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1 Symmetric theta structures and the isogeny theorem

Let A be an abelian variety of dimension g defined over an algebraically closed field k. Let &, be a symmetric
ample line bundle of degree one on A, %, defines a principal polarization: A — A. If 7 is even £ = £} is then
totally symmetric, and the kernel K(.&Z) of the polarization associated to & is A[n].

From now on, we assume that 7 is prime to the characteristic of k, so that £ defines a separable polarisation.
Since % is totally symmetric, there exist a symmetric theta structure on the theta group G(%£). Fixing such a
structure fix a unique projective basis of theta functions [ ] that we call theta functions of level 7. Note:
the theta structure induces an isomorphism between the symplectic spaces Z(7) x VA (n) and K(&) = A[n]
where Z(n) =(Z/nZ)8 and 2(%) is the Cartier dual of Z(%). We note K(£) = K,(£L) ® K,(ZL) where K,(¥£)
corresponds to Z(7) and K,(&Z) to VA (7). Usually the canonical basis of the theta functions of level 7 are indexed
by i € Z(%), but in these notes we will index them by i € K|(%) which permit us to not track explicitly the
isomorphism between Z(7) and K,(Z).

If n > 2 then the theta functions of level 7 give a projective embedding of A into P**~!, while if 7 = 2 we only

get an embedding of the Kummer variety A/ £ 1 (the 7 = 2 case assume that A is absolutely simple, see [ 1.
Under a generic condition (the even theta null coordinates are non zero), this embedding of the Kummer variety
is actually projectively normal (see [ D-

Theorem 1.1:
The symmetric theta structure on G(£) is uniquely determined by a choice of symplectic basis (e, ..., e}, .. e; )on
A[n] and a choice of symplectic basis (f,,... f, f], - ];/) on A[2n] such that e; = 2f;,e! = 2f/. (Here symplectic
mean for the commutator pairing e, and e 42 respectively).

Moreover, changing these symplectic basis do not change the resulting symmetric theta structure if and only if

o The symplectic basis of A[n] is left invariant;
o The f; are replaced by points f, + t; with t; € A[2] such that e, (e;,t;) = 1.

In particular, fixing a symplectic basis of A[n] and a symplectic decomposition A[2n] = A,[2n] & A,[2n] of
the 2n-torsion into a sum of maximal isotropic subspaces is enough (and even stronger) to fix the symmetric theta
structure.

Proof : This is implicit in [ , Section 3]. A symmetric theta structure comes from an isomorphism
between the Heisenberg group and the theta group that commutes with the action of [—1]. It induces an
isomorphism between the symplectic spaces Z(72) x Z(7) and K(£) = A[n] and hence fix a symplectic basis of
the n-torsion.

Conversely, having fixed a symplectic basis of the 7-torsion, since £ is totally symmetric, there is always a
symmetric theta structure respecting this symplectic basis. Such a choice of a symmetric theta structure can be
seen as a choice of a symmetric element above each of the element of the basis (ey,. .. e;); since there is only two

symmetric elements g; above each e; a symmetric theta structure above the symplectic basis can be seen as a
choice of sign for each element of the basis.
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If g. € G(Z?) is a symmetric element of the theta group above a point f; such that e; = 2f;, then (g;)?
determines a symmetric element of the theta group above e; that uniquely depends on the choice of f; (since the
other symmetric element above f; is —g; which gives rise to (—g.)* = (g;)* above ¢;. Via the transfer map &,
from [ ], we see how the choices of the f; above the ¢; are enough to determine the symmetric theta
structure on G(&).

It is a straightforward verification to see that replacing f; by f; + ¢; where ¢; is a point of 2-torsion involve
replacing (g;)? by e42(f;, t;)(g;)* which concludes the proof.

(One could also replace the application &, by the isogeny [2] which would involve working in G(£*), as in

[ 1) n

Corollary 1.2 : _
Let. (A, %£,)/F, b? a ppav over the finite field F v Assume.tlmt U ,.Z(F ) CF, (n = 2770 even). Then there exist a
rational symmetric theta structure on £ = £ iff there exist a rational symplectic basis (e, .. .e,, e},...,e’g) such
that e ,(nye;,e;) = 1; where e, , denotes the 2-Tate pairing. (In other words, e; form a symplectic basis consisting of
elements whose self n-Tate pairing is not a primitive n-th root of unity).

Proof : This is clear from Theorem 1.1 and the definition of the Tate pairing as ez ,(70¢;, €;) = ey 2 (10€;, 7(f;) —
f;) where 2f; = ¢; and 7 is the Frobenius of F, . [ ]

Remark 1.3 :
In the case that IF, does not contain the 7-th root of unity, a rational theta structure of level 7 induces an

equivariant (for the Galois action) isomorphism between A[#] and Z(7%) x Z(7). In particular, this does not
impose that all geometric points of A[7] are rational.

Proposition 1.4 :
Let &£ be a symmetric line bundle on A, defining a polarization of type 8 = (8,...,8,). Then there exists a
symmetric theta structure on G(£) if and only if for every x € A[2](\K(ZL), we have e, (x) = 1.

In this case we call £ rotally symetrisable (becanse a totally symmetric line bundle satisfy the condition), and the
obvious generalisation of Theorem 1.1 to this case also holds.

Proof: [ ; ]. [ ]

The idea is that (for instance in dimension 2), Ifoz is of type (¢,¢) and allows to compute isogenies with
maximal isotropic kernels, but for a cyclic isogeny we need a polarisation of type (1,£) (like the type of £
from Section ??).

Theorem 1.5 :
Let f : (A, L) — (B, M) be an isogeny between pav. Then K = Ker f is isotropic in K(L) for the commutator
pairing e, and K(M ) ~K* K.

Assume that we have a symmetric theta structure on G(£) coming from a symplectic basis (f;, f!) on K(£?).
Assume that K is compatible with the induced symplectic decomposition K(£) = K,(£) ® K,(L) into maximal
isotropic subspaces in the sense that K = K, ® K, where K; = K,(£)(\K. In this case K(M ) ~ K*! |[K, ® K" K,
where K> = K2l NK(L) and K = Kll MK, (L)

Let K be the level subgroup above K induced by this theta structure; the corresponding descent data give a line
bundle M’ algebraically equivalent to M . Moreover M’ is totally symetrisable, and we can define a symmetric
theta structure on M as follow: from the symplectic basis of K(£?) one derives a “canonical” basis (g,,. .., g; )of

[2]7'K ™. Pushing this basis via the isogeny f gives a symplectic basis on K(_M'?), which determines the symmetric
theta structure on M. It is easy to see that by construction, it is compatible with the theta structure on L.
We can then apply the isogeny theorem: there exist A such that for all i € K, (")

M _ <
g=2 > 9%
TN ()=

Proof: [ ; ; ]. [ |
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Corollary 1.6 :
o If M isof type 8" with 2| &' (meaning that A[2)(\K (L) C K1), then ' is the unique totally symmetric
line bundle in the equivalence class of M .

o IfA[2](K(ZL) C K, then every symmetric theta structure on G(&£) induces the same symmetric theta
structure on G(M'").

Proof : See [ ; ] u
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