, Craig Costello, and Benjamin Smith. Efficient
(3, 3)-isogenies on fast kummer surfaces. In Algorithmic Number Theory
Symposium (ANTS XVI). Mathematical Sciences Publishers, 2024.

18. Craig Costello. Computing supersingular isogenies on Kummer surfaces.
In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –
ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Computer
Science, pages 428–456, Brisbane, Queensland, Australia, December 2–6,
2018. Springer, Cham, Switzerland.

19. Craig Costello and Benjamin Smith. The supersingular isogeny problem
in genus 2 and beyond. In Jintai Ding and Jean-Pierre Tillich, editors,
Post-Quantum Cryptography - 11th International Conference, PQCrypto
2020, Paris, France, April 15-17, 2020, Proceedings, volume 12100 of Lec-
ture Notes in Computer Science, pages 151–168. Springer, 2020.

20. Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin
Wesolowski. SQIsignHD: New dimensions in cryptography. In Marc Joye
and Gregor Leander, editors, Advances in Cryptology – EUROCRYPT 2024,
Part I, volume 14651 of Lecture Notes in Computer Science, pages 3–32,
Zurich, Switzerland, May 26–30, 2024. Springer, Cham, Switzerland.

21. Pierrick Dartois, Luciano Maino, Giacomo Pope, and Damien Robert. An
algorithmic approach to (2,2)-isogenies in the theta model and applications
to isogeny-based cryptography. IACR Cryptol. ePrint Arch., page 1747,
2023.

22. Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Ben-
jamin Wesolowski. SQISign: Compact post-quantum signatures from
quaternions and isogenies. In Shiho Moriai and Huaxiong Wang, editors,
Advances in Cryptology – ASIACRYPT 2020, Part I, volume 12491 of Lec-
ture Notes in Computer Science, pages 64–93, Daejeon, South Korea, De-
cember 7–11, 2020. Springer, Cham, Switzerland.

23. Thomas Decru. Radical N
√
élu isogeny formulae. In Leonid Reyzin and

Douglas Stebila, editors, Advances in Cryptology – CRYPTO 2024, Part V,
volume 14924 of Lecture Notes in Computer Science, pages 107–128, Santa
Barbara, CA, USA, August 18–22, 2024. Springer, Cham, Switzerland.

24. Thomas Decru and Sabrina Kunzweiler. Efficient computation of (3n, 3n)-
isogenies. In AfricaCrypt, pages 53–78. Springer, 2023.

25. Christina Delfs and Steven D. Galbraith. Computing isogenies between
supersingular elliptic curves over ℧p. Des. Codes Cryptogr., 78(2):425–440,
2016.

26. Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. Implement-
ing cryptographic pairings over barreto-naehrig curves. Cryptology ePrint
Archive, Paper 2007/390, 2007.

27. Javad Doliskani, Geovandro CCF Pereira, and Paulo SLM Barreto. Faster
cryptographic hash function from supersingular isogeny graphs. In In-
ternational Conference on Selected Areas in Cryptography, pages 399–415.
Springer, 2022.

28. Régis Dupont. Moyenne arithmético-géométrique, suites de Borchardt et
applications. PhD thesis, PhD thesis, École polytechnique, 2006.

29. Torsten Ekedahl. On supersingular curves and abelian varieties. Mathe-
matica Scandinavica, 60:151–178, 1987.

34 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

30. Jean-Charles Faugère, David Lubicz, and Damien Robert. Computing mod-
ular correspondences for abelian varieties. Journal of Algebra, 343(1):248–
277, 10 2011.

31. E. Victor Flynn and Yan Bo Ti. Genus two isogeny cryptography. In
Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptography -
10th International Conference, PQCrypto 2019, pages 286–306, Chongqing,
China, May 8–10, 2019. Springer, Cham, Switzerland.

32. Eberhard Freitag. Siegelsche modulfunktionen, volume 254. Springer-Verlag,
1983.

33. Oded Goldreich. Randomized methods in computation (lecture notes by
oded goldreich).

34. Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, pages 212–219. ACM, 1996.

35. Yuji Hashimoto and Koji Nuida. Efficient construction of cgl hash function
using legendre curves. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 106(9):1131–1140, 2023.

36. Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and
their applications. Bull. Amer. Math. Soc., 43(04):439–562, August 2006.

37. Tomoyoshi Ibukiyama, Toshiyuki Katsura, and Frans Oort. Supersingular
curves of genus two and class numbers. Compositio Mathematica, 57(2):127–
152, 1986.

38. Jun-ichi Igusa. Theta functions. Grundlehren der mathematischen Wis-
senschaften, 1972.

39. Bruce W Jordan, Allan G Keeton, Bjorn Poonen, Eric M Rains, Nicholas
Shepherd-Barron, and John T Tate. Abelian varieties isogenous to a power
of an elliptic curve. Compositio Mathematica, 154(5):934–959, 2018.

40. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.

41. David Kohel, Kristin E. Lauter, Christophe Petit, and Jean-Pierre Tig-
nol. On the quaternion -isogeny path problem. LMS J. Comput. Math.,
17(Theory):418–432, 2014.

42. Patrick Longa. Efficient algorithms for large prime characteristic fields and
their application to bilinear pairings. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2023(3):445–472, Jun. 2023.

43. David Lubicz and Damien Robert. Fast change of level and applications
to isogenies. Research in Number Theory (ANTS XV Conference), 9(1), 12
2022.

44. Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Ben-
jamin Wesolowski. A direct key recovery attack on SIDH. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
Part V, volume 14008 of Lecture Notes in Computer Science, pages 448–471,
Lyon, France, April 23–27, 2023. Springer, Cham, Switzerland.

45. Nikhil S. Mande and Ronald de Wolf. Tight bounds for the randomized and
quantum communication complexities of equality with small error. Electron.
Colloquium Comput. Complex., TR21-113, 2021.

46. Riccardo Salvati Manni. On the projective varieties associated with some
subrings of the ring of thetanullwerte. Nagoya mathematical journal,
133:71–83, 1994.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 35

47. David Mumford. On the Equations Defining Abelian Varieties. I. Inven-
tiones Mathematicae, 1, 12 1966.

48. Ryo Ohashi and Hiroshi Onuki. Construction of a hash function using super-
special abelian 3-folds, 2024. Symposium on Cryptography and Information
Security. https://www.iwsec.org/scis/2024/program.html.

49. Ryo Ohashi, Hiroshi Onuki, Momonari Kudo, Ryo Yoshizumi, and Koji
Nuida. Computing richelot isogeny graph of superspecial abelian threefolds,
2024.

50. Hiroshi Onuki and Tomoki Moriya. Radical isogenies on montgomery
curves. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors,
PKC 2022: 25th International Conference on Theory and Practice of Pub-
lic Key Cryptography, Part I, volume 13177 of Lecture Notes in Computer
Science, pages 473–497, Virtual Event, March 8–11, 2022. Springer, Cham,
Switzerland.

51. Aurel Page and Benjamin Wesolowski. The supersingular endomorphism
ring and one endomorphism problems are equivalent. In Marc Joye and
Gregor Leander, editors, Advances in Cryptology – EUROCRYPT 2024,
Part VI, volume 14656 of Lecture Notes in Computer Science, pages 388–
417, Zurich, Switzerland, May 26–30, 2024. Springer, Cham, Switzerland.

52. Thomas Pornin. Optimized binary gcd for modular inversion. Cryptology
ePrint Archive, Paper 2020/972, 2020.

53. Fried Jul Richelot. De transformatione integralium abelianorum primi or-
dinis commentatio. 1837.

54. Damien Robert. A note on optimising 2n-isogenies in higher dimension.
55. Damien Robert. Theta functions and cryptographic applications. PhD the-

sis, Université Henri-Poincarré, Nancy 1, France, 7 2010.
56. Damien Robert. Efficient algorithms for abelian varieties and their moduli

spaces, 6 2021.
57. Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay

and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
Part V, volume 14008 of Lecture Notes in Computer Science, pages 472–503,
Lyon, France, April 23–27, 2023. Springer, Cham, Switzerland.

58. Damien Robert. The geometric interpretation of the tate pairing and its
applications. 2 2023.

59. Damien Robert. Fast pairings via biextensions and cubical arithmetic.
Cryptology ePrint Archive, 2024.

60. Michael Scott. Elliptic curve cryptography for the masses: Simple and fast
finite field arithmetic. Cryptology ePrint Archive, Paper 2024/779, 2024.

61. Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Grad-
uate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.

