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T!e Weil pairing on eHiptic curves

@ Let E: y?=x3+ax+b be an elliptic curve over a field k (chark #2,3,
4a3+27b*#0.)
@ Let PQ < E[/] be points of ¢-torsion.

@ Let f» be a function associated to the principal divisor £(P)—£(0), and f,
to £(Q)—¢(0). We define:

Jp((Q)—(0))

ewdBQA= % P~y

@ The application ey, : E[¢]x E[¢]— u,(k) is a non degenerate pairing: the
Weil pairing.

Definition (Embedding degree)
The embedding degree d is the smallest number such that ¢ |g?—1; F,a is

then the smallest extension containing u,(k).




T!e Tate pairing on eHiptic curves over F,

Definition

The Tate pairing is a non degenerate bilinear application given by

er: BIUIxE[FLEF,) — TFru/Fy,
(PQ — f(Q-0)

where

Ey[t]={P e E[{](Fga)| (P)=[q]P}.

@ On F,q, the Tate pairing is a non degenerate pairing
er: E[)(Fga) x E(Fga)/LE(F ga) = Fry [Foy" = uy;

(4] |f€2+E(]qu) then E(]qu)/[E(]qu)z E[f](]qu);
@ We normalise the Tate pairing by going to the power of (g4 —1)/¢.




MiHer’s 'unctlons

@ We need to compute the functions f» and f,. More generally, we define
the Miller’s functions:

Definition
Let AeN and X € E[¢], we define f, x € k(E) to be a function thus that:

(fox)=2AX)=([A]X)— (A —1)(0).

@ We want to compute (for instance) f; »((Q)—(0)).




MiHer’s a‘gorit!m

@ The key idea in Miller’s algorithm is that

f7L+u,X = fux ﬁt,Xf}L,u,X

where f; , x is a function associated to the divisor
([A1X) + ((p1X) = ([A + p]1X)—(0).

@ We can compute f; , x using the addition law in E: if [A]X =(x;, ;) and
[UX =(x,, 3) and @ = (1 — »)/(x, — X,), we have

y—alx—x)—n

Paux = X4 +x)—a2’




Miller’s algorithm

AX =(x, 1) [u]X =(x5,15)
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loraia—.



MiHer’s a‘gorit!m on eHiptic curves

Algorithm (Computing the Tate pairing)

InPUt: KGN, Pz(xl’yl)eE[e](]Fq)rQ=(x2ry2)€E(]qu)~
Output: er(P,Q).

@ Compute the binary decomposition: £:=3",_ b;2'. let T=P,f,=1,f,=1.

@ Foriin|[I..0] compute
@ ¢, the slope of the tangent of E at T.
Q@ T=2T.T=(x3,)3)
Q fi=1En—alxa—x3)— 1), fo=f2(%+(x + x3)—a?).
Q If b;=1, then compute
@ o, the slope of the line going through P and T.
Q T=T+Q.T=(x3)3)
O fi=Rn—aln—x3)—), fo=Lflx+0n+x)—a?)

Return

lorzia—.




Jaco!ian o' curves

C a smooth irreducible projective curve of genus g.

@ Divisor: formal sum D= n;P;, P e C(k).
degD =Y n,.

o Principal divisor: 3,z ve(f).P;  fek(C).

Jacobian of C = Divisors of degree 0 modulo principal divisors
° + Galois action
= Abelian variety of dimension g.

@ Divisor class of a divisor D eJac(C) is generically represented by a sum of
g points.

lorzia—.




Examp‘e o'Jaco!lans

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of
genus 2:

y?=f(x), degf =5.

D=P+P,—20
D'=Q,+Q,-2x
Q
Q




Examp‘e o'Jaco!lans

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of
genus 2:

y?=f(x), degf =5.

D=P +P,—2c0

) QI+Q2/M7®“




Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of
genus 2:

y?=f(x), degf =5.

D=P+P,—20
D'=Q,+Q,-2x
D+D'=R,+R,—2c Q,

Q__g,




Examp‘e o'Jaco!lans

Dimension 3

Jacobians of hyperelliptic curves of genus 3. Jacobians of quartics.

