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Abelian varieties

An Abelian variety is a complete connected group variety over a base field k.

@ Abelian variety = points on a projective space (locus of homogeneous polynomials)
+ an algebraic group law.

@ Abelian varieties are projective, smooth, irreducible with an Abelian group law.

o Example: Elliptic curves, Jacobians of genus g curves...
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Abelian varieties and isogenies ~ Definition and cryptographic usage

Usage of Abelian varieties in cryptography

@ Public key cryptography with the Discrete Logarithm Problem.

= Elliptic curves, Jacobian of hyperelliptic curves of genus 2.

@ Pairing based cryptography.

= Abelian varieties of dimension g < 4.
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Abelian varieties and isogenies ~ Definition and cryptographic usage

Working with Jacobian of hyperelliptic curves

Let C: y* = f(x) be a smooth irreducible hyperelliptic curve of genus g, with a rational
point at infinity (deg f = 2¢g - 1).
@ Every divisor D on C has a unique representative (k < g)
k
D=)"P; - Pe.
i=1
o Mumford coordinates: D = (u,v) where u = [T(x — x;) and v(x;) = y;
(degv < degu).
o Cantor algorithm: Given a divisor D compute the Mumford representation
D = (u,v) = addition law.
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Abelian varieties and isogenies ~ Definition and cryptographic usage

Working with Jacobian of hyperelliptic curves

Let C: y* = f(x) be a smooth irreducible hyperelliptic curve of genus g, with a rational
point at infinity (deg f = 2¢g - 1).
@ Every divisor D on C has a unique representative (k < g)
k
D=)"P; - Pe.
i=1
o Mumford coordinates: D = (u,v) where u = [](x — x;) and v(x;) = y;
(degv < degu).
o Cantor algorithm: Given a divisor D compute the Mumford representation
D = (u,v) = addition law.

@ For elliptic curves: more efficient coordinates (Edwards. ..).

® Pairing computation: use Miller algorithm.
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Tsogenies

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian
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A (separable) isogeny is a finite surjective (separable) morphism between two Abelian
varieties.

@ Isogenies = Rational map + group morphism + finite kernel.

@ Isogenies < Finite subgroups.

(f:A->B)—~Kerf
(A—> A/H) < H

Damien Robert (Caramel, LORIA) 18-05-2010, Moscow 7133



Abelian varieties and isogenies ~ Isogenies

Tsogenies

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian
varieties.

@ Isogenies = Rational map + group morphism + finite kernel.

@ Isogenies < Finite subgroups.

(f:A->B)—~Kerf
(A—> A/H) < H

@ Example: Multiplication by € (= ¢-torsion), Frobenius (non separable).
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Cryptographic usage of isogenies

o Transfert the DLP from one Abelian variety to another.
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Cryptographic usage of isogenies

o Transfert the DLP from one Abelian variety to another.
@ Point counting algorithms (¢-adic or p-adic).
e Compute the class field polynomials (CM-method).

o Compute the modular polynomials.
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Abelian varieties and isogenies ~ Isogenies

Cryptographic usage of isogenies

Transfert the DLP from one Abelian variety to another.
Point counting algorithms (¢-adic or p-adic).
Compute the class field polynomials (CM-method).
Compute the modular polynomials.

Determine End(A).

Damien Robert (Caramel, LORIA) 18-05-2010, Moscow 8/33



Abelian varieties and isogenies ~ Computing isogenies in genus 1

Vélu's formula

Theorem

Let E : y* = f(x) be an elliptic curve. Let G c E(k) be a finite subgroup. Then E/G is
given by Y? = g(X) where
X(P)=x(P)+ » x(P+Q)-x(Q)
QeGN{0g}
Y(P)=y(P)+  y(P+Q)-y(Q)

QeGN {05}

18-05-2010, Moscow
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elian varieties and isogenies

Vélu's formula

Theorem

Let E : y* = f(x) be an elliptic curve. Let G c E(k) be a finite subgroup. Then E/G is
given by Y? = g(X) where
X(P)=x(P)+ » x(P+Q)-x(Q)
QeGN{0g}
Y(P)=y(P)+  y(P+Q)-y(Q)

QeGN{0g}

@ Uses the fact that x and y are characterised in k(E) by

if P+ 0g

v (x) = -2 vp(x)
)>0 ifP+0g

vo,(¥)=-3  vp(y
y*[x*(0g) =1

oS O

2
2

@ No such characterisation in genus g > 2.
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Abelian varieties and isogenies ~ Computing isogenies in genus 1

