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Abelian varieties and isogenies Definition and cryptographic usage

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

Abelian variety = points on a projective space (locus of homogeneous polynomials)

+ an algebraic group law.

Abelian varieties are projective, smooth, irreducible with an Abelian group law.

Example: Elliptic curves, Jacobians of genus  curves...
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Abelian varieties and isogenies Definition and cryptographic usage

Usage ofAbelian varieties in cryptography

Public key cryptography with the Discrete Logarithm Problem.

⇒ Elliptic curves, Jacobian of hyperelliptic curves of genus 2.

Pairing based cryptography.

⇒ Abelian varieties of dimension  ⩽ 4.
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Abelian varieties and isogenies Definition and cryptographic usage

Working with Jacobian of hyperelliptic curves

Let C ∶ y2 = f (x) be a smooth irreducible hyperelliptic curve of genus , with a rational

point at infinity (deg f = 2 − 1).
Every divisor D on C has a unique representative (k ⩽ )

D =
k

∑
i=1

Pi − P∞ .

Mumford coordinates: D = (u, v) where u =∏(x − x i) and v(x i) = y i
(deg v < degu).
Cantor algorithm: Given a divisor D compute the Mumford representation

D = (u, v)⇒ addition law.

Remark

For elliptic curves: more efficient coordinates (Edwards. . . ).
Pairing computation: use Miller algorithm.
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Abelian varieties and isogenies Definition and cryptographic usage

Working with Jacobian of hyperelliptic curves

Let C ∶ y2 = f (x) be a smooth irreducible hyperelliptic curve of genus , with a rational

point at infinity (deg f = 2 − 1).
Every divisor D on C has a unique representative (k ⩽ )

D =
k

∑
i=1

Pi − P∞ .

Mumford coordinates: D = (u, v) where u =∏(x − x i) and v(x i) = y i
(deg v < degu).
Cantor algorithm: Given a divisor D compute the Mumford representation

D = (u, v)⇒ addition law.

Remark

For elliptic curves: more efficient coordinates (Edwards. . . ).
Pairing computation: use Miller algorithm.

Damien Robert (Caramel, LORIA) Computing isogenies on Abelian Varieties 18-05-2010, Moscow 6 / 33



Abelian varieties and isogenies Isogenies

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian

varieties.

Isogenies = Rational map + group morphism + finite kernel.

Isogenies⇔ Finite subgroups.

( f ∶ A→ B)↦ Ker f
(A→ A/H)↤ H

Example:Multiplication by ℓ (⇒ ℓ-torsion), Frobenius (non separable).
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Abelian varieties and isogenies Isogenies

Cryptographic usage of isogenies

Transfert the DLP from one Abelian variety to another.

Point counting algorithms (ℓ-adic or p-adic).
Compute the class field polynomials (CM-method).

Compute the modular polynomials.

Determine End(A).
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Abelian varieties and isogenies Computing isogenies in genus 1

Vélu’s formula

Theorem

Let E ∶ y2 = f (x) be an elliptic curve. Let G ⊂ E(k) be a finite subgroup. Then E/G is
given by Y 2 = (X) where

X(P) = x(P) + ∑
Q∈G∖{0E}

x(P + Q) − x(Q)

Y(P) = y(P) + ∑
Q∈G∖{0E}

y(P + Q) − y(Q)

Uses the fact that x and y are characterised in k(E) by

v0E (x) = −2 vP(x) ⩾ 0 if P ≠ 0E
v0E (y) = −3 vP(y) ⩾ 0 if P ≠ 0E

y2/x3(OE) = 1

No such characterisation in genus  ⩾ 2.
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Abelian varieties and isogenies Computing isogenies in genus 1

The modular polynomial

Definition

The modular polynomial is a polynomial ϕn(x , y) ∈ Z[x , y] such that ϕn(x , y) = 0
iff x = j(E) and y = j(E′) with E and E′ n-isogeneous.
If E ∶ y2 = x3 + ax + b is an elliptic curve, the j-invariant is

j(E) = 1728 4a3

4a3 + 27b2

Roots of ϕn( j(E), .)⇔ elliptic curves n-isogeneous to E.
In genus 2, modular polynomials use Igusa invariants.The height explodes: the

compressed coefficients of ϕ2 take 26.8 MB.

