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Usage of isogenies

@ Speed up the arithmetic (eg split the multiplication by [2] or [3]);
o Determine End(A) (volcano...);
@ Point counting algorithms (£-adic or p-adic: SEA, Satoh ...)
Publicity: [Kieffer 2021] SEA like algorithm in 5K(I0g4 q) for abelian surfaces with RM by Ox.

@ Compute class polynomials (CM-method)

@ Compute modular polynomials

@ Arithmetic for IFq: construct normal basis of a finite field, irreducible polynomials, automorphism
invariant smoothness basis [Couveignes-Lercier]...

@ Find curves with many points
@ Explore isogeny graphs (eg find a component with no Jacobians in dimension 4)

@ Evaluate modular forms
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Isogenies in classical cryptography

@ Discrete Logarithm Problem, Pairings
@ Transfer the DLP (Weil descent...)
@ Reduce the impact of side channel attacks

@ Random self reducibility, worst case to average case reductions.
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Isogeny based cryptography

@ Hash functions
@ Key exchange (SIDH, CSIDH)
@ Signatures (SQISign)
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Higher dimensional isogenies?

@ Classical cryptography: dimension 1 and 2. A bit in dimension 3 (class polynomials).

@ Isogeny based cryptography: dimension 1 (hash functions in dimension 2 too).

@ So mainly for algorithmic number theory (descent...)

@ Certainly no use for elliptic curve based cryptosystems.

lorzia—.



Higher dimensional isogenies?

@ Classical cryptography: dimension 1 and 2. A bit in dimension 3 (class polynomials).

@ Isogeny based cryptography: dimension 1 (hash functions in dimension 2 too).

@ So mainly for algorithmic number theory (descent...)
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The embedding lemma

@ AN-isogenyf : A — B indimension g can always be efficiently embedded into a N” isogeny
F: A" - B’ indimension 8¢ (and sometimes 4g, 2g) forany N' > N.
AL B
i F 4
A" —> B

@ Considerable flexibility (at the cost of going up in dimension).
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The embedding lemma

@ AN-isogenyf : A — Bindimension g can always be efficiently embedded into a N’ isogeny
F : A" - B’ indimension 8¢ (and sometimes 4¢, 2¢) forany N’ > N.

A—LyB
AL
@ Considerable flexibility (at the cost of going up in dimension).

o Write N’ — N = a2 + a3 + a3 + a2.

a; —a, —az —ay f 0 0 0
an aq ay —das 0 f 0 0
a;  —ag 4 a, 0 0 f o
o F = ay as —dy aq 0 0 0 f
—-f 0 0 0 a ay, a3 Ay
0 —f 0 0 —dy aq —a4 a4z
0 0 —f 0 —ag ay aq an
0 o0 0 —f —ay -—az a4, @
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The embedding lemma

@ AN-isogenyf : A — Bindimension g can always be efficiently embedded into a N’ isogeny
F : A" - B’ indimension 8¢ (and sometimes 4g, 2g) forany N’ > N.

ALy
L 1
A s p

@ Considerable flexibility (at the cost of going up in dimension).

@ Breaks SIDH ([Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8) = if
N4 > Np,take N' = Ny, N = N
The dimension 8 attack is in proven quasi-linear time, see http://www.normalesup.org/
~robert/pro/publications/slides/2022-09-Bordeaux-SIDH.pdf for details.

@ Anisogeny always have a representation allowing evaluation in polylogarithmic time Iogo(l) N
[R]= take N’ > N powersmooth.
(Finding this representation takes quasi-linear time.)

lorzsa—.


http://www.normalesup.org/~robert/pro/publications/slides/2022-09-Bordeaux-SIDH.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2022-09-Bordeaux-SIDH.pdf

The embedding lemma

Meme: funeral
@ SIDH

@ 2011-2022
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Isogeny diamonds

o f1 : A — Ay ny-isogeny,f| : Ay — Bnl-isogeny,f, : A — A, ny-isogeny,f; : A, — B
ny-isogeny,f; o fo = fi o fi.

