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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

(Polarised) abelian varieties = higher dimensional equivalent of elliptic

curves.

If C is a curve of genus , it’s Jacobian is a (principally polarised) abelian

variety of dimension .
For C ∶ y2 = f (x) (deg f = 2 − 1) hyperelliptic curve, Mumford

coordinates:

D =
k

∑
i=1
(Pi − P∞) k ⩽ , −Pi ≠ Pj

= (u, v) with u =∏(x − x i), v(x i) = y i .
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Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two

Abelian varieties.

Isogenies⇔ Finite subgroups.

( f ∶ A→ B)↦ Ker f
(A→ A/H)↤ H

The kernel of the dual isogeny f̂ is the Cartier dual of the kernel of f ⇒
pairings!

We want isogenies compatible with the polarizations⇒ isotropic kernels.
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Cryptographic usage of isogenies

Transfer the DLP from one Abelian variety to another.

Point counting algorithms (ℓ-adic or p-adic)⇒ Verify a curve is secure.

Compute the class field polynomials (CM-method)⇒ Construct a secure

curve.

Compute the modular polynomials⇒ Compute isogenies.

Determine End(A)⇒ CRT method for class field polynomials.
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Explicit isogeny computation

Given an isotropic subgroup K ⊂ A(k) compute the isogeny A↦ A/K.
(Vélu’s formula.)

Given an abelian variety compute all the isogeneous varieties. (Modular

polynomials.)

Given two isogeneous abelian variety A and B find the isogeny A↦ B.
(‘‘Inverse Vélu’s formula’’⇒ SEA algorithm).
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Vélu’s formula

Theorem

Let E ∶ y2 = f (x) be an elliptic curve and G ⊂ E(k) a finite subgroup. Then E/G
is given by Y 2 = (X) where

X(P) = x(P) + ∑
Q∈G∖{0E}

(x(P + Q) − x(Q))

Y(P) = y(P) + ∑
Q∈G∖{0E}

(y(P + Q) − y(Q)) .

Uses the fact that x and y are characterised in k(E) by

v0E (x) = −2 vP(x) ⩾ 0 if P ≠ 0E
v0E (y) = −3 vP(y) ⩾ 0 if P ≠ 0E

y2/x3(0E) = 1

No such characterisation in genus  ⩾ 2 for Mumford coordinates.
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The modular polynomial

Definition

Modular polynomial ϕn(x , y) ∈ Z[x , y]: ϕn(x , y) = 0⇔ x = j(E) and
y = j(E′) with E and E′ n-isogeneous.
If E ∶ y2 = x3 + ax + b is an elliptic curve, the j-invariant is

j(E) = 1728 4a3

4a3 + 27b2

Roots of ϕn( j(E), .)⇔ elliptic curves n-isogeneous to E.
In genus 2, modular polynomials use Igusa invariants.The height

explodes.

⇒ Genus 2: (2, 2)-isogenies [Richelot]. Genus 3: (2, 2, 2)-isogenies [Smi09].

⇒ Moduli space given by invariants with more structure.

⇒ Fix the form of the isogeny and look for compatible coordinates.
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Complex abelian varieties and theta functions of level n

(ϑ i)i∈Z(n): basis of the theta functions of level n. (Z(n) := Z/nZ)

⇔ A[n] = A1[n]⊕ A2[n]: symplectic decomposition.

(ϑ i)i∈Z(n) = {
coordinates system n ⩾ 3
coordinates on the Kummer variety A/ ± 1 n = 2

Theta null point: ϑ i(0)i∈Z(n) = modular invariant.

Example (k = C)
Abelian variety over C: A = C/ (Z +ΩZ); Ω ∈H(C) the Siegel upper
half space (Ω symmetric, ImΩ positive definite).

ϑ i := Θ [ 0
i/n ] (z, Ω/n).
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The differential addition law (k = C)

( ∑
t∈Z(2)

χ(t)ϑ i+t(x + y)ϑ j+t(x − y)).( ∑
t∈Z(2)

χ(t)ϑk+t(0)ϑ l+t(0)) =

( ∑
t∈Z(2)

χ(t)ϑ−i′+t(y)ϑ j′+t(y)).( ∑
t∈Z(2)

χ(t)ϑk′+t(x)ϑ l ′+t(x)).

where χ ∈ Ẑ(2), i , j, k, l ∈ Z(n)
(i′ , j′ , k′ , l ′) = A(i , j, k, l)

A = 1

2

⎛
⎜⎜⎜
⎝

1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎟
⎠
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The isogeny theorem

Theorem

Let ℓ ∧ n = 1, and ϕ ∶ Z(n)→ Z(ℓn), x ↦ ℓ.x be the canonical embedding.
Let K0 = A[ℓ]2 ⊂ A[ℓn]2.
Let (ϑA

i )i∈Z(ℓn) be the theta functions of level ℓn on A = C/(Z +ΩZ).

