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e Abelian varieties

© Isogenies
© Implementation

@ Examples and Applications



Discrete logarithm

Definition (DLP)

Let G = (g) be a cyclic group of prime order. Let x € N and & = g*. The
discrete logarithm log, (h) is x.

o Exponentiation: O(log p). DLP: O(,/p) (in a generic group).
= Usual tools of public key cryptography (and more!)

o G = F}: sub-exponential attacks.

= Find secure groups with efficient law, compact representation.



Abelian varieties
An Abelian variety is a complete connected group variety over a base field k.

@ Abelian variety = points on a projective space (locus of homogeneous
polynomials) + an abelian group law given by rational functions.

= Use G = A(k) with k = F, for the DLP.

= Pairing-based cryptography with the Weil or Tate pairing.
(Only available on abelian varieties.)



Elliptic curves

Definition (car k
E:y’=x’+ax+b. 4a’+27b*%0.

@ An elliptic curve is a plane curve of genus 1.

+2,3)

o Elliptic curves = Abelian varieties of dimension 1.

/

> 1

P+Q:—R: (XR,—}/R)
Lo Yoy
XQ —Xp
XR:AZ—XP—.XQ

YrR=)p + /\(XR - XP)



Jacobian of hyperelliptic curves

C: y* = f(x), hyperelliptic curve of genus g.  (deg f =29 —1)

e Divisor: formal sum D = ) n;P;, P; e C(k).
degD =} n;.

o Principal divisor: ¥ 7 vo(f).P;  fek(C).

Jacobian of C = Divisors of degree 0 modulo principal divisors
= Abelian variety of dimension g.

Divisor class D = unique representative (Riemann-Roch):
k
D =) (P - Ps) k<g, symmetricP; #P;
i=1

e Mumford coordinates: D = (u,v) = u = [T(x - x;), v(x;) = y;.

Cantor algorithm: addition law.



Example of the addition law in genus 2

D =P, +P,—2c0
D'=Q,+Q,—2c0
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Example of the addition law in genus 2

D =P, +P,—2c0
D'=Q,+Q,—2c0
D+D'=R,+R,—200
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Tsogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two
Abelian varieties.

@ Isogenies = Rational map + group morphism + finite kernel.

@ Isogenies < Finite subgroups.

(f:A->B)~Kerf
(A— A/H) < H

o Example: Multiplication by € (= ¢€-torsion), Frobenius (non separable).
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Cryptographic usage of isogenies

Transfer the DLP from one Abelian variety to another.

Point counting algorithms (¢-adic or p-adic) = Verify a curve is secure.

Compute the class field polynomials (CM-method) = Construct a secure
curve.

o Compute the modular polynomials = Compute isogenies.

Determine End(A) = CRT method for class field polynomials.



Explicit isogeny computation

e Given an isotropic subgroup K c A(k) compute the isogeny A — A/K.
(Vélu’s formula.)
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Vélu's formula

Theorem

Let E : y* = f(x) be an elliptic curve and G c E(k) a finite subgroup. Then E/G
is given by Y? = g(X) where

X(P)=x(P)+ » (x(P+Q)-x(Q))

QeGN{0g}

Y(P)=y(P)+ > (y(P+Q)-y(Q)).
QeG {05}

@ Uses the fact that x and y are characterised in k(E) by

vog (x) = =2 vp(x) 20 ifP#0g
vo (y) =-3 vp(y) 20 ifP+0g
y*[x°(0g) =1

@ No such characterisation in genus g > 2 for Mumford coordinates.
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Complex abelian varieties and theta functions of level n

® (9))iez(m): basis of the theta functions of level 7. (Z(n) =79/nZ9)
< A[n] = Aj[n] ® Ay[n]: symplectic decomposition.

coordinates system nz3

© (9)iez(m) = {

coordinates on the Kummer variety A/ +1 n =2

o Theta null point: 9;(0) ez ) = modular invariant.

Example (k = C)

Abelian variety over C: A = CI/(Z9 + QZ9); Q € H 4(C) the Siegel upper
half space (Q symmetric, Im Q positive definite).

9;=0 [ i;)n] (z,Q[n).
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Changing level

Theorem (Koizumi-Kempf)

Let F be a matrix of rank r such that 'FF = ¢1d,. Let X € (CY9)" and
Y=F(X)e(C9). Let je (Q9)" and i = E(j). Then we have

IARALNIFICASE

29[]1](X1+t1,€9)...9[2](}(,4.1‘“2)’

n

o If¢=0a”+b* wetake F = (“ b) sor=2.

e In general, £ = a* + b? + ¢* + d?, we take F to be the matrix of
multiplication by a + bi + ¢j + dk in the quaternions, so r = 4.



