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Outline

o Key exchange on a graph
@ Abelian varieties and isogenies

o Efficient algorithms
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Key exchange by walking in graphs




Key exchange by walking in graphs
Alice starts from ’a’, follow the path 001110, and get ‘w’.




Key exchange by walking in graphs
Bob starts from ’a’, follow the path 101101, and get ‘I’.




Key exchange by walking in graphs
Alice starts from ‘I’, follow her path 001110, and get ‘g’.




Key exchange by walking in graphs
Bob starts from ‘w’, follow his path 101101, and get ‘g’.




Key exchange by walking in graphs
The full key exchange




Key exchange by walking in graphs
Bigger graph (62 nodes)
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Key exchange by walking in graphs
Even bigger graph (676 nodes)

o e
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Security with N nodes

@ Bad graphs:




Security with N nodes

@ Bad graphs:




Security with N nodes

@ Walking a short m = O(log N) path should give a random node: Ramanujan
expander graphs.
Examples: random graphs.

o Attack: find a path of length m between two nodes: O(N).

@ Meet in the middle: O(YN).
@ Quantum (Grover): O(N4),

= 128 bits of security needs 2°'? nodes.
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Security with N nodes

o Attack: find a path of length m between two nodes: O(N).




Security with N nodes

@ Meet in the middle: O(+N).




Security with N nodes

@ Walking a short m = O(log N) path should give a random node: Ramanujan
expander graphs.
Examples: random graphs.

o Attack: find a path of length m between two nodes: O(N).

@ Meet in the middle: O(YN).
@ Quantum (Grover): O(N4),

= 128 bits of security needs 2°'? nodes.
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Graph examples

@ The Cayley graph of an abelian group G;
@ The Schreier action graph of G acting on X;
@ Z acts on G by n - ¢ = ¢". Walking on the graph ~ fast exponentiation.

Diffie-Hellman key exchange [DH76]: finding a path = DLP (discrete logarithm
problem).

@ G = (E, +,0g) the group law of an elliptic curve E/F, (ECC).
DLP: exponential (classical) / polynomial (quantum: Schorr’s algorithm).
Classical cryptosystem.

® E/F, ordinary elliptic curve with CM by Oy, G = Cl(Q) acts on
X = {CM curves isogenous to E}.
Security if G abelian but not cyclic: exponential (classical) / subexponential
(quantum);

@ Graph of supersingular elliptic curves over I »: exponential security (classical

and quantum).
Post quantum cryptosystem.

@ Non commutative graph: key exchange needs extra informations.
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Polarised abelian varieties over C

Definition

Complex abelian variety of dimension g: A = V /A,
@ V: complex vector space of dimension g (linear data);
@ A: Z-lattice of rank 2¢ (arithmetic data);

@ H: Hermitian form on V such that E(A,A) C Z where E = Im H is symplectic
(quadratic data: pairings).

@ H: polarisation (=~ algebraic class of an ample line bundle / divisor);
@ Degree of H = degree of the kernel AL /A of the symplectic form E;
@ H principal & degH = 1.
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Polarised abelian varieties over C

Dimension 1
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Principal polarisations

QA=C8/(TtZE® Z3),V = C8, A =TZS & Z3;
@ T € §,, the Siegel space of symmetric matrices 7 with Im 7 positive definite;
@ H=(m1t)™Y, E(Txy + Xp, TY1 +Y2) = X1 - Yo — X5 - 7.

@ Moduli space of principally polarised abelian varieties: A, = $,/ SPe(Z), where

aby.t=(at+b)(ct+d)7};

@ Dimension: g(g + 1)/2.
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Coordinates

@ Coordinates on (A, H): f(x + A) =ag(A, x)f (x) Vxe€V,AEA,

ap (A, x) = +e7r(H(x,A)+%H(/\,A))
4 [

o A= C8/ (128 + Z8), Hy := (Im 7)~! principal,
H := (H, polarisation of level {,
Coordinates automorphic for H = vector space of dimension .

