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Key exchange on a (commutative) graph




Key exchange on a (commutative) graph
Alice starts from ‘a; follows the path oo1110, and get‘w"




Key exchange on a (commutative) graph
Bob starts from ‘a; follows the path 101101, and get’l’




Key exchange on a (commutative) graph
Alice starts from I, follows the path oo1110, and get'g’




Key exchange on a (commutative) graph
Bob starts from ‘w/, follows the path 101101, and get‘g’




Key exchange on a (commutative) graph
The full exchange:




Key exchange on a (commutative) graph
Bigger graph (62 nodes)
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Key exchange on a (commutative) graph
Even bigger graph (676 nodes)
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Isogeny graphs for key exchange

® © o e

Needs a graph with good mixing properties:
A path of length O(log N) gives a uniform node = Ramanujan/expander graph.

The graph does not fit in memory.

Needs an algorithm taking a node as input and giving the neighbour nodes as output.

Isogeny graph of ordinary elliptic curves E/]Fp [Couveignes (1997)], [Rostovtsev-Stolbunov
(2006)]

Graph of size = ,/p.
Torsor (principal homogeneous space) under the class group CI(End(E)).
Commutative graph!

Hidden shift problem solvable in quantum subexponential L(1/2) time for an abelian group
action via Kuperberg's algorithm.

SIDH: supersingular elliptic curve Diffie-Helmann [De Feo, Jao (2011)],[De Feo, Jao, Pl{it (2014)]

Use the isogeny graph of a supersingular elliptic curve E over Isz.
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Isogeny graphs for key exchange

Meme: Gru’s plan
@ Isogeny based key exchange
@ Use supersingular curves
@ The graph is non commutative

@ The graph is non commutative
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SIDH in practice
o p=23"—1.N, = 2% Ny = 3", N prime to Nj.
o Eg:y? = x3 + x (supersingular whena > 2) or Ej : y? = x3 + 6x% + .
o Eg[N4] = (P4, Qa) Eo[N] = (Pp, Qp).
o Alice’s secret isogeny: ¢ 4 of kernel (P4 +5,Q4).
@ Bob's secret isogeny: ¢ of kernel (P + spQp).

]

Eoy — Ep

\L(/’ a \L(PV/\

¢
Ex — Eap

o E,pisthe shared secret.
® ¢y o g = ¢ppopy:Ey— E,phaskernel Ker ¢4 + Ker ¢p.

o ¢/, haskernel (¢pp (P4 +54Q4)), P has kernel (P4 (Pp + s5Qp)).
o Alice publishes: Py = ¢4 (Pg), Qp = ¢4 (Qp).

Bob publishes: P)y = ¢pp(P), Q) = ¢p(Qa). ( )
o Ker ¢!y = (P, +54Q)), Ker ¢ = (P + sgQp).
@ Key exchangein

(Via fast smooth isogeny computation [De Feo, Jao, PI(it (2014)] and Velusqrt [Bernstein, De Feo, Leroux, Sn}ith
(2020)]).



SIDH in practice

o p=23"—1.N, = 2% Ny = 3", N prime to Nj.

o Eg:y? = x3 + x (supersingular whena > 2) or Ej : y? = x3 + 6x% + .
EoINAl = (P4, Qa) Eo[Ng] = (P, Qp)-
Alice’s secret isogeny: ¢ 4 of kernel (P4 +5,Q 4).

@ Bob's secretisogeny: ¢ g of kernel (Pg + sgQp).

@ Key exchange:
Ey —2% Ey
loa o
LN

o E,pisthe shared secret.
° ¢ opp=¢pods:Eg = Eyphaskernel Ker ¢4 + Ker ¢p.

¢!y has kernel (pp (P4 +54Q4)), ¢j has kernel (¢ o (Pg + spQp)).
Alice publishes:
Bob publishes: o )
Ker ¢y = (P)y +54Q/). Ker ¢ = (Pg + 55Qp).
Key exchange in
(Via fast smooth isogeny computation [ ]and Velusqrt [
1.
~ DamienRobert  Higherdimensionalisogenies i/
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SIDH in practice

p =23 —1.N, =2% Ny = 3" N, prime to Np.
Ej : y? = x3 + x (supersingular whena > 2) or Ej : y? = x> + 6x2 + x.
Eo[Nal = (P4,Qa) Eo[Ng] = (Pg, Qp).

o Alice’s secret isogeny: ¢ 4 of kernel (P4 +5,Q4).
@ Bob’s secret isogeny: ¢ of kernel (P + spQp).
@ Key exchange:

Iy — 2 fon

\L¢A . \L‘P%

Eq —5 Eap

o E,pisthe shared secret.
° ¢ opp=¢pods:Eg = Eyphaskernel Ker ¢4 + Ker ¢p.

o ¢/, haskernel (¢pp (P4 +54Q4)), ¢p haskernel (P4 (Pp + spQp)).
o Alice publishes: P = ¢4 (Pp), Qp = ¢4 (Qp).