62. Katsuyuki Takashima. Efficient algorithms for isogeny sequences and their
cryptographic applications. Mathematical Modelling for Next-Generation
Cryptography: CREST Crypto-Math Project, pages 97–114, 2018.

63. Bert van Geemen and Gerard van der Geer. Kummer varieties and the
moduli spaces of abelian varieties. American Journal of Mathematics,
108(3):615–641, 1986.

https://www.iwsec.org/scis/2024/program.html

36 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

A More details on 2-isogenies in the theta model

Here, we collect several known results on the level-2 theta structure of a p.p.
abelian variety as well as on the computation of 2-isogenies. The section com-
plements Section 2, where we provided a brief overview on the topic.

A.1 Symplectic transformations

Given a p.p. abelian variety A, there exist different level-2 theta structures θA :
A → P2g−1. The different theta structures are related by so-called symplectic
transformations. These are described in the following lemma.

Lemma 17. Let (A, θ) be a p.p. abelian variety equipped with a level-2 theta
structure. We denote (θ0...0 : · · · : θ1...1) for the corresponding theta functions.
A different level-2 theta structure θ′ for A can be obtained by applying one or
more of the following transformations.
– Hadamard: The Hadamard transform H is applied to θ = (θ0...0 : · · · :
θ1...1), i.e. θ

′ = H(θ).
– Scaling by a 4-th root of unity ζ4: For some symmetric matrix C with

entries in Z, a theta function θig...i1 is scaled by ζ
(ig...i1)

tC(ig...i1)
4 , i.e.

θ′ig...i1 = ζ
(ig...i1)C(ig...i1)

t

4 · θig...i1 .

– Permutation: The theta functions are permuted, where the permutation
is defined by a bijective linear map P : (Z/2Z)g → (Z/2Z)g acting on the
indices, i.e.

θ′ig...i1 = θP (ig...i1).

Moreover, all level-2 theta structures for A are obtained in this way.

Proof. This follows from the discussion in [54, Appendix B] applied to the case
n = 2. We remark that in this case the transformations in the statement of the
lemma correspond to symplectic transformations of the underlying 4-torsion
basis.

A.2 Level-4 theta structures

We recall from Subsection 2.2 that a level-4 structure of an abelian variety

defines a map θA : A→ P22g−1, and we say that

θA(0A) =

(
a(0 . . . 0

0 . . . 0

) : · · · : a(1 . . . 1
1 . . . 1

)
)
∈ P22g−1,

is the level-4 theta null point. Coordinates are indexed by elements
(

ig . . . i1
jg . . . j1

)
∈

(Z/2Z)2g. Further, we recall that there are 2g−1(2g + 1) even and 2g−1(2g − 1)
odd indices.
In analogy with the level-2 case, one can define level-4 coordinates and level-4
functions. The lemma below provides us with the relation between level-2 and
level-4 theta structures.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 37

Lemma 18. Let θA be a level-2 theta structure on a p.p. abelian variety A.
Then there exists a level-4 theta structure θA such that the associated level-2
and level-4 theta functions satisfy the following relation.20

For all points P ∈ A and pairs of indices i = ig . . . i1 and j = jg . . . j1 in
(Z/2Z)g, it holds that(

θ(i
j

)(P)

)2

:=
∑

t=tg...t1

(−1)⟨i,t⟩θt(P)θt+j(P).

Proof. This is a consequence of the duplication formula [38, Theorem 2, p. 139],
see for example [28, Proposition 5.6].

Note that by setting P = 0A, Lemma 18 can be used to compute the squares of
the level-4 theta null values in terms of a level-2 theta null point. Furthermore,
one easily verifies that the squares of the odd theta null values vanish.

Generically, the even coordinates of a level-4 theta null point do not vanish
and they describe geometric properties of the underlying abelian variety. More
details are provided below for the cases g = 1, 2, 3. Here, we assume that such
p.p. abelian varieties are defined over an algebraically closed field.

g = 1 In dimension 1, p.p. abelian varieties are necessarily irreducible. These
p.p. abelian varieties are elliptic curves.

g = 2 In dimension 2, p.p. abelian varieties (surfaces) come in two flavors:
products of two elliptic curves and Jacobians of genus-2 hyperelliptic curves [31,
Theorem 1]. The reducible case, i.e. the product of two elliptic curves, satisfies
the property of having exactly one zero coordinate for the level-4 theta-null
point [28, Proposition 6.5]. In the irreducible case, i.e. the Jacobian of a genus-2
hyperelliptic curve, there are no zero coordinates for the level-4 theta coordinate.

g = 3 In dimension 3, p.p. abelian varieties can be of the following forms: (i)
Jacobians of a genus-3 plane quartic, (ii) Jacobians of a genus-3 hyperelliptic
curve, (iii) products of a Jacobian of a genus-2 hyperelliptic curve and an elliptic
curve, and (iv) products of three elliptic curves [49, §2.3]. Let N be the number
of zero coordinates for a level-4 theta-null point for a p.p. abelian variety of
dimension 3. Then N = 0 in the case (i), N = 1 in the case (ii), N = 6 in the
case (iii) and N = 9 in the case (iv) [49, Proposition 2.15].

A.3 The 2-torsion for g = 1, 2

In Subsection 2.3, we provided a description of a canonical symplectic basis for
the 2-torsion of a p.p. abelian variety equipped with a level-2 theta structure.
The example below illustrate this in the cases g = 1 and g = 2.

20 By slight abuse of notation, we denote both the level-2 theta structure and the level-4 theta
structure simply by θA. Given a theta function, the corresponding theta structure is always
clear from the index set.

38 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

Example 19. Let A be a p.p. abelian variety of dimension g = 1 with theta
structure θA, and θA(0A) = (a0 : a1). Then the canonical symplectic basis is
given by B = (P1, Q1) with P1 = (a1 : a0) and Q1 = (a0 : −a1).
Similarly, for a p.p. abelian variety of dimension g = 2 with theta structure θA,
and θA(0A) = (a00 : a01 : a10 : a11), we obtain the basis B = (P1, P2, Q1, Q2)
with

P1 = (a01 : a00 : a11 : a10), P2 = (a10 : a11 : a00 : a01),

Q1 = (a00 : −a01 : a10 : −a11), Q2 = (a00 : a01 : −a10 : −a11).

A.4 2-isogenies and the duplication formula

Here, we provide some intuition behind the 2-isogeny formula stated in Subsec-
tion 2.5. Concretely, Remark 20 explains the origins of the formula, and Remark
21 explains the computation of the dual isogeny.

Remark 20. The description of 2-isogenies is deduced from the duplication for-
mula [47, §3]. A special case of this formula can be stated as follows

θA(P +Q) ⋆ θA(P −Q) = H(θ̃B(ϕ(P)) ⋆ θ̃B(ϕ(Q))) for allP,Q ∈ A. (10)

Here ϕ : (A, θA) → (B, θB) is the 2-isogeny with kernel K2, and ⋆ denotes
coordinate-wise multiplication. Then the explicit description of ϕ is obtained by
evaluating this equation at Q = 0, see for example [54, Section 5])
Intuitively, already the first step S in the isogeny computation defines a 2-
isogeny. And it is easy to see that all elements in K2 get mapped to the same
point under this operation. However the codomain of the isogeny defined by
S is not in the correct form, the coordinates can be viewed as twisted theta
coordinates. The remaining steps H, Cb̃,H are only linear transformations and
consist in untwisting the coordinates.

Remark 21. The dual of the isogeny ϕ : (A, θA) → (B, θB) represented as H ◦
Cb̃ ◦ H ◦ S, is given by

ϕ̂ : (B, θB)→ (A, θA), with θA(ϕ̂(P)) = Ca ◦ H ◦ S ◦ H(θB(P)),

where a = θA(0A) as before.
This description is again a consequence of the duplication formula. For instance,
this is obtained by evaluating Equation 10 at Q = P , see also [54, Section 5].

B Description of Ts in the reducible case

In order to complement Corollary 5 and Theorem 8, we will describe the operator
Ts in the special cases where one or more of the xi vanish. In particular, this
includes the cases where we land on reducible varieties.
We remark that the coordinates of x = (x0...0 : · · · : x1...1) = H ◦ S((a0...0 :
· · · : a1...1)) are the squares of 2g of the 2g−1(2g +1) even theta values of level-4
(Lemma 18).21 The vanishing of the level-4 theta null values is related to the
geometry of the abelian variety, see Subsection A.2. We use this description in
the case distinction below.