@ Basis given by theta functions:

. f -t
e[Z] (Z, T) — Z em (n+a)T(n+a)+27wi' (n+a)(z+b) a,b c Qg.
nezs
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Dimension 1: elliptic curves

E:y?=x3+ax+b. A:=-16(4a%+27b?) #0.

P+Q=-R=(xg,—¥Yr)

; [1 1 P ; /\=yQ_yP
XQ—XP

XR =A2—XP—X'Q

YR = Yp + Axg — Xp)
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Dimension 1: elliptic curves

E:y?=x3+ax+b. A:=-16(4a® +27b%) # 0.
@ x,y: Weierstrass coordinates on E.

@ a,b “coordinates” on the moduli space A4,
@ Isomorphisms: (x,y) = (X = u%x, Y = uBy)
E:y?=x>+ax+b—E :Y?=X53+au*X + bu®.
@ Modular invariant: j: A; » P1  (A; =~ PY),
3

(E) = 1728——
J(E) 423 + 2712

@ Moduli space of dimension 1.
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Dimension 2: abelian surfaces

@ Kummer surfaces:
Ayt + 2414 + Bryzt+C (%Y +2212) + D (2212 +y°22) +E (222 +y?12) =0, A =0;

@ Moduli space of dimension 3, birational to P3;
@ Three Igusa invariants jy, j, 3.
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Dimension 2: abelian surfaces

Credit: Wikimedia.
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Dimension 2: Jacobians of hyperelliptic curves of genus 2

C/k:y? = x° + agx* + azx3 + a,x? + a;x + ag.

D=P +P,—20
D'=Q+Q,~200
D+D'=R,;+R,—200

Q

Q

Coordinates on Jac(C): x(P) + x(Q), x(P)x(Q), y(P)y(Q),

y(Q)—y(P)
x(Q)—x(P) "
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Dimension 2: Jacobians of hyperelliptic curves of genus 2

Clk:y? = x5 + agx* + a3x3 + a,x2 + a;x + ay.

@ Up to isomorphism (over k),
C:p2 =x(x—1)(x—A)(x — p)(x —v);

@ Modular invariants: A + p + v, Ay + Av + pv, Auv.
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Isogenies

@ Isogeny ¢ : A=V /A > B=V,/A; =

bijective linear map ¢ : V| - V, with ¢(A;) C Ay;
@ Kernel: ¢~1(A,) /A, C A is finite;
@ Degree deg ¢: cardinal of the kernel.

= lIsogeny graphs.
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Algorithmic aspects of isogeny graphs

@ Given A, K, compute B = A/K and the isogeny ¢ : A — B (follow a direction).
@ Given A, list all isogenous B (find neighboors).
@ Given isogenous A, B, find ¢ : A - B or K = Ker ¢ (find a path).
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Isogenies and polarisations

@ Given A, K, compute B = A/K and the isogeny ¢ : A — B.



Isogenies and polarisations

@ Given
@ coordinates fy, ..., f,, on A automorphic for H, (of level n),
@ a kernel K expressed in these coordinates,
construct
Q B=A/K,
@ a polarisation Hg (of level n),
© coordinates g5, ..., g,, on B automorphic for Hg,

and express g; o ¢ in terms of the f;.
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Isogenies and polarisations

o If g; is automorphic for Hg, g; o ¢ is automorphic for
¢*Hp = Hg(¢(-), ¢(-));
e H/, is of the form ¢*Hj iff
ImH, (K+Ay,K+Ay) CZ
iff K is isotropic for the E/;-pairing.

@ ¢ l-isogeny: H, := ¢*Hp = tH,
= K maximal isotropic for the Weil pairing e ;.

o If fis automorphic for H), it is of the form f = g o ¢ iff fis invariant by
translation by K.

@ Step 1: from the coordinates fi, ..., f,, construct coordinates automorphic for
QHA;
@ Step 2: find coordinates invariant by translation (eg taking a trace).
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Vélu’s formula for t-isogeny for elliptic curves [Vél71]

@ Weierstrass coordinates x,y on E are sections of the divisor 3(0g).

