From ideals to modules for isogeny based cryptography 2024/09/13 — Leuven Isogeny Days 5

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

Why modules? (1)

Noisy linear algebra:

- Lattices: RingLWE → ModuleLWE
- Codes: Hamming metric → Sum Rank metric

Isogenies:

- Ideals → Modules?
- Dimension $1 \rightarrow$ Dimension g?
- Ideal equivalence of category → module equivalence of category
- ② Increasing dimension in isogeny based cryptography is costly...

Work in progress!

Why modules? (2)

- Kani: moving to dimension 2 (or 4) provided many new powerful algorithms
- So far only exploit isogenies between products of elliptic curves
- Hence still working via (representations of) dimension 1 isogenies
- Goal: exploit the full dimension 2 isogeny graph (or higher)

Why modules? (3)

- Abelian varieties are "scary" (even more than elliptic curves)
- Cryptographers need abstractions
- Example: LWE for lattice based cryptography
- Good abstractions in dimension 1: Deuring correspondance, class group actions
- But cannot incorporate Kani

This talk: new abstractions for higher dimensional isogenies

- Module correspondance
- ⇒ Isogeny based cryptography = one way functor from a symmetric monoidal category!
- In fact, this is a special type of one way functor, we actually have: (see later!)

Why modules? (4)

- ullet Full (oriented) isogeny graph of $E_0^{\mathcal{S}}$
- Ascending and descending isogenies
- Level structures
- Pairings
- (Un)forgetting orientations

Outline

- 1 Ideals
- Modules
- Applications to isogeny based cryptography
- Advanced topics for modules
 - Level structures
 - Some isogeny constructions from the module point of view
 - Ascending and descending isogenies: the conductor square and excision
 - (Un)forgetting orientations via comonadic descent
 - Non principal polarisations
 - Sesquilinear Weil pairings
 - Non *R*-backtracking isogenies

Table of Contents

- **Ideals**
- 2 Modules
- Applications to isogeny based cryptography
- Advanced topics for modules
 - Level structures
 - Some isogeny constructions from the module point of view
 - Ascending and descending isogenies: the conductor square and excision
 - (Un)forgetting orientations via comonadic descent
 - Non principal polarisations
 - Sesquilinear Weil pairings
 - Non R-backtracking isogenies

Ideals and isogenies: the oriented case

- E_0/k , $k=\mathbb{F}_q$, elliptic curve with a primitive orientation by a quadratic imaginary order $R=\mathbb{Z}[\sqrt{-\Delta}]\hookrightarrow \mathrm{End}_k(E_0)$
- ullet Oriented isogeny: $\phi:E_1 o E_2$ that commutes with the orientations
- Oriented kernel: K stable by KUnique K-orientation compatible on E/K with the quotient isogeny $E \to E/K$, and the isogeny is horizontal or ascending

Example: Frobenius orientation

- ullet E_0/k with non trivial π_k -action: ordinary curves, supersingular curves over \mathbb{F}_p
- π_k -oriented isogenies = rational isogenies.

Kernels, isogenies, and ideals

- $I \mapsto \phi_I : E_0 \to E_I$ oriented isogeny with kernel $E_0[I] = \{P \in E_0(\bar{k}), \alpha(P) = 0 \forall \alpha \in I\}$
- $\bullet \ K \mapsto \Im(K) := \{\alpha \in R \mid \alpha(K) = 0\}$
- $I \to E_0[I] \Leftrightarrow K \mapsto \Im(K)$: bijections¹ between R-stable kernels and integral ideals I of R
- Ideals ⇔ oriented isogenies
- $I \sim J \Leftrightarrow E_I \simeq E_J$

 $^{^{\}text{1}}\mathrm{At}$ least in the separable case: $E_0[\,\pi_p\,]$ is not represented by an ideal if p inert in R

Class group actions

- $E_I := E_0/E_0[I]$ primitively oriented by $O(I) := \{\alpha \in R \otimes_{\mathbb{Z}} \mathbb{Q} \mid \alpha I \subset I\}$
- I is invertible $\Leftrightarrow O(I) = R \Leftrightarrow$ the isogeny is horizontal
- $Pic(R) := \{[I], I \text{ invertible ideal}\}$
- Invertible ideals I of $R \Leftrightarrow$ oriented horizontal isogenies $\phi_I : E \to E_I$ [Colò-Kohel 2020, Onuki 2020]
- $\bullet \ \widetilde{\phi_I} = \phi_{\overline{I}} : E_I \to E$
- ullet Special case: p inert in R (can only happen for an orientation on a supersingular curve E/\mathbb{F}_{p^2})
- $\bullet \ \ \, \pi_v : E \to E^\sigma \text{ is not represented by an ideal}$
- An oriented isogeny $\phi: E \to E'$ comes from an ideal iff the representations $\rho_R(E)$ and $\rho_R(E')$ are equivalent, $\rho_R(E)$ representation of R on the k-vector space $T_0(E)$

Group action:

- $Pic(R) \circlearrowright \{E \text{ primitively } R \text{-oriented}\}$
- $[I] \cdot E \mapsto E_I$
- Free and transitive action (if p ramified or split; two orbits if p inert in R)
- $E[\mathfrak{m}](\bar{k}) \simeq R/\mathfrak{m}R$ as R-modules [Lenstra 1996] $(p \wedge \mathfrak{m} = 1)$
- Generalised class group action (ray class groups modulo m) to incorporate m-level structure [ACELV 2024]

Ideal and isogenies: the supersingular case

- Deuring correspondance
- Maximal orders O in $B_{p,\infty}$ = supersingular curves E/\mathbb{F}_{p^2} (up to quadratic twists and Galois conjugates)
- $I \mapsto E_0[I]$, $K \mapsto \Im(K)$: bijection between kernels and left O_0 -ideals $(O_0 = \operatorname{End}(E_0))$
- ideals ⇔ isogenies
- $\operatorname{End}(E_I) = O_R(I)$ the right order of I; $\operatorname{deg} \phi_I = N(I) \coloneqq \operatorname{nrd}(I)$

Ideal to isogeny: $I \Leftrightarrow E_0 \to E_I := E_0/E[I]$

- ullet Easy if $\operatorname{End}(E_0)$ known, N(I) smooth and N(I)-torsion accessible
- Many smoothening algorithms to handle the general case: KLPT, Eichler orders, refreshing the torsion, endomorphisms, Clapoti(s) (= smoothening in higher dimension)...
- Lots of research effort
- SQISign and variants

Table of Contents

- 1 Ideals
- 2 Modules
- Applications to isogeny based cryptography
- Advanced topics for modules
 - Level structures
 - Some isogeny constructions from the module point of view
 - Ascending and descending isogenies: the conductor square and excision
 - (Un)forgetting orientations via comonadic descent
 - Non principal polarisations
 - Sesquilinear Weil pairings
 - Non R-backtracking isogenies

A general equivalence of category

- Oriented case: E_0/k primitively oriented by $\mathcal{R}=R$ quadratic imaginary ($\mathcal{Z}(\mathcal{R})=\mathcal{R}$)
- Supersingular case: $E_0/k=\mathbb{F}_{p^2}$ with $\mathcal{R}=O_0=\operatorname{End}(E_0)$ maximal quaternionic order $(\mathcal{Z}(\mathcal{R})=\mathbb{Z})$

Theorem (Module antiequivalence of category)

There is an antiequivalence of category between the category of $Z(\mathcal{R})$ -oriented abelian varieties aA k-isogenous to E_0^g and $Z(\mathcal{R})$ -oriented k-morphisms; and the category of finitely presented torsion free (right) \mathcal{R} -modules M of rank g and \mathcal{R} -module morphisms

 a with the technical condition $ho_{Z\mathcal{R})}(A)\simeq \oplus_{i=1}^g
ho_{Z(\mathcal{R})}(E_0)$

[Waterhouse 1969], [Kani 2011], [Jordan, Keeton, Poonen, Rains, Shepherd-Barron, Tate 2018], [Kirschmer, Narbonne, Ritzenthaler, R. 2021], [Page-R. 2023]

Alternative approaches to equivalences of category of abelian varieties via lifting to characteristic zero: [Deligne, Howe, Centeleghe-Stix, Marseglia]...

