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1 Introduction

This notes are an expanded version of a talk [Rob13] I gave the 11 April 2013 for the PEACE meeting in Paris.
Since several people who could not attend have asked for informations about this talk I give here a public
version. A word of warning: these are preliminary notes so they are bound to have mistakes. More importantly
I lack a concrete implementation yet.

1.1 Computing isogenies with maximal isotropic kernel

In [CR11] we gave an algorithm to compute isogenies between abelian varieties. More precisely, let A/k be an
abelian variety A/k of dimension g represented by its theta null point of level n (in particular A is polarized).
Then given a basis e1, . . . , eg of a rational kernel K ⊂ A[ℓ] maximally isotropic for the ℓ-Weil pairing (with ℓ
prime to 2n), we explain how to compute B = A/K (via its theta null point of level n) and how to compute
the image of a point x �A(k) via the isogeny f : A→ B . This can be seen as a generalisation of the well known
Vélu’s formulas [Vél71] to compute isogenies between abelian varieties.

This algorithm needs a polynomial (in the size of the kernel K) number of operations in the field where the
geometric points of K live. Actually, the article [CR11] focus on the case of dimension g = 2, because in this
case every (generic) abelian variety is a Jacobian of an hyperelliptic curve, and we explain how to use Thomae’s
formulas to convert between the Mumford representation and the theta representation (see also [Wam99]).

More details on this algorithm are also given in [Cos11] (using analytic theta functions), and in [Rob10]
(using algebraic theta functions). The algorithm given in [CR11] builds on result from [FLR11; LR12b] by
applying a result from [Koi76] (in the analytic setting) and [Kem89] (in the algebraic setting).

The above algorithm was implemented in [BCR10a] to compute isogenies between abelian varieties of
dimension 2 over finite fields. Note that when one use the theory of analytic theta functions, to extend the
results to varieties over a finite field, one need to assume that they are ordinary so that a lift to characteristic
zero can be taken. The advantage of algebraic theta functions is that the resulting theory will work over any
algebraically closed field of characteristic prime to the level n. Since n = 2 or n = 4 this handle all fields of odd
characteristics. For an ordinary abelian variety over F2n , one can lift to characteristic zero, but the formulas
from the isogeny algorithm have bad reduction in this case, so we need to make a change of variable. The
resulting algorithm to compute isogenies in characteristic two is described in [BCR10b] (for the dimension 2
case).

The condition ℓ prime to 2n is purely technical, we explain in [Rob10] how to compute an isogeny when
this is not the case (in this case we need more than juste the geometric points of the kernel, we will see why in
Section 2).

Finally, an improvement of this algorithm so that only operations over the field of definition of the kernel K
are needed (provided we have the equations of K) is given in [Rob12] (in collaboration with David Lubicz).

1.2 The case of cyclic isogenies

At the end of [CR11], we concluded that it would be worthwhile to investigate the case of isogenies with cyclic
kernel; they are needed to have a full description of the isogeny graph (otherwise we don’t even have a connected
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subgraph), which has many applications: [LR12a]. . . The problem here is that the pullback of a line bundle by a
cyclic kernel is not as easy to describe algebraically as when the kernel is maximally isotropic.

It is easier to explain why if we use the theory of complex multiplication [Shi98]. Let K be a (primitive) CM
field of degree 2g (a totally imaginary quadratic extension of a totally real field K0). Then the moduli space of
abelian varieties with complex multiplication by OK is a torsor under the Shimura class group

C= {(I ,ρ) | I a fractional OK -ideal with I I = (ρ), ρ �K+ totally positive}/K∗

(In particular, it is of dimension 0.)
If (A,L0) is a principally polarized abelian variety of dimension g with CM by OK , the element (I ,ρ) � C

acts on A in the following way: I give the kernel K of the corresponding isogeny on A, and ρ explain the action
on the polarization. I corresponds to a maximal isotropic kernel (for the Weil pairing onL ℓ0 ) iff I is of relative
norm ℓ. In this case the element (I ,ℓ) give an isogeny between the polarized abelian variety (A,L ℓ0 ) and (B,M0)
(whereM0 is a principal polarization), so the action of ℓ on the polarization is easy to describe. For a general
element (I ,ρ), one would need to understand what the polarization “L ρ0 ” such that we have an isogeny (A,L ρ0 )
and (B ,M0) of polarized abelian varieties would mean. Note thatL ρ0 is not isomorphic to ρ∗L0 (Think about
the case ρ= ℓ andL0 symmetric where ρ∗L0 =L ℓ
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When ρ= ℓ, one could compute an isogeny (with maximal isotropic kernel forL ℓ0 ) the following way: find
a matrix F �Matr (Z) such that t F F = ℓ Id. Then the Koizumi-Kempf formula applied to F give a link between
the theta functions of level ℓn onL ℓ (whereL =L n

0 ) and the theta functions of level n onL , we will call
this “changing the level” or the “level formulas”. (Basically we just have to apply the isogeny theorem on the
isogeny F : Ar →Ar given composant by composant by the matrix F . Here Ar is given the product polarization
L ⋆ . . . ⋆L , so the isogeny theorem give relations between products of r theta functions on A.) Then once we
are in (A,L ℓ) we can just apply the isogeny theorem to get into (B ,M ) (M =M n

0 ). In [CR11] we do things
the other way around because we get a more efficient algorithm this way, we will explain why latter.

