Applications of isogenies between abelian varieties to elliptic curves
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Key exchange on a (commutative) graph




Key exchange on a (commutative) graph
Alice starts from ‘a; follows the path oo1110, and get‘w"




Key exchange on a (commutative) graph
Bob starts from ‘a; follows the path 101101, and get’l’




Key exchange on a (commutative) graph
Alice starts from I, follows the path oo1110, and get'g’




Key exchange on a (commutative) graph
Bob starts from ‘w/, follows the path 101101, and get‘g’




Key exchange on a (commutative) graph
The full exchange:




Key exchange on a (commutative) graph
Bigger graph (62 nodes)
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Key exchange on a (commutative) graph
Even bigger graph (676 nodes)
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Isogeny graphs for key exchange
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Needs a graph with good mixing properties:
A path of length O(log N) gives a uniform node = Ramanujan/expander graph.

The graph does not fit in memory (N = 2250),

Needs an algorithm taking a node as input and giving the neighbour nodes as output.

Isogeny graph of ordinary elliptic curves E/]Fp [Couveignes (1997)], [Rostovtsev-Stolbunov
(2006)]

Graph of size N = /p.
Torsor (principal homogeneous space) under the class group CI(End(E)).
Commutative graph!

Hidden shift problem solvable in quantum subexponential L(1/2) time for an abelian group
action via Kuperberg's algorithm.

SIDH: supersingular elliptic curve Diffie-Helmann [De Feo, Jao (2011)],[De Feo, Jao, Pl{it (2014)]

Use the isogeny graph of a supersingular elliptic curve E over Isz (N = p).
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Isogeny graphs for key exchange

Meme: Gru’s plan
@ Isogeny based key exchange
@ Use supersingular curves
@ The graph is non commutative

@ The graph is non commutative
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SIDH in practice
o p=2%3_1.N, =29 Np = 3" N, prime to Np.
e Ej: y2 =x3 +x (supersingular when a > 2)
o Eg[N4] = (P4, Qa) Eo[N] = (Pp, Qp).
o Alice’s secret isogeny: ¢ 4 of kernel (P4 +5,Q4).
@ Bob’s secret isogeny: ¢ of kernel (P + spQp).
@ Key exchange:

Iy —2 for

\lj’A \L‘P%
¥,
Ex — Eap
o E,pisthe shared secret.

° ¢ opp=¢pods:Eg > Eyphaskernel Ker ¢4 + Ker ¢p.

o ¢/ haskernel (¢pp (P4 +54Q4)), ¢p haskernel (¢4 (Pp + s5Qp)).

o Alice publishes: P = ¢ o (Pp), Qp = ¢4 (Qp).
Bob publishes: P’y = ¢p(P4), Q) = ¢p(Qa). (Torsion points”)

o Ker¢), = (P +5,Q) Ker ¢y = (P5 + s5Qp).

@ Key exchangein 5(|0gNAE}‘/2 + IogNHEyZ)
(Via fast smooth isogeny computation [De Feo, Jao, Pliit (2014)] and Velusgrt [Bernstein, De Feo, Leroux, Smith -
(2020)]).



Isogeny evaluation and interpolation

Evaluation: given an N-isogeny fand a point Q € E(Fp, evaluate f (Q).
@ N-evaluation problem:fis an N-isogeny = Ker fis of degree N.

Interpolation: given a tuple (P, f (P)), recover f.

(N, N")-interpolation problem: given fan N-isogeny and P a point of N'-torsion, from
(P,f(P))and Q € E(F), evaluatef (Q) (N" = N).

Weak interpolation: we are given (P, f (P1)), (Po, f (P5)) for (P1, P5) abasis of E[N'].

SIDH: the key exchange uses the N 4 and N evaluation problems

@ If we can solve the weak interpolation problem when N = N4, N" = Np are smooth in
polylogarithmic time, we can break SIDH.
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Isogeny evaluation and interpolation

Meme: Anakin
@ | have a nice key exchange protocol
@ You don't use torsion points, right?
° ...

@ Right?
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Evaluation

@ f : Ey - E; an N-isogeny

() @\’
° flx,y) = (‘Z(—x),cy(i(—x)) ),degg,degh <N

o [Vélu 1971]: given 1(x) representing the kernel Ker f : {P € E | h(x(P)) = 0}, evaluate f (Q)
in O(N) operations in IFq.