I

I

~ /|
+ ,uz 3 - 3 A i \&




Pairings on Jaco!ians

@ Let P eJac(C)[¢] and D, a divisor on C representing P;

@ By definition of Jac(C), £ D, corresponds to a principal divisor (f») on C;

@ The same formulas as for elliptic curve define the Weil and
Tate-Lichtenbaum pairings:

ew(P,Q) =fP(DQ)/fQ(Dp)
er(PQ)= fP(DQ)-




Pairings onJaco!ians

@ Let P eJac(C)[¢] and D, a divisor on C representing P;

@ By definition of Jac(C), £ D, corresponds to a principal divisor (f») on C;
@ The same formulas as for elliptic curve define the Weil and
Tate-Lichtenbaum pairings:
ew(P,Q)= fp( Dy /fQ (Dp)
er PQ = fp( DQ

@ A key ingredient for evaluating f,(D,) comes from Weil reciprocity theorem.

Theorem (Weil)

Let D, and D, be two divisors with disjoint support linearly equivalent to (0) on a
smooth curve C. Then

Jo,(D2) = fp,(Dy).




Pairings onJaco!ians

@ Let P eJac(C)[¢] and D, a divisor on C representing P;
@ By definition of Jac(C), £ D, corresponds to a principal divisor (f») on C;

@ The same formulas as for elliptic curve define the Weil and
Tate-Lichtenbaum pairings:

ew(P,Q) =fP(DQ)/fQ(Dp)
er(PQ)= fP(DQ)-

@ The extension of Miller’s algorithm to Jacobians is “straightforward”;
@ For instance if g =2, the function f, , » is of the form

y—lx)
(x —x)(x = x3)

where [ is of degree 3.




A!Jian varieties

Definition
An Abelian variety is a complete connected group variety over a base field k.J

@ Abelian variety = points on a projective space (locus of homogeneous
polynomials) + an abelian group law given by rational functions.

@ Elliptic curves= Abelian varieties of dimension 1;

o If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of
dimension g;

@ In dimension g >4, not every abelian variety is a Jacobian.

lorzia—.




Isogenies an! pairings

Let f: A— B be a separable isogeny with kernel K between two abelian
varieties defined over k:

0 K A B 0

0 A B K 0

@ K is the Cartier dual of K, and we have a non degenerate pairing
ef: KxK—k:
@ 1f QeR(k), Q defines a divisor Dy on B;
© /(Q)=0 means that f*Dq is equal to a principal divisor (go) on 4;
© ¢/(PQ)=3go(x)/gq(x +P). (This last function being constant in its definition
domain).

@ The Weil pairing ey, is the pairing associated to the isogeny [(]: A — A:
ew,: All]x All]— py(k).

lorzia—.




Po‘arlzatlons

If £ is an ample line bundle, the polarization ¢, is a morphism
A=A x— 1 20L ™.

Definition

Let . be a principal polarization on A. The (polarized) Weil pairing ey, o, is
the pairing _

ewgo: A]X ALl — (k) 5
(PQ) — ew(Pype(Q)

associated to the polarization @ ¢:

A L] A <

>

lorzia—.




T!e Tate pairings on a!e‘ian varieties over !nite !e‘!s

@ From the exact sequence

0— A[(F ja) = AF ja) = A(Fya) — 0
we get from Galois cohomology a connecting morphism
& : A(F a)/LA(F .a) — H'(Gal(F ya /F a), ALL]);
@ Composing with the Weil pairing, we get a bilinear application
AlL)(Fga) X A(Fga)/CA(F ya) — H'(Gal(F ga /Fqa), ) 2 Fia [Frg =y
where the last isomorphism comes from the Kummer sequence
Loy = Fpy =Fpy =1

and Hilbert 90;

@ Explicitely, if P < A[{](F,4) and Q € A(F,«) then the (reduced) Tate pairing
is given by
er(P,Q) = ew (P, m(Qo)— Qo)

where Q, is any point such that Q =[£]Q, and 7 is the Frobenius of Fyu. .-




Cyc‘es an! Lang reciprocity

@ Let (A, %) be a principally polarized abelian variety;

@ To a degree 0 cycle > n,(P,) on A, we can associate the divisor > ; €™
on A;

@ The cycle > n;(P,) corresponds to a trivial divisor iff > n,P,=0in 4;

@ If fis a function on A and D = (P;) a cycle whose support does not
contain a zero or pole of f, we let

fo)=[ Jr@y.

