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Isogenies

Elliptic curve: 𝐸/𝑘 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. Algebraic group law!

Isogeny: 𝜙 ∶ 𝐸1 → 𝐸2 with 𝜙(0𝐸1
) = 0𝐸2

𝜙(𝑃 + 𝑄) = 𝜙(𝑃) + 𝜙(𝑄)

𝜙(𝑥, 𝑦) = ⎛⎜
⎝

𝑔(𝑥)
ℎ(𝑥) , 𝑐𝑦 (

𝑔(𝑥)
ℎ(𝑥) )

′
⎞⎟
⎠

Isogeny based cryptography:

Computing an isogeny 𝜙 ∶ 𝐸1 → 𝐸2: Easy!

Given (𝐸1, 𝐸2), find an isogeny path 𝜙 ∶ 𝐸1 → 𝐸2: Hard! (Even for quantum computers!)

⇒ Post quantum cryptosystems
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Isogenies

𝐸1 ∶ 𝑦2 = 𝑥3 + 𝑎1𝑥 + 𝑏1 𝐸2 ∶ 𝑦2 = 𝑥3 + 𝑎2𝑥 + 𝑏2
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Isogeny paths

Ordinary/Oriented curves:

, Commutative group action from the class group of 𝑅
𝑅 ⊂ End(𝐸) primitive orientation by a quadratic imaginary order on 𝐸

/ Quantum subexponential 𝐿(1/2) algorithm [Kuperberg 2003]

Examples: CRS [Couveignes 1997; Rostovtsev, Stolbunov 2006], CSIDH [CLMPR 2018],
SCALLOP [DFKLMPW 2023], …

Supersingular curves:

Isogeny graph has good mixing properties

Best algorithm is essentially exhaustive search (meet in the middle)

, Quantum exponential time

/ No commutative group action

Examples: CGL hash function [CGL 2009], SIDH [DJP 2011], SQISign [DKLPW 2020], …
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Isogeny representations

𝜙/𝔽𝑞 ∶ 𝐸1 → 𝐸2 isogeny of degree 𝑛 (𝑛-isogeny)

“Evaluating an isogeny is easy”

Really? Depends on the representation!

Kernel representation: 𝐾 = Ker𝜙
Generator(s) representation: 𝐾 = ⟨𝑇⟩ = ⟨𝑇1, … , 𝑇𝑚⟩
Ideal representation: 𝐼 ↔ 𝜙𝐼

Interpolation representation, Deformation representation, Modular representation… See survey!

Compact representation: polynomial space in log𝑛, log 𝑞
Efficient representation: evaluation in polynomial time in log𝑛, log 𝑞

Previously: only isogenies of smooth degrees had an efficient representation

SIDH attacks (2022): every isogeny has an efficient HD representation!

This talk: the HD representation and algorithms to manipulate it
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Kernel representation

𝐾 = Ker𝜙
𝐾 ∶ ℎ(𝑥) = 0, ℎ(𝑥) = ∏𝑃∈𝐾−0𝐸

(𝑥 − 𝑥(𝑃))

If 𝐸 ∶ 𝑦2 = 𝑓 (𝑥), [Kohel 1996]:

𝜙(𝑥, 𝑦) = ⎛⎜
⎝

𝑔(𝑥)
ℎ(𝑥) , 𝑦 (

𝑔(𝑥)
ℎ(𝑥) )

′
⎞⎟
⎠

𝑔(𝑥)
ℎ(𝑥) = #𝐾.𝑥 − 𝜎 − 𝑓 ′(𝑥)

ℎ′(𝑥)
ℎ(𝑥) − 2𝑓 (𝑥) (

ℎ′(𝑥)
ℎ(𝑥) )

′

Space: 𝑂(𝑛 log 𝑞) = linear space

Evaluation: 𝑂(𝑛) arithmetic operations in 𝔽𝑞 = linear time
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Generator representation

𝐾 = ⟨𝑇⟩, 𝐾 defined over 𝔽𝑞, 𝑇 defined over 𝔽𝑞𝑑 , 𝑑 = 𝑂(𝑛), [Vélu 1971]:

𝑥(𝑓 (𝑃)) = 𝑥(𝑃) +
𝑛−1
∑
𝑖=1

(𝑥(𝑃 + 𝑖𝑇) − 𝑥(𝑖𝑇))

𝑦(𝑓 (𝑃)) = 𝑦(𝑃) +
𝑛−1
∑
𝑖=1

(𝑦(𝑃 + 𝑖𝑇) − 𝑦(𝑖𝑇))

Space: 𝑂(𝑑 log 𝑞)
If 𝑑 = 1 (or small): compact representation!

