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Discrete logarithm

Definition (DLP)

Let G = 〈g 〉 be a cyclic group of prime order. Let x �N and h = g x . The
discrete logarithm logg (h) is x .

Exponentiation: O(log p ). DLP: eO(pp ) (in a generic group).

⇒ Usual tools of public key cryptography: asymmetric encryption,
signature, zero-knowledge, PRNG…

G =F∗p : sub-exponential attacks.

⇒ Find secure groups with efficient law, compact representation.
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base
field k .

Abelian variety = points on a projective space (locus of
homogeneous polynomials) + an abelian group law given by
rational functions.

⇒ Use G = A(k ) with k =Fq for the DLP.

⇒ Pairing-based cryptography with the Weil or Tate pairing.
(Identity-based cryptography, Short signature, One way tripartite
Diffie–Hellman, Self-blindable credential certificates, Attribute
based cryptography, Broadcast encryption…)
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Elliptic curves

Definition (car k ̸= 2, 3)

E : y 2 = x 3+a x +b . 4a 3+27b 2 ̸= 0.

An elliptic curve is a plane curve of genus 1.

Elliptic curves = Abelian varieties of dimension 1.
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Jacobian of hyperelliptic curves

C : y 2 = f (x ), hyperelliptic curve of genus g . (deg f = 2g +1)

Divisor: formal sum D =
∑

n i Pi ,
deg D =
∑

n i .
Pi �C (k ).

Principal divisor:
∑

P�C (k ) vP ( f ).P; f � k (C ).
Jacobian of C =Divisors of degree 0 modulo principal divisors

+ Galois action
= Abelian variety of dimension g .

Divisor class D ⇒ unique representative (Riemann–Roch):

D =
k
∑

i=1

(Pi −P∞) k ¶ g , symmetric Pi ̸= Pj

Mumford coordinates: D = (u , v ) ⇒ u =
∏

(x −x i ), v (x i ) = yi .

Cantor algorithm: addition law.
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Example of the addition law in genus 2
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Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism
between two Abelian varieties.

Isogenies = Rational map + group morphism + finite kernel.

Isogenies⇔ Finite subgroups.

( f : A→ B ) 7→Ker f

(A→ A/H ) 7→H

Example: Multiplication by ℓ (⇒ ℓ-torsion), Frobenius (non
separable).
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Cryptographic usage of isogenies

Transfer the DLP from one Abelian variety to another.

Point counting algorithms (ℓ-adic or p -adic) ⇒ Verify a curve is
secure.

Compute the class field polynomials (CM-method) ⇒ Construct a
secure curve.

Compute the modular polynomials ⇒ Compute isogenies.

Determine End(A) ⇒ CRT method for class field polynomials.
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Vélu’s formula

Theorem

Let E : y 2 = f (x ) be an elliptic curve and G ⊂ E (k ) a finite subgroup. Then
E/G is given by Y 2 = g (X ) where

X (P) = x (P)+
∑

Q�G \{0E }

(x (P +Q)−x (Q))

Y (P) = y (P)+
∑

Q�G \{0E }

�

y (P +Q)− y (Q)
�

.

Uses the fact that x and y are characterised in k (E ) by

v0E (x ) =−2 vP (x )¾ 0 if P ̸= 0E

v0E (y ) =−3 vP (y )¾ 0 if P ̸= 0E

y 2/x 3(0E ) = 1

No such characterisation in genus g ¾ 2 for Mumford
coordinates.



Abelian varieties Isogenies Implementation Examples and Applications

Complex abelian varieties

Abelian variety over C: A =Cg / (Zg +ΩZg ), where Ω �Hg (C) the
Siegel upper half space.

The theta functions with characteristic give a lot of analytic
(quasi periodic) functions on Cg .

ϑ
�a

b

�

(z ,Ω)=
∑

n�Zg

eπi t (n+a )Ω(n+a )+2πi t (n+a )(z+b ) a ,b �Qg

Projective coordinates:

A −→ Pn g−1
C

z 7−→ (ϑi (z ))i�Z (n )
where Z (n ) =Zg /nZg and ϑi = ϑ

h

0
i
n

i

(., Ω
n
).
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Theta functions of level n

(ϑi )i�Z (n ): basis of the theta functions of level n
⇔ A[n ] = A1[n ]⊕A2[n ]: symplectic decomposition.

