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Discrete logarithm

Definition (DLP)

Let G = 〈g 〉 be a cyclic group of prime order. Let x � N and h = g x . The
discrete logarithm logg (h ) is x .

Exponentiation: O (log p ). DLP: eO (pp ) (in a generic group). So we can
use the DLP for public key cryptography.

⇒ We want to find secure groups with efficient addition law and compact
representation.
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Elliptic curves

Definition (char k 6= 2, 3)

An elliptic curve is a plane curve with equation

y 2 = x 3+a x + b 4a 3+27b 2 6= 0.
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(`, P ) 7→ `P

Discrete logarithm:

(P,`P ) 7→ `



Cryptography Curves and Jacobians Abelian varieties Arithmetic Pairings Isogenies Isogeny graphs

Scalar multiplication on an elliptic curve
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Scalar multiplication on an elliptic curve
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Scalar multiplication on an elliptic curve

-4

-3

-2

-1

 0

 1

 2

 3

-2 -1  0  1  2  3

P

2P

-2P

-3P

3P

5P

-5P



Cryptography Curves and Jacobians Abelian varieties Arithmetic Pairings Isogenies Isogeny graphs

ECC (Elliptic curve cryptography)

Example (NIST-p-256)

E elliptic curve y 2 = x 3 −3x +

41058363725152142129326129780047268409114441015993725554835256314039467401291 over
F115792089210356248762697446949407573530086143415290314195533631308867097853951

Public key:
P = (48439561293906451759052585252797914202762949526041747995844080717082404635286,

36134250956749795798585127919587881956611106672985015071877198253568414405109),

Q = (76028141830806192577282777898750452406210805147329580134802140726480409897389,

85583728422624684878257214555223946135008937421540868848199576276874939903729)

Private key: ` such that Q = `P .

Used by the NSA;

Used in Europeans biometric passports.
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Pairing-based cryptography

Definition

A pairing is a bilinear application e : G1×G1→G2.

Example

If the pairing e can be computed easily, the difficulty of the DLP in G1

reduces to the difficulty of the DLP in G2.

⇒ MOV attacks on supersingular elliptic curves.

One way tripartite Diffie–Hellman [Jou00].

Identity-based cryptography [BF03].

Short signature [BLS04].

Self-blindable credential certificates [Ver01].

Attribute based cryptography [SW05].

Broadcast encryption [GPS+06].
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Jacobian of curves

C a smooth irreducible projective curve of genus g .

Divisor: formal sum D =
∑

ni Pi ,
deg D =
∑

ni .
Pi �C (k ).

Principal divisor:
∑

P �C (k ) vP ( f ).P ; f � k (C ).

Jacobian of C =Divisors of degree 0 modulo principal divisors
+ Galois action

= Abelian variety of dimension g .

Divisor class of a divisor D � Jac(C ) is generically represented by a sum
of g points.
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Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of
genus 2:

y 2 = f (x ), deg f = 5.
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1
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Example of Jacobians

Dimension 3
Jacobians of hyperelliptic curves of genus 3. Jacobians of quartics.
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k .

Abelian variety = points on a projective space (locus of homogeneous
polynomials) + an abelian group law given by rational functions.

Example

Elliptic curves= Abelian varieties of dimension 1;

If C is a (smooth) curve of genus g , its Jacobian is an abelian variety of
dimension g ;

In dimension g ¾ 4, not every abelian variety is a Jacobian.
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Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between
two Abelian varieties.

Isogenies = Rational map + group morphism + finite kernel.

Isogenies⇔ Finite subgroups.

( f : A→ B ) 7→Ker f

(A→ A/H ) 7→H

Example: Multiplication by ` (⇒ `-torsion), Frobenius (non separable).
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Polarised abelian varieties over C

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie
group V /Λ with

A complex vector space V of dimension g ;

A Z-lattice Λ in V (of rank 2g );

such that there exists an Hermitian form H on V with E (Λ,Λ)⊂Z where
E = Im H is symplectic.