⇒ Use the moduli space given by theta functions.

⇒ Fix the form of the isogeny and look for coordinates compatible with the isogeny.
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Theta functions Constructing theta functions

The theta group

Definition

Let (A,L) be a (separably) polarized abelian variety over an algebraically closed field k.
The polarisation L induces an isogeny

ϕL∶ A Ð→ Âk
x z→ t∗xL⊗L−1

.

We note K(L) = Ker ϕL, the theta group is G(L) = {(x ,ψ) ∣ ψ ∶ t∗xL
∼→ L}.

G(L) is a central extension of K(L):

0 Ð→ k∗ Ð→ G(L) Ð→ K(L) Ð→ 0.

Group law: (x , ϕ).(y,ψ) = (x + y, t∗xψ ○ ϕ):

L
ϕ
Ð→ t∗xL

t∗x ψÐÐ→ t∗x (t∗yL) = t∗x+yL.

Descent theory: If K ⊂ K(L) is isotropic, sections s ∶ K → G(L)⇔ descent data

π ∶ (X ,L)→ (X/K ,M).
Damien Robert (Caramel, LORIA) Computing isogenies on Abelian Varieties 18-05-2010, Moscow 12 / 33
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x z→ t∗xL⊗L−1

.

We note K(L) = Ker ϕL, the theta group is G(L) = {(x ,ψ) ∣ ψ ∶ t∗xL
∼→ L}.

G(L) is a central extension of K(L):

0 Ð→ k∗ Ð→ G(L) Ð→ K(L) Ð→ 0.

Group law: (x , ϕ).(y,ψ) = (x + y, t∗xψ ○ ϕ):

L
ϕ
Ð→ t∗xL

t∗x ψÐÐ→ t∗x (t∗yL) = t∗x+yL.

Descent theory: If K ⊂ K(L) is isotropic, sections s ∶ K → G(L)⇔ descent data

π ∶ (X ,L)→ (X/K ,M).
Damien Robert (Caramel, LORIA) Computing isogenies on Abelian Varieties 18-05-2010, Moscow 12 / 33



Theta functions Constructing theta functions

Heisenberg group

Definition

The Heisenberg group of level n is H(n) = k∗ × Z(n) × Ẑ(n) where Z(n) := Z/nZ

and Ẑ(n) is the dual of Z(n).The group law is given by

(α, x1 , x2)(β, y1 , y2) = (⟨x1 , y2⟩αβ, x1 + y1 , x2 + y2),

where ⟨x1 , y2⟩ = y2(x1) is the canonical pairing.

A polarised abelian variety (A,L) is of level n if K(L) ≃ Z(n).
A theta structure on (A,L) is an isomorphism ΘL ∶ H(n)→ G(L).
The theta structure ΘL induces a symplectic isomorphism (for the commutator

pairing) ΘL ∶ K(n) := Z(n)⊕ Ẑ(n) ∼→ K(L).
The symplectic decomposition K(n) = Z(n)⊕ Ẑ(n) induces a decomposition

K(L) = K1(L)⊕ K2(L).
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Theta functions Constructing theta functions

Theta functions

The Heisenberg group H(n) admits a unique irreducible representation:

(α, i , j).δk = ⟨i + k,− j⟩δ i+k .

The action of G(L) on Γ(L) given by

(x ,ψ).ϑ ↦ ψ(t∗x ϑ)

is irreducible.

The basis of theta functions (induced by ΘL) is the unique basis (up to a constant)

such that

(α, i , j).ϑk = eL(i + k,− j)ϑ i+k
where eL is the commutator pairing.

If l ⩾ 3 then
z ↦ (ϑ i(z))i∈Z(n)

is a projective embedding A→ Pn −1
k .

Damien Robert (Caramel, LORIA) Computing isogenies on Abelian Varieties 18-05-2010, Moscow 14 / 33
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Theta functions Constructing theta functions

Complex abelian varieties

Abelian variety over C: A = C/ (Z +ΩZ), where Ω ∈H(C) the Siegel upper
half space.

The theta functions with characteristic give a lot of analytic (quasi periodic)

functions on C .

