Improved CRT Algorithm for class polynomials

in genus 2
ANTS X

Kristin Lauter!, Damien Robert?
IMicrosoft Research 2LFANT Team, INRIA Bordeaux Sud-Ouest

09/07/2012 (San Diego)

Class polynomials

@ If A/F, is an ordinary (simple) abelian variety of dimension g,
End(A)®Q is a (primitive) CM field K (K is a totally imaginary
quadratic extension of a totally real number field Kp).

@ The class polynomials Hi, ..., Hyg+1)» parametrizes the
invariants of all abelian varieties A/C with End(A) ~ Ok.

@ If the class polynomials are totally split modulo 9B, their roots in
Fy gives invariants of abelian varieties A/Fy with End(A4) ~ Ok.
It is easy to recover #A(Fy) given Ox and .

Some technical details

@ The abelian varieties are principally polarized.
@ A CM type @ is a choice of an extension to K for each of the
embedding Ky —R. We have

Hom(K,C)=3® .

Example: If K is a (primitive) CM field of degree 4, then either K
is cyclic and there is one class of CM type, or K is dihedral and
there is two class of CM types.

@ If A is an abelian variety with CM by K, the representation
K —End THA is given by a CM type @ (which determines the
isogeny class of A).

@ The reflex field of (K, ¢) is the CM field K™ generated by the
traces Zm, v(x), xeK.

@ The type norm Np: K — K" is x = [[, ¢(x).

Definition

The class polynomials (Hsp,;) parametrizes the abelian varieties with

[e]e] lele}

Class polynomials and complex multiplication

Theorem (Main theorems of complex multiplication)

@ The class polynomials (Hs ;) are defined over K} and generate a
subfield $ ¢ of the Hilbert class field of K.

@ If A/C has CM by (Ok,®) and B is a prime of good reduction in e,
then the Frobenius of Ay corresponds to N, or ().

If g <2, the CM types are in the same orbits under the absolute
Galois action, and the class polynomials H; =[], Hs,; are rationals
(and even integrals when g=1).

@ For efficiency, we compute the class polynomials Hs since they

give a factor of the full class polynomials H. This mean we need
less precision.

@ In genus 2, this involves working over K, rather than Q in the
Dihedral case.

Constructing class polynomials

@ Analytic method: compute the invariants in C with sufficient
precision to recover the class polynomials.

@ p-adic lifting: lift the invariants in Q, with sufficient precision
to recover the class polynomials (require specific splitting
behavior of p).

@ CRT: compute the class polynomials modulo small primes, and
use the CRT to reconstruct the class polynomials.

In genus 1, all these methods are quasi-linear in the size of the output =
computation bounded by memory. But we can construct directly the
class polynomials modulo p with the explicit CRT.

[e]e]ee] }

Review of the CRT algorithm in genus 2

@ Select a CRT prime p.
@ For each abelian surface A in the O(p?) isomorphic classes:

@ Check if A is in the right isogeny class by computing the
characteristic polynomial of the Frobenius (do some trial tests to
check for #A before).

@ Check if End(A)=Ok.

© From the invariants of the maximal curves, reconstruct Hg ;
mod p.

Repeat until we can recover (Hp; from the (Hg; mod p using the
CRT.

Since K is primitive, we only need to look at Jacobians of hyperelliptic
curves of genus 2.

®000000000

Selecting the prime p

Definition

A CRT prime p C Ok; is a prime such that all abelian varieties over C
with CM by (Ok, ®) have good reduction modulo p.

@ p is a CRT prime for the CM type @ if and only if there exists an
unramified prime q in Ox- of degree 1 above p of principal type
norm ()

@ The isogeny class of the reduction of these abelian varieties
mod p is determined (up to a twist) by £ where Ng(p) = (7).

@ For efficiency, we work with CRT primes p that are unramified
of degree one over p=pnZ.

= the reduction to F, of the abelian varieties with CM by (Ox, ®)
will then be ordinary.

Checking if a curve is maximal

@ Let J be the Jacobian of a curve in the right isogeny class. Then
Z[m, 7] C End(J) C Ok.

@ Let y € Ox\Z[x, 7). We want to check if y € End(J).

@ If p >3 then (Ok:Z[rn,7]) is prime to p. We then have
v €End(J) & py €End(J).

@ Let n be the smallest integer thus that ny € Z[r, 7. Since
(Z[r, 7] : Z][])= p, we can write npy = P(n).

@ Then y eEnd(J) < P(n)=0 on J[n].

@ In practice (Freeman-Lauter): compute J[¢¢] for £4 | (O : Z[r, 7))
and check the action of the generators of Ok on it.

@ Our method: faster computation of J[¢?] using parings.

If1,a, B,y are generators of Ox as a Z-module, it can happen that
y = P(a, B), so that we don’t need to check that y e End(J).