Example

- Oriented case: classify *R*-oriented isogenies
- \Rightarrow Frobenius orientation: all rational isogenies at level "above" E_0 in the volcano
 - Supersingular case: classify all isogenies

The equivalence

Serre's generalised Ext and Tor functors: $\mathcal{F}(M) \coloneqq \operatorname{Ext}^1_{\mathcal{R}}(M, E_0)$ E_0 "="compact projective generator"

Definition

If $\mathcal{R}^m \to \mathcal{R}^n \to M \to 0$ is a presentation of a \mathcal{R} -module M, with corresponding matrix Φ , $\mathcal{F}(M) := \operatorname{Ext}^1_{\mathcal{R}}(M, E_0)$ is the kernel of the morphism $E_0^n \to E_0^m$ given by Φ^T and the \mathcal{R} -orientation:

$$0 \to \mathcal{F}(M) \to E_0^n \to E_0^m$$

 \mathcal{F} is a faithful contravariant exact functor from f.p. \mathcal{R} -modules to proper group schemes over k

- Ideals: $\mathcal{F}(\mathcal{R}/I) \simeq E_0[I]$, $\mathcal{F}(I) \simeq E_0/E_0[I]$
- Abelian varieties: If M is torsion free of rank g, $A = \mathcal{F}(M)$ is an abelian variety of rank g
- Duality: $A^{\vee} \simeq \mathcal{F}(M^{\vee})$, $M^{\vee} := \operatorname{Hom}_{\overline{\mathcal{R}}}(M, \mathcal{R})$
- Torsion: $A[n] \simeq \mathcal{F}(M/nM) = \operatorname{Ext}^1_{\mathcal{R}}(M/nM, E_0) \simeq \operatorname{Ext}^1_{\mathcal{R}}(M, E_0[n])$
- ullet Rational points: $A(k') \simeq \operatorname{Hom}_{\mathcal{R}}(M, E_0(k'))$, k' a k-algebra

Inverse map: $A\mapsto \operatorname{Hom}_{\mathcal{Z}(\mathcal{R})}(A,E_0)$: module of (oriented) morphisms from A to E_0

Duality and polarisations

$$\phi:A_1\to A_2 \Leftrightarrow \psi:M_2\to M_1$$

- $\bullet \ \operatorname{Recall} M^{\vee} = \operatorname{Hom}_{\overline{R}}(M,R) \quad \ (M^{\vee} \simeq \operatorname{Hom}_R(M,R) \text{ as a \mathbb{Z}-module})$
- Duality: $\hat{\phi}: \hat{A}_2 \to \hat{A}_1 \Leftrightarrow \psi^{\vee}: M_1^{\vee} \to M_2^{\vee}, \gamma \mapsto (v \mapsto \gamma \circ \psi(v))$
- Double duality: $M \simeq M^{\vee \vee}$, $m \mapsto (\phi \mapsto \overline{\phi(m)})$
- ullet Polarisation: autodual isogeny $\lambda_A:A o A^{\vee}$ induced by an ample line bundle

Corollary (Principal polarisations)

- ullet Principal polarisation $\lambda_A:A o\widehat{A}\Leftrightarrow {\it a}$ unimodular Hermitian R-form H_A on M_A
- $\bullet \ \ N\text{-isogeny}\ \phi: (A_1,\lambda_{A_1}) \to (A_2,\lambda_{A_2}) = N\text{-similitude}\ \Phi: (M_2,H_2) \to (M_1,H_1):$

$$\Phi^* H_1 = NH_2$$

[Kirschmer, Narbonne, Ritzenthaler, R. 2021] (Project started in 2011 with Christophe!)

Definition (Hermitian forms)

- Hermitian R-form = R-sesquilinear positive definite
- R-sesquilinear: $H: M \times M \to R, H(\alpha x, y) = H(x, \overline{\alpha}y) = \alpha H(x, y)$
- Positive definite: $H(x,x) \in \mathbb{Z}^{>0}$, $\forall x \neq 0 \in M$
- Unimodular: $H: M \simeq M^{\vee}, m \mapsto H(m, \cdot)$ $\Leftrightarrow M^{\sharp} := \{v \in M \otimes \mathbb{Q}, H(m, v) \in R \quad \forall m \in R\} = M$

Warmup: ideals

The oriented case: $(\mathcal{R} = R)$

- $\mathcal{F}(R) = E_0$, so $\phi_I : E_0 \to E_I$ corresponds to $I \hookrightarrow R$
- Canonical unimodular Hermitian form on *I*:

$$H_I(x,y) = \frac{x\overline{y}}{N(I)}$$

- The inclusion $(I, H_I) \subset (R, H_R)$ is a N(I)-similitude
- ullet Handles ascending isogenies: I not invertible (the R-orientation needs not be primitive on E_I)

The supersingular case ($\mathcal{R} = O_0$):

- Maximal orders \Leftrightarrow left O_0 -ideals
- ullet To an order O we associated a connecting (O_0,O) -ideal
- ullet To a left O_0 -ideal I we associate the right order $O_R(I)$
- ullet Original version of Deuring's correspondance (see [Voight, Leroux]): $I = \operatorname{Hom}(E_0, E_I)$

Note that we use an antiequivalence, so for us $I=\mathsf{Hom}(E_I,E_0)$ and I is a right O_0 -ideal. We could apply duality to get an equivalence of categories, but contravarience is more practical for level structures

From now on: focus on the oriented case (almost all results also hold in the supersingular case).

Warmup: ideals (2)

$$\phi: E_{I_1} \to E_{I_2}, \quad I_1, I_2 \text{ invertible}$$

- ullet Ideal point of view: $\phi \Leftrightarrow$ some integral ideal J equivalent to $I=I_2I_1^{-1}$
- $\bullet \ I^{-1} = \overline{I}/N(I) \text{ so if } x \in I, J \coloneqq I\overline{x}/N(I) \sim I; \quad N(J) = N(x)/N(I)$
- $\bullet \ \ \mathsf{Module\ point\ of\ view:}\ \phi \Leftrightarrow \psi: (I_2, H_R/N(I_2)) \to (I_1, H_R/N(I_1))$
- If $z \in I^{-1}$: $\psi_z : r \mapsto zr$ is a $N \coloneqq N(z)N(I_2)/N(I_1)$ -similitude
- $z = \overline{x}/N(I)$, N = N(x)/N(I)
- If I integral: canonical isogeny via $z=1 \in R \subset I^{-1}$

Duality:

- $\bullet \ \ I^{\vee} \simeq I \ \mathrm{via} \ H_I \text{, so} \ I^{\vee} \simeq I/N(I) \ \mathrm{via} \ x \in I/N(I) \ \mapsto \ (y \in I \mapsto x\overline{y})$
- $\bullet \ \hat{\phi} \Leftrightarrow \psi^{\vee} = \psi_{\overline{z}} : I_1/N(I_1) \to I_2/N(I_2)$
- $\bullet \ \ \text{Contragredient isogeny} \ \widetilde{\phi} \Leftrightarrow \widetilde{\psi}: I_1 \to I_2, \widetilde{\psi} = \psi_{\overline{z}N(I)}$ Extend $N \coloneqq N_{\mathcal{R}}$ to fractional ideals

Proposition (Contragredient = Adjoint)

If $\phi:(A_1,\lambda_1) \to (A_2,\lambda_2) \Leftrightarrow \psi:(M_2,H_2) \to (M_1,H_1), \widetilde{\phi} \Leftrightarrow \widetilde{\psi}, \text{ where } \widetilde{\psi}=\psi^*:M_1 \to M_2 \text{ is the adjoint: } H_1(\psi(x),y)=H_2(x,\psi^*(y))$

Similitudes to isogenies

Module morphism to morphism of abelian varieties:

 R^n is a projective module, so we can lift module maps. The commutative diagram allows to find the kernel of $A_1 o A_2$.

- N-similitudes $\Leftrightarrow N$ -isogenies
- $\bullet \ \operatorname{Ker} \phi = A_1[M_2] \subset A_1[N] \quad (\operatorname{Recall} M_1 = \operatorname{Hom}(A_1, E_0))$

$$A_1[M_2] := \{ P \in A_1(\bar{k}), \phi(P) = 0_{E_0} \forall \phi \in M_2 \}$$

- Ker $\phi \simeq \mathcal{F}(M_1/M_2)$ so deg $\phi = \#M_1/M_2$ (R commutative)
- ullet Equivalence practical if N smooth, the N-torsion on E_0 is accessible, and the action of M_1 on A_1 is effective

Similitudes to isogenies: the general case

- Find a smooth similitude $(M_2, H_2) \rightarrow (M_1, H_1)$
- ullet Clapoti(s): it suffice to build two N_1,N_2 -similitudes with $N_1 \wedge N_2 = 1$ (or small)
- There are unimodular Hermitian R-modules (M, H_M) such that no N-similitude $R^g \hookrightarrow M$ exist for any N, c.f. the arithmetic obstructions in [Kirschmer, Narbonne, Ritzenthaler, R. 2021]
- Solution: look at $R^{g+1} \hookrightarrow M \times R$

$$f_{E/E_0} \mid N$$

Isogeny to similitude:

- $\phi: A_1 \to A_2$ a N-isogeny of kernel K
- $A_1 = \mathcal{F}(M_1)$ with effective action
- $M_2 \coloneqq \{\gamma \in M_1, \gamma(K) = 0\}, H_2 = H_1/N$ Needs efficient DLPs in $A_1[N]$ to compute M_2
- \bullet The action of M_2 on A_1 descends to an effective action on A_2 (via isogeny division, at least in nice cases)

Modules to abelian varieties

- $R^m \to R^n \twoheadrightarrow M \to 0$ presentation of M
- $0 \to A \hookrightarrow E_0^n \to E_0^m$ co-presentation of $A = \mathcal{F}(M)$

Example: $I = (\alpha, \beta)$, with syzygys of rank 1: $u\alpha + v\beta = 0$

$$R \rightarrow^{(u,v)^T} R^2 \twoheadrightarrow^{(\alpha,\beta)} I \subset R \quad \Leftrightarrow \quad E_0 \twoheadrightarrow E_I \hookrightarrow E_0^2 \rightarrow E_0$$

