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Key exchange on a (commutative) graph
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Key exchange on a (commutative) graph
Alice starts from ‘a’, follows the path 001110, and get ‘w’.
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Key exchange on a (commutative) graph
Bob starts from ‘a’, follows the path 101101, and get ‘l’.
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Key exchange on a (commutative) graph
Alice starts from ‘l’, follows the path 001110, and get ‘g’.
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Key exchange on a (commutative) graph
Bob starts from ‘w’, follows the path 101101, and get ‘g’.
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Key exchange on a (commutative) graph
The full exchange:
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Key exchange on a (commutative) graph
Bigger graph (62 nodes)
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Key exchange on a (commutative) graph
Even bigger graph (676 nodes)
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Graphs for key exchange

Needs a graph with good mixing properties:
A path of length 𝑂(log𝑁) gives a uniform node ⇒ Ramanujan/expander graph.

The graph does not fit in memory (𝑁 = 2256).
Needs an algorithm taking a node as input and giving the neighbour nodes as output.

Isogeny graphs of elliptic curves
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Isogenies

Elliptic curve: 𝐸/𝑘 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. Algebraic group law!

Isogeny: 𝜙 ∶ 𝐸1 → 𝐸2 with 𝜙(0𝐸1
) = 0𝐸2

𝜙(𝑃 + 𝑄) = 𝜙(𝑃) + 𝜙(𝑄)

𝜙(𝑥, 𝑦) = ⎛⎜
⎝

𝑔(𝑥)
ℎ(𝑥) , 𝑐𝑦 (

𝑔(𝑥)
ℎ(𝑥) )

′
⎞⎟
⎠

Isogeny 𝜙 ⇔ Kernels 𝐾 = Ker𝜙

Isogeny based cryptography:

Computing an isogeny 𝜙 ∶ 𝐸1 → 𝐸2: Easy!

Given (𝐸1, 𝐸2), find an isogeny path 𝜙 ∶ 𝐸1 → 𝐸2: Hard! (Even for quantum computers!)

⇒ Post quantum cryptosystems

Damien Robert Attacks on SIDH and applications 4 / 27



Isogenies

𝐸1 ∶ 𝑦2 = 𝑥3 + 𝑎1𝑥 + 𝑏1 𝐸2 ∶ 𝑦2 = 𝑥3 + 𝑎2𝑥 + 𝑏2
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Isogeny graphs for key exchange

Isogeny graph of ordinary elliptic curves 𝐸/𝔽𝑝
[Couveignes (1997)], [Rostovtsev–Stolbunov (2006)]

Graph of size 𝑁 ≈ √𝑝.
, Commutative graph!

, Group action framework! (By Cl(End(𝐸0)))

𝐸0 𝐸𝑎

𝐸𝑏 𝐸𝑎𝑏

𝜙𝔞

𝜙𝔟 𝜙𝔟
𝜙𝔞

/ Hidden shift problem solvable in quantum subexponential 𝐿(1/2) time for an abelian group
action via Kuperberg’s algorithm.

SIDH: supersingular elliptic curve Diffie-Helmann [De Feo, Jao (2011)],[De Feo, Jao, Plût (2014)]

Use the isogeny graph of a supersingular elliptic curve 𝐸 over 𝔽𝑝2 (𝑁 ≈ 𝑝).
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Isogeny graphs for key exchange

Meme: Gru’s plan

Isogeny based key exchange

Use supersingular curves

The graph is non commutative

The graph is non commutative
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SIDH in practice

𝑝 = 2𝑎3𝑏 − 1. 𝑁𝐴 = 2𝑎, 𝑁𝐵 = 3𝑏

𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥 (supersingular when 𝑎 ≥ 2)
𝐸0[𝑁𝐴] = ⟨𝑃𝐴, 𝑄𝐴⟩, 𝐸0[𝑁𝐵] = ⟨𝑃𝐵, 𝑄𝐵⟩.

Alice’s secret isogeny: 𝜙𝐴 of kernel ⟨𝑃𝐴 + 𝑠𝐴𝑄𝐴⟩.
Bob’s secret isogeny: 𝜙𝐵 of kernel ⟨𝑃𝐵 + 𝑠𝐵𝑄𝐵⟩.
Key exchange:

𝐸0 𝐸𝐵

𝐸𝐴 𝐸𝐴𝐵

𝜙𝐵

𝜙𝐴 𝜙′
𝐴

𝜙′
𝐵

𝐸𝐴𝐵 is the shared secret.

