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Abelian Varieties

Définition
An Abelian Variety is a complete connected group variety over a base field k.

An Abelian variety is just a set of points on a projective space, satisfying
some homogeneous polynomials, together with an algebraic group law
between them.
An Abelian Variety is projective, smooth and irreducible. The group law
is Abelian.
Abelian Varieties of dimension 1 are called elliptic curves.
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Examples

If C is a curve of genus , we can consider the space consisting of sets of 
points of C (with multiplicity). One can find addition laws such that this
space is an Abelian Variety, this is called the Jacobian of C. Jac(C) is of
dimension .
The Jacobian of a curve C of genus 1 is isomorphic to C.

Abelian Varieties over C
If the base field is C, an Abelian Variety A of dimension n is isomorphic to a
torus V/Λ where V = Cn and Λ is a lattice of rank 2n.
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Abelian Varieties and cryptography

The Discrete Logarithm Problem is conjectured to be hard on Abelian
Varieties (at last if the dimension is small). So Abelian Varieties provide
the classic asymmetric cryptographic architecture : public/private keys,
zero knowledge, signatures.
An Abelian Variety is provided with pairings, that is a non degenerate
bilinear map from a subset of the Abelian Variety to an extension of the
base field. This provide new cryptographic protocols : identity based
encryption, short signatures, tripartite Diffie-Helmann.
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Working with Abelian Varieties

One usually work with Jacobian of curves defined over finite fields. One
can use Mumford representation to represent points of the Jacobian (2
coordinates), and use Cantor’s algorithm for the addition.
However there is no such representation for general Abelian Varieties.
And Mumford representation does not give an embedding from the
Jacobian to a projective space.
One can use theta functions to embed the Jacobian to the projective
space. However, if the genus of the curve is , one has to use 4

coordinates. For example in Cassels and Flynn, they describe the Jacobian
of a curve of genus 2 by using 16 coordinates, and the Jacobian is defined
by 72 equations in P15.
Solution : we will consider Abelian Varieties over C.
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Abelian Varieties over C

An abelian variety of dimension n over C is a torus A = V/Λ. We can
assume Λ = Zn +ΩZn where Ω ∈ GLn(Z).
For a torus V/(Zn +ΩZn) to be an Abelian Variety, Ω needs to be in
Siegel upper half space : Ω is symmetric and Im(Ω) is definite positive.
To get an embedding to the projective space, we need analytic functions
on V that are quasi periodic with respect to the lattice Λ.
For every Ω in Siegel upper half space, we can associate a theta function

θ(z, Ω) = ∑
n∈Zn

exp(πin′Ωn + 2πin′z)

Then for every n ∈ Zn we have :

θ(z + n, Ω) = θ(z, Ω) (1)
θ(z + nΩ, Ω) = exp(−πin′Ωn − 2πin′z)θ(z, Ω) (2)
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Theta functions

We can find more functions by translating (and twisting) θ : if a, b ∈ Qn

we define

θ[a, b](z, Ω) = exp(πia′Ωa + 2πia′(z + b))θ(z +Ωa + b, Ω)

Then for every n ∈ Zn we have :

θ[a, b](z + n, Ω) = exp(2πia′n)θ[a, b](z, Ω)
θ[a, b](z + nΩ, Ω) = exp(−2πib′n) exp(−πin′Ωn − 2πin′z)θ[a, b](z, Ω)

If we can find theta functions θ i satisfying the same factor of automorphy,
then if x ∈ A, (θ1(x̃) ∶ θ2(x̃) ∶ . . .) ∈ PC does not depend on the
representative x̃ of x in V .
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Projective embeddings given by theta functions

Définition
Let Ll be the vector space of analytic functions f satisfying the factor of
automorphy

f (z + n) = f (z)
f (z + nΩ) = exp(−l × πin′Ωn − l × 2πin′z) f (z)

This is called the space of theta functions of level l .

