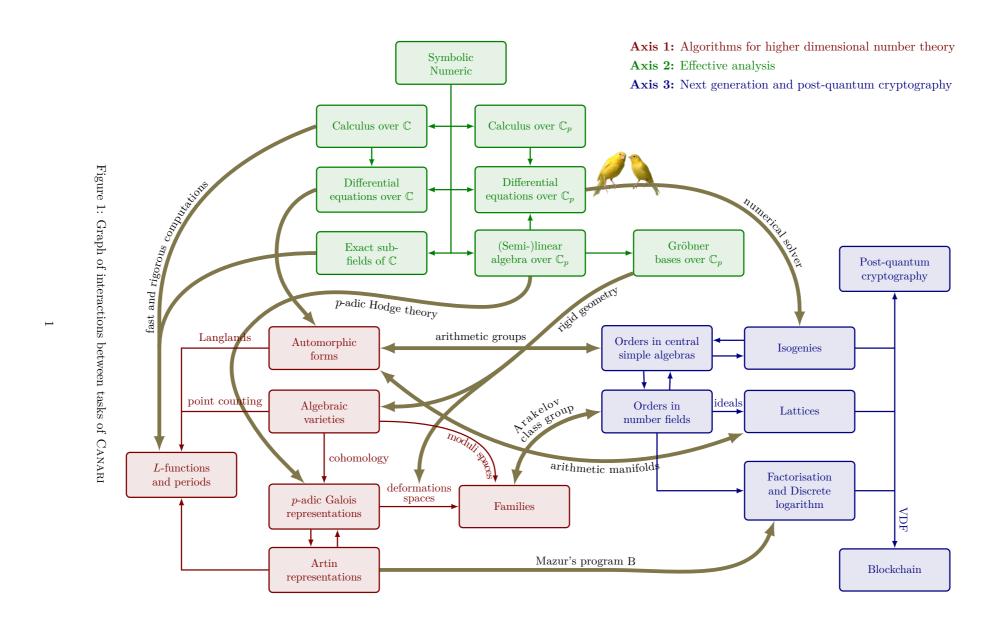
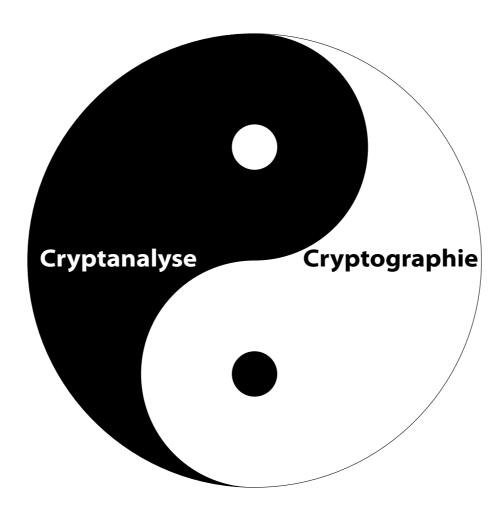
Quand l'ajout de structure casse un cryptosystème : quelques exemples de cryptanalyse

2024/08/29 — Journées Scientifiques Inria, Grenoble

Damien Robert


Équipe Canari, Inria Bordeaux Sud-Ouest



Canari = Cryptography ANalysis and ARIthmetic

Cryptologie = Cryptographie + Cryptanalyse

- Cryptographie: conception de systèmes cryptographiques
 Chiffrement, signatures, chiffrement homomorphe, fonctionnel, preuves sans divulgation de connaissances, vote électronique, blockchains...
- Cryptanalyse : attaques contre ces cryptosystèmes
- Permet de choisir les paramètres optimaux préservant la sécurité

Cryptanalayse?

- Dans un monde idéal : cryptosystème compact, efficace, et prouvé sûr
- Nécessite des bornes mins sur les attaques possibles...
- $P \neq NP$? Pire cas vs cas moyens... Les 5 mondes d'Impagliazzo : Algorithmica, Heuristica, Pessiland, Minicrypt, Cryptomania
- Identification de problèmes mathématiques bien définis (factorisation, logarithme discret, ...) supposés difficiles
- Construction de cryptosystèmes reposant sur ces problèmes avec preuve de sécurité
- Casser le cryposystème ⇒ résoudre le problème mathématique
- Changement du modèle d'attaque : pré-quantique → post-quantique

Cryptanalayse?

