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Discrete logarithm

Definition (DLP)

Let G = 〈g 〉 be a cyclic group of prime order. Let x � N and h = g x . The
discrete logarithm logg (h ) is x .

Exponentiation: O (log p ). DLP: eO (pp ) (in a generic group). So we can
use the DLP for public key cryptography.

⇒ We want to find secure groups with efficient addition law and compact
representation.
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Elliptic curves

Definition (char k 6= 2, 3)

An elliptic curve is a plane curve with equation

y 2 = x 3+a x + b 4a 3+27b 2 6= 0.
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Exponentiation:

(`, P ) 7→ `P

Discrete logarithm:

(P,`P ) 7→ `
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Scalar multiplication on an elliptic curve
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Scalar multiplication on an elliptic curve
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Scalar multiplication on an elliptic curve
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ECC (Elliptic curve cryptography)

Example (NIST-p-256)

E elliptic curve y 2 = x 3 −3x +

41058363725152142129326129780047268409114441015993725554835256314039467401291 over
F115792089210356248762697446949407573530086143415290314195533631308867097853951

Public key:
P = (48439561293906451759052585252797914202762949526041747995844080717082404635286,

36134250956749795798585127919587881956611106672985015071877198253568414405109),

Q = (76028141830806192577282777898750452406210805147329580134802140726480409897389,

85583728422624684878257214555223946135008937421540868848199576276874939903729)

Private key: ` such that Q = `P .

Used by the NSA;

Used in Europeans biometric passports.
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Addition law on the Weierstrass model

E : y 2 = x 3+a x + b (short Weierstrass form).

Distinct points P and Q :

P +Q =−R = (xR ,−yR )

λ=
yQ − yP

xQ − xP

xR =λ
2− xP − xQ

yR = yP +λ(xR − xP )

(If xP = xQ then P =−Q and P +Q = 0E ).

If P =Q , then λ comes from the tangent at P :

λ=
3x 2

P + b

2yP

xR =λ
2−2xP

yR = yP +λ(xR − xP )

⇒ Avoid divisions by working with projective coordinates (X : Y : Z ):

E : Y 2Z = X 3+a X Z 2+ b Z 3.
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Scalar multiplication

The scalar multiplication P 7→ n .P is computed via the standard double
and add algorithm;

On average log n doubling and 1/2 log n additions;

Standard tricks to speed-up include NAF form, windowing …

The multiscalar multiplication (P,Q ) 7→ n .P +m .Q can also be computed
via doubling and the addition of P , Q or P +Q according to the bits of n
and m ;

On average log N doubling and 3/4 log N additions where N =max(n , m );

GLV idea: if there exists an efficiently computable endomorphism α
such that α(P ) = u .P where u ≈

p
n , then replace the scalar

multiplication n .P by the multiscalar multiplication n1P +n2α(P );

One can expect n1 and n2 to be half the size of n ⇒ from log n doubling
and 1/2 log n additions to 1/2 log n doubling and 3/8 log n additions.
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Edwards curves

E : x 2+ y 2 = 1+d x 2 y 2, d 6= 0,−1.

Addition of P = (x1, y1) and Q = (x2, y2):

P +Q =
�

x1 y2+ x2 y1

1+d x1 x2 y1 y2
,

y1 y2− x1 x2

1−d x1 x2 y1 y2

�

When d = 0 we get a circle (a curve of genus 0) and we find back the
addition law on the circle coming from the sine and cosine laws;

Neutral element: (0, 1); −(x , y ) = (x , y ); T = (1,0) has order 4, 2T = (0, 1).

If d is not a square in K, then there are no exceptional points: the
denominators are always nonzero⇒ complete addition laws;

⇒ Very useful to prevent some Side Channel Attacks.
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Twisted Edwards curves

E : a x 2+ y 2 = 1+d x 2 y 2;

Extensively studied by Bernstein and Lange;

Addition of P = (x1, y1) and Q = (x2, y2):

P +Q =
�

x1 y2+ x2 y1

1+d x1 x2 y1 y2
,

y1 y2−a x1 x2

1−d x1 x2 y1 y2

�

Neutral element: (0, 1); −(x , y ) = (x , y ); T = (0,−1) has order 2;

Complete addition if a is a square and d not a square.
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Montgomery

E : B y 2 = x 3+Ax 2+ x ;

Birationally equivalent to twisted Edwards curves;

The map E →A1, (x , y ) 7→ (x ) maps E to the Kummer line KE = E /±1;