(ϑi )i�Z (n ) =
¨

coordinates system n ¾ 3

coordinates on the Kummer variety A/±1 n = 2

Theta null point: ϑi (0)i�Z (n ) =modular invariant.
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The differential addition law (k =C)

�

∑

t �Z (2)
χ(t )ϑi+t (x + y )ϑj+t (x − y )

�

.
�

∑

t �Z (2)
χ(t )ϑk+t (0)ϑl+t (0)

�

=

�

∑

t �Z (2)
χ(t )ϑ−i ′+t (y )ϑj ′+t (y )

�

.
�

∑

t �Z (2)
χ(t )ϑk ′+t (x )ϑl ′+t (x )

�

.

where χ � Ẑ (2), i , j , k , l �Z (n )
(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2


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





1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
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The isogeny theorem

Theorem

Let ϕ : Z (n )→Z (ℓn ),x 7→ ℓ.x be the canonical embedding.
Let K = A2[ℓ]⊂ A2[ℓn ].

Let (ϑA
i )i�Z (ℓn ) be the theta functions of level ℓn on A =Cg /(Zg +ΩZg ).

Let (ϑB
i )i�Z (n ) be the theta functions of level n of

B = A/K =Cg /(Zg + Ω
ℓ
Zg ).

We have:
(ϑB

i (x ))i�Z (n ) = (ϑA
ϕ(i )(x ))i�Z (n )

Example

π : (x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11) 7→ (x0,x3,x6,x9) is a 3-isogeny
between elliptic curves.
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

π

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

bπ

[ℓ]
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Changing level

Theorem (Koizumi–Kempf)

Let F be a matrix of rank r such that t F F = ℓ Idr . Let X � (Cg )r and
Y = F (X ) � (Cg )r . Let j � (Qg )r and i = F (j ). Then we have

ϑ
�

0
i 1

�

(Y1,
Ω
n
) . . .ϑ
�

0
i r

�

(Yr ,
Ω
n
) =
∑

t1,...,tr � 1
ℓ
Zg /Zg

F (t1,...,tr )=(0,...,0)

ϑ
�

0
j1

�

(X1+ t1,
Ω
ℓn
) . . .ϑ
�

0
jr

�

(Xr + tr ,
Ω
ℓn
),

If ℓ= a 2+b 2, we take F =
�

a b
−b a

�

, so r = 2.

In general, ℓ= a 2+b 2+ c 2+d 2, we take F to be the matrix of
multiplication by a +b i + c j +d k in the quaternions, so r = 4.
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Changing level and isogenies

Corollary

Let A =Cg /(Zg +ΩZg ) and B =Cg /(Zg + ℓΩZg ). We can express the
isogeny A→ B , z 7→ ℓz of kernel K = 1

ℓ
Zg /Zg in term of the theta

functions of level n on A and B :

ϑ
�

0
i 1

�

(ℓz ,
ℓΩ
n
)ϑ
�

0
i 2

�

(0,ℓ
ℓΩ
n
) . . .ϑ
�

0
i r

�

(0,
ℓΩ
n
) =

∑

t1,...,tr �K
F (t1,...,tr )=(0,...,0)

ϑ
�

0
j1

�

(X1+ t1,
Ω
n
) . . .ϑ
�

0
jr

�

(Xr + tr ,
Ω
n
),

where X = F−1(ℓz , 0, . . . , 0).

Remark

We compute the coordinates ϑ
�

0
j i

�

(X i + t i , Ω
n
) in Cg using differential

additions.
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Computing isogenies [Cosset, Lubicz, R.]

Let A/k be an abelian variety of dimension g over k given in
theta coordinates. Let K ⊂ A be a maximal isotropic subgroup of
A[ℓ] (ℓ prime to 2 and the characteristic). Then we have an
algorithm to compute the isogeny A 7→ A/K .

Need O(#K ) differential additions in A
+ O(ℓg ) or O(ℓ2g ) multiplications ⇒ fast.

The formulas are rational if the kernel K is rational.

⇒ Work in level 2.

⇒ Convert back and forth to Mumford coordinates:

A B

Jac(C1) Jac(C2)

bπ
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AVIsogenies

AVIsogenies: Magma code written by Bisson, Cosset and R.
http://avisogenies.gforge.inria.fr

Released under LGPL 2+.

Implement isogeny computation (and applications thereof) for
abelian varieties using theta functions.

Current release 0.2: isogenies in genus 2.

http://avisogenies.gforge.inria.fr
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Implementation

H hyperelliptic curve of genus 2 over k =Fq , J = Jac(H ), ℓ odd prime,
2ℓ∧ car k = 1. Compute all rational (ℓ,ℓ)-isogenies J 7→ Jac(H ′) (we
suppose the zeta function known):

1 Compute the extension Fq n where the geometric points of the
maximal isotropic kernel of J [ℓ] lives.

2 Compute a “symplectic” basis of J [ℓ](Fq n ).
3 Find the rational maximal isotropic kernels K .
4 For each kernel K , convert its basis from Mumford to theta

coordinates of level 2. (Rosenhain then Thomae).
5 Compute the other points in K in theta coordinates using

differential additions.
6 Apply the change level formula to recover the theta null point of

J /K .
7 Compute the Igusa invariants of J /K (“Inverse Thomae”).
8 Distinguish between the isogeneous curve and its twist.
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Computing the right extension

J = Jac(H ) abelian variety of dimension 2. χ(X ) the corresponding
zeta function.