@ D=3 3(T) ~ 38(0g) descends to E/K;

e X(P) = ZTeK\OE x(P+T),Y(P) = ZTGK\OE y(P +T) descend to E/K:
Weierstrass coordinates of E/K.
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Vélu’s formula for £-isogeny in higher dimension

@ In dimension g, if @4 is principal on A, 30, is very ample of level n = 3 and
Y 1330, ~ 3150,
TeK
descends to B = A/K;
o If fis a section of 30,4, F(P) = ZTer(P + T) is invariant by K so descends to B;

@ But F is automorphic for 3¢3Hg , on A of level 3¢3, so descends to a function of
level 3¢3~1 on B.

@ 3{®, does not descend to B;
@ But it is isomorphic to a divisor which descends to a divisor on B of level 3.

@ Theta group G(3@,): encodes the isomorphisms of 3@ 4.

@ Descending 3@, < level subgroup above K (Grothendieck’s fpqc descent
theory).

@ Quasi-linear algorithm: [Cosset, Dudeanu, Jetchev, Lubicz, R., Vuillel.
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Modular polynomials for elliptic curves

Definition (Modular polynomial)

The modular polynomial ¢y (x,y) € Z[x,y] is a bivariate polynomial such that
¢y(x,y) =0 & x =j(Ey) and y = j(E,) with E; and E, (-isogeneous.

@ Roots of ¢y(j(E;), ) « elliptic curves (-isogeneous to E;.
There are € + 1 = #P1(F,) such roots if  is prime.

@ ¢ is symmetric (dual isogenies);
@ Degree {+1inxandy;

@ Height: O(2)

= Total size: O({3).

Example

P3(x,y) = x* + y* — x3y3 4+ 2232x3y2 + 2232223 — 1069956x3y — 1069956xy> +
36864000x> + 36864000y + 2587918086x2y> + 8900222976000x2y + 8900222976000xy> +
452984832000000x2 + 452984832000000y2 — 770845966336000000xy +
1855425871872000000000x + 1855425871872000000000y.




Modular polynomials for abelian surfaces [Milio]

Definition (Siegel modular polynomials)

The modular polynomials &,(X,Y) € Q(X)[Y] parametrize Igusa j-invariants
X = (j1(A),j2(A),ja(A)) and Y = (j; (B),j»(B),j3(B)) of (-isogenous abelian surfaces.

@ Computed via a multidimensional evaluation-interpolation approach.

@ Requires evaluating modular invariants on 7 and period matrices from invariants
at high precision;

= generalized version of the AGM to compute theta functions in quasi-linear time
in the precision [Dupont: Dup06l;

= Need to interpolate rational functions;

@ Denominator describes the Humbert surface of discriminant ¢2 [Broker,
Gruenewald, Lauter: BL09; Gru10]: abelian surfaces (-isogenous to product of
elliptic curves;

@ Quasi-linear algorithm [Dupo6; Mil15];
@ Generalized to smaller modular invariants [Milio: Mil15].

@ Hilbert modular polynomials [Milio-R.: MR20] for -isogenies, 8 € End* (A)
(+ modular interpretation of their denominators). ozt



Example of modular polynomials in dimension 2 [Milio: Mil15]

Invariant ¢ Size
Igusa 2 57MB
Streng 2 21MB
Streng 3 890 MB
Theta 3 270 KB
Theta 5 305 MB
Theta 7 29GB

Examples (Theta invariants)
@ Denominator of &5:
1024b§bSb10 — ((768b5 + 1536b5 — 256)b§ + 1536b5b% — 256b5)b8 + (1024b5b1° +
(1024510 + 256065 — 512b6§)b6 (512§ — 64b3)b3)bS — (1536b5b5 + (—416b5 +
32)b5 + 32b3)b} — ((512b§ — 64b2)b5 — 64bgb§>b§ + 2560565 — 32b5b3 + 1.
@ One coefficient of the denominator for @5 is 1180591620717411303424.