Changing level and isogenies

Corollary

Let A=CI/(Z9 + QZI) and B = CI [(Z9 + Q7). We can express the isogeny
A — B,z 0z of kernel K = 379 |29 in term of the theta functions of level n on
A and B:

9[1(')1](32’52)9[2](O,K%)...S[g](o,g%):

29[]91](Xl+t1,%)...9[£]ﬁ(xr+tn%)’

tseens t,eK
F(t15eees t,)=(0,...,0)

where X = F(£z,0,...,0).

v

We need a way to compute the coordinates 9 [ﬁ ] (X; +t;, %) not in A but in
C9.
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The differential addition law (k = C)

Applying twice the level formulas to F = ( b ) (I =2) yields:

( Z x(t)9i+t(x+y)9]-+z(x—y))-( Z X(t)9k+t(0)91+t(0)):

teZ(2) teZ(2)

(2 x®9-ie(95e()-( X XD (x) s (x)).

teZ(2) teZ(2)

where ye Z(2),i,j, k, 1 € Z(7)
(', 7, K1) = A, j, k, 1)

1 1 1 1

1 1 -1 -1

1 -1 1 -1

1 -1 -1 1

1
A=-
2
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An example withg=1,n=2,€=3

tz e CI/(Z9 + €Q7Z9)

A

zeCI/(Z9 +QZ9)
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An example withg=1,n=2,€=3

zeCI[(Z9 + QZI) ze CI[(ZI + £Q79)

N A

zeCI/(Z9 +QZ9)



[e]e]ee] Je]

An example withg=1,n=2,€=3

€]

ze€CIJ(Z9 +€QLI) — €z e CI/(Z9 + £Q7ZI)

N A

zeCI/(Z9 +QZ9)
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An example withg=1,n=2,€=3

€]

ze€CIJ(Z9 +€QLI) — €z e CI/(Z9 + £Q7ZI)

N A

zeCI/(Z9 +QZ9)
1
X
R,
R; x
Y
Ry
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An example withg=1,n=2,€=3

€]

ze€CIJ(Z9 +€QLI) — €z e CI/(Z9 + £Q7ZI)

N A

zeCI/(Z9 +QZ9)
X
1
X
R, X
Ry x
Y
Ry
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An example withg=1,n=2,€=3

€]

ze€CIJ(Z9 +€QLI) — €z e CI/(Z9 + £Q7ZI)

N A

zeCI/(Z9 +QZ9)

X

1 x
X

R, X

X
Ry x
Y

Ry
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An example withg=1,n=2,€=3

€]

ze€CIJ(Z9 +€QLI) — €z e CI/(Z9 + £Q7ZI)

N A

zeCI/(Z9 +QZ9)
X
1 x
X X
R, X
X
Rl X X
y X
Ry
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Computing isogenies [ ]

o Let A/k be an abelian variety of dimension g over k given in theta
coordinates. Let K c A be a maximal isotropic subgroup of A[£] (£ prime
to 2 and the characteristic). Then we have an algorithm to compute the
isogeny A — A/K.

@ Need O(#K) differential additions in A
+ O(#9) or O(£%9) multiplications = fast.

@ The formulas are rational if the kernel K is rational.

@ Blocking part: compute K = compute all the £-torsion on B.
g = 2: £-torsion, O(€°) vs O(€?) or O(€*) for the isogeny.
@ Theta coordinates are not rationnal.
= Work in level 2.
= Convert back and forth to Mumford coordinates:

4
A—— B

Jac(Cy) > Jac(Cy)



Avisogenies

@ Avisogenies: Magma code written by Bisson, CosseT and R.
@ Released under LGPL 2+.

e Implement isogeny computation (and applications thereof) for abelian
varieties using theta functions.

o Current release o.1: isogenies in genus 2.



Tmplementation

H hyperelliptic curve of genus 2 over k = IF,, J = Jac(H), £ odd prime,
20 A car k = 1. Compute all rational (¢, £)-isogenies ] — Jac(H') (we suppose
the zeta function known):
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Tmplementation

H hyperelliptic curve of genus 2 over k = IF,, J = Jac(H), £ odd prime,
20 A car k = 1. Compute all rational (¢, £)-isogenies ] — Jac(H') (we suppose
the zeta function known):

@ Compute the extension Fy» where the geometric points of the maximal
isotropic kernel of J[£] lives.

© Compute a “symplectic’ basis of J[£](Fy).
@ Find the rational maximal isotropic kernels K.
o

For each kernel K, convert its basis from Mumford to theta coordinates
of level 2. (Rosenhain then Thomae).