In the case of complex multiplication, one could try to adopt a similar strategy for a cyclic isogeny coming
from the action of (I ,ρ): find a matrix F �Matr (OK ) such that t F F = ρ Id and apply a Koizumi like formula
to get from (A,L ) to (A,L ρ). We have two problem here: the Koizumi formula comes from the isogeny
formula on Ar , but when F is not an integral matrix, there is no reason that F respect the underlying symplectic
decomposition, so we may not apply the isogeny theorem. The second problem, is that even if it does, to
compute the corresponding change of level, we need a way to compute the action of elements of OK on affine
lifts uniformly. For an action of γ �Z we know how to do it using differential additions, but it is not clear how
to do that for a more general γ . If γ itself correspond to an isogeny with maximal isotropic kernel, then one
solution is to use [CR11], because the isogeny algorithm given here actually work with affine coordinates (this
is clear given the way we keep track of the projective factors), so it would be doable but would need branching
isogeny computations inside the level formula of our current cyclic isogeny computation. All in all this seemed
like a cumbersome computation, and it only guides us in the case of fixed CM, whereas I was interested in
moving vertically in the isogeny graph using cyclic isogenies.

In November 2011, Dimitar Jetchev contacted me about the possibility of computing cyclic isogenies in
dimension 2, and this is basically the response I gave: that in the restricted case of known CM and horizontal
isogeny, it should theoretically be feasible but rather cumbersome.

1.3 Real multiplication to the rescue!

In July 2012, while I was visiting Microsoft Research, I discussed with Sorina Ionica who showed me wonderful
graphs of cyclic isogenies between abelian varieties having the same real multiplication (RM) in dimension 2.
These graphs were obtained in collaboration with Emmanuel Thomé, following an idea from John Boxall to
use real multiplication to compute isogenies.

While Sorina and Thomé obtained their graphs by working over C (and with lattices coming from the
Hilbert space Hg

1 via the real multiplication OK0
), this discussion made clear that the case of computing the

action of ρ on the polarization (in order to compute a cyclic isogeny) was much better than I thought.
Indeed, it is clear from the definition of the Shimura class group that ρ is a totally positive element in K0. It

is well known that every such element is a sum of squares, and it is also well known how from such a sum of
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squares one can use Clifford’s algebra to compute a matrix F such that tF F = ρ Id. The important part here
is that F �Matr (OK0

) is composed of totally real elements. This has two important consequences, first since
complex conjugation on an ideal I ⊂K correspond to the dual isogeny, an element γ �K0 commutes with the
Rosatti involution. In particular, the action of the elements of K0 on Cg is given by symmetric matrices for the
hermitian form H associated to the principal polarization on (A,L0). In particular they are all codiagonalisable,
so it is immediate that the matrix F respect the symplectic decomposition and we can apply the isogeny theorem
to obtain Koizumi-like formulas. Secondly, computing the action of an element in K0 on affine points of the
abelian variety is much easier than for a general element in K as we will see.

Independently, Alina Dudeanu and Dimitar Jetchev have also been working on obtaining a Koizumi-like
formula in the analytic setting using real multiplication.

This notes are heavily indebted to helpful discussions with John Boxall and Sorina Ionica; and even more
importantly to my on-going collaboration with David Lubicz in the use of algebraic theta functions for
cryptographic applications. We will assume known the standard results of analytic theta functions [Igu72;
Mum83; Mum84; Mum91; BL04] and algebraic theta functions [Mum66; Mum67a; Mum67b; Mum70]. We use
the standard acronyms ppav for principally polarized abelian variety and pav for polarized abelian variety. We
will also always assume that the line bundles are symmetric.

2 Symmetric theta structures and the isogeny theorem

Let A be an abelian variety of dimension g defined over an algebraically closed field k. LetL0 be a symmetric
ample line bundle of degree one on A,L0 defines a principal polarization: A→ Â. If n is evenL =L n

0 is then
totally symmetric, and the kernel K(L ) of the polarization associated toL is A[n].

From now on, we assume that n is prime to the characteristic of k, so thatL defines a separable polarisation.
SinceL is totally symmetric, there exist a symmetric theta structure on the theta group G(L ). Fixing such a
structure fix a unique projective basis of theta functions [Mum66] that we call theta functions of level n. Note:
the theta structure induces an isomorphism between the symplectic spaces Z(n)× Ẑ(n) and K (L ) = A[n]
where Z(n) = (Z/nZ)g and Ẑ(n) is the Cartier dual of Z(n). We note K(L ) =K1(L )⊕K2(L ) where K1(L )
corresponds to Z(n) and K2(L ) to Ẑ(n). Usually the canonical basis of the theta functions of level n are indexed
by i � Z(n), but in these notes we will index them by i � K1(L ) which permit us to not track explicitly the
isomorphism between Z(n) and K1(L ).

