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A brief history of public-key cryptography

Secret-key cryptography: Vigenère (1553), One time pad (1917),
AES (NIST, 2001).

Public-key cryptography:

Diffie–Hellman key exchange (1976).
RSA (1978): multiplication/factorisation.
ElGamal: exponentiation/discrete logarithm in G =F∗q .
ECC/HECC (1985): discrete logarithm in G = A(Fq ).
Lattices, NTRU (1996), Ideal Lattices (2006): perturbate a lattice
point/Closest Vector Problem, Bounded Distance Decoding.
Polynomial systems, HFE (1996): evaluating polynomials/finding
roots.
Coding-based cryptography, McEliece (1978): Matrix.vector/decoding
a linear code.

⇒ Encryption, Signature (+Pseudo Random Number Generator, Zero
Knowledge).

Pairing-based cryptography (2000–2001).

Homomorphic cryptography (2009).
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RSA versus (H)ECC

Security
RSA ECC

(bits level)

72 1008 144
80 1248 160
96 1776 192
112 2432 224
128 3248 256
256 15424 512

Key length comparison between RSA and ECC

Factorisation of a 768-bit RSA modulus [KAF+10].

Currently: attempt to attack a 130-bit Koblitz elliptic curve.
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Discrete logarithm

Definition (DLP)

Let G = 〈g 〉 be a cyclic group of order n . Let x �N and h = g x . The
discrete logarithm logg (h) is x .

Exponentiation: O(log n ). DLP?

If n =
∏

p e i

i then the DLP logg (h) is reduced to several DLP logg i
(·)

where g i if of order p i (CRT+Hensel lemma). Thus the cost of the
DLP depends on the largest prime divisor of n .

Generic method to solve the DLP: let u = [
p

n ], and compute the
intersection of {h, h g −1, . . . , h g −u } and {g u , g 2u , g 3u , . . .}. Cost:
eO(
p

n ) (Baby steps, giant steps).

Reduce memory consumption by doing a random walk g a i hb i

until a collision is found (Pollard-ρ).

If G is of prime order p , the DLP costs eO(pp ) (in a generic group).
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Key exchange

Protocol [Diffie–Hellman Key Exchange]

Alice sends g a , Bob sends g b , the common key is

g ab = (g b )a = (g a )b .

Zero knowledge

Alice knowns a �Z/nZ. Publish p = g a .

Alice sends q = g r to Bob, r �Z random.

Bob either:
Asks r to Alice and checks that q = g r .
Asks r +a to Alice and checks that qp = g r+a .
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Public key cryptography

Cyclic group of prime order G = 〈g 〉.
Alice: secret key a , public key p = g a .

Asymetric encryption

Encrypting m �G : Bob sends g r , s =m p r , r �Z random.

Decryption: m = s/g r a .

Signature [G =F∗p ]

Signing m : Alice sends g r , s = (m −a g r )/r . r �Z random.

Verification: Bob checks that g m = p g r g r s .
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Pairing-based cryptography

Definition

A pairing is a bilinear application e : G1×G1→G2.

Identity-based cryptography [BF03].

Short signature [BLS04].

One way tripartite Diffie–Hellman [Jou04].

Self-blindable credential certificates [Ver01].

Attribute based cryptography [SW05].

Broadcast encryption [GPSW06].

Example

If the pairing e can be computed easily, the difficulty of the DLP
in G1 reduces to the difficulty of the DLP in G2.

⇒ MOV attacks on elliptic curves.
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Pairing-based cryptography

Tripartite Diffie–Helman

Alice sends g a , Bob sends g b , Charlie sends g c . The common key is

e (g , g )ab c = e (g b , g c )a = e (g c , g a )b = e (g a , g b )c �G2.

Example (Identity-based cryptography)

Master key: (P, s P), s . s �N, P �G1.

Derived key: Q , sQ . Q �G1.

