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The Weil pairing on elliptic curves

Let E : y 2 = x 3+a x + b be an elliptic curve over a field k (char k ̸= 2, 3,
4a 3+27b 2 ̸= 0.)

Let P,Q � E [ℓ] be points of ℓ-torsion.

Let fP be a function associated to the principal divisor ℓ(P )− ℓ(0), and fQ

to ℓ(Q )− ℓ(0). We define:

eW ,ℓ(P,Q ) =
fP ((Q )− (0))
fQ ((P )− (0))

.

The application eW ,ℓ : E [ℓ]×E [ℓ]→µℓ(k ) is a non degenerate pairing: the
Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number such that ℓ | q d −1; Fq d is
then the smallest extension containing µℓ(k ).
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The Tate pairing on elliptic curves over Fq

Definition

The Tate pairing is a non degenerate bilinear application given by

eT : E0[ℓ]×E (Fq )/ℓE (Fq ) −→ F∗q d /F∗q d
ℓ

(P,Q ) 7−→ fP ((Q )− (0))
.

where
E0[ℓ] = {P � E [ℓ](Fq d ) |π(P ) = [q ]P }.

On Fq d , the Tate pairing is a non degenerate pairing

eT : E [ℓ](Fq d )×E (Fq d )/ℓE (Fq d )→F∗q d /F∗q d
ℓ ≃µℓ;

If ℓ2 ∤ E (Fq d ) then E (Fq d )/ℓE (Fq d )≃ E [ℓ](Fq d );

We normalise the Tate pairing by going to the power of (q d −1)/ℓ.
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Miller’s functions

We need to compute the functions fP and fQ . More generally, we define
the Miller’s functions:

Definition

Let λ � N and X � E [ℓ], we define fλ,X � k (E ) to be a function thus that:

( fλ,X ) =λ(X )− ([λ]X )− (λ−1)(0).

We want to compute (for instance) fℓ,P ((Q )− (0)).
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Miller’s algorithm

The key idea in Miller’s algorithm is that

fλ+µ,X = fλ,X fµ,X fλ,µ,X

where fλ,µ,X is a function associated to the divisor

([λ]X )+ ([µ]X )− ([λ+µ]X )− (0).

We can compute fλ,µ,X using the addition law in E : if [λ]X = (x1, y1) and
[µ]X = (x2, y2) and α= (y1− y2)/(x1− x2), we have

fλ,µ,X =
y −α(x − x1)− y1

x + (x1+ x2)−α2
.
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Miller’s algorithm

[λ]X = (x1, y1) [µ]X = (x2, y2)
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.
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Miller’s algorithm on elliptic curves

Algorithm (Computing the Tate pairing)

Input: ℓ � N, P = (x1, y1) � E [ℓ](Fq ),Q = (x2, y2) � E (Fq d ).

Output: eT (P,Q ).

1 Compute the binary decomposition: ℓ :=
∑I

i=0 bi 2i . Let T = P, f1 = 1, f2 = 1.
2 For i in [I ..0] compute

1 α, the slope of the tangent of E at T .
2 T = 2T . T = (x3, y3).
3 f1 = f 2

1 (y2 −α(x2 − x3)− y3), f2 = f 2
2 (x2 + (x1 + x3)−α2).

4 If bi = 1, then compute
1 α, the slope of the line going through P and T .
2 T = T +Q . T = (x3, y3).
3 f1 = f 2

1 (y2 −α(x2 − x3)− y3), f2 = f2(x2 + (x1 + x3)−α2).

Return
�

f1

f2

�

q d −1
ℓ

.
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Jacobian of curves

C a smooth irreducible projective curve of genus g .

Divisor: formal sum D =
∑

ni Pi ,
deg D =
∑

ni .
Pi �C (k ).

Principal divisor:
∑

P �C (k ) vP ( f ).P ; f � k (C ).

Jacobian of C =Divisors of degree 0 modulo principal divisors
+ Galois action

= Abelian variety of dimension g .