Evaluation: 𝑂(𝑛) operations over 𝔽𝑞𝑑 ⇒ linear if 𝑑 small, quadratic if 𝑑 large

√élu [Bernstein, De Feo, Leroux, Smith 2020]: evaluation in 𝑂(√𝑛) over 𝔽𝑞𝑑

(via a time/memory trade off)
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Decomposed representation

𝑛 = ∏𝑚
𝑖=1 ℓ𝑖, 𝜙 = 𝜙𝑚 ∘ … ∘ 𝜙2 ∘ 𝜙1, 𝜙𝑖 a ℓ𝑖-isogeny;

Decomposed representation: complexity for evaluation depends on ℓ𝑛 ≔ max(ℓ𝑖)

Space: 𝑂(𝑚ℓ𝑛 log 𝑞)
Evaluation: 𝑂(𝑚ℓ𝑛 log 𝑞)
If 𝑛 is smooth: compact and efficient!
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Decomposing a smooth degree isogeny

𝜙 ∶ 𝐸1 → 𝐸2, 𝐾 = Ker𝜙 = ⟨𝑇⟩ of degree 𝑛 = 2𝑚, 𝑇 ∈ 𝔽𝑞𝑑

𝜙 = 𝜙′
1 ∘ 𝜙1

𝜙1 ∶ 𝐸1 → 𝐸′
1 of degree 2 with kernel 𝐾1 = ⟨2𝑚−1𝑇⟩

𝜙′
1 ∶ 𝐸′

1 → 𝐸2 of degree 2𝑚−1 with kernel 𝐾 = ⟨𝜙1(𝑇)⟩

Complexity: 𝑂(𝑚2) arithmetic operations in 𝔽𝑞𝑑

[De Feo, Jao, Plût 2011]: 𝑂(𝑚) operations in 𝔽𝑞𝑑

N 𝑑 can be large, 𝑑 = 𝛩(𝑛) in the worst case ⇒ quasi-linear time

𝑛 = ∏𝑚
𝑖=1 ℓ𝑒𝑖

𝑖

CRT representation: 𝐾 = ∏𝑚
𝑖=1 𝐾[ℓ𝑒𝑖

𝑖 ] = ⟨𝐺1, … , 𝐺𝑚⟩, 𝐺𝑖 ∈ 𝔽𝑞𝑑𝑖 , 𝑑 = max(𝑑𝑖)

Compact representation if the 𝑛-torsion is accessible

Decomposition cost: 𝑂(𝑚(∑ 𝑒𝑖)𝑑ℓ𝑛 log 𝑞);
Efficient if 𝑛 is smooth (ℓ𝑛 small) and the 𝑛-torsion is accessible (𝑑 small)

Example: 𝑛 powersmooth
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Ideal representations

𝐼 ideal in 𝑅 ⊂ End(𝐸) ⇒𝜙𝐼 isogeny with kernel 𝐸[𝐼].

Supersingular case: Deuring’s correspondance
𝐸/𝔽𝑝2 supersingular curve, 𝑅 = End(𝐸) quaternion order

KLPT: smoothening algorithm 𝐼 ∼ 𝐽, 𝑁(𝐽) smooth

Oriented case: 𝑅 ⊂ End(𝐸) imaginary quadratic order

Example: Frobenius orientation. Ordinary curves, 𝐸/𝔽𝑝 supersingular

/ Smoothening of ideals: subexponential in 𝛥𝑅

/ Restricted class group action
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Summary

Kernel representation: linear space and time

Generator representation: possibly compact, linear or quadratic time

If 𝑛 smooth: decomposed representation = logarithmic space and time

Decomposition cost given a CRT representation 𝐾 = ⟨𝐺1, … , 𝐺𝑚⟩: polynomial time in
𝑑 = max(𝑑𝑖) and ℓ𝑛 = max(ℓ ∣ 𝑛)

⇒ Efficient if 𝑛 smooth and the 𝑛-torsion is accessible

What if 𝑛 is a large prime?

No way to represent 𝜙 efficiently
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Scalar multiplication

Scalar multiplication: [𝑛] ∶ 𝑃 ↦ 𝑛 ⋅ 𝑃 is an 𝑛2-isogeny

Double and add: 𝑂(log𝑛) arithmetic operations, even if 𝑛 is prime!

