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Discrete logarithm

Definition (DLP)

Let G = 〈g 〉 be a cyclic group of prime order. Let x �N and h = g x . The
discrete logarithm logg (h) is x .

Exponentiation: O(log p ). DLP: eO(pp ) (in a generic group).

The DLP is supposed to be difficult to solve in F∗q , E (Fq ), J (Fq ),
A(Fq ).

⇒ The DLP yields good candidates for one way functions.
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Pairings

Definition

Let G1 and G2 be two cyclic groups of prime order. A pairing is a
(non degenerate) bilinear application e : G1×G1→G2.

If the pairing e can be computed easily, the difficulty of the DLP
in G1 reduces to the difficulty of the DLP in G2.

⇒ MOV attacks on elliptic curves.
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Cryptographic applications of pairings

Identity-based cryptography [BF03].

Short signature [BLS04].

One way tripartite Diffie–Hellman [Jou04].

Self-blindable credential certificates [Ver01].

Attribute based cryptography [SW05].

Broadcast encryption [GPSW06].

Example (Identity-based cryptography)

Master key: (P, s P), s . s �N, P �G1.

Derived key: Q , sQ . Q �G1.

Encryption, m �G2: m ′ =m ⊕ e (Q , s P)r , r P . r �N.
Decryption: m =m ′⊕ e (sQ , r P).



Motivations Miller’s algorithm Abelian varieties Theta functions Optimal pairings

The Weil pairing on elliptic curves

Let E : y 2 = x 3+a x +b be an elliptic curve over k (car k ̸= 2, 3).

Let P,Q � E [ℓ] be points of ℓ-torsion.

The divisor [ℓ]∗(Q −0) is trivial, let gQ � k (E ) be a function
associated to this principal divisor.

The function x 7→ gQ (x+P)
gQ (x )

is constant and is equal to a ℓ-th root

of unity eW,ℓ(P,Q) in k
∗
.

Proof.

If fQ is a function associated to the principal divisor ℓQ − ℓ0, we have
(g ℓQ ) = [ℓ](gQ ) = [ℓ]∗[ℓ](Q −0) = [ℓ]∗( fQ ) = ( fQ ◦ [ℓ]) so
gQ (x +P)ℓ = fQ (ℓx + ℓP) = fQ (ℓx ) = gQ (x )ℓ and eW,ℓ(P,Q)ℓ = 1.

The application eW,ℓ : E [ℓ]×E [ℓ]→µℓ(k ) is a non degenerate
pairing: the Weil pairing.



Motivations Miller’s algorithm Abelian varieties Theta functions Optimal pairings

Computing the Weil pairing

Let f P be a function associated to the principal divisor ℓ(P −0),
and fQ to ℓ(Q −0).

By Weil reciprocity, we have:

eW,ℓ(P,Q) =
fQ (P −0)
f P (Q −0)

.

We need to compute the functions f P and fQ . More generally,
we define the Miller’s functions:

Definition

Let λ �N and X � E [ℓ], we define fλ,X � k (E ) to be a function thus that:

( fλ,X ) =λ(X )− ([λ]X )− (λ−1)(0).
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Miller’s algorithm

The key idea in Miller’s algorithm is that

fλ+µ,X = fλ,X fµ,X fλ,µ,X

where fλ,µ,X is a function associated to the divisor

([λ+µ]X )− ([λ]X )− ([µ]X )+ (0).

We can compute fλ,µ,X using the addition law in E : if
[λ]X = (x1, y1) and [µ]X = (x2, y2) and α= (y1−y2)/(x1−x2), we have

fλ,µ,X =
y −α(x −x1)− y1

x +(x1+x2)−α2
.
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Tate pairing

Definition

Let E/Fq be an elliptic curve of cardinal divisible by ℓ. Let d be
the smallest number thus that ℓ |q d −1: we call d the
embedding degree. Fq d is constructed from Fq by adjoining all
the ℓ-th root of unity.

The Tate pairing is a non degenerate bilinear application given
by

eT : E (Fq d )/ℓE (Fq d )×E [ℓ](Fq ) −→ F∗q d /F∗q d
ℓ

(P,Q) 7−→ fQ ((P)− (0))
.

If ℓ2 - E (Fq d ) then E (Fq d )/ℓE (Fq d )≃ E [ℓ](Fq d ).
We normalise the Tate pairing by going to the power of
(q d −1)/ℓ.
This final exponentiation allows to save some computations. For
instance if d = 2d ′ is even, we can suppose that P = (x2, y2) with
x2 � E (Fq d ′ ). Then the denominators of fλ,µ,Q are ℓ-th powers and
are killed by the final exponentiation.
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Miller’s algorithm

Computing Tate pairing

Input: ℓ �N, Q = (x1, y1) � E [ℓ](Fq ), P = (x2, y2) � E (Fq d ).