ϑ(z, Ω) = ∑
n∈Z

eπ i
t nΩn+2π i t nz

ϑ [ ab ] (z, Ω) = eπ i
t aΩa+2π i t a(z+b)ϑ(z +Ωa + b, Ω) a, b ∈ Q

The quasi-periodicity is given by

ϑ [ ab ] (z +m +Ωn, Ω) = e2π i(
t am−t bn)−π i t nΩn−2π i t nzϑ [ ab ] (z, Ω)

Ω induces a theta structure of level∞.The corresponding theta basis of level n is

given by

{ϑ [ 0b ] (z, Ω/n)}b∈ 1
n Z/Z
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Theta functions The isogeny theorem

The isogeny theorem

Theorem

Let (A,L, ΘL) be a marked abelian variety of level ℓn. The canonical section
Ẑ(ℓn)→ H(ℓn), j ↦ (1, 0, j) induce via ΘL a section K = K2(L)[ℓ]→ G(L). The theta
structure ΘL descend to a theta structure (B,L0 , ΘL0

) such that B = A/K and if
π ∶ A→ B is the corresponding isogeny:

π∗ϑL0

i = λϑ
L
i .

Here Z(n)↪ Z(ℓn) is the canonical embedding x ↦ ℓx.

Proof with k = C.
ϑB
i (z) = ϑ [

0
i/n ] (z,

Ω

ℓ
/n) = ϑ [ 0

ℓ i/ℓ ] (z, Ω/ℓn) = ϑA
ℓ⋅i(z)
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Theta functions The isogeny theorem

Mumford: On equations definingAbelian varieties

Theorem (car k ∤ n)
The theta null point of level n (a i)i∈Z(n) := (ϑ i(0))i∈Z(n) satisfy the Riemann
Relations:

∑
t∈Z(2)

ax+tay+t ∑
t∈Z(2)

au+tav+t = ∑
t∈Z(2)

ax′+tay′+t ∑
t∈Z(2)

au′+tav′+t (1)

We noteMℓ the moduli space given by these relations together with the relations of
symmetry:

ax = a−x
Mn(k) is the modular space of k-Abelian variety with a theta structure of level n:
The locus of theta null points of level ℓ is an open subsetM0

n(k) ofMn(k).

Remark

Analytic action: Sp2(Z) acts onH (and preserves the isomorphic classes).

Algebraic action: Sp2(Z(n)) acts onMn .
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Theta functions The isogeny theorem

Summary

(a i)i∈Z(ℓ) ∈Mℓn(k)Ak , Ak[ℓn] = Ak[ℓn]1 ⊕ Ak[ℓn]2
determines

Bk , Bk[n] = Bk[n]1 ⊕ Bk[n]2

π

(b i)i∈Z(n) ∈Mn(k)

π̂

The kernel of π is Ak[n]2 ⊂ Ak[ℓn]2.
The kernel of π̂ is π(Ak[ℓ]1).
Every ℓ-isogeny (with an isotropic kernel) comes from a modular solution.
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Computing isogenies

An Example with n ∧ ℓ = 1

We will show an example with  = 1, n = 4 and ℓn = 12 (ℓ = 3).
Let B be the elliptic curve y2 = x3 + 23x + 3 over k = F31.The corresponding theta

null point (b0 , b1 , b2 , b3) of level 4 is (3 ∶ 1 ∶ 18 ∶ 1) ∈M4(F31).
We note VB(k) the subvariety ofM12(k) defined by

a0 = b0 , a3 = b1 , a6 = b2 , a9 = b3

By the isogeny theorem, to every valid theta null point (a i)i∈Z(ℓn) ∈ V
0
B (k)

corresponds a 3-isogeny π ∶ A→ B:

π(ϑA
i (x)i∈Z(12)) = (ϑA

0 (x), ϑA
3 (x), ϑA

6 (x), ϑA
9 (x))

Program:

Compute π̂ from a valid theta null point (a i)i∈Z(ℓn) ∈ V
0
B (k).

Compute a valid theta null point (a i)i∈Z(ℓn) from the kernel K of π̂.
Compute a theta null point (a′i)i∈Z(n) of level n corresponding to A = B/K.
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Computing isogenies Computing the contragredient isogeny

Program

3 Computing isogenies

Computing the contragredient isogeny

Vélu-like formula in dimension 
Changing level
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Computing isogenies Computing the contragredient isogeny

The kernel of π̂

Let (a i)i∈Z(ℓn) be a valid theta null point solution. Let ζ be a primitive ℓ root of
unity.