Let (ϑB
i )i∈Z(n) be the theta functions of level n of

B = A/K0 = C/(Z + Ω

ℓ Z
).

We have:
(ϑB

i (x))i∈Z(n) = (ϑA
ϕ(i)(x))i∈Z(n)

Example

π ∶ (x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 , x11)↦ (x0 , x3 , x6 , x9) is a
3-isogeny between elliptic curves.
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The modular space of theta null points of level n (car k ∤ n)

Definition

The modular spaceMn of theta null points is:

∑
t∈Z(2)

ax+tay+t ∑
t∈Z(2)

au+tav+t = ∑
t∈Z(2)

ax′+tay′+t ∑
t∈Z(2)

au′+tav′+t ,

with the relations of symmetry ax = a−x .

Abelian varieties with a n-structure = open locus ofMn .
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Isogenies and modular correspondence [FLR09]

(a i)i∈Z(ℓn) ∈Mℓn(k)Ak , Ak[ℓn] = Ak[ℓn]1 ⊕ Ak[ℓn]2
determines

Bk , Bk[n] = Bk[n]1 ⊕ Bk[n]2

π

(b i)i∈Z(n) ∈Mn(k)

ϕ1π̂

Every isogeny (with isotropic kernel K) comes from a modular solution.

We can detect degenerate solutions.
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The contragredient isogeny [LR10a]

y ∈ B

z ∈ A

π̂

x ∈ A

π

[ℓ]
Let π ∶ A → B be the isogeny associated to

(a i)i∈Z(ℓn). Let y ∈ B and x ∈ A be one of the

ℓ antecedents. Then

π̂(y) = ℓ.x
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The contragredient isogeny [LR10a]

y ∈ B

z ∈ A

π̂

x ∈ A

π

[ℓ]
Let π ∶ A → B be the isogeny associated to

(a i)i∈Z(ℓn). Let y ∈ B and x ∈ A be one of the

ℓ antecedents. Then

π̂(y) = ℓ.x

Explicit isogenies algorithm

(Compressed) modular point from K: ( + 1)/2 ℓth-roots and
( + 1)/2 ⋅ O(log(ℓ)) chain additions.

⇒ (Compressed) isogeny:  ⋅ O(log(ℓ)) chain additions.
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Example

B: elliptic curve y2 = x3 + 23x + 3 over k = F31

⇒Theta null point of level 4: (3 ∶ 1 ∶ 18 ∶ 1) ∈M4(F31).

K = {(3 ∶ 1 ∶ 18 ∶ 1), (22 ∶ 15 ∶ 4 ∶ 1), (18 ∶ 29 ∶ 23 ∶ 1)}⇒modular solution:

(3, η14233 , η2317 , 1, η1324 , η5296 , 18, η5296 , η1324 , 1, η2317 , η14233)
(η3 + η + 28 = 0).

y = (η19406 , η19805 , η10720 , 1); π̂(y)?
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Example

R1 = (η1324 , η5296 , η2317 , η14233) y = (η19406 , η19805 , η10720 , 1)

y ⊕ R1 = λ1(η2722 , η28681 , η26466 , η2096)
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y ⊕ R1 = λ1(η2722 , η28681 , η26466 , η2096)

y + 2R1 = λ21 (η28758 , η11337 , η27602 , η22972)
y + 3R1 = λ31 (η18374 , η18773 , η9688 , η28758) = y/η1032 so λ31 = η28758
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Example
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Changing level by taking an isogeny

B

A,A[ℓ] = A[ℓ]1 ⊕ A[ℓ]2

B = A/A[ℓ]2 A C = A/A[ℓ]1

[ℓ]

π̂

π π2

π2 ○ π̂: ℓ2 isogeny in level n.
Modular points (corresponding to K)⇔A[ℓ] = A[ℓ]1 ⊕ π̂(B[ℓ])

⇔ ℓ2-isogenies B → C.
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Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let L be the space of theta functions of level ℓn and L′ the space of theta
functions of level n.
Let F ∈Mr(Z) be such that tFF = ℓ Id, and f ∶ Ar → Ar the corresponding
isogeny.

