Infinitesimal pairings and CSIDH 2024/01/23 — Journées PQ TLS, Paris

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

Pairings in isogeny based cryptography

- [CSV2o2o]: Tate pairing to attack isogeny-DDH;
 Genus theory describes the characters χ : Cl(O) → ±1, and the Tate pairing can be used to compute χ(α);
- [CHVW2022]: Weil pairing to compute $\chi(\mathfrak{a})$;
- [CHMMvBV2023]: Generalised Tate pairing to attack the class group action; \Rightarrow Applies when Δ_O has a large enough smooth factor
- This talk: CSIDH
- Infinitesimal pairings
- Work in progress (Euphemism for "I don't know how to compute anything")
- More questions than answers...

The Weil-Cartier pairing

• If $\gamma \in \operatorname{End}(E)$ of norm d, non degenerate pairing

$$e_{\gamma}: E[\gamma] \times E[\hat{\gamma}] \to \mu_d.$$

- ullet Primitively oriented elliptic curve: O quadratic imaginary order of discriminant $\Delta=\Delta_O<0$;
- Special case $\gamma = \alpha := \sqrt{\Delta}$;
- $E[\alpha]$ is cyclic (the orientation is primitive);
- $E[\hat{\alpha}] = E[\alpha]$ $(\hat{\alpha} = \overline{\alpha} = -\alpha);$
- $\Rightarrow e_{\alpha} : E[\alpha] \times E[\alpha] \to \mu_{\Delta}$ is a non degenerate self pairing of order Δ .
 - $e_{\alpha}(P,Q) = e_{\Delta}(P,Q')$ for $\alpha(Q') = Q$

Application 1: reconstructing an isogeny [CHMMvBV2023]

- $\phi: E_A \to E_B$ unknown oriented isogeny of known degree n;
- $\gamma = [\ell]$: e_{ℓ} gives constraints on $\phi \mid E_A[\ell]$;
- $\quad \text{$\gamma$ cyclic: via the Weil pairing $e_{\gamma'}$ recover the action of ϕ on $E_A[\hat{\gamma}]$ from the action on $E_A[\gamma]$.}$
- Special case: $\gamma = \alpha$;
- $\bullet \ e_{\alpha}(\phi(P),\phi(P)) = e_{\alpha}(P,P)^{n};$
- If $Q \in E_B[\alpha]$ such that $e_\alpha(Q,Q) = e_\alpha(P,P)$, then $\phi(P) = c.Q$ with $c^2 = n$ modulo Δ ;
- $\Rightarrow \operatorname{Recover} \phi(P) \text{ up to a "sign" } \mu \quad (\mu^2 = 1 \operatorname{modulo} \Delta)$
- \bullet If $\Delta>n$ this is enough to recover ϕ (Kani+Zarhin+Banff/Bristol workshop)

Application 2: genus theory

• If $\ell \mid \Delta$ odd prime, character χ_{ℓ} on Cl(O):

$$\chi_{\ell}([\mathfrak{a}]) = \left(\frac{N(\mathfrak{a})}{\ell}\right) \in \{\pm 1\}$$

- Special formulas for $\ell=2$;
- There is exactly one non trivial relation between the characters.
- $\bullet \ \phi_{\mathfrak{a}}: E_A \to E_B = \mathfrak{a} \cdot E_A$
- $\begin{array}{l} \bullet \ \ U_A = \{e_{\alpha}(P,P)^{\Delta/\ell} \mid P \in E_A[\alpha]\} = \{\zeta_A^{i^2} \mid i \in \{1,\ldots,\Delta\}\}, \\ U_B = \{e_{\alpha}(Q,Q)^{\Delta/\ell} \mid Q \in E_B[\alpha]\} = \{\zeta_B^{i^2} \mid i \in \{1,\ldots,\Delta\}\} = \{\zeta_A^{N(\mathfrak{a})i^2} \mid i \in \{1,\ldots,\Delta\}\}; \end{array}$
- $\chi_{\ell}([\mathfrak{a}]) = 1 \Leftrightarrow U_A = U_B$, $\chi_{\ell}([\mathfrak{a}]) = -1 \Leftrightarrow U_A \cap U_B = \{1\}$.
- $\bullet \ \ [\mathfrak{a}][\mathfrak{b}] = [\mathfrak{b}'][\mathfrak{a}'], \mathsf{DDH:} \mathsf{check} \mathsf{\,if} \ [\mathfrak{a}] = [\mathfrak{a}'] \ (\Leftrightarrow [\mathfrak{b}] = [\mathfrak{b}'])?$
- Genus check: $\chi_{\ell}([\mathfrak{a}]) = \chi_{\ell}([\mathfrak{a}'])$ for all $\ell \mid \Delta$?