Encryption, m �G2: m ′ =m ⊕ e (Q , s P)r , r P . r �N.
Decryption: m =m ′⊕ e (sQ , r P).
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Which groups to use?

The DLP costs eO(pp ) in a generic group.

G =Z/pZ: DLP is trivial.

G =F∗p : sub-exponential attacks.

⇒ Find secure groups with efficient law, compact representation.

⇒ We also want efficient pairings.
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base
field k .

Abelian variety = points on a projective space (locus of
homogeneous polynomials) + an abelian group law given by
rational functions.

⇒ Use G = A(k ) with k =Fq for the DLP.

Pairings on abelian varieties

The Weil and Tate pairings on abelian varieties are the only known
examples of cryptographic pairings.

eW : A[ℓ]×A[ℓ]→µℓ ⊂F∗q k .
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Elliptic curves

Definition (car k ̸= 2, 3)

E : y 2 = x 3+a x +b . 4a 3+27b 2 ̸= 0.

An elliptic curve is a plane curve of genus 1.

Elliptic curves = Abelian varieties of dimension 1.
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Jacobian of hyperelliptic curves

C : y 2 = f (x ), hyperelliptic curve of genus g . (deg f = 2g +1)

Divisor: formal sum D =
∑

n i Pi ,
deg D =
∑

n i .
Pi �C (k ).

Principal divisor:
∑

P�C (k ) vP ( f ).P; f � k (C ).
Jacobian of C =Divisors of degree 0 modulo principal divisors

+ Galois action
= Abelian variety of dimension g .

Divisor class D ⇒ unique representative (Riemann–Roch):

D =
k
∑

i=1

(Pi −P∞) k ¶ g , symmetric Pi ̸= Pj

Mumford coordinates: D = (u , v ) ⇒ u =
∏

(x −x i ), v (x i ) = yi .

Cantor algorithm: addition law.
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Example of the addition law in genus 2
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Complex abelian varieties

Abelian variety over C: A =Cg / (Zg +ΩZg ), where Ω �Hg (C) the
Siegel upper half space.

An elliptic curve over C is a torus C/Λ, where Λ is a lattice.

The isomorphism E →C/Λ is given by P 7→
∫ P

0
d x/y , Λ is the

image of H1(E ,Z).
Let E2k (Λ) =
∑

w �Λ∗ w−2k be the Eisenstein series of weight 2k , and

℘ (z ,Λ) =
1

z 2
+
∑

w �Λ∗
1

(z −w )2
−

1

w 2
.

Then C/Λ→ E , z 7→
�

℘(z ),℘′(z )
�

is an isomorphism, where
E : y 2 = 4x 3−60E4(Λ)−140E6(Λ).
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Modular function

A lattice Λ⊂C can be uniquely represented as Λ=Zτ+Z, where
τ is in the Poincarré half-plane H.

There is a bijection between H/Γ(1) and the set of isomorphic
elliptic curves, where Γ(1) = Sl2(Z)/{±1} and the action is given by

�

a b
c d

�

.τ=
aτ+b

cτ+d
.

Let X (1) be the compatification of H/Γ(1) (constructed by adding
the cusps to H). It is an analytic space, and the j -function gives
an isomorphism between X (1) and P1

C.

The (meromorphic) k -forms on X (1) corresponds to modular
functions of weight 2k :

f

��

a b
c d

�

.τ

�

= (cτ+d )2k f (τ).
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Security of abelian varieties

g # points DLP

1 O(q ) eO(q 1/2)
2 O(q 2) eO(q )

3 O(q 3)
eO(q 4/3) (Jacobian of hyperelliptic curve)
eO(q ) (Jacobian of non hyperelliptic curve)

g
O(q g )
eO(q 2−2/g )

g > log(q ) L 1/2(q g )= exp(O(1) log(x )1/2 log log(x )1/2)

Security of the DLP

Weak curves (MOV attack, Weil descent, anomal curves).

⇒ Public-key cryptography with the DLP: Elliptic curves, Jacobian of
hyperelliptic curves of genus 2.