Such an Hermitian form H is called a polarisation on A. Conversely,
any symplectic form E on V such that E (Λ,Λ)⊂Z and
E (i x , i y ) = E (x , y ) for all x , y �V gives a polarisation H with E = Im H .

Over a symplectic basis of Λ, E is of the form.
�

0 Dδ
−Dδ 0

�

where Dδ is a diagonal positive integer matrix δ= (δ1,δ2, . . . ,δg ), with
δ1 |δ2| · · · |δg .

The product
∏

δi is the degree of the polarisation; H is a principal
polarisation if this degree is 1.
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Principal polarisations

Let E0 be the canonical principal symplectic form on R2g given by
E0((x1, x2), (y1, y2)) = t x1 · y2− t y1 · x2;

If E is a principal polarisation on A =V /Λ, there is an isomorphism
j :Z2g →Λ such that E ( j (x ), j (y )) = E0(x , y );

There exists a basis of V such that j ((x1, x2)) =Ωx1+ x2 for a matrix Ω;

In particular E (Ωx1+ x2,Ωy1+ y2) = t x1 · y2− t y1 · x2;

The matrix Ω is in Hg , the Siegel space of symmetric matrices Ω with
ImΩ positive definite;

In this basis, Λ=ΩZg +Zg and H is given by the matrix (ImΩ)−1.
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Action of the symplectic group

Every principal symplectic form (hence symplectic basis) on Z2g comes
from the action of M =

�

a b
c d

�

� Sp2g (Z) on (Z2g , E0);

This action gives a new equivariant bijection jM :Z2g →Λ via
jM ((x1, x2)) = (AΩx1+B x2, CΩx1+D x2);

Normalizing this embedding via the action of (CΩ+D )−1 on Cg , we get
that jM ((x1, x2)) =ΩM x1+ x2 with ΩM = (AΩ+B )(CΩ+D )−1 �Hg ;

The moduli space of principally polarised abelian varieties is then
isomorphic to Hg /Sp2g (Z).
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Isogenies

Let A =V /Λ and B =V ′/Λ′.

Definition

An isogeny f : A→ B is a bijective linear map f : V →V ′ such that f (Λ)⊂Λ′.
The kernel of the isogeny is f −1(Λ′)/Λ⊂ A and its degree is the cardinal of
the kernel.

Remark

Up to a renormalization, we can always assume that V =V ′ =Cg , f = Id and
the isogeny is simply Cg /Λ→Cg /Λ′ for Λ⊂Λ′.
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The dual abelian variety

Definition

If A =V /Λ is an abelian variety, its dual is bAk =HomC(V ,C)/Λ∗. Here
HomC(V ,C) is the space of anti-linear forms and Λ∗ = { f | f (Λ)⊂Z} is the
orthogonal of Λ.

If H is a polarisation on A, its dual H ∗ is a polarisation on bA. Moreover,
there is an isogeny ΦH : A→ bA:

x 7→H (x , ·)

of degree deg H . We note K (H ) its kernel.

If f : A→ B is an isogeny, then its dual is an isogeny bf : bBk → bA of the
same degree.

Remark

There is a canonical polarisation on A× bA (the Poincaré bundle):

(x , f ) 7→ f (x ).
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Projective embeddings

Proposition

Let Φ : A =V /Λ 7→Pm−1 be a projective embedding. Then the linear functions f
associated to this embedding are Λ-automorphics:

f (x +λ) = a (λ, x ) f (x ) x �V ,λ �Λ;

for a fixed automorphy factor a :

a (λ+λ′, x ) = a (λ, x +λ′)a (λ′, x ).

Theorem (Appell-Humbert)

All automorphy factors are of the form

a (λ, x ) =±e π(H (x ,λ)+ 1
2 H (λ,λ))

for a polarisation H on A.
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Theta functions

Let (A, H0) be a principally polarised abelian variety over C:
A =Cg / (ΩZg +Zg ) with Ω �Hg .

