Improved CRT Algorithm for class polynomials in genus 2

Kristin Lauter¹, Damien Robert²

¹Microsoft Research ²LFANT Team, INRIA Bordeaux Sud-Ouest

09/07/2012 (San Diego)

Class polynomials

- If A/\mathbb{F}_q is an ordinary (simple) abelian variety of dimension g, $\operatorname{End}(A) \otimes \mathbb{Q}$ is a (primitive) CM field K (K is a totally imaginary quadratic extension of a totally real number field K_0).
- The class polynomials $H_1, \widehat{H}_2, \dots, \widehat{H}_{g(g+1)/2}$ parametrizes the invariants of all abelian varieties A/\mathbb{C} with $\operatorname{End}(A) \simeq O_K$.
- If the class polynomials are totally split modulo \mathfrak{P} , their roots in $\mathbb{F}_{\mathfrak{P}}$ gives invariants of abelian varieties $A/\mathbb{F}_{\mathfrak{P}}$ with $\operatorname{End}(A) \simeq O_K$. It is easy to recover $\#A(\mathbb{F}_{\mathfrak{P}})$ given O_K and \mathfrak{P} .

Some technical details

- The abelian varieties are principally polarized.
- A CM type Φ is a choice of an extension to K for each of the embedding $K_0 \to \mathbb{R}$. We have

$$\operatorname{Hom}(K,\mathbb{C}) = \Phi \oplus \overline{\Phi}.$$

Example: If K is a (primitive) CM field of degree 4, then either K is cyclic and there is one class of CM type, or K is dihedral and there is two class of CM types.

- If A is an abelian variety with CM by K, the representation $K \rightarrow \text{End } T_0 A$ is given by a CM type Φ (which determines the isogeny class of A).
- The reflex field of (K, φ) is the CM field K^r generated by the traces $\sum_{\varphi \in \Phi} \varphi(x)$, $x \in K$.
- The type norm $N_{\Phi}: K \to K^r$ is $x \mapsto \prod_{\varphi \in \Phi} \varphi(x)$.

Definition

The class polynomials $(H_{\Phi,i})$ parametrizes the abelian varieties with CM by (O_K, Φ)

Class polynomials and complex multiplication

Theorem (Main theorems of complex multiplication)

- The class polynomials $(H_{\Phi,i})$ are defined over K_0^r and generate a subfield \mathfrak{H}_{Φ} of the Hilbert class field of K^r .
- If A/\mathbb{C} has CM by (O_K, Φ) and \mathfrak{P} is a prime of good reduction in \mathfrak{H}_{Φ} , then the Frobenius of $A_{\mathfrak{P}}$ corresponds to $N_{\mathfrak{H}_{\Phi},\Phi'}(\mathfrak{P})$.

If $g \le 2$, the CM types are in the same orbits under the absolute Galois action, and the class polynomials $H_i = \prod_{\Phi} H_{\Phi,i}$ are rationals (and even integrals when g=1).

- For efficiency, we compute the class polynomials H_{Φ} since they give a factor of the full class polynomials H. This mean we need less precision.
- In genus 2, this involves working over K_0 rather than \mathbb{Q} in the Dihedral case.

Constructing class polynomials

- Analytic method: compute the invariants in \mathbb{C} with sufficient precision to recover the class polynomials.
- p-adic lifting: lift the invariants in \mathbb{Q}_p with sufficient precision to recover the class polynomials (require specific splitting behavior of p).
- CRT: compute the class polynomials modulo small primes, and use the CRT to reconstruct the class polynomials.

Remark

In genus 1, all these methods are quasi-linear in the size of the output \Rightarrow computation bounded by memory. But we can construct directly the class polynomials modulo p with the explicit CRT.

Review of the CRT algorithm in genus 2

- Select a CRT prime p.
- **②** For each abelian surface *A* in the $O(p^3)$ isomorphic classes:
 - Check if *A* is in the right isogeny class by computing the characteristic polynomial of the Frobenius (do some trial tests to check for #*A* before).
- **9** From the invariants of the maximal curves, reconstruct $H_{\Phi,i}$ mod p.

Repeat until we can recover $(H_{\Phi,i} \text{ from the } (H_{\Phi,i} \mod p \text{ using the CRT.})$

Remark

Since K is primitive, we only need to look at Jacobians of hyperelliptic curves of genus 2.

Selecting the prime p

Definition

A CRT prime $\mathfrak{p} \subset O_{K_0^r}$ is a prime such that all abelian varieties over \mathbb{C} with CM by (O_K, Φ) have good reduction modulo \mathfrak{p} .

