Computing optimal pairings on abelian varieties

with theta functions

David Lubicz!2, Damien Robert3

ICLAR
2]RMAR, Universit de Rennes 1

LLFANT Team, IMB & Inria Bordeaux Sud-Ouest

23/06/2011 (Geocrypt, Bastia)



Outline

© Miller's algorithm

© Theta functions

© Optimal pairings



Miller's algorithm
@00

The Weil pairing on elliptic curves

Let E : y?> = x* 4+ ax + b be an elliptic curve over k (car k # 2,3).
Let P, Q € E[{] be points of ¢-torsion.

Let 7p be a function associated to the principal divisor £(P — 0), and
fo to £(Q — 0). We define:

ew,(P,Q) = ?z((g_g;-

The application ew ¢ : E[¢] x E[{] — pe(k) is a non degenerate
pairing: the Weil pairing.

Lots of applications in cryptography . ..
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Computing the Weil pairing

@ We need to compute the functions fp and fo. More generally, we
define the Miller's functions:

Definition

Let A € N and X € E[{], we define £ x € k(E) to be a function thus
that:

(Hx) = AX) = ([AIX) = (A = 1)(0).
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Miller's algorithm

@ The key idea in Miller's algorithm is that

Botx = Buxfuxfaux

where f) ., x is a function associated to the divisor

(A + X)) = (X)) = ([1]X) +(0).

@ We can compute §y , x using the addition law in E: if

[AIX = (x1,51) and [p]X = (x2,y2) and a = (y1 — y2)/(x1 — x2), we
have

y—alx—x1)—wn
x+(x1+x)—a?’

Faux =
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Tate pairing

o Let E/F, be an elliptic curve of cardinal divisible by ¢. Let d be the
smallest number thus that £ | g¢ — 1: we call d the embedding
degree. IF a is constructed from I, by adjoining all the ¢-th root of
unity.

@ The Tate pairing is a non degenerate bilinear application given by

er: E(Fq)/tE(Fg) x E[)(Fq) — Fro/FL’
(P,Q) +— fo((P)~—(0))

o If (21 E(Fyq) then E(F,0)/CE(F ) ~ E[{](Fye).

@ We normalise the Tate pairing by going to the power of (q¢ — 1)/.

@ This final exponentiation allows to save some computations. For
instance if d = 2d’ is even, we can suppose that P = (xy, y») with
xy € E(F o). Then the denominators of ) ,, ¢ are {-th powers and
are killed by the final exponentiation.
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Miller's algorithm

Computing Tate pairing

Input: £ €N, Q = (x1,)1) € E[{)(Fg), P = (x2,y2) € E(Fga).
Output: er(P, Q).

@ Compute the binary decomposition: £ := Zfzo b;i2". Let
T=Q,hHh=1Ff=1.

@ For i in [/..0] compute

«, the slope of the tangent of E at T.

T = 2T T = (X3,y3).

i =f(y: — ale —x3) = y3), fo = 7 (2 + (x1 + x3) — o?).

If b =1, then compute

@ «, the slope of the line going through Q and T.

e T=T+Q. T= (X3,y3).

o fi=F2(y2—alx2—x3) — y3), o = (2 + (x1 + x3) — a?).
@ Return
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Pairings on abelian varieties

o Let A be an abelian variety with principal polarization ©. Let
P,Q € A[].

o If fp and fg are the functions associated to the principal divisors
(tp© — (O and (t5© — (O we can define the Weil pairing as:

fo(P —0)
ew,0,(P, Q) = (Q=0)

o Likewise, we can extend the Tate pairing to abelian varieties.

o If J is the Jacobian of an hyperelliptic curve H of genus g, it is easy
to extend Miller's algorithm to compute the Tate and Weil pairing
on J with Mumford coordinates.

e For instance if g = 2, the function f . @ is of the form

y —I(x)
(x = x1)(x = x)
where [ is of degree 3.

@ What about more general abelian varieties? We don’t have Mumford
coordinates.
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Theta coordinates on abelian varieties

@ Every abelian variety (over an algebrically closed field) can be
described by theta coordinates of level n > 2 even. (The level n
encodes information about the n-torsion).

@ The theta coordinates of level 2 on A describe the Kummer variety
of A.