𝛷 ∶ 𝐸2 → 𝐸2, (𝑃1, 𝑃2) ↦ (𝑃1 + 𝑃2, 𝑃1 − 𝑃2) is a 2-isogeny in dimension 2.

𝛷 = ( 1 1
−1 1)

Double: 𝛷(𝑇, 𝑇) = (2𝑇, 0).
Add: 𝛷(𝑇, 𝑃) = (𝑇 + 𝑃, 𝑇 − 𝑃).

We can evaluate 𝑛 ⋅ 𝑃 as a composition of 𝑂(log𝑛) evaluations of 𝛷, projections 𝐸2 → 𝐸 and
embeddings 𝐸 → 𝐸2.

Double and add on 𝐸 = 2-isogenies in dimension 2
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The embedding lemma [R. 2022]
For any 𝑁 ≥ 𝑛, an 𝑛-isogeny 𝜙 ∶ 𝐸1 → 𝐸2 in dimension 1 can always be efficiently embedded
into a 𝑁-isogeny 𝛷 ∶ 𝐴1 → 𝐴2 in dimension 8 (and sometimes 4, 2)

𝐸1 𝐸2

𝐴1 𝐴2

𝜙

𝛷

Considerable flexibility (at the cost of going up in dimension).

Breaks SIDH ([Castryck-Decru 2022], [Maino-Martindale 2022] in dimension 2, [R. 2022] in
dimension 4 or 8)

Kani’s lemma [1997] + Zarhin’s trick [1974]: write 𝑁 − 𝑛 = 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4 and

𝛷 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎1 −𝑎2 −𝑎3 −𝑎4 𝜙 0 0 0
𝑎2 𝑎1 𝑎4 −𝑎3 0 𝜙 0 0
𝑎3 −𝑎4 𝑎1 𝑎2 0 0 𝜙 0
𝑎4 𝑎3 −𝑎2 𝑎1 0 0 0 𝜙
−𝜙 0 0 0 𝑎1 𝑎2 𝑎3 𝑎4
0 −𝜙 0 0 −𝑎2 𝑎1 −𝑎4 𝑎3
0 0 −𝜙 0 −𝑎3 𝑎4 𝑎1 𝑎2
0 0 0 −𝜙 −𝑎4 −𝑎3 𝑎2 𝑎1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Algorithms for 𝑁-isogenies in higher dimension

Analogues of Vélu’s formula: [Cosset, R. (2014); Lubicz, R. (2012–2022)]
An 𝑁-isogeny in dimension 𝑔 can be evaluated in linear time 𝑂(𝑁𝑔) arithmetic operations in the
theta model given generators of its kernel.

, Work in any dimension

/ Exponential dependency 2𝑔 in the dimension 𝑔.
/ Need a rational level 𝛤(2, 4)-structure (automatic for supersingular curves over 𝔽𝑝2)

Algorithm in 𝑂(𝑁𝑔) in the Jacobian model: [Couveignes, Ezome (2015)]

, Rational model

/ Restricted to 𝑔 ≤ 3

Cost of a 2𝑚-isogeny in dimension 𝑔:

g 1 2 4 8

Relative cost ×1 ×4 ×32 ×1024
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Dedicated fast formulas in higher dimension

Dimension 2:
Fast 2𝑚-isogenies in the Mumford Jacobian or Kummer model [Kunzweiler 2022] and in the theta
model [Dartois, Maino, Pope, R. 2023]

Codomain Evaluation

Theta Theta Richelot Theta Theta Richelot
log 𝑝 𝑚 Rust SageMath SageMath Rust SageMath SageMath

254 126 2.13 ms 108 ms 1028 ms 161 μs 5.43 ms 114 ms
381 208 9.05 ms 201 ms 1998 ms 411 μs 8.68 ms 208 ms
1293 632 463 ms 1225 ms 12840 ms 17.8 ms 40.8 ms 1203 ms

Fast 3𝑚-isogenies in the Mumford Jacobian model [Decru, Kunzweiler 2023] and in the theta
model [Corte-Real Santos, Costello, Smith 2024]

Dimension 4:
Fast 2𝑚-isogenies in the theta model [Dartois 2024]
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The HD representation
Embed 𝜙 ∶ 𝐸1 → 𝐸2 into an 𝑁-isogeny 𝛷 in dimension 𝑔

