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Polarised abelian varieties over C

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie
group V /Λ with

A complex vector space V of dimension g ;

A Z-lattice Λ in V (of rank 2g );

such that there exists an Hermitian form H on V with E (Λ,Λ)⊂Z where
E = Im H is symplectic.

Such an Hermitian form H is called a polarisation on A. Conversely, any
symplectic form E on V such that E (Λ,Λ)⊂Z and E (i x , i y ) = E (x , y ) for
all x , y �V gives a polarisation H with E = Im H .

Over a symplectic basis of Λ, E is of the form.
�

0 Dδ
−Dδ 0

�

where Dδ is a diagonal positive integer matrix δ= (δ1,δ2, . . . ,δg ), with
δ1 |δ2| · · · |δg .

The product
∏

δi is the degree of the polarisation; H is a principal
polarisation if this degree is 1.
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Principal polarisations

Let E0 be the canonical principal symplectic form on R2g given by
E0((x1,x2), (y1, y2)) = t x1 · y2− t y1 ·x2;

If E is a principal polarisation on A =V /Λ, there is an isomorphism
j :Z2g →Λ such that E (j (x ), j (y )) = E0(x , y );

There exists a basis of V such that j ((x1,x2)) = Ωx1+x2 for a matrix Ω;

In particular E (Ωx1+x2,Ωy1+ y2) = t x1 · y2− t y1 ·x2;

The matrix Ω is in Hg , the Siegel space of symmetric matrices Ω with
ImΩ positive definite;

In this basis, Λ=ΩZg +Zg and H is given by the matrix (ImΩ)−1.
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Action of the symplectic group

Every principal symplectic form (hence symplectic basis) on Z2g comes
from the action of M =

�

a b
c d

� � Sp2g (Z) on (Z2g , E0);

This action gives a new equivariant bijection jM :Z2g →Λ via
jM ((x1,x2)) = (AΩx1+ Bx2,CΩx1+Dx2);

Normalizing this embedding via the action of (CΩ+D)−1 on Cg , we get
that jM ((x1,x2)) = ΩM x1+x2 with ΩM = (AΩ+ B )(CΩ+D)−1 �Hg ;

The moduli space of principally polarised abelian varieties is then
isomorphic to Hg /Sp2g (Z).
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Isogenies

Let A =V /Λ and B =V ′/Λ′.

Definition

An isogeny f : A→ B is a bijective linear map f : V →V ′ such that f (Λ)⊂Λ′.
The kernel of the isogeny is f −1(Λ′)/Λ⊂ A and its degree is the cardinal of the
kernel.

Remark

Up to a renormalization, we can always assume that V =V ′ =Cg , f = Id and the
isogeny is simply Cg /Λ→Cg /Λ′ for Λ⊂Λ′.
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The dual abelian variety

Definition

If A =V /Λ is an abelian variety, its dual is bA =HomC(V,C)/Λ∗. Here HomC(V,C)
is the space of anti-linear forms and Λ∗ = { f | f (Λ)⊂Z} is the orthogonal of Λ.

If H is a polarisation on A, its dual H ∗ is a polarisation on bA. Moreover,
there is an isogeny ΦH : A→ bA:

x 7→H (x , ·)

of degree deg H . We note K (H ) its kernel.

If f : A→ B is an isogeny, then its dual is an isogeny bf : bB→ bA of the same
degree.

Remark

There is a canonical polarisation on A × bA (the Poincaré bundle):

(x , f ) 7→ f (x ).
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Isogenies and polarisations

Definition

An isogeny f : (A, H1)→ (B , H2) between polarised abelian varieties is an
isogeny such that

f ∗H2 :=H2( f (·), f (·)) =H1.

By abuse of notations, we say that f is an ℓ-isogeny between principally
polarised abelian varieties if H1 and H2 are principal and f ∗H2 = ℓH1.

