
On the CRT method to compute class polynomials

in genus 2

Réunion CHIC

Kristin Lauter1,Damien Robert1

1
Microsoft Research

2
INRIA Bordeaux Sud-Ouest

06/12/2010 (Paris)



Class polynomials Speeding up the CRT Examples

Class polynomials

• Let K be a primitive CM field of degree 4: K is a totally imaginary

quadratic extension of a totally real field K0. (K is then cyclic Galois, or

dihedral.)

• The class polynomials H1 , Ĥ2 , Ĥ3 parametrize the Igusa invariants of

Jacobians J whose endomorphism rings is isomorphic to OK , the

maximal ring of K.
These Jacobians are defined over (a subfield of) the Hilbert class field

HKr of the reflex class field Kr of K.
• IfP is a prime of good reduction in HKr , the typenorm ofP give the

Frobenius polynomial of JP.

⇒ select p ∈ Z of cryptographic size such that #JFp is prime.

⇒ Reduce H1 , Ĥ2 , Ĥ3 modulo p to find JFp .



Class polynomials Speeding up the CRT Examples

Constructing class polynomials

• Analytic method: compute the Igusa invariants in C with sufficient

precision to recover the class polynomials.

• p-adic lifting: lift the Igusa invariants inQp with sufficient precision to

recover the class polynomials (require specific splitting behavior of p in
K).

• CRT: compute the class polynomials modulo small primes, and use the

CRT to reconstruct the class polynomials.

Remark
In genus 1, all these methods are quasi-linear in the size of the output⇒
computation bounded by memory. But we can construct directly the class
polynomials modulo p with the explicit CRT.



Class polynomials Speeding up the CRT Examples

Review of the CRT algorithm

1. Select a prime p.
2. For each Jacobian J in the p3 isomorphic classes:

2.1 Check if J is in the right isogeny class by computing the characteristic

polynomial of the Frobenius (do some trial tests to check for #J before).
2.2 Check if End(J) = OK .

3. From the invariants of the maximal curves, reconstruct H i mod p.

Remark
Algorithm developed in genus 2 by Eisenträger, Freeman and Lauter, with
ameliorations from Bröker, Gruenewald and Lauter by using the
(3, 3)-Galois action.



Class polynomials Speeding up the CRT Examples

Selecting the prime p

• Usual method: find a prime p that splits completely into principal ideals

in Kr , and splits completely in K.
• But we only need the typenorm of the ideals in Kr above p to be principal
ideals.

⇒ We can work with more prime!

⇒ And the typenorm are generated by the frobenius!



Class polynomials Speeding up the CRT Examples

Checking if a curve is maximal

• Let J be the Jacobian of a curve in the right isogeny class.Then

Z[π, π] ⊂ End(J) ⊂ OK .

• Let γ ∈ OK/Z[π, π]. We want to check if γ ∈ End(J).
• Suppose that (OK ∶ Z[π, π]) is prime to p. We then have

γ ∈ End(J)⇔ pγ ∈ End(J).
• Let n be the smallest integer thus that nγ ∈ Z[π, π]. Since
(Z[π, π] ∶ Z[π]) = p, we can write npγ = P(π).

• Then γ ∈ End(J)⇔ P(π) = 0 on J[n].
• In practice: compute J[ℓd] for ℓd ∣ (OK ∶ Z[π, π]) and check the action

of the generators of OK on it.

Remark
If 1, α, β, γ are generators of OK as a Z-module, it can happen that γ = P(α, β),
so that we don’t need to check that γ ∈ End(J).



Class polynomials Speeding up the CRT Examples

Field of definition of the ℓd-torsion

Proposition

• The geometric points of J[ℓd] are defined over Fpαd ⇔ παd − 1 ∈ ℓd End(J).

• αd ∣ α1ℓd−1. If End(J) = OK this is an equality: αd = α1ℓd−1.

Corollary

Let α be thus that πα
− 1 ∈ ℓOK . We first check that (πα

− 1)/ℓ is an element of
End(J) (⇔ J[ℓ] defined over Fpα ).Then J[ℓd] is defined over Fpαℓd−1 .

Remark
It may happen that we get a factor two on the degrees by working over the twist:
that is by working with −π.



