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Discrete logarithm

Definition (DLP)

Let G =(g) be a cyclic group of prime order. Let xeN and h = g*. The
discrete logarithm log,(h) is x.

@ Exponentiation: O(logp). DLP: O(,/p) (in a generic group).

= Usual tools of public key cryptography: asymmetric encryption,
signature, zero-knowledge, PRNG...

@ G =F;: sub-exponential attacks.

= Find secure groups with efficient law, compact representation.
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base
field k.

@ Abelian variety = points on a projective space (locus of
homogeneous polynomials) + an abelian group law given by
rational functions.

= Use G =A(k) with k=F, for the DLP.

= Pairing-based cryptography with the Weil or Tate pairing.
(Identity-based cryptography, Short signature, One way tripartite
Diffie-Hellman, Self-blindable credential certificates, Attribute
based cryptography, Broadcast encryption...)
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Elliptic curves

Definition (car k #2,3)
E:y?=x34+ax+b. 4a®+27b>#0.
@ An elliptic curve is a plane curve of genus 1.

@ Elliptic curves = Abelian varieties of dimension 1.
P+Q=—R=(xg,—yr)
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Jacobian of hyperelliptic curves

C:y%= f(x), hyperelliptic curve of genus g. (degf=2g+1)

@ Divisor: formal sum D= n;P, P.eC(k).
degD=>Y n;.

@ Principal divisor: 3, ve(f)-P;  fek(C).

Jacobian of C =Divisors of degree 0 modulo principal divisors
° + Galois action
= Abelian variety of dimension g.

@ Divisor class D = unique representative (Riemann-Roch):
k
D:Z(Pi —-Py) k<g, symmetric P;#P
i=1

@ Mumford coordinates: D=(u,v) = u=[](x—x;), v(x;))=y:.

@ Cantor algorithm: addition law.
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Example of the addition law in genus 2

D=P,+P,— 20
D'=Q+Q,—20
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Example of the addition law in genus 2

D=P,+P,— 20
D'=Q,+Q,—2x A~
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Example of the addition law in genus 2

D=P,+P,— 20
D'=Q,+Q,— 20
D+D'=R,+R,—200
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Isogenies

Definition
A (separable) isogeny is a finite surjective (separable) morphism
between two Abelian varieties.

@ Isogenies = Rational map + group morphism + finite kernel.
@ Isogenies < Finite subgroups.

(f:A—B)—Kerf
(A—-A/H)—H

@ Example: Multiplication by ¢ (= ¢-torsion), Frobenius (non
separable).
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Cryptographic usage of isogenies

@ Transfer the DLP from one Abelian variety to another.

@ Point counting algorithms (¢-adic or p-adic) = Verify a curve is
secure.

@ Compute the class field polynomials (CM-method) = Construct a
secure curve.

@ Compute the modular polynomials = Compute isogenies.

@ Determine End(A) = CRT method for class field polynomials.
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Vélu’s formula

Let E: y? = f(x) be an elliptic curve and G c E(k) a finite subgroup. Then
E/G is given by Y? = g(X) where

X(P)=x(P)+ Y. (x(P+Q)-x(Q)
QeG\{0x}

Y(P)=y(P)+ Y. (¥(P+Q)-yQ).
QeG\{0g}

@ Uses the fact that x and y are characterised in k(E) by

Vo, (x)=—-2 vp(x)=0 if P#£0g
vo,(y)=-3 vp(y)=0 if P#£0g
y?/x*(0p)=1

@ No such characterisation in genus g =2 for Mumford
coordinates.
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Complex abelian varieties

@ Abelian variety over C: A=C8/(Z8 +QZ&), where Qe #,(C) the
Siegel upper half space.

@ The theta functions with characteristic give a lot of analytic
(quasi periodic) functions on Cs.

