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Key exchange on a (commutative) graph




Key exchange on a (commutative) graph
Alice starts from ‘a; follows the path oo1110, and get‘w"




Key exchange on a (commutative) graph
Bob starts from ‘a; follows the path 101101, and get’l’




Key exchange on a (commutative) graph
Alice starts from I, follows the path oo1110, and get'g’




Key exchange on a (commutative) graph
Bob starts from ‘w/, follows the path 101101, and get‘g’




Key exchange on a (commutative) graph
The full exchange:




Key exchange on a (commutative) graph
Bigger graph (62 nodes)
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Key exchange on a (commutative) graph
Even bigger graph (676 nodes)
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Isogeny graphs for key exchange

® © o e

Needs a graph with good mixing properties:
A path of length O(log N) gives a uniform node = Ramanujan/expander graph.

The graph does not fit in memory (N = 2250),

Needs an algorithm taking a node as input and giving the neighbour nodes as output.

Isogeny graph of ordinary elliptic curves E/]Fp [Couveignes (1997)], [Rostovtsev-Stolbunov
(2006)]

Graph of size N = /p.
Torsor (principal homogeneous space) under the class group CI(End(E)).
Commutative graph!

Hidden shift problem solvable in quantum subexponential L(1/2) time for an abelian group
action via Kuperberg's algorithm.

SIDH: supersingular elliptic curve Diffie-Helmann [De Feo, Jao (2011)],[De Feo, Jao, Pl{it (2014)]

Use the isogeny graph of a supersingular elliptic curve E over Isz (N = p).
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Isogeny graphs for key exchange

Meme: Gru’s plan
@ Isogeny based key exchange
@ Use supersingular curves
@ The graph is non commutative

@ The graph is non commutative
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SIDH in practice
o p=2%3_1.N, =29 Np = 3" N, prime to Np.
e Ej: y2 =x3 +x (supersingular when a > 2)
o Eg[N4] = (P4, Qa) Eo[N] = (Pp, Qp).
o Alice’s secret isogeny: ¢ 4 of kernel (P4 +5,Q4).
@ Bob’s secret isogeny: ¢ of kernel (P + spQp).
@ Key exchange:

Iy —2 for

\lj’A \L‘P%
¥,
Ex — Eap
o E,pisthe shared secret.

° ¢ opp=¢pods:Eg > Eyphaskernel Ker ¢4 + Ker ¢p.

o ¢/ haskernel (¢pp (P4 +54Q4)), ¢p haskernel (¢4 (Pp + s5Qp)).

o Alice publishes: P = ¢ o (Pp), Qp = ¢4 (Qp).
Bob publishes: P’y = ¢p(P4), Q) = ¢p(Qa). (Torsion points”)

o Ker¢), = (P +5,Q) Ker ¢y = (P5 + s5Qp).

@ Key exchangein G(IOgNAQ}‘/2 + IogNHE;;Q)
(Via fast smooth isogeny computation [De Feo, Jao, Pliit (2014)] and Velusgrt [Bernstein, De Feo, Leroux, Smith -
(2020)]).



SIDH in practice

Meme: Anakin
@ | have a nice key exchange protocol
@ You don't use torsion points, right?
° ...

@ Right?
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Isogeny evaluation and interpolation

Evaluation: given an N-isogeny fand a point Q € E(Fp, evaluate f (Q).
@ N-evaluation problem:fis an N-isogeny = Ker fis of degree N.

Interpolation: given a tuple (P, f (P)), recover f.

(N, N")-interpolation problem: given fan N-isogeny and P a point of N'-torsion, from
(P,f(P))and Q € E(F), evaluatef (Q) (N" = N).

Weak interpolation: we are given (P, f (P1)), (Po, f (P5)) for (P1, P5) abasis of E[N'].

SIDH: the key exchange uses the N 4 and N evaluation problems

@ If we can solve the weak interpolation problem when N = N4, N" = Np are smooth in
polylogarithmic time, we can break SIDH.
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Evaluation

@ f : Ey - E; an N-isogeny

() @\’
° flx,y) = (%,cy(i(—x)) ),degg,degh <N

@ [Vélu 1971]: given 1(x) representing the kernel Ker f : {P € E | h(x(P)) = 0}, evaluate f (Q)
in O(N) operations in IFq.

@ Velusqrt: special case Kerf = (T), T € Fy evaluate f (Q) in 5(\/ﬁ) operationsin I .

@ Linear time.

@ If N'is smooth, f can be decomposed into a product of small isogenies.

