Breaking SIDH in polynomial time 2023/04/25 — Eurocrypt, Lyon

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest

Isogeny evaluation and interpolation

- Evaluation: evaluate an isogeny on a point
- N-evaluation problem: given

evaluate $\phi(P)$

- Interpolation: reconstruct an isogeny from its image on a torsion basis
- \bullet (N,N')-interpolation problem: given
 - \bigcirc $N = \deg \phi$,
 - $(P_1, \phi(P_1)), (P_2, \phi(P_2))$ for (P_1, P_2) a basis of $E_1[N']$,
 - $P \in E_1(\mathbb{F}_q)$

evaluate $\phi(P)$

- ullet SIDH: the key exchange uses the $N_A=2^a$ and $N_B=3^b$ evaluation problems
- Solving the interpolation problem (SSI-T) = breaking SIDH

lnia-

Isogeny evaluation and interpolation

Meme: Anakin

- I have a nice key exchange protocol
- You don't use torsion points, right?
- ...
- Right?

Evaluation vs Interpolation

Evaluation:

• [Vélu 1971, Kohel 1996]: for $\phi: E_1 \to E_2$ an N-isogeny,

$$x(\phi(P)) = \frac{g(x(P))}{h(x(P))},$$

 $\deg g, \deg h < N, h(x) = \operatorname{Ker} \phi$

- $\Rightarrow \ \, \operatorname{evaluate} \phi(P) \ \, \operatorname{in} O(N) \ \, \operatorname{operations} \ \, \operatorname{in} \ \, \mathbb{F}_q \ \, \text{(given its kernel)}$
- Linear time

Interpolation:

- Interpolate $\frac{g}{h}(x)$ from $(x(P_1), x(\phi(P_1))), (x(2P_1), x(\phi(2P_1))), ...$
- Quasi linear time

Fast evaluation:

- N smooth: decompose ϕ into a product of small isogenies
- Logarithmic time

Double and add

- Fast evaluation when N has a large prime factor?
- If $\phi = [\ell]$ ($N = \ell^2$): double and add in $O(\log \ell)$
- $\Phi: E^2 \to E^2$, $(P_1, P_2) \mapsto (P_1 + P_2, P_1 P_2)$ is a 2-isogeny in dimension 2 [Riemann]
- $\Phi = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$
- Double: $\Phi(T,T) = (2T,0)$
- Add: $\Phi(T, P) = (T + P, T P)$
- Evaluate ℓP = composition of $O(\log \ell)$ evaluations of Φ , projections $E^2 \to E$ and embeddings $E \to E^2$
- Double and add on E = 2-isogenies in dimension 2

Kani's lemma [Kani 1997] (g = 1), [R. 2022] (g > 1)

- A, B, C, D principally polarised abelian varieties
- $\alpha: A \to B$ a α -isogeny, $\beta: A \to C$ a β -isogeny
- $\alpha': C \to D$ a α -isogeny, $\beta': C \to D$ a β -isogeny with $\beta' \alpha = \alpha' \beta$:

$$\begin{array}{ccc}
A & \xrightarrow{\alpha} & B \\
\downarrow^{\beta} & & \downarrow^{\beta'} \\
C & \xrightarrow{\alpha'} & D
\end{array}$$

- $\bullet \ \Phi = \begin{pmatrix} \alpha & \widetilde{\beta'} \\ -\beta & \widetilde{\alpha'} \end{pmatrix} : A \times D \to B \times C$
- Φ is an a+b-isogeny with respect to the product polarisations
- Ker $\Phi = \{\tilde{\alpha}(P), \beta'(P) \mid P \in B[a+b]\}$ (if a is prime to b)

Using Kani's lemma for the interpolation

$$E_{1} \xrightarrow{\phi} E_{2}$$

$$\downarrow^{\alpha} \qquad \downarrow^{\alpha'}$$

$$E'_{1} \xrightarrow{\phi'} E'_{2}$$

- $\phi: E_1 \to E_2$ an N-isogeny
- ullet Goal: replace ϕ by Φ an N'-isogeny
- Find $\alpha: E_1 \to E_1'$ an m-isogeny, with N' = N + m
- Kani's lemma: $\Phi: E_1 \times E_2' \to E_1' \times E_2$ is an N'-isogeny
- We know $\phi(E[N'])$ and we can evaluate α on $E[N'] \Rightarrow$ recover Ker Φ (or Ker $\widetilde{\Phi}$)
- Evaluate Φ , hence ϕ at any point: $\Phi(P,0) = (\alpha(P), -\phi(P))$
- ullet Evaluation is fast if N' is (power) smooth