@ For instance if A= C&/(Z#& + QZ#) is an abelian variety over C,
the theta coordinates on A come from the theta functions with
characteristic:

9 [ 297] (Z, Q) — Z eﬂ'i t(n+a)§2(n+a)+27ri t(n+a)(z+b) a, be Qg
neze



The differential addition law (k = C)

(D XOirelx+ y)jpe(x = ¥))-( D x()0k42(0)0144(0)) =

teZ(2) teZ(2)
( Z X(t)ﬁfi%t()/)ﬁj’ﬂ()/))( Z X(t)ﬁk’+t(x)79/'+t(x))~
teZ(2) teZ(2)

where x € Z(2),i,j, k.1 € Z(n)
(I-/’j/’ k', //) = A(i,j./ k, /)

11 1 1
11 1 -1 =41
A=511 -1 1 41
1 -1 -1 1
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Example: addition in genus 1 and in level 2

Differential Addition Algorithm:
Input: P=(x1:21), Q=(x2: 2)
andR=P—-Q =(x3: 23) with x3z3 # 0.
Output: P+ Q = (X' : /).
0 xo = (¢ +2)(3 +22)
@ 2= (¢~ )03 - B);
Q@ X' = (x0+ 20)/x3;
Q 7z =(x0—2)/zs;
@ Return (x’ : Z').
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Cost of the arithmetic with low level theta functions

(cark # 2)

Mumford Level 2 Level 4
Doubling 34M + 7S

Mixed Addition 37M +65 M +125+9mo  49M+365 4 27m

Table: Multiplication cost in genus 2 (one step).

Montgomery Level 2 Jacobians coordinates
Doubling 3M +5S
Mixed Addition M T4>+1mo  3M+65+3mo 7M + 65 + 1mo

Table: Multiplication cost in genus 1 (one step).
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The Weil and Tate pairing with theta coordinates

P and @ points of /-torsion.

04 P 2P EP:)\%OA
Q P& Q 2P+Q ... (P+Q=):Q
2Q P+2Q

EQ:)\%OA P+€Q:/\5P
PYSY.
o eW)g(P, Q) = A?’:Ag'
If P=Qx;+ x and Q = Qy1 + y», then

ot t
eW,Z(P7 Q) — e 2mil("x1ry2—"y1%2)

("] eT,g(P, Q) = if(g.
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Why does it works?

OA O[P
BQ v(P & Q)
34(2Q) @(P+2Q)
5(0Q) = X0, 2P 1 1) =
We then have
PN (S VA T U R
)\/1 )\/O
e{/V,Z('Dv Q)= )\’ )\/1
)\/1 ,yé
/ P — 7P =
er (P, Q) VO T atp

a*(2P) o (tP)
2o (2P + Q) T (P +
QaP
Fealte-1) 1 Afpley
g Ne=
ARG
= EWVZ('Da Q)’
TN
YR
7(")3 = aTﬁeeTj(P? Q)'



Theta functions
{e]e] o]

The case n =2

o If n =2 we work over the Kummer variety K, so e(P, Q) € E*’il.

—x, 41 _
@ We represent a class x € K by x+1/x € k". We want to
compute the symmetric pairing

es(P,Q) =e(P,Q) +e(—P, Q).

@ From £P and +@Q we can compute {+(P + Q), £(P — Q)} (need a
square root), and from these points the symmetric pairing.
. . . ——*,%
@ e is compatible with the Z-structure on K and k '

—x,
o The Z-structure on k'~ can be computed as follow:

1

xt

1
(x1+e + e )+ (x" 7 + xfl—fz) = (x"+ E)(XZ2 +
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Comparison with Miller algorithm

g=1 TM+7S+2mg
g=2 1/M+13S+6mg

Table: Tate pairing with theta coordinates, P, @ € A[{](F,) (one step)

Miller Theta coordinates
Doubling Addition One step
- d even IM+1S+1m 1IM+1m
g=1 §odd DM 425 +1m  oM+1m M+ 25+2m

Q degenerate +
g=2 deven IM + 1S +3m 1M + 3m 3M + 4S + 4m

General case 2M +2S +18m 2M + 18m

Table: P € A[{](Fq), Q € A[¢](F ¢) (counting only operations in F4).
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Ate pairing

o Let Gy = E[{] (N Ker(mg — 1) and G, = E[¢] (N Ker(mq — [q]).
@ We have f;b’Q = fal?be,[a]Q-

o Let P € G; and Q € G, we have fa’[q]Q(P) = a7Q(P)q.

o Let \=qg mod /. Let m= (A9 —1)/¢. We then have

er(P, Q)™ = fru o(P)@ /¢

d—1 d—2 (¢9—1)/¢
= (ha(PP A@e(PY . g-1a(P))

Definition

Let A =g mod ¢, the (reduced) ate pairing is defined by
ax: Gy x G — g, (P, Q) — fA,Q(p)(qd—l)/Z.