9 [ﬁ] (Z,Q) — Z em‘ t(n+a)9(n+a)+2ni t(n+a)(z+b) a, be Qg

nezs
@ Projective coordinates:

A — ng_l
z — (0i(2)iezm

where Z(71) =78 /nZ¢& and @, =9 [9] (2
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Theta functions of level n

@ (#)iezm): basis of the theta functions of level n
< Aln] = A;[n]® Az[n]: symplectic decomposition.
coordinates system nx=3
@ (V1)iczmy=

coordinates on the Kummer variety A/£1 n=2

@ Theta null point: #;(0);ezm = modular invariant.
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The differential addition law (k = C)

(D H i Ce Y )00 = 1)) D 2(E)0kse(0)F144(0)) =

teZ(2) teZ(2)

(D 2O 0)) - D 2 (O ()1 ()).

tez(2) teZ(2)

where yeZ(2),i,j,k,1<Z(n)
(i,j' kK, 1) =A(,j, k1)
1 1 1
1 -1 -1
-1 1 -1

1
1
A=3511
1 -1 -1 1
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The isogeny theorem

@ Let ¢ :Z(n)— Z(¢n),x — {.x be the canonical embedding.
Let K=A,[f] C Ay[¢n).

o Let (9);.5z be the theta functions of level £n on A= C8 /(Z8 +QZS).

@ Let (18)iczm) be the theta functions of level n of
B=A/K=C8/(z8 + $75).
@ We have:
CHENIETOE (ﬂf,(,-)(x))iezm

7 2 (X0, X1, X2, X3, X4, X5, X6, X7, X3, X9, X10, X11) — (X0, X3, X6, X9) 1S @ 3-isogeny
between elliptic curves.
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An example with g=1,n=2,{=3

z€C8/(Z8 +1Q78), level {n
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Changing level

Theorem (Koizumi-Kempf)

Let F be a matrix of rank r such that ' FF=/(1d,. Let X (C8)" and
Y =F(X)e(C8). Let j €(Q8)" and i = F(j). Then we have

2[R) 5. 9 [2] 0% =

Q Q
o 0
Zlﬂ [jl] (Xi+1, f_n)ﬂ |:jr:| (X, +1tr, f_n)’
L1yeees t,EiZg/Zg
E(t1,.017)=(0,...,0)

o If £ =a?+ b2, we take F:(_“bZ), SO r=2.

@ In general, { =a?+b?+c?+d?, we take F to be the matrix of
multiplication by a+bi+cj+dk in the quaternions, so r =4.



Changing level and isogenies

Corollary

Let A=C&/(Z8 +9Q78) and B=C&/(Z8 +¢QZ8). We can express the
isogeny A— B,z — {z of kernel K = %ZS’/Zg in term of the theta
functions of level n on A and B:

1?[{’l]wz,%ﬂ)ﬁ[g](O,IZ%Q)...ﬁ[,-Or](O,%Q)z

Zﬂ [Jpl](X1+t1’%)'--ﬂ[;),](Xr—l-tr,%),

F(ty,...,1r)=(0,...,0)

where X=F~1({z,0,...,0).

Remark

| A

We compute the coordinates ¥ []0] (Xi+1;, ) in C# using differential
additions.
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Computing isogenies [

@ Let A/k be an abelian variety of dimension g over k given in
theta coordinates. Let K c A be a maximal isotropic subgroup of
A[€] (¢ prime to 2 and the characteristic). Then we have an
algorithm to compute the isogeny A— A/K.

@ Need O(#K) differential additions in A
+ O(¢8) or O(¢?8) multiplications = fast.

@ The formulas are rational if the kernel K is rational.

= Work in level 2.
= Convert back and forth to Mumford coordinates:

~

A— B

Jac(Cy) > Jac(C»)



AVlisogenies

@ AVisogenies: Magma code written by Bisson, Cosset and R.
http://avisogenies.gforge.inria.fr

@ Released under LGPL 2+.

@ Implement isogeny computation (and applications thereof) for
abelian varieties using theta functions.

@ Current release 0.2: isogenies in genus 2.


http://avisogenies.gforge.inria.fr

Implementation

H hyperelliptic curve of genus 2 over k =F,, J =Jac(H), { odd prime,
2( Acark =1. Compute all rational (¢,£)-isogenies J — Jac(H’) (we
suppose the zeta function known):
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Implementation

H hyperelliptic curve of genus 2 over k =F,, J =Jac(H), { odd prime,
2( Acark =1. Compute all rational (¢,£)-isogenies J — Jac(H’) (we
suppose the zeta function known):

@ Compute the extension F,» where the geometric points of the
maximal isotropic kernel of J[{] lives.

@ Compute a “symplectic” basis of J[£](F»).
© Find the rational maximal isotropic kernels K.

@ For each kernel K, convert its basis from Mumford to theta
coordinates of level 2. (Rosenhain then Thomae).

@ Compute the other points in K in theta coordinates using
differential additions.

@ Apply the change level formula to recover the theta null point of
J/K.