Examples:

- m smooth [Castryck-Decru; Maino-Martindale]
- $m = \ell^2$: take $\alpha = [\ell]$
- End(E_1) has an efficient endomorphism α of norm m [Castryck–Decru; Wesolowski]

Using Kani's lemma for the interpolation

Meme: disaster girl

- SIDH
- Higher dimensional isogenies

The general case: Zahrin's trick

•
$$\alpha = \begin{pmatrix} a_1 & a_2 \\ -a_2 & a_1 \end{pmatrix}$$
 endomorphism of norm $m = a_1^2 + a_2^2$ on E^2

ullet Gaussian integers $\mathbb{Z}[i]$

$$\bullet \ \alpha = \begin{pmatrix} a_1 & -a_2 & -a_3 & -a_4 \\ a_2 & a_1 & a_4 & -a_3 \\ a_3 & -a_4 & a_1 & a_2 \\ a_4 & a_3 & -a_2 & a_1 \end{pmatrix} \text{ endomorphism of norm } m = a_1^2 + a_2^2 + a_3^2 + a_4^2 \text{ on } E^4$$

- Hamilton's quaternion algebra
- Evaluating α : $O(\log m)$ arithmetic operations
- Every integer is a sum of four squares

$$E_1^4 \xrightarrow{\phi} E_2^4$$

$$\downarrow^{\alpha} \qquad \downarrow^{\alpha}$$

$$E_1^4 \xrightarrow{\phi} E_2^4$$

• $\Phi: E_1^4 \times E_2^4 \to E_1^4 \times E_2^4$ is an N'-isogeny

Kani's lemma + Zahrin's trick = the embedding lemma [R. 2022]

• A N-isogeny $\phi:A\to B$ in dimension g can always be efficiently embedded into a N' isogeny $\Phi:A'\to B'$ in dimension 8g (and sometimes 4g,2g) for any $N'\ge N$

$$\begin{array}{ccc}
A & \xrightarrow{\phi} B \\
\downarrow & \uparrow \\
A' & \xrightarrow{\Phi} B'
\end{array}$$

- Considerable flexibility (at the cost of going up in dimension)
- Reduces the (N, N')-interpolation problem to the N'-evaluation problem (in higher dimension)
- Only needs $N'^2 \ge N$ (uses the dual isogeny)
- \Rightarrow Solves the interpolation problem when N' is (power) smooth
- Amazing fact: does not requires Ker ϕ , works even if N is prime
- Breaks SIDH: [Castryck–Decru], [Maino–Martindale] in dimension 2, [R.] in dimension 4 or 8
- Constructive applications: efficient representation of any isogeny, computing ordinary
 endomorphism rings, canonical lifts, point counting, modular and class polynomials, new
 cryptographic protocols in higher dimension ...

Kani's lemma + Zahrin's trick = the embedding lemma [R. 2022]

Meme: Buzz

- Higher dimensional isogenies
- Higher dimensional isogenies everywhere

Algorithms for N-isogenies in higher dimension

- [Cosset-R. (2014), Lubicz-R. (2012–2022)]: An N-isogeny in dimension g can be evaluated in linear time $O(N^g)$ arithmetic operations in the theta model given generators of its kernel
- ullet Warning: exponential dependency 2^g or 4^g in the dimension g
- ullet [Couveignes-Ezome (2015)]: Algorithm in $O(N^g)$ in the Jacobian model
- Not hard to extend to product of Jacobians
- Restricted to $g \le 3$

How expensive is an isogeny in dimension g in the theta model?

• Naive estimate: ℓ^e -isogeny = e ℓ -isogenies = $e \times O(\ell^g)$ = $C \times 2^g$ (number of coordinates) $\times \ell^g$ (size of kernel) $\times (1+g)$ (g points to push)

SIKE	g = 1	g = 2	g = 4	g = 8
SIKEp434 (2 ²¹⁶)	14476	80376	1546608	416370768
SIKEp503 (2 ²⁵⁰)	17060	94860	1826700	491877900
SIKEp610 (2 ³⁰⁵)	21350	118950	2292990	617612190
SIKEp751 (2 ³⁷²)	26576	148296	2861016	770779416
SIKEp964 (2 ⁴⁸⁶)	35904	200844	3879828	1045623348

Number of field operations (estimate)

8	Naive ratios	Estimated ratios
2	×6	×5.5
4	×160	X110
8	×75000	×29000

Conclusion

Meme: Time to go

- It is time to go
- SIKE: Was I a good protocol?
- No
- I was told you were among the best

Conclusion

Meme: funeral

- SIDH
- **2011-2022**