It is non degenerate if £2 1 (\f — 1).
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Optimal ate

o Let \=m/l =Y c;q' be a multiple of £ with small coefficients c;.
(1 m)
@ The pairing

ay: Gl X G2 — Uy
_ (q'-1)/¢
(P,Q) <H fe.,@(P)? Hfzj>,qqf,c,-q",o(P)>

is non degenerate when mdq?=! # (g9 —1)/r>",icig'=* mod ¢.
@ Since @g(q) =0 mod £ we look at powers g, q?,...,q#)~1.
@ We can expect to find A such that ¢; & ¢1/#(d),
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Ate pairing with theta functions

Let P € Gy and Q € G,.
In projective coordinates, we have wg(P ©QRQ)=Pa)NQ=PaQ.
Unfortunately, in affine coordinates, 7d(P + Q) # P + \?Q.

But if m4(P + Q) = C x (P + AQ), then C is exactly the (non
reduced) ate pairing!



Miller functions with theta coordinates

o We have
_ Q) I(P+Q)\"
halP) = 3oy (o))
e So
fawo(P) = IP + AQ)I(P + uQ)

IPYI(P+ N+ p)Q)

@ We can compute this function using a generalised version of
Riemann'’s relations:

(D x(O9ie(P+ (A + ) Q)014:(AQ))- (D X (1) Py e(nQ)I11+(P)) =

tcZ(2) tcZ(2)

ZX —ir+¢(0)0jr4¢(P + Q) (ZX(f)ﬁkurt(P"')\Q)ﬂl’+t(()\+M)Q))~

teZ(2) teZ(2)
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Optimal ate with theta functions

OQ Input: 74(P) =P, 1(Q) =q*Q A=ml = cq'.
@ Compute the P+ ¢;Q and ¢ Q.
@ Apply Frobeniuses to obtain the P+ ¢i¢'Q, ¢iq' Q.

Q@ Compute ¢;q'Q + ¢j¢/Q (up to a constant) and then use the
extended Riemann relations to compute P + ¢;q'Q + ¢j¢/ Q (up to
the same constant).

© Recurse until we get A\Q = Cox Q and P+ \Q = Cy * P.

gd-1

O Return (G /G) =
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The case n =2

e Computing ¢;q'Q £ ¢;¢/ Q requires a square root (very costly).
@ And we need to recognize ¢q'Q+ chjQ from ¢iq'Q — c:jqu.

o We will use compatible additions: if we know x, y, z and x + z,
¥ + z, we can compute x + y without a square root.

o We apply the compatible additions with x = ¢;¢'Q, y = ¢j¢/Q and
z=P.
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Compatible additions

@ Recall that we know x, y, zand x4+ z, y + z.

e From it we can compute (x+z) £ (y+2z)={x+y+2z,x—y}
and of course x £ y. Then x + y is the element in {x + y,x — y}
not appearing in the preceding set.

@ Since we can distinguish x + y from x — y we can compute them
without a square root.
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The compatible addition algorithm in dimension 1

Q Input: x,y, x2=x+2z, yz=y+ 2z
@ Computing x + y:

a= 8+ +¥)A, B =04 —vi) 5 — %)B
Xoo = (a+ B), A1 = (o — )
o1 = 2ypy1xox1/ab.

@ Computing (x +z) + (y + 2):

o = vz +y2)(xg + yz5)A' B = vz — yzi)(xe5 — yz5)B'
o=l + Xy =~
o1 = 2yzoyz1xZoxz1/ ab.

Q@ Return x +y = [)\00()\11/\60 — /\/11/\00), —2)\11(/\61)\00 — /\01)\60)];
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Perspectives

o Characteristic 2 case (especially for supersingular abelian varieties of
characteristic 2).

@ Optimized implementations (FPGA, ...).

@ Look at special points (degenerate divisors, . ..).
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