𝜙′
𝐴 ∘ 𝜙𝐵 = 𝜙′

𝐵 ∘ 𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴𝐵 has kernel Ker𝜙𝐴 + Ker𝜙𝐵.

𝜙′
𝐴 has kernel ⟨𝜙𝐵(𝑃𝐴 + 𝑠𝐴𝑄𝐴)⟩, 𝜙′

𝐵 has kernel ⟨𝜙𝐴(𝑃𝐵 + 𝑠𝐵𝑄𝐵)⟩.
Alice publishes: 𝑃′

𝐵 = 𝜙𝐴(𝑃𝐵), 𝑄′
𝐵 = 𝜙𝐴(𝑄𝐵).

Bob publishes: 𝑃′
𝐴 = 𝜙𝐵(𝑃𝐴), 𝑄′

𝐴 = 𝜙𝐵(𝑄𝐴). (“Torsion points”.)

Ker𝜙′
𝐴 = ⟨𝑃′

𝐴 + 𝑠𝐴𝑄′
𝐴⟩, Ker𝜙′

𝐵 = ⟨𝑃′
𝐵 + 𝑠𝐵𝑄′

𝐵⟩.
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Isogeny evaluation and interpolation

Evaluation: given an 𝑛-isogeny 𝜙 and a point 𝑄 ∈ 𝐸(𝔽𝑞), evaluate 𝜙(𝑄).
𝑛-evaluation problem: 𝜙 is an 𝑛-isogeny = Ker𝜙 is of degree 𝑛.

Interpolation: given a tuple (𝑃, 𝜙(𝑃)), recover 𝜙.

(𝑛, 𝑁)-interpolation problem: given 𝜙 an 𝑛-isogeny and 𝑃 a point of 𝑁-torsion, from (𝑃, 𝜙(𝑃))
and 𝑄 ∈ 𝐸(𝔽𝑞), evaluate 𝜙(𝑄)
Weak interpolation: we are given (𝑃1, 𝜙(𝑃1)), (𝑃2, 𝜙(𝑃2)) for (𝑃1, 𝑃2) a basis of 𝐸[𝑁].

SIDH: the key exchange uses the 𝑁𝐴 and 𝑁𝐵 evaluation problems

If we can solve the weak interpolation problem when 𝑛 = 𝑁𝐴, 𝑁 = 𝑁𝐵 are smooth in
polylogarithmic time, we can break SIDH.
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Isogeny evaluation and interpolation

Meme: Anakin

I have a nice key exchange protocol

You don’t use torsion points, right?

…

Right?
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Evaluation

𝜙 ∶ 𝐸1 → 𝐸2 an 𝑛-isogeny, 𝜙(𝑥, 𝑦) = ( 𝑔(𝑥)
ℎ(𝑥) , 𝑐𝑦 ( 𝑔(𝑥)

ℎ(𝑥) )
′
), deg 𝑔,deg ℎ ≤ 𝑛

𝐾 ∶ ℎ(𝑥) = 0, ℎ(𝑥) = ∏𝑃∈𝐾−0𝐸
(𝑥 − 𝑥(𝑃)). If 𝐸 ∶ 𝑦2 = 𝑓 (𝑥), [Kohel 1996]:

𝜙(𝑥, 𝑦) = ⎛⎜
⎝

𝑔(𝑥)
ℎ(𝑥) , 𝑦 (

𝑔(𝑥)
ℎ(𝑥) )

′
⎞⎟
⎠

𝑔(𝑥)
ℎ(𝑥) = #𝐾.𝑥 − 𝜎 − 𝑓 ′(𝑥)

ℎ′(𝑥)
ℎ(𝑥) − 2𝑓 (𝑥) (

ℎ′(𝑥)
ℎ(𝑥) )

′

Kernel representation: Linear time and linear space.

Ker 𝑓 = ⟨𝑇⟩, 𝑇 ∈ 𝔽𝑞𝑑 , evaluate 𝜙(𝑄) in 𝑂(𝑛) operations in 𝔽𝑞𝑑 [Vélu 1971] :

𝑥(𝑓 (𝑃)) = 𝑥(𝑃) +
𝑛−1
∑
𝑖=1

(𝑥(𝑃 + 𝑖𝑇) − 𝑥(𝑖𝑇))

𝑦(𝑓 (𝑃)) = 𝑦(𝑃) +
𝑛−1
∑
𝑖=1

(𝑦(𝑃 + 𝑖𝑇) − 𝑦(𝑖𝑇))

√élu: 𝑂(√𝑛) (time/memory trade off)

Generator representation: Compact representation if 𝑑 small.