We have L = f ∗L′ and the isogeny f is given by

f ∗(ϑL
′

i1 ⋆ . . . ⋆ ϑ
L′
ir ) = λ ∑
( j1 , . . . , jr)∈K1(L′)×. . .×K1(L′)

f ( j1 , . . . , jr)=(i1 , . . . , ir)

ϑLj1 ⋆ . . . ⋆ ϑ
L
jr

F = ( 1 −1
−1 1 ) gives the Riemann relations. (For general ℓ, use the

quaternions.)

⇒ Go up and down in level without taking isogenies [Cosset+R].
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A complete generalisation ofVélu’s algorithm [Cosset+R]

Compute the isogeny B → Awhile staying in level n.
No need of ℓ-roots. Need only O(#K) differential additions in B
+ O(ℓ) or O(ℓ2)multiplications⇒ fast.

The formulas are rational if the kernel K is rational.

Blocking part: compute K⇒ compute all the ℓ-torsion on B.
 = 2: ℓ-torsion, Õ(ℓ6) vs O(ℓ2) or O(ℓ4) for the isogeny.

⇒ Work in level 2.

⇒ Convert back and forth to Mumford coordinates:

B A

Jac(C1) Jac(C2)

π̂
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Avisogenies

Avisogenies: Magma code written by Bisson, Cosset and R.

Released under LGPL 2+.

Implement isogeny computation (and applications thereof) for abelian

varieties using theta functions.

Current alpha release: isogenies in genus 2.
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Implementation

H hyperelliptic curve of genus 2 over k = Fq , J = Jac(H), ℓ odd prime,

2ℓ ∧ car k = 1. Compute all rational (ℓ, ℓ)-isogenies J ↦ Jac(H′) (we suppose
the zeta function known):

1 Compute the extension Fqn where the geometric points of the maximal

isotropic kernel of J[ℓ] lives.
2 Compute a ‘‘symplectic’’ basis of J[ℓ](Fqn).
3 Find the rational maximal isotropic kernels K.
4 For each kernel K, convert its basis fromMumford to theta coordinates

of level 2. (Rosenhain thenThomae).

5 Compute the other points in K in theta coordinates using differential

additions.

6 Apply the change level formula to recover the theta null point of J/K.
7 Compute the Igusa invariants of J/K (‘‘InverseThomae’’).

8 Distinguish between the isogeneous curve and its twist.
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isotropic kernel of J[ℓ] lives.
2 Compute a ‘‘symplectic’’ basis of J[ℓ](Fqn).
3 Find the rational maximal isotropic kernels K.
4 For each kernel K, convert its basis fromMumford to theta coordinates

of level 2. (Rosenhain thenThomae).

5 Compute the other points in K in theta coordinates using differential

additions.

6 Apply the change level formula to recover the theta null point of J/K.
7 Compute the Igusa invariants of J/K (‘‘InverseThomae’’).

8 Distinguish between the isogeneous curve and its twist.
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Computing the right extension

J = Jac(H) abelian variety of dimension 2. χ(X) the corresponding zeta
function.

Degree of a point of ℓ-torsion ∣ the order of X in Fℓ[X]/χ(X).
If K rational, K(k) ≃ (Z/ℓZ)2, the degree of a point in K ∣ the LCM of

orders of X in Fℓ[X]/P(X) for P ∣ χ of degree two.
Since we are looking to K maximal isotropic, J[ℓ] ≃ K ⊕ K′ and we know

that P ∣ χ is such that χ(X) ≡ P(X)P(X) mod ℓ where X = q/X
represents the Verschiebung.

Remark

The degree n is ⩽ ℓ2 − 1. If ℓ is totally split in Z[π, π] then n ∣ ℓ − 1.
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Computing the ℓ-torsion

We want to compute J(Fqn)[ℓ].
From the zeta function χ(X) we can compute random points in

J(Fqn)[ℓ∞] uniformly.