@ Velusqrt: special case Kerf = (T), T € Fy evaluate f (Q) in 5(\/ﬁ) operationsin I .

@ Linear time.

@ If N'is smooth, f can be decomposed into a product of small isogenies.

@ Evaluation in O(log Niy;) or 5(IogN\/E).

@ Logarithmic time.

@ The decomposition cost is quasi-logarithmic if Ker f = (T) with T € IFq; polylogarithmicif N is
powersmooth; but linear if T lives in a large extension.
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Interpolation

Given (P, f (P)), P a point of order N’ > 2N, recover the rational function % in O(N) by
interpolating the points (x(mP), x(mf (P))),m =1,...,N' = 1.
Can evaluate on Q directly.

Special case: P € TOE (E) a"fat point” of order p =solve a differential equation [Elkies 1992]
(P #0,p > 2N).

Quasi-linear time.

Faster algorithm when N’ is smooth?
Yesiff (P) = 0.ThenN = N’ and Kerf = (P).

If N = N’, the weak interpolation problem reduces via the DLP to the N'-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.

No reason to expect a fast algorithm when N is prime to N.
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Interpolation

Given (P, f (P)), P a point of order N’ > 2N, recover the rational function % in O(N) by
interpolating the points (x(mP), x(mf (P))),m =1,...,N' = 1.
Can evaluate on Q directly.

Special case: P € TOE (E) a"fat point” of order p =solve a differential equation [Elkies 1992]
(P #0,p > 2N).

Quasi-linear time.

Faster algorithm when N’ is smooth?
Yesiff (P) = 0.ThenN = N’ and Kerf = (P).

If N = N’, the weak interpolation problem reduces via the DLP to the N'-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.

' fostataori N A

lorzsa—.



Revisiting isogeny evaluation

@ Can an N-isogeny be evaluated faster than linear time when N has a large prime factor?
o Iff =[l](soN = £2): double and add in O(log () to evaluate {Q.

o F:E? - E2,(Py,P,) = (P; + Py, Py — P,) isa2-isogeny in dimension 2.

@ Double: F(T,T) = (2T, 0).

o Add:F(T,Q) =(T+Q, T - Q).

@ We can evaluate {Q as a composition of O(log () evaluations of F, projections E2 - Eand
embeddings E — E2.

@ Double and add on E = 2-isogenies in dimension 2
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Polarisations and isogenies on an abelian variety

@ Polarisation on A = a (symmetric) isogeny A4 : A — A

@ Principal polarisation: A 4 is an isomorphism.

@ Warning: A may have several non equivalent principal polarisations if g > 1.

o f: (A Ay) — (B ,Ap) N-isogeny between ppav: f*Ap = NA 4.

A-LsB
i b
E(TB

@ Dual isogeny:f: B-A
@ Contragredient isogeny:f: AzlfAB B> A
@ fN-isogeny :rff = N:rff: N.

o Kerf =Im (f| B[N]).
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Algorithms for N-isogenies in higher dimension

[Cosset-R. (2014), Lubicz-R. (2012-2022)]: An N-isogeny in dimension g can be evaluated in linear
time O(N¢) arithmetic operations in the theta model given generators of its kernel.

@ Warning: exponential dependency 28 or 43 in the dimension g.

[Couveignes-Ezome (2015)]: Algorithm in O(N9) in the Jacobian model.

Not hard to extend to product of Jacobians.

Restrictedto g < 3.
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Kani's lemma [Kani 19971 (¢ = 1), R. 20221 (g > 1)

@ «: A — Baua-isogeny, : A — Cab-isogeny.

e &' : C - Daua-isogeny, B’ : C — D ab-isogeny with 8'a = &’ B:
A—23B
A
c%sD

@ Ifa prime to b, the pushforward &', B’ of & by B satisfy these conditions.

oF=(% BY).axD-BxC
_ﬁ a/

o F= ("‘ ;ﬁ) :BxC—>AxD, EFF=a+b.
e Fisana + b-isogeny with respect to the product polarisations.

o KerF = {@(P),p'(P) | P € Bla + b]} (ifais prime to b)
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Revisiting the interpolation

e f : E; - E; an N-isogeny.
Goal: replace f by F an N'-isogeny.
Finda : E; — E} anm-isogeny, withN" = N + m.

Since we know f (E[N']), and we can evaluate @ on E[N'], we recover Ker F (or Ker £)
Evaluate F, hence f at any point: F(P,0) = («(P), —f (P)).

This evaluation is fast if N' is (power) smooth.