- Dans un monde idéal : cryptosystème compact, efficace, et prouvé sûr
- Nécessite des bornes mins sur les attaques possibles...
- $P \neq NP$? Pire cas vs cas moyens... Les 5 mondes d'Impagliazzo : Algorithmica, Heuristica, Pessiland, Minicrypt, Cryptomania
- Identification de problèmes mathématiques bien définis (factorisation, logarithme discret, ...) supposés difficiles
- Construction de cryptosystèmes reposant sur ces problèmes avec preuve de sécurité
- Casser le cryposystème ⇒ résoudre le problème mathématique
- Changement du modèle d'attaque : pré-quantique → post-quantique

La pyramide de la cryptanalyse

Attaque du problème mathématique Erreurs dans les preuves de sécurité, réductions pas efficaces, mal appliquées... Attaques sociales, bugs d'implémentation, canaux cachés...

Rajout de structure dans un cryptosystème

- Situation typique : cryptosystème sûr (conjecturalement!), mais peu efficace
- Ajout de structure pour le rendre efficace
- On espère que ça ne nuit pas à sa sécurité…

Exemple (Équations quadratiques multivariées)

- Résoudre des équations quadratiques multivariées est difficile (NP-complet)
- Ajout d'équations linéaires cachées (trapdoor) ⇒ cryptosystème <u>uOV</u> (unbalanced Oil and Vinegar) [Patarin 1997]
- Rainbow [Ding-Schmidt 2005]: imbrication d'équations linéaires
 « A scheme with more efficient computations and smaller key sizes at the same level of security » (Rainbow specification document)
- [Beullens 2022]: « Breaking Rainbow Takes a Weekend on a Laptop »
- [MAYO 2023]: « MAYO is a variant of the Oil and Vinegar scheme whose public keys are smaller »

Rajout de structure dans un cryptosystème

- Situation typique : cryptosystème sûr (conjecturalement!), mais peu efficace
- Ajout de structure pour le rendre efficace
- On espère que ça ne nuit pas à sa sécurité…

Exemple (Équations quadratiques multivariées)

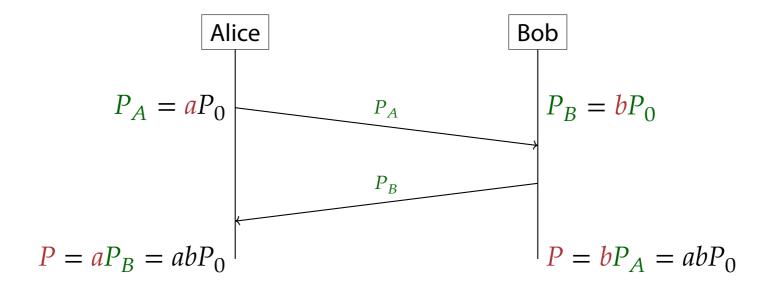
- Résoudre des équations quadratiques multivariées est difficile (NP-complet)
- Ajout d'équations linéaires cachées (trapdoor) ⇒ cryptosystème <u>uOV</u> (unbalanced Oil and Vinegar) [Patarin 1997]
- Rainbow [Ding-Schmidt 2005]: imbrication d'équations linéaires
 « A scheme with more efficient computations and smaller key sizes at the same level of security » (Rainbow specification document)
- [Beullens 2022]: « Breaking Rainbow Takes a Weekend on a Laptop »
- [MAYO 2023]: « MAYO is a variant of the Oil and Vinegar scheme whose public keys are smaller »

Exemple 2 : cryptographie à base de code

- Un code correcteur d'erreur permet de corriger des erreurs de transmission
- Modélisé par une matrice M de taille $n \times k$ sur \mathbb{F}_2
- Use problème du décodage d'un code aléatoire est NP-dur
- [McEliece 1978] : cache un code structuré G par des opérations linéaires G' = PGS
- Paramètres : n=6960, k=5413 \Rightarrow 4.7 MO
- Beaucoup (la plupart?) des versions suggérées pour réduire la taille des paramètres ont été cassées :
 GRS, Reed-Muller, LDPC, MDPC, ...
- [Randriambololona, Juillet 2024]: «The syzygy distinguisher»

Exemple 3 : cryptographie à base de réseaux (lattices)

- Réseau = matrice à coefficients entier (en pratique modulo un nombre premier)
- © Trouver un petit vecteur dans un réseau aléatoire = NP-dur
- Comment réduire la taille des matrices?


