
Arithmetic and pairings on Kummer lines
2023/10/13 — Leuven

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest



2𝑚-isogenies in higher dimension

Previously: isogenies in higher dimension for number theory

[KNRR. 2021] used to compute modular forms in dimension 4 to study the Schotkky locus

“Fast” isogenies: a 3-isogeny over 𝔽59 in 70s!

Currently: used in cryptography

“Fast”= needs to compute a 2128-isogeny over a field 𝔽𝑝2 of 512 bits in a few ms…

Cryptographic usage of 2𝑚-isogenies in higher dimension:

Dimension 2: Festa, QFesta, Scallop-HD, Is-Cube

Dimension 2 or 4: SQISignHD, SQIFish, VRFs/VDFs, SétaHD

Dimension 8: ISétaHD
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2𝑚-isogenies in higher dimension

[R. July 2023]: faster formula for 2𝑚-isogenies in the theta model

Optimised Sage implementation of 2𝑚-isogenies in dimension 2 (with Dartois, Kunzweiler,
Maino, Pope)

In dimension 1, a 2602-isogeny over a field of 2360 bits: decomposition in 270ms, images in 8ms.

In dimension 2 (theta): decomposition in 490 ms, images in 25 ms

Richelot: decomposition in 4850 ms, image in 470 ms

Implementation in dimension 4 (Dartois): A 2128-isogeny over a field of 500 bits in 620 ms.
⇒ SQISign-HD verification in 850 ms

In FESTA, the bottleneck is now arithmetic in dimension 1 (torsion basis, pairings…)
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Faster scalar multiplication on Kummer lines

Exploit the action of the theta group 𝐺(2(0𝐸)) on 𝛤(2(0𝐸)) = ⟨𝑋, 𝑍⟩
On a Montgomery model with a rational two torsion point 𝑇 = (𝑥𝑇 ∶ 1) ≠ (0 ∶ 1):
Variable base scalar multiplication ladder 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃) → ℓ.𝑃 in 4𝑀 + 4𝑆 + 2𝑚0 by bit.

Montgomery ladder: 5𝑀 + 4𝑆 + 1𝑚0 for a normalised point 𝑃 = (𝑋𝑃 ∶ 1).

On a Theta Kummer surface, fixed base scalar multiplication ladder in 7𝑀 + 4𝑆 + 3𝑚0 by bit.

Theta ladder: 10𝑀 + 9𝑆 + 6𝑚0.

Interesting for signatures (eg qDSA)
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Faster pairings on Kummer lines

Isogeny based cryptography needs generic pairings

New pairing formula on the Montgomery model:
given 𝑥(𝑃), 𝑥(𝑄), 𝑥(𝑃 + 𝑄), ladder approach in 9𝑀 + 6𝑆 by bit

Faster than any generic Miller doubling formula I found

Special cases: ℓ = 2𝑚 or 𝑄 = 𝑃: 6𝑀 + 4𝑆 by bit
ℓ = 2𝑚 and 𝑄 = 𝑃: 3𝑀 + 2𝑆 by bit

Double and add variant (in the theta model):
Double = 6𝑀 + 5𝑆, Add=24𝑀 + 6𝑆.

Timings in Sage for a 3363 pairing over a field of 2360 bits:
Sage’s Tate pairing computation: 0.13450s

Biextension Tate pairing computation: 0.02748s

Sage’s Weil pairing computation: 0.09782s

Biextension Weil pairing computation: 0.04764s
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Biextensions

Introduced by Mumford, developed by Grothendieck in [SGA7, Exposés VII, VIII]

Grothendieck deals with biextensions BiExt(𝐴, 𝐵; 𝐶) of abelian groups in an arbitrary topos

Object 𝑋 → 𝐴 × 𝐵 with two partial group laws ⋆1, ⋆2 such that for all 𝑎, 𝑏 ∈ 𝐴, 𝐵, (𝑋𝑏, ⋆1) is
an extension of 𝐴 by 𝐶 and (𝑋𝑎, ⋆2) an extension of 𝐵 by 𝐶
Compatibility requirement:
for 𝑥𝑎1,𝑏1