Damien Robert Attacks on SIDH and applications 8 / 27



Decomposing a smooth degree isogeny

𝜙 ∶ 𝐸1 → 𝐸2, 𝐾 = Ker𝜙 = ⟨𝑇⟩ of degree 𝑛 = 2𝑎, 𝑇 ∈ 𝔽𝑞𝑑

𝜙 = 𝜙′
1 ∘ 𝜙1

𝜙1 ∶ 𝐸1 → 𝐸′
1 of degree 2 with kernel 𝐾1 = ⟨2𝑎−1𝑇⟩

𝜙′
1 ∶ 𝐸′

1 → 𝐸2 of degree 2𝑎−1 with kernel 𝐾 = ⟨𝜙1(𝑇)⟩

Complexity: 𝑂(𝑎2) arithmetic operations in 𝔽𝑞𝑑

[De Feo, Jao, Plût 2011]: 𝑂(𝑎) operations in 𝔽𝑞𝑑

N 𝑑 can be large, 𝑑 = 𝛩(𝑛) in the worst case ⇒ quasi-linear time

In SIDH: 𝑁𝐴 = 2𝑎 and 𝑁𝐵 = 3𝑏 and the 𝑁𝐴, 𝑁𝐵-torsion points are rational, so the
decomposition is fast!

Can decompose isogenies of smooth degree 𝑁 (if the 𝑁-torsion is accessible)
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Interpolation

Given (𝑃, 𝜙(𝑃)), 𝑃 a point of order 𝑁 > 4𝑛, recover the rational function
𝑔(𝑥)
ℎ(𝑥) in 𝑂(𝑁) by

interpolating the points (𝑥(𝑚𝑃), 𝑥(𝑚𝜙(𝑃))), 𝑚 = 1, … , 𝑁 − 1.
Can evaluate on 𝑄 directly.

Quasi-linear time.

Faster algorithm when 𝑁 is smooth?

Yes if 𝜙(𝑃) = 0. Then 𝑛 = 𝑁 and Ker𝜙 = ⟨𝑃⟩.
If 𝑛 = 𝑁, the weak interpolation problem reduces via the DLP to the 𝑁-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.

No reason to expect a fast algorithm when 𝑁 is prime to 𝑛.
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Revisiting isogeny evaluation

Can an 𝑛-isogeny be evaluated faster than linear time when 𝑛 has a large prime factor?

If 𝜙 = [ℓ] (so 𝑛 = ℓ2): double and add in 𝑂(log ℓ) to evaluate ℓ𝑄.

𝛷 ∶ 𝐸2 → 𝐸2, (𝑃1, 𝑃2) ↦ (𝑃1 + 𝑃2, 𝑃1 − 𝑃2) is a 2-isogeny in dimension 2.

𝛷 = ( 1 1
−1 1)

Double: 𝛷(𝑇, 𝑇) = (2𝑇, 0).
Add: 𝛷(𝑇, 𝑄) = (𝑇 + 𝑄, 𝑇 − 𝑄).

We can evaluate ℓ𝑄 as a composition of 𝑂(log ℓ) evaluations of 𝛷, projections 𝐸2 → 𝐸 and
embeddings 𝐸 → 𝐸2.

Double and add on 𝐸 = 2-isogenies in dimension 2
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Kani’s lemma [Kani 1997] (𝑔 = 1), [R. 2022] (𝑔 > 1)

𝛼 ∶ 𝐴 → 𝐵 a 𝑎-isogeny, 𝛽 ∶ 𝐴 → 𝐶 a 𝑏-isogeny.
𝛼′ ∶ 𝐶 → 𝐷 a 𝑎-isogeny, 𝛽′ ∶ 𝐶 → 𝐷 a 𝑏-isogeny with 𝛽′𝛼 = 𝛼′𝛽:

𝐴 𝐵

𝐶 𝐷

𝛼

𝛽 𝛽′

𝛼′

If 𝑎 prime to 𝑏, the pushforward 𝛼′, 𝛽′ of 𝛼 by 𝛽 satisfy these conditions.

𝛷 = ( 𝛼 𝛽′

−𝛽 𝛼′) ∶ 𝐴 × 𝐷 → 𝐵 × 𝐶.