⇒ Pairing-based cryptography: Abelian varieties of dimension g ¶ 4.



Public-key cryptography Abelian varieties Point counting Theta functions References

Security of abelian varieties

g # points DLP

1 O(q ) eO(q 1/2)
2 O(q 2) eO(q )

3 O(q 3)
eO(q 4/3) (Jacobian of hyperelliptic curve)
eO(q ) (Jacobian of non hyperelliptic curve)

g
O(q g )
eO(q 2−2/g )

g > log(q ) L 1/2(q g )= exp(O(1) log(x )1/2 log log(x )1/2)

Security of the DLP

Weak curves (MOV attack, Weil descent, anomal curves).

⇒ Public-key cryptography with the DLP: Elliptic curves, Jacobian of
hyperelliptic curves of genus 2.

⇒ Pairing-based cryptography: Abelian varieties of dimension g ¶ 4.



Public-key cryptography Abelian varieties Point counting Theta functions References

Choosing an elliptic curve

1 One can choose a random elliptic curve E over Fq , and check
that #E (Fq ) is divisible by a large prime number.

2 Let χπ(X ) =X 2− t X +q be the characteristic polynomial of the
Frobenius. Then #E (Fq ) =χπ(1).
(Reminder: the characteristic polynomial of an endomorphism α
is the unique polynomial χα such that for all n �N
χα(n ) = deg(α−n Id). It is also the characteristic polynomial of α
acting on the Tate module Tℓ(E ) for ℓ -q .)

3 Hasse: |t |¶ 2
p

q .
(Comes from the fact that deg is a positive quadratic form).

4 We need an efficient algorithm to find the trace t .
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Schoof algorithm

Let E : y 2 = x 3+a x +b defined over Fq (of characteristic > 3).

The idea to count the points on E is to compute t mod ℓ for a lot
of small primes ℓ, and then use the CRT to find back ℓ.

We will need O(logq ) primes of size O(logq ).

For each small prime ℓ¾ 3, we can construct a division
polynomial ψℓ of degree (ℓ2−1)/2 such that P � E [ℓ] if and only if
ψℓ(xP ) = 0.

We can then work over the algebra
A =Fq [x , y ]/(y 2−a x −b ,ψℓ(x )), to recover t mod ℓ. This costs
O(log(q )+ ℓ) operations in A , each costing O(ℓ2 log(q )), so in total
O(logq 4).

We recover t in time O(logq 5).

Can we improve this algorithm? We need to work on subgroups
of the ℓ-torsion.
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Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism
between two Abelian varieties.

Isogenies = Rational map + group morphism + finite kernel.

Isogenies⇔ Finite subgroups.

( f : A→ B ) 7→Ker f

(A→ A/H ) 7→H

Example: Multiplication by ℓ (⇒ ℓ-torsion), Frobenius (non
separable).
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Vélu’s formula

Theorem

Let E : y 2 = f (x ) be an elliptic curve and G ⊂ E (k ) a finite subgroup. Then
E/G is given by Y 2 = g (X ) where

X (P) = x (P)+
∑

Q�G \{0E }

(x (P +Q)−x (Q))

Y (P) = y (P)+
∑

Q�G \{0E }

�

y (P +Q)− y (Q)
�

.

Uses the fact that x and y are characterised in k (E ) by

v0E (x ) =−2 vP (x )¾ 0 if P ̸= 0E

v0E (y ) =−3 vP (y )¾ 0 if P ̸= 0E

y 2/x 3(0E ) = 1

Generalized to abelian varieties by Cosset, Lubicz, R.
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Modular polynomials

Definition

Modular polynomial ϕn (x , y ) �Z[x , y ]: ϕn (x , y ) = 0⇔ x = j (E ) and
y = j (E ′) with E and E ′ n -isogeneous.