Bob publishes: P’y = ¢p(P4), Q) = ¢p(Q4). (Torsion points”)
Ker ¢y = (P, +54Q). Ker ¢ = (P + 5505).

Key exchange in

(Via fast smooth isogeny computation [l ]and Velusqrt [

1.
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SIDH in practice
o p=2%3_1.N, =29 Np = 3" N, prime to Np.
o Ey:y? = x3 + x (supersingular whena > 2) or E : y2 = x° + 6x2 + x.
o Eg[Nal = (P4, Qa) Eo[Ng] = (Pp, Qp).
o Alice’s secret isogeny: ¢ 4 of kernel (P4 +5,Q4).
@ Bob’s secret isogeny: ¢ of kernel (P + spQp).
@ Key exchange:

Iy — 2 fon

\lj’A \L‘P%
¥,
Ex — Eap
o E,pisthe shared secret.

° ¢ opp=¢pods:Eg = Eyphaskernel Ker ¢4 + Ker ¢p.

o ¢/, haskernel (¢pp (P4 +54Q4)), ¢p haskernel (P4 (Pp + spQp)).

o Alice publishes: P = ¢4 (Pp), Qp = ¢4 (Qp).
Bob publishes: P’y = ¢p(P4), Q) = ¢p(Q4). (Torsion points”)

o Ker¢), = (P +5,Q) Ker ¢y = (Pg + s5Qp).

@ Key exchange in 5(|0gNAE}‘/2 + IogNHEyZ)
(Via fast smooth isogeny computation [De Feo, Jao, Pliit (2014)] and Velusgrt [Bernstein, De Feo, Leroux, Smith -
(2020)]).



Isogeny evaluation and interpolation

@ Evaluation: given an N-isogeny fand a point Q € E(Fp, evaluate f (Q).
@ N-evaluation problem:fis an N-isogeny = Ker fis of degree N.

@ Interpolation: given a tuple (P, f (P)), recover f.

@ (N, N")-interpolation problem: given fan N-isogeny and P a point of N'-torsion, from
(P,f(P))andQ € E(Fp, evaluate f (Q) (N" = N).

@ Weak interpolation: we are given (Pq,f (P1)), (P, f (P,)) for (P1, P,) a basis of E[N].

@ SIDH: the key exchange uses the N 4 and N evaluation problems

@ If we can solve the weak interpolation problem when N = N4, N’ = Np are smooths in
polylogarithmic time, we can break SIDH.
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Isogeny evaluation and interpolation

Meme: Anakin
@ | have a nice key exchange protocol
@ You don't use torsion points, right?
° ...

@ Right?
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Evaluation

° f(x,y) = (%,cy (%))

[Vélu]: given the kernel Ker f : {P € E | h(x(P)) = 0} of degree N, can evaluate f (Q) in
O(N) operations in IFq.

Velusqrt: in the special case Ker f = (T), T € IFq, can evaluate f (Q) in O( \/ﬁ) operations in
F,.
q

Linear time.

If N is smooth, f can be decomposed into a product of small isogenies.
Evaluation in O(log N{y) or O(log N+/ty).

Logarithmic time.

The decomposition cost is quasi-logarithmic if Ker f = (T) with T € F; polylogarithmic if N
is powersmooth; but linear if T lives in a large extension.
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Interpolation

Given (P, f (P)), P a point of order N’ > 2N, we can recover the rational function % in O(N)
by interpolating the points (x(mP), x(mf (P))),m =1,...,N' = 1.
Can evaluate on Q directly.

Special case whenp > 2N:P # 0 € TOE (E), a“fat point” of order p =>solve a differential
equation [Elkies].

Quasi-linear time.

Faster algorithm when N’ is smooth?
Yesiff (P) = 0.ThenN = N’ and Kerf = (P).
If N = N, the weak interpolation problem reduces via the DLP to the N-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.