- p is a CRT prime for the CM type Φ if and only if there exists an unramified prime q in O_{K^r} of degree 1 above p of principal type norm (π)
- The isogeny class of the reduction of these abelian varieties mod $\mathfrak p$ is determined (up to a twist) by $\pm \pi$ where $N_{\Phi}(\mathfrak p) = (\pi)$.
- For efficiency, we work with CRT primes $\mathfrak p$ that are unramified of degree one over $p = \mathfrak p \cap \mathbb Z$.
- \Rightarrow the reduction to \mathbb{F}_p of the abelian varieties with CM by (O_K, Φ) will then be ordinary.

Checking if a curve is maximal

- Let J be the Jacobian of a curve in the right isogeny class. Then $\mathbb{Z}[\pi,\overline{\pi}] \subset \operatorname{End}(J) \subset O_K$.
- Let $\gamma \in O_K \setminus \mathbb{Z}[\pi, \overline{\pi}]$. We want to check if $\gamma \in \text{End}(J)$.
- If p > 3 then $(O_K : \mathbb{Z}[\pi, \overline{\pi}])$ is prime to p. We then have $\gamma \in \text{End}(J) \Leftrightarrow p\gamma \in \text{End}(J)$.
- Let n be the smallest integer thus that $n\gamma \in \mathbb{Z}[\pi, \overline{\pi}]$. Since $(\mathbb{Z}[\pi, \overline{\pi}] : \mathbb{Z}[\pi]) = p$, we can write $np\gamma = P(\pi)$.
- Then $\gamma \in \text{End}(J) \Leftrightarrow P(\pi) = 0$ on J[n].
- In practice (Freeman-Lauter): compute $J[\ell^d]$ for $\ell^d \mid (O_K : \mathbb{Z}[\pi, \overline{\pi}])$ and check the action of the generators of O_K on it.
- Our method: faster computation of $J[\ell^d]$ using parings.

Remark

If $1, \alpha, \beta, \gamma$ are generators of O_K as a \mathbb{Z} -module, it can happen that $\gamma = P(\alpha, \beta)$, so that we don't need to check that $\gamma \in \text{End}(J)$.

Example 1: Checking if a curve is maximal

- Let $H: y^2 = 10x^6 + 57x^5 + 18x^4 + 11x^3 + 38x^2 + 12x + 31$ over \mathbb{F}_{59} and J the Jacobian of H. We have $\operatorname{End}(J) \otimes \mathbb{Q} = \mathbb{Q}(i\sqrt{29 + 2\sqrt{29}})$ and we want to check if $\operatorname{End}(J) = O_K$.
- O_K is generated as a \mathbb{Z} -module by $1, \alpha, \beta, \gamma$. α is of index 2 in $O_K/\mathbb{Z}[\pi, \overline{\pi}]$, β of index 4 and γ of index 40.
- So the old algorithm will check $J[2^3]$ and J[5].
- But $(O_K)_2 = \mathbb{Z}_2[\pi, \overline{\pi}, \alpha]$, so we only need to check J[2] and J[5].

Example 2: checking if a curve is maximal

- Let $H: y^2 = 80x^6 + 51x^5 + 49x^4 + 3x^3 + 34x^2 + 40x + 12$ over \mathbb{F}_{139} and J the Jacobian of H. We have $\operatorname{End}(J) \otimes \mathbb{Q} = \mathbb{Q}(i\sqrt{13 + 2\sqrt{29}})$ and we want to check if $\operatorname{End}(J) = O_K$.
- For that we need to compute $J[3^5]$, that lives over an extension of degree 81 (for the twist it lives over an extension of degree 162).
- With the old randomized algorithm, this computation takes 470 seconds (with 12 Frobenius trials over $\mathbb{F}_{139^{162}}$).
- With the new algorithm computing the ℓ^{∞} -torsion, it only takes 17.3 seconds (needing only 4 random points over $\mathbb{F}_{139^{81}}$, approx 4 seconds needed to get a new random point of ℓ^{∞} -torsion).

Obtaining all the maximal curves

- If J is a maximal curve, and ℓ does not divide $(O_K : \mathbb{Z}[\pi, \overline{\pi}])$, then any (ℓ, ℓ) -isogenous curve is maximal.
- The maximal Jacobians form a principal homogeneous space under the Shimura class group $\mathfrak{C}(O_K) = \{(I, \rho) \mid I\overline{I} = (\rho) \text{ and } \rho \in K_0^+\}.$
- (ℓ,ℓ) -isogenies between maximal Jacobians correspond to element of the form $(I,\ell) \in \mathfrak{C}(O_K)$. We can use the structure of $\mathfrak{C}(O_K)$ to determine the number of new curves we will obtain with (ℓ,ℓ) -isogenies.
 - \Rightarrow Don't compute unneeded isogenies.
- It can be faster to compute (ℓ,ℓ) -isogenies with $\ell \mid (O_K : \mathbb{Z}[\pi,\overline{\pi}])$ to find new maximal Jacobians when ℓ and $\operatorname{val}_{\ell}((O_K : \mathbb{Z}[\pi,\overline{\pi}]))$ is small.