→ (𝑎1, 𝑏1), 𝑥𝑎2,𝑏1
→ (𝑎2, 𝑏1), 𝑥𝑎1,𝑏2

→ (𝑎1, 𝑏2), 𝑥𝑎2,𝑏2
→ (𝑎2, 𝑏2);

(𝑥𝑎1,𝑏1
⋆1 𝑥𝑎2,𝑏1

) ⋆2 (𝑥𝑎1,𝑏2
⋆1 𝑥𝑎2,𝑏2

) = (𝑥𝑎1,𝑏1
⋆2 𝑥𝑎1,𝑏2

) ⋆1 (𝑥𝑎2,𝑏1
⋆2 𝑥𝑎2,𝑏2

).

BiExt(𝐴, 𝐵; 𝐶) additive fibrant left exact in 𝐴, 𝐵, and additive cofibrant left exact in 𝐶.

BiExt0(𝐴, 𝐵; 𝐶) ≃ Hom(𝐴 ⊗ 𝐵, 𝐶)

BiExt1(𝐴, 𝐵; 𝐶) ≃ Ext1(𝐴 𝐿⊗ 𝐵, 𝐶)
⇒ Pairings!
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SGA 7: Groupes de monodromie en géométrie algébrique
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Biextension of elliptic curves and abelian varieties

For abelian schemes 𝐴, 𝐵, BiExt(𝐴, 𝐵; 𝔾𝑚) ≃ BiRigidifiedTorsors(𝐴, 𝐵; 𝔾𝑚) ≃
Correspondances(𝐴, 𝐵) ≃ Hom(𝐴, �̂�) ≃ Hom(𝐵, 𝐴) (in the fppf topos)

Biextensions are used in [SGA7] to study orthogonality relations on the Néron models 𝒜, 𝒜 of an
abelian variety 𝐴 and its dual 𝐴
In particular Grothendieck’s pairing on Néron component groups 𝜋0(𝒜𝑠) × 𝜋0(𝒜𝑠) → ℚ/ℤ
measures the obstruction of lifting the Poincaré biextension on 𝐴 × 𝐴 to 𝒜 × 𝒜
Key point in the proof of Grothendieck’s semistable reduction theorem for abelian varieties

Intuitive idea of a biextension: the biextension 𝑋𝑓 ∈ BiExt(𝐴, 𝐵; 𝔾𝑚) associated to a morphism

𝑓 ∶ 𝐴 → �̂� can be seen as a decurryfication of 𝑓 ∶ 𝐴 → �̂� ≃ Ext1(𝐵, 𝔾𝑚)
The biextension 𝑋𝑓 “encodes” the Weil-Cartier pairing 𝑒𝑓

Biextensions have better functorial and deformation/degeneration properties than Cartier
duality

Seems like a nice theoretical tool, but too abstract to be well suited for algorithmic applications
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Pairings via biextensions

[SGA7]: the biextension arithmetic computes the Weil-Cartier and [Stange 2008] Tate pairings (up
to a sign)

[Stange 2008]: the arithmetic of the biextension associated to (0𝐸) on an elliptic curve is given
by elliptic nets

[Lubicz-R. 2010, 2015]: explicit biextension arithmetic in the theta model associated to a totally
symmetric line bundle ℒ of level 𝑛 in any dimension

Except we were not aware that our theta pairing algorithms were actually computing the biextension arithmetic at the time

we wrote our articles…Only recently realised this thanks to an email by Katerine Stange in May 2023 pointing out the

biextension interpretation of the Tate pairing as written out in her PhD!

This talk: explicit arithmetic of the biextension associated to 2(0𝐸) on several models of Kummer
lines

Exponentiation on the biextension associated to a Montgomery model of the Kummer line is very
familiar…
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The Tate andWeil pairings via biextensions
Let 𝑋 ∈ BiExt(𝐸, 𝐸; 𝔾𝑚) be the biextension of associated to (0𝐸)
Let 𝑃 ∈ 𝐸[ℓ](𝔽𝑞), 𝑄 ∈ 𝐸(𝔽𝑞), 𝜇ℓ ⊂ 𝔽𝑞

Let 𝑔𝑃,𝑄 ∈ 𝑋(𝔽𝑞) be any element above (𝑃, 𝑄)

