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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k

@ (Polarised) abelian varieties = higher dimensional equivalent of elliptic
curves.

e If Cisa curve of genus g, it’s Jacobian is a (principally polarised) abelian
variety of dimension g.

@ For C: y* = f(x) (deg f = 2g — 1) hyperelliptic curve, Mumford
coordinates:

™M=

D= (Pi-P.) k<g -P%P

= (u,v) with u = H(x - xi),v(xi) = Yi.

Il
—_



Tsogenies

A (separable) isogeny is a finite surjective (separable) morphism between two
Abelian varieties.

@ Isogenies < Finite subgroups.

(f:A->B)~Kerf
(A->A/H) <~ H

@ The kernel of the dual isogeny j?is the Cartier dual of the kernel of f =
pairings!

@ We want isogenies compatible with the polarizations = isotropic kernels.
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Cryptographic usage of isogenies

Transfer the DLP from one Abelian variety to another.

Point counting algorithms (¢-adic or p-adic) = Verify a curve is secure.

Compute the class field polynomials (CM-method) = Construct a secure
curve.

o Compute the modular polynomials = Compute isogenies.

Determine End(A) = CRT method for class field polynomials.



Explicit isogeny computation

e Given an isotropic subgroup K c A(k) compute the isogeny A — A/K.
(Vélu’s formula.)
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Vélu's formula

Theorem

Let E : y* = f(x) be an elliptic curve and G c E(k) a finite subgroup. Then E/G
is given by Y? = g(X) where

X(P)=x(P)+ » (x(P+Q)-x(Q))

QeGN{0g}

Y(P)=y(P)+ > (y(P+Q)-y(Q)).
QeG {05}

@ Uses the fact that x and y are characterised in k(E) by

vog (x) = =2 vp(x) 20 ifP#0g
vo (y) =-3 vp(y) 20 ifP+0g
y*[x°(0g) =1

@ No such characterisation in genus g > 2 for Mumford coordinates.
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The modular polynomial

e Modular polynomial ¢, (x, y) € Z[x, y]: ¢, (x,y) =0 < x = j(E) and
y = j(E") with E and E’ n-isogeneous.
o IfE: y* =x’ + ax + b is an elliptic curve, the j-invariant is

3

i(E) =1728— =%
i(E) 4a% + 272

@ Roots of ¢, (j(E),.) <> elliptic curves n-isogeneous to E.

@ In genus 2, modular polynomials use Igusa invariants. The height
explodes.

= Genus 2: (2,2)-isogenies [Richelot]. Genus 3: (2, 2, 2)-isogenies [Smiog].
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The modular polynomial

e Modular polynomial ¢, (x, y) € Z[x, y]: ¢, (x,y) =0 < x = j(E) and
y = j(E") with E and E’ n-isogeneous.
o IfE: y* =x’ + ax + b is an elliptic curve, the j-invariant is

3

i(E) = 1728— =%
i(E) 4a% + 272

@ Roots of ¢, (j(E),.) <> elliptic curves n-isogeneous to E.

@ In genus 2, modular polynomials use Igusa invariants. The height
explodes.

= Genus 2: (2,2)-isogenies [Richelot]. Genus 3: (2, 2, 2)-isogenies [Smiog].

= Moduli space given by invariants with more structure.

= Fix the form of the isogeny and look for compatible coordinates.
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Complex abelian varieties and theta functions of level n

® (9))iez(m): basis of the theta functions of level 7. (Z(n) =79/nZ9)
< A[n] = Aj[n] ® Ay[n]: symplectic decomposition.

coordinates system nz3

© (9)iez(m) = {

coordinates on the Kummer variety A/ +1 n =2

o Theta null point: 9;(0) ez ) = modular invariant.

Example (k = C)

Abelian variety over C: A = CI/(Z9 + QZ9); Q € H 4(C) the Siegel upper
half space (Q symmetric, Im Q positive definite).