"Going up"

- There is p^3 classes of isomorphic curves, but only a very small number $(\#\mathfrak{C}(O_K))$ with $\operatorname{End}(J) = O_K$.
- But there is at most $16p^{3/2}$ isogeny class.
- \Rightarrow On average, there is $\approx p^{3/2}$ curves in a given isogeny class.
- ⇒ If we have a curve in the right isogeny class, try to find isogenies giving a maximal curve!

An algorithm for "going up"

- Let $\gamma \in O_K \setminus \text{End}(J)$. We can assume that $\ell^{\infty} \gamma \in \mathbb{Z}[\pi, \overline{\pi}]$.
- ② Let d be the smallest integer such that $\gamma(J[\ell^d]) \neq \{0\}$, and let $K = \gamma(J[\ell^d])$. By definition, $K \subset J[\ell]$.
- We compute all (ℓ,ℓ) -isogeneous Jacobians J' where the kernel intersect K. Keep J' if $\#\gamma(J'[\ell^d]) < \#K$ (and be careful to prevent cycles).
- First go up for $\gamma = (\pi^{\alpha} 1)/\ell$: this minimize the extensions we have to work with.

Non maximal cycles \Rightarrow We try to reduce globally the obstruction for all endomorphisms.

Local minimums I

Local minimums II

Polarizations

- It is not always possible to go up. We would need more general isogenies than (ℓ, ℓ) -isogenies.
- Most frequent case: we can't go up because there is no (ℓ, ℓ) -isogenies at all! (And we can detect this).

The modified CRT algorithm

- Select a prime p.
- Select a random Jacobian until it is in the right isogeny class.
- **②** Go up to find a Jacobian with CM by O_K (if it fails, go back to last step).
- Use isogenies to find all other Jacobians with CM by O_K .
- **Solution** From the invariants of the maximal abelian surfaces, reconstruct $H_i \mod p$.

Further details

- We sieve the primes *p* (using a dynamic approach).
- Estimate the number of curves where we can go up as

$$\sum_{d\mid [O_K:\mathbb{Z}[\pi,\overline{\pi}]]} \#\mathfrak{C}(\mathbb{Z}[\pi,\overline{\pi}])/d$$

(for $[O_K : \mathbb{Z}[\pi, \overline{\pi}]]/d$ not divisible by a ℓ where we can't go up), with

$$\#\mathfrak{C}(\mathbb{Z}[\pi,\overline{\pi}]) = \frac{c(O_K : Z[\pi,\overline{\pi}]) \# \operatorname{Cl}(O_K) \operatorname{Reg}(O_K)(\widehat{O}_K^* : \widehat{\mathbb{Z}}[\pi,\overline{\pi}]^*)}{2 \# \operatorname{Cl}(\mathbb{Z}[\pi+\overline{\pi}]) \operatorname{Reg}(\mathbb{Z}[\pi+\overline{\pi}])}$$

• To find the denominators: do a rationnal reconstruction in K_0^r using LLL or use Brunier-Yang formulas.

p	l^d	α_d	# Curves	Estimate	Time (old)	Time (new)
7	2^{2}	4	7	8	0.5 + 0.3	0 + 0.2
17	2	1	39	32	4 + 0.2	0 + 0.1
23	$2^2, 7$	4,3	49	51	9 + 2.3	0 + 0.2
71	2^2	4	7	8	255 + 0.7	5.3 + 0.2
97	2	1	39	32	680 + 0.3	2 + 0.1
103	$2^2, 17$	4,16	119	127	829 + 17.6	0.5 + 1
113	$2^5, 7$	16,6	1281	877	1334 + 28.8	0.2 + 1.3
151	$2^2, 7, 17$	4,3,16	-	-	0	0
					3162 <i>s</i>	13 <i>s</i>

Computing the class polynomial for $K = \mathbb{Q}(i\sqrt{2+\sqrt{2}})$, $\mathfrak{C}(O_K) = \{0\}$.

$$H_1 = X - 1836660096$$
, $H_2 = X - 28343520$, $H_3 = X - 9762768$

p	l^d	α_d	# Curves	Estimate	Time (old)	Time (new)
29	3,23	2,264	-	-	-	-
53	3,43	2,924	-	-	-	-
61	3	2	9	6	167 + 0.2	0.2 + 0.5
79	3^{3}	18	81	54	376 + 8.1	0.3 + 0.9
107	$3^2, 43$	6,308	-	-	-	-
113	3,53	1,52	159	155	1118 + 137.2	0.8 + 25
131	$3^2,53$	6,52	477	477	1872 + 127.4	2.2 + 44.4
139	3^5	81	?	486	-	1 + 36.7
157	3^4	27	243	164	3147 + 16.5	-
					6969 <i>s</i>	114 <i>s</i>