The modular polynomial

Definition

@ The modular polynomial is a polynomial ¢, (x, y) € Z[x, y] such that ¢, (x, y) =0

iff x = j(E) and y = j(E") with E and E’ n-isogeneous.
e IfE: y* = x> + ax + b is an elliptic curve, the j-invariant is

4a3
i(E) =1728——4
J(E) 4a® + 2707
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Abelian varieties and isogenies ~ Computing isogenies in genus 1

The modular polynomial

Definition
@ The modular polynomial is a polynomial ¢, (x, y) € Z[x, y] such that ¢, (x, y) =0
iff x = j(E) and y = j(E") with E and E’ n-isogeneous.
e IfE: y* = x> + ax + b is an elliptic curve, the j-invariant is
3

4q
j(E) =1728————
J(E) 4a3 + 27b?

@ Roots of ¢,,(j(E),.) < elliptic curves n-isogeneous to E.

@ In genus 2, modular polynomials use Igusa invariants. The height explodes: the
compressed coefficients of ¢, take 26.8 MB.

= Use the moduli space given by theta functions.
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Abelian varieties and isogenies ~ Computing isogenies in genus 1

The modular polynomial

Definition
@ The modular polynomial is a polynomial ¢, (x, y) € Z[x, y] such that ¢, (x, y) =0
iff x = j(E) and y = j(E") with E and E’ n-isogeneous.
e IfE: y* = x> + ax + b is an elliptic curve, the j-invariant is

3

4q
j(E) =1728————
J(E) 4a3 + 27b?

@ Roots of ¢,,(j(E),.) < elliptic curves n-isogeneous to E.

@ In genus 2, modular polynomials use Igusa invariants. The height explodes: the
compressed coefficients of ¢, take 26.8 MB.

= Use the moduli space given by theta functions.

= Fix the form of the isogeny and look for coordinates compatible with the isogeny.
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Theta functions Constructing theta functions

The theta group

Definition

Let (A, £) be a (separably) polarized abelian variety over an algebraically closed field k.
The polarisation £ induces an isogeny

$riA — A
x — tLL

We note K(L) = Ker ¢, the theta group is G(£) = {(x,y) |y : t:L > L}.
G(L) is a central extension of K(£):

0 — k¥ — G(L) — K(L£) — 0.
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The theta group

Definition

Let (A, £) be a (separably) polarized abelian variety over an algebraically closed field k.
The polarisation £ induces an isogeny

$riA — A
x — tLL

We note K(L) = Ker ¢, the theta group is G(£) = {(x,y) |y : t:L > L}.
G(L) is a central extension of K(£):

0 — k¥ — G(L) — K(L£) — 0.

@ Group law: (x,¢).(y,v) = (x +, t*l//o ®):
ct ty A (L) =t L.

@ Descent theory: If K ¢ K(L£) is isotropic, sections s : K > G(L) < descent data
n: (X, L) - (X/K,M).
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Theta functions ~ Constructing theta functions

Heisenberg group

Definition

The Heisenberg group of level n is H(n) = k* x Z(n) x Z(n) where Z(n) = Z.9 |nZ9
and Z(n) is the dual of Z(n). The group law is given by

(o, x1,%2) (B> 1, y2) = ({x1, y2 ), x1 + Y1, %2 + ¥2),

where (x1, ¥2) = y2(x1) is the canonical pairing.
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(o, x1,%2) (B> 1, y2) = ({x1, y2 ), x1 + Y1, %2 + ¥2),

where (x1, ¥2) = y2(x1) is the canonical pairing.

@ A polarised abelian variety (A, L) is of level n if K(L) ~ Z(n).

o A theta structure on (A, £) is an isomorphism @, : H(n) - G(L).

o The theta structure ® ¢ induces a symplectic isomorphism (for the commutator
pairing) O : K(n) = Z(n) ® Z(n) > K(L).

o The symplectic decomposition K(n) = Z(n) ® Z(n) induces a decomposition

K(£) = Ki(£) @ Ky(L).

Damien Robert (Caramel, LORIA) 18-05-2010, Moscow

13/ 33



Theta functions ~ Constructing theta functions

Theta functions

o The Heisenberg group H(n) admits a unique irreducible representation:

(0,1, 7).0k = (i + k,—j)Oisk-
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Theta functions ~ Constructing theta functions

Theta functions

o The Heisenberg group H(n) admits a unique irreducible representation:
(@i, j).0k = (i + ks =) 8ik.
@ The action of G(£) on T'(L) given by
()9 =y (£ 9)

is irreducible.
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Theta functions ~ Constructing theta functions

Theta functions

o The Heisenberg group H(n) admits a unique irreducible representation:
(OC, i,j).ék = <i + k, _j)6i+k-
@ The action of G(£) on T'(L) given by

(2, 9).9 = y(t9)

is irreducible.