@ Compute the Igusa invariants of J/K (“Inverse Thomae”).

© Distinguish between the isogeneous curve and its twist.



Computing the right extension

@ J=]Jac(H) abelian variety of dimension 2. y(X) the corresponding
zeta function.

@ Degree of a point of ¢-torsion | the order of X in F¢[X]/y(X).

e If K rational, K(k)=~(Z/¢Z)?, the degree of a point in K | the LCM
of orders of X in F,[X]/P(X) for P|y of degree two.

@ Since we are looking to K maximal isotropic, J[{]~ K& K’ and
we know that P| y is such that y(X)=P(X)P(X) mod{ where
X =q/X represents the Verschiebung.

The degree n is <¢?—1. If £ is totally split in Z[r, 7] then n|{—1.




Computing the (-torsion

@ We want to compute J(Fg)[£].
@ From the zeta function y(X) we can compute random points in
J(F4»)[€*°] uniformly.

@ If Pisin J(Fg)[¢>], ¢mPe J(F,)[€] for a suitable m. This does not
give uniform points of ¢-torsion but we can correct the points
obtained.

@ Suppose J(F;)[{®] =< P, P, > with P, of order ¢2 and P, of order
L.

@ First random point Q; = P = we recover the point of ¢-torsion:
L.P.

@ Second random point Q, =aP, + B P. If a#0 we recover the
point of ¢-torsion afP, which is not a new generator.

@ We correct the original point: Q, =Q, —aQ; =B P..




Weil pairing

@ Used to decompose a point Pe J[¢] in term of a basis of the
¢-torsion (and to construct a symplectic basis).

@ The magma implementation is extremely slow in genus 2 for
non degenerate divisors.

@ But since we convert the points in theta coordinates we can use
the pairing in theta coordinates [LR10].



Timings for isogenies computations

Jacobian of Hyperelliptic Curve defined by y*2 = t7"254*x"6 + t7223*
t"255*x™M + t7318*x™3 + t7668*x™2 + t"543*x + t7538 over GF(376)
> time RationallyIsogenousCurvesG2(J,7);
** Computing 7 -rationnal isotropic subgroups
-- Computing the 7 -torsion over extension of deg 4
1l Basis: 2 points in Finite field of size 3724
-- Listing subgroups
1 subgroups over Finite field of size 3724
-- Convert the subgroups to theta coordinates
Time: 0.060
Computing the 1 7 -isogenies
** Precomputations for 1= 7 Time: 0.180
** Computing the 7 -isogeny
Computing the l-torsion Time: 0.030
Changing level Time: 0.210
Time: 0.430
Time: 0.490
[ <[ t7620, t7691, t~477 1, Jacobian of Hyperelliptic Curve defined
y*2 = t7615*%x™6 + t7224*x™5 + t737*x™4 + t7303*x”3 + t7715*%x"2 + t©°



Timings for isogenies computations

Jacobian of Hyperelliptic Curve defined by y”2 = 39*x"6 + 4*x”5 + 82

+ 10*x™3 + 31*x"2 + 39*x + 2 over GF(83)
> time RationallyIsogenousCurvesG2(J,5);
** Computing 5 -rationnal isotropic subgroups

-- Computing the 5 -torsion over extension of deg 24

Time: 0.940

Il Basis: 4 points in Finite field of size 83724

-- Listing subgroups

Time: 1.170

6 subgroups over Finite field of size 83724

-- Convert the subgroups to theta coordinates

Time: 0.360
Time: 2.630
Computing the 6 5 -isogenies
Time: 0.820
Time: 3.460

[ <[ 36, 69, 38 ], Jacobian of Hyperelliptic Curve defined by

yr2 = 27*X"6 + 63*x™5 + 5*x™4 + 24*x"3 + 34*x™2 + 6*x + 76 over GF(

-1



Timings for isogeny graphs

Jacobian of Hyperelliptic Curve defined by y"2 = 41*x76 + 131*x"5 +
55*%x™4 + 57*x"3 + 233*x"2 + 225*x + 51 over GF(271)

time isograph,jacobians:=IsoGraphG2(J,{3}: save mem:=-1);

Computed 540 isogenies and found 135 curves.

Time: 14.410

@ Core 2 with 4BG of RAM.
@ Computing kernels: ~5s.
@ Computing isogenies: ~7s (Torsion: ~ 2s, Changing level: ~3.5s.)