Exemple (Matrice « cyclique »)

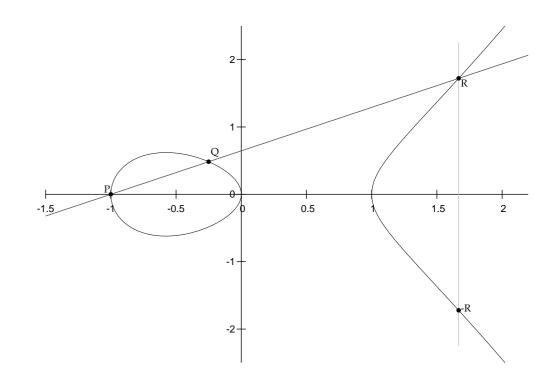
$$\begin{pmatrix} a_0 & a_1 & a_2 & a_3 \\ -a_3 & a_0 & a_1 & a_2 \\ -a_2 & -a_3 & a_0 & a_1 \\ -a_1 & -a_2 & -a_3 & a_0 \end{pmatrix}$$

- Anneau $\mathbb{Z}[X]/(X^{2^n}+1)$ (ordre cyclotomique)
- Pas d'attaque connue exploitant cette structure (pour l'instant)!
- Des anneaux de forme $R = \mathbb{Z}[X]/(X^n + aX + b)$ vulnérables pour certains a, b spécifiques Dépend si le conditionnement du bruit est fait sur R ou R^{\vee} .

Échange de clé de Diffie-Hellman

$$G = \langle P_0 \rangle$$
 groupe commutatif

© Réductions (partielles) entre casser le protocole d'échange de Diffie-Hellman et casser le problème du logarithme discret :

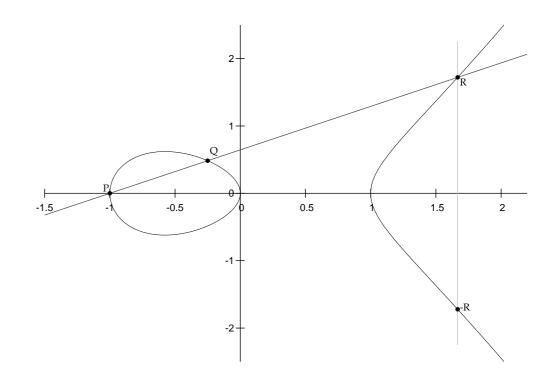

$$(P_0, aP_0) \mapsto a$$

- \odot Le logarithme discret dans un groupe générique G de cardinal ℓ premier coûte au moins $\sqrt{\ell}$ [Shoup 1997]
- Il est impossible de calculer efficacement dans un « groupe générique »