°
°
o Kani'slemma:F : Ey x E; — E} x E; isan N'-isogeny.
°
°

Examples:
@ m smooth [Castryck-Decru 2022; Maino-Martindale 2022]
o m =2 taker = [(]
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o End(E) has an efficient endomorphism a& of norm m [Castryck-Decrul.



The general case

a a . . Aevm 1
o n= ( ; a2> is always an endomorphism of norm m = zl% + u% on EZ (Gaussian integers
—ax 4

Zli])

a a a —az |, -

on=|72 1 2 3 is always an endomorphism of norm m = a% + u% + a% + uﬁ
g —ag M ap
ag 43 —4 4

on E* (Hamilton’s quaternion algebra)
@ Evaluating « costs O(log m) arithmetic operations

@ Every integer is a sum of four squares [Aibpavtog 6 AdeEavdpeds, Lagrangel.

f
E} — E3
\Lﬂé 14
Bt L ps
1 2

o F: E% X E% - E% X E% isan N'-isogeny.
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The embedding lemma [R. 2022]

@ AN-isogenyf : A — Bindimension g can always be efficiently embedded into a N’ isogeny
F : A" - B’ indimension 8¢ (and sometimes 4g, 2g) forany N’ > N.
ALy B
b
A" — B

o Considerable flexibility (at the cost of going up in dimension).

@ Breaks SIDH ([Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8)

@ Reduces the (N, N')-weak interpolation problem to the N'-evaluation problem in higher
dimension

@ Only needs N'? > N (uses the dual isogeny)

= Solves the weak interpolation problem when N is (power) smooth

@ Amazing fact: does not requires Ker f, works even if N is prime

@ Open question: case N’ prime? Need a fast N'-evaluation algorithm!

lorzia—.



Efficient representation of isogenies [R. 2022]

@ Forthe N-evaluation problem, once we have evaluatedfon a basis of the N'-torsion this reduces
to the N'-weak interpolation problem which reduces to the N'-evaluation problem (in higher
dimension).

= Can always embed an N-isogeny finto a N'-isogeny F with N powersmooth

@ Then decompose F as a product of small isogenies.

@ Polylogarithmic space O(log3 N)
@ Evaluation in polylogarithmic time O(Iog7 N) arithmetic operations.

@ Previously: no representation giving better than linear time for a generic isogeny.
@ Representation: (P;, Q;, f (P;),f(Q;)) for (P;, Q;) basis of E[{;], small torsion points
€ N

@ We need to evaluate f on the N'-torsion: given the kernel, the decomposition step is quasi-linear.
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Examples

fan N-isogeny with an efficient representation.
e Efficient division: evaluate f /D on any point.
@ Contragredient isogeny: evaluatefon any point.

= Efficient evaluation of the Verschiebung ﬁp.

o Efficient lifting of isogenies: embed finto F at precision m = 1, then lift F to precision m > 1.
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Applications [R. 2022]

° E/IFq ordinary elliptic curve, K = End(E) ®; Q. Given the factorisation of [Ox : Z[7t]],
compute End(E) in polynomial time.
Factorisation: quantum polynomial time, classical subexponential time

@ Previously: no quantum polynomial time algorithm known.
Classical algorithm in L(1/2) under GRH [Bisson-Sutherland 2009].

@ Compute the canonical lift E/Zq in polynomial time.

@ Previously: L(1/2) under GRH [Couveignes-Henocq 2002]

@ Compute the modular polynomial @ in quasi-linear time O(£3 Iog3 Lloglog ) (no heuristics!).
o Compute @y mod p in quasi-linear time O(¢2 log p).

o If E/K elliptic curve of height H over a number field, compute @, (j(E), Y) in quasi-linear time
O(H?).

@ Generalisations to abelian varieties.
@ Previously: no algorithm known to compute @y in quasi-linear time when g > 2.
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Point counting and canonical lifts

E/Fgq=p"
@ [Schoof 1985]: O(1° log5 p) (Etale cohomology)
o [SEA 1992]: O(n* Iog4 p) (Heuristic)

[Kedlaya 2001]: 5(113;1) (Rigid cohomology)

[Harvey 2007]: O(13°p1/2 + nS log p)

[Satoh 2000] (canonical lifts of ordinary curves): 5(112;72) (Crystalline cohomology)

[Maiga - R. 2021]: O(n2p)

[R. 2022]: O (n? log® p+n log"* P)
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