Generalised Tate pairings

• If $m \mid \Delta$, e_{α} induces a non degenerate pairing (the generalised Tate pairing)

$$E[\alpha,m]\times E[\alpha]/mE[\alpha]\to \mu_m$$

• If $P = \frac{\Delta}{m}P' \in E[\alpha, m]$ and $Q = mQ' \in E[\alpha]/mE[\alpha]$,

$$e_{\alpha}(P,Q) = e_m(P,\hat{\alpha}(Q')) = e_{\alpha}(P',Q)^{\frac{\Delta}{m}} = e_{\Delta}(P',\hat{\alpha}(Q'))^{\frac{\Delta}{m}}$$

- $P \in E[\alpha] \mapsto e_{\alpha}(\frac{\Delta}{m}P, P)$ induces a self pairing of order m on $E[\alpha, m]$;
- Allows to restrict to the smooth part of Δ .
- Usual Tate pairing: $\alpha = \pi 1$;
- Generalised Tate-Cartier pairing: if $\psi_2 \circ \sigma_1 = \sigma_2 \circ \psi_1$, $e_{\sigma_1} : A_1[\sigma_1] \times A_2[\tilde{\sigma}_1] \to \mathbb{G}_m$ induces

$$A_1[\sigma_1,\psi_1]\times \hat{A}_2[\hat{\sigma}_1]/\hat{\psi}_2(\hat{B}_2[\hat{\sigma}_2])\to \mathbb{G}_m$$
 and $e_{\sigma_1}(P_1,Q_2)=e_{\psi_1}(P_1,\hat{\sigma}_2Q')$ where $\hat{\psi}_2Q'=Q$.

CSIDH

- In CSIDH/CSURF: E/\mathbb{F}_p supersingular elliptic curve
- $\Delta = -4p \text{ or } \Delta = -p$;
- Needs $\ell = p$ to get meaningful information
- ullet Infinitesimal Weil pairing: $e_p: E[p] \times E[p] o \mu_p$
- $\alpha = \pi$ is the Frobenius
- ullet Infinitesimal self pairing: e_π on $E[\pi]$ with values in μ_p
- $e_{\pi}(P,Q) = e_p(P,Q')$ where $\pi(Q') = Q$.
- E/k supersingular curve, k perfect of characteristic p
- $E[\pi] = \{(X : Y : Z) \in E \mid (X^p : Y^p : Z^p) = (0 : 1 : 0)\} \simeq \alpha_p = \operatorname{Spec} k[X]/X^p$
- $E[p] = \{(X:Y:Z) \in E \mid (X^{p^2}:Y^{p^2}:Z^{p^2}) = (0:1:0)\} \simeq I_{1,1}$ the unique autodual non split extension of α_p by itself
- $\mu_p = \operatorname{Spec} k[X]/(X^p 1)$