21 To be more precise, we can evaluate

(
θ(ig . . . i1

0 . . . 0

)(0)
)2

for all ig . . . i1 ∈ (Z/2Z)g.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 39

g = 1 In dimension one, all even theta values of level-4 are nonzero. In partic-
ular x0, x1 ̸= 0 for (x0 : x1) = H ◦ S((a0 : a1)).

g = 2 In dimension two, at most one of the 10 even level-4 theta values van-
ishes. This happens if and only if the corresponding p.p.a.v. A is reducible, i.e.
A = E1×E2 for some elliptic curves E1, E2. If this is not one of the coordinates
corresponding to (x00 : · · · : x11) = H ◦ S(Th(A, θA)), then we can still apply
Theorem 8. In the other case, let ℓ−1 ∈ (Z/2Z)2 be the index of the vanishing
coordinate, i.e. xℓ−1 = 0, and set {ℓ0, ℓ1, ℓ2} = (Z/2Z)2 \ {ℓ−1}. In that case,
we define

Ts : (x00 : · · · : x11) 7→ (y00 : · · · : y11),
where

yk =


0 if k = ℓ−1,

xk if ℓ = ℓ0,

si
√
xℓ0xℓi if k = ℓi, with i ∈ {1, 2}.

Note that this only requires two square root computations. In particular, the
last bit in s = (s1, s2, s3) is redundant.

g = 3 In dimension three, there are four different cases.
(i) In the generic case, i.e. when A is the Jacobian of a plane quartic, none of

the coordinates vanish, and Theorem 8 can be applied to compute Ts.
(ii) When A is the Jacobian of a hyperelliptic curve, then exactly one of the

36 even theta coordinates vanishes. If this is not one of the coordinates
corresponding to (x000 : · · · : x111) = H ◦ S(Th(A, θA)), then we can still
apply Theorem 8. In the other case, let ℓ−1 ∈ (Z/2Z)3 be the index of the
vanishing coordinate and {i0, . . . , i6} = (Z/2Z)3 \ {i−1}. We define

Ts : (x000 : · · · : x111) 7→ (y000 : · · · : y111),

where

yk =


0 if k = ℓ−1,

xk if k = ℓ0,

si
√
xℓ−1xℓi if k = ℓi, with i ∈ {1, . . . , 6}.

Note that this case still requires the computation of 6 = g(g + 1)/2 square
roots, and none of the bits of s = (s1, . . . , s6) is redundant. To see that our
definition of Ts still results in an isogeny given by H◦Ts ◦H◦S, one can use
an argument very similar to that of Lemma 3 with the indices of nonzero
coordinates permuted appropriately.

(iii) In the remaining two cases, A is reducible and there are either 6 or 9 nonzero
even theta coordinates depending on whether A is the product of an elliptic
curve and an irreducible abelian surface, or the product of three elliptic
curves. This does not necessarily mean that any of the coordinates (x000 :
· · · : x111) vanishes. In particular, if at most one of the coordinates vanishes,
then we may use the same description of Ts as above.
The vanishing of more than one coordinate results in the redundancy of
some of the bits of s = (s1, . . . , s6). An explicit description of Ts in that
case can be obtained in a similar way as in the reducible case in dimension
g = 2. We remark that this case can be neglected for our application to the
cryptographic hash function Theta-CGL (Section 5).

40 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

C Proofs for the radical 2k-isogeny formulas

Here, we provide the proofs for the radical isogeny formulas stated in Section 4.

C.1 Proofs in dimension g = 1

Proposition 22 (=Proposition 12). Let (a0 : a1) ∈ P1 be the theta null point
of an elliptic curve A equipped with θA. Then for any s ∈ {ζ4i | 0 ≤ i ≤ 3},

θB(0B) =

(
a0 − s 4

√
a40 − a41 : a0 + s 4

√
a40 − a41

)
is the theta null point of a 4-isogeneous elliptic curve B. The 4-isogeny ϕ : A→
B is described by H ◦ Ts2 ◦ H ◦ S ◦ H ◦ Ts1 ◦ H ◦ S for some s1, s2 ∈ {±1}
with s = s2

√
s1, and ker(ϕ) = ⟨P ⟩ with θA(P) = (1 : 0). The evaluation of the

formulas costs 1Quart+ 1M+ 2S+ 1Mc + 4a using Algorithm 5.

Proof. The formula is obtained by applying Algorithm 1 twice with s = s2
√
s1.

Let ϕ1 : A→ A1 be the isogeny described by H◦Ts1 ◦H◦S. It follows from the
equation (??) that θA1(ϕ1(P)) = (a′0 : −a′1), where (a′0 : a′1) is the theta null
point of A1. Therefore, from the equation (??), the point ϕ1(P) belongs to the
kernel of the isogeny described by H◦ Ts2 ◦H ◦ S, whence P ∈ kerϕ. Note that
P is of order 4 because θA(2P) is (a0 : −a1), which corresponds to a point of
order 2. Therefore, the kernel of ϕ is generated by P .

Proposition 23 (=Proposition 13). Let (a0 : a1) = Th(A, θA) ∈ P1 for
some elliptic curve A equipped with θA. Further let P with θA(P) = (u0 : u1)
be an 8-torsion point satisfying θA(2 · P) = (1 : 0). Then for any s ∈ {ζ8i | 0 ≤
i ≤ 7},

θB(0B) = (u2
0 + λ2 : u2

0 − λ2), with λ = s · 8

√
u8
0 − u8

1

is the theta null point of an 8-isogeneous elliptic curve B with respect to some
theta structure θB. The 8-isogeny ϕ : A→ B is described by H◦Ts3 ◦H◦S ◦H◦
Ts2 ◦H◦S ◦H◦Ts1 ◦H◦S for some s1, s2, s3 ∈ {±1}, and ker(ϕ) = ⟨(u0 : u1)⟩.
Moreover, the point Q with

θB(Q) = (v0 : v1) =
(
a0a1(u

2
0 − λ2) : a20u0u1 + λ4a21/(2u0u1)−

√
2λa0a1u0

)
is an 8-torsion point on B satisfying θB(2 ·Q) = (1 : 0).
The evaluation of the formulas costs 1Eirt+7M+11S+4Mc +8a using Algo-
rithm 6

Proof. Let P = (u0 : u1) be an 8-torsion point with θA(2 · P) = (1 : 0) as in
the statement of the lemma. First of all, we note that this is equivalent to the
condition

(u4
0 + u4

1 : 2u2
0u

2
1) = (a20 : a21). (11)

The easiest way to see this, is to compute the image of P under the 2-isogeny
ϕ1 : A→ A′ with kernel ⟨(a0 : −a1)⟩, and use the fact that θA

′
(ϕ1(P)) belongs

to {(1 : 0), (0 : 1)}, since θA
′
(ϕ1(2 ·P)) = (−a′0 : a′1) for (a

′
0 : a′1) = Th(A′, θA

′
).

This provides us with the relation

((u2
0 + u2

1)
2 : (u2

0 − u2
1)

2) = (a20 + a21 : a20 − a21), (12)

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 41

which is equivalent to the claimed relation (u4
0 + u4

1 : 2u2
0u

2
1) = (a20 : a21).

As the next step, we compute the 8-isogeny with kernel ⟨P ⟩ as the composition
of three 2-isogenies

(A, θA)
ϕ1−→ (A′, θA

′
)

ϕ2−→ (A′′, θA
′′
)

ϕ3−→ (B, θB)

with each ϕi computed as H ◦ Tsi ◦ H ◦ S. The proof is purely computational
(using Equation 12 and the definition of λ). Below, we provide the results of
the two intermediate steps:

Th(A′, θA
′
) = (u2

0 : u2
1), Th(A′′, θA

′′
) = (u4

0 + u4
1 + λ4 : u4

0 + u4
1 − λ4).

We remark that the computations involve taking square roots, which are chosen
in a canonical way depending on the value of λ and the coordinates of the
8-torsion point P . In particular it is ensured that θA

′
(ϕ1(P)) = (1 : 0) =

ker(ϕ3 ◦ ϕ2).

It remains to show that Q is an 8-torsion point of B satisfying θB(2·Q) = (1 : 0).
This can be checked with by a (tedious) computation using the relations derived
above. For the convenience of the reader, we provide a symbolic verification in
SageMath in our GitHub repository .

C.2 Proofs in dimension g = 2

Proposition 24 (= Proposition 14). Let (a00 : a01 : a10 : a11) ∈ P3 be the
theta null point of a p.p. abelian surface A equipped with θA, and denote

x = (x00 : x01 : x10 : x11) = H ◦ S(θA(0A)).