@ The basis of theta functions (induced by © ) is the unique basis (up to a constant)
such that

(o 7). 9 = ec(i+k,~j) ik

where e, is the commutator pairing.
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Theta functions ~ Constructing theta functions

Theta functions

o The Heisenberg group H(n) admits a unique irreducible representation:
(OC, i,j).ék = <i + k, _j)6i+k-
@ The action of G(£) on T'(L) given by

(2, 9).9 = y(t9)

is irreducible.

@ The basis of theta functions (induced by © ) is the unique basis (up to a constant)
such that

(e, 1,7).9% = ec(i+k,—j)Visk
where e, is the commutator pairing.
o If I >3 then
And (Si(z))iez(ﬁ)

is a projective embedding A — ]P’,’jg‘l.
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Theta functions ~ Constructing theta functions

Complex abelian varieties

o Abelian variety over C: A = C9/(Z9 + QZ9), where O € H ,(C) the Siegel upper
half space.

@ The theta functions with characteristic give a lot of analytic (quasi periodic)
functions on C9.

9(2 Q) _ Z erritnﬂn+2rtitnz
S =

neZ9d

9 [Z] (Z,.Q) _ enitaQa+27titu(z+b)9(z+ Qa + b, Q) a,b c Qg

Damien Robert (Caramel, LORIA) 18-05-2010, Moscow
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Theta functions ~ Constructing theta functions

Complex abelian varieties

o Abelian variety over C: A = C9/(Z9 + QZ9), where O € H ,(C) the Siegel upper
half space.

@ The theta functions with characteristic give a lot of analytic (quasi periodic)
functions on C9.

9(2 Q) _ Z erritnﬂn+2rtitnz
S =

neZ9d

9 [Z] (Z,.Q) _ enitaQa+27titu(z+b)9(z+ Qa + b, Q) a,b c Qg

@ The quasi-periodicity is given by

9 [Z] (Z+ m+ QH,Q) _ eZﬂi(tamftbn)—nithn—Zm'tnzs[Z] (Z,.Q)
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Theta functions ~ Constructing theta functions

Complex abelian varieties

o Abelian variety over C: A = C9/(Z9 + QZ9), where O € H ,(C) the Siegel upper
half space.

@ The theta functions with characteristic give a lot of analytic (quasi periodic)
functions on C9.

9(2 Q) _ Z erritnﬂn+2rtitnz
S =

neZ9d

9 [Z] (Z,.Q) _ enitaQa+27titu(z+b)9(z+ Qa + b, Q) abe Qg
@ The quasi-periodicity is given by
9 [z] (Z+ m+ QH,Q) _ eZﬂi(tamftbn)—nithn—Zm'tnzs[Z] (Z,.Q)

o () induces a theta structure of level oo. The corresponding theta basis of level n is

given by
{9 [2] (Z’ Q/”)}bg%Zﬂ/Zﬂ
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Theta functions ~ The isogeny theorem

The isogeny theorem

Theorem

Let (A, L, 0O ) be a marked abelian variety of level £n. The canonical section

Z(en) - H(en), j~ (1,0, j) induce via © z a section K = K,(L)[£] - G(L). The theta
structure ® ¢ descend to a theta structure (B, Lo, @, ) such that B = A/K and if

7 : A — B is the corresponding isogeny:

n* 9k = 19F.

Here Z(n) < Z(€n) is the canonical embedding x — £x.
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Theta functions ~ The isogeny theorem

The isogeny theorem

Theorem

Let (A, L, 0O ) be a marked abelian variety of level £n. The canonical section

Z(en) - H(en), j~ (1,0, j) induce via © z a section K = K,(L)[£] - G(L). The theta
structure ® ¢ descend to a theta structure (B, Lo, @, ) such that B = A/K and if

7 : A — B is the corresponding isogeny:

n* 9k = 19F.

Here Z(n) < Z(€n) is the canonical embedding x — £x.

Proof with k = C.