Class polynomials Speeding up the CRT Examples

Computing the ℓd-torsion

• We compute #J(Fpαd ) = ℓβc.
• If P0 is a random point of J(Fpα), then P = cP0 is a random point of

ℓ∞-torsion, and P multiplied by a suitable power of ℓ is a random point

of ℓd-torsion.
• Usual method: take a lot of random points of ℓd-torsion, and hope they

generate it over Fpαd .

• Problems: the random points of ℓd-torsion are not uniform⇒ require a

lot of random points, and the result is probabilistic.

• Our solution: Compute the whole ℓ∞-torsion. ‘‘Correct’’ points to find
uniform points of ℓd-torsion. Use pairings to save memory.

⇒ We can check if a curve is maximal faster.

⇒ We can abort early.



Class polynomials Speeding up the CRT Examples

Obtaining all the maximal curves

• If J is a maximal curve, and ℓ does not divide (OK ∶ Z[π, π]), then any

(ℓ, ℓ)-isogenous curve is maximal.

• The maximal Jacobians form a principal homogeneous space under the

Shimura class group C(OK) = {(I, ρ) ∣ II = (ρ) and ρ ∈ K+0 }.
• (ℓ, ℓ)-isogenies between maximal Jacobians correspond to element of the

form (I, ℓ) ∈ C(OK). We can use the structure of C(OK) to determine

the number of new curves we will obtain with (ℓ, ℓ)-isogenies.
⇒ Don’t compute unneeded isogenies.

• It can be faster to compute (ℓ, ℓ)-isogenies with ℓ ∣ (OK ∶ Z[π, π]) to
find new maximal Jacobians when ℓ and valℓ((OK ∶ Z[π, π])) is small.



Class polynomials Speeding up the CRT Examples

“Going up”

• There is p3 classes of isomorphic curves, but only a very small number

(#C(OK)) with End(J) = OK .

• But there is at most 16p3/2 isogeny class.
⇒ On average, there is ≈ p3/2 curves in a given isogeny class.

⇒ If we have a curve in the right isogeny class, try to find isogenies giving a

maximal curve!



Class polynomials Speeding up the CRT Examples

An algorithm for “going up”

1. Let γ ∈ OK ∖ End(J). We can assume that ℓ∞γ ∈ Z[π, π].
2. Let d be the minimum such that γ(J[ℓd]) ≠ {0}, and let K = γ(J[ℓd]).

By definition, K ⊂ J[ℓ].
3. We compute all (ℓ, ℓ)-isogeneous Jacobians J′ where the kernel intersect

K. Keep J′ if #γ(J′[ℓd]) < #K (and be careful to prevent cycles).

• First go up for γ = (πα
− 1)/ℓ: this minimize the extensions we have to

work with.

• It is not always possible to go up. We would need more general isogenies

than (ℓ, ℓ)-isogenies. Most frequent case: we can’t go up because there is

no (ℓ, ℓ)-isogenies at all! (And we can detect this).



Class polynomials Speeding up the CRT Examples

Sieving the primes
• We throw a prime p for the CRT if detecting if a curve is maximal is too

costly, or there is not enough curves where we can ‘‘go up’’.

• How to estimate this number?

1. Compute the lattice of orders between Z[π, π] and OK . For all such order O
such that (OK ∶ O) is not divisible by any ℓ where there is no (ℓ, ℓ)-isogeny,
compute C(O).
This is too costly! (Even computing Pic(Z[π, π]) is too costly!)

2. Compute

#C(Z[π, π]) = c(OK ∶ Z[π, π])#Cl(OK)Reg(OK)(Ô∗K ∶ Ẑ[π, π]∗)
2#Cl(Z[π + π])Reg(Z[π + π])

and estimate the number of curves as

∑
d ∣#C(Z[π ,π])

d

(for d not divisible by a ℓ where we can’t go up).

• We use a dynamic approach: if a prime discarded is now better than the

current prime, go back to this prime.



Class polynomials Speeding up the CRT Examples

Exploring the curves

1. Go sequentially through the p3 Igusa invariants j1 , j2 , j3. But
constructing the curve from the invariants is costly.

2. Construct random curves in Weierstrass form

y2 = a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 .

3. If the two torsion is rational (check where π−1
2

live), construct curves in

Rosenhain form

y2 = x(x − 1)(x − λ)(x − µ)(x − ν).