Degree of a point of ℓ-torsion | the order of X in Fℓ[X ]/χ(X ).
If K rational, K (k )≃ (Z/ℓZ)2, the degree of a point in K | the LCM
of orders of X in Fℓ[X ]/P(X ) for P |χ of degree two.

Since we are looking to K maximal isotropic, J [ℓ]≃ K ⊕K ′ and
we know that P |χ is such that χ(X )≡ P(X )P(X ) mod ℓ where
X =q/X represents the Verschiebung.

Remark

The degree n is ¶ ℓ2−1. If ℓ is totally split in Z[π,π] then n | ℓ−1.
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Computing the ℓ-torsion

We want to compute J (Fq n )[ℓ].

From the zeta function χ(X ) we can compute random points in
J (Fq n )[ℓ∞] uniformly.

If P is in J (Fq n )[ℓ∞], ℓm P � J (Fq n )[ℓ] for a suitable m . This does not
give uniform points of ℓ-torsion but we can correct the points
obtained.

Example

Suppose J (Fq n )[ℓ∞] =< P1, P2 > with P1 of order ℓ2 and P2 of order
ℓ.

First random point Q1 = P1 ⇒ we recover the point of ℓ-torsion:
ℓ.P1.

Second random point Q2 =αP1+βP2. If α ̸= 0 we recover the
point of ℓ-torsion αℓP1 which is not a new generator.

We correct the original point: Q ′2 =Q2−αQ1 =βP2.
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Weil pairing

Used to decompose a point P � J [ℓ] in term of a basis of the
ℓ-torsion (and to construct a symplectic basis).

The magma implementation is extremely slow in genus 2 for
non degenerate divisors.

But since we convert the points in theta coordinates we can use
the pairing in theta coordinates [LR10].
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Timings for isogenies computations (ℓ= 7)

Jacobian of Hyperelliptic Curve defined by y^2 = t^254*x^6 + t^223*x^5 +

t^255*x^4 + t^318*x^3 + t^668*x^2 + t^543*x + t^538 over GF(3^6)

> time RationallyIsogenousCurvesG2(J,7);

** Computing 7 -rationnal isotropic subgroups

-- Computing the 7 -torsion over extension of deg 4

!! Basis: 2 points in Finite field of size 3^24

-- Listing subgroups

1 subgroups over Finite field of size 3^24

-- Convert the subgroups to theta coordinates

Time: 0.060

Computing the 1 7 -isogenies

** Precomputations for l= 7 Time: 0.180

** Computing the 7 -isogeny

Computing the l-torsion Time: 0.030

Changing level Time: 0.210

Time: 0.430

Time: 0.490

[ <[ t^620, t^691, t^477 ], Jacobian of Hyperelliptic Curve defined by

y^2 = t^615*x^6 + t^224*x^5 + t^37*x^4 + t^303*x^3 + t^715*x^2 + t^128*x + t^17 over GF(3^6)> ]
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Timings for isogenies computations (ℓ= 5)

Jacobian of Hyperelliptic Curve defined by y^2 = 39*x^6 + 4*x^5 + 82*x^4

+ 10*x^3 + 31*x^2 + 39*x + 2 over GF(83)

> time RationallyIsogenousCurvesG2(J,5);

** Computing 5 -rationnal isotropic subgroups

-- Computing the 5 -torsion over extension of deg 24

Time: 0.940

!! Basis: 4 points in Finite field of size 83^24

-- Listing subgroups

Time: 1.170

6 subgroups over Finite field of size 83^24

-- Convert the subgroups to theta coordinates

Time: 0.360

Time: 2.630

Computing the 6 5 -isogenies

Time: 0.820

Time: 3.460

[ <[ 36, 69, 38 ], Jacobian of Hyperelliptic Curve defined by

y^2 = 27*x^6 + 63*x^5 + 5*x^4 + 24*x^3 + 34*x^2 + 6*x + 76 over GF(83)>,

...]
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Timings for isogeny graphs (ℓ= 3)

Jacobian of Hyperelliptic Curve defined by y^2 = 41*x^6 + 131*x^5 +

55*x^4 + 57*x^3 + 233*x^2 + 225*x + 51 over GF(271)

time isograph,jacobians:=IsoGraphG2(J,{3}: save_mem:=-1);

Computed 540 isogenies and found 135 curves.

Time: 14.410

Core 2 with 4BG of RAM.

Computing kernels: ≈ 5s .

