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@ A/F, is a principally polarized abelian variety of small dimension
defined over a field of small characteristic and of size 256 bits;

@ We want to attack the DLP on A;
@ #A(F,) is divisible by a large prime ¢;
@ But there exists a small d such that £|g?—1 ...




Out‘lne

Q Pairings on abelian varieties
@ Miller's algorithm
@ Theta functions

@ rairings with theta functions



A!Jian varieties

Definition
An Abelian variety is a complete connected group variety over a base field k.J

@ Abelian variety = points on a projective space (locus of homogeneous
polynomials) + an abelian group law given by rational functions.

@ Elliptic curves= Abelian varieties of dimension 1;

@ If Cis a (smooth) curve of genus g, its Jacobian is an abelian variety of
dimension g;

@ In dimension g > 4, not every abelian variety is a Jacobian.




T!e !ua‘ A!e‘lan variety

@ We have A(k) = Pic°(A);

@ Let £ €Pic’(A), since £ is algebraically equivalent to 0, t;, £ ® £ is
linearly equivalent to 0 for all PeA(k), so it corresponds to a function
Gepi

@ The application £ — (AxA— G, (P,Q)— g+ »(Q)/gr(0)) gives a
natural isomorphism Pic’(A) = Ext'(A,G,).



Dua‘ isogeny

@ Let f:A— B be a separable isogeny with kernel K between two abelian
varieties defined over k;

@ Applying the functor Ext to the short exact sequence

0 K A f B 0
gives the long sequence
0 Hom(K,G,) Ext'(B,Gp,) Ext'(A,Gp,) 0
0 k B A 0

@ Kis then naturally identified with Hom(K,G,,), the Cartier dual of K.



T!e Weil-Cartier pairing

@ The isogeny f and its dual fﬁt into the diagram

0 K A f B 0
0 FIPE k 0
@ Since K is the Cartier dual of K we have a non degenerate pairing
€ KxK—Gp;
@ Unravelling the identification, we can compute the Weil-Cartier pairing
as follows:

@ 1f QeK(k), Q defines a divisor Dq on 5;

Q f(Q) =0 means that f*Dy, is equal to a principal divisor (go) on A;

Q ef(P,Q) =go(x)/go(x+P). (This last function being constant in its
definition domain).

@ The Weil pairing ey, is the pairing associated to the isogeny [¢(]:A— A

ew: Al] < All] - .



Re'ormu‘atlon

llpp ”ef(P’ Q)
T5f*D qu> 5O,

(¥p is normalized via A(P) ~A(0).)

@ Since f*Dy is trivial, by descent theory D, is the quotient of Ax A' by an
action of K:

9x-(t,2) = (t+x, x(x)2)
where yq is a character on K;

e(P,Q) = xo(P)-



Po‘arizations

If £ is an ample line bundle, the polarization ¢ is a morphism
A—AXx—CLeL™

Definition (Weil pairing)
Let .Z be a principal polarization on A. The (polarized) Weil pairing ey, ., is
the pairing
eweo Al XAl —
(P.Q) — ew(P, <P2(Q))

associated to the polarization ¢ .q:

4 & 2
A 4 A A

Definition (Embedding degree)

If Ais defined over a finite field F,, the Weil pairing has image in u,(F,) cFy,
where d is the embedding degree.




T!e commutator pairing

@ In general for an ample line bundle ., the polarization ¢, gives an
isogeny

0 K(<£) A A 0
and thus a pairing
ey K(L)xK(L) = Gy,

@ The following diagram is commutative up to a multiplication by

e,‘Z(P!Q):

P Ye

323
jwq lfﬁlpq
THYe

< — ThioL



T!e commutator pairing

@ The Theta group G(.¢) is the group {(x,1,)} where xe K(£) and v, is
an isomorphism

(A A

The composition is given by (y,v,).(x,3x) = (V +X, 75, 0 1)y).
@ G(£) is an Heisenberg group:

0 — k —— G(¥) K(Z) 0

o Let g = (P,yp) <G(£) and go = (Q o) <G(2),
e (P,Q) =9rdol5' g
o If Y : K(ZL)xK(ZL)— k* is the 2-cocycle associated to G(¥), we also have