@ Compute the other points in K in theta coordinates using differential
additions.

@ Apply the change level formula to recover the theta null point of J/K.
@ Compute the Igusa invariants of J/K (‘‘Inverse Thomae™).

@ Distinguish between the isogeneous curve and its twist.



Computing the right extension

@ ] =Jac(H) abelian variety of dimension 2. y(X) the corresponding zeta
function.

@ Degree of a point of £-torsion | the order of X in F,[X]/x(X).

o If K rational, K (k) ~ (Z/€Z)?, the degree of a point in K | the LCM of
orders of X in F,[X]/P(X) for P | y of degree two.

o Since we are looking to K maximal isotropic, J[€] ~ K & K’ and we know
that P | y is such that y(X) = P(X)P(X) mod € where X = g/X
represents the Verschiebung.

The degree n is < % — 1. If € is totally split in Z[m, 7] then n | € — 1.




Computing the €-torsion

e We want to compute J(Fg.)[€].

@ From the zeta function y(X) we can compute random points in
J(Fgn)[€°° ] uniformly.

o If Pisin J(IFgn)[ €], €™ P € J(IF4n)[€] for a suitable m. This does not
give uniform points of ¢-torsion but we can correct the points obtained.

o Suppose J(Fy:)[£>°] =< Py, P, > with P, of order ¢* and P, of order ¢.

o First random point Q; = P; = we recover the point of ¢-torsion: £.P;.

@ Second random point Q; = aP; + fP,. If a # 0 we recover the point of
¢-torsion a¢P; which is not a new generator.

@ We correct the original point: Q) = Q; — aQ; = SP;.




Weil pairing

@ Used to decompose a point P € J[£] in term of a basis of the £-torsion
(and to construct a symplectic basis).

o The magma implementation is extremely slow in genus 2 for non
degenerate divisors.

@ But since we convert the points in theta coordinates we can use the
pairing in theta coordinates [LR1o0].
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Timings for isogenies computations (€=7)

Jacobian of Hyperelliptic Curve defined by y”2 = t7254%x™6 + t"223*x"5 +
t7255%x™4 + t7318xx"3 + t7668xx"2 + t~543xx + t~538 over GF(3"6)
> time RationallyIsogenousCurvesG2(J,7);
*x Computing 7 -rationnal isotropic subgroups
-- Computing the 7 -torsion over extension of deg 4
!l Basis: 2 points in Finite field of size 3724
-- Listing subgroups
1 subgroups over Finite field of size 3724
-- Convert the subgroups to theta coordinates
Time: 0.060
Computing the 1 7 -isogenies
** Precomputations for 1= 7 Time: 0.180
*x Computing the 7 -isogeny
Computing the 1-torsion Time: 0.030
Changing level Time: 0.210
Time: 0.430
Time: 0.490
[ <[ t7620, t7691, t~477 ], Jacobian of Hyperelliptic Curve defined by
y~2 = t7615%xx™6 + t7224%x"5 + t737xx™4 + t7303+x"3 + t7715%xx"2 + t7128%x
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Timings for isogenies computations (¢=5)

Jacobian of Hyperelliptic Curve defined by y”2 = 39%x™6 + 4*x"5 + 82xx"4
+ 10%xx"3 + 31xx"2 + 39xx + 2 over GF(83)
> time RationallyIsogenousCurvesG2(J,5);
*x Computing 5 -rationnal isotropic subgroups
-- Computing the 5 -torsion over extension of deg 24
Time: 0.940
!l Basis: 4 points in Finite field of size 83724
-- Listing subgroups
Time: 1.170
6 subgroups over Finite field of size 83724
-- Convert the subgroups to theta coordinates
Time: 0.360
Time: 2.630
Computing the 6 5 -isogenies
Time: 0.820
Time: 3.460
[ <[ 36, 69, 38 ], Jacobian of Hyperelliptic Curve defined by
Y2 = 27#xX76 + 63*xx"5 + 5xx"4 + 24xx"3 + 34xx"2 + 6%x + 76 over GF(83)>,

-1
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Timings for isogeny graphs (€=3)

Jacobian of Hyperelliptic Curve defined by y”2 = 41xx™6 + 131%x"5 +
55%x™4 + 57%x”3 + 233xx"2 + 225xx + 51 over GF(271)

time isograph,jacobians:=IsoGraphG2(J,{3}: save_mem:=-1);

Computed 540 isogenies and found 135 curves.