Computing isogenies: ≈ 7s (Torsion: ≈ 2s , Changing level: ≈ 3.5s .)
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Going further (ℓ= 53)

Jacobian of Hyperelliptic Curve defined by y^2 = 97*x^6 + 77*x^5 +

62*x^4 + 14*x^3 + 33*x^2 + 18*x + 40 over GF(113)

> time RationallyIsogenousCurvesG2(J,53);

** Computing 53 -rationnal isotropic subgroups

-- Computing the 53 -torsion over extension of deg 52 Time: 8.610

!! Basis: 3 points in Finite field of size 113^52

-- Listing subgroups Time: 1.210

2 subgroups over Finite field of size 113^52

-- Convert the subgroups to theta coordinates Time: 0.100

Time: 9.980

Computing the 2 53 -isogenies

** Precomputations for l= 53 Time: 0.240

** Computing the 53 -isogeny

Computing the l-torsion Time: 7.570

Changing level Time: 1.170

Time: 8.840

** Computing the 53 -isogeny

Time: 8.850

Time: 27.950
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Going further (ℓ= 19)

Jacobian of Hyperelliptic Curve defined by y^2 = 194*x^6 + 554*x^5 +

606*x^4 + 523*x^3 + 642*x^2 + 566*x + 112 over GF(859)

> time RationallyIsogenousCurvesG2(J,19);

** Computing 19 -rationnal isotropic subgroups (extension degree 18)

Time: 0.760

Computing the 2 19 -isogenies

** Precomputations for l= 19 Time: 11.160

** Computing the 19 -isogeny

Computing the l-torsion Time: 0.250

Changing level Time: 18.590

Time: 18.850

** Computing the 19 -isogeny

Computing the l-torsion Time: 0.250

Changing level Time: 18.640

Time: 18.900

Time: 51.060

[ <[ 341, 740, 389 ], Jacobian of Hyperelliptic Curve defined by y^2 = 724*x^6 +

680*x^5 + 538*x^4 + 613*x^3 + 557*x^2 + 856*x + 628 over GF(859)>,

... ]
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A record isogeny computation! (ℓ= 1321)

J Jacobian of y 2 = x 5+41691x 4+24583x 3+2509x 2+15574x over F42179.

#J = 21013212.

> time RationallyIsogenousCurvesG2(J,1321:ext_degree:=1);

** Computing 1321 -rationnal isotropic subgroups

Time: 0.350

Computing the 1 1321 -isogenies

** Precomputations for l= 1321

Time: 1276.950

** Computing the 1321 -isogeny

Computing the l-torsion

Time: 1200.270

Changing level

Time: 1398.780

Time: 5727.250

Time: 7004.240

Time: 7332.650

[ <[ 9448, 15263, 31602 ], Jacobian of Hyperelliptic Curve defined by

y^2 = 33266*x^6 + 20155*x^5 + 31203*x^4 + 9732*x^3 +

4204*x^2 + 18026*x + 29732 over GF(42179)> ]

Core 2 with 32GB of RAM.

Total memory usage: 9764.22MB.
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Isogeny graphs: ℓ=q1q2 =Q1Q1Q2Q2 (Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q1q2 =Q1Q1Q2Q2 (Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q =QQ (Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q1q2 =Q1Q1Q2
2 (Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q 2 =Q2Q
2

(Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q 2 =Q4 (Q 7→ K0 7→ K )
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Non maximal isogeny graphs (ℓ=q =QQ)
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Non maximal isogeny graphs (ℓ=q =QQ)
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Non maximal isogeny graphs (ℓ=q =QQ)
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Non maximal isogeny graphs (ℓ=q1q2 =Q1Q1Q2Q2)
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Non maximal isogeny graphs (ℓ=q1q2 =Q1Q1Q2Q2)
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Non maximal isogeny graphs (ℓ=q1q2 =Q1Q1Q2Q2)
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Non maximal isogeny graphs (ℓ=q =Q2)
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Non maximal isogeny graphs (ℓ=q =Q2)
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Applications and perspectives

Computing endomorphism ring. Generalize [BS09] to higher
genus, work by Bisson.

Class polynomials in genus 2 using the CRT. If K is a CM field and
J /Fp is such that End(J )⊗ZQ= K , use isogenies to find the
Jacobians whose endomorphism ring is OK . Work by Lauter+R.

Modular polynomials in genus 2 using theta null points:
computed by Gruenewald using analytic methods for ℓ= 3.

Isogenies using rational coordinates? Work by Smith using the
geometry of Kummer surfaces for ℓ= 3 (g = 2). Cassels and Flynn:
modification of theta coordinates to have rational coordinates
on hyperelliptic curves of genus 2.

How to compute (ℓ, 1)-isogenies in genus 2?

Look at g = 3 (associate theta coordinates to the Jacobian of a
non hyperelliptic curve).
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Thank you for your attention!
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