4. If the Hilbert moduli space is rational, construct the j-invariants from the

Gundlach invariants (only p2 invariants, parametrizing the space of

curves with real multiplication by K0).



Class polynomials Speeding up the CRT Examples

p l d αd # Curves Estimate Time (old) Time (new)

7 22 4 7 8 0.5 + 0.3 0 + 0.2

17 2 1 39 32 4 + 0.2 0 + 0.1

23 22 , 7 4, 3 49 51 9 + 2.3 0 + 0.2

71 22 4 7 8 255 + 0.7 5.3 + 0.2

97 2 1 39 32 680 + 0.3 2 + 0.1

103 22 , 17 4, 16 119 127 829 + 17.6 0.5 + 1

113 25 , 7 16, 6 1281 877 1334 + 28.8 0.2 + 1.3

151 22 , 7, 17 4, 3, 16 - - 0 0

3162s 13s

Computing the class polynomial for K = Q(i
√
2 +
√
2), C(OK) = {0}.

H1 = X − 1836660096, H2 = X − 28343520, H3 = X − 9762768



Class polynomials Speeding up the CRT Examples

p l d αd # Curves Estimate Time (old) Time (new)

29 3, 23 2, 264 - - - -

53 3, 43 2, 924 - - - -

61 3 2 9 6 167 + 0.2 0.2 + 0.5

79 33 18 81 54 376 + 8.1 0.3 + 0.9

107 32 , 43 6, 308 - - - -

113 3, 53 1, 52 159 155 1118 + 137.2 0.8 + 25

131 32 , 53 6, 52 477 477 1872 + 127.4 2.2 + 44.4

139 35 81 ? 486 - 1 + 36.7

157 34 27 243 164 3147 + 16.5 -

6969s 114s

Computing the class polynomial for K = Q(i
√
13 + 2

√
29), C(OK) = {0}.

H1 = X − 268435456, H2 = X + 5242880, H3 = X + 2015232.



Class polynomials Speeding up the CRT Examples

Checking if a curve is maximal

• Let H ∶ y2 = 80x6 + 51x5 + 49x4 + 3x3 + 34x2 + 40x + 12 over F139 and J
the Jacobian of H. We have End(J)⊗Q = Q(i

√

13 + 2
√

29) and we want

to check if End(J) = OK .

• For that we need to compute J[35], that lives over an extension of degree

81 (for the twist it lives over an extension of degree 162).

• With the old randomized algorithm, this computation takes 470 seconds

(with 12 Frobenius trials over F139162 ).

• With the new algorithm computing the ℓ∞-torsion, it only takes
17.3 seconds (needing only 4 random points over F13981 , approx 4 seconds

needed to get a new random point of ℓ∞-torsion).



Class polynomials Speeding up the CRT Examples

p l d αd # Curves Estimate Time (old) Time (new)

7 - - 1 1 0.3 0 + 0.1

23 13 84 15 2 (16) 9 + 70.7 0.4 + 24.6

53 7 3 7 7 105 + 0.5 7.7 + 0.5

59 2, 5 1, 12 322 48 (286) 164 + 6.4 1.4 + 0.6

83 3, 5 4, 24 77 108 431 + 9.8 2.4 + 1.1

103 67 1122 - - - -

107 7, 13 3, 21 105 8 (107) 963 + 69.3 -

139 52 , 7 60, 2 259 9 (260) 2189 + 62.1 -

181 3 1 161 135 5040 + 3.6 4.5 + 0.2

197 5, 109 24, 5940 - - - -

199 52 60 37 2 (39) 10440 + 35.1 -

223 2, 23 1, 11 1058 39 (914) 10440 + 35.1 -

227 109 1485 - - - -

233 5, 7, 13 8, 3, 28 735 55 (770) 11580 + 141.6 88.3 + 29.4

239 7, 109 6, 297 - - - -

257 3, 7, 13 4, 6, 84 1155 109 (1521) 17160 + 382.8 -

313 3, 13 1, 14 ? 146 (2035) - 165 + 14.7

373 5, 7 6, 24 ? 312 - 183.4 + 3.8

541 2, 7, 13 1, 3, 14 ? 294 (4106) - 91 + 5.5

571 3, 5, 7 2, 6, 6 ? 1111 (6663) - 96.6 + 3.1

56585s 114s

Computing the class polynomial for K = Q(i
√
29 + 2

√
29), C(OK) = {0}.

