Computing optimal pairings on abelian

varieties with theta functions

David Lubicz!2, Damien Robert3

ICELAR
2]RMAR, Université de Rennes 1

3Microsoft Research

30/09/2011 (IMB, Bordeaux)



@ rublic-key cryptography
9 Miller’s algorithm

© Theta functions

e Optimal pairings



[ 1o}

Discrete logarithm

Definition (DLP)

Let G=(g) be a cyclic group of order n. Let xeN and h = g*. The
discrete logarithm log,(h) is x.

@ Exponentiation: O(logn). DLP?

o If n=[]p{" then the DLP log,(h) is reduced to several DLP
log,,(-) where g; if of order p; (CRT+Hensel lemma). Thus the
cost of the DLP depends on the largest prime divisor of n.

@ Generic method to solve the DLP: let u =[+/n], and compute the
intersection of {h,hg~',...,hg "} and {g*, g**,g*,...}. Cost:
O(v/n) (Baby steps, giant steps).

@ Reduce memory consumption by doing a random walk g hb:
until a collision is found (Pollard-p).

@ If G is of prime order p, the DLP costs O(,/p) (in a generic
group).
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Usage in public key cryptography

@ Asymetric encryption;
@ Signature;
@ Zero-knowledge.

Example (Diffie-Hellman Key Exchange)

Alice sends g¢, Bob sends g”, the common key is

gl =(g""=(g").
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Pairing-based cryptography

Definition

A pairing is a bilinear application e : G; x G; — G,.

If the pairing e can be computed easily, the difficulty of the DLP
in G; reduces to the difficulty of the DLP in G,.

MOV attacks on supersingular elliptic curves.

Identity-based cryptography [BF03].

Short signature [BLS041.

One way tripartite Diffie-Hellman [Jouo4l.
Self-blindable credential certificates [Veroil.
Attribute based cryptography [SW05].
Broadcast encryption [GPS+06l.
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Pairing-based cryptography

Tripartite Diffie-Helman

Alice sends g4, Bob sends g?, Charlie sends g¢. The common key is

e(g, 8) " =e(g” g) =e(g 8"\ =e(g" g") €Go..

Example (Identity-based cryptography)

@ Master key: (BsP), s. seN,PeG.

@ Derived key: Q, sQ. QeG;.

@ Encryption, meGy: m’=m&e(Q,sP), rP. reN.
@ Decryption: m =m’®e(sQ,rP).
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Which groups to use?

@ The DLP costs O(/p) in a generic group.

@ G=7Z/pZ: DLP is trivial.

® G =F;: sub-exponential attacks.

@ Elliptic curves or Jacobian of hyperelliptic curves of genus 2

over F,: best attack is the generic attack except for some
particular cases.

@ Abelian variety: better attack (still exponential) when the
dimension g is greater than 2. Subexponential attack when g is
greater than logg.

@ Abelian varieties give the only known examples of secure
cryptographic pairings.
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The Weil pairing on elliptic curves

@ Let E:y?=x3+ax+b be an elliptic curve over k (cark #2,3).
@ Let BQc« E[{] be points of ¢-torsion.

@ Let fp be a function associated to the principal divisor £(P—0),
and fy to £(Q —0). We define:

fo(P—0)

ew(BQ)= FQ=0)

@ The application ey, : E[¢] x E[¢] — u(k) is a non degenerate
pairing: the Weil pairing.
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Computing the Weil pairing

@ We need to compute the functions fp and f,. More generally,
we define the Miller’s functions:

Definition
Let 2eN and X e E[¢], we define f3 x € k(E) to be a function thus that:

(frx)=AX) = ([A1X) = (A —1)(0).
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Miller’s algorithm

@ The key idea in Miller’s algorithm is that
Fraux = Frxfuxfrux
where f,,,,x is a function associated to the divisor
([A+p1X) = ((A1X) = ([u]X) +(0).

@ We can compute fj ,x using the addition law in E: if
[A1X =(x1,31) and [p]X = (x2,y2) and a=(y1 — y»)/(x1 — x2), we have

; _y—ax—x))=n
X a +x) — a2



Tate pairing

@ Let E/F, be an elliptic curve of cardinal divisible by ¢. Let d be
the smallest number thus that | g% —1: we call d the
embedding degree. F,« is constructed from F, by adjoining all
the ¢-th root of unity.

