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Why modules? (1)

Noisy linear algebra:
@ Lattices: RingLWE — ModuleLWE

@ Codes: Hamming metric — Sum Rank metric

Isogenies:
@ I|deals —» Modules?
@ Dimension 1 — Dimension g7
@ Ideal equivalence of category — module equivalence of category

® Increasing dimension in isogeny based cryptography is costly...

‘e e Workinprogress! ‘@& @



Why modules? (2)

@ Kani: moving to dimension 2 (or 4) provided many new powerful algorithms
@ So far only exploit isogenies between products of elliptic curves

@ Hence still working via (representations of) dimension 1 isogenies

@ Goal: exploit the full dimension 2 isogeny graph (or higher)



Why modules? (3)

Abelian varieties are“scary”  (even more than elliptic curves)

Cryptographers need abstractions

Example: LWE for lattice based cryptography

Good abstractions in dimension 1: Deuring correspondance, class group actions

@ But cannot incorporate Kani

This talk: new abstractions for higher dimensional isogenies

@ Module correspondance
= Isogeny based cryptography = one way functor from a symmetric monoidal category!

@ In fact, this is a special type of one way functor, we actually have:
(see later!)
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Why modules? (4)

Full (oriented) isogeny graph of E‘g
@ Ascending and descending isogenies

Level structures

Pairings

(Un)forgetting orientations



Outline

Ideals
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Ideals and isogenies: the oriented case

@ Eg/k k = ]Fq, elliptic curve with a primitive orientation by a quadratic imaginary order
R = Z[V-A] < End,(Eyp)
@ Oriented isogeny: ¢ : E; — E, that commutes with the orientations

@ Oriented kernel: K stable by R

Unique R-orientation compatible on E /K with the quotient isogeny E — E/K, and the isogeny is horizontal or ascending

Example: Frobenius orientation
o Eg/k with non trivial 7ti-action: ordinary curves, supersingular curves over IFP

@ 7 -oriented isogenies = rational isogenies.

Kernels, isogenies, and ideals
o [ — ¢;: Ey — Ejoriented isogeny with kernel E[I] = {P € EO(E),a(P) =0Va eI}
e K- J(K):={w e R|aK) =0}
o | - Ey[I] & K — J(K):bijections” between R-stable kernels and integral ideals I of R
@ l|deals & oriented isogenies

("] IN]@EleI

At least in the separable case: Eo[ﬂp] is not represented by an ideal if p inertin R



Class group actions
e E;:= Ey/Ey[I] primitively oriented by O(I) := {a € R®7 Q |al C I}
o [isinvertible & O(I) = R < theisogeny is horizontal
@ Pic(R) := {[I], Iinvertible ideal}

@ Invertible ideals I of R < oriented horizontal isogenies ¢y : E — E;
[Colo-Kohel 2020, Onuki 2020]

pr=¢;:Ei—>E

Special case: p inert in R (can only happen for an orientation on a supersingular curve E/sz)

T, E — EY is not represented by an ideal

An oriented isogeny ¢ : E — E' comes from an ideal iff the representations o (E) and pr (E") are equivalent, o (E)

representation of R on the k-vector space T (E)

Group action:
@ Pic(R) O {E primitively R-oriented}
o [[1-Em E;
@ Free and transitive action  (if p ramified or split; two orbits if p inert in R)

E[m] (%) =~ R/mR as R-modules [Lenstra 1996] (p A m = 1)
Generalised class group action (ray class groups modulo m) to incorporate m-level structure
[ACELV 2024]



Ideal and isogenies: the supersingular case

@ Deuring correspondance

@ Maximal orders Qin B’[,’oo = supersingular curves E/Isz (up to quadratic twists and Galois
conjugates)

I — Ey[I],K — T (K): bijection between kernels and left Op-ideals  (Oy = End(E))
ideals & isogenies

End(E;) = Or(I) theright order of ; deg ¢; = N(I) := nrd(I)

Ideal to isogeny: [ < Ey — E;:= Ey/E[I]
@ Easyif End(Eg) known, N (I) smooth and N (I)-torsion accessible

@ Many smoothening algorithms to handle the general case: KLPT, Eichler orders, refreshing the
torsion, endomorphisms, Clapoti(s) (= smoothening in higher dimension)...

@ Lots of research effort
©® SQISign and variants
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A general equivalence of category
@ Oriented case: Ey/k primitively oriented by & = R quadratic imaginary (Z(R) = R)

@ Supersingular case: Eg/k = F o with R = Op = End(Eq) maximal quaternionic order
(Z(R) =2)

Theorem (Module antiequivalence of category)

There is an antiequivalence of category between the category of Z (X)) -oriented abelian varieties ° A
k-isogenous to E'g and Z(R)-oriented k-morphisms; and the category of finitely presented torsion free
(right) R-modules M of rank § and JR-module morphisms

“with the technical condition 0z g (A) = ®%_, 07 x)(Eo)

[Waterhouse 1969], [Kani 2011], [Jordan, Keeton, Poonen, Rains, Shepherd-Barron, Tate 2018],
[Kirschmer, Narbonne, Ritzenthaler, R. 2021], [Page-R. 2023]
Alternative approaches to equivalences of category of abelian varieties via lifting to characteristic zero: [Deligne, Howe,
Centeleghe-Stix, Marseglia]...
Example
@ Oriented case: classify R-oriented isogenies
= Frobenius orientation: all rational isogenies at level “above” Ej in the volcano

@ Supersingular case: classify all isogenies




The equivalence

Serre’s generalised Ext and Tor functors: J< (M) := Extﬁz(M, Ep)  Ey"="compact projective generator

Definition

If R™ — R" — M — Qis a presentation of a R-module M, with corresponding matrix @,
F(M) = Eth(M, Ey) is the kernel of the morphism Ej — Ef* given by ®T and the R-orientation:

O—»I(M)—»Eg—»E?