@ Evaluation in O(log Niy;) or 5(IogN\/E).

@ Logarithmic time.

@ The decomposition cost is quasi-logarithmic if Ker f = (T) with T € IFq; polylogarithmicif N is
powersmooth; but linear if T lives in a large extension.
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Interpolation

Given (P, f (P)), P a point of order N’ > 2N, recover the rational function & m in O(N) by
interpolating the points (x(mP), x(mf (P))),m =1,...,N" — 1.
Can evaluate on Q directly.

Quasi-linear time.

Faster algorithm when N’ is smooth?
Yesiff(P) = 0.Then N = N’ and Kerf = (P).
If N = N’, the weak interpolation problem reduces via the DLP to the N'-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.

No reason to expect a fast algorithm when N is prime to N.
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Interpolation

Given (P, f (P)), P a point of order N’ > 2N, recover the rational function & m in O(N) by
interpolating the points (x(mP), x(mf (P))),m =1,...,N" — 1.
Can evaluate on Q directly.

Quasi-linear time.

Faster algorithm when N’ is smooth?
Yesiff(P) = 0.Then N = N’ and Kerf = (P).
If N = N’, the weak interpolation problem reduces via the DLP to the N'-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.

' st ataori N A
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Revisiting isogeny evaluation

@ Can an N-isogeny be evaluated faster than linear time when N has a large prime factor?
o Iff =[l](soN = £2): double and add in O(log?) to evaluate £Q.

o F:E2 5 E?, (P1,P5) » (P + Py, Py — P;) isa2-isogeny in dimension 2.

1 1
F=(4 )
Double: F(T, T) = (2T, 0).
Add: F(T,Q) = (T +Q, T — Q).

@ We can evaluate {Q as a composition of O(log () evaluations of F, projections E2 — E and
embeddings E — E2.

@ Double and add on E = 2-isogenies in dimension 2
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Polarisations and isogenies on an abelian variety

@ Polarisation on A = a (symmetric) isogeny A4 : A — A
@ Principal polarisation: A 4 is an isomorphism.

@ Warning: A may have several non equivalent principal polarisations if g > 1.

Example (Superspecial abelian surfaces)

A = E?, E/Isz supersingular. It admits ~ p?/288 product polarisations (E; x Ey Ap, X Ag,)
where E, E, are supersingular and ~ p3 /2880 indecomposable polarisations (Jac C, © ) where C
is an hyperelliptic curve of genus 2.
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Polarisations and isogenies on an abelian variety

o Polarisation on A = a (symmetric) isogeny A 4 : A — A
@ Principal polarisation: A 4 is an isomorphism.

@ Warning: A may have several non equivalent principal polarisations if g > 1.

o f:(A,Ay) = (B,Ag) N-isogeny between ppav: f*Ag = NA 4.

A-LsB
Wl L
E(}TB

@ Dual isogeny:f: B> A
@ Contragredient isogeny:f: AzlfA)\B :B-> A
@ fN-isogeny @fo = N@ﬂN: N.

o Kerf = Im (f | BIN]).
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Kani's lemma [Kani 19971 (¢ = 1), R. 20221 (g > 1)

@ «: A — Baua-isogeny, : A — Cab-isogeny.

e &' : C - Daua-isogeny, B’ : C — D ab-isogeny with 8'a = &’ B:
A—23B
A
c%sD

@ Ifa prime to b, the pushforward &', B’ of & by B satisfy these conditions.

oF=(% BY).axD-BxC
_ﬁ a/

o F= ("‘ ;ﬁ) :BxC—>AxD, EFF=a+b.
e Fisana + b-isogeny with respect to the product polarisations.

o KerF = {@(P),p'(P) | P € Bla + b]} (ifais prime to b)
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Using Kani’s lemma for the interpolation

L)Ez

l Ja

B L5k

]

e f : E; — E; an N-isogeny.

Goal: replace f by F an N'-isogeny.

Finda : E; — Ej anm-isogeny, with N’ = N + m.

Kani’s lemma: F : Eq x E; — Ef x E; isan N'-isogeny.

We know f (E[N’]) and we can evaluate & on E[N']= recover Ker F (or Ker F)
Evaluate F, hence f at any point: F(P,0) = («(P), —f (P)).

Evaluation is fast if N” is (power) smooth.

Examples:
@ m smooth [Castryck-Decru; Maino—Martindale (2022)]
o m = 2takea = [{]

o End(E) has an efficient endomorphism & of norm m [Castryck-Decru; Wesolowski (2022)]. 4.