𝛷 = ( ̃𝛼 − ̃𝛽
𝛽′ 𝛼′ ) ∶ 𝐵 × 𝐶 → 𝐴 × 𝐷, 𝛷𝛷 = 𝑎 + 𝑏.

𝛷 is an 𝑎 + 𝑏-isogeny with respect to the product polarisations.

Ker𝛷 = { ̃𝛼(𝑃), 𝛽′(𝑃) ∣ 𝑃 ∈ 𝐵[𝑎 + 𝑏]} (if 𝑎 is prime to 𝑏)
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Using Kani’s lemma for the interpolation problem

𝐸1 𝐸2

𝐸′
1 𝐸′

2

𝜙

𝛼 𝛼′

𝜙′

𝜙 ∶ 𝐸1 → 𝐸2 an 𝑛-isogeny.

Goal: replace 𝜙 by 𝛷 an 𝑁-isogeny.

Find 𝛼 ∶ 𝐸1 → 𝐸′
1 an 𝑚-isogeny, with 𝑁 = 𝑛 + 𝑚.

Kani’s lemma: 𝛷 = ( 𝛼 𝜙′

−𝜙 𝛼′) ∶ 𝐸1 × 𝐸′
2 → 𝐸′

1 × 𝐸2 is an 𝑁-isogeny.

We know 𝜙(𝐸[𝑁]) and we can evaluate 𝛼 on 𝐸[𝑁]⇒ recover Ker𝛷 (or Ker𝛷)

Evaluate 𝛷, hence 𝜙 at any point: 𝛷(𝑃, 0) = (𝛼(𝑃), −𝜙(𝑃)).
Evaluation is fast if 𝑁 is (power) smooth.

Examples:

𝑚 smooth [Castryck–Decru; Maino–Martindale (2022)]

𝑚 = ℓ2: take 𝛼 = [ℓ]
End(𝐸) has an efficient endomorphism 𝛼 of norm 𝑚 [Castryck–Decru;Wesolowski (2022)].
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Using Kani’s lemma for the interpolation problem

Meme: disaster girl

SIDH

Higher dimensional isogenies
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The general case: Zahrin’s trick

𝛼 = ( 𝑎1 𝑎2
−𝑎2 𝑎1

) is always an endomorphism of norm 𝑚 = 𝑎2
1 + 𝑎2

2 on 𝐸2

Gaussian integers ℤ[𝑖]

𝛼 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎1 −𝑎2 −𝑎3 −𝑎4
𝑎2 𝑎1 𝑎4 −𝑎3
𝑎3 −𝑎4 𝑎1 𝑎2
𝑎4 𝑎3 −𝑎2 𝑎1

⎞⎟⎟⎟⎟⎟⎟
⎠

is always an endomorphism of norm 𝑚 = 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4

on 𝐸4

Hamilton’s quaternion algebra

Evaluating 𝛼: 𝑂(log𝑚) arithmetic operations

Every integer is a sum of four squares.

𝐸4
1 𝐸4

2

𝐸4
1 𝐸4

2

𝜙

𝛼 𝛼
𝜙

𝛷 ∶ 𝐸4
1 × 𝐸4

2 → 𝐸4
1 × 𝐸4

2 is an 𝑁-isogeny.
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Kani’s lemma + Zahrin’s trick = the embedding lemma [R. 2022]

A 𝑛-isogeny 𝜙 ∶ 𝐴 → 𝐵 in dimension 𝑔 can always be efficiently embedded into a 𝑁 isogeny
𝛷 ∶ 𝐴′ → 𝐵′ in dimension 8𝑔 (and sometimes 4𝑔, 2𝑔) for any 𝑁 ≥ 𝑛.

𝐴 𝐵

𝐴′ 𝐵′

𝜙

𝛷

Considerable flexibility (at the cost of going up in dimension).

Reduces the weak (𝑛, 𝑁)-interpolation problem to the 𝑁-evaluation problem in higher
dimension

Actually only need the image of 𝜙 on a subgroup of size 𝑁, 𝑁 > 4𝑛 (via further tricks by
Castryck, De Feo, R., Wesolowski…)

⇒ Solves the interpolation problem when 𝑁 is (power) smooth

Amazing fact: does not requires Ker𝜙, works even if 𝑛 is prime

Breaks SIDH: [Castryck–Decru], [Maino–Martindale] in dimension 2, [R.] in dimension 4 or 8
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Kani’s lemma + Zahrin’s trick = the embedding lemma [R. 2022]

Meme: funeral

SIDH

2011-2022
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Cryptographic applications

