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Key exchange on a (commutative) graph




Key exchange on a (commutative) graph
Alice starts from ‘a; follows the path oo1110, and get‘w"




Key exchange on a (commutative) graph
Bob starts from ‘a; follows the path 101101, and get’l’




Key exchange on a (commutative) graph
Alice starts from I, follows the path oo1110, and get'g’




Key exchange on a (commutative) graph
Bob starts from ‘w/, follows the path 101101, and get‘g’




Key exchange on a (commutative) graph
The full exchange:




Key exchange on a (commutative) graph
Bigger graph (62 nodes)
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Key exchange on a (commutative) graph
Even bigger graph (676 nodes)




Isogeny graphs for key exchange
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Needs a graph with good mixing properties:
A path of length O(log N) gives a uniform node = Ramanujan/expander graph.

The graph does not fit in memory (N = 2250),

Needs an algorithm taking a node as input and giving the neighbour nodes as output.

Isogeny graph of ordinary elliptic curves E/]Fp [Couveignes (1997)], [Rostovtsev-Stolbunov
(2006)]

Graph of size N = /p.
Torsor (principal homogeneous space) under the class group CI(End(E)).
Commutative graph!

Hidden shift problem solvable in quantum subexponential L(1/2) time for an abelian group
action via Kuperberg's algorithm.

SIDH: supersingular elliptic curve Diffie-Helmann [De Feo, Jao (2011)],[De Feo, Jao, Pl{it (2014)]

Use the isogeny graph of a supersingular elliptic curve E over Isz (N = p).



Isogeny graphs for key exchange

Meme: Gru’s plan
@ Isogeny based key exchange
@ Use supersingular curves
@ The graph is non commutative

@ The graph is non commutative



SIDH in practice

p=2%3% —1.N, =27, Ng = 3, N, prime to Ng.
Ey: y2 =x3+x (supersingular whena > 2)
Eo[Nal = (Pa,Qa) Eg[Ng] = (Pg, Qp)-

Alice's secret isogeny: ¢ 4 of kernel (P4 +5,Q 4).
Bob's secret isogeny: ¢ of kernel (Pg + spQp).

Key exchange:
E, ﬂ) Eg

\L¢A ) \L‘P%
LN

E 4 is the shared secret.
(PA o ¢B = (plB o (pA : EO bd EAB has kernel Ker(PA alx Ker(PB.

@y has kernel (pp (P4 +54Q4)), P has kernel (¢4 (Pp + s5Qp))-
Alice publishes: P, = ¢ 4 (Pg), Qp = ¢4 (Qp).

Bob publishes: P’y = ¢p(P4), Q) = ¢p(Qa). (Torsion points”)
Ker ¢y = (P!, +5,Q). Ker ¢ = (P + 550Q5).

Key exchangein O(log N 40, + log N0p)

(Via fast smooth isogeny computation [De Feo, Jao, Pl(it (2014))]



Isogeny evaluation and interpolation

@ Evaluation: given an N-isogeny fand a point Q € E(Fp, evaluate f (Q).
@ N-evaluation problem:fis an N-isogeny = Ker fis of degree N.

@ Interpolation: given a tuple (P, f (P)), recover f.

@ (N, N")-interpolation problem: given fan N-isogeny and P a point of N'-torsion, from
(P,f(P))and Q € E(F), evaluatef (Q) (N" = N).

@ Weak interpolation: we are given (P, f (P1)), (Py,f (P5)) for (P, P») a basis of E[N'].

@ SIDH: the key exchange uses the N 4 and N evaluation problems

@ If we can solve the weak interpolation problem when N = N4, N" = Np are smooth in
polylogarithmic time, we can break SIDH.



Isogeny evaluation and interpolation

Meme: Anakin
@ | have a nice key exchange protocol
@ You don't use torsion points, right?
° ...

@ Right?



Evaluation

@ f : Ey - E; an N-isogeny

(x) )\’
o f(x,y) = (%,cy(%) ),degg,degh <N

@ [Vélu 1971]: given hi(x) representing the kernel Kerf : {P € E | h(x(P)) = 0}, evaluate f (Q)
in O(N) operations in ]Fq.

@ Kernel representation: Linear time and linear space.

@ Velusqrt special case Ker f = (T), T € IFq,i, evaluate f (Q) in O¢( \/ﬁ) operations in Iqu.

@ Generator representation: Compact representation if d small.

@ If N'is smooth, f can be decomposed into a product of small isogenies.
@ Evaluation in O(log Niy;) or 5(IogN\/Q).

@ Decomposed representation: Logarithmic time and space.

@ The decomposition cost is quasi-logarithmic if Ker f = (T) with T € IFq (or lives in a small
extension); hence polylogarithmic if N is powersmooth; but linear if T lives in a large extension.

@ In SIDH: the A and B torsion points are rational, so the decomposition is fast!