-3



T!e Tate—Lic!ten!aum—Frey-Ruc! pairing [FR94

o If Ais a principally polarised abelian variety over a p-adic field, the Tate
pairing is a non degenerate pairing

H'(G,A) x A(k) — Br(k)
where G is the absolute Galois group and Br(k) = HZ(G,F) ~Q/Z~u.
@ Frey and Riick then reduces this pairing modulo p to obtain that on an
abelian variety A/F,, there is a non degenerate pairing
er: Ao[t](Fga) x A(Fg)/LA(Fq) — Fy /]F’;',f ,

where d is the embedding degree and A,[¢] = {P<A[¢] | =P =[q]P}.
@ To compute the pairing on a Jacobian Jac(C), they use a version of the
Tate pairing given by Lichtenbaum using the exact sequence

1 — Princ, Div°CF PiCOCF 0
which gives the connection §: H*(G, Pic‘éﬁ) — H*(G, Princcz) and a
pairing
Hl(G,Pic‘éi) xPic. — H*(G,Gp)
(rD) — (o—(6(r)(o)(D)))
@ Thus er(D,,D,) =f;p,(D,) where f, 5, is a function with divisor £D;.



Ga‘ois co!omo ogy

@ Let G be a finite group; the functor M — M¢ defined on G-modules is left
exact but not right exact. This defines the cohomology groups H(G, M);

@ If G is the absolute Galois group of a field K, we will also note the
cohomology groups as H/(K,M);

o If L/K is Galoisian, there is an inflation restriction exact sequence
0— H'(Gal(L/K),M(L)) — H'(K,M) — H(L, M)WK H2(Gal(L/K), M(L))
m
@ If k=F,, one can use Tate’s cohomology groups to show that

HY(k,M) =M/(r—1)M and #H(k,M) = #H°(k,M) = #M(k) (for a
finitely generated module M).



Kummer exact sequence

@ The exact sequence
1 — Uy —’F* —‘F —1
induces a connecting map
5k /K = H (k)
(the isomorphism comes from Hilbert 90: H*(k, k*) = 0).
@ Thus for a finite field k=T,
Fro/Frg o H' (Fga, ) = e (Foa);

d_y
@ The isomorphism is given by the exponentiation I



T!e Tate-Cartier pairing on a!e ian varieties over !nite !e‘!s

@ Let f:A— B be an isogeny with Ker fc A[(];
@ From the exact sequence

0—Kerf-A—B—0
we get from Galois cohomology a connecting morphism
o :A(]qu)/f(B(]qu)) ~ Hl(]qu, Kerf)

(this is an isomorphism since H'(F44,A) = 0 for an abelian variety over a
finite field);

@ Composing with the Weil-Cartier pairing, we get a bilinear application
Ker J(E qa) x A(Fqs)/f(B(Eq0)) — HA(Fqa,te) > Fly Fr = iy

o Explicitely, if Pe Kerf(]qu) and Q<A(Fy) then the (reduced) Tate pairing
is given by
er(P,Q) =ew(n(Q) ~ Q.P)
where Q, €A is any point such that Q =f(Q,) and =« is the Frobenius of

]Fq;



T!e Tate-Cartier pairing on a!e‘ian varieties over !nite !e‘!s

Theorem

The Tate pairing

Ker f{Fg4) x A(Fqa) [f(B(Fga)) = H* (g, ) = Fopa /o =ty

is non degenerate.

Proof.

We have canonically
Ker f(F,a) = Hom(Ker f, G,,) **'oe/%a)
= Hom(Kerf/(nd—l),]FZd)
= Hom(Hl(]qu,Kerf),]F’;d)

and
A(Fqa)/f(B(Fga)) = H'(Fga, Ker f).