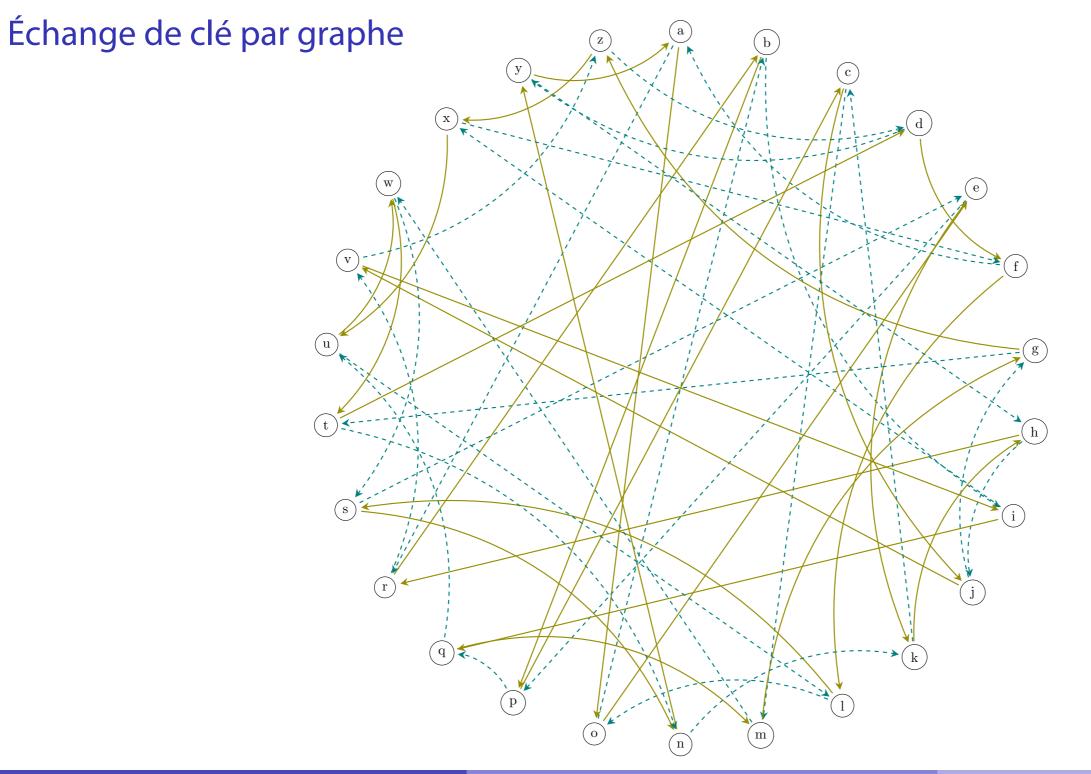
Échange de clé de Diffie-Hellman

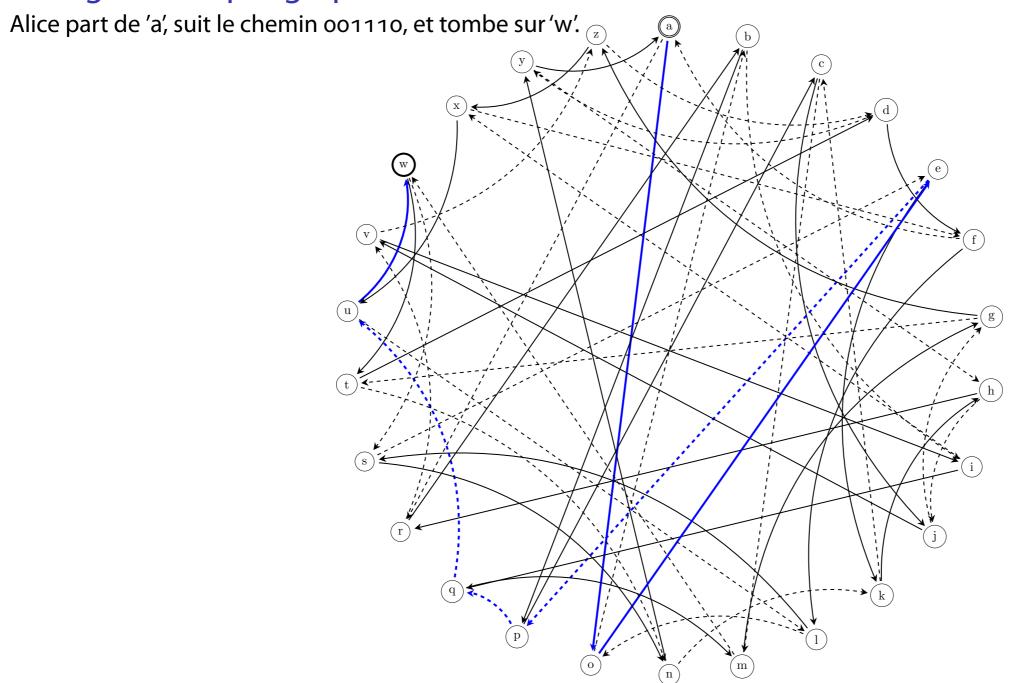
- [Diffie-Hellman 1976]: $G = (\mathbb{F}_p^*, \times)$ groupe multiplicatif d'un corps fini.
- \odot Attaques sous-exponentielles en $\approx 2^{\log^{1/3}p}$ reposant sur la factorisation des nombres entiers (nombres friables)

