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Abelian varieties and cryptography Discrete logarithm in cryptography

Discrete logarithm

Definition (DLP)
Let G = ⟨⟩ be a cyclic group of prime order. Let x ∈ N and h = x .The discrete
logarithm log(h) is x.

Exponentiation: O(log p). DLP: Õ(√p) (in a generic group).
⇒ Public key cryptography
⇒ Signature
⇒ Zero knowledge

G = F∗p : sub-exponential attacks.
⇒ Use G = A(Fq) where A/Fq is an abelian variety for the DLP.
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Abelian varieties and cryptography Discrete logarithm in cryptography

Pairing-based cryptography

Definition
A pairing is a bilinear application e ∶ G1 ×G1 → G2.

Identity-based cryptography [BF03].
Short signature [BLS04].
One way tripartite Diffie–Hellman [Jou04].
Self-blindable credential certificates [Ver01].
Attribute based cryptography [SW05].
Broadcast encryption [Goy+06].

Example
The Weil and Tate pairings on abelian varieties are the only known examples of
cryptographic pairings.
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Abelian varieties and cryptography Discrete logarithm in cryptography

Security of abelian varieties

 # points DLP

1 O(q) Õ(q1/2)
2 O(q2) Õ(q)

3 O(q3) Õ(q4/3) (Jacobian of hyperelliptic curve)
Õ(q) (Jacobian of non hyperelliptic curve)

 O(q) Õ(q2−2/)
 > log(q) L1/2(q)= exp(O(1) log(x)1/2 log log(x)1/2)

Security of the DLP

Weak curves (MOV attack, Weil descent, anomal curves).
⇒ Public-key cryptography with the DLP: Elliptic curves, Jacobian of hyperelliptic

curves of genus 2.
⇒ Pairing-based cryptography: Abelian varieties of dimension  ⩽ 4.
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Õ(q) (Jacobian of non hyperelliptic curve)

 O(q) Õ(q2−2/)
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Abelian varieties and cryptography Isogenies

Isogenies

Definition
A (separable) isogeny is a finite surjective (separable) morphism between two Abelian
varieties.

Isogenies = Rational map + group morphism + finite kernel.

Isogenies⇔ Finite subgroups.

( f ∶ A→ B)↦ Ker f
(A→ A/H)↤ H

Example:Multiplication by ℓ (⇒ ℓ-torsion), Frobenius (non separable).
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Abelian varieties and cryptography Isogenies

Cryptographic usage of isogenies

Transfert the DLP from one Abelian variety to another.

Point counting algorithms (ℓ-adic or p-adic)⇒ Verify a curve is secure.

Compute the class field polynomials (CM-method)⇒ Construct a secure curve.

Compute the modular polynomials⇒ Compute isogenies.

Determine End(A)⇒ CRT method for class field polynomials.
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Theta functions Theta coordinates

Complex abelian varieties and theta functions of level n

(ϑ i)i∈Z(n): basis of the theta functions of level n. (Z(n) := Z/nZ)
⇔ A[n] = A1[n]⊕ A2[n]: symplectic decomposition.

(ϑ i)i∈Z(n) = {
coordinates system n ⩾ 3
coordinates on the Kummer variety A/ ± 1 n = 2

Theta null point: ϑ i(0)i∈Z(n) = modular invariant.

Example (k = C)
Abelian variety over C: A = C/ (Z +ΩZ); Ω ∈H(C) the Siegel upper half space
(Ω symmetric, ImΩ positive definite).

ϑ i := Θ [ 0
i/n ] (z, Ω/n).

Damien Robert (LFANT) Abelian varieties, theta functions and cryptography 08/12/2010 (Bordeaux) 10 / 31



Theta functions Constructing theta functions

Jacobian of hyperelliptic curves

C ∶ y2 = f (x), hyperelliptic curve of genus . (deg f = 2 − 1)

Divisor: formal sum D = ∑ n iPi ,
degD = ∑ n i .

Pi ∈ C(k).

Principal divisor:∑P∈C(k) vP( f ).P; f ∈ k(C).

Jacobian of C =Divisors of degree 0 modulo principal divisors + Galois action
=Abelian variety of dimension .

Divisor class D⇒ unique representative (Riemann–Roch):

D =
k

∑
i=1
(Pi − P∞) k ⩽ , symmetric Pi ≠ Pj

Mumford coordinates: D = (u, v)⇒ u =∏(x − x i), v(x i) = y i .
Cantor algorithm: addition law.
Thomae formula: convert between Mumford and theta coordinates of level 2 or 4.
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Theta functions Constructing theta functions

The modular space of theta null points of level n (car k ∤ n)

Theorem (Mumford)
The modular spaceMn of theta null points is:

∑
t∈Z(2)

ax+tay+t ∑
t∈Z(2)

au+tav+t = ∑
t∈Z(2)

ax′+tay′+t ∑
t∈Z(2)

au′+tav′+t ,

with the relations of symmetry ax = a−x .