All automorphic forms corresponding to a multiple L of H0 come from
the theta functions with characteristics:

ϑ [ ab ] (z ,Ω) =
∑

n�Zg

e πi t (n+a )Ω(n+a )+2πi t (n+a )(z+b ) a , b �Qg

Automorphic property:

ϑ [ ab ] (z +m1Ω+m2,Ω) = e 2πi (t a ·m2−t b ·m1)−πi t m1Ωm1−2πi t m1 ·zϑ [ ab ] (z ,Ω).
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Theta functions of level n

Define ϑi = ϑ
�

0
i
n

�

(., Ωn ) for i � Z (n ) =Zg /nZg ;

This is a basis of the automorphic functions for H = nH0 (theta
functions of level n);

This is the unique basis such that in the projective coordinates:

A −→ Png −1
C

z 7−→ (ϑi (z ))i�Z (n )

the translation by a point of n -torsion is normalized by

ϑi (z +
m1

n
Ω+

m2

n
) = e −

2πi
n

t i ·m1ϑi+m2
(z ).

(ϑi )i�Z (n ) =

�

coordinates system n ¾ 3

coordinates on the Kummer variety A/±1 n = 2

(ϑi )i�Z (n ): basis of the theta functions of level n
⇔ A[n ] = A1[n ]⊕A2[n ]: symplectic decomposition.

Theta null point: ϑi (0)i�Z (n ) =modular invariant.
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The duplication formula

Theorem

Let ξ : A×A→ A×A, (x , y ) 7→ (x + y , x − y ). The isogeny theorem applied to ξ
gives for x , y � Cg

ϑLi+ j (x + y )ϑLi− j (x − y ) =
1

2g

∑

χ�Ẑ (2)

U L
2

χ ,i (x )U
L 2

χ , j (x )

U L
2

χ ,i (x )U
L 2

χ , j (y ) =
∑

t �Ẑ (2)

χ(t )ϑLi+ j+t (x + y )ϑLi− j+t (x − y )

where ϑLi (x ) = ϑ
�

0
i
n

�

(x , Ωn ) is a theta function of level n and

U L
2

χ ,i (x ) = ϑ
h χ

2
i
n

i

(2x , 2Ω
n ) is a theta function of level 2n on A.
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Multiplication of sections

Let ∆ : X → X ×X be the diagonal;

∆ induces the multiplication map
∆∗ : Γ (A,L )⊗ Γ (A,L )→ Γ (X ,L 2), ϑLi ?ϑ

L
j 7→ (ϑ

L
i ⊗ϑ

L
j );

if S : A→ A×A is the inclusion map x 7→ (x , 0) then ∆ fits into the
commutative diagram

(A,L 2)

(A×A,L 2 ?L 2) (A×A,L ?L ).
ξ

S
∆

so ∆∗ = S ∗ξ∗ where ξ∗ is given by the duplication formula and
S ∗ : Γ (A,L 2)⊗ Γ (A,L 2)→ Γ (A,L 2) is given by ϑL

2

i ?ϑL
2

j 7→ ϑ
L 2

i ϑ
L 2

j (0);

We thus have that Γ (A,L )⊗ Γ (A,L )→ Γ (X ,L 2) is given by
∑

t �Ẑ (2)

χ(t )
�

ϑLi+t ?ϑ
L
j+t

�

7→U L
2

χ , i+ j
2

U L
2

χ , i− j
2
(0).
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Projective normality

Theorem (Mumford–Kempf)

If L0 is a principal polarisation, then Γ (A,Lm
0 )⊗ Γ (A,L n

0 )→ Γ (A,L n+m
0 ) is

surjective whenever m ¾ 2 and n ¾ 3.

Corollary

If L =L n
0 with n ¾ 3, then S m Γ (A,L )→ Γ (A,Lm ) is surjective for all m .