Example of cyclic modular polynomials in dimension 2 [Milio-R.: MR20]

0(Q(V2)) Size (Gundlach) Theta €(Q(+5)) Size (Gundlach) Theta
2 8.5 KB 5 22 KB 45 KB
7 172 KB 11 3.5 MB 308 KB
17 5.8 MB 221KB 19 33 MB 3.6 MB
23 21 MB 29 188 MB 21 MB
31 70 MB 31 248 MB 28 MB
41 225 MB 7.2 MB 41 785 MB 115 MB
73 81 MB 59 3600 MB 470 MB
89 188 MB
97 269 MB

Examples (Pullback of theta invariants)

@ ForD=2,=5+ 2\/§| 17, the denominator of Dy pis
bSb3® + (61§ — 63 + 1)bA6 + (15b3° — 24b8 + 7b3)b3* + (20012 — 4268 + 9b5 + 2)b32? +
(15b3* — 48D10 + 376§ + 4b2)b10 + (6b1° — 42012 + 68V — 2615 + 3)b§ + (b1® —

24b1* + 37
b§)b3 + (b}

blO

5

@ For B 197, one coefficient of the denominator of @, g is 508539934766246292.

+ 86§ — b3)bS + (—6b3° + 9b1% — 26b8§ — 24b% + 2)b3 + (7bi* + 4610 —
+2b3% 4+ 36§ + 205 + 1).

Damien Robert
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Size of modular polynomials [Kieffer: Kie22]

@ If the moduli space is of dimension N and the degree of the modular
correspondance is D, the modular polynomials are
» of total degree O(D) in X and Y,
» with coefficients of height O(D) [Kie22].

o Total size: O(DDN) terms of height O(D): O(DN+2).

@ Siegel {-modular polynomial: _
N=g(g+1)/2,D =NO(EN), total size::VO((%N(N”)).
Ex: O(t%) for g = 1, O(€1%) for g = 2, O(£*8) for g = 3.

@ Hilbert g-modular polynomial:
N =g, D=0, := O(N(B)), total size O(t5+2).
Ex: O(t*) forg = 2.
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Evaluating modular polynomials over F, [Kieffer: Kie20], [R.]
@ Goal: for A/F,, evaluate @y (J(A),Y);

@ Strategy: lift A to A/Q, evaluate over Q and reduce modulo p;

@ If J(A) is of height H = O(logp), ®(J(A),Y) has O(D) coefficients of height
O(DH), total size: O(D?H).

@ Analytic method in dimension 1 (folklore?):
O(D?H) = O(#*logp).
Via explicit CRT [Sutherland: Sut13]: O(¢3 + €2 logp).
@ Analytic method in dimension 2 [Kieffer: Kie20l:
O(D?H + DH?).

Ex: O(€2logp + tlog” p) for Hilbert.
(Dimension g > 2 lacks fast period matrix from invariants).
@ [R.]: p-adic and CRT method in any dimension in O(ED?H),
E = cost of evaluating one isogeny (Siegel: E = O({8), Hilbert: E = O(X)).

® None are quasi-linear over Q (except analytic when ¢ = 1).
See my hdr for possible strategies. ez



Recovering an isogeny

@ Goal: given f-isogenous Fy : y? = x3 +ax + b, E, : Y2 = X3 + AX + B, recover the
isogeny ¢ : E; — E, or the kernel K = Ker ¢;

® wg =dx/y, ¢*wg, = Mwg,.
M = 1: ¢ normalised isogeny;

® p(x,y) = (h(x), 3gyh'(0), hx) € k(x), dX/Y = MEZDE = Mdx/y.

o Differential equation:
1
W(aﬁ’ + ax + b)I' (x)% = h(x)® + Ah(x) + B.

@ Newton iterations + rational reconstruction in k[[x]: h(x) in quasi-linear time
p>10.

@ Problem: need M.
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Recovering an isogeny between elliptic curves [Elkies: EIk97]
@ An isomorphism E, =~ Ej, (X,Y) = (u?X,u%Y) maps wg, = dX/Y to
%w}sz = 1dX/Y, so changes M by a factor u.
@ Need: a covariant g that depends on E and wg: g(E, uwg) = u=*g(E, w).
@ Modular function of weight kK (+ boundary conditions).
@ Period matrices: E : C/(Z + TZ), wg = 27idz,

at
C’l’+d

g( ) = (cT +d)*g(7).