9;=0 [ i;)n] (z,Q[n).
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The differential addition law (k = C)

( Z X(t)9i+t(x+)’)‘91+t(x_)’))-( Z X(t)9k+t(0)‘91+t(0)):

teZ(2) teZ(2)

(> x(O9-iree(D)9jrae(1))-( D X(D) Okt (x) 914 ().

teZ(2) teZ(2)

where ye Z(2),i,j, k1 € Z(n)
(', 7, K1) = A, j, k, 1)

1 1 1 1

11 1 -1 =1
A‘§1—1 1 -1
1 -1 -1 1



The isogeny theorem

Theorem

o Letlan=1and¢:Z(n) > Z(€n),x — L.x be the canonical embedding.
Let KO = A[€]2 (e A[f?’l]z

o Let (9{‘)1.62(@) be the theta functions of level €n on A = C9/(Z9 + QZ9).
o Let (97) ez be the theta functions of level n of
B=A/Ko=C9/(Z9 + 279).

o We have:
(9?(’6))152(%) = (9$(i)(x))ie2(ﬁ)

| A

Example

T (xO) X1, X25 X35 X4, X5, X65 X7, X85 X9, X105 xll) g (x0$ X3, x6)x9) isa
3-isogeny between elliptic curves.




The modular space of theta null points of level n (cark + n)

The modular space Mj; of theta null points is:

Z Ox+tAy+t Z Au+tAyst = Z Ax/+tQy'+t Z Ay +t Ay’ +t>

teZ(2) teZ(2) teZ(2) teZ(2)

with the relations of symmetry a, = a_,.

@ Abelian varieties with a n-structure = open locus of M.
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Tsogenies and modular correspondence [

A, Ai[tn] = Ag[en]i ® Ar[en], < . (i) iez(am) € M (k)
determines
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Tsogenies and modular correspondence [

A, Ai[tn] = Ag[en]i ® Ar[en], < . (i) iez(am) € M (k)
determines
7|7 ¢
By, Bi[n] = Bi[n]: @ Bi[n]> < (bi)icz(my € Ma(k)

o Every isogeny (with isotropic kernel K) comes from a modular solution.

@ We can detect degenerate solutions.
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The contragredient isogeny [
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The contragredient isogeny [

XEA z€eA

y€eB
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The contragredient isogeny [

x€A zeA Let 7 : A — B be the isogeny associated to

(ai)iez(ﬁ)' Let y € B and x € A be one of the
£9 antecedents. Then

yeB (y)=Cx
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The contragredient isogeny [

x€A zeA Let 7 : A — B be the isogeny associated to

(ai)iez(ﬁ)' Let y € B and x € A be one of the
£9 antecedents. Then

yeB (y)=Cx

X

1 X
X

R, x

X
R1 X
y
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The contragredient isogeny [

x€A zeA Let 7 : A — B be the isogeny associated to

(ai)iez(ﬁ)' Let y € B and x € A be one of the
£9 antecedents. Then

yeB (y)=Cx
X
1 X
X X
R, x
X
Rl X X
y x
Ry
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The contragredient isogeny [

x€A zeA Let 7 : A — B be the isogeny associated to

(ai)iez(ﬁ)' Let y € B and x € A be one of the
£9 antecedents. Then

yeB (y)=Cx

Explicit isogenies algorithm

o (Compressed) modular point from K: g(g +1)/2 €-roots and
g(g+1)/2- O(log(¢)) chain additions.

= (Compressed) isogeny: g - O(log(¢)) chain additions.
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Example

e B:elliptic curve y* = x> + 23x + 3 over k = F3,

= Theta null point of level 4: (3:1:18:1) € M4(F3).

@ K={(3:1:18:1),(22:15:4:1),(18:29:23:1)} = modular solution:
(3, 14233, 307 1, 1324, 5296 18, 3296 1324 1 2307 14233
(7 +n+28=0).

19406 /19805
1

°y=(n 07201 7(y)?
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Example

4 >

1324 5296 2317 14233 19406 19805 10720
Ri=(n""m2n™ ™) y=(1"""n ,1)

y ® Rl — Al(rl2722’ ;728681’ ’126466) ’12096)
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Example

Rl — (’71324’ 5296) ’72317’ ’714233) y= (’119406 19805) ’110720 1)
y ® Rl — A1(772722> ;728681, ’126466) ’12096)
y+ 2R1 — /112(1128758, rl11337) }127602, rl22972)

3 18374 18773 9688 28758\ _ 1032 3 _ 28758
A ) =y sod =17

y+3R1: N
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Example

1324 5296 2317 14233 19406 19805 10720
Ry = ("%, ) 1)

y=( N

2722 28681 26466 2096
M50 n

>

y @ R1 =

y + 2R1 — /\,2( 28758, 7]11337, }127602 22972)