If n > 2 then the theta functions of level n give a projective embedding of A into Pn g−1

k
, while if n = 2 we only

get an embedding of the Kummer variety A/± 1 (the n = 2 case assume that A is absolutely simple, see [BL04]).
Under a generic condition (the even theta null coordinates are non zero), this embedding of the Kummer variety
is actually projectively normal (see [Koi76]).

Theorem 2.1 :
The symmetric theta structure on G(L ) is uniquely determined by a choice of symplectic basis (e1, . . . eg , e ′1, . . . e ′g ) on
A[n] and a choice of symplectic basis ( f1, . . . fg , f ′1 , . . . f ′g ) on A[2n] such that ei = 2 fi , e ′i = 2 f ′i . (Here symplectic
mean for the commutator pairing eL and eL 2 respectively).

Moreover, changing these symplectic basis do not change the resulting symmetric theta structure if and only if

• The symplectic basis of A[n] is left invariant;

• The fi are replaced by points fi + ti with ti �A[2] such that eL (ei , ti ) = 1.

In particular, fixing a symplectic basis of A[n] and a symplectic decomposition A[2n] = A1[2n]⊕A2[2n] of
the 2n-torsion into a sum of maximal isotropic subspaces is enough (and even stronger) to fix the symmetric theta
structure.

Proof : This is implicit in [Mum66, Section 3]. A symmetric theta structure comes from an isomorphism
between the Heisenberg group and the theta group that commutes with the action of [−1]. It induces an
isomorphism between the symplectic spaces Z(n)× Ẑ(n) and K(L ) =A[n] and hence fix a symplectic basis of
the n-torsion.
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3 Computing isogenies with maximal isotropic kernel

Conversely, having fixed a symplectic basis of the n-torsion, sinceL is totally symmetric, there is always a
symmetric theta structure respecting this symplectic basis. Such a choice of a symmetric theta structure can be
seen as a choice of a symmetric element above each of the element of the basis (e1, . . . e ′g ); since there is only two
symmetric elements ±gi above each ei a symmetric theta structure above the symplectic basis can be seen as a
choice of sign for each element of the basis.

If gi � G(L 2) is a symmetric element of the theta group above a point fi such that ei = 2 fi , then (gi )
2

determines a symmetric element of the theta group above ei that uniquely depends on the choice of fi (since the
other symmetric element above fi is −gi which gives rise to (−gi )

2 = (gi )
2 above ei . Via the transfer map δ2

from [Mum66], we see how the choices of the fi above the ei are enough to determine the symmetric theta
structure on G(L ).

It is a straightforward verification to see that replacing fi by fi + ti where ti is a point of 2-torsion involve
replacing (gi )

2 by eL 2( fi , ti )(gi )
2 which concludes the proof.

(One could also replace the application δ2 by the isogeny [2] which would involve working in G(L 4), as in
[Kem89].) ■

Of course Theorem 2.1 also work for any totally symmetric line bundleL on A, defining a polarization of
type δ = (δ1, . . . ,δg ). The idea is that ifL =L n

0 (say with n = 2 or n = 4),L ℓ is of type (ℓn,ℓn) and allows
to compute isogenies with maximal isotropic kernels, but for a cyclic isogeny we need a polarisation of type
(n,ℓn) (like the type ofL ρ from Section 1.3).

Theorem 2.2 :
Let f : (A,L )→ (B ,M ) be an isogeny between pav, with L totally symmetric. Then K = Ker f is isotropic in
K(L ) for the commutator pairing eL , and K(M )≃K⊥/K.

Assume that we have a symmetric theta structure on G(L ) coming from a symplectic basis ( fi , f ′i ) on K (L 2).
Assume that K is compatible with the induced symplectic decomposition K(L ) = K1(L )⊕K2(L ) into maximal
isotropic subspaces in the sense that K =K1⊕K2 where Ki =Ki (L )

⋂

K. In this case K(M )≃K2,⊥/K1⊕K1,⊥/K2

where K2,⊥ =K⊥2
⋂

K1(L ) and K1,⊥ =K⊥1
⋂

K2(L )
Let eK be the level subgroup above K induced by this theta structure; the corresponding descent data give a line

bundleM ′ algebraically equivalent toM . For simplicity we assume here that K ⊂ 2K (L ) (or equivalently that
A[2]⊂K⊥), so thatM ′ is the unique totally symmetric line bundle equivalent toM . (The isogeny theorem is valid
in a more general setting, but we will only need this case in the following).

We can define a symmetric theta structure onM ′ as follow: from the symplectic basis of K (L 2) one derives a
“canonical” basis (g1, . . . , g ′g ) of [2]−1K⊥. Pushing this basis via the isogeny f gives a symplectic basis on K(M ′2),
which determines the symmetric theta structure onM ′. It is easy to see that by construction, it is compatible with the
theta structure onL .

We can then apply the isogeny theorem: there exist λ such that for all i �K1(M ′)

ϑM
′

i = λ
∑

j�K1(L )| f ( j )=i

ϑLj .