We represent a point ±P � KE by the projective coordinates (X : Z )
where x = X /Z ;

Differential addition: Given ±P1 = (X1 : Z1), ±P2 = (X2 : Z2) and
±(P1−P2) = (X3 : Z3); then one can compute ±(P1+P2) = (X4 : Z4) by

X4 = Z3 ((X1−Z1)(X2+Z2)+ (X1+Z1)(X2−Z2))
2

Z4 = X3 ((X1−Z1)(X2+Z2)− (X1+Z1)(X2−Z2))
2
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Montgomery’s scalar multiplication

The scalar multiplication ±P 7→ ±n .P can be computed through
differential additions if we can construct a differential chain;

If ±[n ]P = (Xn −Zn ), then

Xm+n = Zm−n ((Xm −Zm )(Xn +Zn )+ (Xm +Zm )(Xn −Zn ))
2

Zm+n = Xm−n ((Xm −Zm )(Xn +Zn )− (Xm +Zm )(Xn −Zn ))
2

Montgomery’s ladder use the chain nP , (n +1)P ;

From nP, (n +1)P the next iteration computes 2nP , (2n +1)P or
(2n +1)P , (2n +2)P via one doubling and one differential addition.
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Jacobian of curves

C a smooth irreducible projective curve of genus g .

Divisor: formal sum D =
∑

ni Pi ,
deg D =
∑

ni .
Pi �C (k ).

Principal divisor:
∑

P �C (k ) vP ( f ).P ; f � k (C ).

Jacobian of C =Divisors of degree 0 modulo principal divisors
+ Galois action

= Abelian variety of dimension g .

Divisor class of a divisor D � Jac(C ) is generically represented by a sum
of g points.
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Higher dimension

Dimension 2:
Addition law on the Jacobian of an hyperelliptic curve of genus 2:

y 2 = f (x ), deg f = 5.

D = P
1
+ P

2
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1
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Higher dimension
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Hyperelliptic curves

H : y 2 = f (x ), deg f = 2g +1: hyperelliptic curve of genus g with a
rational point at infinity;

Every divisor D can be represented by a reduced divisor

r
∑

i=1

(Pi )− r (∞)

where r ¶ g and Pi 6=−Pj for i 6= j ;

The divisor D is represented by its Mumford coordinates (u , v ) where if
Pi = (xi , yi ):

u (x ) =
∏

(x − xi )

v (xi ) = yi

deg v < deg u ¶ g

u (x ) | v (x )2− f (x );

The last condition encodes that y − v (x ) has multiplicity mi = vPi
(D ) at

Pi .



Elliptic Curves Jacobians Abelian Varieties Compatible additions Formulas

Cantor’s algorithm

Algorithm

Input D1 = (u1, v1), D2 = (u2, v2);

Output D = (u , v ) such that D ∼D1+D2;

1 Semireduce: Compute the extended gcd of u1, u2, v1+ v2

d = s1u1+ s2u2+ s3(v1+ v2)

u =
u1u2

d 2

v =
s1u1v2+ s2u2v1+ s3(v1v2+ f )

d
modulo u

2 Reduce:

u =
f − v 2

u
v =−v modulo u

until deg u ¶ g .
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k .

Abelian variety = points on a projective space (locus of homogeneous
polynomials) + an abelian group law given by rational functions.

Example

Elliptic curves= Abelian varieties of dimension 1;

If C is a (smooth) curve of genus g , its Jacobian is an abelian variety of
dimension g ;

In dimension g = 2, every (absolutely simple principally polarised)
abelian variety is the Jacobian of an hyperelliptic curve of genus 2;

In dimension g ¾ 4, not every abelian variety is a Jacobian.
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Abelian surfaces

For the same level of security, abelian surfaces need fields half the size
as for elliptic curves (good for embedded devices);

The moduli space is of dimension 3 compared to 1⇒ more possibilities
to find efficient parameters;

Potential speed record (the record holder often change between elliptic
curves and abelian surfaces);

But lot of algorithms still lacking compared to elliptic curves!
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Complex abelian varieties

Abelian variety over C: A =Cg / (Zg +ΩZg ), where Ω �Hg (C) the Siegel
upper half space.

The theta functions with characteristic are analytic (quasi periodic)
functions on Cg .

ϑ [ ab ] (z ,Ω) =
∑

n�Zg

e πi t (n+a )Ω(n+a )+2πi t (n+a )(z+b ) a , b �Qg

Quasi-periodicity:

ϑ [ ab ] (z +m1Ω+m2,Ω) = e 2πi (t a ·m2−t b ·m1)−πi t m1Ωm1−2πi t m1 ·zϑ [ ab ] (z ,Ω).