@ The Tate pairing is a non degenerate bilinear application given
by

er: E(F,)/LE(F,qa)x E[(|(F,) — F’;d/IF’;/
(BQ) — fo((P)—(0))

o If KZJ(E(]qu) then E(qu)/fE(qu) o~ E[f](qu)

@ We normalise the Tate pairing by going to the power of
(g4 —1)/t.

@ This final exponentiation allows to save some computations. For
instance if d =2d’ is even, we can suppose that P=(x,,),) with
x, € E(F o). Then the denominators of §, o are ¢-th powers and
are killed by the final exponentiation.



Miller’s algorithm

Computing the Tate pairing

Input: £eN, Q=(x1,y1) € E[(](Fy), P=(x2,2) € E(Fga).
Output: er(BQ).

@ Compute the binary decomposition: £:=Y"_ b;2'. Let
TZQ,flzl,fzzl.

@ For i in [I..0] compute

a, the slope of the tangent of E at T.

T=2T. T:(X3,y3).

fi= 22 — alx2 = x3) = y3), fo= f7(2+ (X1 +x3) — a?).

If b; =1, then compute

@ ¢, the slope of the line going through Q and T.
@ T=T+Q. T=(x3,)3).
o fi1=f2(y2—alxz—x3)—y3), fo= falxa+(x1 +x3)— a?).

@ Return
q%-1
(%)
I ‘




Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base
field k.

@ Abelian variety = points on a projective space (locus of
homogeneous polynomials) + an abelian group law given by
rational functions.

@ Elliptic curves= Abelian varieties of dimension 1.

@ If C is a (smooth) curve of genus g, its Jacobian is an abelian
variety of dimension g.




Pairing on abelian varieties

@ Let Qe Al(]. By definition of the dual abelian variety, Q is a
divisor of degree 0 on A such that [¢]*Q is principal. Let gg € k(A)
be a function associated to [£]*Q.

@ We can then define the Weil pairing:

ewe: All]x All] — Hz(?) :
x+P
(RQ) for
8o(x)
(This last function being constant in its definition domain).
@ Likewise, we can extend the Tate pairing to abelian varieties.



Pairings and polarizations

@ If © is an ample divisor, the polarisation ¢g is a morphism
A—Ax— t;‘@—@.
@ We can then compose the Weil and Tate pairings with ¢g:

ewor: ALIX ALl —  p(k)
(BQ) — ewy(Pyol(Q))

@ More explicitly, if fp and fq are the functions associated to the
principal divisors £1;0© —¢© and (1,0 —{© we have

fo(P—0)

ewe(PQ)= Fo(Q— 0)-

If © corresponds to the ample line bundle £, ew e, corresponds to the
commutator pairing egr.
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Cryptographic usage of pairings on abelian varieties

@ The moduli space of abelian varieties of dimension g is a space
of dimension g(g+1)/2. We have more liberty to find optimal
abelian varieties in function of the security parameters.

@ Supersingular elliptic curves have a too small embedding
degree. [RS09] says that for the current security parameters,
optimal supersingular abelian varieties of small dimension are
of dimension 4.

@ If A is an abelian variety of dimension g, A[¢] is a (Z/{Z)-module

of dimension 2g = the structure of pairings on abelian varieties
is richer.



Computing pairings on abelian varieties

@ If J is the Jacobian of an hyperelliptic curve H of genus g, it is
easy to extend Miller’s algorithm to compute the Tate and Weil
pairing on J with Mumford coordinates.

@ For instance if g =2, the function f, ¢ is of the form

y—1(x)
(x —x1)(x —x2)

where [ is of degree 3.

@ What about more general abelian varieties? We don’t have
Mumford coordinates.



Complex abelian variety

A complex abelian variety is of the form A=V/A where V is a
C-vector space and A a lattice, with a polarization (actually an
ample line bundle) & on it.

@ The Chern class of £ corresponds to a symplectic real form E
on V such that E(ix,iy)=E(x,y) and E(A,A)CZ.

@ The pairing ey is then given by exp(2inE(:,)).

@ A principal polarization on A corresponds to a decomposition
A=0Q78 +7¢& with Qef, the Siegel space.