If E : y 2 = x 3+a x +b is an elliptic curve, the j -invariant is

j (E ) = 1728
4a 3

4a 3+27b 2

Roots of ϕn (j (E ), .)⇔ elliptic curves n -isogeneous to E .

Atkins and Elkies ameliorations to Schoof algorithm:
1 Compute ϕℓ(X , j (E )) and checks if there is a rational root j ′.
2 Compute the factor g ℓ(X ) of ψℓ(X ) corresponding to the isogeny

E → E ′.
3 Compute the action of π on the algebra

B =Fq [x , y ]/(y 2−a x −b , g ℓ(X )).

The total complexity is O(logq 4).
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Other cryptographic usage of isogenies

Transfer the DLP from one Abelian variety to another.

Point counting algorithms (ℓ-adic or p -adic) ⇒ Verify a curve is
secure.

Compute the class field polynomials (CM-method) ⇒ Construct a
secure curve.

Compute the modular polynomials ⇒ Compute isogenies.

Determine End(A) ⇒ CRT method for class field polynomials.
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Point counting in small characteristic

Let E/Fq be an ordinary elliptic curve. There exists a unique lift E
of E on Qq such that End(E )≃ End(E ). E is called the canonical
lift of E , and moreover we have

ϕp (jE ,σjE ) = 0,

where σ is the lift of the (small) Frobenius on Qq .

The idea of Satoh’s algorithm is that the cycle:
E 7→ Eσ 7→ Eσ2 . . . 7→ Eσn lift the Frobenius if q = p n .

In fact it suffices to compute the action of E 7→ Eσ on the
differentials given by γ �Qq . Since the action on the differentials
on Eσ 7→ Eσ2 is given by γσ, we deduce that the norm of γ is an
eigenvector of the Frobenius.

The cost is O(n 2).

Hard to extend to other curves ⇒ Kedlaya algorithm: choose any
lift, and compute the action of the Frobenius on the
Monsky–Washnitzer cohomology.
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Complex multiplication

Another idea to choose a good elliptic curve is to fix a prescribed
number of point and generate a curves with this number.

This is indispensable for pairings applications where we want to
control the embedding degree (otherwise it is of order q with a
random curve).

If E/Fq is an ordinary elliptic curve, End(E ) is an order in Q(π)
containing Z[π,π]. The endomorphism ring of an elliptic curve is
a finer invariant than its number of points.

If OK is the maximal order of an imaginary quadratic field K ,
then there are hK class of complex elliptic curves E such that
End(E ) =OK , where hK is the class number of K .

The algorithm of complex multiplication computes the class
polynomial of degree hK : HK =

∏

(X − j (E )) where the product
goes over each complex elliptic curve with complex
multiplication by OK .
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The theory of complex multiplication

If E/C as complex multiplication by OK , then K (j (E )) is the
Hilbert class field of K . Adjoining the x coordinates of the points
of torsion gives the maximal abelian extension of K (and
adjoining all the points of torsion give the maximal abelian
extension of the Hilbert class field).

HK �Z[X ] and is the minimal polynomial of j (E ) over K . In
particular j (E ) is an algebraic integer.

Example

Q(
p
−163) is principal, so j

�

1+
p
−163
2

� �Z. Moreover

j (q ) = 1
q
+744+196884q +21493760q 2+ . . . with q = e 2πiτ. When we

substitute τ= 1+
p
−163
2

we find that q =−e−π
p

163 ≈−3.809.10−18 is very
small. Such eπ

p
163 is almost an integer, and indeed we compute

eπ
p

163 = 262537412640768743.99999999999925007. . . .
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Applications

Since the j -invariant give the field of moduli (and even the field
of definition), if p splits completely in K (j (E )), E reduces to Fp .
For such a p , the polynomial HK splits completely in Fp , and its
roots corresponds to the j -invariant of elliptic curves E defined
over Fp such that End(E ) =OK .
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Complex abelian varieties

Let A =Cg / (Zg +ΩZg ) be a complex abelian variety.