(In the following, when we write f(D) we will always assume that we
are in this situation.)

Theorem ([Lan58])

Let D, and D, be two cycles equivalent to 0, and f, and f;, be the corresponding
functions on A. Then
fD1 (Dy)= sz(D1)

lorzia—.




T!e Wel an! Tate pairings on a!e‘ian varieties

Theorem

Let P,Q € A[¢]. Let Dp and Dy, be two cycles equivalent to (P)—(0) and (Q)—(0).
The Weil pairing is given by

Jepy,(Dg)

O Dy

Theorem

Let P € A[¢](F,q) and Q € A(F ;a), and let Dp and Dy, be two cycles equivalent to
(P)—(0) and (Q)—(0). The (non reduced) Tate pairing is given by

er(PQ)= leP(DQ)-




Cryptograp!ic usage o' pairings on a!e‘ian varieties

@ The moduli space of abelian varieties of dimension g is a space of
dimension g(g +1)/2. We have more liberty to find optimal abelian
varieties in function of the security parameters.

@ Supersingular abelian varieties can have larger embedding degree than
supersingular elliptic curves.

@ Over a Jacobian, we can use twists even if they are not coming from
twists of the underlying curve.

o If Ais an abelian variety of dimension g, A[¢] is a (Z/¢Z)-module of
dimension 2g = the structure of pairings on abelian varieties is richer.

lorzia—.




Comp‘ex a!e ian varieties

@ A complex abelian variety is of the form A=V /A where V~C¢ is a
C-vector space and A a lattice, with a polarization (actually an ample
line bundle) £ on it;

@ The Chern class of £ corresponds to a symplectic real form E on V such
that E(ix,iy)=E(x,y) and E(A,A)CZ;

@ The commutator pairing e, is then given by exp(2iE(-,-));

@ A principal polarization on A corresponds to a decomposition
A =QZ8 + 78 with Qe $, the Siegel space;

@ The associated Riemann form on A is then given by
EQx+ 2,0+ p)="x- =" X.

lorzia—.




T!eta coor!inates

@ The theta functions of level n give a system of projective coordinates:
ﬁ[Z](Z,Q) — Z eni’(n+a)Q(n+a]+2nit(n+a)(z+h) a,be Qg
nezé

o If n=2, we get (in the generic case) an embedding of the Kummer
variety A/ +1.

Remark

Working on level n mean we take a n-th power of the principal polarization. So in
the following we will compute the n-th power of the usual Weil and Tate pairings.

lorzia—.




The difterential addition law (k=C)

Z X0 (x+y)0 0, (x— J/ Z x(t ﬂk+t(0)ﬁl+t(0))

teZ(2) teZ(2)

Z 20y (¥ ’+l(y Z X(t)ﬂk/+l(x)ﬂl’+t(x))'

teZ(2) teZ(2)

where y<€Z(2),i,j,k,1<Z(n)
@,k 1N =Al,j, k1)
1 1 1 1
111 1 -1 -1
A‘E 1 -1 1 -1
1 -1 -1 1



Examp‘e: !IHerentia| a!!ltlon In !ImenSIOI‘I 1 an! In LVJ 2

Algorithm

Input zp = (X, x;), 2o = (3, 1) and zp_q = (29, 2,) With zyz, #0;
zo=(a,b) and A=2(a®+ b?), B=2(a*>—b?).

Output Zp+Q =(t0, tl)'

Q =0 +xD)y7+¥)/A
Q 1/ =(x(—x)y2—y))/B
Q ty=(t5+ 1))/ 2z

o t1=( )/Zl

Return (t,, t;)

lorzia—.




ow level theta functions (char k # 2)

Montgomery Level 2 Jacobians coordinates
Doubling 3M +5S8
Mixed Addition ~>M T4S+1mo  SMEES+3mg 7M +6S +1my

Multiplication cost in genus 1 (one step).