Dieudonné theory

- Dieudonné ring: $A = W(k)\{F, V\}$ with $VF = FV = p, F\lambda = \lambda^{\sigma}F, \lambda V = V\lambda^{\sigma}$ (σ Frobenius on W(k))
- Anti-equivalence of category $G \mapsto \mathbb{D}(G)$ from finite (flat) commutative group schemes of p-primary degree to left A-modules of finite W(k)-length
- \bullet F corresponds to the Frobenius on G and V to the Verschiebung
- Functorial in k
- If p.G = 0 then $\mathbb{D}(G)$ is a $k\{F, V\}$ -module;
- Extends to p-divisible groups: anti-equivalence between p-divisible groups G of height n and free left A-modules of rank n
- ullet Composing with duality we get a covariant theory but which permutes the role of F and V

Examples

- If G/k of order p, $\mathbb{D}(G)$ is a k-vector space of dimension 1 with some action by F and V
- $\mathbb{D}(\mathbb{Z}/p\mathbb{Z}): F = 1, V = 0$
- $\mathbb{D}(\mu_p)$: F = 0, V = 1
- $\bullet \ \mathbb{D}(\alpha_p) : F = 0, V = 0$
- If E/k is an elliptic curve, E(p) is a p-divisible group of height 2, $\mathbb{D}(E(p))$ is a free W(k)-module of rank 2
- If E/k is ordinary, $E(p) = E_{etale}(p) \times E_{mult}(p)$,

$$\mathbb{D}(E(p)) = \mathbb{D}(E_{etale}(p)) \oplus \mathbb{D}(E_{mult}(p))$$

$$F = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}, V = \begin{pmatrix} \mu & 0 \\ 0 & \lambda \end{pmatrix}$$

 λ,μ the two eigenvalues, λ invertible modulo p

• If E/k is supersingular,

$$F = \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$$

and V = -F on $\mathbb{D}(E[p])$.

Duality [Oda 1969], [Berthelot, Breen, Messing 1979]

• Duality behaves as expected for the p-divisible group A(p) of an abelian variety A/k: we have a canonical (functorial) isomorphism

$$A^{\vee}(p) \simeq A(p)^{\vee}$$

Duality behaves as expected for Dieudonné theory:

$$\mathbb{D}(G^\vee) \simeq \mathbb{D}(G)^\vee$$

$$\Rightarrow$$
 Pairing: $\mathbb{D}(A(p)) \times \mathbb{D}(A^{\vee}(p)) \to \mathbb{D}(\mathbb{G}_m)$

- $\bullet \ \ \text{Weil pairing:} \ e_p: A[p] \times A^{\vee}[p] \to \mu_p$
- If A is principally polarised:

$$e_p: \mathbb{D}(A[p]) \times \mathbb{D}(A[p]) \to \mathbb{D}(\mu_p)$$

Infinitesimal self pairing for supersingular elliptic curves

• Frobenius filtration: $0 \to E[\hat{\pi}] \to E[p] \to E[\pi] \to 0$ induces

$$0 \to \mathbb{D}(E[\pi]) \simeq \mathbb{D}(\alpha_p) \to \mathbb{D}(E[p]) \to \mathbb{D}(E[\hat{\pi}]) \simeq \mathbb{D}(\alpha_p) \to 0$$

• On a compatible symplectic basis $(e_1, e_2), e_1 \in \mathbb{D}(E[\pi])$:

$$F \mid \mathbb{D}(E[p]) = \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix}$$

with
$$e_p(e_1,e_2)=1\in \mathbb{D}(\mu_p)$$

• Since $F(e_2/c) = e_1$,

$$e_{\pi}(e_1, e_1) = e_p(e_1, e_2/c) = 1/c$$

Infinitesimal pairings for CSIDH

- Find a symplectic basis e_1 , e_2 of $\mathbb{D}(E[p])$
- ullet Compute the action of F on this basis
- ullet Recover e_{π}
- \Rightarrow Recover $\chi_p(\mathfrak{a})$ given only the domain and codomain of $\phi_{\mathfrak{a}}$
- \Rightarrow If $\phi_{\mathfrak{a}}: E_A \to E_B$ unknown isogeny of known degree n, embed $\phi_{\mathfrak{a}}$ into a purely inseparable isogeny in higher dimension
- ???¹
- Profit!