AL)Al
N
A, L5 B
0
o F= h fl)wan(nl-‘_n2 )—lsogen
(fz f 0 ny + 1, g

@ Isogeny diamonds: If n] = 1, (son; = ny), Fis an N-isogeny where N = 117 4 1, ([Kani] for
g=1IRIforg > 1)
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Algorithms for N-isogenies

Jacobian model:
@ Vélu's formula for elliptic curves [Vélu 1971]

@ [Kohel, 1999]: Vélu's formula from equations of K;

@ [Richelot, 1836,1837] 2-isogenies between Jacobians of genus 2 hyperelliptic curves, [Mestre
2013] for general g;

@ Various explicit formula for small degree isogenies in dimension 2;
@ [Smith 2008]: 2-isogenies for quartic genus 3 curves;

@ [R.2007]: the analog of Vélu's formula for genus 2 does not seem to work?
@ [Couveignes-Ezome (2015)]: Algorithm in 5(Ng) in the Jacobian model (complete algorithm for

g = 2, [Milio 2019] for g = 3).
@ Restrictedtog < 3.
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Algorithms for N-isogenies
Jacobian model:

@ Vélu's formula for elliptic curves [Vélu 1971]

@ [Couveignes-Ezome (2015)]: Algorithm in 5(N3) in the Jacobian model (complete algorithm for
g = 2, [Milio 2019] for g = 3).

Theta model:

@ 2-isogenies: duplication formula for theta functions [Riemann ?]

@ [Mumford, 1966] isogeny formula, [Koizumi 1976, Kempf 1989] product formula (requires theta
constants of higher level)

o [Lubicz-R. 2012]: {2-isogenies between abelian varieties in O(£8) and 88+1)/2 gt roots.
This corresponds to taking an {-isogeny, and then each choice of roots prolongs this {-isogeny into a different Bz-isogeny (we getall Ez-isogenies
whose kernel stays of rank ), see also [Castryck, Decru, Vercauteren] work on radical isogenies.

o [Cosset-R. (2014)]: l-isogeniesin O(88) ifd =1 (mod 4), 0(¢%8)if¢ = 3 (mod 4);

@ [Lubicz-R. (2022)]: An N-isogeny in dimension g can be evaluated in linear time O(N?)
arithmetic operations in the theta model given generators of its kernel.

@ Warning: exponential dependency 28 or 48 in the dimension g.

@ [Lubicz-R. (2015)]: isogenies from equations of the kernel

@ [Dudeanu, Jetchey, R., Vuille (2022)]: cyclic isogenies for abelian varieties with RM. -
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Polarised abelian varieties over C

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V' /A with
@ A complex vector space V of dimension g (linear data);
o A Z-lattice A'in V (of rank 2g) (arithmetic data);

@ A polarisation (quadratic data)

Example

A vector space V =~ C8 is described by a basis;

Alattice A = QZ3 & Z3 is described by a period matrix ();

The quotient C8 /A is a torus. It is not an abelian variety in general!

The moduli space of torus is of dimension g2.

IfQ e ﬁg,H = Im QL is a principal polarisation.

The moduli space of abelian varieties is of dimension g(g + 1) /2.

@ NB:when ¢ = 1 both spaces have dimension 1.
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Polarisations

A = V /A.Apolarisation on A is:
@ An Hermitian form Hon V with ImH(A,A) C Z;
@ Asymplectic form E on Hwith E(A,A) C Z:E = ImH
@ A (symmetric) morphism @ : A — A= by:z—- H(z,) € A= Hom&(V, C)

@ (The algebraic equivalence class of) a divisor J) [Apell-Humbert].
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Divisors and theNéron-Severi group

@ To work algorithmically with an abelian variety, we need (projective) coordinates uy, ..., U,;
@ Apoint P € Ais represented by its coordinates (17 (P) : -+, u,, (P)).

@ Coordinates are given by sections of (very ample) divisors;

@ Linearly equivalent divisors 4 =~ J)' give isomorphic coordinates;
@ Pic(A): divisors modulo linear equivalence.

o I ~ D' arealgebraically equivalent < 4" is linearly equivalent to a translate of J), ie
D' =t D (if Dis ample);

D' =t D = D' ~ Dand the converse is true if @, is surjective, ie the polarisation is non degenerate.

@ Algebraically equivalent divisors = same coordinates up to translation;
@ Néron-Severi group NS(A) = Pic(A)/ Pic® (A): divisors modulo algebraic equivalence.

More precisely: NS (A) is the fppf sheaf associated to the functor Pic(A)/ PicO(A). Here Pic? (A) is the connected component of the Picard
group, it corresponds to divisors algebraically equivalent to 0, or equivalently to divisors Dy such that d>D0 =0,ietpDg = Dy forall P € A.