Mumford Level 2 Level 4
Doubling 34M +7S

Mixed Addition 3781 168 /M +125+9mg  49M+36S+27mg

Multiplication cost in genus 2 (one step).

lorzia—.




MiHer 'unctions wit! t!eta coor!inates

Proposition (Lubicz-R. [LR13])

@ For P € A we note z, a lift to C8. We call P a projective point and z, an
affine point (because we describe them via their projective, resp affine, theta
coordinates);

@ We have (up to a constant)

_ B2)  (Blz+zp)\'
he =z~ )
@ So (up to a constant)

Wz + Azp)i(z +uzp)
W2)0(z +(A+u)zp) |

faup(2)=




T!ree way a!!ition

Proposition (Lubicz-R. [LR13])

From the affine points zp, zq, zg, Zp+q, Zp+r ANd zg.r ONE can compute the
affine point zp, . z.
(In level 2, the proposition is only valid for “generic” points).

Proof.

We can compute the three way addition using a generalised version of
Riemann’s relations:

Zl T ive ZP+Q+R)77]+t(ZP) Z}( 1?k+t(zo)7?l+t(zR))
teZ(2) teZ(2)

(Z X041 (20)0 141 (2g4r ))( Z X ()0 i(2per)014e(2pig ))-

teZ(2) teZ(2)

lorzia—.




T!ree way a!!ltlon in !lmension 1 ‘eve‘ 2

Algorithm
Input The points x,y,z,X=y+z,Y=x+2z,Z=x+y;
Output T=x+y+z.
Return
T = (aXo+b X))V Zy+ 11 2Z))  (aXo—bX\)(YoZy— V1 2))

0 Xo(YoZo + y121) Xo(Yozo— J121)
T = (aXo+bX,)(YoZy+ Y1 Z;) _ (aXo—bX\) Y% Zy— Y1 Z,)
! x(Yzo+ 021 (Y20 —1121)

lorzia—.




Computing t!e MiHer 'unction F2,u,p((Q)—(0))

Algorithm
Input AP, uP and Q;
Output f,,,p((Q)—(0))

© Compute (A+u)P, Q+ AP, Q +uP using normal additions and take any
affine lifts z,yp, 2g+ap AN Zg4pup;
@ Use a three way addition to compute zq., ;. p;

Return
Dzq +Azp)B(2q +112p) (A +)zp)0(2p)

P Q= O)= 550, oz + v i)~ R piz)

Lemma

The result does not depend on the choice of affine lifts in Step 2.

® This allows us to evaluate the Weil and Tate pairings and derived
pairings;
® Not possible a priori to apply this algorithm in level 2. i




T!e Tate pairing wit! MiHer’s 'unctions an! t!eta coor!inates

@ Let P All](F,«) and Q € A(F,«); choose any lift zp, z¢ and zp.q.

@ The algorithm loop over the binary expansion of ¢, and at each step does
a doubling step, and if necessary an addition step.

Given z;p, z3p.q;
Doubling Compute z,,p, 2,3p1q Using two differential additions;
Addition Compute (2A+1)P and take an arbitrary lift zp;,1)p. Use a
three way addition to compute zp;1)p40-

@ At the end we have computed affine points z,p and z;p,¢. Evaluating the
Miller function then gives exactly the quotient of the projective factors
between zp, 2y and z;p.q, 2q-

© Described this way can be extended to level 2 by using compatible
additions;

® Three way additions and normal (or compatible) additions are quite
cumbersome, is there a way to only use differential additions?

lorzia—.




T!e We|| an! Tate pairing Wlt! t!eta coor!mates (Lu!lcz-R. LRlo‘)

Using directly the formula for f; »(z) we get that the Weil and Tate pairings
are given by

W(zq +L2zp)8(0) (zp)0(lzq)

ew,l(P»Q)z ﬁ(ZQ)ﬂ(ezP) ﬂ(zp-i-fZQ)ﬁ(O)

¥(zq +£2p)9(0)

erP. Q)= =5 5ezn)




T!e We|| an! Tate pairing Wlt! t!eta coor!mates (Lu!lcz-R. LRlo‘)

P and Q points of ¢-torsion.