If P is in J(Fqn)[ℓ∞], ℓmP ∈ J(Fqn)[ℓ] for a suitable m.This does not

give uniform points of ℓ-torsion but we can correct the points obtained.

Example

Suppose J(Fqn)[ℓ∞] =< P1 , P2 > with P1 of order ℓ2 and P2 of order ℓ.
First random point Q1 = P1 ⇒ we recover the point of ℓ-torsion: ℓ.P1.
Second random point Q2 = αP1 + βP2. If α ≠ 0 we recover the point of
ℓ-torsion αℓP1 which is not a new generator.

We correct the original point: Q′2 = Q2 − αQ1 = βP2.
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Weil pairing

Used to decompose a point P ∈ J[ℓ] in term of a basis of the ℓ-torsion
(and to construct a symplectic basis).

The magma implementation is extremely slow in genus 2 for non

degenerate divisors.

But since we convert the points in theta coordinates we can use the

pairing in theta coordinates [LR10b].
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Timings for isogenies computations (ℓ = 7)

Jacobian of Hyperelliptic Curve defined by y^2 = t^254*x^6 + t^223*x^5 +
t^255*x^4 + t^318*x^3 + t^668*x^2 + t^543*x + t^538 over GF(3^6)

> time RationallyIsogenousCurvesG2(J,7);

** Computing 7 -rationnal isotropic subgroups
-- Computing the 7 -torsion over extension of deg 4
!! Basis: 2 points in Finite field of size 3^24
-- Listing subgroups
1 subgroups over Finite field of size 3^24
-- Convert the subgroups to theta coordinates
Time: 0.060

Computing the 1 7 -isogenies

** Precomputations for l= 7 Time: 0.180

** Computing the 7 -isogeny
Computing the l-torsion Time: 0.030
Changing level Time: 0.210

Time: 0.430
Time: 0.490
[ <[ t^620, t^691, t^477 ], Jacobian of Hyperelliptic Curve defined by
y^2 = t^615*x^6 + t^224*x^5 + t^37*x^4 + t^303*x^3 + t^715*x^2 + t^128*x + t^17 over GF(3^6)> ]
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Timings for isogenies computations (ℓ = 5)

Jacobian of Hyperelliptic Curve defined by y^2 = 39*x^6 + 4*x^5 + 82*x^4
+ 10*x^3 + 31*x^2 + 39*x + 2 over GF(83)

> time RationallyIsogenousCurvesG2(J,5);

** Computing 5 -rationnal isotropic subgroups
-- Computing the 5 -torsion over extension of deg 24
Time: 0.940
!! Basis: 4 points in Finite field of size 83^24
-- Listing subgroups
Time: 1.170
6 subgroups over Finite field of size 83^24
-- Convert the subgroups to theta coordinates
Time: 0.360

Time: 2.630
Computing the 6 5 -isogenies
Time: 0.820
Time: 3.460
[ <[ 36, 69, 38 ], Jacobian of Hyperelliptic Curve defined by
y^2 = 27*x^6 + 63*x^5 + 5*x^4 + 24*x^3 + 34*x^2 + 6*x + 76 over GF(83)>,

...]
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Timings for isogeny graphs (ℓ = 3)

Jacobian of Hyperelliptic Curve defined by y^2 = 41*x^6 + 131*x^5 +
55*x^4 + 57*x^3 + 233*x^2 + 225*x + 51 over GF(271)

time isograph,jacobians:=IsoGraphG2(J,{3}: save_mem:=-1);
Computed 540 isogenies and found 135 curves.
Time: 14.410

Core 2 with 4BG of RAM.

Computing kernels: ≈ 5s.
Computing isogenies: ≈ 7s (Torsion: ≈ 2s, Changing level: ≈ 3.5s.)
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Going further (ℓ = 53)

Jacobian of Hyperelliptic Curve defined by y^2 = 97*x^6 + 77*x^5 +
62*x^4 + 14*x^3 + 33*x^2 + 18*x + 40 over GF(113)

> time RationallyIsogenousCurvesG2(J,53);

** Computing 53 -rationnal isotropic subgroups
-- Computing the 53 -torsion over extension of deg 52 Time: 8.610
!! Basis: 3 points in Finite field of size 113^52
-- Listing subgroups Time: 1.210
2 subgroups over Finite field of size 113^52
-- Convert the subgroups to theta coordinates Time: 0.100
Time: 9.980