Proof : This is [Mum66, Section 1]. The version stated here is from [Kem89]. See also [Rob10, Chapter 3–4]
for a summary. ■

3 Computing isogenies with maximal isotropic kernel

In this section we review the algorithm of [CR11]. This is because we will see that the tools used to compute
cyclic isogenies are extremely similar, and also because we will need to be able to compute maximally isotropic
isogenies in order to compute cyclic isogenies.

Let (A,L0) be a ppav, and K a maximal isotropic kernel forL ℓ0 . Let n be even andL =L n
0 . Assume that we

have a principal polarizationM0 on B =A/K, and letM =M n
0 . For simplicity we assume here that ℓ is prime

to 2n. We note ΦL : A→ Â, x 7→ t ∗xL ⊗L
−1 the polarization associated toL .
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3 Computing isogenies with maximal isotropic kernel

To have an algorithm for the isogeny f : A→ B mean that we want to find relations between theta functions
of level n on A (forL ) and theta functions of level n on B (forM ).

First we need to have some sort of compatibility betweenL andM . More exactly, we want the following
diagram to commute:

A B

Â B̂

A

f

f̂

ϕ f ∗M ϕM

ϕ−1
L

[ℓ]

It is easy to see that since we have the following diagram:

A A

Â

[ℓ]

ϕLϕL ℓ

this is the case iffL ℓ = f ∗M .
Now we have two tools. The Koizumi formula explain the relations between the theta functions of level ℓn

forL ℓ and the theta functions of level n forL .
Concretely, assume given a symmetric theta structure on L ℓ, by Theorem 2.1 this induces a symmetric

theta structure onL . Let F �Matr (Z) be a matrix such that t F F = ℓ Id, and note also F the isogeny Ar →Ar

induced by F . (In practice r = 2 when ℓ is a sum of two squares, and r = 4 otherwise). The theta structures on
L andL ℓ induce product theta structures onL ⋆ . . .L andL ℓ ⋆ . . .L ℓ. In this setting, Theorem 2.2 gives us

Proposition 3.1 :
Let (i1, . . . , ir ) �K1(L )r . Let x = (x1, . . . , xr ) be a geometric point of Ar and let y = F x. Then (up to a constant λ)

ϑLi1
(y1) · · · · ·ϑ

L
ir
(yr ) = λ
∑

( j1,..., jr )�K1(L ℓ)
F ( j1,..., jr )=(i1,...,ir )

ϑL
ℓ

j1
(x1) · · · · ·ϑ

L ℓ
jr
(xr ).

Proof : From the theorem of the square we have that F ∗(L ⋆L ⋆ . . . ) =L ℓ ⋆L ℓ ⋆ . . . . The rest is immediate
from Theorem 2.2. ■

The isogeny formula explain the relations between the theta functions forL ℓ on A and the theta functions
forM on B .
Proposition 3.2 :
Assume that the symmetric theta structure on L ℓ is such that K ⊂ K2(L ℓ) (this is always possible). Then the
symmetric theta structure onL ℓ induces a symmetric theta structure onM by Theorem 2.2 (this may require to
replaceM by an equivalent line bundle).

Let f : A→ B be the isogeny of kernel K, and x a geometric point in A. Fix i �K1(M ), and let j �K1(L ℓ) be the
unique preimage of i by f that is in K1(L ℓ). We have (up to a constant λ)

ϑMi ( f (x)) = λϑ
L ℓ
j (x)

Proof : Immediate by Theorem 2.2. ■
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3 Computing isogenies with maximal isotropic kernel

Example 3.3 :
Let A= Cg/(Zg +ΩZg ) be a ppav over C with Ω � Hg . The polarization associated to Ω correspond to an
hermitian form H0 on Cg . More generally, a polarization comes from an hermitian form H on Cg such that
H (i x, i y) =H (x, y) and H (Λ,Λ)⊂Z where Λ=Zg +ΩZg .

An isogeny correspond to a matrix M acting on Cg , and the dual isogeny correspond to H0(M ·, ·) acting on
Â≃HomC(C

g ,C). Pulling back the dual isogeny via the principal polarization, we get that it acts on Cg by

M ∗ =
t
M . (We see that we recover the action by F onL ⋆L ⋆ . . . from Proposition 3.1).

A basis of level n theta function corresponding to H = nH0 (and the characteristic c = 0 in the sense of
[BL04]) is given by (ϑ

� 0
b

�

(·,Ω/n)b�Z(n) where

ϑ [ a
b ] (z,Ω) =
∑

n�Zg

eπi t (n+a)Ω(n+a)+2πi t (n+a)(z+b ).

Up to an action of the symplectic group Sp2g (Z)we can assume that the kernel K corresponds to 1
ℓ
ΩZg/ΩZg

so that the isogenous abelian variety is B =Cg/(Zg + Ω
ℓ
Zg ).

Comparing the basis of theta functions of level n on B

(ϑ
� 0

b

�

(·,
Ω

ℓ
/n))b�Z(n)

and the basis of theta functions of level nℓ on A

(ϑ
� 0

b

�

(·,Ω/ℓn))b�Z(ℓn)

immediately give Proposition 3.2.