[e]e] le]e]ele]ele]e}

Example 1: Checking if a curve is maximal

@ Let H:y?2=10x%+57x5+18x*+11x3+38x%+12x+31 over Fsg and

J the Jacobian of H. We have End(J)® Q= Q(i/ 29 +2v29) and
we want to check if End(J)=Ok.

@ Ok is generated as a Z-module by 1,a,8,7. a is of index 2 in
Ox/Zlm, 7], B of index 4 and y of index 40.

@ So the old algorithm will check j[23] and J[5].
@ But (Ox), =Z2[n,7,a], so we only need to check j[2] and J[5].

000000000

Example 2: checking if a curve is maximal

@ let H:y?=80x5%+51x°+49x*+3x3+34x% +40x + 12 over Fy39 and

J the Jacobian of H. We have End(J)® Q=Q(iy/ 13+2v29) and
we want to check if End(J) = Ok.

@ For that we need to compute J[3°], that lives over an extension
of degree 81 (for the twist it lives over an extension of degree
162).

@ With the old randomized algorithm, this computation takes
470 seconds (with 12 Frobenius trials over Fyzqi).

@ With the new algorithm computing the £>-torsion, it only takes

17.3 seconds (needing only 4 random points over Fj3gs, approx 4
seconds needed to get a new random point of £*-torsion).

Obtaining all the maximal curves

@ If J is a maximal curve, and ¢ does not divide (O : Z[r, 7)), then
any (¢,£)-isogenous curve is maximal.

@ The maximal Jacobians form a principal homogeneous space
under the Shimura class group
¢0x)={(I,p)| IT=(p) and p € K7}.

@ (¢,0)-isogenies between maximal Jacobians correspond to
element of the form (I,£) e ¢(Ox). We can use the structure of
¢(Ox) to determine the number of new curves we will obtain
with (£, £)-isogenies.
= Don’t compute unneeded isogenies.

@ It can be faster to compute (¢,¢)-isogenies with ¢ | (Ok : Z[r, 7])
to find new maximal Jacobians when ¢ and val,((Ox : Z[r,7])) is
small.

0000080000

“Going up”

@ There is p® classes of isomorphic curves, but only a very small
number (#€(Ox)) with End(J) = Ok.

@ But there is at most 16p%?2 isogeny class.
= On average, there is ~ p3/2 curves in a given isogeny class.

= If we have a curve in the right isogeny class, try to find
isogenies giving a maximal curve!

An algorithm for “going up”

Let y € Ox \ End(J). We can assume that (®y € Z[r,T].

Let d be the smallest integer such that y(J[¢4])# {0}, and let

K =v(J[¢4]). By definition, K c J[{].

@ We compute all (¢,¢)-isogeneous Jacobians J/ where the kernel
intersect K. Keep J if #y(J'[¢4])<#K (and be careful to prevent
cycles).

@ First go up for y =(n%—1)/¢: this minimize the extensions we
have to work with.

(o]
[¢]
[3
[o]
o]
[o]
[o]
[o]
[o]
[e]

D
‘g
+J
(D)
o
)
-~
)
()
o
()
=
(@)
(9]

E SR S S s
I Qﬁ&»’\s&»&v\bﬂ& N

| 4 = AT KA “\ ‘\ . ,‘. |
AN SIS =,

A

7 7

5 N4])

Non maximal cycles = We try to reduce globally the obstruction

for all endomorphisms.

0000000800

Some pesky details

Local minimums Il

U

N~

Some pesky details

Polarizations

@)
Q 9 O
Q
Q o @ o/ o
@) o
O
O & '9)
o
a Q
O o 0O
o @
© O
®
o ¢
o © ¥
o
o 3
o O o—"0
o
@)
© |/ O 0 4 9)
) @)
O 0) @]
e O

Some pesky details

@ It is not always possible to go up. We would need more general
isogenies than (¢,¢)-isogenies.

@ Most frequent case: we can’t go up because there is no
(¢,¢)-isogenies at all! (And we can detect this).

The modified CRT algorithm

@ Select a prime p.
@ Select a random Jacobian until it is in the right isogeny class.

@ Go up to find a Jacobian with CM by Ok (if it fails, go back to
last step).

© Use isogenies to find all other Jacobians with CM by Ok.

@ From the invariants of the maximal abelian surfaces,
reconstruct H; mod p.

Further details

@ We sieve the primes p (using a dynamic approach).
@ Estimate the number of curves where we can go up as

#&(Z[r, 7))/ d
d|[Ok:Z[m,7]]

(for [Ok : Z[n,7]]/d not divisible by a £ where we can’t go up),
with

c(Ok : Z[m, T)# CI(OK)Reg(OK)(éj‘(Z[m, 7))
2#Cl(Z[r +7])Reg(Z[7 + 7))

#C(Z[r, 7)) =

@ To find the denominators: do a rationnal reconstruction in K;
using LLL or use Brunier-Yang formulas.

p 14 Qg # Curves Estimate Time (old) Time (new)
7 22 4 7 8 0.5+0.3 0+0.2
17 2 1 39 32 4+0.2 0+0.1
23 22,7 4,3 49 51 9+23 0+0.2
71 22 4 7 8 255+0.7 53+0.2
97 2 1 39 32 680+0.3 2+0.1
103 22,17 4,16 119 127 829+17.6 0.5+1
113 25,7 16,6 1281 877 1334+28.8 0.2+1.3
151 2%2,7,17 4,3,16 - - 0 0
3162s 13s

Computing the class polynomial for K =Q(iv/ 2+ v2), €(Ox)=1{0}.