Castryck’s invited talk at Eurocrypt 2024: “An attack became a tool: Isogeny based cryptography 2.0”

Meme: Buzz

Higher dimensional isogenies

Higher dimensional isogenies everywhere

Damien Robert Attacks on SIDH and applications 16 / 27



Isogeny representations

Before 2022: could only compute smooth degree isogenies 𝜙 ∶ 𝐸1 → 𝐸2 (with accessible kernel
points)

Isogeny based cryptography: correspondance between ideals 𝐼 ⊂ 𝑅 and certain isogenies
𝜙𝐼 ∶ 𝐸1 → 𝐸2

Supersingular isogeny graph over 𝔽𝑝2 : 𝑅 is a non commutative quaternionic order. Every isogeny
comes from an ideal
Deuring’s correspondance

Ordinary isogeny graph or supersingular isogeny graph over 𝔽𝑝: 𝑅 is a (commutative) quadratic
imaginary order.
,Class group action!

Translating an ideal 𝐼 to an isogeny 𝜙𝐼:

Needs to find a smooth equivalent ideal 𝐽 ∼ 𝐼
KLPT: heuristic polynomial smoothening algorithm for 𝑅 quaternion algebra

/ 𝐽 has very large norm ≈ 𝑝4.5

/ If 𝑅 quadratic order, only subexponential time smoothening algorithms known

/ Restricted group action
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The HD representation

Embed 𝜙 ∶ 𝐸1 → 𝐸2 into an 𝑁-isogeny 𝛷 in dimension 𝑔 (𝑁 ≥ 𝑛)

Represent 𝛷 by its kernel Ker𝛷:
Ker𝛷 is completely determined by 𝑛 and the action of 𝜙 on 𝐸1[𝑁]
CRT basis: 𝑁 = ∏𝑚

𝑖=1 𝑁𝑖 = ∏𝑚
𝑖=1 ℓ𝑒𝑖

𝑖 ,

(𝑃𝑖, 𝑄𝑖, 𝜙(𝑃𝑖), 𝜙(𝑄𝑖)), for (𝑃𝑖, 𝑄𝑖) a basis of 𝐸[ℓ𝑒𝑖
𝑖 ]

Naive algorithm: reconstruct 𝜙 in 𝑂(𝑛) via rational function interpolation

HD approach: exploit the 𝑁-torsion structure by going to 𝛷 in higher dimension

Can take any 𝑁 ≥ 𝑛 (Example: 𝑁 powersmooth)

Ideal scenario: 𝐸1 has rational 𝑁 = 2𝑚-torsion and 𝛷 in dimension 2
Compact and efficient isogeny representation

Universal: can be efficiently recovered from any other efficient isogeny representation of 𝜙
Philosophy: if we know how 𝜙 act on sufficiently many nice points, we can efficiently compute
𝜙(𝑃) for any point 𝑃

Damien Robert Attacks on SIDH and applications 18 / 27



Algorithms for 𝑁-isogenies in higher dimension

Analogues of Vélu’s formula: [Cosset, R. (2014); Lubicz, R. (2012–2022)]
An 𝑁-isogeny in dimension 𝑔 can be evaluated in linear time 𝑂(𝑁𝑔) arithmetic operations in the
theta model given generators of its kernel.

, Work in any dimension

/ Exponential dependency 2𝑔 in the dimension 𝑔.
/ Need a rational level 𝛤(2, 4)-structure (automatic for supersingular curves over 𝔽𝑝2)

Algorithm in 𝑂(𝑁𝑔) in the Jacobian model: [Couveignes, Ezome (2015)]

, Rational model

/ Restricted to 𝑔 ≤ 3

Cost of a 2𝑚-isogeny in dimension 𝑔:

g 1 2 4 8

Relative cost ×1 ×4 ×32 ×1024
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Dedicated fast formulas in higher dimension

Dimension 2:
Fast 2𝑚-isogenies in the Mumford Jacobian or Kummer model [Kunzweiler 2022] and in the theta
model [Dartois, Maino, Pope, R. 2023]

Codomain Evaluation

Theta Theta Richelot Theta Theta Richelot
log 𝑝 𝑚 Rust SageMath SageMath Rust SageMath SageMath

254 126 2.13 ms 108 ms 1028 ms 161 μs 5.43 ms 114 ms
381 208 9.05 ms 201 ms 1998 ms 411 μs 8.68 ms 208 ms
1293 632 463 ms 1225 ms 12840 ms 17.8 ms 40.8 ms 1203 ms