- $E_0 \rightarrow E_0^2$, $P \mapsto (\alpha P, \beta P)$ has kernel $E_0[I]$, so the image is isomorphic to E_I
- $E_I \hookrightarrow E_0^2$ is also given by the kernel of $E_0^2 \to E_0$, $(P,Q) \mapsto uP + vQ$

Module to explicit abelian variety:

- $\bullet \ \, \text{Try to find a nice N-similitude } (M,H_M) \hookrightarrow (R^g, \oplus_{i=1}^g H_R)$
- Convert to $E_0^g \rightarrow A_M$

Abelian variety to module:

- Find n morphisms $\phi_i:A\to E_0$ whose kernels intersect trivially Example: a double path $E_I\to E_0$!
- ullet Find the R-lattice of relations on the ϕ_i Find relations by testing on points of smooth order. Each relation reduces the tentative module M_A . Use the principal polarisation on A as a stop criterion (pairings).
- $A \hookrightarrow E_0^n \to E_0^m$ gives M_A

Table of Contents

- 1 Ideals
- Modules
- 3 Applications to isogeny based cryptography
- Advanced topics for modules
 - Level structures
 - Some isogeny constructions from the module point of view
 - Ascending and descending isogenies: the conductor square and excision
 - (Un)forgetting orientations via comonadic descent
 - Non principal polarisations
 - Sesquilinear Weil pairings
 - Non R-backtracking isogenies

Cryptographic applications?

- Clapotis: CLass group Action in POlynomial Time via Sesquilinear forms [Page-R. 2023]
- $\hbox{ Original motivation: "new" Module-KLPT algorithm for } M=I\oplus \bar I\subset R\oplus R$ Via an algebraic embedding $B^{\mathsf x}\subset \operatorname{GU}_2$ to reduce to quaternionic KLPT

Cryptographic applications?

- Clapotis: CLass group Action in POlynomial Time via Sesquilinear forms [Page-R. 2023]
- ullet Original motivation: "new" Module-KLPT algorithm for $M=I\oplus ar{I}\subset R\oplus R$ Via an algebraic embedding $B^*\subset \operatorname{GU}_2$ to reduce to quaternionic KLPT
- Clapoti: bypass the module equivalence of category by just using Kani... again...

Meme: Culprit

- New isogeny algorithm
- Isogeny based cryptography
- Kani's lemma

Cryptographic applications!

Help needed! Any other interesting cryptographic application of modules?

Hypothesis: we can extend all our algorithmic tools and security assumptions from dimension 1 to dimension g.

Security assumption: Module-Inversion. Given A, it is hard to recover (some?) module information

$$M = \operatorname{Hom}_R(A, E_0).$$

This talk: three (potential) examples:

- SQISurf: short signatures for oriented isogenies (dimension 2)
 Philosophy: apply supersingular tools to oriented isogenies via dimension 2
- Noisy-CSIDH: Module Isogeny Key Exchange. Combining torsion noise and oriented commutative group action for key exchange (dimension 1 and 2)
 Philosophy: combine supersingular-like graph properties with commutative group actions

Work in progress!

The isogeny graph of oriented isogenies in higher dimension

- M torsion free of rank $g: M \simeq R^{g-1} \oplus I$ Assume R maximal for simplicity
- $A \simeq E_0^{g-1} \times E_I$
- ullet # $\operatorname{Cl}(R)$ isomorphism classes of non-polarised R-oriented abelian varieties R-isogenous to $E_0^{\mathcal{S}}$
- Polarisations add supersingular like graph complexity if g>1 (End $_R(E_0^g)=M_g(R)$)
- Universal group action: $I \cdot (M, H_M) = (IM, H_M/N(I)) \subset (M, H_M)$ (I invertible)
- $I \cdot A = A_I := A/A[I]$
- Intuition: multiplication by $[n] \Rightarrow$ multiplication by [I]
- ullet Multiple orbits; linked together by oriented isogenies (which are not multiplication by [I])

Example: rational supersingular abelian surfaces

- ullet E_0/\mathbb{F}_p supersingular, $R=\mathrm{End}_{\mathbb{F}_p}(E)=\mathbb{Z}[\sqrt{-p}]$ (or its maximal order)
- g=2: graph of supersingular abelian surfaces isogeneous to E_0^2 over \mathbb{F}_p and \mathbb{F}_p -rational isogenies
- Universal group action from Cl(R)
- Conjecture: $\approx p^{3/2}$ nodes (\approx #supersingular curves \times # Cl(R))
- If $\ell = \ell \bar{\ell}$ splits in $R, A[\ell] = A[\ell] \oplus A[\bar{\ell}] \Rightarrow$ action by ℓ and ℓ and $\ell + 1$ (?) other oriented ℓ -isogenies.

Weil's restriction of supersingular elliptic curves

$$E_0/\mathbb{F}_p$$
 supersingular, $R=\mathrm{End}_{\mathbb{F}_p}(E)=\mathbb{Z}[\sqrt{-p}]$ (or its maximal order)

- If E_i/\mathbb{F}_{p^2} , Weil restriction $W_{\mathbb{F}_{p^2}/\mathbb{F}_p}E_i$ is a p.p. abelian surface over \mathbb{F}_p (which is neither a Jacobian or product of curves over \mathbb{F}_p). And the Weil restriction of an N-isogeny $\phi/\mathbb{F}_{p^2}: E_1 \to E_2$, is an \mathbb{F}_p -rational isogeny between rational the abelian surfaces $A_1 \to A_2$, $A_i = W_{\mathbb{F}_{p^2}/\mathbb{F}_p}E_i$
- \Rightarrow If E_i is isogeneous to E_0 , A_i is isogeneous to $E_0^2 = W_{\mathbb{F}_{p^2}/\mathbb{F}_p} E_0$
 - $\begin{array}{l} \bullet \ \operatorname{Hom}_{\mathbb{F}_p}(W_{\mathbb{F}_{p^2}/\mathbb{F}_p}E_1,W_{\mathbb{F}_{p^2}/\mathbb{F}_p}E_2) = \operatorname{Hom}_{\mathbb{F}_{p^2}}(W_{\mathbb{F}_{p^2}/\mathbb{F}_p}E_1 \otimes_{\mathbb{F}_p}\mathbb{F}_{p^2},E_2) = \\ \operatorname{Hom}_{\mathbb{F}_{p^2}}(E_1 \oplus E_1^{\sigma},E_2) = \operatorname{Hom}_{\mathbb{F}_{p^2}}(E_1,E_2) \oplus \operatorname{Hom}_{\mathbb{F}_{p^2}}(E_1,E_2)^{\sigma} \end{array}$
 - So the dimension 2 supersingular graph over \mathbb{F}_p contains, via the Weil restriction, the supersingular graph of elliptic curves over \mathbb{F}_{p^2} (with E collapsed with E^{σ})
- \Rightarrow Convenient way to obtain \mathbb{F}_p -rational isogenies in dimension 2
- ⇒ Module-Inversion in dimension 2 (heuristically) at least as hard as the supersingular isogeny path problem.
 - From $M=\operatorname{Hom}_{\mathbb{F}_p}(W_{\mathbb{F}_p2/\mathbb{F}_p}E,E_0)$, we recover a ratioanl N-isogeny $E_0^2\to W_{\mathbb{F}_p2/\mathbb{F}_p}E$, which gives over \mathbb{F}_{p^2} an isogeny $E_0^2\to E\times E^\sigma$ from which we extract an isogeny $E_0\to E$.
- $\bullet \quad \text{Weil restriction from the module point of view: If } \phi/\mathbb{F}_{p^2}: E_1 \to E_2 \text{ is represented by } \psi/O_0: I_2 \to I_1, \text{ see § 4 for how to find the module representation } \Psi/R: M_2 \to M_1 \text{ of } \mathbb{W}_{\mathbb{F}_{n^2}/\mathbb{F}_p} \phi$

SQISurf: Short signatures for oriented isogenies on abelian surfaces

- $\bullet \phi_I : E_0 \to E_I$
- ullet Recovering I from $(E_0,E_I)\Leftrightarrow$ recovering the module $R\oplus I$ associated to $E_0 imes E_I$ Quantum subexponential via [Kuperberg]. N.B.: $E_0 imes E_I$ is doubly oriented via $(P,Q)\mapsto (P,-Q)!$
- \Rightarrow SQISign like protocol in dimension 2 ($^{\circ}$) not SQISign2d!)

$$E_0 \times E_0 \xrightarrow{\phi_{sec}} E_0 \times E_I$$

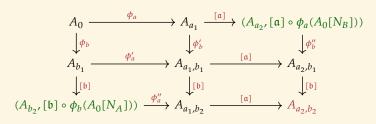
$$\downarrow^{\phi_{com}} \qquad \downarrow^{\phi_{chl}}$$

$$A \xleftarrow{\phi_{resp}} B$$

- Soundness: check that the response is not R-backtracking through the challenge We want an R-endomorphism on $E_0 \times E_I$ which does not come from R!
- ZK: depends on how we compute the response
- Needs a generalised ModuleToIsogeny for the response

Noisy-CSIDH Noisy group action key exchange

- Commutative group action on a supersingular like graph
- ⇒ Mask the torsion in a SIDH-like key exchange by using this commutative group action (like M-SIDH but using [I] rather than [n])
- ⇒ Hide the commutative group action in a CSIDH-like key exchange by adding a SIDH-like torsion exchange



- ϕ_a : oriented N_A -isogeny; ϕ_b : oriented N_B -isogeny
- Speed up trick: do a standard SIDH key exchange over \mathbb{F}_{p^2} , take Weil restriction to \mathbb{F}_p , apply group action of $\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}])$ in dimension 2
- Size: $p = 4\lambda$; $J(A_{a_2})$: $3\log_2(p)$; torsion on deterministic R-basis: $4\log_2(p)$ (or $3\log_2 p$ using pairings?)