Then for any r = (r1, r2) ∈ {ζ4i | 0 ≤ i ≤ 3}2 and t = (t1, t2) ∈ {±1}2,

θB(0B) = (b00 : b01 : b10 : b11)

with

b00 =
√
2a00 + α1 + α2 + α3,

b01 =
√
2a00 − α1 + α2 − α3,

b10 =
√
2a00 + α1 − α2 − α3,

b11 =
√
2a00 − α1 − α2 + α3,

and

α0 = t1
√
x00x01x10x11,

α1 = r1
4
√
2α0 + x00x10 + x01x11,

α2 = r2
4
√
2α0 + x00x01 + x10x11,

α3 = t2

√
(x00x10 + α0)(x10x11 + α0)

α2
1α

2
2x10

+
(x01x11 + α0)(x10x11 + α0)

α2
1α

2
2x11

.

is the theta null point of a 4-isogenous p.p. abelian surface B. The 4-isogeny
ϕ : A→ B is described by H◦Ts2 ◦H◦S◦H◦Ts1 ◦H◦S for some s1, s2 ∈ {±1}3.
The evaluation of the formulas costs 2Quart+2Sqrt+14M+4S+5Mc +27a
using Algorithm 7.

Note that α4
3 = 2α0 + x00x11 + x01x10, and the expressions for α1, α2, α3 are

more symmetric than they appear in the radical description in the proposition.

42 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

Proof. It suffices to prove that we can compute H◦Ts2 ◦H◦S◦H◦Ts1 ◦H◦S(0A)
for some s1, s2 ∈ {±1}3 by the formula in the statement.
Denote by ϕ1 : A → A1 the isogeny described by H ◦ Ts1 ◦ H ◦ S. Put s1 =
(s′1, s

′
2, s

′
3), s2 = (s′′1 , s

′′
2 , s

′′
3), and θA1(0A1) = (b′00 : b′01 : b′10 : b′11). One can

check that

b′00 = x00 + s′1
√
x00x01 + s′2

√
x00x10 + s′3

√
x00x11

b′01 = x00 − s′1
√
x00x01 + s′2

√
x00x10 − s′3

√
x00x11,

b′10 = x00 + s′1
√
x00x01 − s′2

√
x00x10 − s′3

√
x00x11,

b′11 = x00 − s′1
√
x00x01 − s′2

√
x00x10 + s′3

√
x00x11.

Therefore, we have

b′200 + b′201 + b′210 + b′211 = 4x200 + 4x00x01 + 4x00x10 + 4x00x11,

b′200 − b′201 + b′210 − b′211 = 8s′1x00
√
x00x01 + 8s′2s

′
3x00
√
x10x11,

b′200 + b′201 − b′210 − b′211 = 8s′2x00
√
x00x10 + 8s′3s

′
1x00
√
x11x01,

b′200 − b′201 − b′210 + b′211 = 8s′3x00
√
x00x11 + 8s′1s

′
2x00
√
x01x10.

This implies that S ◦ H(θB(0B)) equals to

(2a200 : s′1
√
x00x01 + s′2s

′
3

√
x10x11

: s′2
√
x00x10 + s′3s

′
1

√
x11x01 : s′3

√
x00x11 + s′1s

′
2

√
x01x10)

=

(
2a200 : s′1

√
x00x01 + x10x11 + 2s′1s

′
2s

′
3

√
x00x01x10x11

: s′2

√
x00x10 + x11x01 + 2s′1s

′
2s

′
3

√
x00x01x10x11 : s′3

√
x00x11 + s′1s

′
2

√
x01x10

)
because x00 + x01 + x10 + x11 = 4a200. Therefore, by letting t1 = s′1s

′
2s

′
3, r1 =

s′′1
√
s′1, and r2 = s′′2

√
s′2, we have

H(θB(0B)) =
(√

2a00 : α1 : α2 : s′′3

√
s′3
√
x00x11 + s′1s

′
2

√
x01x10

)
.

Furthermore, it follows from the direct computation that

(s′1
√
x00x01 + s′2s

′
3

√
x10x11)(s

′
2

√
x00x10 + s′3s

′
1

√
x11x01)(s

′
3

√
x00x11 + s′1s

′
2

√
x01x10)

= α0(x00 + x01 + x10 + x11) + x00x01x10x11

(
1

x00
+

1

x01
+

1

x10
+

1

x11

)
=

(x00x10 + α0)(x10x11 + α0)

x10
+

(x01x11 + α0)(x10x11 + α0)

x11
= α2

1α
2
2α

2
3.

Hence, by letting t2 = s′′3 , we obtain the formula.

D Comparison of our radical isogeny formulas to the
literature

There exist different descriptions of radical ℓ-isogenies in the literature. In par-
ticular in the case g = 1, formulas are known for different forms of elliptic

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 43

curves. In dimension g = 2, formulas by Richelot [53] naturally provide us with
radical 2-isogenies between Jacobians of genus-2 curves, and there also exists a
description of radical 3-isogeny formulas [8]. In dimension g = 3, the description
of radical 2-isogenies is more recent. For instance, there exists a description in
terms of level-4 theta null points in [49]. Here, we compare the state-of-the-art
formulas with out method for computing radical 2-isogenies.
Typically, the cost for computing a radical N -isogeny in dimension g is domi-
nated by the cost of computing g(g + 1)/2 many N -th roots. Efficient radical
isogeny formulas aim at minimizing the remaining field operations that are nec-
essary to evaluate the formula. Throughout, we use the following notation for
field operations:

Sqrt = square root, Crt = cube root, Quart = fourth root,

Eirt = eighth root, M = multiplication, S = squaring,

Mc = scalar multiplication, a = addition, I = inversion.

In the tables below, Mc and a are omitted to provide an easier overview.

D.1 Radical ℓ-isogenies in dimension 1

ℓ = 2 Let S0(4) be the moduli space for Montgomery curves. A radical 2-
isogeny formula on Montgomery curves is provided in [9], which is given by

S0(4)× {1,−1} −→ S0(4)

(a, s) 7−→ 2(3 + a(−a+ s
√
a2 − 4))

,

where elements in S0(4) are represented via their Montgomery coefficients. This
formula can be computed in the cost 1Sqrt + 1M + 1S + 4a. We also know a
radical 2-isogeny formula on elliptic curves given in the form y2 = x3+a2x

2+a4.
From [14], the formula is given by

((a2, a4), s) 7−→ (6s
√
a4 + a2, 4sa2

√
a4 + 8a4).

The computational cost of this formula is 1Sqrt + 1M + 3m + 2a [12, Table
1]. Since the computational cost for radical 2-isogenies via theta coordinates
is 1Sqrt + 1M + 2S + 4a (see Algorithm 1), formulas in previous studies for
computing 2-radical isogenies on dimension 1 are more efficient than that on
theta model.

ℓ = 4 A radical 4-isogeny formula on Montgomery curves is provided in [50],
which is given by

S0(4)× {ζi4 | 0 ≤ i ≤ 3} −→ S0(4)

(a, s) 7−→
(s 4
√

4(a+ 2) + 2)4

4s 4
√

4(a+ 2)(s2 4
√

4(a+ 2)
2
+ 4)

− 2
.

This formula can be computed in 1Quart+1M+2S+2Mc+6a+1I. A radical
4-isogeny formula in Tate normal form y2 +xy− ay = x3− ax2 is also provided
in [14] as follows:

(a, s) 7−→ s 4
√
a
4s2 4
√
a
2
+ 1

(2s 4
√
a+ 1)4

.

44 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

The cost to compute this formula is 1Quart + 1M + 2S + 1Mc + 3a + 1I.
From Algorithm 5, the cost of a radical 4-isogeny formula on theta model is
1Quart+ 1M+ 2S+ 1Mc + 4a. Therefore, the algorithm using theta model is
expected to be the most efficient for computing radical 4-isogenies.