Output: eT (P,Q).

Compute the binary decomposition: ℓ :=
∑I

i=0 b i 2i . Let
T =Q , f 1 = 1, f 2 = 1.

For i in [I ..0] compute
α, the slope of the tangent of E at T .
T = 2T . T = (x3, y3).
f 1 = f 2

1 (y2−α(x2−x3)− y3), f 2 = f 2
2 (x2+(x1+x3)−α2).

If b i = 1, then compute
α, the slope of the line going through Q and T .
T = T +Q . T = (x3, y3).
f 1 = f 2

1 (y2−α(x2−x3)− y3), f 2 = f 2(x2+(x1+x3)−α2).

Return
�

f 1

f 2

�
qd −1
ℓ

.
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base
field k .

Abelian variety = points on a projective space (locus of
homogeneous polynomials) + an abelian group law given by
rational functions.

Example

Elliptic curves= Abelian varieties of dimension 1.

If C is a (smooth) curve of genus g , its Jacobian is an abelian
variety of dimension g .
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Pairing on abelian varieties

Let Q � bA[ℓ]. By definition of the dual abelian variety, Q is a
divisor of degree 0 on A such that ℓQ is principal. Let fQ � k (A)
be a function associated to ℓQ .

Let P � A[ℓ]. Since bbA ≃ A , we can see P as a divisor of degree 0 on
bA . ℓ(P) is then a principal divisor ( f P ) where f P � k ( bA).
We can then define the Weil pairing:

eW,ℓ : A[ℓ]× bA[ℓ] −→ µℓ(k )

(P,Q) 7−→
fQ (P)
f P (Q)

.

Likewise, we can extend the Tate pairing to abelian varieties.
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Pairings and polarizations

If Θ is an ample divisor, the polarisation ϕΘ is a morphism
A→ bA,x 7→ t ∗xΘ−Θ.
We can then compose the Weil and Tate pairings with ϕΘ:

eW,Θ,ℓ : A[ℓ]×A[ℓ] −→ µℓ(k )
(P,Q) 7−→ eW,ℓ(P,ϕΘ(Q))

.

More explicitly, if f P and fQ are the functions associated to the
principal divisors ℓt ∗PΘ− ℓΘ and ℓt ∗QΘ− ℓΘ we have

eW,Θ,ℓ(P,Q) =
fQ (P −0)
f P (Q −0)

.
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Cryptographic usage of pairings on abelian varieties

The moduli space of abelian varieties of dimension g is a space
of dimension g (g +1)/2. We have more liberty to find optimal
abelian varieties in function of the security parameters.

Supersingular elliptic curves have a too small embedding
degree. [RS09] says that for the current security parameters,
optimal supersingular abelian varieties of small dimension are
of dimension 4.

If A is an abelian variety of dimension g , A[ℓ] is a (Z/ℓZ)-module
of dimension 2g ⇒ the structure of pairings on abelian varieties
is richer.
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Computing pairings on abelian varieties

If J is the Jacobian of an hyperelliptic curve H of genus g , it is
easy to extend Miller’s algorithm to compute the Tate and Weil
pairing on J .

For instance if g = 2, the function fλ,µ,Q is of the form

y − l (x )
(x −x1)(x −x2)

where l is of degree 3.

If P is a degenerate divisor (P is a sum of only one point on the
curve H), the evaluation fQ (P) is faster than for a general divisor
(which would be a sum of g points on the curve H).

⇒ Pairings on Jacobians of genus 2 curves can be competitive with
pairings on elliptic curves.

What about more general abelian varieties? We don’t have
Mumford coordinates.
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Complex abelian varieties

Abelian variety over C: A =Cg / (Zg +ΩZg ), where Ω �Hg (C) the
Siegel upper half space.

The theta functions with characteristic give a lot of analytic
(quasi periodic) functions on Cg .

ϑ
�a

b

�

(z ,Ω)=
∑

n�Zg

eπi t (n+a )Ω(n+a )+2πi t (n+a )(z+b ) a ,b �Qg

Quasi-periodicity:

ϑ
�a

b

�

(z+m1Ω+m2,Ω)= e 2πi (t a ·m2−t b ·m1)−πi t m1Ωm1−2πi t m1 ·zϑ
�a

b

�

(z ,Ω).