Equivalently the homogeneous ring associated to L is integrally closed, we say
that A is projectively normal.

Corollary (Restatement)

If L =L n
0 with n ¾ 3, then for every u � Z (2n ), χ � Ẑ (2), there exists v � Z (2n )

congruent to u modulo Z (n ) such that U L
2

χ ,v (0) 6= 0.
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Projective normality

Corollary (Restatement)

If L =L n
0 with n ¾ 3, then for every u � Z (2n ), χ � Ẑ (2), there exists v � Z (2n )

congruent to u modulo Z (n ) such that U L
2

χ ,v (0) 6= 0.

Proof (Mumford).

For simplicity we assume here that 4 | n . Let F =
∑

t �Z (2)ϑ
L 2

2u+t and

G =
∑

t �Z (2)χ(t )ϑ
L 2

t . By the duplication formula, F ?G =
∑

v �u+Z (4)U
L 2

χ ,v (0)ϑ
L 2

v .
Since the homogeneous ring is integral, F ?G 6= 0. Hence there exist v ≡ u
(mod 4) such that U L

2

χ ,v (0) 6= 0.
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The differential addition law (k =C)

�

∑

t �Z (2)

χ(t )ϑi+t (x + y )ϑ j+t (x − y )
�

.
�

∑

t �Z (2)

χ(t )ϑk+t (0)ϑl+t (0)
�

=

�

∑

t �Z (2)

χ(t )ϑ−i ′+t (y )ϑ j ′+t (y )
�

.
�

∑

t �Z (2)

χ(t )ϑk ′+t (x )ϑl ′+t (x )
�

.

where n is even and χ � Ẑ (2), i , j , k , l � Z (n )

(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2







−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1







Proof.

Let i0, j0, k0, l0 be such that i0+ j0 = i , i0− j0 = j , k0+ l0 = k , k0− l0 = l ; then (up
to a change of variable) i0+ l0 = i ′, i0− l0 = j ′, k0+ j0 = k ′, k0− j0 = l ′. Thus
both terms are equal to U L

2

χ ,i0
(x )U L 2

χ , j0
(y )U L 2

χ ,k0
(0)U L 2

χ ,l0
(0).
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The differential addition law (k =C)

�

∑

t �Z (2)

χ(t )ϑi+t (x + y )ϑ j+t (x − y )
�

.
�

∑

t �Z (2)

χ(t )ϑk+t (0)ϑl+t (0)
�

=

�

∑

t �Z (2)

χ(t )ϑ−i ′+t (y )ϑ j ′+t (y )
�

.
�

∑

t �Z (2)

χ(t )ϑk ′+t (x )ϑl ′+t (x )
�

.

where n is even and χ � Ẑ (2), i , j , k , l � Z (n )

(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2







−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1







Remark

By the projective normality above, when n ¾ 4, for all χ � Ẑ (2), k , l � Z (n );
there exists k1, l1 � Z (n ) with k1+ l1 � 2Z (n ) such that
∑

t �Z (2)χ(t )ϑ
L
k2
(0)ϑLl2

(0) 6= 0 where k2 = k +k1, l2 = l + l1. Hence it is always
possible to compute the addition law.
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Example: addition in genus 1 and in level 2

Differential Addition Algorithm:
Input: P = (x1 : z1), Q = (x2 : z2)
and R = P −Q = (x3 : z3) with x3z3 6= 0.
Output: P +Q = (x ′ : z ′).

1 x0 = (x 2
1 + z 2

1 )(x
2
2 + z 2

2 );

2 z0 =
A2

B 2 (x 2
1 − z 2

1 )(x
2
2 − z 2

2 );
3 x ′ = (x0+ z0)/x3;
4 z ′ = (x0− z0)/z3;
5 Return (x ′ : z ′).
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Kummer varieties

If the level n = 2, then the theta coordinates give an embedding of the
Kummer variety K = A/±1;
If L is totally symmetric, it descends to a sectionM on K , and the
sections ofM n are the symmetric sections Γ (A,L n )+ of L n (sections
invariant under the action of [−1]);
The functions Uχ ,i appearing in the duplication and addition formulae

corresponds to the classical theta functions of level four ϑ
h a

2
b
2

i

(2x ,Ω).