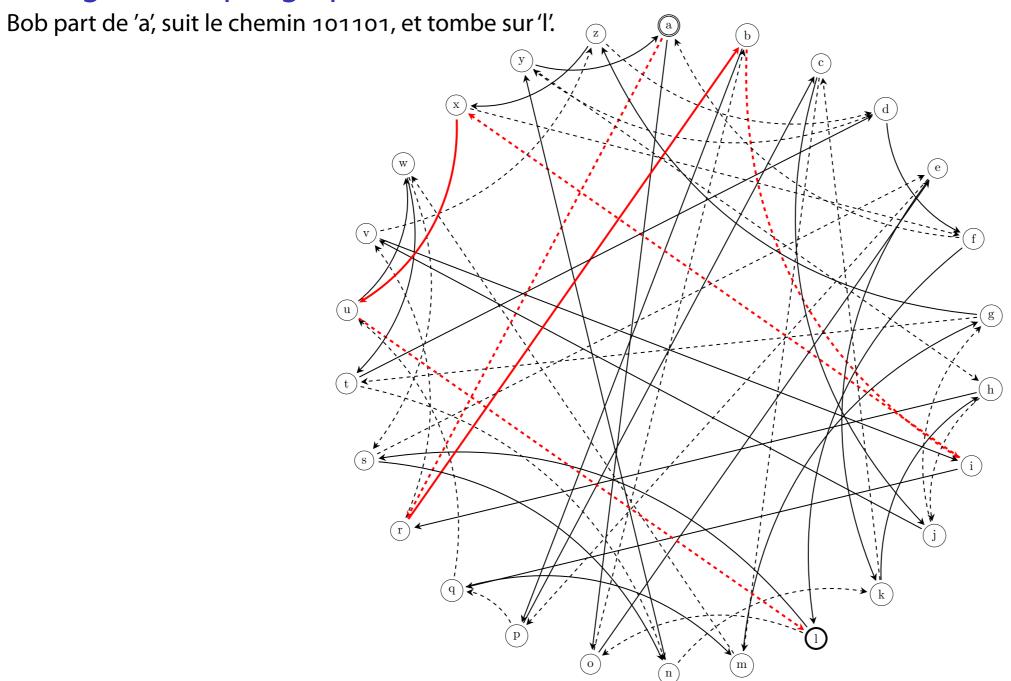
- [Koblitz, Miller 1985] $G = E/\mathbb{F}_q$ courbe elliptique
- © La meilleure attaque connue est l'attaque « générique » En enlevant un petit nombre de courbes elliptiques « rares » : *E* ne doit pas être anomale, avoir un petit « degré de plongement », ...
- [Koblitz 2000] : « Miracles of the Height Function A Golden Shield Protecting ECC »