T!e Tate pairing on a principa ‘y po‘arise! a!e‘ian variety

@ Let (A, %) be a principally polarised abelian variety; applying the theory
to the isogeny f= [¢] yields the usual Tate pairing

Al(] (]qu) x A(]qu)/lA(]qu) = ]F;d/]F;d[ =~ Uy

@ If Ais principally polarised over a finite field, the Weil-Cartier pairing
associated to the isogeny n¢—1 gives a non degenerate pairing

A(Fga) x Ker (71 —1) - G,y
where 7 is the Verschiebung;

@ Since (n?—1)(7%—1) = ¢ —n?— 7 + 1 we get by restriction a (possibly
degenerate) pairing

A[E](Fga) X A[€](Fga) — e

@ From the definition above, this is a special case of the Tate pairing
(restricted to a subgroup).



T!e Tate pairing on a principa ‘y po‘arise! a!e‘ian variety

o Let (A, %) be a principally polarised abelian variety; applying the theory
to the isogeny f= [¢] yields the usual Tate pairing

ALE(E go) x A( o) [OA(Eqa) = By By = 1

@ Over I, if we note G, =A[(](F,) of type (Z/{Z)", because r is a Weil
number there is a subgroup G, CA[¢] of type uj;

@ Let g:A—A/G,, and f:A/G, —A~A be the dual isogeny; then we get
that the restriction of the Tate pairing to

Gy (Fqa) x A(Fq) /LA(Fg) — Frg /Fry'

is non degenerate;
@ If A(F,) does not contain a point of {>-torsion, we get a pairing

G, (]qu) x Gl(]Fq) - ]F;d/]F;dé;

@ Likewise, if A(Fo) does not contain a point of {>-torsion, we get by
considering the isogeny A—A/G, a pairing

G1(]Fq) % Gz(]qu) _’FZd/]FZ/-



Pairings an! t!e Discrete Logarit!m Pro!Lm

@ The Weil pairing was first used to transfer the DLP from an elliptic
curve to F, (the MOV attack [MOV91l);

@ Unfortunately, to get a non degenerate pairing we need to work in the
field of definition of the points of ¢ torsion which may be larger than
Fod;

@ Frey and Riick then introduced the Tate pairing to alleviate this
problem: we can always find a non degenerate pairing by working over
Fod;

@ Moreover in the cryptographic case where A(F,) =< P> is cyclic with
order a large prime, it is straightforward to find a point Q€A(Fyq) such
that eT(P: Q) # 1

@ Computing the Tate (and Weil pairing) on elliptic curves (and
Jacobians) can be done using Miller’s algorithm [Mil86];

@ What about abelian varieties?



T!e Wei‘ an! Tate pairing on eHiptic curves

@ Let £:y>=x3+ax+b be an elliptic curve over a field k (chark # 2,3,
4a>+27b*#£0.)

@ Let P,QcE[{] be points of {-torsion; let f, » be a function associated to
the principal divisor £(P)—£(0), and f, o to £(Q)—¢(0).

@ The Weil pairing ey, : E[¢] x E[¢] — u, (k) is given by

frp((Q)—=(0))
fra((P)=(0))"

ew(P,Q) =

@ The Tate pairing is given by

er: Gy(Foa) x E(FQ)/LE(Fy) — Fy/Fy' .
(P.Q) — fir((Q)—(0))

where
Gy(Fqe) = {P<E[¢](Fga) | 7(P) = [q]P}.



MiHer’s 'unctions

@ We need to compute the functions f, » and f, 5. More generally, we
define the Miller’s functions:

Definition
Let AeN and XeE[(], we define f; x € k(E) to be a function thus that:

(Frx) =200 = ([AX) = (2 =1)(0).

@ We want to compute (for instance) f; p((Q) —(0)).



MiHer’s a‘gorit!m

@ The key idea in Miller’s algorithm is that

Forux = Faxfuxfrux
where f, , x is a function associated to the divisor
([A1X) + ([s]X) = ([A + pX) — (0).

@ We can compute f, ,x using the addition law in E: if [A]X=(x,,y;) and
[u]X=(x,,y,) and @ = (y:—y,)/(x,—X,), we have

yoalx—x)-y

P = )~



M

iller’s a gorithm for elliptic curves

AX=(xpy1)  [ulX=(x2,)2)

21
- +wX
14+
I t © t t t
1 - -0.5 0 0.5 15 2
_1,,
+u)X
24
_y—a(x=x)-y
fl,u.X -

X+ (X +x,)—a?’