Théorème

θ[0, b/l](z, Ω/l)b∈[0, l−1]n forms a basis of theta functions of level l . For
i ∈ Zl ∶= Zn/lZn , we denote θ i ∶= θ[0, i/l](z, Ω/l).
If l ≥ 3 then x ↦ (θ i(x))i∈Zn/lZn is a projective embedding A→ Pl −1

C .
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Symplectic basis and pairings

Recall that θ[a, b](z + c + dΩ) is easy to compute if we know
θ[a, b](z + c + dΩ). As θ i = θ[0, i/l](z, Ω/l), this mean that adding a
point of l-torsion P ∈ 1

lZ
n + 1

l ΩZn is easy.
This give an action from A[l] to the space of theta functions of level l .
The commutator of this action give a pairing A[l] × A[l]→ k⋆. This
pairing is the exponential of the factor of automorphy

E = (O l
−l 0)

For a factor of automorphy of level l , this give the Weil pairing :

e(x1/lZn
+ x2/lΩZn , y1/lZn

+ y2/lΩZn
) =

exp(−πi l(x1∣y2))
exp(−πi l(x2∣y1))
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Addition formulas
Cf Mumford, TATA Lectures on Theta1. They give the fastest addition for
Jacobians of curves of genus 2 ! [Gaudry]

D. Lubicz, D. Robert Computing isogenies on Abelian Varieties 12/28



Abelian Varieties
Isogenies

Computing isogenies

Definition
Isogenies and cryptography
The isogeny theorem

Outline

1 Abelian Varieties

2 Isogenies, a fundamental tool

3 Computing isogenies

D. Lubicz, D. Robert Computing isogenies on Abelian Varieties 13/28



Abelian Varieties
Isogenies

Computing isogenies

Definition
Isogenies and cryptography
The isogeny theorem

Morphisms and isogenies

Let A and B be two abelian varieties. A morphism A→ B is an algebraic
map f ∶ A→ B respecting the group law : f (x + y) = f (x) + f (y). The
kernel of f is the set of (geometric) points on A sent to 0B by f (in fact we
only need to check that f (0A) = 0B).
We will work on morphisms between abelian varieties of the same
dimension (think about Jacobians). We also want the Kernel to be finite.
A morphism between two abelians varieties of dimension n and of finite
kernel is called an isogeny.
An isogeny is flat, finite and surjective.
The multiplication by m map [m] is an isogeny A→ A. It’s kernel is
A[m], the set of m-torsions points.
There is a bijection between finite subgroups of the variety and isogenies,
so one can see an isogeny as a way to define a subgroup.
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Isogenies over C

If A = V1/Λ1 and B = V2/Λ2, a morphism f ∶ A→ B is a linear map
f ∶ A→ B such that f (Λ1) ⊂ Λ2.
If f ∶ V1 → V2 is bijective, then f is an isogeny of kernel f −1(Λ2)/Λ1.
If f is an isogeny, we can always assume that V1 = V2 and that f = idV .
The kernel is Λ2/Λ1.
The multiplication by m map has kernel isomorphic to mΛ/Λ, we find
there are m2n points of m-torsion.
There is a bijection between isogenies and lattices containing Λ.
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Constructive use

Before we use an abelian variety for the DLP, we have to compute the
number of points and see if it is a multiple of a big prime. In genus 1 one
can use isogenies to considerably speedup Schoof algorithm (SEA).
Isogenies help in CM-Methods.
Every isogeny give a non degenerate pairing. The Weil pairing comes
from the multiplication by m map.
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Destructive use

One can use isogenies to transfer the DLP problem from an abelian
variety A to an abelian variety B where it is easier.
Every abelian variety of dimension 3 is the Jacobian of a curve of genus 3,
but not every curve of genus 3 is hyperelliptic. Solving the DLP over a
Jacobian of a non-hyperelliptic curve is easier, and one can try to use
isogenies to go from an hyperelliptic curve to a non-hyperelliptic one.
In dimension n > 3, there are abelian variety that are not Jacobians of
curve. Again the DLP is easier on such abelian varieties, and one can try
to find isogenies to go from a Jacobian to a non-Jacobian.
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Jacobian of a non-hyperelliptic curve is easier, and one can try to use
isogenies to go from an hyperelliptic curve to a non-hyperelliptic one.
In dimension n > 3, there are abelian variety that are not Jacobians of
curve. Again the DLP is easier on such abelian varieties, and one can try
to find isogenies to go from a Jacobian to a non-Jacobian.
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The isogeny theorem 1

Let A be an abelian variety, given by an embedding of theta functions
with respect to a factor of automorphy. We want to compute the isogeny
of a finite subgroup, isotropic with respect to the commutator pairing
induced by this factor of automorphy. (The pairing induced by this
isogeny will be induced by this commutator pairing).
To simplify the exposition, we will restrict ourselves to a subgroup of l
torsion isotropic under the Weil pairing, that is we will use coordinates
given by a factor of automorphy of level a multiple of l .
We have seen that there are l 2n points of l-torsion, we want half the l
torsion as kernel.
Write A = V/(Zn +ΩZn), there are two canonical isotropic subgroups :
1/lZn and 1/lΩZn . We will choose the last one as our Kernel.
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The isogeny theorem 2

Théorème

Let A = V/(Zn +ΩZn) be a variety, and (θA
i )i∈Zn/k lZn the theta functions of A

of level kl . Let ϕ ∶ Zn/kZn → Zn/klZn be the canonical inclusion x ↦ l x. Let
B = A/ 1l ΩZn = V/(Zn + Ω

l Z
n) and (θB

i )i∈Zn/kZn be the theta functions of B of
level k. Then :

θB
i = θ

A
ϕ(i)

Démonstration.