Represent 𝛷 by its kernel Ker𝛷:
Ker𝛷 is completely determined by 𝑛 and the action of 𝜙 on 𝐸1[𝑁]
CRT basis: 𝑁 = ∏𝑚

𝑖=1 𝑁𝑖 = ∏𝑚
𝑖=1 ℓ𝑒𝑖

𝑖 ,

(𝑃𝑖, 𝑄𝑖, 𝜙(𝑃𝑖), 𝜙(𝑄𝑖)), for (𝑃𝑖, 𝑄𝑖) a basis of 𝐸[ℓ𝑒𝑖
𝑖 ]

Naive algorithm: reconstruct 𝜙 in 𝑂(𝑛) via rational function interpolation

HD approach: exploit the 𝑁-torsion structure by going to 𝛷 in higher dimension

Compact representation if the 𝑁-torsion is accessible

Decomposing 𝛷: efficient if 𝑁 is smooth and the 𝑁-torsion is accessible

Evaluating the decomposed 𝛷: efficient if 𝑁 is smooth

Can take any 𝑁 ≥ 𝑛 (Example: 𝑁 powersmooth)

Ideal scenario: 𝐸1 has rational 𝑁 = 2𝑚-torsion and 𝛷 in dimension 2

Universal: can be efficiently recovered from any other efficient isogeny representation of 𝜙
Philosophy: if we know how 𝜙 act on sufficiently many nice points, we can efficiently compute
𝜙(𝑃) for any point 𝑃
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Application: divisions [R. 2022]
Is an isogeny 𝜙 ∶ 𝐸1 → 𝐸2 divisible by [ℓ]?
Prior art: test if 𝜙(𝐸[ℓ]) = 0
Division polynomial 𝜓ℓ: degree 𝑂(ℓ2) ⇒exponential time

HD division algorithm [R. 2022]:

Given an HD representation (𝑃𝑖, 𝑄𝑖, 𝜙(𝑃𝑖), 𝜙(𝑄𝑖)) with 𝑁𝑖 ∧ ℓ = 1,

(𝑃𝑖, 𝑄𝑖,
𝜙(𝑃𝑖)

ℓ ,
𝜙(𝑄𝑖)

ℓ )

is an HD representation of 𝜙/ℓ if it exists

⇒ polynomial time (in log ℓ) division algorithm

Corollary (Computing the endomorphism ring of ordinary elliptic curves)

If𝐸/𝔽𝑞 is an ordinary elliptic curve; point counting gives𝜒𝜋, hence𝐾 ≔ ℚ(𝜋𝑞), and we know
ℤ[𝜋] ⊂ End(𝐸) ⊂ 𝒪𝐾. Given the factorisation of the conductor [𝒪𝐾 ∶ ℤ[𝜋]] ofℤ[𝜋], we can
determine End(𝐸) in polynomial time, via efficient divisions.

Factorisation: quantum polynomial time, classical subexponential time

Previously: no quantum polynomial time algorithm known
Classical algorithm in 𝐿(1/2) under GRH [Bisson–Sutherland 2009]
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Algorithms for the HD representation

𝜙/𝔽𝑞 ∶ 𝐸1 → 𝐸2 an 𝑛-isogeny with an efficient representation

Equality testing, Validity

Composition and addition: 𝜙2 ∘ 𝜙1, 𝜙1 + 𝜙2

Dual isogeny: 𝜙 ∶ 𝐸2 → 𝐸1

Divisions: Test if 𝜙 ?= 𝜓′ ∘ 𝜓 is divisible by 𝜓, and if so return the HD representation of 𝜓′

Lifts and deformations: deform 𝜙 to 𝜙/𝑅 ∶ 𝐸1 → 𝐸2 over 𝑅 = 𝔽𝑞[𝜀]/𝜀𝑚 or 𝑅 = ℤ𝑞/𝑝𝑚ℤ𝑞

Splittings: If 𝑛 = 𝑛1𝑛2, 𝑛1 ∧ 𝑛2 = 1, split 𝜙 as 𝜙 = 𝜙2 ∘ 𝜙1

𝜙 ∶ 𝐸1
𝜙1−−→ 𝐸12

𝜙2−−→ 𝐸2

Pushforwards: compute the pushfoward of 𝜙1 and 𝜙2 if they are of coprime degrees

𝐸0 𝐸1

𝐸1 𝐸12

𝜙1

𝜙2 𝜙′
2

𝜙′
1

Kernel: return an equation for Ker𝜙 in 𝑂(𝑛)
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Cryptographic applications