Fast 3𝑚-isogenies in the Mumford Jacobian model [Decru, Kunzweiler 2023] and in the theta
model [Corte-Real Santos, Costello, Smith 2024]

Dimension 4:
Fast 2𝑚-isogenies in the theta model [Dartois 2024]
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Cryptographic applications

New protocols in isogeny based cryptography: SQIsignHD [DLRW24], FESTA [BMP23] and
QFESTA [NO23], the Deuring VRF [Ler23b], SCALLOP-HD [CLP24] (efficient representation of
orientations), IS-CUBE [Mor23], LIT-SiGamal [Mor24], SILBE [DFV24], POKE [Bas24], SQIsign2d
(West and East) [BDD+24; NO24], SQIPrime [DF24]…

New or improved security reductions in isogeny based cryptography, [MW23; ACD+23; PW24;
ES24] and in classical elliptic curve cryptography [Gal24]

New methods to convert ideals into isogenies [Ler23a; NO23; PR23; ON24; BDD+24]

Examples:

Clapoti(s) [Page, R. 2023]: computing the class group action for an arbitrary orientation 𝑅 in
polynomial time

No smoothening needed

Unrestricted effective group action!

SQIsignHD, SQIsign2d-West: bypass KLPT’s smoothening algorithm for supersingular curves too
KLPT: 𝜙𝐽 ∶ 𝐸1 → 𝐸2, smoothened isogeny of degree 𝑂(𝑝4.5) (or 𝑂(𝑝3) if 𝐸1 is nice)

HD representation: can use the smallest isogeny 𝜙𝐽 ∶ 𝐸1 → 𝐸2 of degree 𝑂(√𝑝) even if it is not smooth!
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SQISign

Proves knowledge of a supersingular endomorphism ring

Most compact PK+signature out of all PQ signature schemes

NIST submission

𝐸0 𝜑sk
𝐸pk

𝜑com

𝐸com

𝜑rsp
𝐸chl

𝜑chl
Public
Secret
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SQISign2d (West) and SQISignHD

SQIsign SQIsign2d

Public key 66B 66B
Signatures 177B 148B
Clean security proof / ,

Keygen (Mcycles) 400 60
Sign (Mcycles) 1880 160
Verify (Mcycles) 29 9

SQIsign2D: signature and verification in dimension 2

SQIsignHD: signature in dimension 1, verification in dimension 4
New faster variant compared to the Eurocrypt 2024 version using techniques from SQIsign2d: signatures now use

dimension 2 too. Bonus: same public key as in SQIsign2d!

Signature size: 109B

Signature ≈ 5× faster than SQIsign2d

Verification expected ≈ 8× slower
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Number theoretic applications
𝐸/𝔽𝑞 ordinary elliptic curve, 𝐾 = End(𝐸) ⊗ℤ ℚ. Given the factorisation of [𝒪𝐾 ∶ ℤ[𝜋]],
compute End(𝐸) in polynomial time [R. 2022].
Factorisation: quantum polynomial time, classical subexponential time
Previously: no quantum polynomial time algorithm known.
Classical algorithm in 𝐿(1/2) under GRH [Bisson–Sutherland 2009].

Compute the canonical lift �̂�/ℤ𝑞 of an ordinary elliptic curve in polynomial time [R. 2022]
Previously: 𝐿(1/2) under GRH [Couveignes–Henocq 2002]
Compute the modular polynomial 𝛷ℓ by deformation [Kunzweiler, R. 2024]

Point counting for 𝐸/𝔽𝑞, 𝑞 = 𝑝𝑛

[Schoof 1985]: 𝑂(𝑛5 log5 𝑝) (Étale cohomology)

[SEA 1992]: 𝑂(𝑛4 log4 𝑝) (Heuristic)

[Kedlaya 2001]: 𝑂(𝑛3𝑝) (Rigid cohomology)
[Harvey 2007]: 𝑂(𝑛3.5𝑝1/2 + 𝑛5 log 𝑝)

[Satoh 2000] (canonical lifts of ordinary curves): 𝑂(𝑛2𝑝2) (Crystalline cohomology)
[Maiga – R. 2021]: 𝑂(𝑛2𝑝)
[R. 2022]: 𝑂(𝑛2 log8 𝑝 + 𝑛 log11 𝑝)
Use an HD representation of the Verschiebung ̂𝜋𝑝 and canonical lifts
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Example: divisions [R. 2022]