MiHer’s a‘gorit!m 'or t!e Tate pairing on eHiptic curves

Algorithm (Computing the Tate pairing)

Input: £eN, P=(x,,y1) €E[(](Fq), Q= (X2,y,) € E(Fga).
Output: er(P,Q).

@ Compute the binary decomposition: £ :=3"|_ b;2'. Let T=P,f,=1f, =1.

@ Foriin [I..0] compute
© «a, the slope of the tangent of E at T.
Q T=2T.T=(x3,)3).
9 fi=fila—alx,—X3)=y3), fr =f3(Xa + (x1 +X3) —?).
@ If bj=1, then compute
@ ¢, the slope of the line going through P and T.
Q T=T+Q T=(x3,3)
O fi=f0—a(Xa=x3)=y3), fr =fo(xs + (X1 +X3) = ?).

Return
¢
)
f




MiHer’s a‘gorit!m on Jaco!ians

@ Let Pejac(C)[¢] and D, a divisor on C representing P;
@ By definition of Jac(C), ¢D, corresponds to a principal divisor (f,») on C;

@ The same formulas as for elliptic curve define the Weil and
Tate-Lichtenbaum pairings:

ew(P,Q) =fip(Dq)/fe.o(Dp)
er(P,Q) :fe,P(DQ)-

@ A key ingredient for evaluating fo(Dy) comes from Weil’s reciprocity
theorem.

Theorem (Weil)

Let D, and D, be two divisors with disjoint support linearly equivalent to (0) on
a smooth curve C. Then
fDl(Dz) =fD2(D1)-




M

iller’s algorithm on Jacobians of genus 2 curves

@ The extension of Miller’s algorithm to Jacobians is “straightforward”;
@ Forinstance if g=2, the function f, , 5 is of the form

y=Ix)
(x=x,)(Xx—x,)
where | is of degree 3.

D=P +P,— 20
D'=Q,+Q,—2c0
D+D'=R,+R,—200 Q

Qg




Cyc‘es an! Lang reciprocity

@ Let (A,©) be a principally polarized abelian variety;

@ To a degree 0 cycle Y n;(P;) on A, we can associate the divisor Znit’;i(a
On A;

@ The cycle > n;(P;) corresponds to a trivial divisor iff > .n;P; =0 in A;

o If fis a function on A and D= (P;) a cycle whose support does not
contain a zero or pole of f, we let

foy = [Py

(In the following, when we write f(D) we will always assume that we
are in this situation.)

Theorem (Lang [Lan58])

Let D, and D, be two cycles equivalent to 0, and fp, and fp, be the corresponding
functions on A. Then
fDl(DZ) :sz(Dl)




T!e Wei‘ an! Tate pairings on a!e‘ian varieties

Theorem

Let P,Q<A[{]. Let Dp and Dy be two cycles equivalent to (P)—(0) and (Q)—(0).
The Weil pairing is given by

fin, (Do)
ffDQ(DP)‘

ew(P,Q) =

Theorem

Let PeA[l](Fqe) and Q € A(Fga), and let Dp and D, be two cycles equivalent to
(P)—(0) and (Q)—(0). The (non reduced) Tate pairing is given by

er(P,Q) =fio,(Dq)-




Po‘arise! a!e‘ian varieties over C

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie
group V/A with

@ A complex vector space V of dimension g;

@ A Z-lattice A in V (of rank 2g);
such that there exists an Hermitian form H on V with E(A,A) c Z where
E=ImH is symplectic.

@ Such an Hermitian form H is called a polarisation on A. Conversely, any
symplectic form E on V such that E(A,A) c Z and E(ix,iy) = E(x,y) for all
x,y €V gives a polarisation H with E=ImH.

@ Over a symplectic basis of A, E is of the form.

0 D;
-D; ©
where Dj is a diagonal positive integer matrix 6 = (6,,6,,...,04), with
0116, .

@ The product [ ] 8; is the degree of the polarisation; H is a principal
polarisation if this degree is 1.