Divisor class of a divisor D � Jac(C ) is generically represented by a sum of
g points.
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Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of
genus 2:

y 2 = f (x ), deg f = 5.
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Example of Jacobians

Dimension 3
Jacobians of hyperelliptic curves of genus 3. Jacobians of quartics.
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Pairings on Jacobians

Let P � Jac(C )[ℓ] and DP a divisor on C representing P ;

By definition of Jac(C ), ℓDP corresponds to a principal divisor ( fP ) on C ;

The same formulas as for elliptic curve define the Weil and
Tate-Lichtenbaum pairings:

eW (P,Q ) = fP (DQ )/ fQ (DP )

eT (P,Q ) = fP (DQ ).
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Pairings on Jacobians

Let P � Jac(C )[ℓ] and DP a divisor on C representing P ;

By definition of Jac(C ), ℓDP corresponds to a principal divisor ( fP ) on C ;

The same formulas as for elliptic curve define the Weil and
Tate-Lichtenbaum pairings:

eW (P,Q ) = fP (DQ )/ fQ (DP )

eT (P,Q ) = fP (DQ ).

A key ingredient for evaluating fP (DQ ) comes from Weil reciprocity theorem.

Theorem (Weil)

Let D1 and D2 be two divisors with disjoint support linearly equivalent to (0) on a
smooth curve C . Then

fD1
(D2) = fD2

(D1).
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Pairings on Jacobians

Let P � Jac(C )[ℓ] and DP a divisor on C representing P ;

By definition of Jac(C ), ℓDP corresponds to a principal divisor ( fP ) on C ;

The same formulas as for elliptic curve define the Weil and
Tate-Lichtenbaum pairings:

eW (P,Q ) = fP (DQ )/ fQ (DP )

eT (P,Q ) = fP (DQ ).

The extension of Miller’s algorithm to Jacobians is “straightforward”;

For instance if g = 2, the function fλ,µ,P is of the form

y − l (x )
(x − x1)(x − x2)

where l is of degree 3.
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k .

Abelian variety = points on a projective space (locus of homogeneous
polynomials) + an abelian group law given by rational functions.

Example

Elliptic curves= Abelian varieties of dimension 1;

If C is a (smooth) curve of genus g , its Jacobian is an abelian variety of
dimension g ;

In dimension g ⩾ 4, not every abelian variety is a Jacobian.
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Isogenies and pairings

Let f : A→ B be a separable isogeny with kernel K between two abelian
varieties defined over k :

0 K A B 0

0 Â B̂ K̂ 0

f

f̂

K̂ is the Cartier dual of K , and we have a non degenerate pairing
e f : K × K̂ → k

∗
:

1 If Q � K̂ (k ), Q defines a divisor DQ on B ;
2 f̂ (Q ) = 0 means that f ∗DQ is equal to a principal divisor (gQ ) on A;
3 e f (P,Q ) = gQ (x )/gQ (x +P ). (This last function being constant in its definition

domain).

The Weil pairing eW ,ℓ is the pairing associated to the isogeny [ℓ] : A→ A:

eW ,ℓ : A[ℓ]× Â[ℓ]→µℓ(k ).
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Polarizations

If L is an ample line bundle, the polarization ϕL is a morphism
A→ bA, x 7→ t ∗xL ⊗L

−1.

Definition

Let L be a principal polarization on A. The (polarized) Weil pairing eW ,L ,ℓ is
the pairing

eW ,L ,ℓ : A[ℓ]×A[ℓ] −→ µℓ(k )
(P,Q ) 7−→ eW ,ℓ(P,ϕL (Q ))

.

associated to the polarization ϕL ℓ :

A A Â
[ℓ] L
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The Tate pairings on abelian varieties over finite fields

From the exact sequence

0→ A[ℓ](Fq d )→ A(Fq d )→[ℓ] A(Fq d )→ 0

we get from Galois cohomology a connecting morphism

δ : A(Fq d )/ℓA(Fq d )→H 1(Gal(Fq d /Fq d ), A[ℓ]);