Zo Zp 2zp lzp =20z,
ZQ Zp @ZQ 2ZP+ZQ 000 ZZP"FZQ:A},ZQ
2z zZp+22g

EQ=7L?20A Zp +£ZQ=A}QZP

ApAY
@ ey (P Q)= oA,

Ap
@ er(PQ)= FUR



W!y !oes It wor!.l _

2y azp a*(2zp) a®(lzp)=2"z,
P
202 ¢ 0-1)
Bzq Y(zp & 2¢) %(ZZP‘FZQ) T;;T(ZZP-FZQ)=/'\';[5ZQ
BRzq) T (zp+22)

£((—1)
ﬁlz(zzQ)zllono TIIZT(ZP +ZZQ)=).IIQC(ZP

We then have

M= H K=y M=Ta X=T—R,
NpNg _ ApAy
Moay  ApAy
Mp_ 1 A 1!

4 = —_— —
eT,Z(P’Q)—A/(},) = wpi Ay _aeﬂle”

ey (PQ)= =ew (PQ),

(P.Q).

lorzia—.




T!e casen=2

—x,%x1

@ If n=2 we work over the Kummer variety K over k, so e(P,Q)ek .

el
@ We representaclass xek by x+1/xek . We want to compute the
symmetric pairing

es(P,Q)=e(P,Q)+e(—PQ).

@ From +P and +Q we can compute {+(P +Q),£(P —Q)} (need a square
root), and from these points the symmetric pairing.

g g a el
@ e, is compatible with the Z-structure on K and k.

s
@ The Z-structure on kK~ can be computed as follow:

1
(xOtlep — ) (xh72 4+

1 1
— (01 )
P )=+ ) + )

xé’lft’z xlg

lorzia—.




Ate pairing

@ lLet P e G, =A[l](\Ker(n,—[q]) and Q € G, = A[{](\Ker(r, —1); A=q
mod {.

@ In projective coordinates, we have nj(P +Q)=A“P+Q=P+Q;
@ Of course, in affine coordinates, nj(zP+Q)7é/1dzp +2zq.

@ But if ,(2zp,q) = C *(A2zp +2¢), then C is exactly the (non reduced) ate
pairing (up to a renormalisation)!

Algorithm (Computing the ate pairing)
Input PeG,, QeGy;

@ Compute z, + Azp, Azp using differential additions;

@ Find the projective factors C, and C, such that zq + Azp = C, % (zp,) and
Azp = Cy*1(zp) respectively;

g%
Return (C,/Cy) 7 .

lorzia—.




Optlma‘ ate pairing

@ Let A=ml=> c;q' be a multiple of £ with small coefficients c;. ({}m)
@ The pairing

a: G xG — WY
) (q9-1)/t
Q) — (]f[ﬁi,p(o)“’Hfzmw,qqi,ﬁo))

is non degenerate when mdq9='#(q%—1)/r>;ic;q’™" mod¢.
@ Since ¢,(q)=0 mod ¢ we look at powers q,q>,...,q¢ 1.
@ We can expect to find A such that ¢; ~ ¢1/¢(),




Optima‘ ate pairing wit! t!eta 'unctions

Algorithm (Computing the optimal ate pairing)
Input 7,(P)=[q]P, 7,(Q)=Q, A=ml=> c;q’;

@ Compute the z,+ ¢;zp and c; zp;

@ Apply Frobeniuses to obtain the zo + ¢;q'zp, ¢;q'zp;

Q Compute c;q'zp @3 c;q’ zp (up to a constant) and then do a three way
addition to compute z +¢;q'zp+ Y, ¢;q’ zp (up to the same constant);

@ Recurse until we get Azp = Cy*zp and zq + Azp = C, * 2o;

P!
Return (C,/Cy) 7 .

lorzia—.




T!e casen=2

@ Computing ¢;q'zp :I:Zj ¢;q’ zp requires a square root (very costly);
@ And we need to recognize ¢;q'zp + 2. ¢;q’ zp from ¢;q'zp =3 c;q’ zp.
@ We will use compatible additions: if we know x, y, z and x+z, y +z, we

can compute x +y without a square root;

@ We apply the compatible additions with x=c¢;q'zp, y =3, ¢;q’zp and
V4 =ZQ.

lorzia—.