Projective em!e!!ings

Proposition

Let ®:A=V/A—P™ be a projective embedding. Then the linear functions f
associated to this embedding are A-automorphics:

f(x+2)=a(A,x)f(x) xeV,AeA;

for a fixed automorphy factor a:

a(A+2,x)=a(A,x+A)a(X,x).

Theorem (Appell-Humbert)
All automorphy factors are of the form

a(A,x) = 1o (H(xA)+FH(2,2)

for a polarisation H on A.




T!eta 'unctions

@ Let (A, H,) be a principally polarised abelian variety over C:
A=C9/(QZ8 +7Z8) with Qe 5.

@ The associated Riemann form on A is then given by
E (2 4+ X2, Qs +Y,) =%, -y, — s - X,; equivalently the matrix of H, is
ImQ™.

@ The Weil pairing on A[¢] corresponds to the symplectic form E on 7A/A.

@ All automorphic forms corresponding to a multiple H=nH, of H, come
from the theta functions with characteristics:

9 [Z] (Z,Q) _ Z enit(n+a)Q(n+a)+2ni’(n+a)(z+b) abe Q9
nez4

@ Automorphic property:

9 [Z] (Z +mQ+m,, Q) _ eZni(ta~m2—tb~m1)—nitmlﬂml—zm‘m1~1ﬂ [g] (Z, Q)

Remark

Working on level n mean we take a n-th power of the principal polarization. So
in the following we will compute the n-th power of the usual Weil and Tate
pairings.




T!eta 'unctions o' ‘eve‘ n

@ Define ¥, :17‘[ z](., 2) for ieZ(n)=29/nZ% and

@ This is a basis of the automorphic functions for H=nH, (theta
functions of level n);

@ This is the unique basis such that in the projective coordinates:

A — ]P’gg_1
z —  (Ui(2))izm)
the translation by a point of n-torsion is normalized by
27i t;

m m
vi(z+ TIQ+ Tz =e " "My, (2).

coordinates system nz3

© ()iez(r) Z{

coordinates on the Kummer variety A/£1 n=2

@ (¥;)iz(r): basis of the theta functions of level n
& A[n] =A,[n] ®A,[n]: symplectic decomposition.

@ Theta null point: #;(0)zm = modular invariant.



Jaco!ians

@ Let C be a curve of genus g;

@ Let V be the dual of the space V* =Q!(C,C) of holomorphic differentials
of the first kind on C;

@ Let A~H'(C,Z) cV be the set of periods (integration of differentials on
loops);

@ The intersection pairing gives a symplectic form E on A;

@ Let H be the associated hermitian form on V;

H*(Wp Wz) :f W AW,;
C

@ Then (V/A,H) is a principally polarised abelian variety: the Jacobian of
C.

Theorem (Torelli)

JacC with the associated principal polarisation uniquely determines C.

Remark (Weil pairing)

In this setting, the Weil pairing can be seen as the intersection pairing on

JacCle] ~ %HI(C,Z)/HI(C,Z) ~H,y(C,Z/(Z).



T!e !l!erent|a| a!!ltlon Lw (! =QC)

(D 2OBiex+Y)01e(x=3))L D 2 (O i (0)B114(0)) =

teZ(2) t<Z(2)

(D0 2@ 0By D 2 (EBhese(X) By (x):

teZ(2) teZ(2)

where y €Z(2),i,j,k,1€Z(n)
(i',j, K, 1) =A(i,j, k1)
11 1 1
i1fr 1 -1 —1
A3l 1 1 4
1



Examp‘e: !i“erentla‘ a!!ltion n !lmensmn 1 an! In LVE‘ 2

Algorithm
Input zp = (X0, X1), Zg = Vo, y1) and zp_q = (2,,2,) With z,z, # 0;
z,=(a,b) and A = 2(a*+ b?), B=2(a>—b?).
Output zpiq=(to,t1)-

Q t=(2+x3)(2+y2)/A
Q 1 =06—x);—y1)/B
Q to=(t+1))/z
Q t=(t—t)/z

Return (to,t;)




MiHer 'unctions wit! t!eta coor!inates

Proposition (Lubicz-R. [LR13])

@ For PeA we note zj a lift to C3. We call P a projective point and z, an affine
point (because we describe them via their projective, resp affine, theta
coordinates);

@ We have (up to a constant)

9(z)  (9(z+2))"
50 = g3 o)

@ So (up to a constant)

_ W(z+AZp)0(z+ uzp)
e = F 5+ A+ m)ze)




T!ree way a!!ition

Proposition (Lubicz-R. [LR13])

From the affine points zp, zo, Zg, Zp,q, Zp+r and zy  ONe can compute the affine
point zp_ o p.