Now the natural thing to compute the isogeny A→ B would be to combine Propositions 3.1 and 3.2: inverse
the formulas from Proposition 3.1 to go from theta coordinates on L to theta coordinates on L ℓ and then
apply Proposition 3.1 onL ℓ.

Inversing the level formula could be done as follow: first try to find a theta null point of level ℓn associated to
a symmetric theta structure on G(L ℓ) compatible with the one on G(L ). Since we know how the moduli
space of theta null point of a certain level look like (by [Mum67a] it is given by Riemann’s relations + the
symmetries) this can be done by a Gröbner basis algorithm. Since the fiber is finite, we are in a favorable case
for Gröbner computations. Then once we have fixed a theta null point of level ℓn in the fiber, we can lift a
geometric point x on A given by level n theta coordinates to level ℓn coordinates. This can also be done by
a Gröbner basis algorithm since the projective equations of A embedded by theta functions is described in
[Mum66] (and only need the coordinates of the theta null point).

In fact, in [FLR11] we inverse the isogeny formula from Proposition 3.2 instead. This is because it is simpler,
so it allows to speed-up the Gröbner basis computation related by using the extra information we have about the
system (in [FLR11] we only care about lifting the theta null point since we were only interested in describing
some modular correspondances). In other words, rather than looking at the isogeny f : (A,L ℓ)→ (B ,M ),
we look at the contragredient isogeny ef : B → A. (This whole part and what follows is because Ben Smith
complained during the talk that we think with “arrows reversed”, this is to try to justify why it is a good idea in
our situation!)

Still we would like to have an algorithm that does not need Gröbner basis. We note here that both Proposi-
tion 3.1 and Proposition 3.2 loose information (they go to a lower level), but only in a finite way (the associated
fibers are finites). Theorem 2.1 allow us to keep track of exactly which information is lost. This suggest the
following strategy: work on (A,L ) directly to recover the extra information needed to lift to level ℓn.

For instance, if we suppose that ℓ is prime to level 2n, then it is clear from Theorem 2.1 that the choice of a
compatible symmetric theta structure on G(L ℓ) is exactly the choice of a symplectic basis of A[ℓ] (we assume
here that µℓ ⊂ k). But since K is a maximal isotropic subgroup of the ℓ-torsion, this is the same as a choice
of a basis (e1, . . . , eg ) of K and a supplementary isotropic subgroup of K in A[ℓ]. This explain the technical
condition ℓ prime to 2n of Section 1.1; for the general case we need to find a (compatible) symplectic basis of
the full A[2ℓn] torsion.
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3 Computing isogenies with maximal isotropic kernel

Now let’s think “with arrow reversed”, and let K ′ = f (A[ℓ]) be the kernel of the contragredient isogeny
ef : B→A; from K ′ we want to compute ef algorithmically.

Starting from theta functions of level n on B (fromM ), we then want to go to theta functions of level ℓn on
A (from L ℓ). But the exact same information as before is also enough to fix a symmetric theta structure on
G(L ℓ). Namely, fix a basis of the maximal isotropic group K ′ ⊂ B[ℓ] and a decomposition B[ℓ] = B1[ℓ]⊕B2[ℓ]
with B1[ℓ] = K ′. This determines a full symplectic basis of the ℓ-torsion. The decomposition of B[ℓ] fixes a
decomposition of B[ℓ2] and thus a decomposition of A[ℓ] via ef , and the image of the basis of B2[ℓ] give a basis
of K =A2[ℓ].

Concretely, let’s look at an example with g = 1, n = 2 and ℓ= 3. Then from Proposition 3.2 we readily see
that the isogeny f is given by (x0, . . . x5) 7→ (x0, x3). Moreover by definition of a theta structure of level n, we
can compute the action by translation by any point of n-torsion. In our situation, we are on level ℓn on A and
we have a decomposition A[ℓ] = A1[ℓ]⊕A2[ℓ] with A2[ℓ] = K . The isomorphism Z(ℓn)→ A1[ℓn] give us
that A1[ℓ] is generated by a point of 3-torsion T such that (x +T )i = (x)i+2 for i � Z(ℓn) (2 being of 3-torsion

in Z/6Z). Then the kernel K ′ of the contragredient isogeny ef is generated by f (T ). We have f (x+T ) = (x2, x5)
and f (x + 2T ) = (x4, x1). We see that we could recover the coordinates of x from the knownledge of f (x) and
f (T ) if we were able to take “compatible” affine lifts of f (x), f (x)+ f (T ) and f (x)+ 2 f (T ). But this is exactly
what the theory of differential addition allow us to do as we explain in [LR12b].

Of course, a similar method applies to go from (A,L ) to (A,L ℓ) by taking uniform affine lifts of points
of ℓ-torsion given by their level n theta coordinates. More details are given in [Rob10; Cos11]. So we don’t
really need to work with “arrow reversed”, but in practice it is easier to do so; from a theta null point of
level ℓn on A we readily get points of ℓ-torsion in level n on B , but it is a bit more complicated to get points of
ℓ-torsion in level n on A. Once again, this come from the difference between the simplicity of the equation in
Proposition 3.2 compared to Proposition 3.1.