@ The corresponding polarization on A is then given by
E(Qx1+x2, Q1 +y2)="x1-y2 = ' y1 - X2
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Theta coordinates on abelian varieties

@ Every abelian variety (over an algebraically closed field) can be
described by theta coordinates of level n >2 even. (The level n
encodes information about the n-torsion).

@ The theta coordinates of level 2 on A describe the Kummer
variety of A.

@ For instance if A=C8/(Z&+Z8) is an abelian variety over C,
the theta coordinates on A come from the theta functions with
characteristic:

9 [z] (Z,Q) — Z em’ t(n+a)ﬂ(n+a)+27ri t[n+a)(z+h) a, be Qg

nezs
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The differential addition law (k =C)

(D0 H i Ce Y )00 = 1)) D 2(E)0kse(0)9144(0)) =

teZ(2) teZ(2)

(D 2O 0)) - D 2 (O ()1 ()).

tez(2) teZ(2)

where yeZ(2),i,j,k,1<Z(n)
(i,j' kK, 1) =A(, ], k,1)
1 1 1
1 -1 -1
-1 1 -1

1
1
A=3511
1 -1 -1 1
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Example: addition in genus 1 and in level 2

Differential Addition Algorithm:
Input: P=(x;:21), Q=(x2:22)
and R= P—QZ(Xg : Zg) with X323 #0
Output: P+Q=(x":2’).

Q xo=(x?+23)(x2+23);

Q zo=24(x?—2H)(x2 —22);

Q x'=(x0+20)/x3;

Q z/=(x0—20)/z3;

@ Return (x’:z’).
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Cost of the arithmetic with low level theta functions

(cark #2)

Mumford Level 2 Level 4
Doubling 34M +7S

Mixed Addition  37M 4 6S TM+1285+9my 49M +365+27my

Multiplication cost in genus 2 (one step).

Montgomery Level 2 Jacobians coordinates
Doubling 3M+5S8
Mixed Addition SM+4S+1mo  3M+65+3m, TM +6S+ 1my

Multiplication cost in genus 1 (one step).



The Weil and Tate pairing with theta coordinates

P and Q points of ¢-torsion.

04 p 2P (P=2%04
Q P®Q 2P+Q ... (P+Q=2}Q
2Q P+2Q

Q=204  P+LQ=2,P
ALY
o eW,f(P,Q): Aglg.

If P=Qx; +x, and Q =0y, +,, then ey (BQ)= e 2rilllxy="yix),

Al
° er(RQ)=7.




Why does it works?

04 aP a*(2P) a”(LP)=2"%04
BQ rPOQ)  LEEP+Q) ... L (P+Q)=2}pC
B*(2Q) %(PHQ)

ail

BEUQ=X20s L (P+IQ)=NhaP

We then have
0 _ 240 0 arza0 A rla=n a ripUey
Ap_a AP’ AQ—/J'7 AQ’ A TAP’ AQ—T}LQ,

Ay

A ARG

Mot A

e (PQ)= l_’?; = o' B )L_‘}J, T dp

=ewy (R Q)r

e;/v‘g(P’ Q)=

ers(PQ).




The case n=2

. —,%1
o If n=2 we work over the Kummer variety K, so e(BQ)e K

—x, %1 —
@ We represent a class xek~ by x+1/xek . We want to
compute the symmetric pairing

es(BQ)=e(RQ)+e(—BQ).

@ From +P and +Q we can compute {(P+Q),+=(P—Q)} (need a
square root), and from these points the symmetric pairing.

. . . —x,£1
@ ¢, is compatible with the Z-structure on K and K

—k,+
@ The Z-structure on k~~ can be computed as follow:

=G+ )(x“ + —)

(x51+l2+ )+( 4

xbh+te



Comparison with Miller algorithm

g=1 7M+7S+2my
g=2 17M+13S+6my

Tate pairing with theta coordinates, BQ € A[{](F,q) (one step)

Miller Theta coordinates
Doubling Addition One step
d even IM+1S+1m IM+1m
§=1 4 odd XM+28+1m  2M+1m IM+28+2m

Q degenerate +
IM+1S+3 1IM+3
g§=2 d even F15%Im +om 3M+4S+4m

General case 2M+2S+18m 2M+18m

PeA[l](F,), Qe A[£](F,q) (counting only operations in Fa).