Compati!‘e a!!ltlons

@ Recall that we know x, y, z and x+z, y +z;

@ From it we can compute (x +z)+(y +z)={x+y +2z,x—y} and of
course {x+y,x—y};

@ Then x + y is the element in {x + y, x — y} not appearing in the preceding
set;

@ Since x—y is a common point, we can recover it without computing a
square root.

lorzia—.




T!e compati!‘e a!!ition a‘gorit!m in !imension 1

Algorithm

Input x,y, Y=x+2, X=y+2z;
© Computing x +y:

a=(x; +x))(y; + ¥/ A
B =(x3—x))y;—¥)/B
Koo =(a+B), k1 =(a— )
K10 = XoX1 Yo1/ab
@ Computing (x+z)x(y +z):
Y2+ V)X +XD)/A
V2= (X X2)/B
ke, =a' +p Kk, =a' —p’
K'llo =YX, X,/ab

Return x+y = [Koo(K10Kgo —K7oKo0), K10(K10K 50 —K7oKo0) T Koo(K11K gy — K71 Kop)]

lorzia—.




One step o' t!e pairing computation

Algorithm (A step of the Miller loop with differential additions)
Input nP =(x,,2,); (n+1)P =(Xpt1,2p11), (M +1)P+Q=(x, ., 2, ).
Output 2nP = (X, 22n); (21 +1)P =(X2p41, Zop+1)s

@r+1P+Q=(x3,,,,2;,,,)-
Q a=(x2+22); f=4(x2—-22).
e Xn=a2; Xn+1= ( n+1+zn+1) X —a(x n+1+z n+1)'

— 2 2y, _ — z’% )
o Zn= ﬁ(xn _Zn)’ Znw _ﬁ(xn+1 n+1 n+l =px n+1 Z il
Qo Xon =X+ Z; Xon = Xpr + Zpa)/ Xp; X 2n+1 = (X,I,H +Zn+1)/xQ;

Q z,= %(X —Z2); Zone1 = (Xpp1 — n+1)/Zp; Zz,,+1 = (X,,+1 _Z,I,_H)/ZQ;

Return (xzn, 22n); (X2n+1s Z2ns1); (%5,,15 25, 41)-

lorzia—.




Wei‘ an! Tate pairing over Fq

g=1 4M+2m+8S+3mg
g=2 8M+6m+16S+9mg

Tate pairing with theta coordinates, P,Q € A[¢](F,4) (one step)

Operations in F,: M: multiplication, S: square, m multiplication by a
coordinate of P or Q, m, multiplication by a theta constant;

Mixed operations in F, and F,«: M, m and my;

Operations in F,«: M, m and S.

Remark

@ Doubling step for a Miller loop with Edwards coordinates: 9M + 7S +2my;

@ Just doubling a point in Mumford projective coordinates using the fastest
algorithm [Lano5]: 33M + 7S + 1mo;

@ Asymptotically the final exponentiation is more expensive than Miller’s loop,
so the Weil’s pairing is faster than the Tate’s pairing!

lorzia .




Tate pairing
g=1 1m+28+2M+2M +1m+6S+3m,
g=2 3m+4S+4M+4M +3m+12S+9m,
Tate pairing with theta coordinates, P € A[¢](F,),Q € A[(](F,q) (one step)
Miller Theta coordinates
Doubling Addition One step
d even IM+1S+1M 1IM+1M
§=1" 4 odd 2M+28+1M  2M+1M IM+28+2M
Q degenerate +
g=2  deven 1M +1S+3M 1M +3M 3M 4 4S +4M
General case 2M+2S+18M 2M+18M

P e A[l](F,), Q € AlL](F,a) (counting only operations in Fga).

lorzia—.




Ate an! optima‘ ate pairings

g=1 4M+1m+8S+1m+3mg
g=2 8M+3m+16S+3m+9m,

Ate pairing with theta coordinates, P € G,,Q € G; (one step)

Remark
Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing
costs [Gra+07]:
Doubling 114+29M+9S+7M
Addition 1I4+29M+5S+7M
(Where I denotes the cost of an affine inversion in F ;a).

lorzia—.
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