Abelian varieties with a n-structure = open locus ofMn .
If (au)u∈Z(n) is a valid theta null point, the corresponding abelian variety is given
by the following equations in Pn −1

k :

∑
t∈Z(2)

Xx+tXy+t ∑
t∈Z(2)

au+tav+t = ∑
t∈Z(2)

Xx′+tXy′+t ∑
t∈Z(2)

au′+tav′+t .
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Theta functions Riemann relations

The differential addition law (k = C)

( ∑
t∈Z(2)

χ(t)ϑ i+t(x + y)ϑ j+t(x − y)).( ∑
t∈Z(2)

χ(t)ϑk+t(0)ϑ l+t(0)) =

( ∑
t∈Z(2)

χ(t)ϑ−i′+t(y)ϑ j′+t(y)).( ∑
t∈Z(2)

χ(t)ϑk′+t(x)ϑ l ′+t(x)).

where χ ∈ Ẑ(2), i , j, k, l ∈ Z(n)
(i′ , j′ , k′ , l ′) = A(i , j, k, l)

A = 1
2

⎛
⎜⎜⎜
⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎟
⎠
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Arithmetic

Arithmetic with low level theta functions (car k ≠ 2)

Mumford Level 2 Level 4[Lan05] [Gau07]
Doubling 34M + 7S 7M + 12S + 9m0 49M + 36S + 27m0Mixed Addition 37M + 6S

Multiplication cost in genus 2 (one step).

Montgomery Level 2 Jacobians Level 4
Doubling 5M + 4S + 1m0 3M + 6S + 3m0

3M + 5S 9M + 10S + 5m0Mixed Addition 7M + 6S + 1m0

Multiplication cost in genus 1 (one step).
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Arithmetic

Arithmetic with high level theta functions [LR10a]

Algorithms for
Additions and differential additions in level 4.
Computing P ± Q in level 2 (need one square root). [LR10b]
Fast differential multiplication.

Compressing coordinates O(1):
Level 2n theta null point⇒ 1 + ( + 1)/2 level 2 theta null points.
Level 2n⇒ 1 +  level 2 theta functions.

Decompression: n differential additions.
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Pairings Miller algorithm

Pairings on abelian varieties

E/k: elliptic curve.
Weil pairing: E[ℓ] × E[ℓ]→ µℓ .

P,Q ∈ E[ℓ]. ∃ fℓ ,P ∈ k(E), ( fℓ ,P) = ℓ(P − 0E).

eW ,ℓ(P,Q) =
fℓ ,P(Q − 0E)
fℓ ,Q(P − 0E)

.

Tate pairing: eT ,ℓ(P,Q) = fℓ ,P(Q − 0E).

Miller algorithm: pairing with Mumford coordinates.
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Pairings Pairings with theta coordinates

TheWeil and Tate pairing with theta coordinates [LR10b]

P and Q points of ℓ-torsion.

0A P 2P . . . ℓP = λ0P0A

Q P ⊕ Q 2P + Q . . . ℓP + Q = λ1PQ

2Q P + 2Q

. . . . . .

ℓQ = λ0Q0A P + ℓQ = λ1QP

eW ,ℓ(P,Q) =
λ1P λ

0
Q

λ0P λ
1
Q
.

eT ,ℓ(P,Q) = λ1P
λ0P
.

Damien Robert (LFANT) Abelian varieties, theta functions and cryptography 08/12/2010 (Bordeaux) 19 / 31



Pairings Pairings with theta coordinates

Comparison withMiller algorithm

 = 1 7M + 7S + 2m0
 = 2 17M + 13S + 6m0

Tate pairing with theta coordinates, P,Q ∈ A[ℓ](Fqd ) (one step)

Miller Theta coordinates

Doubling Addition One step

 = 1 d even 1M + 1S + 1m 1M + 1m 1M + 2S + 2md odd 2M + 2S + 1m 2M + 1m

 = 2
Q degenerate +
denominator elimination 1M + 1S + 3m 1M + 3m 3M + 4S + 4m
General case 2M + 2S + 18m 2M + 18m

P ∈ A[ℓ](Fq), Q ∈ A[ℓ](Fqd ) (counting only operations in Fqd ).
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Isogenies

Explicit isogeny computation

Given an isotropic subgroup K ⊂ A(k) compute the isogeny A↦ A/K. (Vélu’s
formula.)
Given an abelian variety compute all the isogeneous varieties. (Modular
polynomials.)
Given two isogeneous abelian variety A and B find the isogeny A↦ B. (Clever use
of Vélu’s formula⇒ SEA algorithm).
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Isogenies Computing isogenies in genus 1

Vélu’s formula

Theorem
Let E ∶ y2 = f (x) be an elliptic curve and G ⊂ E(k) a finite subgroup. Then E/G is given
by Y 2 = (X) where

X(P) = x(P) + ∑
Q∈G∖{0E}

x(P + Q) − x(Q)