9(2) = 8[ ] (25 /n) = 9 [ e] 2. /em) = 82,(2)
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Theta functions ~ The isogeny theorem

Mumford: On equations defining Abelian varieties

Theorem (car k + n)

o The theta null point of level n (a;)icz(my = (9:(0))iez(n) satisfy the Riemann
Relations:

Z AxitAyit Z Ayytyit = Z ax’+tay’+t Z Ay’ Ay’ 1t (1)

teZ(2) teZ(2) teZ(2) teZ(2)

We note M the moduli space given by these relations together with the relations of
symmetry:
Ay = Ay

o My(k) is the modular space of k-Abelian variety with a theta structure of level n:
The locus of theta null points of level £ is an open subset M2(k) of Mz (k).

Damien Robert (Caramel, LORIA) 18-05-2010, Moscow 17 /33
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Theorem (car k + n)
o The theta null point of level n (a;)icz(my = (9:(0))iez(n) satisfy the Riemann
Relations:

Z AxitAyit Z Ayytyit = Z A/ +t Ay +t Z Ay’ Ay’ 1t (1)

teZ(2) teZ(2) teZ(2) teZ(2)

We note M the moduli space given by these relations together with the relations of
symmetry:
Ay = Ay

o My(k) is the modular space of k-Abelian variety with a theta structure of level n:
The locus of theta null points of level £ is an open subset M2(k) of Mz (k).

| \,

Remark

o Analytic action: Sp, (Z) acts on H 4 (and preserves the isomorphic classes).
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Theta functions ~ The isogeny theorem

Mumford: On equations defining Abelian varieties

Theorem (car k + n)
o The theta null point of level n (a;)icz(my = (9:(0))iez(n) satisfy the Riemann
Relations:

Z AxitAyit Z Ayytyit = Z A/ +t Ay +t Z Ay’ Ay’ 1t (1)

teZ(2) teZ(2) teZ(2) teZ(2)

We note M the moduli space given by these relations together with the relations of
symmetry:
Ay = Ay

o My(k) is the modular space of k-Abelian variety with a theta structure of level n:
The locus of theta null points of level £ is an open subset M2(k) of Mz (k).

| \,

Remark

o Analytic action: Sp, (Z) acts on H 4 (and preserves the isomorphic classes).

o Algebraic action: Sp,,(Z (7)) acts on M.
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ta functions ~ The isogeny theorem

Summary

(i) ez € M (k)




Theta functions ~ The isogeny theorem

Summary

Ak,Ak[En] ZAk[enL@Ak[en]z : (ai)iez(g) EMeTL(k)
determines
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Theta functions ~ The isogeny theorem

Summary
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SN
2

By, Bi[n] = Bx[n] ® Bi[n]a< (bi)icz(my € Mz (k)

Damien Robert (Caramel, LORIA) 18-05-2010, Moscow 18 /33



Theta functions ~ The isogeny theorem

Summary

Ak,Ak[{’n] :Ak[{fn]leaAk[En]z : (ai)iez@) EMﬁ(k)
determines
||l
By, Bi[n] = Bi[n]; @ Bi[n],« (bi)icz(my € Mz (k)

o The kernel of 7w is Ax[n], ¢ Ag[€n],.
o The kernel of 7t is (A [£]).

o Every ¢-isogeny (with an isotropic kernel) comes from a modular solution.
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Computing isogenies

An Example with n A € =1

We will show an example with g =1,n =4 and €n =12 (€ = 3).

o Let B be the elliptic curve y* = x* + 23x + 3 over k = IF3;. The corresponding theta
null pOiIlt (b(), bl, bz, b3) of level 4 is (3 :1:18: 1) € M4(F31).
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An Example with n A € =1

We will show an example with g =1,n =4 and €n =12 (€ = 3).

o Let B be the elliptic curve y* = x* + 23x + 3 over k = IF3;. The corresponding theta
null pOiIlt (b(), bl, bz, b3) of level 4 is (3 :1:18: 1) € M4(F31).

@ We note Vp(k) the subvariety of M1, (k) defined by

ag = by, as =by,as = by, a9 = b3
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We will show an example with g =1,n =4 and €n =12 (€ = 3).

o Let B be the elliptic curve y* = x* + 23x + 3 over k = IF3;. The corresponding theta
null pOiIlt (b(), bl, bz, b3) of level 4 is (3 :1:18: 1) € M4(F31).

@ We note Vp(k) the subvariety of M1, (k) defined by
ag = bg, as = by, as = by, ay = b3

@ By the isogeny theorem, to every valid theta null point (a;), 2(@n) € Vi (k)
corresponds a 3-isogeny 7 : A — B:

(97 (%) iez(12)) = (95 (%), 95'(x), 95 (x), 95 (x))
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We will show an example with g =1,n =4 and €n =12 (€ = 3).

o Let B be the elliptic curve y* = x* + 23x + 3 over k = IF3;. The corresponding theta
null pOiIlt (b(), bl, bz, b3) of level 4 is (3 :1:18: 1) € M4(F31).