Since ℓ𝑃 = 0, 𝑔⋆1,ℓ
𝑃,𝑄 is a constant 𝜆𝑃

If 𝜇 ∈ 𝔾𝑚(𝔽𝑞) and 𝑔′
𝑃,𝑄 = 𝜇 ⋅ 𝑔𝑃,𝑄, then 𝑔′⋆1,ℓ

𝑃,𝑄 = 𝜇ℓ𝜆𝑃

The class of 𝜆𝑃 in 𝔽∗
𝑞/𝔽∗,ℓ

𝑞 is the non reduced Tate pairing

𝑔⋆1,𝑞−1
𝑃,𝑄 = 𝜆(𝑞−1)/ℓ

𝑃 is the reduced Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑄).
It does not depends on the choice of 𝑔𝑃,𝑄

If 𝑄 ∈ 𝐸[ℓ], 𝑔⋆2,ℓ
𝑃,𝑄 = 𝜆𝑄; Weil pairing: 𝑒𝑊,ℓ(𝑃, 𝑄) = 𝜆𝑃/𝜆𝑄.

Pairings = exponentiations in the biextension
Can use all usual tricks: NAF, windows, …

We will be working with the biextension associated to the divisor of level 2, 𝐷 = 2(0𝐸), hence compute the Tate andWeil
pairing associated to the polarisation 𝜙𝐷
This is the square of the usual Tate andWeil pairings associated to the principal polarisation.

This is not a problem when ℓ is odd, but we lose one bit of information when ℓ is even

But in this case, we can use the action of the theta group 𝐺(2(0𝐸)) to compute the usualWeil and Tate pairings
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Biextensions in practice
𝑋 biextension associated to (0𝐸)
An element 𝑔𝑃,𝑄 ∈ 𝑋 above (𝑃, 𝑄) ∈ 𝐸 × 𝐸 is a function 𝑔𝑃,𝑄 ∈ 𝑘(𝐸) with divisor

(𝑃) + (𝑄) − (𝑃 + 𝑄) − (0𝐸)

All such functions differ by multiplication by a constant, so 𝑋 is indeed a biextension of 𝐸 × 𝐸 by
𝔾𝑚
𝜇𝑃,𝑄: usual representative normalised at (0𝐸) (via the uniformiser 𝑧 = 𝑥/𝑦)
Group laws:

(𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄)(𝑅) = 𝑔𝑃1,𝑄(𝑅)𝑔𝑃2,𝑄(𝑅 − 𝑃1)

(𝑔𝑃,𝑄1
⋆2 𝑔𝑃,𝑄2

)(𝑅) = 𝑔𝑃,𝑄1
(𝑅)𝑔𝑃,𝑄2

(𝑅)
𝑔𝑄1,𝑄2

(𝑅 − 𝑃)
𝑔𝑄1,𝑄2

(𝑅)
The biextension is symmetric: 𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 = 𝑔𝑄,𝑃1

⋆2 𝑔𝑄,𝑃2
This implies: 𝜇𝑃1,𝑃2

(−𝑃3) = 𝜇𝑃2,𝑃3
(−𝑃1) = 𝜇𝑃3,𝑃1

(−𝑃2).

𝐷𝑄 = (𝑄) − (0𝐸) is algebraically equivalent to 0, hence the theta group 𝐺(𝐷𝑄) is an extension of 𝐸 by 𝔾𝑚:
1 → 𝔾𝑚 → 𝐺(𝐷𝑄) → 𝐸 → 0
The first biextension law ⋆1 is the multiplication in 𝐺(𝐷𝑄)
Given 𝑔1 ∈ 𝐺(𝐷𝑄1

), 𝑔2 ∈ 𝐺(𝐷𝑄2
), 𝑔1𝑔2 ∈ 𝐺(𝐷𝑄1

+ 𝐷𝑄2
)

𝐷𝑄1
+ 𝐷𝑄2

= (𝑄1) + (𝑄2) − 2(0𝐸) ∼ (𝑄1 + 𝑄2) − (0𝐸), hence we have a canonical isomorphism
𝜙 ∶ 𝐺(𝐷𝑄1