So an algebraic class A = [1)] may be rational with no representative 1) defined over k. This does not happens when k = ]Fq, representatives

form a torsor under A = Pic0 (A), and this torsor is trivial, ie has a section, since H! (]Fq, g) =0.

In general, the pullback 1)’ = (1 x A)* P of the Poincarre sheaf satisfy @ j)r = 21,50 2\ is always represented by a rational divisor.
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Facets of polarisations

Polarisation A =
@ adivisor @ up to algebraic equivalence;

@ a(symmetric) morfhism)x cA - A
A=Pg:A - AP t,0-0.
KerA =~ (Z&/DZ8)? withD = (dq, ... ,dg),d; | diyq:As of type (dy, ..
deg®:=T]d,

@ apairing TyA x TyA — Z(1), (P,Q) = ey (P,Q) = es(P,AQ);



Facets of polarisations

Polarisation A =
@ adivisor @ up to algebraic equivalence;

@ a(symmetric) mor/p\)hismA 1A - A,
A=dg:A—- AP t,0-0.
KerA = (Z8/DZ8)? with D = (dy, ..., dg), d; | dipq:As of type (dy, ..
deg@ = Hdl

@ apairing TyA x T)A — Zy(1), (P, Q) = ¢, (P,Q) = e (P,AQ);

The polarisation A is
o Non degenerateif A : A — A is an isogeny;
@ Positiveif A = @ g and @ is ample (= non degenerate).

@ Principal if A is (positive and) an isomorphism.



Facets of polarisations
Polarisation A =
@ adivisor ® up to algebraic equivalence;
@ a(symmetric) morphismA : A — A.
A=dg:A— AP~ t50-0.
KerA = (Z8/DZ8)? with D = (dy, ..., dg), d; | d;y1:Als of type (dy, ..., dg).
deg® :=T]d,.
@ apairing TyA x TyA — Zy(1), (P, Q) = ey (P, Q) = es(P,AQ);

The polarisation A is
o Non degenerateif A : A — A is an isogeny;
@ Positiveif A = P g and @ is ample (= non degenerate).
@ Principal if A is (positive and) an isomorphism.

Example
M 0 0 D
If H polarisationon A = V/A: H ~ A ERE=ImH ~ (—D O) with
0 Ag
dy 0
D = onA,dy | dy- | dg, Ker @ =~ A+/A = (Z8/DZS)2.
0 d
8

@ Hnondegenerate & A; # 0;

Hoosie = 0> 0




Facets of polarisations
Polarisation A =
@ adivisor ® up to algebraic equivalence;
@ a(symmetric) morphismA : A — A.
A=dg:A— AP~ t50-0.
KerA = (Z8/DZ8)? with D = (dy, ..., dg), d; | d;y1:Als of type (dy, ..., dg).
deg® :=T]d,.
@ apairing TyA x TyA — Zy(1), (P, Q) = ey (P, Q) = es(P,AQ);

The polarisation A is
o Non degenerateif A : A — A is an isogeny;
@ Positiveif A = P g and @ is ample (= non degenerate).
@ Principal if A is (positive and) an isomorphism.

Coordinates: if ® is an ample divisor:

o dimH%(@) = ©%/¢! = deg ©,"degree” of the polarisation (Riemann-Roch).
Soif @ is a principal polarisation, dim HO(N®) = NS.
More generally, if D is ample, dim HO (D) = H?:l d; = degD = deg KP}O/Z: the degree of the isogeny @ ) associated to £ is the square of
the “degree” of 1.

@ 3@ isvery ample (Lefschetz).

@ 2@ descendsto K4 = A/ + 1if @ s a principal polarisation, and is very ample there if @ is
indecomposable.

@ 2@ isvery ample if it is base point free;
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Jacobians

o Ccurveofgenusg.

e Jac(C) ~ PicO(C) its Jacobian.

e Jac(C) ~ C'®

@ O¢ ={degenerate divisors on C} (the Theta divisor) is a principal polarisation on Jac(C).
Ex:wheng = 2,C =~ O:C C Jac(C).