Composing with the Weil pairing, we get a bilinear application

A[ℓ](Fq d )×A(Fq d )/ℓA(Fq d )→H 1(Gal(Fq d /Fq d ),µℓ)≃F∗q d /F∗q d
ℓ ≃µℓ

where the last isomorphism comes from the Kummer sequence

1→µℓ→F
∗
q d →F

∗
q d → 1

and Hilbert 90;

Explicitely, if P � A[ℓ](Fq d ) and Q � A(Fq d ) then the (reduced) Tate pairing
is given by

eT (P,Q ) = eW (P,π(Q0)−Q0)

where Q0 is any point such that Q = [ℓ]Q0 and π is the Frobenius of Fq d .
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Cycles and Lang reciprocity

Let (A,L ) be a principally polarized abelian variety;

To a degree 0 cycle
∑

ni (Pi ) on A, we can associate the divisor
∑

t ∗Pi
L ni

on A;

The cycle
∑

ni (Pi ) corresponds to a trivial divisor iff
∑

ni Pi = 0 in A;

If f is a function on A and D =
∑

(Pi ) a cycle whose support does not
contain a zero or pole of f , we let

f (D ) =
∏

f (Pi )
ni .

(In the following, when we write f (D ) we will always assume that we
are in this situation.)

Theorem ([Lan58])

Let D1 and D2 be two cycles equivalent to 0, and fD1
and fD2

be the corresponding
functions on A. Then

fD1
(D2) = fD2

(D1)
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The Weil and Tate pairings on abelian varieties

Theorem

Let P,Q � A[ℓ]. Let DP and DQ be two cycles equivalent to (P )− (0) and (Q )− (0).
The Weil pairing is given by

eW (P,Q ) =
fℓDP
(DQ )

fℓDQ
(DP )

.

Theorem

Let P � A[ℓ](Fq d ) and Q � A(Fq d ), and let DP and DQ be two cycles equivalent to
(P )− (0) and (Q )− (0). The (non reduced) Tate pairing is given by

eT (P,Q ) = fℓDP
(DQ ).
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Cryptographic usage of pairings on abelian varieties

The moduli space of abelian varieties of dimension g is a space of
dimension g (g +1)/2. We have more liberty to find optimal abelian
varieties in function of the security parameters.

Supersingular abelian varieties can have larger embedding degree than
supersingular elliptic curves.

Over a Jacobian, we can use twists even if they are not coming from
twists of the underlying curve.

If A is an abelian variety of dimension g , A[ℓ] is a (Z/ℓZ)-module of
dimension 2g ⇒ the structure of pairings on abelian varieties is richer.
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Complex abelian varieties

A complex abelian variety is of the form A =V /Λ where V ≃Cg is a
C-vector space and Λ a lattice, with a polarization (actually an ample
line bundle) L on it;

The Chern class of L corresponds to a symplectic real form E on V such
that E (i x , i y ) = E (x , y ) and E (Λ,Λ)⊂Z;
The commutator pairing eL is then given by exp(2iπE (·, ·));
A principal polarization on A corresponds to a decomposition
Λ=ΩZg +Zg with Ω �Hg the Siegel space;

The associated Riemann form on A is then given by
E (Ωx1+ x2,Ωy1+ y2) = t x1 · y2− t y1 · x2.
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Theta coordinates

The theta functions of level n give a system of projective coordinates:

ϑ [ ab ] (z ,Ω) =
∑

n�Zg

e πi t (n+a )Ω(n+a )+2πi t (n+a )(z+b ) a , b �Qg

If n = 2, we get (in the generic case) an embedding of the Kummer
variety A/±1.

Remark

Working on level n mean we take a n -th power of the principal polarization. So in
the following we will compute the n -th power of the usual Weil and Tate pairings.
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The differential addition law (k =C)

�

∑

t �Z (2)

χ(t )ϑi+t (x + y )ϑ j+t (x − y )
�

.
�

∑

t �Z (2)

χ(t )ϑk+t (0)ϑl+t (0)
�

=

�

∑

t �Z (2)

χ(t )ϑ−i ′+t (y )ϑ j ′+t (y )
�

.
�

∑

t �Z (2)

χ(t )ϑk ′+t (x )ϑl ′+t (x )
�

.

where χ � Ẑ (2), i , j , k , l � Z (n )

(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2







1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1






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Example: differential addition in dimension 1 and in level 2

Algorithm

Input zP = (x0, x1), zQ = (y0, y1) and zP−Q = (z0, z1) with z0z1 ̸= 0;
z0 = (a , b ) and A = 2(a 2+ b 2), B = 2(a 2− b 2).