 $^{^{1}}$ No reason to believe that an inseparable isogeny can be computed in time faster than $O(p^{C})$; the Frobenius seems to be a special case

De Rham cohomology

[Oda 1969]: canonical isomorphisms

$$\mathbb{D}(A[p]) \simeq H^1_{DR}(A), \mathbb{D}(A[\pi]) \simeq H^0(A, \Omega^1_{A/k}), \mathbb{D}(A[\hat{\pi}]) \simeq H^1(A, O_A)$$

- De Rham cohomology: hypercohomology of the De Rham complex
- The Frobenius filtration

$$0 \to A[\hat{\pi}] \to A[p] \to A[\pi] \to 0$$

corresponds to the Hodge filtration

$$0 \rightarrow H^0(A,\Omega^0_{A/k}) \rightarrow H^1_{DR}(A) \rightarrow H^1(A,O_A) \rightarrow 0$$

- $\Rightarrow e_p$ is a pairing on $H^1_{DR}(A)$
- $\bullet \ \, \text{If} \, A = \text{Jac}(C), H^1_{DR}(A) = H^1_{DR}(C), H^1(A,O_A) = H^1(C,O_C) = H^0(C,K_C).$
- Cup product: $H^1_{DR}(C) \times H^1_{DR}(C) \rightarrow H^2_{DR}(C) \simeq^{Trace} k$
- \bullet [Coleman]: e_p is the cup product pairing

De Rham cohomology of an elliptic curve

- $H^1_{DR}(E) \simeq H^1_{DR}(E \setminus 0_E) \simeq H^0(\Omega(20_E)) = \langle dx/y, x dx/y \rangle$ ([Katz 1972] via log differentials) = Differentials with a pole of order ≤ 2 at infinity
- $e_p(dx/y, xdx/y) = 1;$
- For E/\mathbb{F}_p supersingular: π induces from e_p a non degenerate pairing e_π on $H^0(E,\Omega_{E/k})=\langle dx/y \rangle;$
- If F(xdx/y) = cdx/y,

$$e_{\pi}(dx/y,dx/y)=1/c.$$

- To compute e_{π} , we just need to know the action of F on xdx/y
- This *c* depends on the curve equation $y^2 = x^3 + ax + b$;
- $\begin{array}{l} \bullet \text{ The change of variable } (x,y) \mapsto (x',y') = (u^2x,u^3y) \text{ gives } dx'/y' = 1/u \cdot dx/y, \\ x'dx'/y' = u \cdot xdx/y, \text{ so } c' = u^2 \cdot c, \text{ and } e_\pi(dx'/y',dx'/y') = \frac{1}{u^2c} = \frac{1}{u^2}e_\pi(dx/y,dx/y). \end{array}$
- Kedlaya's algorithm: O(p), Harvey: $O(\sqrt{p})$ (their algorithm actually computes the action of F on the Monsky-Vashnitzer cohomology which reduces modulo p to the De Rham cohomology)

De Rham cohomology of an elliptic curve: the ordinary case

- \bullet E/\mathbb{F}_q ordinary
- $\bullet \ A[p] = A[\pi] \oplus A[\hat{\pi}], A[\hat{\pi}] \ \text{\'etale and} \ A[\pi] \ \text{multiplicative}$
- The Hodge filtration splits
- $\bullet \ H^1_{DR}(E) = H^0(E,\Omega_E^1) \oplus H^1(E,O_E) = \langle dx/y, x dx/y \rangle$
- $\langle dx/y \rangle \simeq \mathbb{D}(E[\pi]) \simeq H^0(E, \Omega_E^1)$
- $\bullet \ \langle xdx/y\rangle \simeq \mathbb{D}(E[\hat{\pi}]) \simeq H^1(E,O_E)$

Applications of the infinitesimal self pairing

- $\phi_a: E_A \to E_B$ unknown CSIDH isogeny of known degree n
- ullet Compute e_{π} on E_A and E_B
- Recover the action on differentials: $\phi_a^* dx_B/y_B = \lambda dx_A/y_A$ (up to a sign)
- Solve a differential equation to recover the action of $\phi_{\mathfrak{a}}$ on the formal group up to precision N < p [BMSS2008]