An isogeny f : (A, H1)→ (B , H2) respect the polarisations iff the following
diagram commutes

A B

bA bB

f

bf

ΦH1 ΦH2
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Isogenies and polarisations

Definition

An isogeny f : (A, H1)→ (B , H2) between polarised abelian varieties is an
isogeny such that

f ∗H2 :=H2( f (·), f (·)) =H1.

By abuse of notations, we say that f is an ℓ-isogeny between principally
polarised abelian varieties if H1 and H2 are principal and f ∗H2 = ℓH1.

f : (A, H1)→ (B , H2) is an ℓ-isogeny between principally polarised abelian
varieties iff the following diagram commutes

A B

A bA bB

f

bf

ΦℓH1 ΦH2

[ℓ]

ΦH1



Abelian varieties and polarisations Theta functions Maximal isotropic isogenies Cyclic isogenies

Jacobians

Let C be a curve of genus g ;
Let V be the dual of the space V ∗ of holomorphic differentials of the first
kind on C ;
Let Λ≃H 1(C ,Z)⊂V be the set of periods (integration of differentials on
loops);
The intersection pairing gives a symplectic form E on Λ;
Let H be the associated hermitian form on V ;

H ∗(w1, w2) =

∫

C

w1 ∧w2;

Then (V /Λ, H ) is a principally polarised abelian variety: the Jacobian of C .

Theorem (Torelli)

JacC with the associated principal polarisation uniquely determines C .

Remark (Howe)

There exists an hyperelliptic curve H of genus 3 and a quartic curve C such that
JacC ≃ Jac H as non polarised abelian varieties!
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Projective embeddings

Proposition

Let Φ : A =V /Λ 7→Pm−1 be a projective embedding. Then the linear functions f
associated to this embedding are Λ-automorphics:

f (x +λ) = a (λ,x ) f (x ) x �V,λ �Λ;

for a fixed automorphy factor a :

a (λ+λ′,x ) = a (λ,x +λ′)a (λ′,x ).

Theorem (Appell-Humbert)

All automorphy factors are of the form

a (λ,x ) =±e π(H (x ,λ)+ 1
2 H (λ,λ))

for a polarisation H on A.
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Theta functions

Let (A, H0) be a principally polarised abelian variety over C:
A =Cg / (ΩZg +Zg ) with Ω �Hg .

All automorphic forms corresponding to a multiple of H0 come from the
theta functions with characteristics:

ϑ
� a

b

�

(z ,Ω)=
∑

n�Zg

e πi t (n+a )Ω(n+a )+2πi t (n+a )(z+b ) a ,b �Qg

Automorphic property:

ϑ
� a

b

�

(z +m1Ω+m2,Ω)= e 2πi (t a ·m2−t b ·m1)−πi t m1Ωm1−2πi t m1 ·zϑ
� a

b

�

(z ,Ω).
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Theta functions of level n

Define ϑi = ϑ
h

0
i
n

i

(., Ω
n
) for i �Z (n ) =Zg /nZg and

This is a basis of the automorphic functions for H = nH0 (theta functions
of level n);

This is the unique basis such that in the projective coordinates:

A −→ Pn g −1
C

z 7−→ (ϑi (z ))i�Z (n )
the translation by a point of n-torsion is normalized by

ϑi (z +
m1

n
Ω+

m2

n
) = e−

2πi
n

t i ·m1ϑi+m2 (z ).

(ϑi )i�Z (n ) =
(

coordinates system n ⩾ 3

coordinates on the Kummer variety A/±1 n = 2

(ϑi )i�Z (n ): basis of the theta functions of level n
⇔ A[n ] = A1[n ]⊕A2[n ]: symplectic decomposition.