Time: 14.410

@ Core 2 with 4BG of RAM.
o Computing kernels: » 5s.

e Computing isogenies: ~ 7s (Torsion: ~ 2s, Changing level: » 3.5s.)
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Going further (€ =53)

Jacobian of Hyperelliptic Curve defined by y"2 = 97%xx"6 + 77*x"5 +
62%x™4 + 14xx"3 + 33%xx™2 + 18xx + 40 over GF(113)
> time RationallyIsogenousCurvesG2(J,53);
*x Computing 53 -rationnal isotropic subgroups
-- Computing the 53 -torsion over extension of deg 52 Time: 8.610
!l Basis: 3 points in Finite field of size 113752
-- Listing subgroups Time: 1.210
2 subgroups over Finite field of size 113752
-- Convert the subgroups to theta coordinates Time: 0.100
Time: 9.980
Computing the 2 53 -isogenies
**x Precomputations for 1= 53 Time: 0.240
*x Computing the 53 -isogeny
Computing the 1-torsion Time: 7.570
Changing level Time: 1.170

Time: 8.840
*x Computing the 53 -isogeny
Time: 8.850

Time: 27.950
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Going further (€=19)

Jacobian of Hyperelliptic Curve defined by y”2 = 194xx"6 + 554*x™5 +
606+x™4 + 523xx"3 + 642xx"2 + 566*xx + 112 over GF(859)
> time RationallyIsogenousCurvesG2(J,19);
**x Computing 19 -rationnal isotropic subgroups (extension degree 18)
Time: 0.760
Computing the 2 19 -isogenies
**x Precomputations for 1= 19 Time: 11.160
*+x Computing the 19 -isogeny
Computing the 1-torsion Time: 0.250
Changing level Time: 18.590
Time: 18.850
«+ Computing the 19 -isogeny
Computing the 1-torsion Time: 0.250
Changing level Time: 18.640
Time: 18.900
Time: 51.060
[ <[ 341, 740, 389 ], Jacobian of Hyperelliptic Curve defined by y~2 = 72
680xx™5 + 538xx™4 + 613*x"3 + 557*x"2 + 856*x + 628 over GF(859)>,

]
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A record isogeny computation! (¢ =1321)

@ ] Jacobian of y* = x° + 41691x" + 24583x” + 2509x” + 15574x over Fyi79.
o #/=2"1321°.

> time RationallyIsogenousCurvesG2(J,1321:ext _degree:=1);
*x Computing 1321 -rationnal isotropic subgroups
Time: 0.350
Computing the 1 1321 -isogenies
**x Precomputations for 1= 1321
Time: 1276.950
*x Computing the 1321 -isogeny
Computing the 1-torsion
Time: 1200.270
Changing level
Time: 1398.780
Time: 5727.250
Time: 7004.240
Time: 7332.650
[ <[ 9448, 15263, 31602 ], Jacobian of Hyperelliptic Curve defined by
y*2 = 33266*x™6 + 20155*x™5 + 31203*x"4 + 9732%x"3 +
4204xx~2 + 18026*x + 29732 over GF(42179)> ]

e D i om et A D A LCDANS






Tsogeny graphs: € = 19, = Q1QQQ; (Q ~ Ko~ K)
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Tsogeny graphs: £ = g = QQ (Q~ Ko~ K)
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Tsogeny graphs: € = q1q; = Qlang (Q+ Ky~ K)
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Tsogeny graphs: £ = g* = QXQ’ (Q+~ Ko~ K)
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Tsogeny graphs: € = g* = Q* (Q+~ Ko~ K)

O—o
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Non maximal isogeny graphs (€ = g = QQ)
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Non maximal isogeny graphs (€ = g = QQ)
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Non maximal isogeny graphs (€ = q1q; = Q1Q,Q,Q2)
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Non maximal isogeny graphs (€ = q = Q?)
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Non maximal isogeny graphs (€ = q = Q?)
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Applications and perspectives

e Computing endomorphism ring. Generalize [BSog] to higher genus,
work by BissoN.

o Class polynomials in genus 2 using the CRT. If K is a CM field and J/F, is
such that End(J) ®z Q = K, use isogenies to find the Jacobians whose
endomorphism ring is Ox. Work by LAUTER+R.

@ Modular polynomials in genus 2 using theta null points: computed by
GRUENEWALD using analytic methods for £ = 3.

@ Isogenies using rational coordinates? Work by SMITH using the geometry
of Kummer surfaces for € = 3 (g = 2). CasseLs and FLYNN: modification
of theta coordinates to have rational coordinates on hyperelliptic curves
of genus 2.

e How to compute (#,1)-isogenies in genus 2?

@ Look at g = 3 (associate theta coordinates to the Jacobian of a non
hyperelliptic curve).



Thank you for your attention!
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