@ Cis determined by (Jac(C), ®¢) (Torelli)

They have the same field of moduli, but if C is not hyperelliptic the field of definition of (Jac(C), @) can be smaller than the field of definition
of C.
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Jacobians

Example
e C/C curve of genus g;
o V the dual of the space VV = HY(C, Q}:) of holomorphic differentials of the first kind on C;
o A~ H,(C,Z) C V the set of periods.

The Abel-Jacobi map < is the integration of differentials on loops: HO(C, Olc) xHq1(C,Z) » C,(w,7) — fy w; itinduces
@ : Hy(C,Z) » Hom(HO(C,QL), C) and A is the image of ®.
By Poincare-Serre’s duality: Alb(C) = HO(C,QIC)V/Hl (C,Z) ~ H%C,0c)/HY(C, Z) ~ HL(X,0c") ~ Pic%(C) = Jac(O).

@ Theintersection pairing Hy (C, Z) x H{(C, Z) — Z gives a symplectic form E on A;

@ H the associated Hermitian form on V (via the integration pairing):
H*(wl,W2) = fC Wy N\ Wy;

o (V/A,H) isaprincipally polarised abelian variety: the Jacobian of C.
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Elliptic curves vs abelian varieties

E elliptic curve
o D ~ deg D induces an isomorphism NS(E) = Z;
@ [(0g)]: unique principal polarisation
o Ex~EviaP —~ (P) — (0g)

o I'(0Og) = (1), I'(2(0g)) = (1,x):embeddingof E/ + 1,
T (3(0g)) = (1,x,y): Weierstrass model y? + a1xy + azy = x> + ayx> + a,x + dg.

The same principally polarised abelian variety A (ppav) could be, depending on its polarisation ® 4:
@ A product of elliptic curves;
@ Non decomposable;
@ The Jacobian of an hyperelliptic curve;
@ The Jacobian of a non hyperelliptic curve (g > 3);
@ Nota Jacobian (g > 4)

lorzsa—.
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Isogenies and dual isogenies
@ f : A — B morphism < algebraic map + group morphism
(it suffices to check f (0,4) = Op by rigidity);
@ fisogeny < Ker ffinite + surjective
< dimA = dim Band surjective < dim A = dim B and Ker ffinite;
o Divisibility: g1 of = gpof = g1 = o,
feg1=fegr=81=82
o Dualisogenyf : B = Pic’(B) — A = Pic’(A),f(Q) = f*Dy.
o Bof)=fe%
@ Pairings: .
0-K—-AL B 0inducesd » K - B L5 A - 0with K =~ Hom(K, G,,).
Apply Hom(-, G,,,) and use A ~ Ext! (A, G,)
° e KxK - G,,, Weil-Cartier pairing
o f=[llew,: All] x A[l] - My Weil pairing;
@ Compatibility of pairings and isogenies: on T¢A x T, B,

ef(x%,y) = eg(f(x),y) = ea(x,f ().

° Biduality:A2 ~ A,fzf(canonically).

By the universal property of A = PicO(A), id : A — A corresponds to the Poincaré sheaf P on A x A, and P is “symmetric’,

lorzsa—.
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Isogenies and polarisations

e f : A — Bisogeny.

@ vq,...,0,, coordinates on B given by sections of Dg.

@ Then u; := v; o fare coordinates on A given by sections of D4 := f*Dp.
o deg Dy = degf - deg Dy.

o f:(A,Ay) — (B,Ap) isogeny of ppavs.
@ If A4 isinduced by © 4 (resp. Ag by @p), a model of A (resp. B) will be given by coordinates of
m@ 4 (resp. mOg), wherem = 2,3,4 ... is small.

@ We want to relate @ 4 with f* @y (or relate m® 4 with f*m©Op).

lorzia—.



N-isogenies

Definition
Anisogenyf : (A,A4) — (B, Ap) between ppavis an N-isogeny if f*@p ~ NO 4. J

® P, (P) = t3f*Op — [*Op = f*(t}p)Op — Op) = f* P, (f(P)) = (f o Pg, o )(P);
o f*Ap:=folpof
@ fisan N-isogeny & f*Ag = NA,;
ALy B
[

A+—B
!



N-isogenies

Definition
Anisogenyf : (A,A4) — (B, Ap) between ppavis an N-isogeny if f*@p ~ NO 4. J

o Pr,(P) = tpf*Op — f*Op = f*(t; p)Op — Op) = f*Pe,(f(P)) = (f o o, o f)(P);

o f*Ap:=folpof
@ fisan N-isogeny & f*Ag = NA,;

@ Contragredient isogeny:f: AglfAAB :B - A;

AL
1
A

Ud’%cd
o)

o fisan N-isogeny & ff = Ne ff = N.