@ a(t) modular form of weight 4, b(t) modular form of weight 6;

e j'(t) =18j(7) bé:; modular function of weight 2;

@ Algebraic interpretation: j(E.) = j(E) + j'(E, wg)e, E, the deformation
corresponding to w®? via the Kodaira-Spencer isomorphism;

o Differentiating &, (j(Eq),j(E;)) = 0:

y 0P . . ) 0P . .
j (Ellel)g(](Eﬁ/](Ez)) gt (Ezzwgz)a—y(](El),](Ez))~

loria—.
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Recovering an isogeny between abelian surfaces [Kieffer-Page-R.]

@ Goal: given (-isogenous Jacobians of the curves C; : y? = hy(x), Cy : Y2 = I (X),
recover the isogeny ¢.

miyq My

® Wyae(c) = (XAX/Y,dX/Y), §*Wyac(cy) = MWjacic,y, M = (i) my2 ) @2 x 2 matrix;
o Differential equation:

XpdX, | XpdX
T, ax
Y? =y (Xy)
Y3 = hy(Xa),

dx
(mlllx + mllz) 7

dx
(Mg 1x + 1My ) m

@ Newton iterations + rational reconstruction: ¢ in quasi-linear time (p > ).

o If J(T) = (j1(1),j2(T),j3(T)), J'(T) is a vectorial modular function of weight Sym2
(Kodaira-Spencer isomorphism);

e Differentiating ®,(J(A;),](A,)) recovers the 3 x 3 matrix Sym?(M).
@ Formula for J'(Jac C,wj,. c) in terms of the coefficients of C [KPR25].
= Application to fast point counting for ¢ = 2 [Kiefferl:

5(log4 p) SEA-like algorithm in the Hilbert case.
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Compressing an isogeny [R.]

@ ¢ is determined by K C E/E,: size O(¢ logp);
0 IfK=(T), Te E(E,), ¢ is determined by T: size O(logp).
@ General case: encode ¢ via (T, ¢(T)), T € E(E,) of order N > (. Size: O(logp).

Better idea: take T a fat k[e]-point over Og. It is of order p.
Encodes M, ie = (p> 0.

Lift if p is too small.

(]

(]

© The isogeny ¢ is by the normalised (lifted)
J(E1),j'(E1),j(Ep),j (Ep): size O(log € + logp).
@ All the t-isogenies from E; are efficiently encoded by the evaluated modular
polynomials:
Dy(j(E1),y), 9P/ ((E1), Y).

Computed in O(?logp).

o Rational roots of ®y(j(E),y): O(tlog” p); : O(tlogp).
@ Improves the complexity O(? Iog6p) for of [De Feo, Hugouneng, Plit,
Schost: DHPS16] ( ).




Compressing an isogeny [R.]

@ ¢ is determined by K C E/E,: size O(¢ logp);

0 IfK=(T),Te E(F,), ¢ is determined by T: size O(logp).

@ General case: encode ¢ via (T, ¢(T)), T € E(E,) of order N > (. Size: O(logp).
°
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Compressing an isogeny [R.]

@ ¢ is determined by K C E/E,: size O(¢ logp);
0 IfK=(T),Te E(F,), ¢ is determined by T: size O(logp).
@ General case: encode ¢ via (T, ¢(T)), T € E(F,) of order N > (. Size: O(logp).
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Compressing an isogeny [R.]

@ ¢ is determined by K C E/E,: size O(¢ logp);
0 IfK=(T),Te E(F,), ¢ is determined by T: size O(logp).
@ General case: encode ¢ via (T, ¢(T)), T € E(F,) of order N > (. Size: O(logp).

@ Better idea: take T a fat k[e]-point over Og. It is of order p.
Encodes M, ie the differential equation = fast decompression (p > ).

o Liftif p is too small.

@ The isogeny ¢ is by the normalised (lifted)
J(Eq),j'(E1),j(E5),j' (Ey): size O(log ¢ + logp).
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Compressing an isogeny [R.]

@ ¢ is determined by K C E/E,: size O(¢ logp);
0 IfK=(T),Te E(F,), ¢ is determined by T: size O(logp).
@ General case: encode ¢ via (T, ¢(T)), T € E(F,) of order N > (. Size: O(logp).