H, =X —-1836660096,

H, =X-28343520,

H;=X—-9762768

p 14 ag # Curves Estimate Time (old) Time (new)

29 3,23 2,264 - - - -

53 3,43 2,924 - - -

61 3 2 9 6 167+40.2 0.2+0.5

79 33 18 81 54 376+8.1 0.3+0.9

107 32,43 6,308 - - - -

113 3,53 1,52 159 155 1118 +137.2 0.8+25

131 32,53 6,52 477 477 1872 +127.4 22+44.4

139 35 81 ? 486 - 1+36.7

157 34 27 243 164 3147+16.5 -
6969s 114s

Computing the class polynomial for K =Q(iv/ 13+ 2+v29), ¢(Ox)= {0}.

H, =X —-268435456,

H, =X+5242880,

H3=X+2015232.

p 14 Qq # Curves Estimate Time (old) Time (new)
- - 1 1 0.3 0+0.1

23 13 84 15 2 (16) 9+70.7 0.4+24.6
53 7 3 7 7 105+0.5 7.74+0.5
59 2,5 1,12 322 48 (286) 164 +6.4 1.4+0.6
83 3,5 4,24 7 108 431+9.8 24+1.1
103 67 1122 - - - -

107 7,13 3,21 105 8 (107) 963 +69.3 -

139 52,7 60,2 259 9 (260) 2189+62.1 -

181 3 1 161 135 5040+3.6 4.5+0.2
197 5,109 24,5940 - - -

199 52 60 37 2 (39) 10440+ 35.1 -

223 2,23 1,11 1058 39 (914) 10440+ 35.1 -

227 109 1485 - - - -

233 57,13 8,3,28 735 55 (770) 11580+ 141.6 88.3+29.4
239 7,109 6,297 - - -

257 3,7,13 4,6,84 1155 109 (1521) 17160+ 382.8 -

313 3,13 1,14 ? 146 (2035) - 165+ 14.7
373 5,7 6,24 ? 312 - 183.4+3.8
541 2,7,13 1,3,14 ? 294 (4106) - 91+5.5
571 3,57 2,6,6 ? 1111 (6663) - 96.6+3.1

565858 776s

Computing the class polynomial for K = Q(i v/ 29+ 2v29), €(Ox) = {0}.

H, =244140625X —2614061544410821165056

A Dihedral example

@ K is the CM field defined by X*+13X2? +41. Ok, =Z[a] where «a is
a root of X? —3534X +177505.

@ We first compute the class polynomials over Z using Spallek’s
invariants, and obtain the following polynomials in 5956
seconds:

Hj =64X?+414761305216X — 11157710083200000
H, =16X? 472590904 X — 8609344200000
Hj; = 16X? 428820286 X — 303718531500

@ Next we compute them over the real subfield and using Streng’s
invariants. We get in 1401 seconds:

H, =256X —2030994 +56133¢;
H, =128X+12637944 — 2224908¢;
H; =65536X —11920680322632 + 1305660546324 a.

@ Primes used: 59, 139, 241, 269, 131, 409, 541, 271, 359, 599, 661, 761.

A pessimal view on the complexity of the CRT

method in dimension 2

@ The degree of the class polynomials is O(A}?A}).

@ The size of coefficients is bounded by O(AY?A¥?) (non optimal).
In practice, they are O(AI/ZAI/Z)

= The size of the class polynomials is O(AoA,).

@ We need O(A;*A}/%) primes, and by Cebotarev the density of
primes we can use is O(AI/ZAI/Z) = the largest prime is
p=0(20A).

= Finding a curve in the right isogeny class will take Q(p3/?) so the
total complexity is Q(A3A7) = we can’t achieve quasi-linearity
even if the going-up step always succeed!

= A solution would be to work over convenient subspaces of the
moduli space.

Perspectives

@ In progress: Improve the search for curves in the isogeny class;

@ In progress: combine the going-up method with Bisson’s

sub-exponential endomorphism ring computation. Particularly
interesting when a power divides the index;

Use lonica pairing based approach to choose horizontal kernels
in the maximal step;

Change the polarization;

Work inside Humbert surfaces;

Work with supersingular abelian varieties;
More general isogenies than (¢,¢)-isogenies.

	Class polynomials
	Class polynomials

	Speeding up the CRT
	Speeding up the CRT

	Examples
	Examples

	Complexity analysis
	Complexity analysis