Deformations for CSIDH

- The action on differentials is only defined up to a sign
- ullet Kodaira-Spencer: $H^0(E,\operatorname{Sym}^2\Omega^1_{E/k})\simeq\Omega^1_{A_1,E}$
- ullet The square of a differential determines a deformation to $k[\, \epsilon \,]/(\, \epsilon^2);$
- Concretely: $j'/j = -E_6/E_4$ is a modular form of weight two and for a deformation $\widetilde{E}/k[\varepsilon]$, $j(\widetilde{(E)}) = j(E) + j'(E)\varepsilon$
- Using e_{π} , given a deformation \widetilde{E}_A of E_A to $k[\epsilon]/\epsilon^2$, we can compute the codomain \widetilde{E}_B knowing only $\deg \phi_{\mathfrak{a}}$;
- The CSIDH action carries additional information on the deformations!

More on deformations

- $\mathbb{D}(A(p)) = H^1_{crys}(A, W(k)) = \text{hypercohomology of the De Rham-Witt complex}$ [Deligne-Illusie] = $H^1_{DR}(\widetilde{A}/W(k))$ for any lift $\widetilde{A}/W(k)$ of A/k(this is a crystal for the crystalline topology)
- Serre-Tate: deforming A/k = deforming A(p)/k
- Grothendieck-Messing: deforming a p-divisible group G/k = deforming $\mathbb{D}(G)/k$ = deforming/lifting its Hodge filtration
- If \widetilde{A}/R is a lift of A/k, the Hodge filtration on $\mathbb{D}(A(p))/R$ is the Hodge filtration on \widetilde{A} (it does lift the Hodge filtration of A/k).
- If E/\mathbb{F}_p supersingular, it lifts canonically to $\widetilde{E}/\mathbb{Z}_p$, and an oriented CSIDH isogeny lifts
- Since $\widetilde{E}/\mathbb{Z}_p$ has supersingular reduction, the Weil pairing on $\mathbb{D}(\widetilde{E}(p))/\mathbb{Z}_p$ induces a self pairing on $\mathbb{D}(\widetilde{E}(p))/F\mathbb{D}(\widetilde{E}(p))!$

Revisiting anomalous curves

- If E/\mathbb{F}_p is an ordinary elliptic curve, $\mathbb{D}(\hat{E}[\hat{\pi}]) \simeq H^0(E,\Omega^1_{E/k})$ is explicitly given by $D_P \in \hat{E}[\hat{\pi}] \mapsto df_P/f_P$ where f_P is any function in k(E) with divisor pD_P .
- The map $P \in E[p]_{etale} = E[\hat{\pi}] \mapsto (P) (0_E) \in \hat{E}[\hat{\pi}] \mapsto df_P/f_P \in H^0(E, \Omega^1_{E/k})$ efficiently transfers the DLP to a (trivial) DLP on differentials (Semaev).
- Smart: uses the p-adic elliptic logarithm on a non canonical lift to $\mathbb{Z}_p/p^2\mathbb{Z}_p$ instead.
- Canonical lift: the unique lift whose associated filtration is stable under Frobenius; p-adic elliptic logarithm: isomorphism of the formal Lie group of the elliptic curve with \hat{G}_a .
- \bullet Belding: uses the Weil pairing to a (non trivial) deformation to $\mathbb{F}_p[\varepsilon].$
- Voloch: uses p-descent.
- In summary: The Dieudonné functor, which replaces the algebraic group structure E[p] with differential linear data $\mathbb{D}(E[p]) \simeq H^1_{DR}(E)$ or $\mathbb{D}(E(p)) \simeq H^1_{crys}(E,\mathbb{Z}_p)$, underlies these various anomalous DLP attacks.
- Can we find an "anomalous" attack on CSIDH?