@ Better idea: take T a fat k[e]-point over Og. It is of order p.
Encodes M, ie the differential equation = fast decompression (p > ).

o Liftif p is too small.

The isogeny ¢ is by the normalised (lifted)
J(Eq),j'(E1),j(E5),j' (Ey): size O(log ¢ + logp).

All the (-isogenies from E are efficiently encoded by the evaluated modular
polynomials:
D(j(E1),y), 0P/ 0y ((Ep),Y).

Computed in O logp).

Rational roots of ®,(j(E1),1): O(Llog” p); :O(tlogp).
Improves the complexity O(¢ log® p) for of [De Feo, Hugouneng, Plit,
Schost: ] ( ).




Compressing an isogeny [R.]

@ ¢ is determined by K C E/F,: size O(¢logp);
0 IfK=(T),Te E(F,), ¢ is determined by T: size O(logp).
@ General case: encode ¢ via (T, ¢(T)), T € E(F,) of order N > (. Size: O(logp).

@ Better idea: take T a fat k[e]-point over 0. It is of order p.
Encodes M, ie the differential equation = fast decompression (p > ).

o Lift if p is too small.

Proposition (Slogan)
© The isogeny ¢ is efficiently encoded by the normalised (lifted)
J(E1),j'(Eq),j(Ey),j (Ey): size O(log € + logp).
@ All the t-isogenies from E; are efficiently encoded by the evaluated modular

polynomials:
Dy(j(E1),y), 9P/ ((E1), Y.

Computed in time O(¢?logp).
@ Rational roots of ®y(j(E1),y): owu Iog2 p); decompression of a kernel: o logp).

@ Improves the complexity O (2 Iog6 p) for one isogeny of [De Feo, Hugouneng, Pliit,
Schost: DHPS16] (Couveignes’ method).
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Point counting in small characteristic

° L/F, ordinary elliptic curve, T Frobenius,

n;wE = Aqu, t= Aq + q/}tq,

#E(F) =q+1—t.

@ Problem: 7, is of degree g;

@ Solution: if g = p, n;wg” = Apwg, then A, = Ny, /5, (Ap);

@ 7T,

» is easy to compute if p is small;

@ Problem: only get A, mod p; not enough information.
@ Solution (Satoh [Satoo]): lift to Q,.

lozia—.




Satoh’s algorithm ([Maiga-R.] for ¢ = 2)

@ Compute the canonical lift E/Qq.

@ Lift the kernel of the Frobenius/Verschiebung;

© Compute the isogeny over Q,;

© Recover A EQ, with enough p-adic precision m  (m = O(d));

© Take the norm and recover t € Z.

Optimal complexity: O(dm) = O(d?).

lozia—.




Satoh’s algorithm ([Maiga-R.] for ¢ = 2)

@ Compute the canonical lift F/Qq.
Solve ¢p(j(E),(7p(j(E))) = 0 via Newton iterations.
@ Lift the kernel of the Frobenius/Verschiebung;
© Compute the isogeny over Q,;
© Recover Ay € Qy with enough p-adic precision m  (m = O(d));

© Take the norm and recover t € Z.

Optimal complexity: O(dm) = O(d?).
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Satoh’s algorithm ([Maiga-R.] for ¢ = 2)

@ Compute the canonical lift F/Qq.
Solve ¢p(j(E),(7p(j(E))) = 0 via Newton iterations.
o L I ¢ the Frobenitsiverschiel :
Q Computetheisegeny-over-Q;
© Recover Ay € Qy with enough p-adic precision m  (m = O(d));

© Take the norm and recover t € Z.

Optimal complexity: O(dm) = O(d?).
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Improved version of Satoh’s algorithm [R.]

q Time (old) Memory (old) Time (new) Memory (new)
111008 48.5s 512MB 4.5s 128MB
101102 91s 1024MB 9s 128MB
101256 633s 4096MB 26s 128MB
101310 924s 8192MB 35s 256MB
101418 1813s 16384MB 55s 256MB
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