No reason to expect a fast algorithm when N is prime to N.
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Interpolation

Given (P, f (P)), P a point of order N’ > 2N, we can recover the rational function % in O(N)
by interpolating the points (x(mP), x(mf (P))),m =1,...,N' = 1.
Can evaluate on Q directly.

Special case whenp > 2N:P # 0 € TOE (E), a“fat point” of order p =>solve a differential
equation [Elkies].

Quasi-linear time.

Faster algorithm when N’ is smooth?
Yesiff (P) = 0.ThenN = N’ and Kerf = (P).
If N = N, the weak interpolation problem reduces via the DLP to the N-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.

' fostataori N A
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Revisiting isogeny evaluation

@ Can an N-isogeny be evaluated faster than linear time when N has a large prime factor?
o Iff =[l](soN = £2): double and add in O(log () to evaluate {Q.

o F:E? - E2,(Py,P,) = (Pq + Py, Py — Py) isa2-isogeny in dimension 2.

@ Double: F(P,P) = (2P,0).

o Add:F(P,Q) = (P+Q,P - Q).

@ We can evaluate {Q as a composition of O(log () evaluations of F, projections E2 - Eand
embeddings E — E2.

@ Double and add on E = 2-isogenies in dimension 2
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Polarisations on an abelian variety

If A is an abelian variety, a polarisation is:
@ a(symmetric) isogeny Ay : A — A:
@ an (algebraic equivalence class) of an ample divisor @ 4;
@ an (anti-symmetric) pairing Tg(A) x Ty(A) - G,,;;

@ projective coordinates A --» P/ (up to translation)

Principal polarisation=A 4 is an isomorphism: principally polarized abelian variety (ppav)
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N-isogenies

o f:(AAy) = (B,Ap)isan N-isogeny between ppavif f*Ap = NA 4.

@ Dual isogeny:f: Bo A

@ Contragredient isogeny / Dual with respect to the principal polarisations:

f=AA3:B-> A

A—LsB
A P
A(TB

@ fisan N-isogeny & ff = Ne ff = N.
o Kerf = Im (f | BIN]).
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N-isogenies and isotropic kernels
o f:(A,Ay) = (B,Ag) N-isogeny =Ker fis maximal isotropic in A[N] for the Weil pairing

@ Conversely, if K C A[N] maximal isotropic, NA 4 descends to a principal polarisation on

B=A/K

@ An elliptic curve only has one principal polarisation (NS(E) = Z).
@ Sof : E;y —» Ejisan N-isogeny < #Kerf = N.

@ Butin higher dimension there may be many non equivalent principal polarisations.

Example (Superspecial abelian surfaces)

A = E? E/Isz supersingular. It admits = p2/288 product polarisations (E; x Ez,/\El X /\EZ)
where E;, E, are supersingular and ~ p3 /2880 indecomposable polarisations (Jac C, ©) where C
is an hyperelliptic curve of genus 2.

o Iff : (A,A4) — (B,Ap) has maximal isotropic kernel in A[N], NA 4 descends to a principal
polarisation A on B.

@ Butwe may have A # Ap.

° f o f = Nisastronger condition that ensures compatibility of f with Ap. P



Algorithms for N-isogenies

[Cosset-R. (2014), Lubicz-R. (2012-2022)]: An N-isogeny in dimension g can be evaluated in linear
time O(N¢) arithmetic operations in the theta model given generators of its kernel.

@ Warning: exponential dependency 28 or 43 in the dimension g.

[Couveignes-Ezome (2015)]: Algorithm in O(N9) in the Jacobian model.

Not hard to extend to product of Jacobians.

Restrictedto g < 3.
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Composition and product polarisations

@ Composition:f : A — Ba N-isogeny, g : B — CaMe-isogeny,gof : A — C.
S oS TNy

° g:}':fog :C - A

@Po@gof)=fogogof =NM

The composition g o fis an NM-isogeny.

@ Conversely, if g o fis an N-isogeny and f (resp. g) is an M-isogeny, then g (resp. f) is an N / M-isogeny.

Product polarisation: (A,A4) x (B,Ag) = (AxB,A4 xAg) where Ay xAgp: AxB — AxB
is the product.

Ee (“ 2) S (AxB,Ag xAp) = (CxD,Ac xAp).

):CxD—u@xB.

[+
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()
lan}
I
N
o, W
[, S

):CxD—>A><B.
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Kani's lemma [Kani (1997)], [R. (2022-08)]

@ «: A — Baua-isogeny, : A — Cab-isogeny.

e &' : C - Daua-isogeny, B’ : C - D ab-isogeny with 8'a = &’ B:
A—23B
A
c%sD

@ NB:Ifa prime to b, the pushforward &', B of , B by j3,  satisfy these conditions.