A?)( 18374 ’718773, 119688 28758) J//111()32 SO /\3 _ ’128758
2)/ + Rl — /\f(ﬂ17786) ’712000 ;716630’ 11365)

/\:1’1(’77096’ }711068

y+3R1

3y + Rl _ 8089,}720005) — 1’]5772R1

>
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Example

1324 5296 2317 14233 19406 19805 10720
Ry = ("%, ) 1)

y=( N

2722 28681 26466 2096
M= ™0 ™0)

2 28758 11337 27602 22972

M= )

9688 28758\ _ 1032 3 _ 28758
) =y sod =17

y@R1=

y+2R1:

y+ 3R1 — Ai’)(n18374, ’718773, n

2)/+R1 /\2( 17786)’712000 ’116630 365)
3)’ + Rl /\3(’77096 }711068 8089, 20005) 5772R1

>

=, 21037 15925 8128 18904 12100 14932 9121 27841
7(y) =Gy Ly 18, T T L )



Changing level by taking an isogeny

B

1T

B=A/A[€] C = A/A[¢€]

e 7, o 7 £ isogeny in level n.
@ Modular points (corresponding to K) <> A[¢] = A[¢]; & 7(B[¢])
<> ¢2-isogenies B — C.



Changing level by taking an isogeny

€] A Ale] = Ale] @ A[e]

B=A/A[f], A C = A/A[£],

e 7, o 7 £ isogeny in level n.
@ Modular points (corresponding to K) <> A[¢] = A[¢]; & 7(B[¢])
<> ¢2-isogenies B — C.
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Changing level without taking isogenies

Theorem (Koizumi-Kempf)

o Let L be the space of theta functions of level €n and L' the space of theta
functions of level n.

o Let F € M,(Z) be such that 'FF = £1d, and f : A" — A" the corresponding
isogeny.

We have L = f* L' and the isogeny f is given by

FrOF w w95 =0 Y 9wk 9F
(e jir) €K1 (L)% x Ky (L)
f(]l ~~~~~ jr)=(il ~~~~ ir)

e F= (1 7") gives the Riemann relations. (For general ¢, use the
quaternions.)

= Go up and down in level without taking isogenies [COSSET+R].
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A complete generalisation of Vélu's algorithm [

o Compute the isogeny B — A while staying in level n.

@ No need of £-roots. Need only O(#K) differential additions in B
+ 0(£9) or O(€*9) multiplications = fast.

o The formulas are rational if the kernel K is rational.

o Blocking part: compute K = compute all the ¢-torsion on B.
g = 2: £-torsion, O(€°) vs O(€?) or O(€*) for the isogeny.
= Work in level 2.
= Convert back and forth to Mumford coordinates:

—_

B—— A

Jac(Cy) > Jac(Cy)



Avisogenies

@ Avisogenies: Magma code written by Bisson, CosseT and R.
@ Released under LGPL 2+.

e Implement isogeny computation (and applications thereof) for abelian
varieties using theta functions.

o Current alpha release: isogenies in genus 2.



Tmplementation

H hyperelliptic curve of genus 2 over k = IF,, J = Jac(H), £ odd prime,
2¢ A car k = 1. Compute all rational (¢, £)-isogenies J — Jac(H') (we suppose
the zeta function known):
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Q
o
o

Compute the extension IF;» where the geometric points of the maximal
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of level 2. (Rosenhain then Thomae).

Compute the other points in K in theta coordinates using differential
additions.
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Tmplementation

H hyperelliptic curve of genus 2 over k = IF,, J = Jac(H), £ odd prime,
2¢ A car k = 1. Compute all rational (¢, £)-isogenies J — Jac(H') (we suppose
the zeta function known):

@ Compute the extension Fy» where the geometric points of the maximal
isotropic kernel of J[£] lives.

© Compute a “symplectic’ basis of J[£](Fy).
@ Find the rational maximal isotropic kernels K.
o

For each kernel K, convert its basis from Mumford to theta coordinates
of level 2. (Rosenhain then Thomae).

@ Compute the other points in K in theta coordinates using differential
additions.

@ Apply the change level formula to recover the theta null point of J/K.
@ Compute the Igusa invariants of J/K (‘‘Inverse Thomae™).

@ Distinguish between the isogeneous curve and its twist.