Proof.

We can compute the three way addition using a generalised version of
Riemann’s relations:

(D2 (O01e(2ps0en)By1e(20) (D 2 (6P o(20)Brse(20)) =
tZ(2) teZ(2)

(D2 (@042} (Zasm)H D 2 (6) ke so(2p18) O 14(2010))-

tZ(2) teZ(2)

O




T!ree way a!!ltlon in !lmension 1 ‘eve‘ 2

Algorithm
Input The points x,y,z,X=y+2z,Y=Xx+2,Z=x+Y;
Output T=x+y+z
Return

T = (aXo +bX,)(YoZo +Y1Z,) | (aXo—bX,)(YoZo—Y1Z,)
0=

Xo(YoZo +Y121) Xo(YoZo —171)
_ (aXo + bX,)(YoZ, + Y1Z:) _ (aXo—bX,)(YoZo—Y1Z,)

T
! X,(YoZo +Y12,) X1 (YoZo —Y121)




Computing t!e MiHer 'unction f;wyp! ! Q!—!o!!

Algorithm
Input AP, uP and Q;
Output f,,((Q)—(0))

© Compute (A+u)P, Q+ AP, Q+ uP using normal additions and take any
affine lifts z(s 1.y Zotap AN Zg yup;
Q Use a three way addition to compute Zq., (.4 .)p;
Return

W(zq + Azp)0(zg + pzp) F((A+u)zp)d(2p)
W(2)0(za + (At 1w)zs)  9(Aze)0(uzs)

f2up((Q)—(0)) =

Lemma

The result does not depend on the choice of affine lifts in Step 2.

© This allows us to evaluate the Weil and Tate pairings and derived
pairings;
® Not possible a priori to apply this algorithm in level 2.



T!e Tate pairing wit! MiHer’s 'unctions an! t!eta coor!inates

@ Let PeA[(](Fu) and QeA(Fqq); choose any lift zp, zg and zp. 4.

@ The algorithm loop over the binary expansion of ¢, and at each step
does a doubling step, and if necessary an addition step.

Given z;p, Zypiq;
Doubling Compute z,3p, Z;3p4q Using two differential additions;
Addition Compute (24 +1)P and take an arbitrary lift z;,4.)p. Use
a three way addition to compute z(;;11)p+0-

@ At the end we have computed affine points z,, and zp, . Evaluating the
Miller function then gives exactly the quotient of the projective factors
between zp, Z, and zp 4, Zg.

© Described this way can be extended to level 2 by using compatible
additions;

® Three way additions and normal (or compatible) additions are quite
cumbersome, is there a way to only use differential additions?



T!e We|| an! Tate pairing Wlt! t!eta coor!mates (Lu!lcz-R. LRlo‘)

Using directly the formula for f, 5(z) we get that the Weil and Tate pairings
are given by

B(zq +1£2p)9(0)  V(zp)9(¢zq)
W(z9)0(€zp) V(zp+£z4)B(0)

ew(P,Q) =

(2o +(25)1(0)

P Q=g ez



T!e We|| an! Tate pairing Wlt! t!eta coor!mates (Lu!lcz-R. LRlo‘)

P and Q points of {-torsion.