Y(P) = y(P) + ∑
Q∈G∖{0E}

y(P + Q) − y(Q)

Uses the fact that x and y are characterised in k(E) by

v0E (x) = −2 vP(x) ⩾ 0 if P ≠ 0E
v0E (y) = −3 vP(y) ⩾ 0 if P ≠ 0E

y2/x3(0E) = 1

No such characterisation in genus  ⩾ 2.
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Isogenies Isogenies by going down in the level

The isogeny theorem

Theorem (Mumford)
Let ℓ ∧ n = 1, and ϕ ∶ Z(n)→ Z(ℓn), x ↦ ℓ.x be the canonical embedding.
Let K0 = A[ℓ]2 ⊂ A[ℓn]2.
Let (ϑA

i )i∈Z(ℓn) be the theta functions of level ℓn on A = C/(Z +ΩZ).
Let (ϑB

i )i∈Z(n) be the theta functions of level n of B = A/K0 = C/(Z + Ω
ℓ Z

).
We have:

(ϑB
i (x))i∈Z(n) = (ϑA

ϕ(i)(x))i∈Z(n)

Example
π ∶ (x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 , x11)↦ (x0 , x3 , x6 , x9) is a 3-isogeny between
elliptic curves.
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Isogenies Isogenies by going up in the level

The contragredient isogeny [LR10a]

y ∈ B

z ∈ A

π̂

x ∈ A

π

[ℓ]
Let π ∶ A → B be the isogeny associated to
(a i)i∈Z(ℓn). Let y ∈ B and x ∈ A be one of the ℓ

antecedents. Then

π̂(y) = ℓ.x
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Isogenies Isogenies in the same level

Changing level without taking isogenies

Theorem (Koizumi-Kempf)
Let L be the space of theta functions of level ℓn and L′ the space of theta functions of
level n.
Let F ∈r (Z) be such that tFF = ℓ Id, and f ∶ Ar → Ar the corresponding isogeny.

We have L = f ∗L′ and the isogeny f is given by

f ∗(ϑL
′

i1 ⋆ . . . ⋆ ϑ
L′
ir ) = λ ∑
( j1 , . . . , jr)∈K1(L′)×. . .×K1(L′)

f ( j1 , . . . , jr)=(i1 , . . . , ir)

ϑLj1 ⋆ . . . ⋆ ϑ
L
jr

F = ( 1 −1
−1 1 ) give the Riemann relations. (For general ℓ, use the quaternions.)

⇒ Go up and down in level without taking isogenies [Cosset+R].
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Isogenies Isogenies in the same level

Changing level and isogenies

Corollary
Let A = C/(Z +ΩZ) and B = C/(Z + ℓΩZ). We can express the isogeny
A→ B, z ↦ ℓz of kernel K = 1

ℓZ
/Z in term of the theta functions of level n on A and B:

ϑ [ 0i1 ] (ℓz, ℓ
Ω
n
)ϑ [ 0i2 ] (0, ℓ

Ω
n
) . . . ϑ [ 0ir ] (0, ℓ

Ω
n
) =

∑
t1 , . . . ,tr∈K

F(t1 , . . . ,tr)=(0,. . . ,0)

ϑ [ 0j1 ] (X1 + t1 ,
Ω
n
) . . . ϑ [ 0jr ]

L (Xr + tr ,
Ω
n
),

where X = F−1(ℓz, 0, . . . , 0).

Remark
We compute the coordinates ϑ [ 0j i ] (X i + t i , Ωn ) not in A but in C thanks to the
differential additions.
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Isogenies Isogenies in the same level

A complete generalisation ofVélu’s algorithm [Cosset+R]

Compute the isogeny B → Awhile staying in level n.
O(ℓ) differential additions + O(ℓ) or O(ℓ2 for the changing level.
The formulas are rational if the kernel K is rational.

Blocking part: compute K⇒ compute all the ℓ-torsion on B.
 = 2: ℓ-torsion, Õ(ℓ6) vs O(ℓ2) or O(ℓ4) for the isogeny.

⇒ Work in level 2.
⇒ Convert back and forth to Mumford coordinates:

B A

Jac(C1) Jac(C2)

π̂
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Perspectives

TheAGM and canonical lifts

The elliptic curves En ∶ y2 = x(x − a2n)(x − b2n) converges overQ2α to the
canonical lift of (E0)F2α [Mes01], where (an)n∈N, (bn)n∈N satisfy the Arithmetic
Geometric Mean:

an+1 =
an + bn

2
bn+1 =

√
anbn

Generalized in all genus by looking at theta null points [Mes02].
Generalized in arbitrary characteristic p by [CL08] by looking at modular relations
of degree p2 on theta null points.

⇒ Point counting.
⇒ Class polynomials.
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Perspectives

Some perspectives

Improve the pairing algorithm (Ate pairing,optimal ate).
Characteristic 2 [GL09].
A SEA-like algorithm in genus 2?
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