Theta null point: ϑi (0)i�Z (n ) =modular invariant.
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The differential addition law (k =C)

�

∑

t �Z (2)
χ(t )ϑi+t (x + y )ϑj+t (x − y )

�

.
�

∑

t �Z (2)
χ(t )ϑk+t (0)ϑl+t (0)

�

=

�

∑

t �Z (2)
χ(t )ϑ−i ′+t (y )ϑj ′+t (y )

�

.
�

∑

t �Z (2)
χ(t )ϑk ′+t (x )ϑl ′+t (x )

�

.

where χ � Ẑ (2), i , j , k , l �Z (n )
(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2











1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1










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Cryptographic usage of isogenies

Transfer the Discrete Logarithm Problem from one Abelian variety to
another;

Point counting algorithms (ℓ-adic or p -adic) ⇒ Verify an abelian variety
is secure;

Compute the class field polynomials (CM-method) ⇒ Construct a secure
abelian variety;

Compute the modular polynomials ⇒ Compute isogenies;

Determine End(A) ⇒ CRT method for class field polynomials;

Speed up the arithmetic;

Hash functions and cryptosystems based on isogeny graphs.
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The isogeny theorem

Theorem

Let ϕ : Z (n )→Z (ℓn ),x 7→ ℓ.x be the canonical embedding.
Let K = A2[ℓ]⊂ A2[ℓn ].

Let (ϑA
i )i�Z (ℓn ) be the theta functions of level ℓn on A =Cg /(Zg + ℓΩZg ).

Let (ϑB
i )i�Z (n ) be the theta functions of level n of B = A/K =Cg /(Zg +ΩZg ).

We have:
(ϑB

i (x ))i�Z (n ) = (ϑA
ϕ(i )(x ))i�Z (n )

Example

f : (x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11) 7→ (x0,x3,x6,x9) is a 3-isogeny between
elliptic curves.
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
0

x
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
0

xy
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
R0

R1

R2
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An example with g = 1, n = 2, ℓ= 3
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
R0

R1

R2

y x
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Changing level

Theorem (Koizumi–Kempf)

Let F be a matrix of rank r such that t F F = ℓ Idr . Let X � (Cg )r and
Y = F (X ) � (Cg )r . Let j � (Qg )r and i = F (j ). Then we have

ϑ
�

0
i 1

�

(Y1,
Ω
n
) . . .ϑ
�

0
i r

�

(Yr ,
Ω
n
) =

∑

t1 ,...,tr � 1
ℓ Z

g /Zg

F (t1 ,...,tr )=(0,...,0)

ϑ
�

0
j1

�

(X1+ t1,
Ω
ℓn
) . . .ϑ
�

0
jr

�

(Xr + tr ,
Ω
ℓn
),

(This is the isogeny theorem applied to FA : Ar → Ar .)

If ℓ= a 2+b 2, we take F =
�

a b
−b a

�

, so r = 2.

In general, ℓ= a 2+b 2+ c 2+d 2, we take F to be the matrix of
multiplication by a +b i + c j +d k in the quaternions, so r = 4.
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The isogeny formula

ℓ∧n = 1, B =Cg /(Zg +ΩZg ), A =Cg /(Zg + ℓΩZg )

ϑB
b

:= ϑ
h

0
b
n

i

�

·,
Ω
n

�

, ϑA
b

:= ϑ
h

0
b
n

i

�

·,
ℓΩ
n

�

Proposition

Let F be a matrix of rank r such that t F F = ℓ Idr . Let X in (Cg )r and
Y =X F−1 � (Cg )r . Let i � (Z (n ))r and j = i F−1. Then we have

ϑA
i 1
(Y1) . . .ϑA

i r
(Yr ) =
∑

t1 ,...,tr � 1
ℓ Z

g /Zg

(t1 ,...,tr )F=(0,...,0)

ϑB
j1
(X1+ t1) . . .ϑB

jr
(Xr + tr ),

Corollary

ϑA
k (0)ϑ

A
0 (0) . . .ϑA

0 (0) =
∑

t1 ,...,tr �K
(t1 ,...,tr )F=(0,...,0)

ϑB
j1
(t1) . . .ϑB

jr
(tr ), (j = (k , 0, . . . , 0)F−1 �Z (n ))
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The Algorithm [Cosset, R.]