Going further

Jacobian of Hyperelliptic Curve defined by y”2 = 97*x"6 + 77*x"5 +
62*x™4 + 14*x"3 + 33*x™2 + 18*x + 40 over GF(113)
> time RationallyIsogenousCurvesG2(J,53);
** Computing 53 -rationnal isotropic subgroups
-- Computing the 53 -torsion over extension of deg 52 Time: 8.610
Il Basis: 3 points in Finite field of size 113752
-- Listing subgroups Time: 1.210
2 subgroups over Finite field of size 113752
-- Convert the subgroups to theta coordinates Time: 0.100
Time: 9.980
Computing the 2 53 -isogenies
** Precomputations for 1= 53 Time: 0.240
** Computing the 53 -isogeny
Computing the l-torsion Time: 7.570
Changing level Time: 1.170

Time: 8.840
** Computing the 53 -isogeny
Time: 8.850

Time: 27.950



Going further

Jacobian of Hyperelliptic Curve defined by y”2 = 194*x"6 + 554*x"5
606*x™4 + 523*x"3 + 642*x™2 + 566*x + 112 over GF(859)
> time RationallyIsogenousCurvesG2(J,19);
** Computing 19 -rationnal isotropic subgroups (extension degree
Time: 0.760
Computing the 2 19 -isogenies
** Precomputations for 1= 19 Time: 11.160
** Computing the 19 -isogeny
Computing the l-torsion Time: 0.250
Changing level Time: 18.590
Time: 18.850
** Computing the 19 -isogeny
Computing the l-torsion Time: 0.250
Changing level Time: 18.640
Time: 18.900
Time: 51.060
[ <[ 341, 740, 389 ], Jacobian of Hyperelliptic Curve defined by y~2
680*x"5 + 538*x"4 + 613*x"3 + 557*x"2 + 856*x + 628 over GF(859)
]
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A record isogeny computation! (¢ =1321)

@ J Jacobian of y? =x5+41691x* +24583x3 + 2509x2 + 15574x over Fyz;7.
@ #]=21013212

> time RationallyIsogenousCurvesG2(J,1321:ext degree:=1);
** Computing 1321 -rationnal isotropic subgroups
Time: 0.350
Computing the 1 1321 -isogenies
** Precomputations for 1= 1321
Time: 1276.950
** Computing the 1321 -isogeny
Computing the l-torsion
Time: 1200.270
Changing level
Time: 1398.780
Time: 5727.250
Time: 7004.240
Time: 7332.650
[ <[ 9448, 15263, 31602 ], Jacobian of Hyperelliptic Curve defined b
y~2 = 33266*Xx"6 + 20155*x™5 + 31203*x"4 + 9732*x"3 +
4204*x”2 + 18026*x + 29732 over GF(42179)> ]



Isogeny graphs: { = q1q> = Q:Q,Q2Q (Q— Ko— K)
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Isogeny graphs: { = g =QQ



Isogeny graphs: { = g1q> = Q,Q; Q>



Isogeny graphs: { =q? = QZGZ (Q— Ky — K)



Isogeny graphs: { = q> =Q*
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Non maximal isogeny graphs (¢ = g = QQ)
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Non maximal isogeny graphs (¢ = g = QQ)
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Non maximal isogeny graphs (¢ = q1g> = Q1Q,Q2Q>)
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Non maximal isogeny graphs (¢ = q1g> = Q1Q,Q2Q>)
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Non maximal isogeny graphs ({ = q =Q?)



0000000800

Non maximal isogeny graphs ({ = q =Q?)



Applications and perspectives

@ Computing endomorphism ring. Generalize [BS09] to higher
genus, work by Bisson.

@ Class polynomials in genus 2 using the CRT. If K is a CM field and
J/E, is such that End(J)®z Q =K, use isogenies to find the
Jacobians whose endomorphism ring is Ox. Work by Lauter+R.

@ Modular polynomials in genus 2 using theta null points:
computed by Gruenewald using analytic methods for £=3.

@ Isogenies using rational coordinates? Work by Smith using the
geometry of Kummer surfaces for £ =3 (g =2). Cassels and Flynn:
modification of theta coordinates to have rational coordinates
on hyperelliptic curves of genus 2.

@ How to compute (¢, 1)-isogenies in genus 2?

@ Look at g =3 (associate theta coordinates to the Jacobian of a
non hyperelliptic curve).



Thank you for your attention!
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