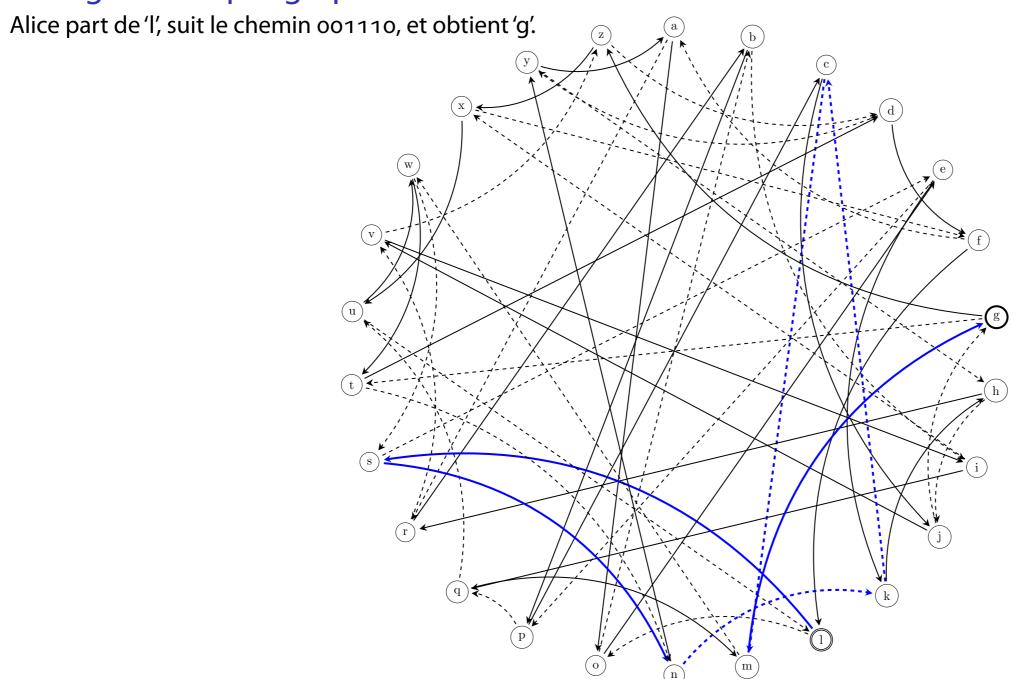


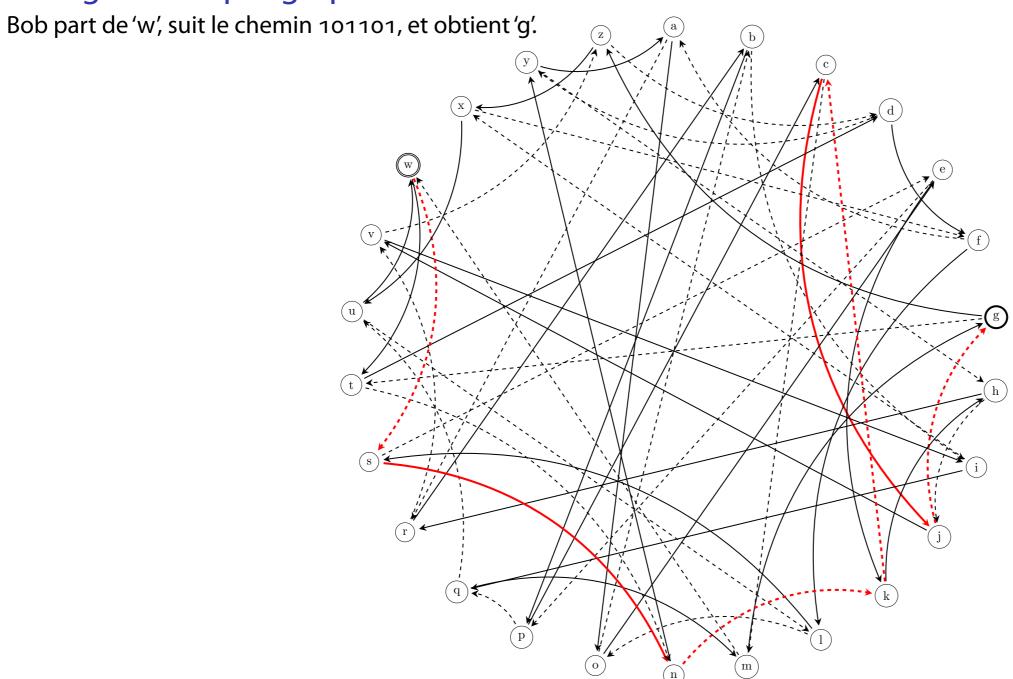
© [Shor 1994]: algorithme quantique cassant la factorisation et le logarithme discret