Projective coordinates: theta functions of level n

A −→ Png −1
C

z 7−→ (ϑi (z ))i�Z (n )

where Z (n ) =Zg /nZg and ϑi = ϑ
�

0
i
n

�

(., Ωn ).
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Riemann relations (k =C)

�

∑

t �Z (2)

χ(t )ϑi+t (x + y )ϑ j+t (x − y )
�

.
�

∑

t �Z (2)

χ(t )ϑk+t (0)ϑl+t (0)
�

=

�

∑

t �Z (2)

χ(t )ϑ−i ′+t (y )ϑ j ′+t (y )
�

.
�

∑

t �Z (2)

χ(t )ϑk ′+t (x )ϑl ′+t (x )
�

.

where χ � Ẑ (2), i , j , k , l � Z (n )

(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2







1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1






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Example: differential addition in dimension 1 and in level 2

Algorithm

Input zP = (x0, x1), zQ = (y0, y1) and zP−Q = (z0, z1) with z0z1 6= 0;
z0 = (a , b ) and A = 2(a 2+ b 2), B = 2(a 2− b 2).

Output zP+Q = (t0, t1).

1 t ′0 = (x
2
0 + x 2

1 )(y
2

0 + y 2
2 )/A

2 t ′1 = (x
2
0 − x 2

1 )(y
2

0 − y 2
1 )/B

3 t0 = (t ′0+ t ′1)/z0

4 t1 = (t ′0− t ′1)/z1

Return (t0, t1)
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Projective normality

To use Riemann relations, one needs non zero theta null points;

If the level n is even and n > 2 then the embedding given by the theta
functions of level n is always projectively normal (Mumford-Kempf);

Projective normality is linked to the non annulation of some theta null
points;

It is thus always possible to compute the addition law on the abelian
variety from Riemann relations.
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Kummer varieties

If the level n = 2, then the theta coordinates give an embedding of the
Kummer variety K = A/±1;
No addition law on the Kummer variety;
But still possible to define differential additions: from ±P , ±Q and
±(P −Q ) then ±(P +Q ) is well defined;
How to compute it?
In Riemann relations, the theta constants appearing to the formulas

correspond to the classical theta functions of level four ϑ
h a

2
b
2

i

(2x ,Ω).

They are even (resp. odd) when a · b = 0 (mod 2) (resp a · b = 1 (mod 2)).

Theorem (Mumford–Koizumi)

The even theta null points {ϑ
h a

2
b
2

i

(0,Ω) | (−1)t a b = 1} are non null if and only if the

embedding given by the theta functions of level 2 is projectively normal.

Corollary ([Lubicz–R.])

In this case, from the theta coordinates of P and Q we can recover all
elements of the form ϑi (P +Q )ϑ j (P −Q )+ϑ j (P +Q )ϑi (P −Q );

⇒ Differential additions, Scalar multiplication.
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Cost of the arithmetic with low level theta functions (char k 6= 2)

Montgomery Level 2 Jacobians coordinates
Doubling

5M +4S +1m0 3M +6S +3m0
3M +5S

Mixed Addition 7M +6S +1m0

Table: Multiplication cost in dimension 1 (one step).

Mumford Level 2 Level 4

Doubling 34M +7S
7M +12S +9m0 49M +36S +27m0Mixed Addition 37M +6S

Table: Multiplication cost in dimension 2 (one step).
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Arithmetic on Kummer and abelian varieties

We assume for simplicity from now on that g = 2.

An abelian surface A can be embedded into projective space via theta
functions of level 4 in P15 ⇒ expensive arithmetic;

If we use level 2, we get an embedding of the Kummer surface KA into
P3 ⇒ very efficient arithmetic, but no general addition law;

Mumford coordinates (u , v ) yields an embedding of the non degenerate
divisors into A4, somewhat efficient arithmetic;

The image of a divisor in KA can be represented by the coordinates
(u , v 2), but there is no efficient differential addition;

Summary

On the Kummer variety, very efficient scalar multiplication given by theta
functions of level 2, competitive with the scalar multiplication on elliptic
curves. But going back to the abelian variety means using level 4 theta
functions. Do we really need 12 extra functions just to encode a choice of
sign? Recall that in dimension 1, going from the Kummer line to the elliptic
curve is simply adding y to x .
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Arithmetic from Riemann relations

From now on we assume n even and that if n = 2 then we are projectively
normal.
Given x = (ϑi (x )) and y = (ϑi (y )), one can recover

All ϑi (x + y )ϑ j (x − y ) when n > 2;
All ϑi (x + y )ϑ j (x − y )+ϑ j (x + y )ϑi (x − y ) when n = 2.