They are even (resp. odd) when χ(2i ) = 1 (resp. χ(2i ) =−1).

Theorem (Mumford–Koizumi)

The even theta null points {ϑ
h a

2
b
2

i

(0,Ω) | (−1)t a b = 1} are non null if and only if

Γ (A,L )2→ Γ (A,L 2)+ is surjective, if and only if (K ,M ) is projectively normal.

Corollary ([Lubicz–R.])

In this case, from the theta coordinates of x and y we can recover all
elements of the form ϑi (x + y )ϑ j (x − y )+ϑ j (x + y )ϑi (x − y );

While it is not possible to compute additions on the Kummer variety, it is
always possible to compute differential additions.
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Isogenies and pairings

Let f : A→ B be a separable isogeny with kernel K between two abelian
varieties defined over k :

0 K A B 0

0 Â B̂ K̂ 0

f

f̂

Since B̂ ' Ext1(B ,Gm ), K̂ is the Cartier dual of K , and we have a non
degenerate pairing e f : K × K̂ → k

∗
:

1 If Q � K̂ (k ), Q defines a divisor DQ on B ;
2 bf (Q ) = 0 means that f ∗DQ is equal to a principal divisor (gQ ) on A;
3 e f (P,Q ) = gQ (x )/gQ (x +P ). (This last function being constant in its

definition domain).

The Weil pairing eW ,` is the pairing associated to the isogeny [`] : A→ A:

eW ,` : A[`]× Â[`]→µ`(k ).
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Polarizations

If L is an ample line bundle, the polarization ϕL is a morphism
A→ bA, x 7→ t ∗xL ⊗L

−1.

Definition

Let L be a principal polarization on A. The (polarized) Weil pairing eW ,L ,` is
the pairing

eW ,L ,` : A[`]×A[`] −→ µ`(k )
(P,Q ) 7−→ eW ,`(P,ϕL (Q ))

.

associated to the polarization ϕL ` :

A A bAk

[`] L
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The Tate pairings on abelian varieties over finite fields

From the exact sequence

0→ A[`](Fq d )→ A(Fq d )→[`] A(Fq d )→ 0

we get from Galois cohomology a connecting morphism

δ : A(Fq d )/`A(Fq d )→H 1(Gal(Fq d /Fq d ), A[`]);

Composing with the Weil pairing, we get a bilinear application

A[`](Fq d )×A(Fq d )/`A(Fq d )→H 1(Gal(Fq d /Fq d ),µ`)'F∗q d /F∗q d
` 'µ`

where the last isomorphism comes from the Kummer sequence

1→µ`→F
∗
q d →F

∗
q d → 1

and Hilbert 90;

Explicitely, if P � A[`](Fq d ) and Q � A(Fq d ) then the (reduced) Tate pairing
is given by

eT (P,Q ) = eW (P,π(Q0)−Q0)

where Q0 is any point such that Q = [`]Q0 and π is the Frobenius of Fq d .
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Cycles and Lang reciprocity

Let (A,L ) be a principally polarized abelian variety;

To a degree 0 cycle
∑

ni (Pi ) on A, we can associate the divisor
∑

t ∗Pi
L ni

on A;

The cycle
∑

ni (Pi ) corresponds to a trivial divisor iff
∑

ni Pi = 0 in A;

If f is a function on A and D =
∑

(Pi ) a cycle whose support does not
contain a zero or pole of f , we let

f (D ) =
∏

f (Pi )
ni .

(In the following, when we write f (D ) we will always assume that we
are in this situation.)