Interpolation

Given (P, f (P)), P a point of order N’ > 2N, recover the rational function & m in O(N) by
interpolating the points (x(mP), x(mf (P))),m =1,...,N" — 1.
Can evaluate on Q directly.

Quasi-linear time.

Faster algorithm when N’ is smooth?
Yesiff(P) = 0.Then N = N’ and Kerf = (P).
If N = N’, the weak interpolation problem reduces via the DLP to the N'-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.

No reason to expect a fast algorithm when N is prime to N.



Interpolation

Given (P, f (P)), P a point of order N’ > 2N, recover the rational function & m in O(N) by
interpolating the points (x(mP), x(mf (P))),m =1,...,N" — 1.
Can evaluate on Q directly.

Quasi-linear time.

Faster algorithm when N’ is smooth?
Yesiff(P) = 0.Then N = N’ and Kerf = (P).
If N = N’, the weak interpolation problem reduces via the DLP to the N'-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.
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Revisiting isogeny evaluation

@ Can an N-isogeny be evaluated faster than linear time when N has a large prime factor?
o Iff =[l](soN = £2): double and add in O(log?) to evaluate £Q.

o F:E2 5 E?, (P1,P5) » (P + Py, Py — P;) isa2-isogeny in dimension 2.

1 1
F=(4 )
Double: F(T, T) = (2T, 0).
Add: F(T,Q) = (T +Q, T — Q).

@ We can evaluate {Q as a composition of O(log () evaluations of F, projections E2 — E and
embeddings E — E2.

@ Double and add on E = 2-isogenies in dimension 2



Kani's lemma [Kani 19971 (¢ = 1), R. 20221 (g > 1)

@ «: A — Baua-isogeny, : A — Cab-isogeny.

e &' : C - Daua-isogeny, B’ : C — D ab-isogeny with 8'a = &’ B:
A—23B
A
c%sD

@ Ifa prime to b, the pushforward &', B’ of & by B satisfy these conditions.

or=(% E).axDoBxC
_ﬁ o’
oF:(”‘ ;‘?):BXC—»AXD, FF=a+0.

e Fisana + b-isogeny with respect to the product polarisations.

o KerF = {@(P),p'(P) | P € Bla + b]} (ifais prime to b)



Using Kani’s lemma for the interpolation

E, L5 E

R,

lf,

B ==

e f : E; — E; an N-isogeny.

Goal: replace f by F an N'-isogeny.

Finda : E; — Ej anm-isogeny, with N’ = N + m.

Kani’s lemma: F : Eq x E; — Ef x E; isan N'-isogeny.

We know f (E[N’]) and we can evaluate & on E[N']= recover Ker F (or Ker F)
Evaluate F, hence f at any point: F(P,0) = («(P), —f (P)).

Evaluation is fast if N' is (power) smooth.

Examples:
@ m smooth [Castryck-Decru; Maino—Martindale (2022)]
o m = 2 take s = [(]

o End(E) has an efficient endomorphism & of norm m [Castryck-Decru; Wesolowski (2022)].



The general case: Zahrin's trick

a a
o= ( ; a2> is always an endomorphism of norm m = a% + a% on E2
—a2 4

@ Gaussian integers Z[i]

ap —ap —dz —dy

o= Z; _24 Z‘ll _;23 is always an endomorphism of norm m = a% + a% + u% + aﬁ
4y a3 —Gp 4
onE*
@ Hamilton’s quaternion algebra
@ Evaluating a: O(log m) arithmetic operations
@ Every integer is a sum of four squares.

f
E} — E3
\Lﬂé 14
B¢ Ly ps
1 2

o F: E} x E3 - E} x Ejisan N'-isogeny.



Kani’s lemma + Zahrin's trick = the embedding lemma [R. 2022]

@ AN-isogenyf : A — B indimension g can always be efficiently embedded into a N’ isogeny
F: A" - B’ indimension 8¢ (and sometimes 4g, 2¢) forany N' > N.

ALy
I 1
A LB

o Considerable flexibility (at the cost of going up in dimension).

@ Reduces the weak (N, N')-interpolation problem to the N'-evaluation problem in higher
dimension

@ Actually only need the image of f on a subgroup of size N’, N’ > 4N (via further tricks by
Castryck, De Feo, R., Wesolowski...)

= Solves the interpolation problem when N is (power) smooth

@ Amazing fact: does not requires Ker f, works even if N is prime

@ Breaks SIDH: [Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8



Kani's lemma + Zahrin's trick = the embedding lemma [R. 2022]

Meme: disaster girl
o SIDH

@ Higher dimensional isogenies



Efficient representation of isogenies [R. 2022]

o If we know the evaluation of f on a basis of E[N'], we can replace f by a N'-isogeny F in higher
dimension

= Polylogarithmic time and space

@ Previously: linear time (for a general isogeny)

@ Torsion representation: (P, Q;, f (P;),f(Q;)) for (P;, Q;) basis ofE[Qf"], small torsion points
N =TT¢ > 2VN)
e IfE[2"] = (Py,P,) isrational, take N’ = 2.