Total: $6\log_2 p = 24\lambda$ (vs $3.5\log_2 p = 14\lambda$ for SIDH)

Direct sums and pushforwards

$$(A_1,\lambda_1) \Leftrightarrow (M_1,H_1) \text{ and } (A_2,\lambda_2) \Leftrightarrow (M_2,H_2)$$

Product polarisations: $(A_1 \times A_2, \lambda_1 \times \lambda_2) \Leftrightarrow (M_1 \oplus M_2, H_1 \oplus H_2)$

Pushforwards:

- If $\phi_1:A_0\to A_1$ and $\phi_2:A_0\to A_2$ correspond to $\psi_1:M_1\to M$ and $\psi_2:M\to M_2$, their pushforward A_{12} corresponds to the fiber product $M_1\times_M M_2$
- If $\phi_1:A_0 \twoheadrightarrow A_1, \phi_2:A_0 \twoheadrightarrow A_2$ are isogenies, $\psi_1:M_1 \hookrightarrow M, \psi_2:M_2 \hookrightarrow M$ are monomorphisms, and the fiber product $M_1 \times_M M_2$ is just the intersection $M_1 \cap M_2 \subset M$

- $\phi_1: A_0 \to A_1, K_1 = \text{Ker } \phi_1 = \mathcal{F}(M/M_1) = A_0[M_1]$
- $\phi_2 : A_0 \to A_2, K_2 = \text{Ker } \phi_2 = \mathcal{F}(M/M_2) = A_0[M_2]$
- $\bullet \ \phi_{12}: A_0 \to A_{12}, K_{12} = K_1 + K_2 = \mathcal{F}(M/M_1 \cap M_2) = A_0[M_1 \cap M_2]$

Tensor product of abelian varieties

Assumptions: R commutative, M_1 , M_2 R-modules with $f_{M_1} \land f_{M_2} = 1$. (Ex: M_1 or M_2 projective. N.B: if M_1 , M_2 projectives, $M_1 \otimes_R M_2$ is too)

Definition ((Co)tensor product)

Under our assumptions, $M_1 \otimes_R M_2$ is torsion free and we define $A_1 \otimes_{E_0} A_2$ as $\mathcal{F}(M_1 \otimes_R M_2)$

- $\bullet \ (M_1 \otimes_R M_2)^\vee \simeq M_1^\vee \otimes_R M_2^\vee$
- $\bullet \ \mbox{ So } H_1 \otimes_R H_2$ is unimodular Hermitian if H_1, H_2 are
- And if $\psi_1:M_1\to M_1'$ is a N_1 -similitude and $\psi_2:M_2\to M_2'$ is a N_2 -similitude, $\psi_1\otimes_R\psi_2:M_1\otimes_R M_2\to M_1'\otimes_R M_2'$ is a N_1N_2 -similitude
- $\bullet \ \ \text{Tensor product of isogenies:} \ \phi_1 \otimes_{E_0} \phi_2 : A_1' \otimes_{E_0} A_2' \to A_1 \otimes_{E_0} A_2$
- $\odot \cdot \otimes_{E_0} \cdot \text{is not effective}$

Example

- $E_0 \otimes_{E_0} A \simeq A$
- $E_I \otimes_{E_0} A \simeq I \cdot A$ if I inversible ideal

Symmetric monoidal actions

Definition (The module monoidal (co)-action)

- If M is a projective module, the action by M is $M \cdot A = M \otimes_R A \coloneqq \mathcal{F}(M) \otimes_{E_0} A$.
- $\bullet \ \ \, \text{If } \phi:A_1\to A_2 \text{ is a N-isogeny, } M\otimes_R\phi:M\otimes_RA_1\to M\otimes_RA_2 \text{ is a N-isogeny.}$
- $\bullet \ \, \text{If } \psi: M_2 \hookrightarrow M_1 \text{ is a N-similitude, } \psi \otimes_R A: M_1 \otimes_R A \to M_2 \otimes_R A \text{ is a N-isogeny.}$

Theorem (Effectivity of the symmetric monoidal action)

The symmetric monoidal action $M \cdot A = M \otimes_R A$ from projective R-modules to abelian varieties corresponds to the canonical copower action construction on categories enriched in a closed monoidal category a (in particular it does not depend on the base point E_0).

It is effective.

 a This is just a fancy way of saying that $\operatorname{Hom}_R(M\otimes_RA_1,A_2)=\operatorname{Hom}_R(M,\operatorname{Hom}_R(A_2,A_1)).$

Group action analogy: If $G \circlearrowright X$ (principal homogeneous space), fixing a point $x_0 \in X$ transfers the group structure of G on X. But the group multiplication may only be effective on G.

Group action framework: one way function $G \to X$ with some compatibility with the group structure.

In our case, \otimes is only effective on the module side, not the abelian side, but we can still transfer partially the monoidial structure via the monoidial action.

Symmetric monoidal actions for key exchange

Example (The action by ideals)

- $M \cdot E_0 = M \otimes_R E_0 \simeq A_M = \mathcal{F}(M)$
- $I \otimes_R M \simeq IM$ when I is inversible (or simply $f_I \wedge f_M = 1$), so $I \cdot A := I \otimes_R A$ recovers the usual CSIDH action

Proposition (CSIDH as a tensor product)

if I_1, I_2 invertible, $I_1 \otimes I_2 \simeq I_1 I_2$, so \otimes gives the CSIDH key exchange:

- If $N(I_1) \wedge N(I_2) = 1$, the diagram above is also a pushforward because $I_1I_2 = I_1 \cap I_2$
- Monoidal action on rank 1 projective modules = class group action
- Subexponential quantum attacks (Kuperberg)

Symmetric monoidal actions for key exchange

Proposition (Higher dimensional CSIDH via the monoidal action)

If $\dim A_0 = g_0$, $\operatorname{rank} M_1 = g_1$, $\operatorname{rank} M_2 = g_2$, then $\dim A_{12} = g_0 g_1 g_2$.

Example (Monoidal action by rank 2 modules: $A_0 = E_0$, $g_1 = g_2 = 2$)

 M_i projective module of rank $2 \Leftrightarrow E_0^2 \twoheadrightarrow A_i$ a path:

$$\begin{array}{ccc} E_0^2 & \longrightarrow & A_1 \\ \downarrow & & & \updownarrow \\ A_2 & \leadsto & A_1 \otimes_{E_0} A_2 \end{array}$$

Common secret: the dimension 4 abelian variety $A_1 \otimes_{E_0} A_2$

Symmetric monoidal actions for key exchange

Proposition (Higher dimensional CSIDH via the monoidal action)

If
$$\dim A_0 = g_0$$
, rank $M_1 = g_1$, rank $M_2 = g_2$, then $\dim A_{12} = g_0 g_1 g_2$.

- \odot Acting by rank g projective modules increase the dimension if g > 1
- © Protects (hopefully!) from Kuperberg
- Security: Action-DDH ≤ Action-CDH ≤ Action-Inversion
- $\begin{array}{l} \bullet \quad \text{Action-Inversion} \approx \text{Module-Inversion} \\ \text{Indeed, if } M = \operatorname{Hom}_R(A, E_0), \operatorname{then} M \cdot E_0 = \mathcal{F}(M) \\ \text{Recall that, thanks to Weil's restriction, Module-Inversion on supersingular abelian surfaces over } \mathbb{F}_p \text{ is at least as hard as solving the supersingular isogeny path problem over } \mathbb{F}_{p^2} \\ \end{array}$
- ullet Action-CDH: Hope for exponential quantum security when g>1

Computing the symmetric monoidal action

 M_1 projective of rank g, $A_1 = M_1 \cdot E_0$

We want to compute $M_1 \cdot A_2$ for an R-oriented A_2 (with effective orientation)

General idea: look at how we construct $A_1=M_1\cdot E_0$ from E_0 , and apply the same recipe replacing E_0 by A_2 .