Now we are almost finished describing the isogeny algorithm. By definition of the contragredient isogeny,
the following diagram commutes:

x � (A,L ℓ)

y � (B ,M )

ef (y) � (A,L ℓ)

f

ef
[ℓ]

As mentioned, in [LR12b] we explain how to compute from y a point x such that f (x) = y. There is some
ℓ-root involved, other choices of the root corresponds to different preimages (the preimage does not matter
because we multiply it by [ℓ] afterwards).

Now ef (y) = [ℓ]x. We are not quite finished because here ef (y) is given by level ℓn theta functions. So we use
the following diagram

x � (A,L ℓ) (x, 0, . . . , 0) � (Ar ,L ℓ ⋆ · · · ⋆L ℓ)

y � (B ,M ) t F (x, 0, . . . , 0) � (Ar ,L ℓ ⋆ · · · ⋆L ℓ)

ef (y) � (A,L ) F ◦ t F (x, 0, . . . , 0) � (Ar ,L ⋆ · · · ⋆L )

f

ef
[ℓ]

t F

F
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4 Computing isogenies with cyclic kernel

Here the computation of t F is done inL ℓ while we use Proposition 3.1 to compute the action of F in order to
go back to level n.

Now fix a basis of K ′. There is some ℓ-roots involved for lifting the theta null point of (B ,M ) to (A,L ℓ)
which correspond to different choices of a supplementary of K ′ in B[ℓ]. Now of course these choices does not
affect the end result of the computation of ef (y) � (A,L ). In other words, rather than going up on (A,L ℓ) and
then down in (A,L ) we only need to have enough informations from (A,L ℓ) in order to be able to go down to
(A,L ). We explain how to do that in [CR11], where we get the following

Proposition 3.4 :
Let (B,M0) be a ppav with a symmetric theta structure on G(M )whereM =M n

0 is of level n even. Let K ′ ⊂ B[ℓ]

be a maximal isotropic subgroup and ef : B→A= B/K ′ be the associated isogeny. Assume that ℓ is prime to 2n; then
the theta structure on G(M ) induces a unique polarizationL of level n on A and a unique compatible symmetric
theta structure on G(L ). Let F �Matr (Z) be such that t F F = ℓ Id.

Let i �K1(L ) and ( j1, . . . , jr ) �K1(M )r be the unique preimage of (i , 0, . . . , 0) by F . Let y be a geometric point
of B and let Y = t F (y, 0, . . . , 0) � B r . Then (up to a constant λ)

ϑLi (
ef (y)) · · · · ·ϑL0 (0) = λ

∑

(t1,...,tr )�K ′ r
F (t1,...,tr )=(0,...,0)

ϑMj1
(Y1+ t1) · · · · ·ϑ

M
jr
(Yr + tr ). (1)

Proof : From the hypothesis ℓ prime to 2n, Theorem 2.2 show that every compatible symmetric theta structure
on G(M ℓ) induce the same totally symmetric line bundleL on A and the induced symmetric theta structure
on G(L ) depends only on the choice of the symmetric theta structure on G(M ).

Now we just need to apply the diagram from above. In this diagram we apply Proposition 3.1 with X =
t F (x, 0, . . . , 0) where x �A is such that f (x) = y.

Now since ℓ is prime to n, an element h � K1(L ℓ) is of the form h = j + T where j � K1(L ) and
T � K1(L ℓ)[ℓ]. But by Proposition 3.2, ϑL

ℓ

h (Xi ) = ϑ
M
f ( j )(Yi + f (T )) (think about our g = 1, n = 2, ℓ = 3

example. Looking at the equation in Proposition 3.1 we get Equation 1.
Note that in Equation 1, the coordinates of the right hand term are not the projective coordinates of the

points (it would not make sense in a sum) but of suitably normalized affine lifts. More details are given in
[CR11] where we explain how to use differential additions to normalize the affine lifts.

In total, the complexity cost is given by normalizing affine lifts of the geometric points of K O(ℓg ) and the
changing level formula costing O(ℓg r/2). (For an improvement, in [Rob12] we explain with David Lubicz how
to adapt the formula to only need the equations of the kernel K). ■

Example 3.5 :
If ℓ= a2+ b 2, we can take F =

�

a b
−b a

�

, so that Equation 1 become

ϑLi ( f (y)) ·ϑ
L
0 (0) = λ
∑

t�K ϑ
M
j1
(ay + at ) ·ϑMj2 (b y + b t ). (2)

4 Computing isogenies with cyclic kernel

Let f : A→ B be an isogeny with cyclic kernel, and assume that we have principal polarizationL0 andM0 on
A and B . LetL =L n

0 andM =M n
0 .

Then there exist ϕ such that the following diagram commutes:
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A B

Â B̂

A

f

f̂

ϕ f ∗M ϕM

ϕ−1
L

ϕ

By construction, ϕ commutes with the Rosatti involution, so it is a (totally positive) totally real element of
End0(A). We noteL ϕ = f ∗M so that we have the following diagram

A A

Â

ϕ

ϕLϕL ϕ

Since the commutator pairing eL ϕ is non degenerate (or since Ker f̂ is the Cartier dual of K =Ker f ), we see
that Kerϕ ⊂A[ℓ] is non isotropic for the Weil pairing. However, K =Ker f is maximally isotropic for eL ϕ . So
in Section 3 we explained how to compute an isogeny from a maximal isotropic kernel K (implicitly for Weil
pairing eL ℓ ), this suggest that we will be able to compute the isogeny with kernel K maximally isotropic for
eL ϕ by replacing [ℓ] with ϕ everywhere.