Projective coordinates:

A −→ Pn g−1
C

z 7−→ (ϑi (z ))i�Z (n )
where Z (n ) =Zg /nZg and ϑi = ϑ

h

0
i
n

i

(., Ω
n
).
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The differential addition law (k =C)

�

∑

t �Z (2)
χ(t )ϑi+t (x + y )ϑj+t (x − y )

�

.
�

∑

t �Z (2)
χ(t )ϑk+t (0)ϑl+t (0)

�

=

�

∑

t �Z (2)
χ(t )ϑ−i ′+t (y )ϑj ′+t (y )

�

.
�

∑

t �Z (2)
χ(t )ϑk ′+t (x )ϑl ′+t (x )

�

.

where χ � Ẑ (2), i , j , k , l �Z (n )
(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2











1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1










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Example: addition in genus 1 and in level 2

Doubling Algorithm:
Input: P = (x : z ).
Output: 2.P = (x ′ : z ′).

1 x0 = (x 2+ z 2)2;

2 z 0 = A2

B 2 (x 2− z 2)2;

3 x ′ = (x0+ z 0)/a ;

4 z ′ = (x0− z 0)/b ;

5 Return (x ′ : z ′).

Differential Addition Algorithm:
Input: P = (x1 : z 1), Q = (x2 : z 2)
and R = P −Q = (x3 : z 3) with x3z 3 ̸= 0.
Output: P +Q = (x ′ : z ′).

1 x0 = (x 2
1 + z 2

1)(x
2
2 + z 2

2);

2 z 0 = A2

B 2 (x 2
1 − z 2

1)(x
2
2 − z 2

2);
3 x ′ = (x0+ z 0)/x3;

4 z ′ = (x0− z 0)/z 3;

5 Return (x ′ : z ′).



Motivations Miller’s algorithm Abelian varieties Theta functions Optimal pairings

Arithmetic with low level theta functions (car k ̸= 2)

Mumford Level 2
Level 4

[Lan05] [Gau07]
Doubling 34M +7S

7M +12S+9m0 49M +36S+27m0Mixed Addition 37M +6S

Multiplication cost in genus 2 (one step).

Montgomery Level 2 Jacobians Level 4
Doubling

5M +4S+1m0 3M +6S+3m0
3M +5S

9M +10S+5m0Mixed Addition 7M +6S+1m0

Multiplication cost in genus 1 (one step).
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The Weil and Tate pairing with theta coordinates [LR10]

P and Q points of ℓ-torsion.

0A P 2P . . . ℓP =λ0
P 0A

Q P ⊕Q 2P +Q . . . ℓP +Q =λ1
PQ

2Q P +2Q

. . . . . .

ℓQ =λ0
Q 0A P + ℓQ =λ1

Q P

eW,ℓ(P,Q) =
λ1

Pλ
0
Q

λ0
Pλ

1
Q
.

If P =Ωx1+x2 and Q =Ωy1+ y2, then eW,ℓ(P,Q) = e−2πiℓ(t x1 ·y2−t y1 ·x2).

eT,ℓ(P,Q) = λ
1
P

λ0
P
.
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Why does it works?

0A αP α4(2P) . . . αℓ
2 (ℓP) =λ′0P 0A

βQ γ(P ⊕Q) γ2α2

β
(2P +Q) . . . γℓαℓ(ℓ−1)

β ℓ−1 (ℓP +Q) =λ′1PβQ

β 4(2Q) γ2β 2

α
(P +2Q)

. . . . . .

β ℓ
2 (ℓQ) =λ′0Q 0A

γℓβ ℓ(ℓ−1)

αℓ−1 (P + ℓQ) =λ′
1
QαP

We then have

λ′
0
P =α

ℓ2
λ0

P , λ′
0
Q =β

ℓ2
λ0

Q , λ′
1
P =
γℓα(ℓ(ℓ−1)

β ℓ
λ1

P , λ′
1
Q =
γℓβ (ℓ(ℓ−1)

αℓ
λ1

Q ,

e ′W,ℓ(P,Q) =
λ′1Pλ

′0
Q

λ′0Pλ
′1
Q

=
λ1

Pλ
0
Q

λ0
Pλ

1
Q

= eW,ℓ(P,Q),

e ′T,ℓ(P,Q) =
λ′1P
λ′0P
=
γℓ

αℓβ ℓ
λ1

P

λ0
P

=
γℓ

αℓβ ℓ
eT,ℓ(P,Q).
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The case n = 2

If n = 2 we work over the Kummer variety K , so e (P,Q) � k ∗,±1
.