Computing the right extension

@ ] =Jac(H) abelian variety of dimension 2. y(X) the corresponding zeta
function.

@ Degree of a point of £-torsion | the order of X in F,[X]/x(X).

o If K rational, K(k) ~ (Z/€Z)?, the degree of a point in K | the LCM of
orders of X in F,[X]/P(X) for P | y of degree two.

o Since we are looking to K maximal isotropic, J[€] ~ K & K’ and we know
that P | y is such that y(X) = P(X)P(X) mod € where X = g/X
represents the Verschiebung.

The degree n is < % — 1. If € is totally split in Z[m, 7] then n | € — 1.




Computing the €-torsion

e We want to compute J(Fg.)[€].

@ From the zeta function y(X) we can compute random points in
J(Fgn)[€°° ] uniformly.

o If Pisin J(IFgn)[ €], €™ P € J(IF4n)[€] for a suitable m. This does not
give uniform points of ¢-torsion but we can correct the points obtained.

o Suppose J(Fyn)[£>°] =< Py, P, > with P, of order ¢* and P, of order ¢.

o First random point Q; = P; = we recover the point of ¢-torsion: £.P;.

@ Second random point Q; = aP; + fP,. If a # 0 we recover the point of
¢-torsion a¢P; which is not a new generator.

@ We correct the original point: Q) = Q; — aQ; = SP;.




Weil pairing

@ Used to decompose a point P € J[£] in term of a basis of the £-torsion
(and to construct a symplectic basis).

o The magma implementation is extremely slow in genus 2 for non
degenerate divisors.

@ But since we convert the points in theta coordinates we can use the
pairing in theta coordinates [LR1ob].
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Timings for isogenies computations (€=7)

Jacobian of Hyperelliptic Curve defined by y”2 = t7254%x™6 + t"223*x"5 +
t7255%x™4 + t7318xx"3 + t7668xx"2 + t~543xx + t~538 over GF(3"6)
> time RationallyIsogenousCurvesG2(J,7);
*x Computing 7 -rationnal isotropic subgroups
-- Computing the 7 -torsion over extension of deg 4
!l Basis: 2 points in Finite field of size 3724
-- Listing subgroups
1 subgroups over Finite field of size 3724
-- Convert the subgroups to theta coordinates
Time: 0.060
Computing the 1 7 -isogenies
** Precomputations for 1= 7 Time: 0.180
*x Computing the 7 -isogeny
Computing the 1-torsion Time: 0.030
Changing level Time: 0.210
Time: 0.430
Time: 0.490
[ <[ t7620, t7691, t~477 ], Jacobian of Hyperelliptic Curve defined by
y~2 = t7615%xx™6 + t7224%x"5 + t737xx™4 + t7303+x"3 + t7715%xx"2 + t7128%x
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Timings for isogenies computations (¢=5)

Jacobian of Hyperelliptic Curve defined by y”2 = 39%x™6 + 4*x"5 + 82xx"4
+ 10%xx"3 + 31xx"2 + 39xx + 2 over GF(83)
> time RationallyIsogenousCurvesG2(J,5);
*x Computing 5 -rationnal isotropic subgroups
-- Computing the 5 -torsion over extension of deg 24
Time: 0.940
!l Basis: 4 points in Finite field of size 83724
-- Listing subgroups
Time: 1.170
6 subgroups over Finite field of size 83724
-- Convert the subgroups to theta coordinates
Time: 0.360
Time: 2.630
Computing the 6 5 -isogenies
Time: 0.820
Time: 3.460
[ <[ 36, 69, 38 ], Jacobian of Hyperelliptic Curve defined by
Y2 = 27#xX76 + 63*xx"5 + 5xx"4 + 24xx"3 + 34xx"2 + 6%x + 76 over GF(83)>,

-1
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Timings for isogeny graphs (€=3)

Jacobian of Hyperelliptic Curve defined by y”2 = 41xx™6 + 131%x"5 +
55%x™4 + 57%x”3 + 233xx"2 + 225xx + 51 over GF(271)

time isograph,jacobians:=IsoGraphG2(J,{3}: save_mem:=-1);

Computed 540 isogenies and found 135 curves.