Is an isogeny 𝜙 ∶ 𝐸1 → 𝐸2 divisible by [ℓ]?
Prior art: test if 𝜙(𝐸[ℓ]) = 0
Division polynomial 𝜓ℓ: degree 𝑂(ℓ2) ⇒exponential time

HD division algorithm [R. 2022]:

Given an HD representation (𝑃𝑖, 𝑄𝑖, 𝜙(𝑃𝑖), 𝜙(𝑄𝑖)) with 𝑁𝑖 ∧ ℓ = 1,

(𝑃𝑖, 𝑄𝑖,
𝜙(𝑃𝑖)

ℓ ,
𝜙(𝑄𝑖)

ℓ )

is an HD representation of 𝜙/ℓ if it exists

⇒ polynomial time (in log ℓ) division algorithm

Corollary (Computing the endomorphism ring of ordinary elliptic curves)

If𝐸/𝔽𝑞 is an ordinary elliptic curve; point counting gives𝜒𝜋, hence𝐾 ≔ ℚ(𝜋𝑞), and we know
ℤ[𝜋] ⊂ End(𝐸) ⊂ 𝒪𝐾. Given the factorisation of the conductor [𝒪𝐾 ∶ ℤ[𝜋]] ofℤ[𝜋], we can
determine End(𝐸) in polynomial time, via efficient divisions.
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Algorithms for the HD representation

𝜙/𝔽𝑞 ∶ 𝐸1 → 𝐸2 an 𝑛-isogeny with an efficient representation

Equality testing, Validity

Composition and addition: 𝜙2 ∘ 𝜙1, 𝜙1 + 𝜙2

Dual isogeny: 𝜙 ∶ 𝐸2 → 𝐸1

Divisions: Test if 𝜙 ?= 𝜓′ ∘ 𝜓 is divisible by 𝜓, and if so return the HD representation of 𝜓′

Lifts and deformations: deform 𝜙 to 𝜙/𝑅 ∶ 𝐸1 → 𝐸2 over 𝑅 = 𝔽𝑞[𝜀]/𝜀𝑚 or 𝑅 = ℤ𝑞/𝑝𝑚ℤ𝑞

Splittings: If 𝑛 = 𝑛1𝑛2, 𝑛1 ∧ 𝑛2 = 1, split 𝜙 as 𝜙 = 𝜙2 ∘ 𝜙1

𝜙 ∶ 𝐸1
𝜙1−−→ 𝐸12

𝜙2−−→ 𝐸2

Pushforwards: compute the pushfoward of 𝜙1 and 𝜙2 if they are of coprime degrees

𝐸0 𝐸1

𝐸1 𝐸12

𝜙1

𝜙2 𝜙′
2

𝜙′
1

Kernel: return an equation for Ker𝜙 in 𝑂(𝑛)
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Efficient representation of isogenies

Past:

Restricted to smooth degree isogenies

Vélu’s /√élu formulas

Ideal smoothening

Present:

The HD representation: recent powerful tool with many applications in isogeny based
cryptography and algorithmic number theory

Use abelian varieties to speed up algorithms on elliptic curves

Survey paper: [Rob25]

Future?
Switch from ideals equivalences of categories to modules equivalences of categories

▶ Handles the higher dimensional isogeny graphs of 𝐸𝑔

▶ Handles level structures
▶ Go beyond Kani’s lemma

Use cyclic isogenies?
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Polarisations and isogenies on an abelian variety

Polarisation on 𝐴 = a (symmetric) isogeny 𝜆𝐴 ∶ 𝐴 → 𝐴
Principal polarisation: 𝜆𝐴 is an isomorphism.

Warning: 𝐴 may have several non equivalent principal polarisations if 𝑔 > 1.

Example (Superspecial abelian surfaces)

𝐴 = 𝐸2, 𝐸/𝔽𝑝2 supersingular. It admits ≈ 𝑝2/288 product polarisations (𝐸1 × 𝐸2, 𝜆𝐸1
× 𝜆𝐸2

)
where 𝐸1, 𝐸2 are supersingular and ≈ 𝑝3/2880 indecomposable polarisations (Jac𝐶, 𝛩𝐶) where 𝐶
is an hyperelliptic curve of genus 2.
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Polarisations and isogenies on an abelian variety

Polarisation on 𝐴 = a (symmetric) isogeny 𝜆𝐴 ∶ 𝐴 → 𝐴
Principal polarisation: 𝜆𝐴 is an isomorphism.