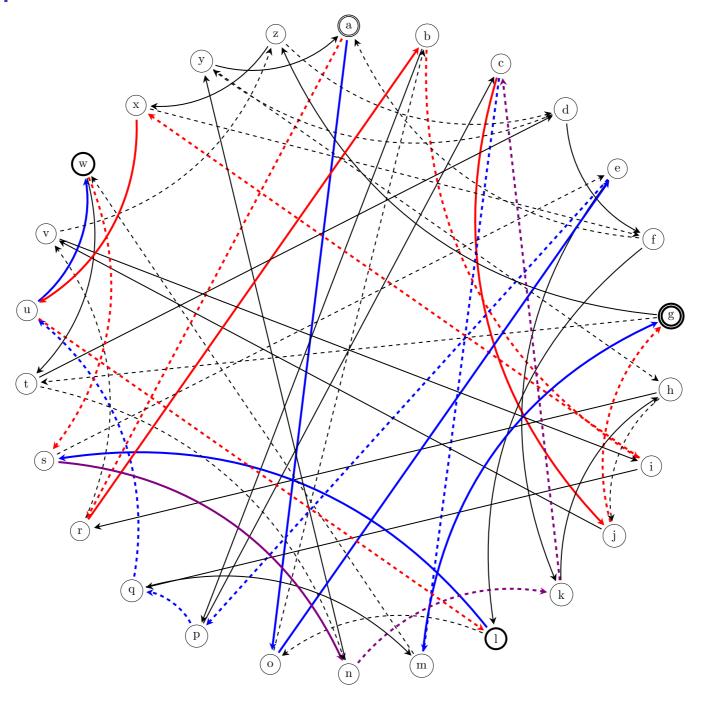

Échange de clé de Diffie-Hellman

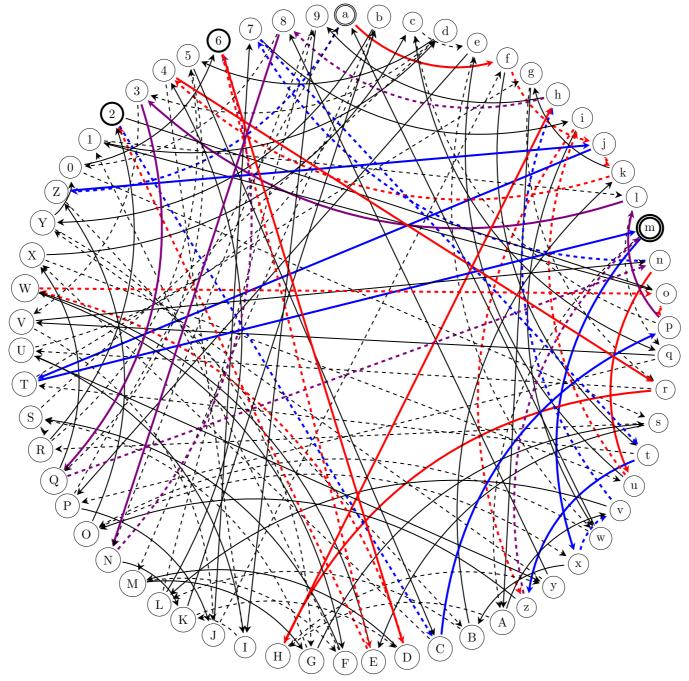

- [Diffie-Hellman 1976]: $G = (\mathbb{F}_p^*, \times)$ groupe multiplicatif d'un corps fini.
- \odot Attaques sous-exponentielles en $\approx 2^{\log^{1/3} p}$ reposant sur la factorisation des nombres entiers (nombres friables)


- [Koblitz, Miller 1985] $G = E/\mathbb{F}_q$ courbe elliptique
- © La meilleure attaque connue est l'attaque « générique » En enlevant un petit nombre de courbes elliptiques « rares » : *E* ne doit pas être anomale, avoir un petit « degré de plongement », ...
- [Koblitz 2000]: « Miracles of the Height Function A Golden Shield Protecting ECC »




© [Shor 1994]: algorithme quantique cassant la factorisation et le logarithme discret





L'échange de clé complet

Graphe plug grand (62 noeuds)

Graphe encore plus grand (676 noeuds)

Isogénies de courbes elliptiques

$$E_1: y^2 = x^3 + a_1 x + b_1$$
 $E_2: y^2 = x^3 + a_2 x + b_2$

- $○ E/\mathbb{F}_q$ courbe elliptique ordinaire ⇒ graphe d'isogénies commutatif [Couveignes 1997, Rostovtsev-Stolbunov 2006] :
- \odot Attaque quantique sous-exponentielle $\approx 2^{\log^{1/2}N}$
- E/\mathbb{F}_{p^2} supersingulière \Rightarrow graphe expanseur non commutatif de taille $N \approx p$ Structure mathématique : pushforward dans une catégorie

Isogénies de courbes elliptiques

Meme: Gru's plan

- Isogeny based key exchange
- Use supersingular curves
- The graph is non commutative
- The graph is non commutative

SIDH/SIKE [De Feo-Jao 2011, De Feo-Jao-Plût 2014]