The kernel of π is

{(a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 , a11),
(a0 , ζa1 , ζ2a2 , a3 , ζa4 , ζ2a5 , a6 , ζa7 , ζ2a8 , a9 , ζa10 , ζ2a11),
(a0 , ζ2a1 , ζa2 , a3 , ζ2a4 , ζa5 , a6 , ζ2a7 , ζa8 , a9 , ζ2a10 , ζa11)}

If i ∈ Z(ℓ) we define
π i(x) = (xni+ℓ j) j∈Z(n)

Let R0 ∶= π0(0A) = (a0 , a3 , a6 , a9), R1 ∶= π1(0A) = (a4 , a7 , a10 , a1),
R2 ∶= π2(0A) = (a8 , a11 , a2 , a5).
The kernel K of π̂ is

K = {(a0 , a3 , a6 , a9), (a4 , a7 , a10 , a1), (a8 , a11 , a2 , a5)}
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(a0 , ζa1 , ζ2a2 , a3 , ζa4 , ζ2a5 , a6 , ζa7 , ζ2a8 , a9 , ζa10 , ζ2a11),
(a0 , ζ2a1 , ζa2 , a3 , ζ2a4 , ζa5 , a6 , ζ2a7 , ζa8 , a9 , ζ2a10 , ζa11)}

If i ∈ Z(ℓ) we define
π i(x) = (xni+ℓ j) j∈Z(n)

Let R0 ∶= π0(0A) = (a0 , a3 , a6 , a9), R1 ∶= π1(0A) = (a4 , a7 , a10 , a1),
R2 ∶= π2(0A) = (a8 , a11 , a2 , a5).
The kernel K of π̂ is

K = {(a0 , a3 , a6 , a9), (a4 , a7 , a10 , a1), (a8 , a11 , a2 , a5)}
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Computing isogenies Computing the contragredient isogeny

The pseudo addition law (k = C)

Theorem

( ∑
t∈Z(2)

χ(t)ϑ i+t(x + y)ϑ j+t(x − y)).( ∑
t∈Z(2)

χ(t)ϑk+t(0)ϑ l+t(0)) =

( ∑
t∈Z(2)

χ(t)ϑ−i′+t(y)ϑ j′+t(y)).( ∑
t∈Z(2)

χ(t)ϑk′+t(x)ϑ l ′+t(x)).

where A = 1

2

⎛
⎜⎜⎜
⎝

1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎟
⎠

χ ∈ Ẑ(2), i , j, k, l ∈ Z(n)
(i′ , j′ , k′ , l ′) = A(i , j, k, l)

Damien Robert (Caramel, LORIA) Computing isogenies on Abelian Varieties 18-05-2010, Moscow 23 / 33



Computing isogenies Computing the contragredient isogeny

Addition and isogenies

Proposition

π i(x) = π0(x) + R i so we have:

π i+ j(x + y) = π i(x) + π j(y)
π i− j(x − y) = π i(x) − π j(y)

x ∈ A is entirely determined by π0(x), π1(x), π2(x).
π2(x) = π1(x) + R1, π1(x) − R1 = π0(x) = y.

Corollary

x is entirely determined by

{π i(x)}i∈{0,e1 ,⋯,e  ,e1+e2 ,⋯,e −1+e }

Use (1 + ( + 1)/2)n coordinates rather than (ℓn) .
The decompression use O(ℓ) chain additions.
Can still do chain additions with this representation.
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Computing isogenies Computing the contragredient isogeny

The contragredient isogeny

y ∈ B

z ∈ A

π̂

x ∈ A

π

[ℓ]
Let π ∶ A → B be the isogeny associated to

(a i)i∈Z(ℓn). Let y ∈ B and x ∈ A be one of the ℓ

antecedents. Then

π̂(y) = ℓ.x
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Computing isogenies Computing the contragredient isogeny

The contragredient isogeny

y ∈ B

z ∈ A

π̂

x ∈ A

π

[ℓ]
Let π ∶ A → B be the isogeny associated to

(a i)i∈Z(ℓn). Let y ∈ B and x ∈ A be one of the ℓ

antecedents. Then

π̂(y) = ℓ.x

Let y ∈ B. We can compute y i = y ⊕ R i with a normal addition. We have y i = λ iπ i(x).