@ The torsion representation is an universal efficient representation
@ We just need the image of f on enough nice points

@ Corollary: If f has an efficient representation, so does f /1 (division) andf(dual)



Some algorithmic applications [R. 2022]

° E/IFq ordinary elliptic curve, K = End(E) ®; Q. Given the factorisation of [Ox : Z[7t]],
compute End(E) in polynomial time.
Factorisation: quantum polynomial time, classical subexponential time

@ Previously: no quantum polynomial time algorithm known.
Classical algorithm in L(1/2) under GRH [Bisson-Sutherland 2009].

@ Compute the canonical lift E/Zq in polynomial time.

@ Previously: L(1/2) under GRH [Couveignes-Henocq 2002]

@ Compute the modular polynomial @ in quasi-linear time in any dimension g.

@ Previously: no algorithm known to compute @y in quasi-linear time when g > 2.



Point counting and canonical lifts

E/Fgq=p"
@ [Schoof 1985]: O(1° log5 p) (Etale cohomology)
o [SEA 1992]: O(n* Iog4 p) (Heuristic)

[Kedlaya 2001]: 5(113;1) (Rigid cohomology)

[Harvey 20071: O(113’5 1/2 n5|0gp)

[Satoh 2000] (canonical lifts of ordinary curves): 5(112;72) (Crystalline cohomology)

[Maiga - R. 2021]: O(n2p)

[R. 2022]: O (n? log® p+n log"* P)



Cryptographic applications

@ Free protocols from the shackle of using only smooth degree isogenies

@ Choose E with large rational 2"-torsion = embed N-isogenies into higher dimensional
2™-isogenies

@ SQISignHD [Dartois, Leroux, R., Wesolowski 2023]: post-quantum signature scheme
@ Signing in dimension 1, verification in dimension 4

@ Public key: 64B, Signature: 105B
Prior Art: SQISign: 204B, Lattices: 666B—2420B, (ECDSA: 64B)

@ FESTA [Basso, Maino, Pope 2023]: encryption in dimension 1, decryption in dimension 2 (or 4)

@ VRF [Leroux 2023]: use dimension up to 4
Partial VDF construction by [Maino 2023]: use dimension 2

@ Identity based encryption [Fouotsa 2023]: use dimension 8



Cryptographic applications

Meme: Buzz
@ Higher dimensional isogenies

@ Higher dimensional isogenies everywhere



Algorithms for N-isogenies in higher dimension

[Cosset-R. (2014), Lubicz-R. (2012-2022)]: An N-isogeny in dimension g can be evaluated in linear
time O(N¢) arithmetic operations in the theta model given generators of its kernel.

@ Warning: exponential dependency 28 or 43 in the dimension g.

[Couveignes-Ezome (2015)]: Algorithm in O(N9) in the Jacobian model.

Not hard to extend to product of Jacobians.

Restrictedto g < 3.



2™-isogenies in higher dimension

[R. 2023]: faster formula for 2"-isogenies in the theta model
Decomposition: g points to push, 28 coordinates by point
Cost compared to dimension 1: dimension 2: x4, dimension 4: x32, dimension 8: x1024.

Images: dimension 2: x2, dimension 4: x8, dimension 8: x128.

Optimised Sage implementation of 2™ -isogenies in dimension 2 (with Dartois, Kunzweiler,
Maino, Pope):
» Indimension 1, a 2602 isogeny over a field of 2360 bits: decomposition in 0.27s, image in 0.008s.
> In dimension 2: decomposition in 0.49s, image in 0.025s (theta)
» Richelot: decomposition in 4.85s, image in 0.47s

2128

Implementation in dimension 4 (Dartois): A -isogeny over a field of 500 bits in 0.62s.



Conclusion

Meme: funeral
@ SIDH

@ 2011-2022



Polarisations and isogenies on an abelian variety

@ Polarisation on A = a (symmetric) isogeny A4 : A — A
@ Principal polarisation: A 4 is an isomorphism.

@ Warning: A may have several non equivalent principal polarisations if g > 1.

Example (Superspecial abelian surfaces)

A = E?, E/Isz supersingular. It admits ~ p?/288 product polarisations (E; x Ey Ap, X Ag,)
where E, E, are supersingular and ~ p3 /2880 indecomposable polarisations (Jac C, © ) where C
is an hyperelliptic curve of genus 2.




Polarisations and isogenies on an abelian variety

@ Polarisation on A = a (symmetric) isogeny A4 : A — A
@ Principal polarisation: A 4 is an isomorphism.

@ Warning: A may have several non equivalent principal polarisations if g > 1.

o f:(A,Ay) = (B,Ag) N-isogeny between ppav: f*Ag = NA 4.

A-LsB
Wl L
E(TB

@ Dual isogeny:f: B> A
@ Contragredient isogeny:f~= AzlfA)\B :B-> A
@ fN-isogeny @fo = N@ﬂF: N.

o Kerf = Im (f | BIN]).
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