New protocols in isogeny based cryptography: SQIsignHD [DLRW24], FESTA [BMP23] and
QFESTA [NO23], the Deuring VRF [Ler23b], SCALLOP-HD [CLP24] (efficient representation of
orientations), IS-CUBE [Mor23], LIT-SiGamal [Mor24], SILBE [DFV24], POKE [Bas24], SQIsign2d
(West and East) [BDD+24; NO24], SQIPrime [DF24]…

New or improved security reductions in isogeny based cryptography, [MW23; ACD+23; PW24;
ES24] and in classical elliptic curve cryptography [Gal24]

New methods to convert ideals into isogenies [Ler23a; NO23; PR23; ON24; BDD+24]

Examples:

Clapoti(s) [Page, R. 2023]: computing the class group action for an arbitrary orientation 𝑅 in
polynomial time

No smoothening needed

Unrestricted effective group action!

SQIsignHD, SQIsign2d-West: bypass KLPT’s smoothening algorithm for supersingular curves too
KLPT: 𝜙𝐽 ∶ 𝐸1 → 𝐸2, smoothened isogeny of degree 𝑂(𝑝4.5) (or 𝑂(𝑝3) if 𝐸1 is nice)

HD representation: can use the smallest isogeny 𝜙𝐽 ∶ 𝐸1 → 𝐸2 of degree 𝑂(√𝑝) even if it is not smooth!
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SQISign2d (West)

SQIsign SQIsign2d

Public key 66B 66B
Signatures 177B 148B
Clean security proof / ,

Keygen (Mcycles) 400 60
Sign (Mcycles) 1880 160
Verify (Mcycles) 29 9

SQIsign2D: signature and verification in dimension 2

SQIsignHD: signature in dimension 1, verification in dimension 4
New faster variant compared to the Eurocrypt 2024 version using techniques from SQIsign2d: signatures now use
dimension 2 too.

Bonus: same public key as in SQIsign2d!

Signature size: 109B

Signature ≈ 5× faster than SQIsign2d

Verification expected ≈ 8× slower
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Number theoretic applications

Computing the saturation of a quadratic order 𝑅 in End(𝐸)
Compute the canonical lift �̂�/ℤ𝑞 of an ordinary elliptic curve in polynomial time [R. 2022]
Previously: 𝐿(1/2) under GRH [Couveignes–Henocq 2002]

Compute the modular polynomial 𝛷ℓ by deformation [Kunzweler, R. 2024]

Point counting for 𝐸/𝔽𝑞, 𝑞 = 𝑝𝑛

[Schoof 1985]: 𝑂(𝑛5 log5 𝑝) (Étale cohomology)

[SEA 1992]: 𝑂(𝑛4 log4 𝑝) (Heuristic)

[Kedlaya 2001]: 𝑂(𝑛3𝑝) (Rigid cohomology)

[Harvey 2007]: 𝑂(𝑛3.5𝑝1/2 + 𝑛5 log 𝑝)

[Satoh 2000] (canonical lifts of ordinary curves): 𝑂(𝑛2𝑝2) (Crystalline cohomology)

[Maiga – R. 2021]: 𝑂(𝑛2𝑝)

[R. 2022]: 𝑂(𝑛2 log8 𝑝 + 𝑛 log11 𝑝)
Use an HD representation of the Verschiebung ̂𝜋𝑝 and canonical lifts
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Efficient representation of isogenies
Past:

Restricted to smooth degree isogenies

Vélu’s /√élu formulas

Ideal smoothening

Present:

The HD representation: recent powerful tool with many applications in isogeny based
cryptography and algorithmic number theory

Use abelian varieties to speed up algorithms on elliptic curves

Excellent overview in Castryck’s invited talk at Eurocrypt 2024: “An attack became a tool: Isogeny
based cryptography 2.0”

Full details in the survey paper:
http://www.normalesup.org/~robert/pro/publications/articles/isogeny_survey.pdf

Future?
Switch from ideals equivalences of categories to modules equivalences of categories

▶ Handles the higher dimensional isogeny graphs of 𝐸𝑔

▶ Handles level structures
▶ Go beyond Kani’s lemma

Use cyclic isogenies?
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