- Pour faire un échange de clé sur un graphe non commutatif, SIDH publie la valeur d'une isogénie secrète en certains points
- Problème mathématique auxiliaire : étant donné une fraction rationnelle

$$R(x) = \frac{g(x)}{h(x)}$$

de grand degré $N\gg 2^{128}$, et la valeur de R en certains points, retrouver R

- Interpolation rationnelle : $\widetilde{O}(N)$
- ullet Pour SIDH : problème d'interpolation structuré : R est compatible avec l'addition des courbes elliptiques
- [Castryck-Decru 2022] ¹, [Maino-Martindale 2022, Maino-Martindale-Panny-Pope-Wesolowski 2023] ²: emploi d'objets mathématiques de dimension ² pour attaquer heuristiquement SIDH dans certains cas
- [R. 2022] 2 : utilise la dimension 4 et 8 pour attaquer de manière prouvée SIDH dans tous les cas Fun fact : utilise que tout entier N est somme de 4 carrés!

^{1.} Eurocrypt 2023 best paper award

^{2.} Eurocrypt 2023 best paper honorable mention

SIDH/SIKE [De Feo-Jao 2011, De Feo-Jao-Plût 2014]

- Pour faire un échange de clé sur un graphe non commutatif, SIDH publie la valeur d'une isogénie secrète en certains points
- Problème mathématique auxiliaire : étant donné une fraction rationnelle

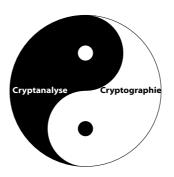
$$R(x) = \frac{g(x)}{h(x)}$$

de grand degré $N\gg 2^{128}$, et la valeur de R en certains points, retrouver R

- Interpolation rationnelle : $\widetilde{O}(N)$
- Pour SIDH : problème d'interpolation structuré : R est compatible avec l'addition des courbes elliptiques
- [Castryck-Decru 2022] 1, [Maino-Martindale 2022, Maino-Martindale-Panny-Pope-Wesolowski 2023] 2: emploi d'objets mathématiques de dimension 2 pour attaquer heuristiquement SIDH dans certains cas
- [R. 2022] 2 : utilise la dimension 4 et 8 pour attaquer de manière prouvée SIDH dans tous les cas Fun fact : utilise que tout entier N est somme de 4 carrés!

^{1.} Eurocrypt 2023 best paper award

^{2.} Eurocrypt 2023 best paper honorable mention


Conclusion

- Cryptographie : repose sur des problèmes difficiles (théorie de la compléxité)
- Une structure cachée (trappe) permet de déchiffrer
- Cryptanalyse : comment exploiter cette structure?
- Nadia Herninger's invited talk at PKC 2024: Cryptanaly · nomics
- Modification de l'équilibre Cryptographie/Cryptanalyse dans le monde académique
- Plus personne ne fait de la cryptanalyse de la factorisation ou du logarithme discret sur un corps fini
- Sauf Caramba, via le logiciel Cado-NFS! « 5 underpaid french researchers »
- « Unique INRIA structure facilitates this type of research in a way that US academia does not »

Conclusion

- Cryptographie : repose sur des problèmes difficiles (théorie de la compléxité)
- Une structure cachée (trappe) permet de déchiffrer
- Cryptanalyse: comment exploiter cette structure?
- Nadia Herninger's invited talk at PKC 2024 : Cryptanaly · nomics
- Modification de l'équilibre Cryptographie/Cryptanalyse dans le monde académique
- Plus personne ne fait de la cryptanalyse de la factorisation ou du logarithme discret sur un corps fini
- Sauf Caramba, via le logiciel Cado-NFS! « 5 underpaid french researchers »
- « Unique INRIA structure facilitates this type of research in a way that US academia does not »

Ouverture

- Les attaques peuvent devenir constructives!
- Attaques grâce aux réseaux (sacs à dos, …) ⇒ cryptographie à base de réseaux
- Couplages sur courbes elliptiques pour attaquer le logarithme discret ⇒ cryptographie à base de couplages (prix Gödel 2013)
- Attaques SIDH ⇒ cryptographie à base d'isogénies en dimension supérieure
- Castryck's invited talk at Eurocrypt 2024: « An attack became a tool: Isogeny based cryptography 2.0 »
- Exemple: SQISignHD [Dartois, Leroux, R., Wesolowski] 3

Damien Robert