Of course at one point we will need to explain how to constructL ϕ without using the isogeny f , because
we want to compute f fromL ϕ.

First, the analog of Proposition 3.2 is immediate:

Proposition 4.1 :
Assume that the symmetric theta structure on L ϕ is such that K ⊂ K2(L ϕ) (this is always possible). Then the
symmetric theta structure onL ϕ induces a symmetric theta structure onM by Theorem 2.2 (this may require to
replaceM by an equivalent line bundle).

Let f : A→ B be the isogeny of kernel K, and x a geometric point in A. Fix i �K1(M ), and let j �K1(L ϕ) be the
unique preimage of i by f that is in K1(L ϕ). We have (up to a constant λ)

ϑMi ( f (x)) = λϑ
L ϕ
j (x)

Moreover, if we introduce the ϕ-contragredient isogeny ef has the isogeny ef : B→A such that ef ◦ f = ϕ, we
have the following diagram

x � (A,L ϕ)

y � (B ,M )

ef (y) � (A,L ϕ)

f

ef
ϕ

The exact same techniques as in Section 3 allow to find from y � B a preimage x , and such compute ef (y) in
coordinates fromL ϕ . Now we just need to apply a change level formula using an equivalent of Proposition 4.

9
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First we need to find an equivalent of the matrix F . To simplify we now assume that the division algebra
End0(A) is a field K , and we let K0 be the associated totally real field. Furthermore, we assume that O0 =
K0

⋂

End(A) is the maximal order OK0
of K0 (A has maximum real multiplication).

Lemma 4.2 :
Let ϕ �OK0

be a totally positive element. Then there exist F �Matr (OK0
) such that t F F = ϕ Id.

Proof : It is well known that such a ϕ is a sum of m squares in OK0
. We may assume that m = 2d is a power

of 2. Now using the theory of Clifford’s algebra for the quadratic form Q(x1, . . . , xt ) =−x2
1 − x2

2 −· · ·− x2
t with

t ⩾ d sufficiently large, we obtain the matrix F with r = 2t .
[Update 2013-04-23: as remarked by Dimitar Jetchev, a paper of Siegel show that except in Q(

p
5) for some

elements of OK0
a sum of squares can only be found using non integral elements. If we have such an element

α/m, to compute its action on the ℓ-torsion, we need to compute the action of α on the ℓm-torsion, so we
would like m to be as small as possible. Intuitively, for a larger r we can get a smaller m, but a large r also
increase the complexity.] ■

Remark 4.3 :
• ϕ is a sum of two squares iff it is the norm of an element of K0(i ). This is purely a local question, so it

should be pretty easy to test in practice.

• In general, Q(
p

5) is the only real quadratic field whose every integral element is a sum of 4 integral
squares [TODO: check if this is correct] . So we way need to take d > 2.

• Also, the generic formula converting a sum of 2d squares into a matrix of length 2d involves denominator.
That’s why in the proof of the lemma we need to assume that t may be larger than d (the exact formula is
given by the size of the representations of the associated Clifford’s algebra).

• Still, the following will make clear that we only need to work locally on Z[ 1
2ℓn ] so we can look for F in

Matr (OK0
⊗Z[ 1

2ℓn ].

• All in all, I lack a clear bound on how big r could be at worse. Note that the size of r directly influence
the cost of the changing level formulas (see Proposition 3.4).

• To look for smaller r , Christophe Ritzenthaler suggested looking at matrix F such that (for instance)
t F F = diag(ϕ, 1, . . . , 1). ♦

Now assume the matrix F is fixed, we have

Proposition 4.4 :
Let (i1, . . . , ir ) �K1(L )r . Let x = (x1, . . . , xr ) be a geometric point of Ar and let y = F x. Then (up to a constant λ)

ϑLi1
(y1) · · · · ·ϑ

L
ir
(yr ) = λ
∑

( j1,..., jr )�K1(L ϕ)
F ( j1,..., jr )=(i1,...,ir )

ϑL
ϕ

j1
(x1) · · · · ·ϑ

L ϕ
jr
(xr ).