x � (A,ℓH1) (x , 0, . . . , 0) � (Ar ,ℓH1 ⋆ · · · ⋆ ℓH1)

y � (B , H2) t F (x , 0, . . . , 0) � (Ar ,ℓH1 ⋆ · · · ⋆ ℓH1)

ef (y ) � (A, H1) F ◦ t F (x , 0, . . . , 0) � (Ar , H1 ⋆ · · · ⋆H1)

f

ef

[ℓ]

t F

F
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Complexity over Fq

The geometric points of the kernel live in a extension k ′ of degree at
most ℓg −1 over k =Fq ;

The isogeny formula assumes that the points are in affine coordinates.
In practice, given A/Fq we only have projective coordinates ⇒ we use
differential additions to normalize the coordinates;

Computing the normalization factors takes O(logℓ) operations in k ′;

Computing the points of the kernel via differential additions take O(ℓg )
operations in k ′;

If ℓ≡ 1 (mod 4), applying the isogeny formula take O(ℓg ) operations in k ′;

If ℓ≡ 3 (mod 4), applying the isogeny formula take O(ℓ2g ) operations in k ′;

⇒ The total cost is eO(ℓ2g ) or eO(ℓ3g ) operations in Fq .

Remark

The complexity is much worse over a number field because we need to work with
extensions of much higher degree.
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Complexity over Fq

The geometric points of the kernel live in a extension k ′ of degree at
most ℓg −1 over k =Fq ;

The isogeny formula assumes that the points are in affine coordinates.
In practice, given A/Fq we only have projective coordinates ⇒ we use
differential additions to normalize the coordinates;

Computing the normalization factors takes O(logℓ) operations in k ′;

Computing the points of the kernel via differential additions take O(ℓg )
operations in k ′;

If ℓ≡ 1 (mod 4), applying the isogeny formula take O(ℓg ) operations in k ′;

If ℓ≡ 3 (mod 4), applying the isogeny formula take O(ℓ2g ) operations in k ′;

⇒ The total cost is eO(ℓ2g ) or eO(ℓ3g ) operations in Fq .

Theorem ([Lubicz, R.])

We can compute the isogeny directly given the equations (in a suitable form) of
the kernel K of the isogeny. When K is rational, this gives a complexity of eO(ℓg ) or
eO(ℓ2g ) operations in Fq .
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An (ℓ,ℓ)-isogeny graph in dimension 2 [Bisson, Cosset, R.]
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Non principal polarisations

Let f : (A, H1)→ (B , H2) be an isogeny between principally polarised
abelian varieties;

When Ker f is not maximal isotropic in A[ℓ] then f ∗H2 is not of the form
ℓH1;

How can we go from the principal polarisation H1 to f ∗H1?
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Non principal polarisations

Theorem (Birkenhake-Lange, Th. 5.2.4)

Let A be an abelian variety with a principal polarisation L1;

Let O0 = End(A)s be the real algebra of endomorphisms symmetric under the
Rosati involution;

Let NS(A) be the Néron-Severi group of line bundles modulo algebraic
equivalence.

Then

NS(A) is a torsor under the action of O0;

This induces a bijection between polarisations of degree d in NS(A) and
totally positive symmetric endomorphisms of norm d in O0;

The isomorphic class of a polarisation L f �NS(A) for f �O+0 correspond to
the action ϕ 7→ϕ∗ f ϕ of the automorphisms of A.
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Cyclic isogeny

Let f : (A, H1)→ (B , H2) be an isogeny between principally polarised
abelian varieties with cyclic kernel of degree ℓ;

There exists ϕ such that the following diagram commutes:

A B

A bA bB

f

bf

Φ f ∗H2 ΦH2

ϕ

ΦH1

ϕ is an (ℓ,0, . . . ,ℓ, 0, . . .)-isogeny whose kernel is not isotropic for the
H1-Weil pairing on A[ℓ]!