y = [π i(x) + (ℓ − 1).R i] = λℓ
i [y i + (ℓ)R i]

π i(ℓ.x) = [π i(x) + (ℓ).y] = λℓ
i [y i + (ℓ).y]

Corollary

We can compute π i(ℓ.x) with two fast multiplications of length ℓ. To recover the
compressed coordinates of π̂(y), we need ( + 1)/2 ⋅ O(log(ℓ)) additions.
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Computing isogenies Computing the contragredient isogeny

Example

Let K = {(3 ∶ 1 ∶ 18 ∶ 1), (22 ∶ 15 ∶ 4 ∶ 1), (18 ∶ 29 ∶ 23 ∶ 1)}, a point solution corresponding

to this kernel is given by (3, η14233 , η2317 , 1, η1324 , η5296 , 18, η5296 , η1324 , 1, η2317 , η14233)
where η3 + η + 28 = 0.
Let y = (η19406 , η19805 , η10720 , 1). We want to determine π1(x), we have to compute:

y

R1 y + R1 y + 2R1 y + 3R1 = y

2y + R1

3y + R1
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Example

Let K = {(3 ∶ 1 ∶ 18 ∶ 1), (22 ∶ 15 ∶ 4 ∶ 1), (18 ∶ 29 ∶ 23 ∶ 1)}, a point solution corresponding

to this kernel is given by (3, η14233 , η2317 , 1, η1324 , η5296 , 18, η5296 , η1324 , 1, η2317 , η14233)
where η3 + η + 28 = 0.

R1 = (η1324 , η5296 , η2317 , η14233) y = (η19406 , η19805 , η10720 , 1)
y + R1 = λ1(η2722 , η28681 , η26466 , η2096)
y + 2R1 = λ21 (η28758 , η11337 , η27602 , η22972)

y + 3R1 = λ31 (η18374 , η18773 , η9688 , η28758) = y/η1032

2y + R1 = λ21 (η17786 , η12000 , η16630 , η365)
3y + R1 = λ31 (η7096 , η11068 , η8089,η20005) = η5772R1

We have λ31 = η28758 and

π̂(y) = (3, η21037 , η15925 , 1, η8128 , η18904 , 18, η12100 , η14932 , 1, η9121 , η27841)
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Computing isogenies Vélu-like formula in dimension 

Program

3 Computing isogenies

Computing the contragredient isogeny

Vélu-like formula in dimension 
Changing level
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Computing isogenies Vélu-like formula in dimension 

The action of the symplectic group on the modular space

Let K ⊂ B[ℓ] be an isotropic subgroup of maximal rank. Let (a i)i∈Z(ℓn) be a theta
null point corresponding to the isogeny π ∶ B → B/K.

The actions of the symplectic group compatible with the isogeny π are generated by

{R i}i∈Z(ℓn) ↦ {Rψ1(i)}i∈Z(ℓn) (2)

{R i}i∈Z(ℓn) ↦ {e(ψ2(i), i)R i}i∈Z(ℓn) (3)

where ψ1 is an automorphism of Z(ℓ) and ψ2 is a symmetric endomorphism of

Z(ℓn).
In particular by action (2), if {Te i}i∈[1. .] is a basis of K, we may suppose that

Re i = λe iTe i .
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Computing isogenies Vélu-like formula in dimension 

The action of the symplectic group on the modular space

Let K ⊂ B[ℓ] be an isotropic subgroup of maximal rank. Let (a i)i∈Z(ℓn) be a theta
null point corresponding to the isogeny π ∶ B → B/K.

Example

These points corresponds to the same isogeny:

(a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 , a11)

(a0 , ζa1 , ζ2
2

a2 , a3 , ζa4 , ζ2
2

a5 , a6 , ζa7 , ζ2
2

a8 , a9 , ζa10 , ζ2
2

a11)
(a0 , ζ2a1 , ζ2a2 , a3 , ζ2a4 , ζ2a5 , a6 , ζ2a7 , ζ2a8 , a9 , ζ2a10 , ζ2a11)

(a0 , a5 , a10 , a3 , a8 , a1 , a6 , a11 , a4 , a9 , a2 , a7)
(a0 , ζa5 , ζa10 , a3 , ζa8 , ζa1 , a6 , ζa11 , ζa4 , a9 , ζa2 , ζa7)