.F:("‘ 'i):AxD—»BxC.
_ﬁ o

.F:(”‘, _ﬁ):Bxc—»AxD, FF=a+b.

B«

o Fisana + b-isogeny with respect to the product polarisations.
o KerF = {@(P),p'(P) | P € Bla + b]} (ifais prime to b)
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Revisiting the interpolation

o Ifweknow f(E[N']),and we canfindam = N' — N isogeny « that we can evaluate on E[N'],
we recover Ker F.
@ We can then evaluate F, hence fat any point: F(P,0) = (a(P), —f (P)) = F(P,0).

@ This evaluation is fast if N’ is smooth.

Examples:
@ m smooth [Maino-Martindale]
o m = 2takea = [L];
o End(E) has an efficient endomorphism of norm 11 [Castryck-Decru].
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The general case

a a\ . . o .
o n= ( al u2> is always an endomorphism of norm a% + a% on EZ (Gaussian integers Z[]);
—a M

aq —a4y —dz —dy

a a a —a

ea=|"2 1 2 3 1is always an endomorphism of normm = tl% + u% i a% + aﬁ
a3 —ag M )
th Gy < O

on E4 (Hamilton’s quaternion algebra)
@ Evaluating & costs O(log m) arithmetic operations;

@ Every integer is a sum of four squares [Awépavtog 6 AkeEavdpeve, Lagrange].
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The embedding lemma [R.]

@ AN-isogenyf : A — Bindimension g can always be efficiently embedded into a N’ isogeny
F : A" - B’ indimension 8¢ (and sometimes 4g, 2g) forany N’ > N.

ALy
1
A Lty p

o Considerable flexibility (at the cost of going up in dimension).

@ Breaks SIDH ([Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8)

@ Reduces the (N, N')-weak interpolation problem to the N'-evaluation problem in higher
dimension;

@ Only needs N2 > N (uses the dual isogeny)
= Solves the weak interpolation problem when N is (power) smooth

@ Amazing fact: does not requires Ker f, works even if N is prime

@ Open question: case N’ prime? Can we find a fast N'-evaluation algorithm?
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Efficient representation of isogenies [R.]

For the N-evaluation problem, once we have evaluatedfon a basis of the N'-torsion this reduces
to the N’-weak interpolation problem which reduces to the N'-evaluation problem (in higher
dimension).

@ Can always embed an N-isogeny finto a N'-isogeny with N’ powersmooth;

Then decompose F as a product of small isogenies: polylogarithmic space O(log3 N);

@ We need to evaluate f on the N'-torsion: decomposition is quasi-linear;

Evaluation in polylogarithmic time O(Iog7 N) arithmetic operations.
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Point counting

@ The Frobenius 7T, can be evaluated in O(log p) arithmetic operations;
@ Its action on the tangent space TOEE is trivial ®;

@ TheactionA mod p of the Verschiebung ﬁp on TOEE is non trivial (if E is ordinary), and gives

thetracef = A + g/A of 77, modulo p ©;
@ Since ffp o, = [p], the Verschiebung can be efficiently evaluated on the image of T, ©;

o But77,(Ty,E) = 0©.

@ We can instead embed 7 (and ﬁp) into a powersmooth separable isogeny F and evaluate F on
the tangent space!

@ Polynomial point counting algorithm: A mod pin O(]Og10 p) arithmetic operations.
o Similar to Schoof’s algorithm (but slower): evaluate 77, on small {;-torsion points.
@ Rather than doing a DLP on these points to reconstruct f mod H {;, we reconstruct a
[T ¢i-isogeny F embedding the Frobenius.
@ Alift of F gives a lift of 7Ty So we can compute the action of 7T, on the deformation space of E.

= Compute canonical lift Eintime polynomial in O(log P!
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Point counting and canonical lifts

E/Fgq=p"
@ [Schoof 1985]: 5(log5 q) = Om® Iog5 p) (Etale cohomology)
o [SEA19921:O(log* q) = O(nlog* p)

[Kedlaya 2001]: 5(113;1) (Rigid cohomology)

[Harvey 20071: O(113’5 1/2 n5|0gp)

[Satoh 2000] (canonical lifts of ordinary curves): 5(112;72) (Crystalline cohomology)

[Maiga - R. 2021]: O(n2p)

[R. 2022]: O (n? log® p+n log"* P)
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