Computing the 2 53 -isogenies

** Precomputations for l= 53 Time: 0.240

** Computing the 53 -isogeny
Computing the l-torsion Time: 7.570
Changing level Time: 1.170

Time: 8.840

** Computing the 53 -isogeny
Time: 8.850

Time: 27.950



Isogenies Theory Implementation Examples and Applications

Going further (ℓ = 19)

Jacobian of Hyperelliptic Curve defined by y^2 = 194*x^6 + 554*x^5 +
606*x^4 + 523*x^3 + 642*x^2 + 566*x + 112 over GF(859)
> time RationallyIsogenousCurvesG2(J,19);

** Computing 19 -rationnal isotropic subgroups (extension degree 18)
Time: 0.760

Computing the 2 19 -isogenies

** Precomputations for l= 19 Time: 11.160

** Computing the 19 -isogeny
Computing the l-torsion Time: 0.250
Changing level Time: 18.590

Time: 18.850

** Computing the 19 -isogeny
Computing the l-torsion Time: 0.250
Changing level Time: 18.640

Time: 18.900
Time: 51.060
[ <[ 341, 740, 389 ], Jacobian of Hyperelliptic Curve defined by y^2 = 724*x^6 +

680*x^5 + 538*x^4 + 613*x^3 + 557*x^2 + 856*x + 628 over GF(859)>,
... ]
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A record isogeny computation! (ℓ = 1321)

J Jacobian of y2 = x5
+ 41691x4

+ 24583x3
+ 2509x2

+ 15574x over F42179 .

#J = 21013212 .

> time RationallyIsogenousCurvesG2(J,1321:ext_degree:=1);

** Computing 1321 -rationnal isotropic subgroups
Time: 0.350
Computing the 1 1321 -isogenies

** Precomputations for l= 1321
Time: 1276.950

** Computing the 1321 -isogeny
Computing the l-torsion
Time: 1200.270
Changing level
Time: 1398.780

Time: 5727.250
Time: 7004.240
Time: 7332.650
[ <[ 9448, 15263, 31602 ], Jacobian of Hyperelliptic Curve defined by

y^2 = 33266*x^6 + 20155*x^5 + 31203*x^4 + 9732*x^3 +
4204*x^2 + 18026*x + 29732 over GF(42179)> ]

Core 2 with 32GB of RAM.

Total memory usage: 12565.19MB.



Isogenies Theory Implementation Examples and Applications

Isogeny graphs: ℓ = q1q2 = Q1Q1Q2Q2 (Q↦ K0 ↦ K)
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Isogeny graphs: ℓ = q1q2 = Q1Q1Q2Q2 (Q↦ K0 ↦ K)
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Isogeny graphs: ℓ = q = QQ (Q↦ K0 ↦ K)
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Isogeny graphs: ℓ = q1q2 = Q1Q1Q2
2 (Q↦ K0 ↦ K)
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Isogeny graphs: ℓ = q2 = Q2Q
2

(Q↦ K0 ↦ K)
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Isogeny graphs: ℓ = q2 = Q4 (Q↦ K0 ↦ K)
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Non maximal isogeny graphs (ℓ = q = QQ)
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Non maximal isogeny graphs (ℓ = q = QQ)
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Non maximal isogeny graphs (ℓ = q = QQ)
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Non maximal isogeny graphs (ℓ = q1q2 = Q1Q1Q2Q2)



Isogenies Theory Implementation Examples and Applications

Non maximal isogeny graphs (ℓ = q1q2 = Q1Q1Q2Q2)
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Non maximal isogeny graphs (ℓ = q1q2 = Q1Q1Q2Q2)
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Non maximal isogeny graphs (ℓ = q = Q2)
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Non maximal isogeny graphs (ℓ = q = Q2)
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Applications of isogenies to higher genus

Computing endomorphism ring. Generalize [BS09] to higher genus,

work by Bisson.

Class polynomials in genus 2 using the CRT. If K is a CM field and J/Fp is
such that End(J)⊗Z Q = K, use isogenies to find the Jacobians whose

endomorphism ring is OK . Work by Lauter+R.

Modular polynomials in genus 2 using theta null points: computed by

Gruenewald using analytic methods for ℓ = 3.

Question

How to compute (ℓ, 1)-isogenies in genus 2?
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Thank you for your attention!
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