Ate pairing

@ let Gy = E[{][\Ker(ry —1) and G, = E[{]{|Ker(r4 — [g]).
@ We have fap0 ZfLI;,bey[a]Q.
@ Let PeG, and Qe G, we have f, 40(P)= fa,o(P).
@ Let A=qg mod{. Let m =(A4 —1)/¢. We then have
er(RQ)" = fra o(P)4"~N"
= (f2.PY" FriaeP)" .. fajgano(P)
= (fA,Q(P)ZAdiliiqi)(q o

)(q”*l)/f

Definition

Let A=g mod ¢, the (reduced) ate pairing is defined by
ay:Gy xGy— uy,(BQ)— fk,o(p)(qd—l)/f_

It is non degenerate if £2{(A%F —1).




Optimal ate

@ Let A=ml=> c;q' be a multiple of ¢ with small coefficients c;.
(ttm)
@ The pairing

a:GixG, — Wy
(q-1)/t
(R Q) — (l_l fci,Q(P)ql l_[fzj'>i Ciqjvciqi’Q(P))
i i

is non degenerate when mdq?-'#(q?—1)/r_;icig""! mod/.
@ Since p,(q)=0 mod ¢ we look at powers q,42,...,g#\@)-1,
@ We can expect to find A such that ¢; ~¢1/¢(d),



Ate pairing with theta functions

Let PeG, and Q<€ G,.
In projective coordinates, we have ng(PEBQ) =PodAiQ=PaQ.
Unfortunately, in affine coordinates, 71:2(P+Q)7é P+2A4Q.

But if m,(P+Q)=C*(P+2Q), then C is exactly the (non reduced)
ate pairing!



Miller functions with theta coordinates

@ We have 9Q) PO\
+
JuolP)= ﬁ(P+uQ)( 3(P) ) '
@ So
o o(P)= 9P+ AQ)I(P + uQ)
P S(PYIP+(A+u)Q)

@ We can compute this function using a generalised version of
Riemann’s relations:

(20054 (P+ (At 0)Q)40(AQ)). (D 2 ()i (Q)P114(P)) =

teZ(2) reZ(2)

Q2041000 (P+ Q). (D 2 (k4 (P + AQI 4 (A + 1)Q)).-

teZ(2) teZ(2)



Optimal ate with theta functions

@ Input: 7,(P)=P, 1,(Q)=g*Q, A=ml =) ciq'.
@ Compute the P+¢;Q and ¢;Q.
© Apply Frobeniuses to obtain the P+¢;q'Q, ¢;q'Q.

© Compute ¢;q'Q+c;jq/Q (up to a constant) and then use the
extended Riemann relations to compute P+¢;qg'Q+c;q/Q (up to
the same constant).

@ Recurse until we get AQ=Cy*Q and P+AQ = C;*P.
d_1
@ Return (C,/Cy)"7 .
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The case n=2

@ Computing c;q'Q+c;g/Q requires a square root (very costly).

@ And we need to recognize ¢;q'Q+c;q/Q from ¢;qg'Q—c;q/ Q.

@ We will use compatible additions: if we know x, y, z and x+z,
¥y +z, we can compute x+y without a square root.

@ We apply the compatible additions with x=¢;q’Q, y =¢;q/Q
and z=P.
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Compatible additions

@ Recall that we know x, y, z and x+z, y +z.

@ From it we can compute (x+z)+(y +z)={x+y+2z,x—y} and
of course x+y. Then x+y is the element in {x+y,x—y} not
appearing in the preceding set.

@ Since we can distinguish x+y from x —y we can compute them
without a square root.



The compatible addition algorithm in dimension 1

@ Input: x,y, xz=x+z,yz=y+z.
@ Computing x+y:
a= ¢+ ¥ +yDA B =g =y —y) B
Ao =(a+B),An=(a-p)
Ao1 i=2)oy1Xox1/ab.
© Computing (x+2)%(y +2):
o =(yzi+yzd)xzi+yzi)A, B =(yzs —yz?)xzi—yzl)B’
A= +p" 2, = =’
Ay =2yzoyz1X20X21/ab.

© Return x+y = [Ago(A11 450 — A3 A00), —2A11(Ag; Ao — Ao1 Agy)]-



Perspectives

@ Characteristic 2 case (especially for supersingular abelian
varieties of characteristic 2).

@ Optimized implementations (FPGA, ...).
@ Look at special points (degenerate divisors, ...).
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