Example
Anisogenyf : E; — E, between elliptic curves is automatically an N-isogeny where N = degf. ]




N-isogenies and isotropic kernels

@ Compatibility with pairings:on TyA x T¢B, e, . (f (x),y) = €, , (x,f(y)).
o f:(A,Ay) = (B,Ap) N-isogeny =Ker fis maximal isotropic in A[N for the Weil pairing
o Kerf = Imf | B[N], Ker fis dual to Ker f

@ Conversely, if K C A[N] maximal isotropic, NA 4 descends to a principal polarisation on
B=A/K
The pairing CA LN = Cdy )
admits a lift K in G(N® y),s0 NO 4 descends to a divisor @g on B = A/K.The degree relation shows that deg @ = 1 if K is maximal.

on A[N] x A[NTisalso the commutator pairing of Mumford’s theta group G(N @ 4 ). If K is isotropic, it

o Iff : (A,A4) — (B,Ap) has maximal isotropic kernel in A[N], NA 4 descends to a principal
polarisation A; on B.

@ Butwe may have A # Ap.
° f o f = Nisastronger condition that ensures compatibility of f with A .
o fisan N-isogeny < ¢, (f (x),f(y)) = ey, (x, )N on TyA x T,A.

lorzsa .



Properties of contragredient isogenies
Biduality:f:f.

Composition:f : A — BaN-isogeny, g : B — CaM-isogeny,gof : A — C.
ogi:fog:C—)fl;
o (gof)o(gof) :fogogoszM.
@ The composition g o fis an NM-isogeny.
@ Conversely, if ¢ o fis an N-isogeny and f (resp. §) is an M-isogeny, then g (resp. f) is an
N /M:-isogeny.
@ An N-isogeny is always the composition of {;-isogenies for {; | N.

Product polarisation:
o (A,A4) x (B,Ag) = (AxB,A4 xAg)whereAy x A : AxB — A x Bisthe product.

.p=(Z fi):<AxB,AAxAB>—><CxDrAc”D>-
Oﬁ:<[i Z)CXD_’AXB

b
e F=|" i :CxD - AxB.

lorzsa—.
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Polarisations and symmetric endomorphisms
o (A,Ap) ppav

¢ e End’ (A) = Ah o ¢induces a bijection between endomorphisms ¢ invariant under the
Rosatti involution ($ = ¢) and polarisations: NS (A) =~ End’ (A).

LetB € End/\(A),fis a B-isogeny ifff =B.

Iff : A — Bisanyisogeny, A4, Ag principal polarisations, then fis a B-isogeny where :ff
In particular Ker fis maximal isotropic for the eg pairing on A[B].

Example

@ Via the product principal polarisation (A x B,A4 x Ag),F = (Z ;) is symmetric (F = F)iff
d=ad=db=c
@ NS(AxB) = NS(A) x NS(B) x Hom(A, B).

@ An f-isogeny of abelian varieties has kernel of type (Z/{Z)S.

@ An {2-isogeny of elliptic curves can have kernel of type Z /02 7Z or Z /{Z x Z/(Z.

o An {2-isogeny of abelian surfaces can have kernel of type (Z/82Z)2 or
ZZ x ZJVZ x Z./07Z or (Z/UZ)4.

o Ifan abelian surface (A,A4) has RM End™4 (A) = Ok areal quadratic orderand £ = B¢, a L
B-isogeny will have cyclic kernel Z /¢Z.

Damien Robert Isogenies 25/35
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Algorithms for N-isogenies (overview)

@ Input: generators Py, ..., Pg of K, a maximal isotropic kernel for A[N], a point P € A given by
coordinates u;, where 1; are sections of m@ 4.

@ Output: A description of B = A/K, and the coordinates v;(Q) where Q = f (P), where v; are
sections of m@p (B adescentof NO,4 by f : A — B).

@ Construct D = f*mOg on A.
This is a divisor invariant by translation by K and algebraically equivalent to Nm® 4. The

converse is true by descent theory.

@ Construct the coordinates v; Ofon A.
These are sections of 1) invariant by translation on K, and the converse is true:

I'(B,m@®pg) ~T(A,f*mOg)K.