ℓ = 8 In [14], a radical 8-isogeny is provided in Tate normal form y2+(1−c)xy−
by = x3 − bx2 with b = a(a− 1)/(a− 2)2 and c = −a(a− 1)/(a− 2). Let S1(8)
be the moduli space of curves in Tate normal form with b = a(a − 1)/(a − 2)2

and c = −a(a− 1)/(a− 2). Then, the formula is given by

S1(8)× {ζi8 | 0 ≤ i ≤ 7} −→ S1(8)

(a, s) 7−→ −2s2a(a− 2)α2 − a(a− 2)

s4(a− 2)2α4 − s2a(a− 2)α2 − sa(a− 2)α+ a

,

where α is an eighth root of −a4(a−1)/(a−2)4. This formula can be computed
in 1Eirt+ 5M+ 6S+ 1Mc + 8a+ 2I. From Algorithm 6, the radical 8-isogeny
formula in theta model can be computed in 1Eirt + 7M + 11S + 4Mc + 7a.
Therefore, the formula in theta model is expected to be more efficient than that
in Tate normal form.
The results from the above discussion are summarized in Table 3.

g = 1 Tate [14] Montgomery [50] this work

ℓ = 2 1Sqrt+ 1M+ 1S 1Sqrt+ 1M+ 2S
ℓ = 4 1Quart+ 1M+ 2S+ 1I 1Quart+ 1M+ 2S+ 1I 1Quart+ 1M+ 2S
ℓ = 8 1Eirt+ 5M+ 6S+ 2I 1Eirt+ 8M+ 9S

Table 3. Comparison of different radical isogeny formulas in dimension g = 1

D.2 Radical ℓ-isogenies in dimension 2

ℓ = 2 Formulas for computing 2-isogenies between Jacobians of genus-2 curves
go back to the 19th century and were found by Richelot [53]. A modern descrip-
tion of Richelot isogenies viewed as radical 2-isogenies can be found in [13]. In
order to be able to count operations, we provide a more explicit description in
Algorithm 9. While this is based on [13, Algorithm 1], there are some differ-
ences between the two algorithms. These differences in the description do not
contribute to any additional computations. The advantage of our description is
that it is closer to the setup that we use for computing isogenies in the theta
model.
The main difference is that in [13], the input bits (s0, s1, s2) determine an (ad-
missible) quadratic splitting [13, Proposition 3], while in our case, they deter-
mine the sign of the square roots δ1, δ2, δ3. Implicitly, the latter determines an
ordering of the roots and in this way also a quadratic splitting. Furthermore, in

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 45

Algorithm 9 Richelot isogenies as radical 2-isogenies (g = 2)

Input: Quadratic polynomials g1 = g1,2x
2 + g1,1x + g1,0, g2 = g2,2x

2 + g2,1x + g2,0, g3 =
g3,2x

2 + g3,1x+ g3,0 ∈ k[x] defining the genus-2 curve C : y2 = g1g2g3, and a choice of bits
s = (s0, s1, s2) ∈ {−1, 1}3.

Output: Quadratic polynomials h1, h2, h3 ∈ k[x] defining the genus-2 curve C : y2 = h1h2h3.
1: ∆1,∆2,∆3 ← g211 − 4g12g10, g

2
21 − 4g22g20, g

2
31 − 4g32g30 ▷ 3M+ 3S+ 3a

2: δ1, δ2, δ3 ←
√
∆1,
√
∆2,
√
∆3 ▷ 3Sqrt

3: δ1 ← CondNeg(δ1, s0)
4: δ2 ← CondNeg(δ2, s1)
5: δ3 ← CondNeg(δ3, s2)
6: α1, α2, α3 ← −g1,1 + δ1,−g2,1 + δ2,−g3,1 + δ3 ▷ 3a
7: α4, α5, α6 ← −g1,1 − δ1,−g2,1 − δ2,−g3,1 − δ3 ▷ 3a
8: β1, β2, β3 ← 2g1,2, 2g2,2, 2g3,2 ▷ 3a
▷ The choice of square-roots determines the quadratic splitting: g1 = (β1x−α1)(β2x−α2),
g2 = (β3x− α3)(β1x− α4), g3 = (β2x− α5)(β3x− α6).

9: g1,2, g2,2, g3,2 ← β1β2, β1β3, β2β3 ▷ 3M
10: g1,1, g2,1, g3,1 ← −α1 − α2,−α3 − α4,−α5 − α6 ▷ 3a
11: g1,0, g2,0, g3,0 ← α1α2, α3α4, α5α6 ▷ 3M

▷ hi = g′i+1gi+2 − gi+1g
′
i+2 with indices viewed modulo 3

12: h1 ← (g2,2g3,1 − g2,1g3,2)x2 + 2(g2,2g3,0 − g2,0g3,2)x+ (g2,1g3,0 − g2,0g3,1) ▷ 6M+ 4a
13: h2 ← (g3,2g1,1 − g3,1g1,2)x2 + 2(g3,2g1,0 − g3,0g1,2)x+ (g3,1g1,0 − g3,0g1,1) ▷ 6M+ 4a
14: h3 ← (g1,2g2,1 − g1,1g2,2)x2 + 2(g1,2g2,0 − g1,0g2,2)x+ (g1,1g2,0 − g1,0g2,1) ▷ 6M+ 4a
15: return (h1, h2, h3) ▷ Total Cost: 3Sqrt+ 27M+ 3S+ 27a

our approach it is more natural to use quadratic polynomials as inputs, whereas
in [13], the input consists of linear polynomials.

Counting the operations in Algorithm 9, we find that computing a radical 2-
isogeny with Richelot’s formula can be done in 3Sqrt+ 27M+ 3S+ 27a. The
same computation using our new formulas in terms of level-2 theta coordinates
can be performed in only 3Sqrt + 3M + 4S + 16a, see Algorithm 2. Another
advantage of our description for radical 2-isogenies is that it trivially generalizes
to splitting and gluing isogenies as outlined in Subsection 3.3. In contrast to
that, Richelot’s formulas only describe isogenies between irreducible principally
polarized abelian surfaces. The gluing and splitting isogenies in this setting are
described by different formulas, see for instance [13, Subsections 6.2,6.3].

ℓ = 3 For Mumford coordinates, the only other known radical isogeny for-
mulas, are formulas for 3-isogenies [8,10]. A (generous) count of operations in
the algorithm provided in [10] yields 3Crt and approximately 1200M + 800S.
We note that this algorithm is based on the formulas from [8] which have been
considerably improved in [24]. These improvements do not directly aim at the
radical isogeny formulas, but rather at the evaluation of the isogeny, therefore
we cannot predict the quality of improvements on the former. Furthermore,
a recent work on the computation of (3n, 3n)-isogenies indicates that working
with the level-2 theta structure might also be beneficial to find better radical
formulas for 3-isogenies [17].

46 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

ℓ = 4 While we do not provide radical 3-isogeny formulas in our model, we did
find formulas for computing 4-isogenies which can be evaluated in 2Quart +
2Sqrt+14M+4S+5Mc+27a, see Algorithm 7. We are not aware of any similar
formulas in the literature, but we remark that they compare very favourably to
the 3-isogenies in the Mumford model discussed above.

A comparison of the different available radical isogeny formulas is provided in
Table 4.

g = 2 Mumford coordinates [10] this work

ℓ = 2 3Sqrt+ 27M+ 3S 3Sqrt+ 3M+ 4S
ℓ = 3 ≈ 3Crt+ 1200M+ 800S —
ℓ = 4 — 2Quart+ 2Sqrt+ 14M+ 4S

Table 4. Comparison of different radical isogeny formulas in dimension g = 2

D.3 Radical 2-isogenies in dimension 3

In [49, Algorithm 3.3], Ohashi, Onuki, Kudo, Yoshizumi, and Nuida present
an algorithm for computing 2-isogenies in dimension 3. In order to compare the
number of operations of the two approaches, we consulted the accompanying im-
plementation provided in https://github.com/Ryo-Ohashi/sspg3list/blob/

master/functions.m. We note that the goal of their implementation is not to
provide highly-optimized formulas. In order to make a fair comparison, we give
an optimized operation count which is significantly lower than the literal op-
eration count. To make this more transparent for the reader, a brief outline of
the algorithm including our operation count is provided in Algorithm 10. The
notation is adapted to our setting.

Algorithm 10 ComputeOneRichelotIsogeny from [49] (simplified)

Input: A level-4 theta null point (θ20 : . . . , θ263) of a p.p. abelian threefold A,
with θ0, . . . , θ7 ̸= 0.

Output: A level-4 theta null point (θ′20 : . . . , θ′263) of a 2-isogeneous p.p. abelian threefold B.
1: x1 . . . , x6 ← θ20 · (θ21, . . . , θ26) ▷ 6M
2: y0 ← θ20
3: y1, . . . , y6 ←

√
x1, . . . ,

√
x6 ▷ 6Sqrt

4: y7 ← LastSqrt-level4(x, y) ▷ 23M+ 1S+ 9a
5: tij ← yi · yj for all i, j ∈ {0, . . . , 7} ▷ 28M+ 2S
6: θ′2k ←

∑
(i,j)∈Ik

±tij for k = 0, . . . , 63 ▷ 36 · 8a
7: return (θ′20 : · · · : θ′263) ▷ Total Cost: 6Sqrt+ 57M+ 3S+ 297a

https://github.com/Ryo-Ohashi/sspg3list/blob/master/functions.m
https://github.com/Ryo-Ohashi/sspg3list/blob/master/functions.m

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 47

Clearly, this description is not self-contained and we encourage the reader to
consult the original paper. To understand the operation count, we remark the
following:
– Line 5: We use that tij = tji for all i, j, moreover tii = xi for i = 1, . . . , 6.
– Line 6: We have #Ik = 8 for all k = 0, . . . , 63. Moreover, it is only nec-

essary to do the computation for the 36 even theta coordinates (out of 64
coordinates in total).