The smooth case:

- Suppose we can construct a smooth similitude $R^g \subset M_1$ (by duality, this is equivalent to constructing a smooth isogeny $E_0^g \to A_1$), this gives us a smooth similitude $A_2^g \to M_1 \otimes_R A_2$
- Via the orientation, we can transpose the kernel of $E_0^{\mathcal{G}} \to A_1$ to the kernel of $A_2^{\mathcal{G}} \to M_1 \otimes_R A_2$. The codomain gives us $M_1 \otimes_R A_2$
- Similar to the usual way the CSIDH action is computed

The general case:

- If instead A_1 is computed via Clapoti(s), splitting an appropriate endomorphism on $E_0^{g_1}$
- \bullet Then we can compute $M_1 \cdot A_2$ by splitting an appropriate endomorphism on $A_2^{g_1}$
- \odot Needs to work in dimension $2g_1g_2$

Computing the symmetric monoidal action: the smooth case

$$R^g \longleftrightarrow M_1 \iff E_0^g \longleftrightarrow A_1$$

$$M_2^g \longleftrightarrow M_1 \otimes_R M_2$$

$$A_2^g \longrightarrow A_1 \otimes_{E_0} A_2 = M_1 \cdot A_2$$

Proposition (Computing projective tensor products: the smooth case)

If $E_0^g \twoheadrightarrow A_1 \Leftrightarrow M_1 \hookrightarrow R^g$, we can compute $A_1 \otimes_{E_0} A_2$ as the quotient of $A_2^g = E_0^g \otimes_{E_0} A_2$ given by the kernel $K \subset A_2^g$ induced by $M_1 \otimes M_2 \hookrightarrow R^g \otimes M_2$: if M_1 is generated by (m_1, \ldots, m_n) , and $m_i = (\alpha_{i1}, \ldots, \alpha_{ig}) \in R^g$, then $K = A_2^g [m_1 \otimes M_2, \ldots, m_n \otimes M_2]$ and

$$A_2^g[m_i \otimes M_2] = \operatorname{Ker} A_2^g \xrightarrow{(\alpha_{ij})} A_2$$

Corollary (Computing the action in practice)

- If A_1 is the quotient of E_0^g by $E_0^g[m_1, \dots, m_n]$, where $E_0^g[m_i] = \operatorname{Ker}(E_0^g \to E_0, (P_1, \dots, P_g) \mapsto \sum \alpha_{ij} P_j)$
- Then $A_1 \otimes_{E_0} A_2$ is the quotient of A_2^g by $A_2^g[m_1 \otimes M_2, \ldots, m_n \otimes M_2]$, where $A_2^g[m_i \otimes M_2] = \operatorname{Ker}(A_2^g \to A_2, (P_1, \ldots, P_g) \mapsto \sum \alpha_{ij} P_j)$
- And if $E_0^g \to A_1$ is a N-isogeny, $A_2^g \to A_1 \otimes_{E_0} A_2$ is a N-isogeny

Computing the symmetric monoidal action: the smooth case

Commutative diagram:

$$R^{g_1} \otimes_R R^{g_2} \longleftarrow M_1 \otimes_R R^{g_2} \qquad \Leftrightarrow \qquad E_0^{g_1} \otimes_{E_0} E_0^{g_2} \simeq E_0^{g_1g_2} \longrightarrow A_1 \otimes_{E_0} E_0^{g_2} \simeq A_1^{g_2}$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$R^{g_1} \otimes_R M_2 \longleftarrow M_1 \otimes_R M_2 \qquad \qquad E_0^{g_1} \otimes_{E_0} A_2 \simeq A_2^{g_1} \longrightarrow A_1 \otimes_{E_0} A_2$$

Pairing analogy: \otimes_{E_0} = categorified bilinear map

Assume we don't know how to compute $e(P_1,P_2)$ for general P_1,P_2 , but we know $e(P_0,P_2)$. Then if $P_1=mP_0$, we can compute $e(P_1,P_2)=e(P_0,P_2)^m$

Here we use that $E_0^g\otimes_{E_0}A_2\simeq A_2^g$ and our known path $E_0^g\twoheadrightarrow A_1.$

Monoidal actions for isogenies

- $M_1' \hookrightarrow M_1 \hookrightarrow R^g \Leftrightarrow A_2^g \twoheadrightarrow M_1 \otimes_R A_2 \twoheadrightarrow M_1' \otimes_R A_2 \Rightarrow$ recover it via the isogeny factorisation: $A_2^g[M_1 \otimes_R M_2] \subset A_2^g[M_1' \otimes_R M_2]$
- If $A_2 \to A_2'$, then we recover $M_1 \otimes_R A_2 \to M_1 \otimes_R A_2'$ via isogeny division:

$$A_2^g \longrightarrow M_1 \otimes_R A_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$A_2'^g \longrightarrow M_1 \otimes_R A_2'$$

Computing the symmetric monoidal action: the general case

$$E_0^g \longrightarrow A_1 \longrightarrow E_0^g$$

$$A_2^g \longrightarrow A_1 \otimes_{E_0} A_2 \longrightarrow A_2^g$$

Proposition (Computing projective tensor products: the general case)

Assume A_1 is constructed from E_1 via Clapoti(s), i.e. constructing a N_1 and N_2 -similitude $R^g \hookrightarrow M_1$, and then splitting the induced N_1N_2 -endomorphism $\gamma: E_0^g \to E_0^g$. So γ is given by an explicit matrix in $M_g(R)$.

Then $\gamma \otimes_{E_0} \operatorname{Id}_{A_2}$ is the same matrix acting as an endomorphism $A_2^g \to A_2^g$ via the R-orientation, and splitting this N_1N_2 -endomorphism gives $A_1 \otimes_{E_0} A_2$.

⊗-MIKE

$$E_0 \xrightarrow{} E_1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$E_2 \leadsto W_{\mathbb{F}_p^2/\mathbb{F}_p} E_1 \otimes_{E_0} W_{\mathbb{F}_p^2/\mathbb{F}_p} E_2$$

- Start with our good old friend E_0/\mathbb{F}_p supersingular (with p e.g. the SQISign2d prime)
- Alice and Bob compute (smooth or not) isogenies over $\mathbb{F}_{p^2}: E_0 \to E_1, E_0 \to E_2$ (no need for coprime degrees!)
- They send $j(E_1)$, $j(E_2)$: no torsion information!
- ullet Validation: check that E_i is supersingular
- The common key is the dimension 4 ppav $A_{12} := W_{\mathbb{F}_p^2/\mathbb{F}_p} E_1 \otimes_{E_0} W_{\mathbb{F}_p^2/\mathbb{F}_p} E_2$ Alice can compute it by converting her isogeny $E_0 \to E_1$ to the module map representing $E_0^2 = W_{\mathbb{F}_p^2/\mathbb{F}_p} E_0 \to W_{\mathbb{F}_p^2/\mathbb{F}_p} E_1$ and then applying the tensor product construction to $W_{\mathbb{F}_p^2/\mathbb{F}_p} E_2$. The smooth case requires a dimension 4 isogeny, and the non smooth case requires splitting a dimension 4 endomorphism, so a dimension 8 isogeny...
- Size: $p = 2\lambda, j(E_i) = 2\log_2(p) = 4\lambda$: 64B. Very compact!
- NIKE. PKE a la ElGamal/SiGamal
- Security? Action-CDH on supersingular abelian surfaces coming from the Weil restriction of elliptic curves

Example of parameters:

- $p = u2^e 1$. Ex: $p = 5 \cdot 2^{248} 1$.
- ullet Alice and Bob each compute a 2^e -isogeny from E_0 over \mathbb{F}_{p^2}
- ullet Then the common key then requires computing a 2^ϱ -isogeny in dimension 4 over \mathbb{F}_p
- Unfortunately, for the dimension 4 isogeny, the theta null point will only be defined over \mathbb{F}_{p^2} , so our known isogeny formulas will require to work over \mathbb{F}_{p^2} for the dimension 4 isogeny too
- ullet Open problem: adapt the theta formulas to work over \mathbb{F}_p

Table of Contents

- 1 Ideals
- 2 Modules
- Applications to isogeny based cryptography
- Advanced topics for modules
 - Level structures
 - Some isogeny constructions from the module point of view
 - Ascending and descending isogenies: the conductor square and excision
 - (Un)forgetting orientations via comonadic descent
 - Non principal polarisations
 - Sesquilinear Weil pairings
 - Non *R*-backtracking isogenies

Advanced topics for modules

■ Level structures

- Some isogeny constructions from the module point of view
- Ascending and descending isogenies: the conductor square and excision
- (Un)forgetting orientations via comonadic descent
- Non principal polarisations
- Sesquilinear Weil pairings
- Non R-backtracking isogenies

Torsion free f.p. R-modules

In both cases: rank 1 torsion free modules = ideals

Oriented case (R is a Bass ring)

- $\bullet \ M \simeq I_1 \oplus I_2 \oplus \cdots \oplus I_g$
- $\bullet \ R \subset O(I_1) \subset O(I_2) \subset \cdots \subset O(I_g)$
- $\bullet \ \det M = I_1 \cdot I_2 \cdots \cdot I_{\mathcal{G}} \ \text{invertible} \ R_{\mathcal{G}} \text{-ideal}$
- Conductor of $M: f_M := [R_g:R]$ N.B.: M is projective over $\operatorname{Spec} R[1/f_M]$
- \bullet The isomorphism class of M only depend on (R_1,\dots,R_g) and $\det M$
- $\underline{ \text{Example:}} \text{ if all } I_j \text{ are invertible in } R \text{ } (\Leftrightarrow O(I_j) = R), \\$

$$M \simeq R^{g-1} \oplus I_1 \cdot I_2 \cdot \cdots \cdot I_g$$

Supersingular case

• $M \simeq R^g$ if g > 1

Level structure

- $M \rightarrow M/\mathfrak{a}$ induces $A[\mathfrak{a}] \hookrightarrow A$
- $\psi: M_2 \to M_1 \Leftrightarrow \phi: A_1 \to A_2$
- $\bullet \ \psi \ \mathsf{mod} \ \mathfrak{a}: M_2/\mathfrak{a}M_2 \to M_1/\mathfrak{a}M_1 \Leftrightarrow A_1[\mathfrak{a}] \to A_2[\mathfrak{a}] \ A[\mathfrak{a}](\overline{k}) \simeq \mathsf{Hom}_{\mathcal{ZR}}(M/\mathfrak{a}, E_0(\overline{k}))$