@ Evaluate these coordinates on P: v;(Q) = v; o f (P).

lorzsa—.



Vélu's formula

Weierstrass coordinates x, i on E = sections of 3(0g). (x is a section of 2(0g), iy of 3(0g).)
K maximal isotropicin E[N].

D = ZPeK t5(3(0g)) = ZPeK 3(P) is certainly invariant by K;

So D descends to 3(0g/) on E' = E/K;

X,y are sections of ) but are not invariant by translation;

X(P) = ZTeKX(P +T)and Y(P) = ZTeKY(P + T) are sections of J) invariant by

translation;

They descend to Weierstrass coordinates on E’;
This is Vélu's formula (up to a constant).

Cost: O(N).

Recover equations for E’ via the formal group law.

lorzia—.



Revisiting Vélu's formula

Recall: D = ZPeK t53(0g);

We want to construct sections U of I that are of the form U = v o f, v a coordinate on E'.

Equivalently: U is invariant by translation by K.
In particular: div U is a divisor invariant by translation by K such that divU + 1) > 0.

If € = divf¢ is a principal divisor invariant by translation, fc may not be invariant by translation!

Lemma

Let& =3 a; Y 1o (Pi + T) = divfgaprincipal divisor and Py := 3", a;P;. Then f is invariant by
translation iff Py € K.

Proof.
IfT € K fe(x + T) /fe(x) = ef(T,f(PO)) = en (T, Py).Sofeisinvariantby K & Py € E[{] is
orthogonalto K & Py € K & f(Py) = 0. O

lorzsa—.



Revisiting Vélu's formula

@ Recall: D = ZpeK t53(0g);

@ We want to construct sections U of I that are of the form U = v o f, v a coordinate on E'.
@ Equivalently: U is invariant by translation by K.

@ In particular: div U is a divisor invariant by translation by K such that divU + 1) > 0.

o If & = divfgis a principal divisor invariant by translation, fg may not be invariant by translation!

Lemma

Let& =3 a; Y 1o (Pi + T) = divfgaprincipal divisor and Py := 3", a;P;. Then f is invariant by
translation iff Py € K.

Example
° Take Q1,Qr EE(K), E =3 1 ((Q1+T)+ (=Q1 +T) = (Q +T) = (=Qx + 1)),

x—x(Q1+T) . -
o fe=TIlrex = X(Q;T) (convention: x — O := 1).
X—f(Q1)

X—f(Q2)
@ When Q2 = Of, we recover formula from [Costello-Hisil, 2017], [Renes, 2017].

@ fgisinvariant by translation and descends to on E/K, X a Weierstrass coordinate.

@ Used by the sqrtVelu algorithm!

v,




Vélu's formula in higher dimension?

(A, ©4) ppav, K maximal isotropic in A[N]

W= Y pek tp(mO,) is certainly invariant by K;

BUtQ ~ NngA;
So it descends to a divisor ~ NS~ 1m@p!

Our coordinates have degree too big (unless g = 1).

If uis a section of m@ 4, U(P) = ZTEK u(P + T) is certainly a section of {) invariant by K.

lorzia—.



The theta group

Nm® 4 is not invariant by K

So it does not descend to m@p

But it is linearly equivalent to &, a divisor invariant by K: D = Nm® 4 + divg.
Sodiv(g/t7g) = thNmOy — NmO .

Goal: construct 4. Equivalently construct g

Find functions g7 such that divgr = txNm®, — Nm@® 4

Try to glue these functions into a global function g (cocycle condition):

gr(P) =g(P)/g(P+T).

Theta group: GINm®,) = {(T,87) | divgr = tsNm®, — Nm® 4}
Gluing condition & K — G(Nm®,), T ~ (T,gr) is a group section;

Twisted trace: if U is a section of Nm@® 4, U’ (P) = zTngT(P)U(P + T) is a section of 1)
invariant by K, hence descendsto B = A/K.

lorzsa—.