+ 𝐷𝑄2
) ≃ 𝐺(𝐷𝑄1+𝑄2

) induced by 𝑔𝑄1,𝑄2
(𝑔1, 𝑔2) ∈ 𝐺(𝐷𝑄1

) × 𝐺(𝐷𝑄2
) ↦ 𝜙(𝑔1𝑔2) ∈ 𝐺(𝐷𝑄1+𝑄2

) is the second biextension law ⋆2.
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Working with biextensions: the function representation

We represent 𝑔𝑃,𝑄 as the function 𝑐 𝑙𝑃,𝑄
𝑣𝑃+𝑄

= 𝑐 𝑦+𝑎𝑥+𝑏
𝑥−𝛾

Also keep track of (𝑃, 𝑄)
Compute 𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 and 𝑔𝑃,𝑄1

⋆2 𝑔𝑃,𝑄2
in 𝑘(𝐸)

Reducing modulo the equation of 𝐸, we get a representative of 𝑔𝑃,𝑄1+𝑄2
and 𝑔𝑃1+𝑃2,𝑄

Polynomial time

Not very efficient
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Working with biextensions: the evaluation representation

Since we keep track of (𝑃, 𝑄), 𝑔𝑃,𝑄 is completely determined up to a constant 𝑐 ∈ 𝔾𝑚, so we
only need to keep track of 𝑐
Fix a point 𝑅 ∈ 𝐸 and represent 𝑔𝑃,𝑄 via (𝑃, 𝑄, 𝑔𝑃,𝑄(𝑅))
(Use a uniformiser if 𝑅 is in the support of 𝑔𝑃,𝑄)

Example: 𝑅 = 0𝐸, represent 𝑔𝑃,𝑄 via (𝑃, 𝑄, 𝑐) where 𝑔𝑃,𝑄 = 𝑐𝜇𝑃,𝑄

(𝑄, 𝑃1, 𝑐1) ⋆2 (𝑄, 𝑃2, 𝑐2) = 𝑐1𝑐2
𝑔𝑃1,𝑃2(𝑅−𝑄)

𝑔𝑃1,𝑃2(𝑅)

𝑔⋆2,ℓ
𝑄,𝑃 = 𝑔𝑄,𝑃(𝑅)ℓ𝑓ℓ,𝑃((𝑅 − 𝑄) − (𝑅)), where div 𝑓ℓ,𝑃 = ℓ𝑃 − (ℓ𝑃) − (ℓ − 1)(0𝐸)

The biextension exponentiation gives Miller’s algorithm

⇒ Geometric interpretation of Miller’s group law

We recover theWeil and Tate pairings (up to a sign)

Can change the evaluation point 𝑅 on the fly

Variant (using the symmetry):
(𝑄, 𝑃1, 𝑐1) ⋆2 (𝑄, 𝑃2, 𝑐2) = 𝑐1𝑐2𝜇𝑃1,𝑃2

(−𝑄) = 𝑐1𝑐2𝜇𝑃1,𝑄(−𝑃2)
Miller’s addition: 𝑓𝑚+1,𝑃(−𝑄) = 𝑓𝑚,𝑃(−𝑄)𝜇𝑚𝑃,𝑃(−𝑄) = 𝑓𝑚,𝑃(−𝑄)𝜇𝑃,𝑄(−𝑚𝑃).
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Working with biextensions: isomorphisms of line bundles

Let ℒ = 𝒪(𝐷) be the line bundle associated to 𝐷 = (0𝐸), ℒ𝑃 ≔ 𝜏∗
𝑃ℒ

A function 𝑔𝑃,𝑄 is the same as an isomorphism 𝛷𝑃,𝑄 ∶ ℒ𝑃+𝑄 ⊗ ℒ ≃ ℒ𝑃 ⊗ ℒ𝑄

Two isomorphisms 𝛷𝑃1,𝑄, 𝛷𝑃2,𝑄 give an isomorphism
𝛷𝑃1,𝑄 ⋆1 𝛷𝑃2,𝑄 = 𝛷𝑃1,𝑄 ⊗ 𝜏∗

𝑃1
𝛷𝑃2,𝑄 ∶ ℒ𝑃1+𝑃2+𝑄 ⊗ ℒ ≃ ℒ𝑃1+𝑃2

⊗ ℒ𝑄

Algebraic Riemann relations: if 𝑃, 𝑄, 𝑅, 𝑆 ∈ 𝐸, 𝑃 + 𝑄 + 𝑅 + 𝑆 = 2𝑇,
𝑃′ = 𝑇 − 𝑃, 𝑄′ = 𝑇 − 𝑄, 𝑅′ = 𝑇 − 𝑅, 𝑆′ = 𝑇 − 𝑆, we have a canonical isomorphism:

ℒ𝑃 ⊗ ℒ𝑄 ⊗ ℒ𝑅 ⊗ ℒ𝑆 ≃ ℒ𝑃′ ⊗ ℒ𝑄′ ⊗ ℒ𝑅′ ⊗ ℒ𝑆′

Proof: Fix any isomorphism 𝜙 ∶ ℒ𝑃 ⊗ ℒ𝑄 ≃ ℒ𝑅′ ⊗ ℒ𝑆′ , by the symmetry of ℒ this induces an isomorphism

ℒ𝑃′ ⊗ ℒ𝑄′ ≃ ℒ𝑅 ⊗ ℒ𝑆, and the tensor product gives the required canonical isomorphism; it does not depends on 𝜙.

Examples: we have canonical isomorphisms:

ℒ𝑃+𝑄+𝑅 ⊗ ℒ𝑃 ⊗ ℒ𝑄 ⊗ ℒ𝑅 ≃ ℒ ⊗ ℒ𝑄+𝑅 ⊗ ℒ𝑃+𝑅 ⊗ ℒ𝑃+𝑄 (cubical torsor structure)

ℒ𝑃+𝑄 ⊗ ℒ𝑃−𝑄 ⊗ ℒ ⊗ ℒ ≃ ℒ−𝑄 ⊗ ℒ𝑄 ⊗ ℒ𝑃 ⊗ ℒ𝑃 (differential additions)
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Working with biextensions: cubical torsor structure

If ℒ is a line bundle algebraically equivalent to 0, it has a squared structure.

If ℒ is an arbitrary line bundle, 𝜏∗
𝑃𝐿 ⊗ 𝐿−1 is algebraically equivalent to 0, hence has a squared

structure.
This is enough to define theWeil and Tate pairing.

This squared structure is induced by a cubical structure on the Neron-Severri class 𝛬(ℒ) of ℒ.
Biextension associated to ℒ = cubical structure on 𝛬(ℒ).
ℒ itself has a cubical structure [Breen 1983, Moret-Bailly 1985]

Idea: directly use this cubical torsor structure to derive efficient formulas for the biextension
arithmetic

This provides a refinement on the biextension arithmetic which gives faster self pairing formula
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Working with biextensions: trivialisations of line bundles

We want to represent a biextension element as an isomorphism
𝛷𝑃,𝑄 ∶ ℒ𝑃+𝑄 ⊗ ℒ ≃ ℒ𝑃 ⊗ ℒ𝑄

Fix a local trivialisation at a point 𝑅 of ℒ𝑃+𝑄, ℒ𝑃, ℒ𝑄, ℒ
This induces a local trivialisation of ℒ𝑃+𝑄 ⊗ ℒ ⊗ ℒ−1

𝑃 ⊗ ℒ−1
𝑄 at 𝑅, hence a global trivialisation

(since it is trivial), hence an isomorphism 𝛷𝑃,𝑄

In practice take 𝑅 = 0𝐸 and fix a local trivialisation of ℒ at 𝑃 + 𝑄, 𝑃, 𝑄, 0𝐸

“Trivialisation representation”

Redundant: changing the trivialisations by 𝜆𝑃𝑄, 𝜆𝑃, 𝜆𝑄, 𝜆0 does not change 𝛷𝑃,𝑄 iff

𝜆𝑃𝑄𝜆0 = 𝜆𝑃𝜆𝑄

Biextension arithmetic: given trivialisations of ℒ at 0, 𝑄, 𝑃1, 𝑃1 + 𝑄, 𝑃2, 𝑃2 + 𝑄 inducing the
biextension elements 𝛷𝑃1,𝑄, 𝛷𝑃2,𝑄:

1 we fix an arbitrary trivialisation of ℒ at 𝑃1 + 𝑃2
2 the cubical torsor structure induces a canonical trivialisation at 𝑃1 + 𝑃2 + 𝑄
3 we get an isomorphism 𝛷𝑃1+𝑃2,𝑄 ∶ ℒ𝑃1+𝑃2+𝑄 ⊗ ℒ ≃ ℒ𝑃1+𝑃2 ⊗ ℒ𝑄
4 𝛷𝑃1+𝑃2,𝑄 = 𝛷𝑃1,𝑄 ⋆2 𝛷𝑃2,𝑄
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Working with biextensions: affine lifts

We now work with 𝐷 = 2(0𝐸), ℒ = 𝒪(𝐷), 𝛤(𝐷) = ⟨𝑋, 𝑍⟩
Given 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃), a local trivialisation of ℒ at 𝑃 is the same as an affine lift �̃� = (𝑋𝑃, 𝑍𝑃) of
𝑃
A biextension element 𝑔𝑃,𝑄 is then determined by affine lifts ̃0, �̃�, 𝑄, ̃𝑃 + 𝑄

Biextension group law: from ̃0, 𝑄, 𝑃1, 𝑃2, ̃𝑃1 + 𝑄, ̃𝑃2 + 𝑄, compute 𝑃1 + 𝑃2
1, take an arbitrary

lift ̃𝑃1 + 𝑃2 and compute the canonical lift ̃𝑃1 + 𝑃2 + 𝑄 induced by the cubical torsor structure

𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 is determined by ̃0, 𝑄, ̃𝑃1 + 𝑃2, ̃𝑃1 + 𝑃2 + 𝑄.

Double and add algorithm for the exponentiation: from ̃0, �̃�, 𝑄, ̃𝑃 + 𝑄, compute ℓ̃𝑃, ̃ℓ𝑃 + 𝑄.

If 𝐷 = (0𝐸), 𝛤(𝐷) = ⟨𝑍0⟩, a trivialisation of ℒ = 𝒪(𝐷) at 𝑃 is the same as fixing a value 𝑍0(𝑃)
(Slight annoyance: 𝑍0(0𝐸) = 0…)

Keeping track of these values through the cubical torsor structure we recover elliptic nets

Our representation can thus be seen as a generalisation of elliptic nets from level 1 to level 2

1On a Kummer line, knowing 𝑃1, 𝑃2, 𝑃1 + 𝑄, 𝑃2 + 𝑄 is enough to recover 𝑃1 + 𝑃2.
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Doubling and differential additions with affine lifts

Doubling on the biextension: from ̃0, �̃�, 𝑄, ̃𝑃 + 𝑄, compute 2̃𝑃, ̃2𝑃 + 𝑄.

On a Kummer line, 2𝑃 is computed by a doubling and 2𝑃 + 𝑄 by a differential addition
DiffAdd(𝑃 + 𝑄, 𝑃, 𝑄)
We just need an affine version of doublings and differential additions:
2̃𝑃 = Double(�̃�), ̃2𝑃 + 𝑄 = DiffAdd( ̃𝑃 + 𝑄, �̃�, 𝑄).
This extends to differential addition on the biextension: given 𝑔𝑃1,𝑄, 𝑔𝑃2,𝑄, 𝑔𝑃1,𝑄𝑔⋆1,−1

𝑃2,𝑄
represented by ̃0, 𝑄, 𝑃1, 𝑃2, ̃𝑃1 − 𝑃2, ̃𝑃1 + 𝑄, ̃𝑃2 + 𝑄, ̃𝑃1 − 𝑃2 + 𝑄, we can compute

̃𝑃1 + 𝑃2, ̃𝑃1 + 𝑃2 + 𝑄 representing 𝑔𝑃1+𝑃2,𝑄 = 𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 via two affine differential
additions:

̃𝑃1 + 𝑃2 = DiffAdd(𝑃1, 𝑃2, ̃𝑃1 − 𝑃2),
̃𝑃1 + 𝑃2 + 𝑄 = DiffAdd( ̃𝑃1 + 𝑄, 𝑃2, ̃𝑃1 − 𝑃2 + 𝑄).