Computing the class polynomial for $K = \mathbb{Q}(i\sqrt{13+2\sqrt{29}})$, $\mathfrak{C}(O_K) = \{0\}$.

$$H_1 = X - 268435456$$
, $H_2 = X + 5242880$, $H_3 = X + 2015232$.

p	l^d	α_d	# Curves	Estimate	Time (old)	Time (new)
7	-	-	1	1	0.3	0 + 0.1
23	13	84	15	2 (16)	9 + 70.7	0.4 + 24.6
53	7	3	7	7	105 + 0.5	7.7 + 0.5
59	2,5	1,12	322	48 (286)	164 + 6.4	1.4 + 0.6
83	3,5	4,24	77	108	431 + 9.8	2.4 + 1.1
103	67	1122	-	-	-	-
107	7,13	3,21	105	8 (107)	963 + 69.3	=
139	$5^2, 7$	60,2	259	9 (260)	2189 + 62.1	-
181	3	1	161	135	5040 + 3.6	4.5 + 0.2
197	5,109	24,5940	=	-	=	=
199	5^{2}	60	37	2 (39)	10440 + 35.1	=
223	2,23	1,11	1058	39 (914)	10440 + 35.1	-
227	109	1485	-	-	-	-
233	5, 7, 13	8,3,28	735	55 (770)	11580 + 141.6	88.3 + 29.4
239	7,109	6,297	-	=	-	-
257	3, 7, 13	4, 6, 84	1155	109 (1521)	17160 + 382.8	-
313	3,13	1,14	?	146 (2035)	-	165 + 14.7
373	5,7	6,24	?	312	-	183.4 + 3.8
541	2,7,13	1, 3, 14	?	294 (4106)	=	91 + 5.5
571	3, 5 ,7	2,6,6	?	1111 (6663)	-	96.6 + 3.1
	-				56585s	776s

Computing the class polynomial for $K = \mathbb{Q}(i\sqrt{29 + 2\sqrt{29}})$, $\mathfrak{C}(O_K) = \{0\}$.

 $H_1 = 244140625X - 2614061544410821165056$

A Dihedral example

- *K* is the CM field defined by $X^4 + 13X^2 + 41$. $O_{K_0} = \mathbb{Z}[\alpha]$ where α is a root of $X^2 3534X + 177505$.
- We first compute the class polynomials over $\mathbb Z$ using Spallek's invariants, and obtain the following polynomials in 5956 seconds:

$$H_1 = 64X^2 + 14761305216X - 11157710083200000$$

$$H_2 = 16X^2 + 72590904X - 8609344200000$$

$$H_3 = 16X^2 + 28820286X - 303718531500$$

• Next we compute them over the real subfield and using Streng's invariants. We get in 1401 seconds:

$$H_1 = 256X - 2030994 + 56133\alpha;$$

 $H_2 = 128X + 12637944 - 2224908\alpha;$
 $H_3 = 65536X - 11920680322632 + 1305660546324\alpha.$

• Primes used: 59, 139, 241, 269, 131, 409, 541, 271, 359, 599, 661, 761.

A pessimal view on the complexity of the CRT method in dimension 2

- The degree of the class polynomials is $\widetilde{O}(\Delta_0^{1/2}\Delta_1^{1/2})$.
- The size of coefficients is bounded by $\widetilde{O}(\Delta_0^{5/2}\Delta_1^{3/2})$ (non optimal). In practice, they are $\widetilde{O}(\Delta_0^{1/2}\Delta_1^{1/2})$.
- \Rightarrow The size of the class polynomials is $\widetilde{O}(\Delta_0\Delta_1)$.
- We need $\widetilde{O}(\Delta_0^{1/2}\Delta_1^{1/2})$ primes, and by Cebotarev the density of primes we can use is $\widetilde{O}(\Delta_0^{1/2}\Delta_1^{1/2})$ \Rightarrow the largest prime is $p = \widetilde{O}(\Delta_0\Delta_1)$.
- \Rightarrow Finding a curve in the right isogeny class will take $\Omega(p^{3/2})$ so the total complexity is $\Omega(\Delta_0^2 \Delta_1^2) \Rightarrow$ we can't achieve quasi-linearity even if the going-up step always succeed!
- ⇒ A solution would be to work over convenient subspaces of the moduli space.

Perspectives

- In progress: Improve the search for curves in the isogeny class;
- In progress: combine the going-up method with Bisson's sub-exponential endomorphism ring computation. Particularly interesting when a power divides the index;
- Use Ionica pairing based approach to choose horizontal kernels in the maximal step;
- Change the polarization;
- Work inside Humbert surfaces;
- Work with supersingular abelian varieties;
- More general isogenies than (ℓ, ℓ) -isogenies.