Proof : It is a bit easier to look at a proof over C. The action of F on the polarization H is given by
t
F F = ϕ Id

(because the elements of F are real), so we have F ∗L ⋆L ·· ·=L ϕ ⋆L ϕ · · · .
Note that this give the construction ofL ϕ we were looking for. Now the real elements of K0 acts on Cg by

symmetric matrixes, so they are codiagonalizable in respect to the principal polarization H0.
In particular, the isogeny induced by F on Ar respect the symplectic decomposition given on A, so we can

apply the isogeny theorem. ■

Now we just have to combine everything in the following diagram

10
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x � (A,L ϕ) (x, 0, . . . , 0) � (Ar ,L ϕ ⋆ · · · ⋆L ϕ)

y � (B ,M ) t F (x, 0, . . . , 0) � (Ar ,L ϕ ⋆ · · · ⋆L ϕ)

ef (y) � (A,L ) F ◦ t F (x, 0, . . . , 0) � (Ar ,L ⋆ · · · ⋆L )

f

ef
ϕ

t F

F

Proposition 4.5 :
Let (B,M0) be a ppav with a symmetric theta structure on G(M )whereM =M n

0 is of level n even. Let K ′ ⊂ B[ℓ]

be a maximal isotropic subgroup forMϕ and ef : B→A= B/K ′ be the associated isogeny. Assume that ℓ is prime to
2n; then the theta structure on G(M ) induces a unique polarizationL of level n on A and a unique compatible
symmetric theta structure on G(L ). Let F �Matr (OK0

) be such that t F F = ϕ Id.
Let i �K1(L ) and ( j1, . . . , jr ) �K1(M )r be the unique preimage of (i , 0, . . . , 0) by F . Let y be a geometric point

of B and let Y = t F (y, 0, . . . , 0) � B r . Then (up to a constant λ that may depend on y this time)

ϑLi (
ef (y)) · · · · ·ϑL0 (0) = λ

∑

(t1,...,tr )�K ′ r
F (t1,...,tr )=(0,...,0)

ϑMj1
(Y1+ t1) · · · · ·ϑ

M
jr
(Yr + tr ). (3)

Note that the condition of having maximal real multiplication is too strong, we only need to have a matrix F
corresponding to ϕ. In particular, we don’t really need to have maximal real multiplication, nor even that A and
B have the same real multiplication. Of course, we do need to have ϕ in End(A) and End(B), where we abuse
the same notation to note ϕ = ef ◦ f � End(A) and f ◦ ef � End(B). Perhaps the following diagram is clearer:

A B A

Â B̂ Â

Â B̂

f ef

ϕL

bϕ

ϕ f ∗M

ϕM

bϕ

ϕ f ∗L

ϕL

f̂
b

ef

4.1 Computing the isogeny in practice

Of course in Proposition 4.5 we have hidden all the difficulties in the computation of

ϑMj1
(Y1+ t1) · · · · ·ϑ

M
jr
(Yr + tr ),

where we need to have a way to compute the action of the elements of OK0
giving F in a “compatible affine

manner”.
The easy case is if we only need the isogenous theta null point. In which case y = 0 and Y = (0, . . . , 0) so that

we only need to evaluate on points of K ′ but we have already seen how to normalize the affine lifts [CR11]. But
to compute the image of a point y we need to work harder.

We give an example on how to do that with OK0
=Q(
p

d ) (d prime to ℓ) and ϕ = a2+ b 2 (the generalization

to a sum of more squares is immediate) so that we can take F =
�

a b
−b a

�

as in Example 3.5 We need to

evaluate
∑

t�K ϑ
M
j1
(ay + at ) ·ϑMj2 (b y + b t ). (4)

11
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We want to compute affine coordinates of ay + at and b y + b t , where the eventual projective factor depends
only on y, not on t . Let a = α+β

p
d and let’s see what we can compute.

Since we have normalized all the points of K ′, we know αt , β
p

d t and α+β
p

d already. We also know the
“affine coordinates” of αy and α(y + t ), this only use differential additions.

We also can compute
p

d y since
p

d correspond to a (d , d )-isogeny (a normal one with maximal isotropic
kernel for the Weil pairing). The important point here is that Proposition 3.4 gives us the isogeny for affine
theta coordinates (since λ is a constant). From

p
d y we get β

p
d y using differential additions. Likewise we

can compute β
p

d (y + t ). If αt =β
p

d t ′, then β
p

d y +αt is simply β
p

d (y + t ′) so we can also compute it.
Finally we can compute α+β

p
d y but only in a projective way, so we have take an arbitrary affine lift. The

important point here is that we can fix it once and for all, it does not depend on t .
In the sum of four terms αy +β

p
d y +αt +β

p
d t , we have seen how to compute each of the two by two

subsum. Now this is what we call a MultiWayAddition, and we claim that by using Riemann relations, this
is enough to compute the whole sum. Indeed, it is easy to see that a MultiWayAddition reduces to several
ThreeWayAdditions (compute x + y + z from x , y , z , x + y , x + z , y + z) and we showed how to do that in
[Rob10; LR13] (generically in level 2, for any geometric point in level n > 2.)

Remark 4.6 :
• Finding the matrix F requires that we know what the full real endomorphism order look like, which may

be expensive. Over a finite field, it should be possible by Tate’s theorem to work on the ℓ-Tate module to
find the action of F on the ℓ-torsion, which is what we need if we only want the isogenous theta null
point (we also need the action on the 2-torsion, so we’ll need to glue things).

• It would be interesting to have a purely analytic version of Proposition 4.5. Note that the analytic version
of Koizumi [Koi76] is a bit stronger as stated than the algebraic version of Kempf [Kem89] (for instance
to recover the usual Riemman’s relation, one need to apply Kempf’s version twice). ♦
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