(The new algorithm also skipped the primes 277, 281, 349, 397, 401, 431, 487, 509, 523.)

H1 = 244140625X − 2614061544410821165056



Class polynomials Speeding up the CRT Examples

Checking if a curve is maximal (2)

• Let H ∶ y2 = 10x6 + 57x5 + 18x4 + 11x3 + 38x2 + 12x + 31 over F59 and J
the Jacobian of H. We have End(J)⊗Q = Q(i

√

29 + 2
√

29) and we

want to check if End(J) = OK .

• OK is generated as a Z-module by 1, α, β, γ. α is of index 2 in

OK/Z[π, π], β of index 4 and γ of index 40.
• So the old algorithm will check J[23] and J[5].
• But OK = Z2[π, π, α], so we only need to check J[2] and J[5].



Class polynomials Speeding up the CRT Examples

CRT for non principal fields

• K = Q(X)/(X4
+ 238X2

+ 833). C(K) ≃ Z/2Z is generated by

(7, 7)-isogenies.

• Primes used: 19 , 59 , 67, 83, 149, 191, 223, 229, 239, 257, 349, 463, 557, 613,

661, 733, 859, 1039, 1373, 1613, 1657, 1667, 1733, 1753, 1801, 1871, 1879, 2399,

3449, 3469, 3761, 3931, 4259, 4691, 5347, 5381, 6427, 6571, 6781.

• For p ≈ 6000, we keep p if we expect more than
p3/2

32
≈ 15 × 106 curves. At

this size, it takes around 6 seconds to test 10000 curves, so around 2.5

hours are needed for p.
• Total time: 44062 second (not the latest version of the code).

• Class polynomials:

H1(X) = 168451200633545364243594910146286907316572281862280871005795423612829696X2

+158582528695513934970693031198523489269724119094630145672062735632518026507497890643968X
−2014843977961649893357675219372115899170378669590465187558574259942250352955092541374464.



Class polynomials Speeding up the CRT Examples

• K = Q(X)/(X4
+ 185X2

+ 8325). C(K) ≃ Z/10Z is generated by

(3, 3)-isogenies (generating a subgroup ≃ Z/5Z) and (5, 5)-isogenies
(generating a subgroup ≃ Z/2Z).

• Primes used for now: 263, 271, 317, 337, 397, 641, 941, 1103, 11699, 1259,

2293, 2341, 2393, 2803, 3203, 3319, 3919, 6151, 6367, 7669, 7759, 9949.

• Time currently spent: ≈ 150000 seconds.

We have ≈ 216 bits of precision, but the denominator are of size ≈ 588 bits.

• Current class polynomials:

H1 = −21480611542361762508723557468335461542930690217345422101435707227X
10

+ 131226723395697728046645744735668338577537209903840153167551282021X9

+ 119945977255497733218873710360493249341055938181798936596623683383X8

− 153714213780179060368348234170174803289200899482268520878793209046X7

+ 62638744793599939793495892285517701303753967578884386663315225591X6

− 93677816446063314842418364580720430581350319726187642792340508326X5

− 71691842165741338225610186297897317814938228092904998616608265551X4

+ 136981527112264611043485159784332306015708502624769592116848181204X3

− 39477010352126860185603010004604642269566979659155934331715153441X2

− 151371452252448694646593117087635298316650526995194471928188077417X
− 36993265717589384804067106436837614321682950101513031994455394382.



Class polynomials Speeding up the CRT Examples

The dihedral case

• There are two CM types.

• A prime p which is nice for one CM type may be bad for the other. But

we can’t distinguish the CM types overQ.

• However we can over K0, if p = q1q2 in K0, then one CM type

correspond to the reduction modulo a prime in the class field above q1,
and the other to a prime above q2. By doing the CRT on q i , we keep track

of this CM type.

• The class polynomials over K0 splits into polynomials given by the action

of the type norm. It is easy to compute the orbits modulo p, but how de

we paste them together?

• One solution would be to use the ‘‘trace trick’’ from Enge and Sutherland

(or directly compute the trace via analytic methods).

• Last idea: compute some class polynomials H′2, H′3 (needing less
precision) to help compute the interpolation polynomials Ĥ2, Ĥ3.


	Class polynomials
	Speeding up the CRT
	Examples