Warning: 𝐴 may have several non equivalent principal polarisations if 𝑔 > 1.

𝜙 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) 𝑁-isogeny between ppav: 𝜙∗𝜆𝐵 = 𝑁𝜆𝐴.

𝐴 𝐵

𝐴 �̂�

𝜙

𝜆𝐵𝜆−1
𝐴

𝜙

Dual isogeny: 𝜙 ∶ �̂� → 𝐴
Contragredient isogeny: 𝜙 = 𝜆−1

𝐴 𝜙𝜆𝐵 ∶ 𝐵 → 𝐴
𝜙 𝑁-isogeny ⇔ 𝜙 ∘ 𝜙 = 𝑁 ⇔ 𝜙𝜙 = 𝑁.

Ker𝜙 = Im (𝜙 ∣ 𝐵[𝑁]).
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𝑁-isogenies and isotropic kernels

𝜙 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) 𝑁-isogeny ⇒Ker𝜙 is maximal isotropic in 𝐴[𝑁] for theWeil pairing

Conversely, if 𝐾 ⊂ 𝐴[𝑁] maximal isotropic, 𝑁𝜆𝐴 descends to a principal polarisation on
𝐵 = 𝐴/𝐾.

An elliptic curve only has one principal polarisation (𝑁𝑆(𝐸) = ℤ).

So 𝜙 ∶ 𝐸1 → 𝐸2 is an 𝑁-isogeny ⇔ #Ker𝜙 = 𝑁.

But in higher dimension there may be many non equivalent principal polarisations.

Example (Superspecial abelian surfaces)

𝐴 = 𝐸2, 𝐸/𝔽𝑝2 supersingular. It admits ≈ 𝑝2/288 product polarisations (𝐸1 × 𝐸2, 𝜆𝐸1
× 𝜆𝐸2

)
where 𝐸1, 𝐸2 are supersingular and ≈ 𝑝3/2880 indecomposable polarisations (Jac𝐶, 𝛩𝐶) where 𝐶
is an hyperelliptic curve of genus 2.

If 𝜙 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) has maximal isotropic kernel in 𝐴[𝑁], 𝑁𝜆𝐴 descends to a principal
polarisation 𝜆′

𝐵 on 𝐵.

But we may have 𝜆′
𝐵 ≠ 𝜆𝐵.

𝜙 ∘ 𝜙 = 𝑁 is a stronger condition that ensures compatibility of 𝜙 with 𝜆𝐵.
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Composition and product polarisations

Composition: 𝑓 ∶ 𝐴 → 𝐵 a 𝑁-isogeny, 𝑔 ∶ 𝐵 → 𝐶 a 𝑀-isogeny, 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶.

𝑔 ∘ 𝑓 = ̂𝑓 ∘ ̂𝑔 ∶ ̂𝐶 → ̂𝐴;

𝑔 ∘ 𝑓 = ̃𝑓 ∘ ̃𝑔 ∶ 𝐶 → 𝐴;

(𝑔 ∘ 𝑓) ∘ (𝑔 ∘ 𝑓 ) = ̃𝑓 ∘ ̃𝑔 ∘ 𝑔 ∘ 𝑓 = 𝑁𝑀.

The composition 𝑔 ∘ 𝑓 is an 𝑁𝑀-isogeny.

Conversely, if 𝑔 ∘ 𝑓 is an 𝑁-isogeny and 𝑓 (resp. 𝑔) is an 𝑀-isogeny, then 𝑔 (resp. 𝑓) is an 𝑁/𝑀-isogeny.

Product polarisation: (𝐴, 𝜆𝐴) × (𝐵, 𝜆𝐵) = (𝐴 × 𝐵, 𝜆𝐴 × 𝜆𝐵) where 𝜆𝐴 × 𝜆𝐵 ∶ 𝐴 × 𝐵 → 𝐴 × �̂�
is the product.

𝐹 = (𝑎 𝑐
𝑏 𝑑) ∶ (𝐴 × 𝐵, 𝜆𝐴 × 𝜆𝐵) → (𝐶 × 𝐷, 𝜆𝐶 × 𝜆𝐷).

̂𝐹 = ( ̂𝑎 ̂𝑏
̂𝑐 ̂𝑑) ∶ ̂𝐶 × �̂� → ̂𝐴 × �̂�.

̃𝐹 = ( ̃𝑎 ̃𝑏
̃𝑐 ̃𝑑) ∶ 𝐶 × 𝐷 → 𝐴 × 𝐵.
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