The general case: Zahrin’s trick

a a
o= ( ; a2> is always an endomorphism of norm m = a% + a% on E2
2 M

@ Gaussian integers Z[i]

ap —ap —dz —dy

o= Z; _24 Z‘ll _;23 is always an endomorphism of norm m = a% + a% + a% + ai
4y a3 —Gp 4
onE*
@ Hamilton’s quaternion algebra
@ Evaluating a: O(log m) arithmetic operations
@ Every integer is a sum of four squares.

f
E} — E3
\Lﬂc 14
B¢ Ly ps
1 2
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o F: E} x E3 - E} x Ejisan N'-isogeny.



The general case: Zahrin's trick

Meme: disaster girl
o SIDH

@ Higher dimensional isogenies
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Kani’s lemma + Zahrin's trick = the embedding lemma [R. 2022]

@ AN-isogenyf : A — Bindimension g can always be efficiently embedded into a N’ isogeny
F : A" - B’ indimension 8¢ (and sometimes 4g, 2g) forany N’ > N.
ALy B
bl
A" — B

@ Considerable flexibility (at the cost of going up in dimension).

@ Reducesthe (N, N')-interpolation problem to the N’-evaluation problem in higher dimension

@ Only needs N’2 > N (uses the dual isogeny)
= Solves the interpolation problem when N’ is (power) smooth

@ Amazing fact: does not requires Ker f, works even if N is prime

@ Breaks SIDH: [Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8
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Algorithms for N-isogenies in higher dimension

[Cosset-R. (2014), Lubicz-R. (2012-2022)]: An N-isogeny in dimension g can be evaluated in linear
time O(N¢) arithmetic operations in the theta model given generators of its kernel.

@ Warning: exponential dependency 28 or 43 in the dimension g.

[Couveignes-Ezome (2015)]: Algorithm in O(N9) in the Jacobian model.

Not hard to extend to product of Jacobians.

Restrictedto g < 3.
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How expensive is an isogeny in dimension ¢ in the theta model?

@ Naive estimate: {°-isogeny = e {-isogenies = e x O(£8)
=C x28 (number of coordinates) x£8 (size of kernel) x(1 + g) (g points to push)

SIKE g=1 g=2 g=4 g=38

SIKEp434 (2216) 14476 80376 1546608 416370768

SIKEp503 (2259) 17060 94860 1826700 491877900

SIKEp61o(2305) 21350 118950 2292990 617612190

SIKEp751 (2372) 26576 148206 2861016 770779416

SIKEp964 (2486) 35004 200844 3879828 1045623348
Number of field operations (estimate)

g Naiveratios Estimated ratios
2 X6 X5.5

4 X160 X110

8 X75000 X29000
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Some constructive applications [R. 2022]

@ An N-isogeny always admits a representation in polylogarithmic space allowing for evaluation in
polylogarithmic time.

@ Previously: linear time (for a general isogeny).

o E/F, ordinary elliptic curve, K = End(E) ® Q. Given the factorisation of [Ox : Z[7t]],
compute End(E) in polynomial time.
Factorisation: quantum polynomial time, classical subexponential time

@ Previously: no quantum polynomial time algorithm known.
Classical algorithm in L(1/2) under GRH [Bisson-Sutherland 2009].

@ Compute the canonical lift E"/Zq in polynomial time.

@ Previously: L(1/2) under GRH [Couveignes-Henocq 2002]

@ Compute the modular polynomial @y in quasi-linear time in any dimension g.

@ Previously: no algorithm known to compute @ in quasi-linear time when g > 2.

@ New signature protocol: [Dartois, Leroux, R., Wesolowski 20231:“SQISignHD: New Dimensions in
Cryptography”. lrniia



Some constructive applications [R. 2022]

Meme: Buzz
@ Higher dimensional isogenies

@ Higher dimensional isogenies everywhere
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Point counting and canonical lifts

E/Fgq=p"
@ [Schoof 1985]: O(1° log5 p) (Etale cohomology)
o [SEA 1992]: O(n* Iog4 p) (Heuristic)

[Kedlaya 2001]: 5(113;1) (Rigid cohomology)

[Harvey 2007]: O(13°p1/2 + nS log p)

[Satoh 2000] (canonical lifts of ordinary curves): 5(112;72) (Crystalline cohomology)

[Maiga - R. 2021]: O(n2p)

[R. 2022]: O (n? log® p+n log"* P)



Conclusion

Meme: funeral
@ SIDH

@ 2011-2022
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