@ We note Vp(k) the subvariety of M1, (k) defined by
ag = bg, as = by, as = by, ay = b3

@ By the isogeny theorem, to every valid theta null point (a;), 2(@n) € Vi (k)
corresponds a 3-isogeny 7 : A — B:

(97 (%) iez(12)) = (95 (%), 95'(x), 95 (x), 95 (x))

@ Program:

o Compute 7 from a valid theta null point (a:), ., € Vg (k).
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Computing isogenies

An Example with n A € =1

We will show an example with g =1,n =4 and €n =12 (€ = 3).

o Let B be the elliptic curve y* = x* + 23x + 3 over k = IF3;. The corresponding theta
null pOiIlt (b(), bl, bz, b3) of level 4 is (3 :1:18: 1) € M4(F31).

@ We note Vp(k) the subvariety of M1, (k) defined by
ag = bg, as = by, as = by, ay = b3

@ By the isogeny theorem, to every valid theta null point (a;), 2(@n) € Vi (k)
corresponds a 3-isogeny 7 : A — B:

(97 (%) iez(12)) = (95 (%), 95'(x), 95 (x), 95 (x))

@ Program:
o Compute 7 from a valid theta null point (a:) .,z € Vg (k).
o Compute a valid theta null point (a:), 7 from the kernel K of 7.
o Compute a theta null point (a;) ez of level n corresponding to A = B/K.
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Computing isogenies ~ Computing the contragredient isogeny

‘Program

© Computing isogenies
e Computing the contragredient isogeny
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Computing isogenies ~ Computing the contragredient isogeny

The kernel of T

o Let (a;),c, 7z be a valid theta null point solution. Let { be a primitive £ root of
unity.
The kernel of 7 is
{(ao, ay, az, as, Ay, ds, de, A7, Ag, A9, A10, 6111),
2 2 2 2
(a()) (al’ ( aj, as, (alb ( as, deg, (a71 ( ag, ag, (al()) ( all))

(a07 (zala CaZ: as, C2a4) CQS) ae, (2a7) (ﬂg, ag, (zal()) (all)}
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Computing

The kernel of T

o Let (a;),c, 7z be a valid theta null point solution. Let { be a primitive £ root of
unity.
The kernel of 7 is
{(ao, ay, az, as, Ay, ds, de, A7, Ag, A9, A10, 6111),
2 2 2 2
(a()) (al’ ( aj, as, (alb ( as, deg, (a71 ( ag, ag, (al()) ( all))

(a07 (zala CaZ: as, C2a4) CQS) ae, (2a7) (ﬂg, ag, (zal()) (all)}

o Ifie Z(¢) we define
i(x) = (Xnivej) jez ()
Let Ro := 710(04) = (a9, a3, ag, a9), Ry := m(04) = (a4, a7, ar, a1),
Ry :=m3(04) = (as, au, az, as).

Damien Robert (Caramel, LORIA) 18-05-2010, Moscow 22/33



Computing

The kernel of T

o Let (a;),c, 7z be a valid theta null point solution. Let { be a primitive £ root of
unity.
The kernel of 7 is
{(ao, ay, az, as, Ay, ds, de, A7, Ag, A9, A10, 6111),
2 2 2 2
(a()) (al’ ( aj, as, (alb ( as, deg, (a71 ( ag, ag, (al()) ( all))

(a07 (zala CaZ: as, C2a4) CQS) ae, (2a7) (ﬂg, ag, (zal()) (all)}

o Ifi e Z(¢) we define
i(x) = (Xnivej) jez ()
Let Ry := m9(04) = (0, a3, ag, a9), Ry := m(04) = (a4, a7, ai, a1),
Ry :=m,(04) = (as, an, as, as).
o The kernel K of 7 is

K ={(ag,as,as,as), (a4, a7, ar, a1), (as, an, az, as) }
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nies  Computing the contragredient isogeny

The pseudo addition law (k = C)

Theorem
( z X(t)9i+t(x+y)9j+t(x_y))-( Z X(t)9k+t(0)‘91+t(0)):
teZ(2) teZ(2)
(2 x®9%iei(M)95:(9)-( 2 x(1)9%+1(x)9rrie(x)).
teZ(2) teZ(2)
1 1 1 1
111 1 -1 -1
where A:EI 11 -1
1 -1 -1 1
x€2(2),i, j, k1 € Z(7)
(i, 7, K, 1) = A(i, j, k, 1)
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Compu genies  Computing the contragredient isogeny