Output zP+Q = (t0, t1).

1 t ′0 = (x
2
0 + x 2

1 )(y
2

0 + y 2
2 )/A

2 t ′1 = (x
2
0 − x 2

1 )(y
2

0 − y 2
1 )/B

3 t0 = (t ′0+ t ′1)/z0

4 t1 = (t ′0− t ′1)/z1

Return (t0, t1)



Curves, pairings and cryptography Abelian varieties Theta functions Pairings with theta functions Performance

Cost of the arithmetic with low level theta functions (char k ̸= 2)

Montgomery Level 2 Jacobians coordinates
Doubling

5M +4S +1m0 3M +6S +3m0
3M +5S

Mixed Addition 7M +6S +1m0

Multiplication cost in genus 1 (one step).

Mumford Level 2 Level 4

Doubling 34M +7S
7M +12S +9m0 49M +36S +27m0Mixed Addition 37M +6S

Multiplication cost in genus 2 (one step).
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Miller functions with theta coordinates

Proposition (Lubicz-R. [LR13])

For P � A we note zP a lift to Cg . We call P a projective point and zP an
affine point (because we describe them via their projective, resp affine, theta
coordinates);

We have (up to a constant)

fλ,P (z ) =
ϑ(z )

ϑ(z +λzP )

�

ϑ(z + zP )
ϑ(z )

�λ

;

So (up to a constant)

fλ,µ,P (z ) =
ϑ(z +λzP )ϑ(z +µzP )
ϑ(z )ϑ(z + (λ+µ)zP )

.
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Three way addition

Proposition (Lubicz-R. [LR13])

From the affine points zP , zQ , zR , zP+Q , zP+R and zQ+R one can compute the
affine point zP+Q+R .
(In level 2, the proposition is only valid for “generic” points).

Proof.

We can compute the three way addition using a generalised version of
Riemann’s relations:

�

∑

t �Z (2)

χ(t )ϑi+t (zP+Q+R )ϑ j+t (zP )
�

.
�

∑

t �Z (2)

χ(t )ϑk+t (zQ )ϑl+t (zR )
�

=

�

∑

t �Z (2)

χ(t )ϑ−i ′+t (z0)ϑ j ′+t (zQ+R )
�

.
�

∑

t �Z (2)

χ(t )ϑk ′+t (zP+R )ϑl ′+t (zP+Q )
�

.
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Three way addition in dimension 1 level 2

Algorithm

Input The points x , y , z , X = y + z , Y = x + z , Z = x + y ;

Output T = x + y + z .

Return

T0 =
(a X0+ b X1)(Y0Z0+Y1Z1)

x0(y0z0+ y1z1)
+
(a X0− b X1)(Y0Z0−Y1Z1)

x0(y0z0− y1z1)

T1 =
(a X0+ b X1)(Y0Z0+Y1Z1)

x1(y0z0+ y1z1)
−
(a X0− b X1)(Y0Z0−Y1Z1)

x1(y0z0− y1z1)
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Computing the Miller function fλ,µ,P ((Q )− (0))

Algorithm

Input λP , µP and Q ;

Output fλ,µ,P ((Q )− (0))

1 Compute (λ+µ)P , Q +λP , Q +µP using normal additions and take any
affine lifts z(λ+µ)P , zQ+λP and zQ+µP ;

2 Use a three way addition to compute zQ+(λ+µ)P ;

Return

fλ,µ,P ((Q )− (0)) =
ϑ(zQ +λzP )ϑ(zQ +µzP )
ϑ(zQ )ϑ(zQ + (λ+µ)zP )

.
ϑ((λ+µ)zP )ϑ(zP )
ϑ(λzP )ϑ(µzP )

.