Z, Zp 2zp lzp =70z,
Zy Zp®Zg 2Zp+ 2, KZP+ZQ :A;ZQ
ZZQ Zp + ZZQ

Q= A&OA Zp+lzp= /’\bzp

2pAY
° eW,Z(P’Q) = /12/15_‘

X
° eT,l(P»Q):/Tg-



W!y !oes it wor!.l

2, azp at(2zp) ... a’(tzp) = Aoz,
2,2 £ qb(e-1)
Bzq 7(zp®2q) L(2z0+29) ... g (L2p+29) = 23B2g
2p2
B*(2z¢) L (2p +220)

’ A=) ’
B (Lzq) = X320 LBE2 (zp+zg)= A 0Zp

We then have

£, (E(-1) ¢ g (e(t-1)
_ra . oaa_ T8 1
= —ﬁe AP’ A 0= TAQ,
)V},)L"’Q B A},A"Q
/lfglflq /121}2
Moot Ao
»° TS al_ﬂ"er'l(P'Q)'

0 __ 250 0 _ nt?40 1
Np=a"23, No=p"2% X,

e(w(Pr Q) =

=ew,(P,Q),

e/T,e (P.Q) =



T!e casen=2

,£1
@ If n=2 we work over the Kummer variety K over k, so e(P,Q) k.

@ We represent a class xek™ by X+1/xek . We want to compute the
symmetric pairing
eS(P) Q) = e(Pr Q) +e(_P) Q)

@ From +P and +Q we can compute {£(P+ Q),£(P—Q)} (need a square
root), and from these points the symmetric pairing.

—x,%1
@ e, is compatible with the Z-structure on Kand k.
—x,t
@ The Z-structure on k~ can be computed as follow:
1

)

xt2

1
xtittz

1

1
gl e
Xllflz)_(X1+X[1)(Xz+

(Xl1+lz+ )+(Xll—lz+



Ate pairing

@ Let PG, =A[l](\Ker(my—[q]) and Qe G, = A[¢](\Ker(m,—1); A=q
mod ¢.

@ In projective coordinates, we have 7(P+Q) =2AP+Q=P+Q;

@ Of course, in affine coordinates, 74(zp, o) # A'zp +2q.

@ But if my(zp1 o) = C#(AZp +24), then C is exactly the (non reduced) ate
pairing (up to a renormalisation)!

Algorithm (Computing the ate pairing)
Input PeG,, QeGy;

@ Compute zy + Azp, Azp using differential additions;

@ Find the projective factors C, and C, such that zq+ Azp = C, x11(2p,q) and
Azp = C, x 7t(zp) respectively;

i
Return (C,/Co) T .




Optima‘ ate pairing

@ Let A=ml =Y c;q' be a multiple of £ with small coefficients c;. (¢tm)
@ The pairing

a,: GZ X Gl — Uy
_ (g9-1)/¢
(PQ) — (chi.p(Q)q ﬂfz,>,.c,¢,c,.qi,p(Q))

is non degenerate when mdgq?=# (g4 —1)/r>;ic;g™ mod ¢.
@ Since ¢4(q) =0 mod ¢ we look at powers q,q?,...,q*@,
@ We can expect to find A such that ¢; ~ /¢,



Optima‘ ate pairing wit! t!eta 'unctions

Algorithm (Computing the optimal ate pairing)
Input 7g(P)=[q]P, 74(Q)=Q A=mt =3 ciq";
@ Compute the zy + c;zp and c;zp;
@ Apply Frobeniuses to obtain the zy + ¢;q'zp, €;q'zp;

© Compute c,-q"zpeezl. ¢;@'zp (up to a constant) and then do a three way
addition to compute zq +€;q'zp + 3 ,¢;q/zp (up to the same constant);

@ Recurse until we get Azp = Cyxzp and zq + Azp = C, % Zy;

gd—
Return (C,/Cy) 7 .




Cryptograp!ic usage o' pairings on a!e‘ian varieties

@ The moduli space of abelian varieties of dimension g is a space of
dimension g(g+1)/2. We have more liberty to find optimal abelian
varieties in function of the security parameters.

@ Supersingular abelian varieties can have larger embedding degree than
supersingular elliptic curves.

@ Over a Jacobian, we can use twists even if they are not coming from
twists of the underlying curve.

o If Aiis an abelian variety of dimension g, A[¢] is a (Z/¢Z)-module of
dimension 2g = the structure of pairings on abelian varieties is richer.
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