For a comparison with our methods (Algorithm 4), one needs to have in mind
that the description above is not constant time. Adding edge cases (in partic-
ular in the computation of LastSqrt-level4) will naturally come at the cost of
additional operations. Nevertheless, our constant-time implementation already
proves to be more efficient, requiring 6Sqrt+ 36M+ 13S+ 7Mc + 57a for the
computation of a 2-isogeny. The main advantage comes from the fact that we
only require 8 coordinates to represent a p.p. abelian threefold, while in the
level-4 setting it is necessary to work with 36 coordinates.
Last but not least, it is important to mention that the goal in [49] is to obtain
the full Richelot isogeny graph of superspecial abelian varieties in dimension 3.
In contrast to that, we are interested in radical isogenies. That is we require that
the composition of two radical 2-isogenies yields a 4-isogeny, cf. Subsection 3.4.
In the setting of Theta-CGL, this is important in order to avoid collision attacks
through trivial cycles. We leave it as future work to see how Algorithm 10 fits
in this framework. We have recently discovered that Ohashi and Onuki [48] are
pursuing similar ideas using the formulas in [49] to develop a CGL-style hash
function.

E Superspecial isogeny graphs

Here, we recall properties of the superspecial isogeny, and discuss the fast mixing
properties in more detail (Remark 26). Moreover, we summarize the state-of-
the-art in solving the path finding problem in these graphs.

E.1 Properties of the graph

The vertices of the superspecial 2-isogeny graph Γg(2; p) are isomorphism classes
of superspecial p.p. abelian varieties of dimension g defined over F̄p, and the
edges represent 2-isogenies. We denote Sg,p = V (Γg(2; p)) for the vertex set. The
following theorem gives us the sizes of the vertex set in each of the dimensions
that we are interested in.

Theorem 25. For p > 7, the number of superspecial abelian varieties of di-
mension g is:

p− 1

12
+O(1) for g = 1,

p3 + 24p2 + 141p

2880
+O(1) for g = 2,

p6 − p5 + 610p4 − 2410p3

1451520
+O(p2) for g = 3.

In general, the number of superspecial p.p. abelian varieties of dimension g is
O(pg(g+1)/2).

48 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

Proof. The first result is standard [61, V.4.1(c)]. The second is a result of
Ibukiyama, Katsura, and Oort [37, Theorem 3.3]. The third result is from Brock
[7]. The general result about dimension g is from Ekedahl [29].

Furthermore, it is known that the graph Γg(2; p) is an expander graph [2]. The
output of a random walk on an expander graph with N vertices tends to the
uniform distribution after O(log(N)) steps.

Remark 26. With the state of the art it is not possible to determine the (min-
imal) constant cg for g ∈ {1, 2, 3} with the property that a walk in Γg(2; p) of
length cg · log p is statistically indistinguishable from random (with respect to a
security parameter λ). This would be required to give a precise statement about
the minimal length of a message m so that Theta-CGLg,ℓ(m) is statistically in-
distinguishable from random.

In order to compute the minimal message length with this property, one needs
to study the spectrum of the graph, in particular, we need to know the second
largest eigenvalue, α, of the 2-isogeny graph as this value affects how quickly a
random walk on the graph converges to a random distribution. Little is known
about this eigenvalue for the 2-isogeny graph where g = 2 and 3. However,
Aikawa, Tanaka, and Yamauchi proved an upper bound for normalized22 α [2,
Thm. 1.1],

1− α ≥ 1

4(g + 2)

(
ℓ− 1

2(ℓ− 1) + 3
√

2ℓ(ℓ+ 1)

)2

for the ℓ-isogeny graph. In our case, we have the upper bounds of

α ≈


1− 2−10.8 for g = 1,

1− 2−11.3 for g = 2,

1− 2−11.6 for g = 3.

To compute the number of steps required for the final vertex to be arbitrarily
close to the uniform distribution, we turn to a result in [33, Lecture 10,Thm. 5]
which implies that we would require a random walk of at least 218 steps. This
means that the minimum hash length is 218, 221, 224 for g = 1, 2, 3 respectively.

Taking the other extreme where we make the calculations based on Ramanujan
graphs (which is not the case when g = 2 and 3), we can take the upper bound

on α to be α < 2
√
d−1
d

, and we have that

α ≈


2−0.085 for g = 1,

2−1 for g = 2,

2−2.5 for g = 3,

and using Theorem 3.2 of [36], we find that we need 3011, 320, 128 steps in the
2-isogeny graph for g = 1, 2, 3 respectively. This implies a minimum message
length of 3011, 960, 768-bits, respectively.

22 The result in the reference is the second largest eigenvalue of the normalized Laplacian, so
we need to look at α = 1− λ2

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 49

E.2 The path finding problem

In this part we discuss the state-of-the-art methods to solve Problem 1. That is
given two superspecial p.p. abelian varieties A1, A2 over Fp2 , find a 2k-isogeny
ϕ : A1 → A2.
The best known generic attack for solving Problem 1 is a Pollard-rho style
attack which performs pseudorandom walks in the isogeny graph Γg(2; p). This
attack has complexity the square root of the size of the graph. Hence, using
Theorem 25, Pollard-rho has complexity Õ(p1/2), Õ(p3/2), Õ(p3), for g = 1, 2, 3
respectively.
Similarly, the best generic quantum attack is a Grover search [34,45]. This has

complexity Õ(p1/4), Õ(p3/4), Õ(p3/2), for g = 1, 2, 3 respectively.
Relaxing the conditions of Problem 1 and also allowing isogenies of different
degrees in the path, one might also consider the more memory friendly variant
by Delfs and Galbraith [25] in the case g = 1. The Delfs–Galbraith attack
aims to find paths to supersingular elliptic curves defined over Fp and solves
the isogeny problem in that ground field. This algorithm has a complexity of
Õ(
√
p), so is similar to that of Pollard-rho. For more details on these generic

attacks, the reader is referred to [19], in particular [19, Table 1]
For g > 1, the best known method to find isogenies between p.p. abelian varieties
is the Costello–Smith attack which repeatedly reduces the problem to an easier
instance. More concretely, the Costello–Smith attack performs a random walk
on Γg(2; p) until a reducible variety A×A′ with dim(A) = g− d ≥ d = dim(A′)
is encountered, one can then reduce the dimension of the problem to finding
isogenies in Γg−d(2; p). The cost of the Costello–Smith attack is Õ(pg−1), which

translates to Õ(p), Õ(p2), for g = 2, 3 respectively, hence it outperforms Pollard-
rho.

Theorem 27 (Costello–Smith attack [19]). Let A,A′ ∈ Sg(2; p) and g >
1, then there exist algorithms Ac and Aq which compute an isogeny ϕ : A→ A′

as the composition of 2-isogenies with success probability > 1/2g−1.

1. The algorithm Ac runs in time Õ(pg−1) on a classical computer.

2. The algorithm Aq runs in time Õ(
√
pg−1) on a quantum computer.

Notice that since this theorem relies on walking through reducible varieties.
This means that it will most likely not be a 2n-isogeny, hence does not lead to
a solution of Problem 1. Still, the attack is able to provide a useful bound for
the hardness of the problem, since one might be able to transform the isogeny
recovered to a valid path in Γg(2; p) via analogues of the KLPT algorithm [41].
Hence, we will use the bounds generated by these attacks to estimate the security
of our hash function.

F Using modular invariants for the CGL hash
function in higher dimension

As explained in section 5.3, because the level-2 theta null point encodes level
structure information, it fully determines the first isogeny and part of the second
isogeny. It is important for our hash function, in order to avoid trivial collisions,
to output the theta null point of the codomain rather than just modular invari-
ants.

50 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

In this section, we describe in more details the level structure encoded by a
theta null point, how our choice of square roots for a radical 2-isogeny affect
this level structure, and how we could adapt the hash function to output a
modular invariant (like the Igusa invariants in dimension 2).
There is little reasons to use modular invariants rather than theta constants for
the hash function (except possibly in high dimension, because theta constants
are less and less compact with respect to the dimension of the moduli space),
so we mainly state our results for the sake of completeness.