θB
i = θ[0, i/k](z, Ω/l k) = θ[0, l i/l k](z, Ω/l k)
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3 Computing isogenies

D. Lubicz, D. Robert Computing isogenies on Abelian Varieties 20/28



Abelian Varieties
Isogenies

Computing isogenies

Moduli space and theta structure
Computing isogenies
Remarks

State of the art

In genus 1, if one choose the kernel K of the isogeny of an elliptic curve
E ∶ y2 = f (x), Velu’s formulas give the isogeny of kernel K :

X(P) = ∑
Q∈K

x(P + Q) − ∑
Q∈K⋆

x(Q)

Y(P) = ∑
Q∈K

y(P + Q) − ∑
Q∈K⋆

y(Q)

and formulas for the equation of the curve E/K.
One can then use these formulas together with the l-modular polynomial
to compute isogenies of degree l .
In genus 2, Richelot formulas (a generalisation of AGM) give isogenies of
degree (2, 2).
Smith generalized this to compute (2, 2, 2)-isogenies on genus 3.
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The moduli space 1

We will use the isogeny theorem to compute isogenies. We have stated it
over C, but it works over Fq too : every algebraic relations between thetas
functions is valid over Fq .
To use the isogeny theorem, we still need to find an ‘‘algebraic’’
definition of Ω. In ‘‘On equations defining abelian varieties’’, Mumford
show that the moduli space to consider is (A,L,GΘ), the set of abelian
varieties marked with a theta-structure.
Remember our theta function θ(z, Ω). We can vary z and get the
coordinate of the corresponding point of the torus, but we can also vary
Ω and get a coordinate corresponding to the variety. So to get a
coordinate on the set of abelian varieties, we need to find a way to
associate a canonical point zA to each variety A, and then evaluate
θ(zA, ΩA). Of course we will take zA = 0A.
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The moduli space 2

Définition
Les A be an abelian variety, and θ i be the theta functions of level l . The point
(θ0(0) ∶ θ1(0) ∶ . . . ∶ θ l−1(0)) ∈ Pl −1 is called the theta constant of level l of A.

Théorème
Mumford : If 8∣l then the theta constants of level l form an open dense subset of the
variety

∑
t∈Z2

q(x + t)q(y + t)∑
t∈Z2

q(u + t)q(v + t) =

∑
t∈Z2

q(x + z + t)q(y + z + t)∑
t∈Z2

q(u + z + t)q(v + z + t)

q(x) = q(−x)

where Z2 ⊂ Zl are the points of 2-torsion, and x , y, u, v ∈ Zl , x + y + u + v = −2z.
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The moduli space 3

Suppose we start with a theta constant (q(i))i∈Zl , Mumford theorem tells us
that if 8∣l the matrix Ω is uniquely determined. Let θ i be the corresponding
theta functions of level l , we have to find an algebraic characterisations of θ i . If
we use the embedding to the projective space they provide, we can see them as
coordinate on the projective space together with every algebraic relations
between the (θ i). A basis of these relations is given by Riemann theta
relations :

Théorème
Riemann Relations : if 4∣l and (q(0) ∶ . . . , q(l − 1)) is a theta constant of level l ,
then the corresponding abelian variety has equations :

∑
t∈Z2

Xx+tXy+t ∑
t∈Z2

q(u + t)q(v + t) =

∑
t∈Z2

X−(u+z+t)X−(v+z+t) ∑
t∈Z2

q(x + z + t)q(y + z + t)
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Computing isogenies, first try

To compute an isogeny, we can try to find points of the modular space,
this will give theta constants of level l : (q(0) ∶ q(1) ∶ . . . ∶ q(l − 1)), and
then we apply the isogeny theorem to get an isogeny of degree l . In fact,
to get the equation of the isogenous variety, we have to go from level 4l to
level 4.
But we want to find theta constants corresponding to our abelian variety.
If we start with the Jacobian J of an hyperelliptic curve C ∶ y2 = f (x),
then Thomae’s formulas relate the theta constants of level 4 of J with the
roots of f .
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Computing isogenies, second try