Addition and isogenies

Proposition

mi(x) = mo(x) + R; so we have:

mivj(x +y) = mi(x) +m;(y)
mij(x—y) =mi(x) - m;(y)
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Addition and isogenies

Proposition

mi(x) = mo(x) + R; so we have:

mivj(x +y) = mi(x) +m;(y)
mij(x—y) =mi(x) - m;(y)

@ x € Ais entirely determined by 7o (x), m (x), m2(x).
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Compu genies  Computing the contragredient isogeny

Addition and isogenies

Proposition

mi(x) = mo(x) + R; so we have:

mivj(x +y) = mi(x) +m;(y)
mij(x—y) =mi(x) - m;(y)

@ x € Ais entirely determined by 7o (x), m (x), m2(x).
) ﬂz(x) = 7T1(x) + R], 7'[1(.9() - Rl = T[()(x) =).
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Compu genies  Computing the contragredient isogeny

Addition and isogenies

Proposition

mi(x) = mo(x) + R; so we have:

mivi(x +y) = mi(x) +m;(y)
mij(x—y) =mi(x) - m;(y)

@ x € Ais entirely determined by 7o (x), m (x), m2(x).
) ﬂz(x) = 7T1(x) + R], 7'[1(.9() - Rl = T[()(x) =).

Corollary
o x is entirely determined by
{ﬂi(x)}iE{0,el,-n,eg,e1+eg,-'~,eg,1+eg}

@ Use (1+ g(g+1)/2)n9 coordinates rather than (£n)9.

o The decompression use O(£9) chain additions.

o Cani still do chain additions with this representation.
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g the contragredient isogeny

The contragredient isogeny

xeA zeA Let 7 : A — B be the isogeny associated to

(i) iz (@m)- Let y € B and x € A be one of the &9
antecedents. Then

yeB 7(y) =¢tx
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Computing isogenies ~ Computing the contragredient isogeny

The contragredient isogeny

Let 7 : A — B be the isogeny associated to

(i) iz (@m)- Let y € B and x € A be one of the &9
s = antecedents. Then

yeB 7(y) =¢tx
X
1 X
X X
R2 X
X
Ry x x
y X
Ro Q 30
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Computing isogenies ~ Computing the contragredient isogeny

The contmgredient isogeny

xeA zeA Let 7 : A — B be the isogeny associated to
(i) iz (@m)- Let y € B and x € A be one of the &9
antecedents. Then
yeB 7(y) =¢tx
Let y € B. We can compute y; = y @ R; with a normal addition. We have y; = 1;7;(x).

y=[mi(x) +(€-1).Ri] = A{[y;i + ()R]
mi(0.x) = [mi(x) + (€).y] = M{[yi + (£)-y]
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Computi s Computing the contragredient isogeny

The contmgredient isogeny

xeA zeA Let 7 : A — B be the isogeny associated to
(ai)iez(ﬁ)- Let y € B and x € A be one of the ¢J
antecedents. Then
yeB 7(y) =¢tx
Let y € B. We can compute y; = y @ R; with a normal addition. We have y; = 1;7;(x).

y=[mi(x) +(€-1).Ri] = A{[y;i + ()R]
mi(0.x) = [mi(x) + (€).y] = M{[yi + (£)-y]

We can compute 1;(£.x) with two fast multiplications of length €. To recover the
compressed coordinates of T(y), we need g(g +1)/2 - O(log(¢)) additions.
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Computing isogenies ~ Computing the contragredient isogeny

Example

Let K={(3:1:18:1),(22:15:4:1),(18:29:23:1)}, a point solution corresponding

to this kernel is given bY (3’ ’714233’ 112317’ 1, }11324’ ’75296, 18, 115296’ 111324’ 1, 112317, ’714233)

where n° + 1 +28 = 0.
Let y = (n'996, 9805 410720 1), We want to determine 7 (x), we have to compute:

Y
R1 y+R1 y+2R1 y+3R1=y
2}/+R1

3)/+R1
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Computing isogenies ~ Computing the contragredient isogeny

Example

Let K={(3:1:18:1),(22:15:4:1),(18:29:23:1)}, a point solution corresponding
to this kernel is given by (3, 74233, 307, 1, 51324, 5256 18, 55296, 41324 1, 2307 14233
BT M23Y (19406 19805 10720 )

whereq +11+28—0
Ry = 1 1

(111324 175296, n
Al(”]2722> 7]28681, ’126466) ’12096)

y+R1:

2 28758 11337 27602 22972
M@y ™)

9688’ 1728758) — y/rl1032

y+2R1:

3 18374 18773
M™%

)/+3R1= i

2 17786 12000 16630 365
M"n 7))

2y+R1: >N

3)/ + Rl — A13(177096, ’711068) ]18089,’720005) — 7’]5772R1

We have A} = #2878 and

= 21037 15925 8128 18904 12100 14932 9121 27841
(y)=Con 7 Ly 8 Ty Ly )
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‘Program

© Computing isogenies

@ Vélu-like formula in dimension g
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Computing isogenies ~ Vélu-like formula in dimension g

The action of the symplectic group on the modular space

o Let K c B[¢] be an isotropic subgroup of maximal rank. Let (a;),., ;) be a theta
null point corresponding to the isogeny 7 : B - B/K.

o The actions of the symplectic group compatible with the isogeny 7 are generated by

{Ri}iez@) = {Rwl(i)}iez(a) ()
{Ri}icz@my = {e(v2(i), DR}y iam) (3)
where y1 is an automorphism of Z(€) and y, is a symmetric endomorphism of
Z(¢n).
o In particular by action (2), if { T¢, } ic[1..4] is a basis of K, we may suppose that
R, =2, T,

Damien Robert (Caramel, LORIA)
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Computing isogenies ~ Vélu-like formula in dimension g

The action of the symplectic group on the modular space

o Let K c B[¢] be an isotropic subgroup of maximal rank. Let (a;),., ;) be a theta
null point corresponding to the isogeny 7 : B - B/K.

Example

These points corresponds to the same isogeny:

(a0> ay, az, as, a4, ds, Ae, A7, A8, A9, al()’all)

(a0, Ca, (2202, as, (ay, szas) ae, Cay, (22618) ag, (ay, (226111)
(ﬂo) (2‘11, (2112) as, (2514, (2615) ae, (2‘17) (2‘18) ag, (21110, (26111)
(ao, as, aw, as, as, a1, as, an, as, ag, Az, az)

(610a (as, {ay, as, Cas, Cay, 06>Ca11,(a4>119,502,(a7)

(flo, (za& Czalo, as, (208, (zah aes Czan) (2114; ag, (202, (26!7)
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Computing isogenies ~ Vélu-like formula in dimension g

Recovering the projective factors

@ Since we are working with symmetric Theta structures, we have 9;(-x) = 9_;(x).

o In particular if £ =2¢' +1
((," + l)R, = —8'.R,~
A ()T =20 T

So we may recover A; up to a £-root of unity.
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Computing isogenies ~ Vélu-like formula in dimension g

Recovering the projective factors

@ Since we are working with symmetric Theta structures, we have 9;(-x) = 9_;(x).
o In particular if £ =2¢' +1
(¢ +1).R; = - .R;
A ()T =20 T
So we may recover A; up to a £-root of unity.

@ But we only need to recover R; for i € {e;,--, e4-1 + e, } and the action (3) shows
that each choice of a £-root of unity corresponds to a valid theta null point.
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Computing isogenies ~ Vélu-like formula in dimension g

Recovering the projective factors

@ Since we are working with symmetric Theta structures, we have 9;(-x) = 9_;(x).
o In particular if £ =2¢' +1
(¢ +1).R; = - .R;
A ()T =20 T
So we may recover A; up to a £-root of unity.

@ But we only need to recover R; for i € {e;,--, e4-1 + e, } and the action (3) shows
that each choice of a £-root of unity corresponds to a valid theta null point.

We have Vélu-like formulas to recover the compressed modular point solution, by
computing g(g +1)/2 €-roots and g(g +1)/2 - O(log(¢)) additions. The compressed
coordinates are sufficient to compute the compressed coordinates of the associated isogeny.
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‘Program

© Computing isogenies

@ Changing level
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Computi es  Changing level

Changing level by taking an isogeny

A C=A/A[¢],

@ 7, o 7T is an £? isogeny between two varieties of level n.
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Computing isogenies ~ Changing level

Changing level by taking an isogeny

A C=A/A[¢],

@ 7, o 7T is an £? isogeny between two varieties of level n.

@ Each choice of the ¢-roots of unity in the Vélu’s-like formulas give a different
decomposition A[£] = A[€]; ® K. All the £*-isogenies B — C containing K come
from these choices.
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Computing isogenies ~ Changing level

Changing level by taking an isogeny

A C=A/A[¢],

@ 7, o 7T is an £? isogeny between two varieties of level n.