(a0 , ζ2a5 , ζ2a10 , a3 , ζ2a8 , ζ2a1 , a6 , ζ2a11 , ζ2a4 , a9 , ζ2a2 , ζ2a7)
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Computing isogenies Vélu-like formula in dimension 

Recovering the projective factors

Since we are working with symmetricTheta structures, we have ϑ i(−x) = ϑ−i(x).
In particular if ℓ = 2ℓ′ + 1

(ℓ′ + 1).R i = −ℓ′ .R i

λ(ℓ
′+1)2

i (ℓ′ + 1).Ti = λℓ′2
i ℓ′ .Ti

So we may recover λ i up to a ℓ-root of unity.
But we only need to recover R i for i ∈ {e1 ,⋯, e−1 + e} and the action (3) shows

that each choice of a ℓ-root of unity corresponds to a valid theta null point.

Corollary

We have Vélu-like formulas to recover the compressed modular point solution, by
computing ( + 1)/2 ℓ-roots and ( + 1)/2 ⋅ O(log(ℓ)) additions. The compressed
coordinates are sufficient to compute the compressed coordinates of the associated isogeny.
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Computing isogenies Changing level

Program

3 Computing isogenies

Computing the contragredient isogeny

Vélu-like formula in dimension 
Changing level
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Computing isogenies Changing level

Changing level by taking an isogeny

B

A,A[ℓ] = A[ℓ]1 ⊕ A[ℓ]2

B= A/A[ℓ]2 A C= A/A[ℓ]1

[ℓ]

π̂

π π2

π2 ○ π̂ is an ℓ2 isogeny between two varieties of level n.
Each choice of the ℓ-roots of unity in the Vélu’s-like formulas give a different

decomposition A[ℓ] = A[ℓ]1 ⊕ K. All the ℓ2-isogenies B → C containing K come

from these choices.

We know the kernel of the contragredient isogeny C → A, this is helpful for
computing isogeny graphs.
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Computing isogenies Changing level

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let F ∈Mr(Z) be such that tFF = ℓ Id, and f ∶ Ar → Ar the corresponding isogeny. There
existe a line bundle L′ on A such that L = L′ℓ and a theta structure on L′ such that the
isogeny f is given by

f ∗(ϑL
′

i1 ⋆ . . . ⋆ ϑ
L′
ir ) = λ ∑
( j1 , . . . , jr)∈K1(L′)×. . .×K1(L′)

f ( j1 , . . . , jr)=(i1 , . . . , ir)

ϑLj1 ⋆ . . . ⋆ ϑ
L
jr

F = ( 1 −1
−1 1 ) give the Riemann relations. (For general ℓ use the matrix from the

quaternions.)

Can be combined with the preceding method to compute the isogeny B → Awhile

staying in level n.
No need of ℓ-roots. Need only O(#K) pseudo-additions in B⇒ full generalisation

of Vélu’s formulas.

The formulas are rational if the kernel K is rational.
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Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let F ∈Mr(Z) be such that tFF = ℓ Id, and f ∶ Ar → Ar the corresponding isogeny. There
existe a line bundle L′ on A such that L = L′ℓ and a theta structure on L′ such that the
isogeny f is given by

f ∗(ϑL
′

i1 ⋆ . . . ⋆ ϑ
L′
ir ) = λ ∑
( j1 , . . . , jr)∈K1(L′)×. . .×K1(L′)

f ( j1 , . . . , jr)=(i1 , . . . , ir)

ϑLj1 ⋆ . . . ⋆ ϑ
L
jr

F = ( 1 −1
−1 1 ) give the Riemann relations. (For general ℓ use the matrix from the

quaternions.)

Can be combined with the preceding method to compute the isogeny B → Awhile

staying in level n.
No need of ℓ-roots. Need only O(#K) pseudo-additions in B⇒ full generalisation

of Vélu’s formulas.
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Computing isogenies Changing level

Perspectives

We need to know the kernel⇒ find equations for the quotient of the modular space

by the action of the symplectic group.

Theta functions are not rational⇒ go back and forth between theta functions and

Mumford coordinates (Romain Cosset).

Fast computation of the commutator pairing with theta functions⇒ ANTS IX,

Nancy!
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