Proposition (2 | n)

Given x = (ϑi (x )), one can compute −x = (ϑ−i (x ) (Opposite);

Given the points x , y and x − y , one can compute x + y (Differential
addition);

Given the points x1, . . . , xn and the two by two sums xi + x j , one can recover
x1+ . . .+ xn (Multiway addition).
(Multiway additions use a generalised version of Riemann relations.)

Remark

The previous arithmetic actually can be defined over affine lifts of the
projective theta coordinates. These lifts correspond to the lift of the
projection Cg →Cg /Λ when k =C. This extra affine data is crucial for
isogenies or pairings computations [LR10; LR15].
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(Projective) additions

Given x and y , we want to compute x + y .

When 4 | n , we can always compute x + y by using Riemann relations;

When n = 2, we can compute the (sub-scheme) {x + y , x − y } as follows:

Let κi j = ϑi (x + y )ϑ j (x − y )+ϑ j (x + y )ϑi (x − y );

The roots of Pi (X ) = X 2−2 κi 0
κ00

X + κi i
κ00

are ϑi (zP +zQ )
ϑ0(zP +zQ )

and ϑi (zP −zQ )
ϑ0(zP −zQ )

;

We recover the subscheme {x + y , x − y } via the equation Pα(X ) = 0 and
the linear relations coming from

�

ϑ0(x + y ) ϑ0(x − y )
ϑα(x + y ) ϑα(x − y )

��

ϑi (x − y )
ϑi (x + y )

�

=

�

κ0i

καi

�

;

Recovering the set {x + y , x − y } explicitly costs a square root in k .
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Compatible additions

We work on the Kummer variety K = A/±1.

Theorem

Let x , y , z , t be geometric points on A such that x + y = z + t and x − y 6= z − t .
Then one can compute x + y = z + t on K .

Proof.

The corresponding point is just the intersection of {x + y , x − y } and
{z + t , z − t }. In practice this is just a gcd computation between two
quadratic polynomials!
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Projective multiway additions

Corollary (Projective multiway addition)

Let x0 be a point not of 2-torsion. Then from x1, . . . , xn � K and
x0+ x1, . . . , x0+ xn � K , one can compute x1+ . . . xn and x0+ x1+ . . . xn .

Proof.

By an easy recursion, it suffices to look at the case n = 2. In the previous
theorem set x = x1, y = x2, z = x0+ x1, t =−x0+ x2 to recover x1+ x2, and
x = x1, y = x0+ x2, z = x2, t = x0+ x1 to recover x0+ x1+ x2.

Remark

The arithmetic here works only in the projective setting, that’s why the
projective multiway addition needs less input than the affine multiway
addition;

In the n = 2 case above, one can also recover the point x0+ x1+ x2 or
x1+ x2 once the other is computed by using Riemann relations for the
three-way addition.
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Double scalar multiplication

In a Kummer variety, how to compute αP +βQ? (Think GLV/GLS). We
assume that we are given P ,Q and P +Q .

1 A Montgomery square mP +nQ , (m +1)P +nQ , mP + (n +1)Q ,
(m +1)P + (n +1)Q , adding the correct element to the square depending
on the current bits of (α,β );

2 A cleverer way is to use a triangle (Bernstein);
3 But actually we only need to keep track of two elements in the square.

Example

From nP + (m +1)Q , (n +1)P +mQ , one can recover nP +mQ by using a
compatible addition with x = nP + (m +1)Q , y =−Q , z = (n +1)P +mQ ,
t =−P .

Remark

We expect to need to reconstruct a missing element in the square with
probability 1/2, but when we do that we can be clever in the two elements
we keep, so the probability is actually higher.
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Multi scalar multiplication

In a Kummer variety, we want to compute
∑

αi Pi . (Think higher
dimensional GLV/GLS).

We assume that we are given the two by two sums Pi +Pj (actually, we
just need the P1+Pi , we can recover the others via compatible
additions);

The trivial way would be to use an hypercube;

But as previously, we just need two elements in the hypercube, say
∑

mi Pi and P1+
∑

mi Pi ;

At each step we do one compatible addition to recover the element we
need in the hypercube, and then use it for two differential additions;

The total cost is 2 differential additions +1 compatible addition by bits.
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An efficient representation

Definition

Let A be an abelian variety with a point T � A(k ) not of two torsion, and let
K = A/±1 be the associated Kummer variety. We represent a point x � A(k )
by the couple (x , x +T ) � K 2.