@ Each choice of the ¢-roots of unity in the Vélu’s-like formulas give a different
decomposition A[£] = A[€]; ® K. All the £*-isogenies B — C containing K come
from these choices.

@ We know the kernel of the contragredient isogeny C — A, this is helpful for
computing isogeny graphs.

18-05-2010, Moscow 31/33
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Computing isogenies ~ Changing level

Changing level by taking an isogeny

A C=A/A[¢],

@ 7, o 7T is an £? isogeny between two varieties of level n.

@ Each choice of the ¢-roots of unity in the Vélu’s-like formulas give a different
decomposition A[£] = A[€]; ® K. All the £*-isogenies B — C containing K come
from these choices.

@ We know the kernel of the contragredient isogeny C — A, this is helpful for
computing isogeny graphs.

18-05-2010, Moscow 31/33
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Changing level

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let F € M,(Z) be such that 'FF = ¢1d, and f : A" — A" the corresponding isogeny. There
existe a line bundle L' on A such that £ = L'* and a theta structure on L' such that the
isogeny f is given by

FROF « . x95) =1 > 9 x. %97
(oeeorjr)eKi (L) %..x K1 (L")
FCitrereir )=o)
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Changing level

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let F € M,(Z) be such that 'FF = ¢1d, and f : A" — A" the corresponding isogeny. There
existe a line bundle L' on A such that £ = L'* and a theta structure on L' such that the
isogeny f is given by

FROF « . x95) =1 > 9 x. %97
(oeeorjr)eKi (L) %..x K1 (L")
FCitrereir )=o)

e F=(1 7) give the Riemann relations. (For general ¢ use the matrix from the
quaternions.)
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Changing level

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let F € M,(Z) be such that 'FF = ¢1d, and f : A" — A" the corresponding isogeny. There
existe a line bundle L' on A such that £ = L'* and a theta structure on L' such that the
isogeny f is given by

FROF « . x95) =1 > 9 x. %97
(oeeorjr)eKi (L) %..x K1 (L")
FCitrereir )=o)

e F=(1 7) give the Riemann relations. (For general ¢ use the matrix from the
quaternions.)

@ Can be combined with the preceding method to compute the isogeny B — A while
staying in level n.
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Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let F € M,(Z) be such that 'FF = ¢1d, and f : A" — A" the corresponding isogeny. There
existe a line bundle L' on A such that £ = L'* and a theta structure on L' such that the
isogeny f is given by

FROF « . x95) =1 > 9 x. %97
(oeeorjr)eKi (L) %..x K1 (L")
FCitrereir )=o)

e F=(1 7) give the Riemann relations. (For general ¢ use the matrix from the
quaternions.)

@ Can be combined with the preceding method to compute the isogeny B — A while
staying in level n.

@ No need of £-roots. Need only O(#K) pseudo-additions in B = full generalisation
of Vélu’s formulas.
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Changing level

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let F € M,(Z) be such that 'FF = ¢1d, and f : A" — A" the corresponding isogeny. There
existe a line bundle L' on A such that £ = L'* and a theta structure on L' such that the
isogeny f is given by

FrOF w w95 = Y 9w x9F

(oeeorjr)eKi (L) %..x K1 (L")
FGoeeorjir)=(itseenrir)

e F=(1 7) give the Riemann relations. (For general ¢ use the matrix from the
quaternions.)

@ Can be combined with the preceding method to compute the isogeny B — A while
staying in level n.

@ No need of £-roots. Need only O(#K) pseudo-additions in B = full generalisation
of Vélu’s formulas.

@ The formulas are rational if the kernel K is rational.
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Computing isogenies ~ Changing level

Perspectives

@ We need to know the kernel = find equations for the quotient of the modular space
by the action of the symplectic group.

Damien Robe: amel, LORIA) 8 010, Moscow



Perspectives

@ We need to know the kernel = find equations for the quotient of the modular space
by the action of the symplectic group.

o Theta functions are not rational = go back and forth between theta functions and
Mumford coordinates (Romain Cosset).
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Perspectives

@ We need to know the kernel = find equations for the quotient of the modular space
by the action of the symplectic group.

o Theta functions are not rational = go back and forth between theta functions and
Mumford coordinates (Romain Cosset).

o Fast computation of the commutator pairing with theta functions = ANTS IX,
Nancy!

Damien Robert (Caramel, LORIA)

18-05-2010, Moscow 33/33
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