The theta functions with characteristic give a lot of analytic
(quasi periodic) functions on Cg .

ϑ
�a

b

�

(z ,Ω)=
∑

n�Zg

eπi t (n+a )Ω(n+a )+2πi t (n+a )(z+b ) a ,b �Qg

Quasi-periodicity:

ϑ
�a

b

�

(z+m1Ω+m2,Ω)= e 2πi (t a ·m2−t b ·m1)−πi t m1Ωm1−2πi t m1 ·zϑ
�a

b

�

(z ,Ω).

Projective coordinates:

A −→ Pn g−1
C

z 7−→ (ϑi (z ))i�Z (n )
where Z (n ) =Zg /nZg and ϑi = ϑ

h

0
i
n

i

(., Ω
n
).
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Theta functions of level n

Translation by a point of n -torsion:

ϑi (z +
m1

n
Ω+

m2

n
) = e−

2πi
n

t i ·m1ϑi+m2 (z ).

(ϑi )i�Z (n ): basis of the theta functions of level n
⇔ A[n ] = A1[n ]⊕A2[n ]: symplectic decomposition.

(ϑi )i�Z (n ) =
¨

coordinates system n ¾ 3

coordinates on the Kummer variety A/±1 n = 2

Theta null point: ϑi (0)i�Z (n ) =modular invariant.
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The differential addition law (k =C)

�

∑

t �Z (2)
χ(t )ϑi+t (x + y )ϑj+t (x − y )

�

.
�

∑

t �Z (2)
χ(t )ϑk+t (0)ϑl+t (0)

�

=

�

∑

t �Z (2)
χ(t )ϑ−i ′+t (y )ϑj ′+t (y )

�

.
�

∑

t �Z (2)
χ(t )ϑk ′+t (x )ϑl ′+t (x )

�

.

where χ � Ẑ (2), i , j , k , l �Z (n )
(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2











1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1










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The Weil and Tate pairing with theta coordinates [LR10]

P and Q points of ℓ-torsion.

0A P 2P . . . ℓP =λ0
P 0A

Q P ⊕Q 2P +Q . . . ℓP +Q =λ1
PQ

2Q P +2Q

. . . . . .

ℓQ =λ0
Q 0A P + ℓQ =λ1

Q P

eW,ℓ(P,Q) =
λ1

Pλ
0
Q

λ0
Pλ

1
Q
.

If P =Ωx1+x2 and Q =Ωy1+ y2, then eW,ℓ(P,Q) = e−2πiℓ(t x1 ·y2−t y1 ·x2).

eT,ℓ(P,Q) = λ1
P

λ0
P
.
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Duplication formula

ϑ
h

0
i
n

i

(z 1+ z 2,
Ω
n
)ϑ
h

0
j
n

i

(z 1− z 2,
Ω
n
) =
∑

t �1
2
Zg /Zg

ϑ
� t

2
i+j
2n

�

(2z 1, 2
Ω
n
)ϑ
� t

2
i−j
2n

�

(2z 2, 2
Ω
n
)

ϑ
h

χ/2
i/(2n )

i

(2z 1, 2
Ω
n
)ϑ
h

χ/2
j /(2n )

i

(2z 2, 2
Ω
n
) =

1

2g

∑

t �1
2
Zg /Zg

e−2iπ t χ ·t ϑ
h

2χ
i+j
2n
+t

i

(z 1+ z 2,
Ω
n
)ϑ
h

0
i−j
2n
+t

i

(z 1− z 2,
Ω
n
).

The duplication formula give a modular polynomial for
2-isogenies on any abelian variety ⇒ point counting in
characteristic 2 by computing the canonical lift.
The elliptic curves En : y 2 = x (x −a 2

n )(x −b 2
n ) converges over Q2k

to the canonical lift of (E0)F2k [Mes01], where (a n )n�N, (bn )n�N
satisfy the Arithmetic Geometric Mean:

a n+1 =
a n +bn

2

bn+1 =
p

a n bn
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