F.1 The level subgroup induced by a level 2 theta structure

Analytically, theta null points of level 2 are weight 1/2 modular forms for Igusa’s
level subgroup Γ (2, 4). This level subgroup correspond algebraically to the fol-
lowing data:

Proposition 28. A theta null point of level 2 on a p.p. abelian variety (A,ΘA)
corresponds to a symplectic basis (e1, . . . , eg, f1, . . . , fg) of the 4-torsion for the
Weil pairing eW,4ΘA , modulo the equivalence relation:

(e1, . . . , eg, f1, . . . , fg) ∼ (e′1, . . . , e
′
g, f

′
1, . . . , f

′
g)

whenever e′i = ei + ti, with ti a point of 2-torsion such that eW,2ΘA(2ei, ti) = 1,
and similarly for f ′

i = fi + t′i: eW,2ΘA(2fi, t
′
i) = 1.

In particular, the 2-torsion basis (2e1, . . . , 2eg, 2f1, . . . , 2fg) is independent of the
equivalence class, so is fully determined by the level 2 symmetric theta structure.

Proof. This is [56, Corollary 2.11.2].

Corollary 29. A p.p. abelian variety (A,ΘA) over Fq has a rational level 2
theta null point if and only if there exists a symplectic basis (e1, . . . , eg, f1, . . . , fg)
of the 2-torsion such that the self Tate pairings are trivial: eT,2ΘA(ei, ei) = 1
and eT,2ΘA(fi, fi) = 1.

Proof. This is [56, Corollary 2.11.4].

Example 30.
– An elliptic curve E/Fq has a rational level 2 theta null point if and only if

there is a symplectic decomposition E[4] = E1[4] ⊕ E2[4] of the 4-torsion
with Ei[4] rational.

– An abelian variety A/Fp2 is called maximal or minimal if its number of
point is (p+ 1)2g (resp. (p− 1)2g). This is equivalent to the Frobenius πp2

being [−p] (resp. [p]), and all the endomorphisms of A are defined over
Fp2 : End(A) = EndF

p2
(A). By Tate’s theorem, A is then isogeneous to

Eg, E/Fp2 a maximal (resp. minimal) elliptic curve, so is supersingular. By
[39], A is isomorphic over Fp2 to Eg if g > 1 (without the polarisation),
so A is even superspecial. Since A(Fp2) ≃ (Z/(p + 1)Z)2g (resp. A(Fp2) ≃
(Z/(p − 1)Z)2g), the 2-torsion on A is rational. Since the Frobenius is a
scalar, all kernels are rational, so in particular any symplectic decomposition
of the 4-torsion is rational. It follows that A has a rational theta null point
of level 2, and also of level 4 if 4 | p + 1 (resp. 4 | p − 1). This answers a
question originally asked in [49].

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 51

F.2 The choice of signs for elliptic curves

We first look at the case g = 1. In that case, by example 30, a level 2 theta
null point is equivalent to the data of two disjoint cyclic kernels of order 4,
K1 and K2 on E0: E0[4] = K1 ⊕ K2. In particular, it completely determines
the first two 2-isogenies: E1 = E0/K1[2] and E2 = E0/K1. If ϕ0 : E0 → E1

is the first isogeny, the choice of square root we make to determine a theta
null point of level 2 on E1 corresponds to a choice of symplectic decomposition
E1[4] = K′

1⊕ϕ1(K2) such that K′
1 contains ϕ1(K1) (so we go from a Z/2×Z/4

level structure to a Z/4×Z/4 level structure, hence why we only need a square
root). In particular, the choice of K′

1 does not change E2, but will affect the
third isogeny ϕ2 : E2 → E3. And likewise, the choice of square root for E2 will
determine the isogeny ϕ3 : E3 → E4.
We see why directly outputing the j-invariant would lead to trivial collisions: if
the message is of length 2, then all our choice of signs in the theta constants still
give the same modular invariant j(E2). However, using the theta constant on
E2, since it already encodes the upcoming next two isogenies E2 → E3 → E4,
solves this problem. To use the j-invariant, the solution is clear: we start from the
theta null point on E2 and make dummy sign choices (e.g., those corresponding
to bits 0) for the theta null point of E3 and E4. Then we output j(E4): although
the theta null point on E4 depends on the dummy choices, the discussion above
shows that the j-invariant does not.
An alternative strategy, to only leave the first isogeny E0 → E1 fixed, but
allow the two possible 2-radical isogenies from E1, is to consume the first bit
differently than the others: if it is 0 we do nothing, and if it is 1 we change the
theta null point (a : b) into (b : a). With the notations above, this has the effect
of changing K1 without affecting K1[2].

F.3 The choice of signs for abelian varieties

We can now treat the general case g > 1, which is a bit more delicate, because
although the first isogeny A0 → A1 is completely determined by the theta null
point of A, the second isogeny A1 → A2 is only partially determined when
g > 1.
Namely, start with a representative of the symplectic basis (e1, . . . , eg, f1, . . . , fg)
of A0[4] determining the theta null point of level 2 on A0; this symplectic basis is
only determined up to the equivalence relation ∼ of proposition 28. This equiv-
alence relation fully determines then 2-torsion basis (2e1, . . . , 2eg, 2f1, . . . , 2fg),
and in particular the kernel K1 generated by (2e1, . . . , 2eg) of the first isogeny
ϕ0 : A0 → A1.
Then part of our level structure descends on A1, namely our symplectic basis
modulo ∼ gives ϕ0(ei), ϕ0(fi) modulo ∼. Since the kernel of ϕ is in the subgroup
generated by the (ei), we do not lose information on the fi. However, our ϕ0(ei)
are now only points of 2-torsion (only defined up to ∼) rather than points of
4-torsion. Our g(g + 1)/2 choice of signs in the multiradical 2-isogeny formula
amount to two steps: first we lift the ϕ0(ei) modulo ∼ into fully defined points
(e′1, . . . , e

′
g) of 2-torsion. This amount to expanding our partial information on

the kernel of the next isogeny to a full 2-isogeny A1 → A2. Then, we need to
lift our points of 2-torsion (e′1, . . . , e

′
g) into points of 4-torsion (e′′1 , . . . , e

′′
g), but

only up to the equivalence ∼.

52 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

From the analytic point of view, the choices of these e′′i above each e′i correspond
to an action of Γ (1)(2)/Γ (1)(2, 4) which is of size 2g. More precisely, from the
analytic point of view a system of representative of Γ (2)/Γ (2, 4) is given by

matrices of the formM =

(
1 diag(b)

diag(c) 1

)
, which acts on the theta null point

as M · θi(0) = e2(b, i)θi+c(0). For our choices of signs we are only interested by
the upper part of M , which change the signs of θi(0). From the algebraic point
of view, each e′′i modulo ∼ corresponds to the choice of a symmetric element
in the theta group G(2ΘA1) above e′i. Since there are two possible symmetric
elements for each e′i, we also see that we have 2g-choices. In total, going from
e′i to e′′i modulo ∼ consumes g square roots. And changing the choices of e′′i
amount to, at the square root step of fig. 2, changing the theta null point of A1

by θi(0) 7→ e2(b, i)θi(0) for an appropriate b.
A similar reasoning allows us to count the number of choices from going to
e′i = ϕ0(ei) modulo ∼ to e′i. For e