We proceed backwards. We start with our theta constants of level 4
corresponding to our variety B : (b(0) ∶ b(1) ∶ b(2) ∶ b(3)). We try to
find an abelian variety A and an isogeny f ∶ A→ B of degree l . We only
need to find the theta constants of A of degree 4l : (a(0) ∶ . . . ∶ a(4l − 1)).
The isogeny theorem says that a(l ∗ i) = b(i) for every i ∈ Z4. We plug
these equations in the moduli space of abelian varieties of level 4l , we
obtain a zero dimensional variety and use Gröbner Basis to find the
solutions.
We obtain some degenerate solutions, but they are easy to detect.
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We have an isogeny f ∶ A→ B. If we just want to compute the equation of
a subgroup of order l  of B, then we can take the image of the points of
l-torsions of A.
If we need to find an isogeny  ∶ B → A, we can take the dual of f . To
compute , if b ∈ B, we take any antecedent a ∈ f −1(b) (there are l  such
antecedents), and multiply by l . If we take b to be the generic point, this
give the equations of . In practice this is very fast.
This isogeny B → A goes from a level 4 variety to a level 4l variety. If we
want the codomain to be of level 4 (to reduce the number of variables),
one can proceed like this : in the isogeny theorem, we had to choose
between 1/lZn and 1/lΩZn as our kernel. If we take lZn , we obtain a new
isogeny theorem, and an isogeny : h ∶ A→ C. The composition h give an
l 2 isogeny between two varieties of level 4.

D. Lubicz, D. Robert Computing isogenies on Abelian Varieties 27/28



Abelian Varieties
Isogenies

Computing isogenies

Moduli space and theta structure
Computing isogenies
Remarks

Remarks

We have an isogeny f ∶ A→ B. If we just want to compute the equation of
a subgroup of order l  of B, then we can take the image of the points of
l-torsions of A.
If we need to find an isogeny  ∶ B → A, we can take the dual of f . To
compute , if b ∈ B, we take any antecedent a ∈ f −1(b) (there are l  such
antecedents), and multiply by l . If we take b to be the generic point, this
give the equations of . In practice this is very fast.
This isogeny B → A goes from a level 4 variety to a level 4l variety. If we
want the codomain to be of level 4 (to reduce the number of variables),
one can proceed like this : in the isogeny theorem, we had to choose
between 1/lZn and 1/lΩZn as our kernel. If we take lZn , we obtain a new
isogeny theorem, and an isogeny : h ∶ A→ C. The composition h give an
l 2 isogeny between two varieties of level 4.

D. Lubicz, D. Robert Computing isogenies on Abelian Varieties 27/28



Abelian Varieties
Isogenies

Computing isogenies

Moduli space and theta structure
Computing isogenies
Remarks

Remarks

We have an isogeny f ∶ A→ B. If we just want to compute the equation of
a subgroup of order l  of B, then we can take the image of the points of
l-torsions of A.
If we need to find an isogeny  ∶ B → A, we can take the dual of f . To
compute , if b ∈ B, we take any antecedent a ∈ f −1(b) (there are l  such
antecedents), and multiply by l . If we take b to be the generic point, this
give the equations of . In practice this is very fast.
This isogeny B → A goes from a level 4 variety to a level 4l variety. If we
want the codomain to be of level 4 (to reduce the number of variables),
one can proceed like this : in the isogeny theorem, we had to choose
between 1/lZn and 1/lΩZn as our kernel. If we take lZn , we obtain a new
isogeny theorem, and an isogeny : h ∶ A→ C. The composition h give an
l 2 isogeny between two varieties of level 4.

D. Lubicz, D. Robert Computing isogenies on Abelian Varieties 27/28



Abelian Varieties
Isogenies

Computing isogenies

Moduli space and theta structure
Computing isogenies
Remarks

Perspective

The blocking point of the algorithm is to compute the theta constants of
A of level 4l when we plug the theta constants of B of level 4.
Can we use the commutator pairing and the action of the points of
4l-torsion to speedup the Gröbner Basis ? We have a big polynomial
system, and each class of isogeny give many solutions according to the
action of the points of 4l-torsions. It is easy to explicit the action and get
every such solutions in one isogeny class. This mean we have to solve a
polynomial system highly symmetrical, but how can we use the
symmetry ?
Can we compute the commutator pairing of level l with theta functions
of lower level ?
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