We represent a class x � k ∗,±1
by x +1/x � k ∗. We want to

compute the symmetric pairing

es (P,Q) = e (P,Q)+ e (−P,Q).

From ±P and ±Q we can compute {±(P +Q),±(P −Q)} (need a
square root), and from these points the symmetric pairing.

es is compatible with the Z-structure on K and k
∗,±1

.

The Z-structure on k
∗,±

can be computed as follow:

(x ℓ1+ℓ2 +
1

x ℓ1+ℓ2
)+ (x ℓ1−ℓ2 +

1

x ℓ1−ℓ2
) = (x ℓ1 +

1

x ℓ1
)(x ℓ2 +

1

x ℓ2
)
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Comparison with Miller algorithm

g = 1 7M+7S+2m0

g = 2 17M+13S+6m0

Tate pairing with theta coordinates, P,Q � A[ℓ](Fq d ) (one step)

Miller Theta coordinates

Doubling Addition One step

g = 1
d even 1M+1S+1m 1M+1m

1M+2S+2m
d odd 2M+2S+1m 2M+1m

g = 2
Q degenerate +
d even

1M+1S+3m 1M+3m
3M+4S+4m

General case 2M+2S+18m 2M+18m

P � A[ℓ](Fq ), Q � A[ℓ](Fq d ) (counting only operations in Fq d ).
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Ate pairing

Let G1 = E [ℓ]
⋂

Ker(πq −1) and G2 = E [ℓ]
⋂

Ker(πq − [q ]).
We have f ab ,Q = f b

a ,Q f b ,[a ]Q .

Let P �G1 and Q �G2 we have f a ,[q ]Q (P) = f a ,Q (P)q .

Let λ≡q mod ℓ. Let m = (λd −1)/ℓ. We then have

eT (P,Q)m = fλd ,Q (P)
(q d−1)/ℓ

=
�

fλ,Q (P)λ
d−1

fλ,[q ]Q (P)λ
d−2

. . . fλ,[q d−1]Q (P)
�(q d−1)/ℓ

=
�

fλ,Q (P)
∑

λd−1−i q i
�(q d−1)/ℓ

Definition

Let λ≡q mod ℓ, the (reduced) ate pairing is defined by

aλ : G1×G2→µℓ, (P,Q) 7→ fλ,Q (P)(q
d−1)/ℓ.

It is non degenerate if ℓ2 - (λk −1).
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Optimal ate [Ver10]

Let λ=mℓ=
∑

c i q i be a multiple of ℓ with small coefficients c i .
(ℓ -m )

The pairing

aλ : G1×G2 −→ µℓ

(P,Q) 7−→

 

∏

i

f c i ,Q (P)q
i
∏

i

f∑
j>i c j q j ,c i q i ,Q (P)

!(q d−1)/ℓ

is non degenerate when m d q d−1 ̸≡ (q d −1)/r
∑

i i c i q i−1 mod ℓ.

Since ϕd (q ) = 0 mod ℓ we look at powers q ,q 2, . . . ,qϕ(d )−1.

We can expect to find λ such that c i ≈ ℓ1/ϕ(d ).
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Ate pairing with theta functions

Let P �G1 and Q �G2.

In projective coordinates, we have πd
q (P +Q) = P +λdQ = P +Q .

Unfortunately, in affine coordinates, πd
q (áP +Q) ̸=åP +λdQ .

But if πd
q (áP +Q) =C ∗åP +λdQ , then C is exactly the (non

reduced) ate pairing!
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Miller functions with theta coordinates

We have

fµ,Q (P) =
ϑ(Q)

ϑ(P +µQ)

�

ϑ(P +Q)
ϑ(P)

�µ

.

So

fλ,µ,Q (P) =
ϑ(P +λQ)ϑ(P +µQ)
ϑ(P)ϑ(P +(λ+µ)Q)

.

We can compute this function using a generalised version of
Riemann’s relations:

�

∑

t �Z (2)
χ(t )ϑi+t (P +(λ+µ)Q)ϑj+t (λQ)

�

.
�

∑

t �Z (2)
χ(t )ϑk+t (µQ)ϑl+t (P)

�

=

�

∑

t �Z (2)
χ(t )ϑ−i ′+t (0)ϑj ′+t (P +µQ)

�

.
�

∑

t �Z (2)
χ(t )ϑk ′+t (P +λQ)ϑl ′+t ((λ+µ)Q)

�

.
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Perspectives

Characteristic 2 case (especially for supersingular abelian
varieties of characteristic 2).

Optimized implementations (FPGA, …).

Look at special points (degenerate divisors, …).
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