Theorem ([Lan58])

Let D1 and D2 be two cycles equivalent to 0, and fD1
and fD2

be the
corresponding functions on A. Then

fD1
(D2) = fD2

(D1)
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The Weil and Tate pairings on abelian varieties

Theorem

Let P,Q � A[`]. Let DP and DQ be two cycles equivalent to (P )− (0) and (Q )− (0).
The Weil pairing is given by

eW (P,Q ) =
f`DP
(DQ )

f`DQ
(DP )

.

Theorem

Let P � A[`](Fq d ) and Q � A(Fq d ), and let DP and DQ be two cycles equivalent to
(P )− (0) and (Q )− (0). The (non reduced) Tate pairing is given by

eT (P,Q ) = f`DP
(DQ ).
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Cryptographic usage of pairings on abelian varieties

The moduli space of abelian varieties of dimension g is a space of
dimension g (g +1)/2. We have more liberty to find optimal abelian
varieties in function of the security parameters.

Supersingular abelian varieties can have larger embedding degree than
supersingular elliptic curves.

Over a Jacobian, we can use twists even if they are not coming from
twists of the underlying curve.

If A is an abelian variety of dimension g , A[`] is a (Z/`Z)-module of
dimension 2g ⇒ the structure of pairings on abelian varieties is richer.
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The Weil and Tate pairing with theta coordinates (Lubicz–R. [LR10])

P and Q points of `-torsion.

z0 zP 2zP . . . `zP =λ0
P z0

zQ zP ⊕ zQ 2zP + zQ . . . `zP + zQ =λ1
P zQ

2zQ zP +2zQ

. . . . . .

`Q =λ0
Q 0A zP + `zQ =λ1

Q zP

eW ,`(P,Q ) =
λ1

P λ
0
Q

λ0
P λ

1
Q
.

eT ,`(P,Q ) =
λ1

P

λ0
P
.



Cryptography Curves and Jacobians Abelian varieties Arithmetic Pairings Isogenies Isogeny graphs

Why does it work?

z0 αzP α4(2zP ) . . . α`
2 (`zP ) =λ′

0
P z0

β zQ γ(zP ⊕ zQ )
γ2α2

β (2zP + zQ ) . . . γ`α`(`−1)

β`−1 (`zP + zQ ) =λ′
1
Pβ zQ

β 4(2zQ )
γ2β2

α (zP +2zQ )

. . . . . .

β `
2 (`zQ ) =λ′

0
Q z0

γ`β`(`−1)

α`−1 (zP + `zQ )=λ′
1
QαzP

We then have

λ′
0
P =α

`2
λ0

P , λ′
0
Q =β

`2
λ0

Q , λ′
1
P =
γ`α(`(`−1)

β `
λ1

P , λ′
1
Q =
γ`β (`(`−1)

α`
λ1

Q ,

e ′W ,`(P,Q ) =
λ′1Pλ

′0
Q

λ′0Pλ
′1
Q

=
λ1

Pλ
0
Q

λ0
Pλ

1
Q

= eW ,`(P,Q ),

e ′T ,`(P,Q ) =
λ′1P
λ′0P
=
γ`

α`β `
λ1

P

λ0
P

=
γ`

α`β `
eT ,`(P,Q ).
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Ate pairing [LR13]

Let P �G2 = A[`]
⋂

Ker(πq − [q ]) and Q �G1 = A[`]
⋂

Ker(πq −1); λ≡ q
mod `.

In projective coordinates, we have πd
q (P +Q ) =λd P +Q = P +Q ;

Of course, in affine coordinates, πd
q (zP+Q ) 6=λd zP + zQ .

But if πq (zP+Q ) =C ∗ (λzP + zQ ), then C is exactly the (non reduced) ate
pairing (up to a renormalisation)!