Oriented case:

- $A_M[\mathfrak{a}](\bar{k}) \simeq M/\mathfrak{a}M$ as R-modules (if \mathfrak{a} prime to p)
- $\bullet \ \ \text{ The Dieudonn\'e module of } A_M[p^m] \ \text{ inherits a R-module structure which is isomorphic to } M/p^mM \ (?)$
- If M torsion R-module, $\deg \mathcal{F}(M) = \#M$

Differentials (oriented case)

- $\bullet \ \, \mathsf{lf} A = \mathcal{F}(M), \mathsf{Lie}(A) = \mathsf{Hom}_R(M, \mathsf{Lie}(E_0)) = \mathsf{Hom}_{R/p}(M/p, \mathsf{Lie}\,E_0)$
- Action on tangent space: $\psi: M_2 \to M_1 \Leftrightarrow \phi: A_1 \to M_2$. Then $d\phi: \operatorname{Lie}(A_1) \to \operatorname{Lie}(A_2) = \operatorname{Hom}_R(M_1, \operatorname{Lie}(E_0)) \to \operatorname{Hom}_R(M_2, \operatorname{Lie}(E_0))$
- Since $\Omega^1A/k=\operatorname{Hom}_k(\operatorname{Lie}(A),k)$, by duality, we get: $\phi^*:\Omega^1A_2\to\Omega^1A_1$
- If *E* elliptic curve, choice of short Weierstrass equation \Leftrightarrow choice of global differential ω_E (via $y^2 = x^3 + ax + b \mapsto \omega_E = dx/y$)
- $\bullet \ \ \text{Fixing an equation of E_0 fixes ω_{E_0}}$ Equivalently, fixing an element in $\text{Lie}(E_0)$ since $\text{Lie}(E_0) = \text{Hom}(\Omega^1(E_0), k)$ is of dimension 1 over k
- ullet Propagating this choice through our isogenies $\mathcal{F}(I\hookrightarrow R)$ fix equations for E_I (normalised isogenies).
- ullet This allows to keep track of equations of E (and not work up to isomorphisms)
- Two normalised isogenies $\phi_1, \phi_2 : E_0 \to E_I$ induce the same equation on E_I iff $\psi_1, \psi_2 : I \to R$ induce the same map $\mathrm{Lie}(E_0) \to \mathrm{Lie}(E_I)$, so in particular if $\phi_1 \equiv \phi_2 \mod p$
- "Differentials = p-level structure": recall that $\mathbb{D}(A[p]) = H^1_{DR}(A)$ and that the Frobenius filtration on A[p] corresponds to the Hodge filtration on $H^1_{DR}(A)$ (up to a Frobenius twist)
- So differentials are a convenient way to keep track of p-level structure

Torsion modules

Proposition (Finite group schemes represented by modules)

A finite group scheme X is induced by a torsion module M iff X is R-embeddable: $X \hookrightarrow A$ ($A = \mathcal{F}(M_A)$), equivalently $X \hookrightarrow E_0^g$

Proof.

Since X is finite, $A \to B \coloneqq A/X$ is an isogeny. By the antiequivalence this is represented by a module map $M_B \hookrightarrow M_A$ and we let $M_X = M_A/M_B$. Since \mathcal{F} is exact, $X = \mathcal{F}(M_X)$.

 ${\sf N.B.:}\,M_X$ encodes both X and an isomorphism class of R-embedding to an abelian variety, we will implicitly work with this class.

Proposition (Maps induced by modules)

A morphism $X \to Y$ is induced by a module map $M_Y \to M_X$ iff there exist embeddings $X \hookrightarrow A_X$, $Y \hookrightarrow A_Y$ such that $X \to Y$ lifts to $A_X \to A_Y$ iff for any embeddings $X \hookrightarrow A_X$, $Y \hookrightarrow A_Y$, with $A_Y = \mathcal{F}(M_Y)$ and M_{A_Y} projective, $X \to Y$ lifts to $A_X \to A_Y$

Proof.

If $X \to Y$ lifts, then $A_X \to A_Y$ is induced by $M_{A_Y} \to M_{A_X}$. M_X is a quotient of M_{A_X} and M_Y a quotient of M_{A_Y} . The map $M_{A_Y} \to M_{A_X} \to M_X$ factors through $M_Y \to M_X$ since the image of X is in Y and $\mathcal F$ is exact. Finally, if $X \to Y$ is induced by $M_Y \to M_X$, the map $M_{A_Y} \to M_Y \to M_X$ lifts to $M_{A_Y} \to M_{A_X}$ when M_{A_Y} is projective.

Advanced topics for modules

- Level structures
- Some isogeny constructions from the module point of view
- Ascending and descending isogenies: the conductor square and excision
- (Un)forgetting orientations via comonadic descent
- Non principal polarisations
- Sesquilinear Weil pairings
- Non R-backtracking isogenies

Kani's lemma from the module point of view

$$M_0 \xrightarrow{\psi_1} M_1$$

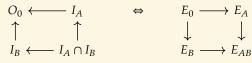
$$\downarrow \psi_2 \qquad \qquad \downarrow \psi'_2$$

$$M_2 \xrightarrow{\psi'_1} M_{12}$$

- $\bullet \ \psi_1: (M_0,H_0) \to (M_1,H_1), \psi_1': (M_2,H_2) \to (M_{12},H_{12}): N_1\text{-similitudes}$
- $\quad \bullet \ \, \psi_2: (M_0,H_0) \to (M_2,H_2), \\ \psi_2': (M_1,H_2) \to (M_{12},H_{12}): \\ N_2\text{-similitudes}$
- $\bullet \ \ \text{Then} \ \Psi = \begin{pmatrix} \psi_1 & \hat{\psi}'_1 \\ -\psi_2 & \hat{\psi}'_2 \end{pmatrix} : (M_0 \oplus M_{12}, H_0 \oplus H_{12}) \to (M_1 \oplus M_2, H_1 \oplus H_2) \text{ is a} \\ N_1 + N_2\text{-similitude}$
- Bonus: if the module action is effective, we can recover the kernel of $\Phi=\mathcal{F}(\Psi)$ even if $N_1\wedge N_2\neq 1$

SIDH from the module point of view

- $\bullet \ E_0/\mathbb{F}_{p^2} \ \text{supersingular,} \ O_0 = \operatorname{End}(E_0)$
- I_A , I_B left O_0 -ideals of reduced norms N_A , N_B , $N_A \wedge N_B = 1$
- SIDH:



- Bob publish (the image by \mathcal{F}) of $I_B/N_A \to O_0/N_A$
- Alice intersect this with I_A to find $I_A \cap I_B/N_A \to I_A/N_A$ and recover (the image by \mathcal{F}) of $I_A \cap I_B \to I_B$

More precisely:

- $\bullet \ \, \text{Alice knows} \, I_A/N_A \to O_0/N_A \text{, i.e.,} \, E_0[N_A] \to E_A[N_A]$
- Pushing this through Bob's isomorphism $E_0[N_A] \simeq E_B[N_A]$ she obtains $I_A/N_A \to I_B/N_A$, i.e. $E_B[N_A] \to E_A[N_A]$
- This factors through $(I_A \cap I_B)/N_A$, i.e. through $E_{AB}[N_A]$, so the kernel of the map above gives the kernel of $E_B \to E_{AB}$

$$E_0[N_A] \longrightarrow E_A[N_A]$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$

$$E_B[N_A] \longrightarrow E_{AB}[N_A]$$

SIGamal from the module point of view

$$\begin{array}{ccc} (E_0,P_0) & \longrightarrow & (E_{I_1},P_1) \\ & & & \downarrow \\ (E_{I_2},P_2) & \longrightarrow & (E_{12},P_{12}) \end{array}$$

- $\bullet \ \ {\rm Fix\ a\ point}\ P_0 \in E_0[N]$
- $\bullet \ \psi: I/N \to R/N \Leftrightarrow E_0[N] \to E_I[N] \text{, and this gives a point } P \in E_I[N] \text{ as the image } \phi(P_0)$
- We can then keep track of various point images
- We can also keep track of equations through differentials

Advanced topics for modules

- Level structures
- Some isogeny constructions from the module point of view
- Ascending and descending isogenies: the conductor square and excision
- (Un)forgetting orientations via comonadic descent
- Non principal polarisations
- Sesquilinear Weil pairings
- Non R-backtracking isogenies