ϕ commutes with the Rosatti involution so is a real endomorphism (ϕ is
H1-symmetric);

ϕ is totally positive.
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Descending a polarisation via ϕ

The isogeny f induces a compatible isogeny between ϕH1 = f ∗H2 and H2

where ϕH1 is given by the following diagram

A A

bA

ϕ

ΦH1ΦϕH1

ϕ plays the same role as [ℓ] for ℓ-isogenies;
We then define the ϕ-contragredient isogeny ef as the isogeny making
the following diagram commute

x � (A,ϕ∗H1)

y � (B ,ϕH2)

ef (y ) � (A, H1)

f

ef

ϕ
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ϕ-change of level

We can use the isogeny theorem to compute f from (A,ϕH1) down to
(B , H2) or ef from (B , H2) up to (A,ϕH1) as before;

What about changing level between (A,ϕH1) and (A, H1)?

ϕH1 fits in the following diagram:

A A

bA bA

ϕ

ϕ̂

ΦH1

ΦϕH1Φϕ∗H1

Applying the isogeny theorem on ϕ allows to find relations between
ϕ∗H1 and H1 but we want ϕH1.
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ϕ-change of level

ϕ is a totally positive element of a totally positive order O0;

A theorem of Siegel show that ϕ is a sum of m squares in K0 =O0⊗Q;
Clifford’s algebras give a matrix F �Matr (K0) such that diag(ϕ) = F ∗F ;

We can use this matrix F to change level as before: If X � (Cg )r and
Y = F (X ) � (Cg )r , j � (Qg )r and i = F (j ), we have

ϑ
�

0
i 1

�

(Y1,
Ω
n
) . . .ϑ
�

0
i r

�

(Yr ,
Ω
n
) =

∑

t1 ,...,tr �K (ϕH1)
F (t1 ,...,tr )=(0,...,0)

ϑ
�

0
j1

�

(X1+ t1,
ϕ−1Ω

n
) . . .ϑ
�

0
jr

�

(Xr + tr ,
ϕ−1Ω

n
),

Remark

In general r can be larger than m ;

The matrix F acts by real endomorphism rather than by integer
multiplication;

There may be denominators in the coefficients of F .
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The Algorithm for cyclic isogenies [Dudeanu, Jetchev, R.]

B =Cg /(Zg +ΩZg ), A =Cg /(Zg +ϕΩZn )

ϑB
b

:= ϑ
h

0
b
n

i

�

·,
Ω
n

�

, ϑA
b

:= ϑ
h

0
b
n

i

�

·,
ϕΩ
n

�

Theorem

Let X in (Cg )r and Y =X F−1 � (Cg )r . Let i � (Z (n ))r and j = i F−1.

ϑA
i 1
(Y1) . . .ϑA

i r
(Yr ) =
∑

t1 ,...,tr �K (ϕH2)
(t1 ,...,tr )F=(0,...,0)

ϑB
j1
(X1+ t1) . . .ϑB

jr
(Xr + tr ),

x � (A,ϕH1) (x , 0, . . . , 0) � (Ar ,ϕH1 ⋆ · · · ⋆ϕH1)

y � (B , H2) t F (x , 0, . . . , 0) � (Ar ,ϕH1 ⋆ · · · ⋆ϕH1)

ef (y ) � (A, H1) F ◦ t F (x , 0, . . . , 0) � (Ar , H1 ⋆ · · · ⋆H1)

f

ef

ϕ

t F

F
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Hidden details

We normalize the coordinates by using multi-way additions;

The real endomorphisms are codiagonalisables (in the ordinary case),
this is important to apply the isogeny theorem;

If g = 2, K0 =Q(
p

d ), the action of
p

d is given by a standard
(d , d )-isogeny, so we can compute it using the previous algorithm for
d -isogenies!

The important point is that this algorithm is such that we can keep track
of the projective factors when computing the action of

p
d .

Remark

Computing the action of
p

d directly may be expensive if d is big.
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AVIsogenies [Bisson, Cosset, R.]

AVIsogenies: Magma code written by Bisson, Cosset and R.
http://avisogenies.gforge.inria.fr

Released under LGPL 2+.

Implement isogeny computation (and applications thereof) for abelian
varieties using theta functions.

Current release 0.6.

Cyclic isogenies coming “soon”!

http://avisogenies.gforge.inria.fr
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