Affine doublings and differential additions allow to compute an affine ladder:
(�̃�, 𝑄, ̃𝑃 + 𝑄) ↦ (ℓ̃𝑃, ̃ℓ𝑃 + 𝑄)
This computes the biextension exponentiation 𝑔⋆1,ℓ

𝑃,𝑄.

Projectively, this is just the ladder3Montgomery algorithm (𝑃, 𝑄, 𝑃 + 𝑄) ↦ (ℓ𝑃, ℓ𝑃 + 𝑄)
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Affine doublings and differential additions in the Montgomery model
𝐸 ∶ 𝐵𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1) a Montgomery curve

Amazing fact2: the usual doubling and differential addition formulae in the Montgomery model
already compute the biextension law:

Double((𝑋𝑃, 𝑍𝑃)) = (𝑅 ⋅ 𝑆, 𝑇 ⋅ (𝑆 + 𝐴+2
4 𝑇) with

𝑅 = (𝑋𝑃 + 𝑍𝑃)2, 𝑆 = (𝑋𝑃 − 𝑍𝑃)2, 𝑇 = 𝑅 − 𝑆 = 4𝑋𝑃𝑍𝑃
DiffAdd((𝑋𝑃, 𝑍𝑃), (𝑋𝑄, 𝑍𝑄), (𝑋𝑃−𝑄, 𝑍𝑃−𝑄)) = ((𝑈 + 𝑉)2/𝑋𝑃−𝑄, (𝑈 − 𝑉)2/𝑍𝑃−𝑄),
with 𝑈 = (𝑋𝑃 − 𝑍𝑃)(𝑋𝑄 − 𝑍𝑄), 𝑉 = (𝑋𝑃 − 𝑍𝑃)(𝑋𝑄 − 𝑍𝑄)

⇒ The usual Montgomery ladder ladder3 already computes exponentiations in the biextension

Ladder approach to the Tate and Weil pairing:
1 Start with ̃0 = (1, 0), �̃� = (𝑋𝑃, 𝑍𝑃), 𝑄 = (𝑋𝑄, 𝑍𝑄), ̃𝑃 + 𝑄 = (𝑋𝑃+𝑄, 𝑍𝑃+𝑄)

2 Compute ℓ̃𝑃 = (𝜆1, 0), ̃ℓ𝑃 + 𝑄 = (𝜆2𝑋𝑄, 𝜆2𝑍𝑄)
3 The non reduced Tate pairing is 𝑒𝑇,ℓ(𝑃, 𝑄) = 𝜆2/𝜆1

No special cases (no intermediates zeros or poles)

Requires 𝑥𝑃, 𝑥𝑄, 𝑥𝑃+𝑄. If we only have 𝑥𝑃, 𝑥𝑄, work over 𝔽𝑞[𝑡]/((𝑡 − 𝑥𝑃+𝑄)(𝑡 − 𝑥𝑃−𝑄)) to
compute the symmetrised pairings

Self pairings: simply do a standard ladder �̃� ↦ ℓ�̃�
2The unicity of the biextension implies that any “natural” arithmetic laws on the Kummer line is already the biextension law
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Application to pairing based cryptography

𝐸/𝔽𝑞 pairing friendly curve, embedding degree 𝑘
𝑃 ∈ 𝐺1 = 𝐸[ℓ](𝔽𝑞), 𝑄 ∈ 𝐺2 = 𝐸[ℓ][𝜋𝑞 − 𝑞]
Operations in 𝔽𝑞𝑘 :M=multiplication, S=square, M=𝔽𝑞 × 𝔽𝑞𝑘 multiplication

▶ Miller double: 2M+2S+5M
▶ Miller addition: 2M+2S+5M
▶ Variant [BMLL 2010]: double: 1M+2S+3M, addition: 1M+2.5M
▶ Biextension ladder: 1M+2S+2M

Operations in 𝔽𝑞𝑘 with denominator elimination (𝑘 even):
▶ Miller double: 1M+1S+1M
▶ Miller addition: 1M+1M

⇒ The biextension approach is probably faster for odd embedding degree, or when 𝑃 ∈ 𝐺2 like for
the ate and optimal ate pairings
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Ate and optimal ate

Tate pairing: 𝑃 ∈ 𝐸[ℓ](𝔽𝑞𝑘), 𝑄 ∈ 𝐸(𝔽𝑞𝑘), ℓ ∣ 𝑞𝑘 − 1.