Ascending and descending isogenies

- $R \subset S$ of conductor $f: R = \mathbb{Z} + fS$, f = [S:R], f = fS
- ullet $E_0
 ightarrow E_S$ canonical ascending isogeny of degree f
- $\bullet \ (\mathfrak{f},H_R/f) \subset (R,H_R) \subset (S,f\times H_R) \Leftrightarrow E_S \to E_0 \to E_S \quad (N_R(S)=1/f)$
- Kernel of ascending isogeny: $E_0[\mathfrak{f}] = E_0[f, \sqrt{\Delta_R}]$
- $R/\mathfrak{f} \hookrightarrow S/\mathfrak{f}$ induces $E_S[f] \twoheadrightarrow E_0[\mathfrak{f}]$
- $S = \text{Hom}(E_S, E_0) \text{ via } E_S \xrightarrow{\alpha} E_S \rightarrow E_0$
- ullet Kernel of descending isogeny: $E_S[R] \subset E_S[f]$, induced by $S/\mathfrak{f} \twoheadrightarrow S/R$
- $\sqrt{\Delta_R} = f\sqrt{\Delta_S}$: $E_0 \to E_S \xrightarrow{\sqrt{\Delta_S}} E_S \to E_0$
- If $\alpha \in S$, $\alpha^{-1} : \alpha R \cap R \to S$ gives another descending isogeny $E_S \to E_\alpha$

Conductor square

$$\begin{array}{ccc}
R & \longrightarrow S \\
\downarrow & & \downarrow \\
R/\mathfrak{f} & \longrightarrow S/\mathfrak{f}
\end{array}$$

- Excision: Spec $R = \operatorname{Spec} S \coprod_{\operatorname{Spec} S/f} \operatorname{Spec} R/f$
- [Milnor]: M projective on $R \Leftrightarrow M_S$ projective on $S + M_f$ projective on $R/\mathfrak{f} +$ an isomorphism $M_S/\mathfrak{f} \simeq M_f \otimes_{R/\mathfrak{f}} S/\mathfrak{f}$
- Invertible ideal $I_R \Leftrightarrow$ invertible ideal $I_S + S/\mathfrak{f} \simeq I_S/\mathfrak{f}$

Isogeny interpretation:

 $\bullet \ I_R \subset R \ \text{invertible} \Leftrightarrow E_0 \to E_{I_R}, I_S \subset S \ \text{invertible} \Leftrightarrow E_S \to E_{I_S} :$

$$\begin{array}{ccc}
E_S & \longrightarrow E_{I_S} \\
\downarrow & & \downarrow \\
E_0 & \longrightarrow E_{I_R}
\end{array}$$

- Isomorphism $I_S/\mathfrak{f} \simeq S/\mathfrak{f} \Leftrightarrow \text{isomorphism } E_S[f] \simeq E_{I_S}[f]$
- ullet Encodes the descending isogeny $E_{I_S} o E_{I_R}$ as the image of $E_S[R]$ in E_{I_S}
- Since $S/R \simeq R/\mathfrak{f}$ as R-modules, an isomorphism $S/\mathfrak{f} \simeq I_S/\mathfrak{f}$ is the same as a surjection $I_S/\mathfrak{f} \twoheadrightarrow R/\mathfrak{f}$ which extends (via the base change $\cdot \otimes_R S$) to an iso $I_S/\mathfrak{f} \simeq S/\mathfrak{f}$
- This corresponds to $E_0[\mathfrak{f}] \hookrightarrow E_{I_S}[f]$ (i.e., a cyclic R-stable kernel K in $E_{I_S}[f]$) such that the action of S on K spans the whole of $E_{I_S}[f]$.

Advanced topics for modules

- Level structures
- Some isogeny constructions from the module point of view
- Ascending and descending isogenies: the conductor square and excision
- (Un)forgetting orientations via comonadic descent
- Non principal polarisations
- Sesquilinear Weil pairings
- Non R-backtracking isogenies

Forgetting orientations

- E_0 (primitively) R-oriented, $O_0 = \operatorname{End}(E_0)$
- $M \mapsto M' := M \otimes_R O_0$ corresponds to forgetting the orientation (M torsion free): $\operatorname{Ext}^1_R(M, E_0) \simeq \operatorname{Ext}^1_{O_0}(M', E_0)$ as abelian varieties
- ullet Conversely for an O_0 -module M', an R-orientation on $A_{M'}$ corresponds to finding an R-module M such that $M'=M\otimes_R O_0$
- This is a question of non commutative descent, a special case of comonadic descent
- A morphism $A_{M_1'} \to A_{M_2'}$ of R-oriented abelian varieties is oriented iff the map $M_2' \to M_1'$ descends to $M_2 \to M_1$

Weil's restriction from the module point of view

- $\bullet \ E_0/\mathbb{F}_p \text{ supersingular with Frobenius orientation, } R = \operatorname{End}_{\mathbb{F}_p}(E_0), O_0 = \operatorname{End}_{\mathbb{F}_{v^2}}(E_0)$
- $\bullet \ \ \text{Weil's restriction:} \ A/\mathbb{F}_{p^2} \mapsto W_{\mathbb{F}_{p^2}/\mathbb{F}_p} A/\mathbb{F}_p$
- $$\begin{split} \bullet & \text{ If } A \Leftrightarrow M/O_0, \text{ then } W_{\mathbb{F}_{p^2}/\mathbb{F}_p} A \text{ is represented by the module} \\ & M' = \operatorname{Hom}_{\mathbb{F}_{p^2}}(W_{\mathbb{F}_{p^2}/\mathbb{F}_p} A, E_0) = \operatorname{Hom}_{\mathbb{F}_{p^2}}(A \oplus A^\sigma, E_0) = \\ & \operatorname{Hom}_{\mathbb{F}_{p^2}}(A, E_0) \oplus \operatorname{Hom}_{\mathbb{F}_{p^2}}(A, E_0)^\sigma = M \oplus M^\sigma \end{split}$$
- Since $A \oplus A^{\sigma}$ descends to $W_{\mathbb{F}_{p^2}/\mathbb{F}_p}A$ over \mathbb{F}_p , it is represented by a canonical R-module N such that: $M' = M \oplus M^{\sigma} = N \otimes_R O_0$ (by our result on forgetting the orientation).
- ullet The Frobenius Galois action σ acts on the left and right on $M \oplus M^{\sigma}$
- ullet Unraveling 3 the Morita equivalence between R and O_0 , we get that N is the submodule where these two actions commute
- Abelian variety interpretation: on the supersingular side, $M' = \operatorname{Hom}_{\mathbb{F}_{p^2}}(W_{\mathbb{F}_{p^2}/\mathbb{F}_p}A, E_0)$ while on the oriented side, $N = \operatorname{Hom}_{\mathbb{F}_p}(W_{\mathbb{F}_{n^2}/\mathbb{F}_p}A, E_0)$
- This is indeed the submodule of rational morphisms in $\operatorname{Hom}_{\mathbb{F}_{p^2}}(W_{\mathbb{F}_{p^2}/\mathbb{F}_p}A, E_0)$, i.e., which commute with σ

³With help by Aurel Page!

Various other module constructions

Base change adjunction:

• $M \mapsto M' = M \otimes_R O_0$ has for adjoint $N' \mapsto \operatorname{Hom}_R(R, N')$:

$$\operatorname{Hom}_O(M \otimes_R O_0, N') = \operatorname{Hom}_R(M, \operatorname{Hom}_R(R, N'))$$

- ullet This sends an abelian variety A' of dimension g to an R-oriented abelian variety A of dimension 2g (Not clear how to get a polarisation on A from one on A')
- $\bullet \ \, \text{If} \, XR\text{-oriented, } \mathsf{Hom}(A',X) \simeq \mathsf{Hom}_R(A,X)$

Internal Hom:

- If R commutative, like our (co)tensor product construction $A_1 \otimes_{E_0} A_2$, we can define an internal (co)hom construction $\operatorname{Hom}_{E_0}(A_1,A_2)$
- If $A_1=M_1\cdot E_0$ and $A_2=M_2\cdot E_0$, with M_1,M_2 projective, then $\operatorname{Hom}_{E_0}(A_1,A_2):=\operatorname{Hom}_R(M_2,M_1)\cdot E_0$
- ullet The $oxtimes_R \dashv \operatorname{Hom}_R$ adjunction induces a $\operatorname{Hom}_{E_0} \dashv oxtimes_{E_0}$ adjunction
- Can we exploit this in isogeny based cryptography?