General framework for an N-isogeny algorithm

@ Find functions g7, divgr = t7:Nm@®, — Nm@® 4 foreach T € K, that glue together.
@ Use symmetry: @ 4 symmetric divisor, g1 symmetric.
@ Unique choice if N is odd, two choices for each T when N is even = annoying!
Twisted Vélu's formula: if K = (T), X(P) = ¥;c Nz CAX (P + T), Y(P) = X i Nz SN Y (P + T).
Eg:if Niseven, X(P) = Ziez/NZ(—l)iX(P + T') descends to a section on the symmetric divisor 2f (W), W € E[2] — K.
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General framework for an N-isogeny algorithm

@ Find functions g7, divgr = tHNm®, — Nm® 4 foreach T € K, that glue together.

Q Generate sections U of Nm® 4.
@ The multiplication map I'(m;©@4) @ I'(m>,® 4) — I'((mq + my)O 4),u @ v — UV is surjective if
my = 3,my > 2 [Mumford, Koizumi, Kempf].
Q X, A(AmO®y ®Py)I'(A mOy ® P_y) =T(A, (my +my)O 4) Mumford] for my, m5 > 0.
So we can always generate all sections of I'(Nm® 4) using multiplications of sections of
I'(m® ), eventually using also translations if m < 2.
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General framework for an N-isogeny algorithm

@ Find functions g7, divgr = t;Nm®, — Nm@O 4 foreach T € K, that glue together.
@ Generate sections U of Nm® 4.
@ Take the twisted traces of the sections U.

@ This gives coordinates (section of m®g) on B

@ More work required to recover a suitable model of B (depends on the model).
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General framework for an N-isogeny algorithm

@ Find functions g7, divgr = tHNm@®, — Nm® 4 foreach T € K, that glue together.
@ Generate sections U of Nm@ 4.
©Q Take the twisted traces of the sections U.

@ This gives coordinates (section of m@®pg) on B

@ More work required to recover a suitable model of B (depends on the model).

@ Summary [R. 2021]: from an effective version of the Theorem of the square:
t;?+Q@A + @A = t;?@A = t*Q@A = diVﬂP’Q,

there is a general framework to
@ Compute the addition law;
@ Compute the Weil and Tate pairings;
@ Compute isogenies.
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Isogenies in the theta model
@ Analytic theta functions:

0[9](zQ) = Z Tt (@) Q(n+a)+27i (n+a) (z+b) a,b € QS;
nezs
Universal
Work with theta functions of level m = 2 or m = 4:m¢ coordinates.
Rationality: rational I" (m, 2m)-symplectic structure.
N-isogenies in O(NS).
Implementations in Magma (AVIsogenies) and Sage (ThetAV)

@ General framework for B-isogenies but requires bootstrapping (still more work needed!).
@ Theta functions 64, for the product theta structure on A x B are simply product of theta
functions 64 - 0p.

N 0. e
° ( 01 Nz)"sogemes in O(N§NS).

@ Moduli:x(t) =[]0 [ Zg ] () describes interesting modular locus: the locus of product of
elliptic curves when ¢ = 2 (1), the locus of products and Jacobians of hyperelliptic curves
when ¢ = 3 (x1g).

The modular form g(A, w 4) = n(B,wB) X10(B, wp) of weight 10063 + €2 + 0 + 1) (whose product is across all normalised {-isogenies)
describes the locus Hez of {-split abelian surfaces (the Humbert surface of discriminant ). Expressed as a polynomial P in terms of

W4, Y6, X10, X12: Pis of size 5(@12) and can be computed in quasi-linear time by evaluation-interpolation. Checking if (A, @A)/]Fq iS /0
{-split can then be done by evaluating P(A, @ ) intime O((’,9 log q), or directly via the analytic method in 5(83 (logqg + dz) ).



Isogenies in the Jacobian model

o 1:C - Jac(C);

e If gisa function on C, it induces a function £, on Jac(C) via (1,8) (Y n;(P;)) = [ g(P)™.

@ All functions on Jac(C) can be built from £, and determinants;

@ NB: for pairings computations, the functions ¢, g are enough!

@ N-isogenies between Jacobians in 5(Ng) when g = 2 [Couveignes-Ezome 2015]and g = 3
[Milio 2019]

@ Implementations in Magma.

The extension to product of Jacobians should not be too hard.
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Algorithms for isogenies

Better algorithms for B-isogenies;
O(N8/2)-algorithms?
Batch isogeny evaluation?

More compact models of abelian varieties?

Evaluating an isogeny on a point is only a small topic of algorithms related to isogenies: modular
polynomials, explicit Kodaira-Spencer isomorphism, differential equations, ...
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