Take any 𝑔𝑃,𝑄 in the biextension, since 𝑞𝑘𝑃 = 𝜋𝑞𝑘(𝑃) = 𝑃,

𝜋𝑞𝑘(𝑔𝑃,𝑄) = 𝜆𝑃 ⋅ 𝑔⋆1,𝑞𝑘

𝑃,𝑄

This is the reduced Tate pairing: 𝑒𝑇,ℓ(𝑃, 𝑄) = 𝜆𝑃

Ate pairing: 𝑃 ∈ 𝐺2 = 𝐸[ℓ][𝜋𝑞 − 𝑞], 𝑄 ∈ 𝐺1 = 𝐸[ℓ](𝔽𝑞)
Take any 𝑔𝑃,𝑄 in the biextension, since 𝜋𝑞(𝑃) = 𝑞𝑃,

𝜋𝑞(𝑔𝑃,𝑄) = 𝜆𝑃 ⋅ 𝑔⋆1,𝑞
𝑃,𝑄

This is the Ate pairing: ateℓ(𝑃, 𝑄) = 𝜆𝑃
Similar formulas for the optimal Ate pairing

The reduced Tate pairing is the Weil-Cartier pairing 𝑒𝜋
𝑞𝑘

.

From the biextension point of view, the Ate pairing is better understood via the Weil-Cartier pairing 𝑒�̂�𝑞 ∶ 𝐺2 × 𝐺1 → 𝔾𝑚

Damien Robert Arithmetic and pairings on Kummer lines 20 / 22



Other applications of biextensions

The biextension arithmetic allow to recover the action of the theta group of level ℓ𝑛 while
working in level 𝑛
An explicit version of the theorem of the square on a given model of an abelian variety gives the
biextension arithmetic

From this we can compute the addition law, pairings, but also isogenies and basis of theta
functions [R.’s HDR 2021]

[BGS 2022]’s modification of Doliskani’s supersingularity testing is actually a self Tate pairing
computation 𝑒𝑇,𝑝±1(𝑃, 𝑃) ?= 1
If 𝑃 ∈ 𝐸(𝔽𝑞) is of order ℓ with 𝑞 ≡ 1 (mod ℓ), 𝐸/⟨𝑃⟩[ℓ] ≃ (ℤ/ℓℤ)2 ⇔ 𝑒𝑇,ℓ(𝑃, 𝑃) = 1

The biextension arithmetic is a mix of arithmetic on 𝐸 and arithmetic on 𝔽𝑞

When computing 𝑃 ↦ ℓ𝑃, leaking a biextension exponentiation 𝑔𝑃,𝑄 ↦ 𝑔⋆1,ℓ
𝑃,𝑄 allows to solve

the DLP in subexponential time (by reducing to DLPs in 𝔽∗
𝑞)

One projective coordinate leak in the Montgomery ladder is enough to fully recover ℓ!
Previously: could only recover a few bits of ℓ
Projective coordinate leak: from 𝑃 = (𝑥𝑃, 1), compute ℓ.𝑃 = (𝑋, 𝑍) via the Montgomery
ladder, and leak (𝑋, 𝑍) rather than just 𝑋/𝑍.
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Open questions

Still a work in progress, with many open questions!

Extend to other Kummer models?

Other representations of the biextension elements?

Exploit further the cubical torsor structure and the algebraic Riemann relations?

How to do denominator elimination?

Compute the Weil-Cartier pairing associated to any endomorphism or isogeny?

To an isogeny 𝑓 ∶ 𝐴 → 𝐵 corresponds a unique biextension 𝑋𝑓.
How to compute in 𝑋𝑓? Can we use 𝑋𝑓 to find yet another representation of 𝑓?
New insights on pairing inversion?
Inverting pairings = finding a ℓ-th root in the biextension

New insights on the DLP?
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