Lemma

The result does not depend on the choice of affine lifts in Step 2.

, This allows us to evaluate the Weil and Tate pairings and derived
pairings;

/ Not possible a priori to apply this algorithm in level 2.
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The Tate pairing with Miller’s functions and theta coordinates

Let P � A[ℓ](Fq d ) and Q � A(Fq d ); choose any lift zP , zQ and zP+Q .

The algorithm loop over the binary expansion of ℓ, and at each step does
a doubling step, and if necessary an addition step.

Given zλP , zλP+Q ;
Doubling Compute z2λP , z2λP+Q using two differential additions;
Addition Compute (2λ+1)P and take an arbitrary lift z(2λ+1)P . Use a

three way addition to compute z(2λ+1)P+Q .

At the end we have computed affine points zℓP and zℓP+Q . Evaluating the
Miller function then gives exactly the quotient of the projective factors
between zℓP , z0 and zℓP+Q , zQ .

, Described this way can be extended to level 2 by using compatible
additions;

/ Three way additions and normal (or compatible) additions are quite
cumbersome, is there a way to only use differential additions?
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The Weil and Tate pairing with theta coordinates (Lubicz-R. [LR10])

Using directly the formula for fℓ,P (z ) we get that the Weil and Tate pairings
are given by

eW ,ℓ(P,Q ) =
ϑ(zQ + ℓzP )ϑ(0)
ϑ(zQ )ϑ(ℓzP )

ϑ(zP )ϑ(ℓzQ )
ϑ(zP + ℓzQ )ϑ(0)

eT ,ℓ(P,Q ) =
ϑ(zQ + ℓzP )ϑ(0)
ϑ(zQ )ϑ(ℓzP )
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The Weil and Tate pairing with theta coordinates (Lubicz-R. [LR10])

P and Q points of ℓ-torsion.

z0 zP 2zP . . . ℓzP =λ0
P z0

zQ zP ⊕ zQ 2zP + zQ . . . ℓzP + zQ =λ1
P zQ

2zQ zP +2zQ

. . . . . .

ℓQ =λ0
Q 0A zP + ℓzQ =λ1

Q zP

eW ,ℓ(P,Q ) =
λ1

P λ
0
Q

λ0
P λ

1
Q
.

eT ,ℓ(P,Q ) =
λ1

P

λ0
P
.
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Why does it work?

z0 αzP α4(2zP ) . . . αℓ
2 (ℓzP ) =λ′

0
P z0

β zQ γ(zP ⊕ zQ )
γ2α2

β (2zP + zQ ) . . . γℓαℓ(ℓ−1)

βℓ−1 (ℓzP + zQ ) =λ′
1
Pβ zQ

β 4(2zQ )
γ2β2

α (zP +2zQ )

. . . . . .

β ℓ
2 (ℓzQ ) =λ′

0
Q z0

γℓβℓ(ℓ−1)

αℓ−1 (zP + ℓzQ )=λ′
1
QαzP

We then have

λ′
0
P =α

ℓ2
λ0

P , λ′
0
Q =β

ℓ2
λ0

Q , λ′
1
P =
γℓα(ℓ(ℓ−1)

β ℓ
λ1

P , λ′
1
Q =
γℓβ (ℓ(ℓ−1)

αℓ
λ1

Q ,

e ′W ,ℓ(P,Q ) =
λ′1Pλ

′0
Q

λ′0Pλ
′1
Q

=
λ1

Pλ
0
Q

λ0
Pλ

1
Q

= eW ,ℓ(P,Q ),

e ′T ,ℓ(P,Q ) =
λ′1P
λ′0P
=
γℓ

αℓβ ℓ
λ1

P

λ0
P

=
γℓ

αℓβ ℓ
eT ,ℓ(P,Q ).
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The case n = 2

If n = 2 we work over the Kummer variety K over k , so e (P,Q ) � k
∗,±1

.