Algorithm (Computing the ate pairing)

Input P �G2, Q �G1;

1 Compute zQ +λzP , λzP using differential additions;
2 Find the projective factors C1 and C0 such that zQ +λzP =C1 ∗π(zP+Q ) and
λzP =C0 ∗π(zP ) respectively;

Return (C1/C0)
q d −1
` .
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Cryptographic usage of isogenies

Transfer the Discrete Logarithm Problem from one Abelian variety to
another;

Point counting algorithms (`-adic or p -adic)⇒ Verify an abelian variety
is secure;

Compute the class field polynomials (CM-method)⇒ Construct a
secure abelian variety;

Compute the modular polynomials⇒ Compute isogenies;

Determine End(A)⇒ CRT method for class field polynomials;

Speed up the arithmetic;

Hash functions and cryptosystems based on isogeny graphs.
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The isogeny theorem

Theorem

Let ϕ : Z (n )→ Z (`n ), x 7→ `.x be the canonical embedding.
Let K = A2[`]⊂ A2[`n ].

Let (ϑA
i )i�Z (`n ) be the theta functions of level `n on A =Cg /(Zg + `ΩZg ).

Let (ϑB
i )i�Z (n ) be the theta functions of level n of B = A/K =Cg /(Zg +ΩZg ).

We have:
(ϑB

i (x ))i�Z (n ) = (ϑ
A
ϕ(i )(x ))i�Z (n )

Example

f : (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) 7→ (x0, x3, x6, x9) is a 3-isogeny
between elliptic curves.
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An example with g = 1, n = 2, `= 3

z � Cg /(Zg + `ΩZg ), level `n

z � Cg /(Zg +ΩZg ), level n

f

`z � Cg /(Zg + `ΩZg ), level `n

ef

[`]

1

Ω 3Ω
0

x
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An example with g = 1, n = 2, `= 3

z � Cg /(Zg + `ΩZg ), level `n

z � Cg /(Zg +ΩZg ), level n

f

`z � Cg /(Zg + `ΩZg ), level `n

ef

[`]

1

Ω 3Ω
0

xy
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z � Cg /(Zg + `ΩZg ), level `n
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An example with g = 1, n = 2, `= 3

z � Cg /(Zg + `ΩZg ), level `n

z � Cg /(Zg +ΩZg ), level n

f

`z � Cg /(Zg + `ΩZg ), level `n

ef

[`]

1

Ω 3Ω
R0

R1

R2

y x
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Changing level

Theorem (Koizumi–Kempf)

Let F be a matrix of rank r such that t F F = ` Idr . Let X � (Cg )r and
Y = F (X ) � (Cg )r . Let j � (Qg )r and i = F ( j ). Then we have

ϑ
�

0
i1

�

(Y1,
Ω

n
) . . .ϑ
�

0
ir

�

(Yr ,
Ω

n
) =

∑

t1 ,...,tr � 1
` Z

g /Zg

F (t1 ,...,tr )=(0,...,0)

ϑ
�

0
j1

�

(X1+ t1,
Ω

`n
) . . .ϑ
�

0
jr

�

(X r + tr ,
Ω

`n
),

(This is the isogeny theorem applied to FA : Ar → Ar .)

If `= a 2+ b 2, we take F =
�

a b
−b a

�

, so r = 2.

In general, `= a 2+ b 2+ c 2+d 2, we take F to be the matrix of
multiplication by a + b i + c j +d k in the quaternions, so r = 4.
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The isogeny formula

`∧n = 1, B =Cg /(Zg +ΩZg ), A =Cg /(Zg + `ΩZg )

ϑB
b

:= ϑ
�

0
b
n

�

�

·,
Ω

n

�

, ϑA
b

:= ϑ
�

0
b
n

�

�

·,
`Ω

n

�

Proposition

Let F be a matrix of rank r such that t F F = ` Idr . Let X in (Cg )r and
Y = X F −1 � (Cg )r . Let i � (Z (n ))r and j = i F −1. Then we have