′
1, looking at the definition of ∼, we see that

we have 2g−1 choices for e′1 (because our choice has to be compatible with the
ϕ0(fi)). But then we only have 2g−2-choices for e′2, because it has to be isotropic
with e′1, and so on, for a total of 2g−1+g−2+···1-choices, or g(g − 1)/2 possible
square roots.
So out of our g(g + 1)/2 total choice of sign, g(g − 1)/2 serve as completing
the partial kernel information we have on A1 to a full kernel of a 2-isogeny
ϕ1 : A1 → A2, and g of them serve as giving partial 4-torsion information on
A1, which gives partial kernel information on the next kernel A2 → A3 (which
we interpret as the partial kernel information on A1 of the 4-isogeny A1 → A3).
An important remark is that, once we have fixed the (e′i) (hence A2), then a
different choice of partial information on the 4-torsion (e′′i) for A1 give mutually
exclusive partial information on the next kernel A2 → A3, in the sense that
two different choices of (e′′i) modulo ∼ can not be completed to the same kernel
A2 → A3.
As an example, a different choice modulo ∼ for e′′1 would be to take e′′1 + t′1,
with t′1 a two torsion point on A1 which involves ϕ0(2f1) as a component:
t′1 = ϕ0(2f1)+ t1 with t1 having no ϕ0(2f1) component. Let U1 be the kernel of
the 2-isogeny generated by the (e′i), and V1 ⊃ U1 be the kernel of the 4-isogeny
generated by the (e′′i). Then U1 is fixed, and in the first case V1 is an isotropic
kernel that has to contain e′′1 modulo ∼, that is e′′1 + t1 for any point of two
torsion t1 having no ϕ0(2f1) component. In the second case, V1 is an isotropic
kernel that has to contain a point of the form e′′1 + ϕ0(2f1) + t1. Since ϕ0(2f1)
has a non trivial pairing with e′1 = 2e′′1 , we see that our choices of V1 in the first
case are disjoint from our choices of V1 in the second case.
Now that we have a clear picture of how our choices of signs affect the level
structure, we can explain how to change our algorithm in higher dimension
in order to use modular invariants. We still assume that our message length
is a multiple of g(g + 1)/2 bits. First, as we have seen, our theta null point
fully determine the first isogeny ϕ0 : A0 → A1, and part of the second isogeny
ϕ1 : A1 → A2. Fixing ϕ0 is good for uniformity of the algorithm: we want
to iterate radical isogenies, but we need one isogeny to bootstrap (if really we
wanted to start with a uniform 2-isogeny from A0, we could use the first bits of
the message to act by an appropriate matrix in Γ (1)/Γ (2, 4)). However, we want
to get rid of the extra information fixing part of the next isogeny ϕ1. For that, we
consume the first g bits of the message, this gives us a vector c ∈ (Z/2Z)g, and

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 53

we act by θi(0) 7→ θi+c(0). This action is the same as applying the Hadamard
transform, acting by θi(0) 7→ e2(b, i)θi(0) for an appropriate b and then acting
by the Hadamard transform again. So in view of fig. 2 and the discussion above,
this give a uniform way to resample the partial information fixed by the theta
null point for ϕ1.
Then we digest the message by blocks of g(g + 1)/2 bits as in section 3, except
at the last block. The last block m consists of only g(g− 1)/2 bits. We pad this
block with bits consisting of 0 at the emplacements corresponding to the choice
of signs for the square root step of fig. 2 at the index of the theta null point
corresponding to the canonical basis of (Z/2Z)g. Since changing the theta null
point of Am by the action θi(0) 7→ e2(b, i)θi(0) only affect the second to next
isogeny Am+1 → Am+2 but not the next isogeny Am → Am+1, this gives us a
way to sample uniformly the isogeny ϕm : Am → Am+1 while consuming only
g(g − 1)/2 bits to complete the g bits of information we already had from the
theta null point of Am−1. From the theta null point of Am, we now compute a
theta null point for Am+1, using arbitrary choice of square roots (for instance,
using a block of length g(g + 1)/2 of only zeroes), and we output the modular
invariants J(Am+1) of Am+1. This way, we have computed uniformly across all
possible messages all m steps of radical 2-isogenies starting from the fixed one
A0 → A1.

G Implementation details

Here, we provide more details on the design choices of our implementation. In
particular, this section explains the details behind Table 1 given in Section 6.

G.1 Arithmetic in the finite fields

For all cases, roots in Fp are computed using exponentiations. In dimension one,
inversions and Legendre symbols are most efficiently computed using the binary
GCD algorithm [52] which runs in constant time and avoids expensive exponen-
tiation. For dimensions two and three where the prime is considerably smaller,
we find exponentiations outperform the binary GCD method for inversions and
Legendre symbols. Practically, for dimension one (and less-so for dimension two)
squaring is cheaper than multiplication, and multiplication by constants smaller
than 231 cheaper still, and so when breaking down the arithmetic cost of our
algorithms, we count separately the cost of multiplication M, squaring S and
the multiplication by a fixed constant Mc.
Most importantly, all finite field arithmetic has been written to be constant
time to avoid side-channels in our hash-function. This engineering restriction is
carried through to the hash-function itself with no secret dependent branching
or table look ups. Bits of the message which are hashed are consumed in constant
time by using conditional negation and conditional swaps.
For all cases, we use a non-canonical internal representation of elements of Fp

by only partially reducing to ensure elements are smaller than 264·n for values
represented with n 64-bit words. This lazy reduction saves a few cycles for each
multiplication. Our finite field arithmetic is written using Rust without any
assembly optimised instructions, but we do make use of architecture specific
intrinsics, such as mulx for Intel machines for faster multiplication and carry of
two u64 words.

54 Kunzweiler, Maino, Moriya, Petit, Pope, Robert, Stopar, Ti

G.2 Computing 2k-roots in constant time

An overwhelming contribution to the cost of Theta-CGLg,ℓ is the cost of the 2k-
roots in Fp2 when computing the 2k-radical isogenies, and so it is most efficient
to spend time finding the cheapest way to compute these in constant time. As
our primes are always in the form p ≡ 3 mod 4, we can compute fast square-
roots in Fp2 with modulus x2 + 1 using the “Complex method” [26,1] at a cost
of two square roots, one inversion and one Legendre symbol in Fp.
The tricks from the complex method extend to 2k-roots in Fp2 in a fairly
straight-forward way, see for example [35]. The idea is that for an element
x = x0 + ix1 ∈ Fp2 , when a root exists, one can always compute the norm

n(x) = x20 + x21 and compute the 2k-root of this element in Fp to recover infor-

mation about the norm of the root y = y0 + iy1, y
2k ≡ x mod p, through the

fact that the norm is multiplicative: n(y)2
k

= n(x).
In previous work related to CGL hash functions [35], they offer a method for
computing the 2k-root of an element in Fp2/Fp using one 2k-root in Fp, one
Legendre symbol in Fp, k square-roots and k inversions in Fp. As the roots,
inversions and Legendre symbols in Fp are simply exponentiations, the cost can
be approximated as 2(k+1) exponentiations in Fp to compute a 2k-root in Fp2 .
In order for our roots to be constant time, we wish to generalise their method to
allow the algorithm to compute roots of x ∈ Fp as well (in other words, we allow
x1 = 0 for x = x0+ix1), which one can do without additional significant cost by
simply checking if certain values are zero and using constant time conditional
swaps to ensure the correct output. Additionally, one can remove k−1 inversions
by only computing a single division at the end of algorithm, bringing the total
approximated cost down to k + 3 exponentiations. Details of our algorithm are
in both the SageMath and Rust code, for further reference.
We can also turn our attention to the exponentiations themselves to save multi-
plications. For the following discussion we’ll use the 64-bit prime as an example
but the same reasoning applies to all three characteristics chosen. For 2k-roots

in Fp we want to compute a(p+1)/2k+1

mod p. For a generic exponentiation us-
ing the square and multiply technique, one would estimate log(p) squarings and
1
2
log(p) multiplications. However, the number of multiplications can be reduced

by carefully constructing a multiplication chain. As an example, consider com-
puting a square-root with exponent (p + 1)/4 = 262 − 26 = 26 · (256 − 1). The

idea is that given some value xi = x2
i−1 one can compute xi+j = xi · x2

i

j . We
can then compute a square-root with only 7 multiplications and 61 squares in
the following way:

x2 = x · x2, x4 = x2 · x2
2

2 , x6 = x2 · x2
2

4 ,

x7 = x · x26, x14 = x7 · x2
7

7 , x28 = x14 · x2
14

14

x56 = x28 · x2
28

28 , y = x2
6·(256−1) = x2

6

56.

The method for inversions and Legendre symbols follows the exact same reason-
ing, only with exponents equal to (p− 2) and (p− 1)/2 respectively. In practice
we use a single method to first compute (p− 3)/4 using a similar multiplication
chain as above and then inversion requires an additional two squares and one
multiplication while the Legendre symbol requires one additional square and
one additional multiplication.

Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3 55

For a full detail of the costs, see Table 1 for the prime choices and the arith-
metic costs of these exponentiations, and see the Rust implementation for a
commented discussion of the multiplication chains used for each case.

	Radical 2-isogenies and cryptographic hash functions in dimensions 1,2 and 3
	Introduction
	Preliminaries on 2-isogenies in the theta model
	Radical 2-isogenies
	Radical 2k-isogenies for small k
	Application to cryptography: Theta-CGL
	Implementation and Experimental Results
	More details on 2-isogenies in the theta model
	Description of Ts in the reducible case
	Proofs for the radical 2k-isogeny formulas
	Comparison of our radical isogeny formulas to the literature
	Superspecial isogeny graphs
	Using modular invariants for the CGL hash function in higher dimension
	Implementation details