Remark

To represent x +T we just need to give a root of P1(X ), hence this
representation needs only 1+2g coordinates.
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Efficient arithmetic

Differential addition: From (x , x +T ),y ,(x − y , x − y +T ), recover
(x + y , x + y +T ) via two level 2 differential additions;

Addition: this uses two compatible additions (or one compatible
addition + one threeway addition);

Scalar multiplication:
1 Do a Montgomery ladder: One doubling and two differential additions at

each step (adding the same point, so some savings — 23M +13S by bits);
2 Use a standard level 2 multiplication to compute (m −1)P, mP (16M +9S by

bits) and recover mP +T as a compatible addition

mP +T = (mP )+T = (m −1)P + (P +T );

Multi scalar multiplication: likewise, do a level 2 multiscalar
multiplication to compute (

∑

mi Pi )−P1,
∑

mi Pi and recover
∑

mi Pi +T
as
∑

mi Pi +T = (
∑

mi Pi )+T = ((
∑

mi Pi )−P1)+ (P1+T );

⇒ This representation only add a small overhead compared to the level 2
representation, but allows to compute additions!
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Differential addition

Notations: x ,y ,X = x + y ,Y = x − y , 0A = (ai );

z χi =
�

∑

t �Z (2)

χ(t )xi+t xt

��

∑

t �Z (2)

χ(t )yi+t yt

�

/
�

∑

t �Z (2)

χ(t )ai+t at

�

.

4X00Y00 = z 00
00 + z 01

00 + z 10
00 + z 11

00 ;

4X01Y01 = z 00
00 − z 01

00 + z 10
00 + z 11

00 ;

4X10Y10 = z 00
00 + z 01

00 − z 10
00 − z 11

00 ;

4X11Y11 = z 00
00 − z 01

00 − z 10
00 + z 11

00 ;

⇒ 7M +12S +9M0 for the differential addition (here we neglect
multiplications by constants).

Remark
�∑

t χ(t )ai+t at

�

is simply the classical theta null point ϑ
�

χ/2
i/2

�

(0,Ω)2.
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Normal additions

2(X10Y00+X00Y10) = z 00
10 + z 01

10 ;

2(X11Y01+X01Y11) = z 00
10 − z 01

10 ;

2(X01Y00+X00Y01) = z 00
01 + z 10

01 ;

2(X11Y10+X10Y11) = z 00
01 − z 10

01 ;

2(X11Y00+X00Y11) = z 00
11 + z 11

11 ;

2(X01Y10+X10Y01) = z 00
11 − z 11

11 ;

⇒ (4M +8S +3M0)+3× (2M +4S +2M0) = 10M +20S +9M0 to compute all
the κi j .
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Normal additions, explicit coordinates

Pα(Z ) = Z 2−2 κα0
κ00

Z + καακ00
whose roots are { Xα

X0
, Yα

Y0
};

We can recover the coordinates X i , Yi by solving the equation
�

1 1
Z Z ′

��

Yi /Y0

X i /X0

�

=

�

2κ0i /κ00

2καi /κ00

�

;

We find

X i =
Xακ0i −X0καi

Xακ00−X0κα0
.

⇒ (10M +20S +9M0)+8M = 18M +20S +9M0 to compute X once we know
Z .
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Compatible additions

Let P1 = X 2+a X +b and P2 = X 2+ c X +d . Then P1 and P2 have a common
root iff (a d − b c )(c −a ) = (d − b )2, in this case this root is (d − b )/(a − c ).
A compatible addition amount to computing a normal addition x + y ,
and finding a root of Pα as a common root of the polynomial P′α
coming from the addition of (x + t , y + t );
So for a compatible addition we need the extra computation of P′α ⇒
6M +12S +5M0;
The common root is

κ′αακ
′
00−καακ00

2(κ′α0−κα0)
;

⇒ 28M +32S +14M0;

In the (x , x + t ) representation, once we have computed x + y via a
compatible addition, we can reuse some operations in the computation
of x + y + t ;
Still, it is more efficient to use a three way addition to compute
x + y + t rather than another compatible addition.
More details in [LR14];
Possible improvements: find better normalisations, use the equation of
the Kummer surface …
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