ϑA
i1
(Y1) . . .ϑA

ir
(Yr ) =
∑

t1 ,...,tr � 1
` Z

g /Zg

(t1 ,...,tr )F =(0,...,0)

ϑB
j1
(X1+ t1) . . .ϑB

jr
(X r + tr ),

Corollary

ϑA
k (0)ϑ

A
0 (0) . . .ϑA

0 (0) =
∑

t1 ,...,tr �K
(t1 ,...,tr )F =(0,...,0)

ϑB
j1
(t1) . . .ϑB

jr
(tr ), ( j = (k , 0, . . . , 0)F −1 � Z (n ))
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The Algorithm (Cosset–R. [CR13])

x � (A,`H1) (x ,0, . . . , 0) � (Ar ,`H1 ? · · · ? `H1)

y � (B , H2) t F (x ,0, . . . , 0) � (Ar ,`H1 ? · · · ? `H1)

ef (y ) � (A, H1) F ◦ t F (x , 0, . . . , 0) � (Ar , H1 ? · · · ?H1)

f

ef

[`]

t F

F
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Complexity over Fq

The geometric points of the kernel live in a extension k ′ of degree at
most `g −1 over k =Fq ;

The isogeny formula assumes that the points are in affine coordinates.
In practice, given A/Fq we only have projective coordinates⇒ we use
differential additions to normalize the coordinates;

Computing the normalization factors takes O (log`) operations in k ′;

Computing the points of the kernel via differential additions take O (`g )
operations in k ′;

If `≡ 1 (mod 4), applying the isogeny formula take O (`g ) operations in
k ′;

If `≡ 3 (mod 4), applying the isogeny formula take O (`2g ) operations in
k ′;

⇒ The total cost is eO (`2g ) or eO (`3g ) operations in Fq .

Remark

The complexity is much worse over a number field because we need to
work with extensions of much higher degree.
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Complexity over Fq

The geometric points of the kernel live in a extension k ′ of degree at
most `g −1 over k =Fq ;

The isogeny formula assumes that the points are in affine coordinates.
In practice, given A/Fq we only have projective coordinates⇒ we use
differential additions to normalize the coordinates;

Computing the normalization factors takes O (log`) operations in k ′;

Computing the points of the kernel via differential additions take O (`g )
operations in k ′;

If `≡ 1 (mod 4), applying the isogeny formula take O (`g ) operations in
k ′;

If `≡ 3 (mod 4), applying the isogeny formula take O (`2g ) operations in
k ′;

⇒ The total cost is eO (`2g ) or eO (`3g ) operations in Fq .

Theorem ([Lubicz–R.])

We can compute the isogeny directly given the equations (in a suitable form) of
the kernel K of the isogeny. When K is rational, this gives a complexity of eO (`g )
or eO (`2g ) operations in Fq .
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Horizontal isogeny graphs: `= q1q2 =Q1Q 1Q2Q2 (Q 7→ K0 7→ K )
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Horizontal isogeny graphs: `= q1q2 =Q1Q 1Q2Q2 (Q 7→ K0 7→ K )
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Horizontal isogeny graphs: `= q =QQ (Q 7→ K0 7→ K )
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Horizontal isogeny graphs: `= q1q2 =Q1Q 1Q 2
2 (Q 7→ K0 7→ K )
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Horizontal isogeny graphs: `= q 2 =Q 2Q
2
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Horizontal isogeny graphs: `= q 2 =Q 4 (Q 7→ K0 7→ K )
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Isogeny graphs in dimension 1
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Isogeny graphs in dimension 2 (`= q1q2 =Q1Q 1Q2Q2)

3 3

3 3
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Isogeny graphs in dimension 2 (`= q =QQ )
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Isogeny graphs in dimension 2 (`= q =QQ )

3 3 3

3

3 3 3
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Isogeny graphs and lattice of orders (Bisson–Cosset–R. [BCR10])
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