Time: 14.410

@ Core 2 with 4BG of RAM.
o Computing kernels: » 5s.

e Computing isogenies: ~ 7s (Torsion: ~ 2s, Changing level: » 3.5s.)
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Going further (€ =53)

Jacobian of Hyperelliptic Curve defined by y"2 = 97%xx"6 + 77*x"5 +
62%x™4 + 14xx"3 + 33%xx™2 + 18xx + 40 over GF(113)
> time RationallyIsogenousCurvesG2(J,53);
*x Computing 53 -rationnal isotropic subgroups
-- Computing the 53 -torsion over extension of deg 52 Time: 8.610
!l Basis: 3 points in Finite field of size 113752
-- Listing subgroups Time: 1.210
2 subgroups over Finite field of size 113752
-- Convert the subgroups to theta coordinates Time: 0.100
Time: 9.980
Computing the 2 53 -isogenies
**x Precomputations for 1= 53 Time: 0.240
*x Computing the 53 -isogeny
Computing the 1-torsion Time: 7.570
Changing level Time: 1.170

Time: 8.840
*x Computing the 53 -isogeny
Time: 8.850

Time: 27.950
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Going further (€=19)

Jacobian of Hyperelliptic Curve defined by y”2 = 194xx"6 + 554*x™5 +
606+x™4 + 523xx"3 + 642xx"2 + 566*xx + 112 over GF(859)
> time RationallyIsogenousCurvesG2(J,19);
**x Computing 19 -rationnal isotropic subgroups (extension degree 18)
Time: 0.760
Computing the 2 19 -isogenies
**x Precomputations for 1= 19 Time: 11.160
*+x Computing the 19 -isogeny
Computing the 1-torsion Time: 0.250
Changing level Time: 18.590
Time: 18.850
«+ Computing the 19 -isogeny
Computing the 1-torsion Time: 0.250
Changing level Time: 18.640
Time: 18.900
Time: 51.060
[ <[ 341, 740, 389 ], Jacobian of Hyperelliptic Curve defined by y~2 = 72
680xx™5 + 538xx™4 + 613*x"3 + 557*x"2 + 856*x + 628 over GF(859)>,

]
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A record isogeny computation! (¢ =1321)

@ ] Jacobian of y* = x° + 41691x" + 24583x” + 2509x” + 15574x over Fyi79.
o #/=2"1321°.

> time RationallyIsogenousCurvesG2(J,1321:ext _degree:=1);
*x Computing 1321 -rationnal isotropic subgroups
Time: 0.350
Computing the 1 1321 -isogenies
**x Precomputations for 1= 1321
Time: 1276.950
*x Computing the 1321 -isogeny
Computing the 1-torsion
Time: 1200.270
Changing level
Time: 1398.780
Time: 5727.250
Time: 7004.240
Time: 7332.650
[ <[ 9448, 15263, 31602 ], Jacobian of Hyperelliptic Curve defined by
y*2 = 33266*x™6 + 20155*x™5 + 31203*x"4 + 9732%x"3 +
4204xx~2 + 18026*x + 29732 over GF(42179)> ]

e D i om et A D A LCDANS






Tsogeny graphs: € = 19, = Q1QQQ; (Q ~ Ko~ K)
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Tsogeny graphs: £ = g = QQ (Q~ Ko~ K)
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Tsogeny graphs: € = q1q; = Qlang (Q+ Ky~ K)
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Tsogeny graphs: £ = g* = QXQ’ (Q+~ Ko~ K)




0000000000800 000

Tsogeny graphs: € = g* = Q* (Q+~ Ko~ K)
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Non maximal isogeny graphs (€ = g = QQ)




00000000000 e0000

Non maximal isogeny graphs (€ = g = QQ)
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Non maximal isogeny graphs (€ = q1q; = Q1Q,Q,Q2)
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Non maximal isogeny graphs (€ = q = Q?)
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Non maximal isogeny graphs (€ = q = Q?)




Applications of isogenies to higher genus

o Computing endomorphism ring. Generalize [BSo9] to higher genus,
work by Bisson.

o Class polynomials in genus 2 using the CRT. If K is a CM field and J /I, is
such that End(J) ®z Q = K, use isogenies to find the Jacobians whose
endomorphism ring is Ox. Work by LAUTER+R.

@ Modular polynomials in genus 2 using theta null points: computed by
GRUENEWALD using analytic methods for ¢ = 3.

How to compute (#,1)-isogenies in genus 2?




Thank you for your attention!
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