We represent a class x � k
∗,±1

by x +1/x � k
∗
. We want to compute the

symmetric pairing
es (P,Q ) = e (P,Q )+ e (−P,Q ).

From ±P and ±Q we can compute {±(P +Q ),±(P −Q )} (need a square
root), and from these points the symmetric pairing.

es is compatible with the Z-structure on K and k
∗,±1

.

The Z-structure on k
∗,±

can be computed as follow:

(x ℓ1+ℓ2 +
1

x ℓ1+ℓ2
)+ (x ℓ1−ℓ2 +

1

x ℓ1−ℓ2
) = (x ℓ1 +

1

x ℓ1
)(x ℓ2 +

1

x ℓ2
)
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Ate pairing

Let P �G2 = A[ℓ]
⋂

Ker(πq − [q ]) and Q �G1 = A[ℓ]
⋂

Ker(πq −1); λ≡ q
mod ℓ.

In projective coordinates, we have πd
q (P +Q ) =λd P +Q = P +Q ;

Of course, in affine coordinates, πd
q (zP+Q ) ̸=λd zP + zQ .

But if πq (zP+Q ) =C ∗ (λzP + zQ ), then C is exactly the (non reduced) ate
pairing (up to a renormalisation)!

Algorithm (Computing the ate pairing)

Input P �G2, Q �G1;

1 Compute zQ +λzP , λzP using differential additions;
2 Find the projective factors C1 and C0 such that zQ +λzP =C1 ∗π(zP+Q ) and
λzP =C0 ∗π(zP ) respectively;

Return (C1/C0)
q d −1
ℓ .
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Optimal ate pairing

Let λ=mℓ=
∑

ci q i be a multiple of ℓ with small coefficients ci . (ℓ ∤m)

The pairing

aλ : G2×G1 −→ µℓ

(P,Q ) 7−→

�

∏

i

fci ,P (Q )
q i
∏

i

f∑
j>i c j q j ,ci q i ,P (Q )

�(q d −1)/ℓ

is non degenerate when md q d−1 ̸≡ (q d −1)/r
∑

i i ci q i−1 mod ℓ.

Since ϕd (q ) = 0 mod ℓ we look at powers q , q 2, . . . , qϕ(d )−1.

We can expect to find λ such that ci ≈ ℓ1/ϕ(d ).
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Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing)

Input πq (P ) = [q ]P , πq (Q ) =Q , λ=mℓ=
∑

ci q i ;

1 Compute the zQ + ci zP and ci zP ;
2 Apply Frobeniuses to obtain the zQ + ci q i zP , ci q i zP ;
3 Compute ci q i zP ⊕

∑

j c j q j zP (up to a constant) and then do a three way
addition to compute zQ + ci q i zP +

∑

j c j q j zP (up to the same constant);

4 Recurse until we get λzP =C0 ∗ zP and zQ +λzP =C1 ∗ zQ ;

Return (C1/C0)
q d −1
ℓ .
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The case n = 2

Computing ci q i zP ±
∑

j c j q j zP requires a square root (very costly);

And we need to recognize ci q i zP +
∑

j c j q j zP from ci q i zP −
∑

j c j q j zP .

We will use compatible additions: if we know x , y , z and x + z , y + z , we
can compute x + y without a square root;

We apply the compatible additions with x = ci q i zP , y =
∑

j c j q j zP and
z = zQ .



Curves, pairings and cryptography Abelian varieties Theta functions Pairings with theta functions Performance

Compatible additions

Recall that we know x , y , z and x + z , y + z ;

From it we can compute (x + z )± (y + z ) = {x + y +2z , x − y } and of
course {x + y , x − y };
Then x + y is the element in {x + y , x − y } not appearing in the preceding
set;

Since x − y is a common point, we can recover it without computing a
square root.