Change of base point:

- ullet E_0' another primitively R-oriented curve isogeneous to E_0
- If $I := \operatorname{Hom}_R(E'_0, E_0) = I$, I is inversible
- If $Hom_R(A, E_0) = M$, then $Hom_R(A, E'_0) = I^{-1}M$
- ullet So $M\mapsto I^{-1}M$ encodes the change of base point $E_0 \rightsquigarrow E_0'$ in the antiequivalences of category

Advanced topics for modules

- Level structures
- Some isogeny constructions from the module point of view
- Ascending and descending isogenies: the conductor square and excision
- (Un)forgetting orientations via comonadic descent

■ Non principal polarisations

- Sesquilinear Weil pairings
- Non R-backtracking isogenies

Non principal polarisations

- $\bullet \ \ M \ {\rm torsion} \ {\rm free}, V = M \otimes_{\mathbb{Z}} \mathbb{Q}, K = R \otimes_{\mathbb{Z}} \mathbb{Q}$
- H K-hermitian form on V
- R-orthogonal: $M^{\sharp} := \{v \in V, H(\cdot, v) \subset R\}$
- ullet H induces an isomorphism $M^\sharp \simeq M^\lor, m^\sharp \mapsto H(\cdot, m^\sharp)$
- H is integral on $M^{\sharp} \Leftrightarrow M^{\sharp} \subset M$
- We then obtain a polarisation on M^{\vee} : $M^{\vee} \simeq M^{\sharp} \subset M$
- This gives a polarisation $\lambda:A\to A^\vee$ with kernel $\mathcal{F}(M/M^\sharp)$
- The polarisation $n\lambda$ corresponds to H/n
- Principal polarisation: $M = M^{\sharp}$

Classifying polarisations

- (M, H_M) principally polarised
- Example: $M = \bigoplus I_i$, $H_M = \bigoplus H_{I_i}$
- Rosatti involution: $\alpha \in \operatorname{End}_R(M) \mapsto \alpha^{\dagger}$ (the adjoint morphism)

Proposition (Polarisations as totally real positive endomorphisms)

All other polarisations on M are of the form

$$H_{\alpha}(\cdot,\cdot):=H_{M}(\alpha\cdot,\cdot)$$

for $\alpha \in \operatorname{End}_R(M)$ such that

- α is real: $\alpha^{\dagger} = \alpha$
- ullet lpha is totally positive: H_{lpha} is positive definite

And H_{α} is principal iff α is inversible.

Isotropic kernels and N-isogenies

- $\bullet \ \, (M_1,H_{M_1}) \ {\rm unimodular} \ R\text{-Hermitian,} \ V=M_1\otimes_{\mathbb{Z}} \mathbb{Q}$
- $\bullet \ M_2 \subset M_1 \ {\rm induces} \ {\rm a} \ N\hbox{-similitude iff} \ M_2^\sharp = NM_2$
- Indeed in this case H_{M_1}/N is unimodular on M_2
- We have $\#M_1/M_2 = \#M_2^\sharp/M_1^\sharp$. In fact, if M_1 is projective,

$$M_2^{\sharp}/M_1^{\sharp} \simeq M_2^{\vee}/M_1^{\vee} \simeq \operatorname{Ext}_R^1(M_1/M_2,R) \simeq \operatorname{Hom}_R(M_1/M_2,\operatorname{Frac}(R)/R)$$

- $\bullet \ \ \text{So (for R commutative), $M_2 \subset M_1$ induces a N-similitude iff H_{M_1} } \ \ \bmod \ N = 0 \ \mbox{on $M_2 \times M_2$, and $\#M_1/M_2 = N^g$ }$
- $\bullet \;$ This corresponds to $A_1[M_2]$ being isotropic of degree N^g , i.e. $A_1[M_2]$ being maximal isotropic

Advanced topics for modules

- Level structures
- Some isogeny constructions from the module point of view
- Ascending and descending isogenies: the conductor square and excision
- (Un)forgetting orientations via comonadic descent
- Non principal polarisations
- Sesquilinear Weil pairings
- Non R-backtracking isogenies

Sesquilinear Weil pairing

- Polarisation $\lambda: A \to A^{\vee} \Leftrightarrow M^{\vee} \to M$ induced by H on M^{\vee} $(A = \mathcal{F}(M))$
- H induces:

$$H \mod N : M^{\vee}/N \times M^{\vee}/N \to R/N$$

- $\bullet \ M^{\vee}/N \simeq \operatorname{Hom}_{\overline{R}/N}(M/N,R/N), \quad \text{if } N \wedge f_M = 1$ Because the flat locus of M contains $\operatorname{Spec} R/N$
- $x,y \in M^{\vee}/N$ thus correspond to $x,y:E_0[N] \to A[N]$
- Fix a point $P_0 \in E_0[N]$, then $x(P_0), y(P_0) \in A[N], N \wedge f_R = 1$
- Sesquilinear pairing [Stange 2024]: $P \mapsto e_{W,N}^{\otimes R}(P_0,P) = e_{W,N}^{\otimes R}(P_0,\alpha(P_0)) = e_{W,N}^{\otimes R}(P_0,P_0)^{\alpha}$ induces an isomorphism $R/NR \simeq E_0[N](\overline{k}) \simeq \mu_N^{\otimes R}$
- $\bullet \ e^{\otimes R}_{W,N\lambda}(x(P_0),y(P_0)) \in \mu^{\otimes R}_N \text{ corresponds via this isomorphism to } H(x,y) \in R/N$
- ullet N-sesquilinear pairings \Leftrightarrow Hermitian forms modulo N

Advanced topics for modules

- Level structures
- Some isogeny constructions from the module point of view
- Ascending and descending isogenies: the conductor square and excision
- (Un)forgetting orientations via comonadic descent
- Non principal polarisations
- Sesquilinear Weil pairings
- Non *R*-backtracking isogenies

Non *R*-backtracking isogenies

Non (partially) backtracking isogeny:

- $\phi:A\to B$ N-isogeny is non partially backtracking (nbt) \Leftrightarrow Ker ϕ of rank g
- $\phi_1:A_1\to A_2,\phi_2:A_2\to A_3$ nbt, then $\phi_2\circ\phi_1$ nbt iff $\operatorname{Ker}\phi_2\cap\operatorname{Ker}\widetilde{\phi_1}=0$
- ullet If $\phi_2\circ\phi_1$ is nbt, ϕ_1,ϕ_2 is nbt
- If $\phi:A\to B$ nbt N-isogeny, and $N=\prod\ell_i,\phi$ uniquely decomposes as $\phi=\prod\phi_i$, with ϕ_i a ℓ_i -isogeny

Non R-backtracking isogeny: Assume all degrees prime to the conductor of R

- ullet $\phi:A o B$ is non R-backtracking iff it is nbt and does not come from the action of an ideal I
- If ϕ is nbt but comes from I, $\phi = \phi_2 \circ \phi_1$, then ϕ_i comes from I_i
- If ϕ nbt, it suffices to check that some subgroup $\ker \phi[\ell^e]$ is not induced by an ideal to know that ϕ is not R-backtracking

Combined with the following lemma, this gives a way to check that the response is not R-backtracking through the challenge for SQISurf:

Lemma

 $\begin{array}{l} \phi_1:A_1\to A_2, \phi_2:A_2\to A_3, \phi_3:A_3\to A_4, \phi_4:A_4\to A_5 \text{ such that } \phi_2\circ\phi_1, \phi_3\circ\phi_2 \text{ and } \\ \phi_4\circ\phi_3 \text{ are nbt. Then } \phi_4\circ\phi_3\circ\phi_2\circ\phi_1 \text{ is ℓ-nbt for each ℓ}\mid \#\operatorname{Ker}\phi_2\wedge\#\operatorname{Ker}\phi_3, \text{ i.e. the ℓ-Sylow of its kernel is of rank g} \end{array}$

Conclusion: the module equivalence of category

- Module equivalence of category: more natural than the ideal one.
 Clear distinction of objects and morphisms
- ullet Many algorithmic operations in dimension 1 (e.g., double path to E_0) come from the module interpretation
- Generalizes to higher dimension
- Keep track of level structure and sesquilinear pairings
- Unified framework to handle oriented and supersingular case (still modules, but different rings)
- ⇒ Forgetting the orientation or Weil restrictions purely at the module level
- New cryptographic protocols?
- Exploit further the tensor category structure on $(R-\operatorname{mod},\oplus,\otimes)$, the internal (co)hom structure $\operatorname{Hom}_{E_0}(A_1,A_2)$ and the $\operatorname{Hom}_{E_0}\dashv\otimes_{E_0}$ adjunction?

The symmetric monoidal action framework

Theorem (Base point free version of the antiequivalence of category)

There is a faithful effective symmetric monoidal (co)-action (given by the canonical copower construction) from projective R-modules to abelian varieties R-isogeneous to a product of R-oriented elliptic curves. It extends to an action of Hermitian projective modules to polarised abelian varieties. If E_0 is any primitively oriented curve, the action is free with image abelian varieties "horizontally" isogeneous to E_0^g (meaning that $\operatorname{Hom}_R(A,E_0)$) is projective) and with the same R/pR representation on their tangent space as for E_0^g .

- Let R be the maximal order of $\mathbb{Z}[\sqrt{-p}]$, E_0/\mathbb{F}_p be any curve R-oriented, and $O_0=\operatorname{End}(E_0)$ Via Weil's restriction, we can recast the supersingular isogeny path problem $E_0\to E/\mathbb{F}_{p^2}$ to a rank 2 module action inversion between E_0 and $W_{\mathbb{F}_{n^2}/\mathbb{F}_p}E$.
- ullet Conversely, abelian surfaces that are Weil restriction corresponds to R-modules M of rank 2 such that $M\otimes_R O_0=M'\oplus {M'}^\sigma$ for a right O_0 -ideal M', with the decomposition induced by the polarisation
- We can extend the action to incorporate level structure (which we represent as a morphism M/nM to some explicit torsion module)
- We could probably reformulate most of supersingular isogeny based cryptography in terms of this monoidal action. This somewhat unify the oriented and supersingular case, the difference between the two being whether we apply rank 1 or rank 2 module actions.