Curves, pairings and cryptography Abelian varieties Theta functions Pairings with theta functions Performance

The compatible addition algorithm in dimension 1

Algorithm

Input x , y , Y = x + z , X = y + z ;

1 Computing x ± y :

α= (x 2
0 + x 2

1 )(y
2

0 + y 2
1 )/A

β = (x 2
0 − x 2

1 )(y
2

0 − y 2
1 )/B

κ00 = (α+β ),κ11 = (α−β )
κ10 := x0 x1 y0 y1/a b

2 Computing (x + z )± (y + z ):

α′ = (Y 2
0 +Y 2

1 )(X
2
0 +X 2

1 )/A

β ′ = (Y 2
0 −Y 2

1 )(X
2
0 −X 2

1 )/B

κ′00 =α
′+β ′,κ′11 =α

′−β ′

κ′10 = Y1Y2X1X2/a b

Return x + y = [κ00(κ10κ
′
00−κ

′
10κ00),κ10(κ10κ

′
00−κ

′
10κ00)+κ00(κ11κ

′
00−κ

′
11κ00)]
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One step of the pairing computation

Algorithm (A step of the Miller loop with differential additions)

Input nP = (xn , zn ); (n +1)P = (xn+1, zn+1), (n +1)P +Q = (x ′n+1, z ′n+1).

Output 2nP = (x2n , z2n ); (2n +1)P = (x2n+1, z2n+1);
(2n +1)P +Q = (x ′2n+1, z ′2n+1).

1 α= (x 2
n + z 2

n ); β =
A
B (x

2
n − z 2

n ).
2 Xn =α2; Xn+1 =α(x 2

n+1+ z 2
n+1); X ′n+1 =α(x

′2
n+1+ z ′2n+1);

3 Zn =β (x 2
n − z 2

n ); Zn+1 =β (x 2
n+1− z 2

n+1); Z ′n+1 =β (x
′2
n+1+ z ′2n+1);

4 x2n = Xn +Zn ; x2n+1 = (Xn+1+Zn+1)/xP ; x ′2n+1 = (X
′
n+1+Z ′n+1)/xQ ;

5 z2n =
a
b (Xn −Zn ); z2n+1 = (Xn+1−Zn+1)/zp ; z ′2n+1 = (X

′
n+1−Z ′n+1)/zQ ;

Return (x2n , z2n ); (x2n+1, z2n+1); (x ′2n+1, z ′2n+1).
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Weil and Tate pairing over Fq d

g = 1 4M+2m+8S+3m0

g = 2 8M+6m+16S+9m0

Tate pairing with theta coordinates, P,Q � A[ℓ](Fq d ) (one step)

Operations in Fq : M : multiplication, S : square, m multiplication by a
coordinate of P or Q , m0 multiplication by a theta constant;

Mixed operations in Fq and Fq d : M, m and m0;

Operations in Fq d : M, m and S.

Remark

Doubling step for a Miller loop with Edwards coordinates: 9M+7S+2m0;

Just doubling a point in Mumford projective coordinates using the fastest
algorithm [Lan05]: 33M+7S+1m0;

Asymptotically the final exponentiation is more expensive than Miller’s loop,
so the Weil’s pairing is faster than the Tate’s pairing!
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Tate pairing

g = 1 1m+2S+2M+2M +1m +6S +3m0

g = 2 3m+4S+4M+4M +3m +12S +9m0

Tate pairing with theta coordinates, P � A[ℓ](Fq ),Q � A[ℓ](Fq d ) (one step)

Miller Theta coordinates

Doubling Addition One step

g = 1
d even 1M+1S+1M 1M+1M

1M+2S+2M
d odd 2M+2S+1M 2M+1M

g = 2
Q degenerate +
d even

1M+1S+3M 1M+3M
3M+4S+4M

General case 2M+2S+18M 2M+18M

P � A[ℓ](Fq ), Q � A[ℓ](Fq d ) (counting only operations in Fq d ).
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Ate and optimal ate pairings

g = 1 4M+1m+8S+1m+3m0

g = 2 8M+3m+16S+3m+9m0

Ate pairing with theta coordinates, P �G2,Q �G1 (one step)

Remark

Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing
costs [Gra+07]:

Doubling 1I+29M+9S+7M

Addition 1I+29M+5S+7M

(where I denotes the cost of an affine inversion in Fq d ).
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