Fis a faithful contravariant exact functor from f.p. J)_-modules to proper group schemes over k

o Ideals: F(R/I) =~ Eo[I], F-(I) = Eo/EolI]

@ Abelian varieties: If M is torsion free of rank g, A = F (M) is an abelian variety of rank ¢
@ Duality: AY =~ Fr(MV), MV := Homy (M, R)

o Torsion: A[n] = F(M/nM) = Extj(M/nM, Ey) = Extj (M, Eg[n])

@ Rational points: A(k") =~ Hom (M, Eo(k")), k" a k-algebra

Inverse map: A = Homz g, (A, Eg): module of (oriented) morphisms from A to Eg



Duality and polarisations

A > Ao p: My > My

Recall MV = HomF(M,R) (M =~ Homg (M, R) as a Z-module)
Duality: ¢ : A, - A o PV MY - MY,y = (v 7o ()
@ Double duality: M =~ MV, m — (¢ — p(m))

@ Polarisation: autodual isogeny A4 : A — AV induced by an ample line bundle
Corollary (Principal polarisations)

e Principal polarisation A4 : A — A & aunimodular Hermitian R-form H4 on M 4

@ N-isogeny ¢ : (Al,/\Al) - (AZ,AAZ) = N-similitude @ : (M, Hy) — (My,Hq):

‘D*Hl = NH2

[Kirschmer, Narbonne, Ritzenthaler, R. 2021]  (Project started in 2011 with Christophe!)

Definition (Hermitian forms)
@ Hermitian R-form = R-sesquilinear positive definite
@ R-sesquilinearrH : M x M — R,H(ax,y) = H(x,ay) = aH(x,y)
@ Positive definite: H(x, x) € Z>%, Vx+0eM
Unimodular: H : M ~ MV, m — H(m,-)
oMi=(veM®QHmv)eR YmeR} =M
~ DamienRobert  Fromidealstomodules forisogeny based cryptography /62




Warmup: ideals

The oriented case: (K = R)
@ F(R) = Eg, so ¢;: Eg = Ejcorrespondsto] — R
@ Canonical unimodular Hermitian form on I:
_
Hi(x,y) = N
@ Theinclusion (I, Hy) C (R,Hg) isa N (I)-similitude

@ Handles ascending isogenies: I not invertible (the R-orientation needs not be primitive on Ej)

The supersingular case (R = O):
@ Maximal orders & left Op-ideals
@ Toan order O we associated a connecting (Og, O)-ideal
@ To aleft Ogy-ideal I we associate the right order O (I)
@ Original version of Deuring’s correspondance (see [Voight, Leroux]): I = Hom(E, E;)

Note that we use an antiequivalence, so forus I = Hom(Ej, E)) and I is a right O -ideal. We could apply duality to get an

equivalence of categories, but contravarience is more practical for level structures

From now on: focus on the oriented case (almost all results also hold in the supersingular case).



Warmup: ideals (2)

¢ :E, — Ep,, I, Iyinvertible
@ Ideal point of view: ¢p & some integral ideal ] equivalentto I = 1211_1
o IV =I/N(I)soifx e I,] :=Ix/N(U) ~I N({)=Nx)/NJI)

@ Module pointof view: ¢p < 9 : (I, Hx/N(I)) = (I1,Hgr/N (7))
o lfzel iy, i 7 zrisaN = N(z)N(I)/N(I)-similitude

e z=%/NU),N = N(x)/N{)

o IfIintegral: canonical isogenyviaz =1 € R ¢ I}

Duality:

o IV ~IviaHpsolV ~[/N(I)viax € I/N() » (y € — x7)

] 43@ l/}v =Pz Il/N(Il) d Iz/N(Iz)

@ Contragredientisogeny ¢ <> 9 : I; — I, = YN

Extend N := Ny, to fractional ideals

Proposition (Contragredient = Adjoint)
If(P . (AllAl) d (Az,Az) =4 l/] . (Mz,Hz) d (Ml,Hl),éS’@ lPﬁWheI’el?J/= l/J* :Ml d Mz is
the adjoint: Hy ((x),y) = Hp(x, ¥*(y))




Similitudes to isogenies

Module morphism to morphism of abelian varieties:

R™ — R —» M; — 0 e 0 —> Ay — Ejt — Egt
: : T l ~ v
R"™ — R"> —» My — 0 0 —> Ay — Eg2 — Ej?

R™ is a projective module, so we can lift module maps. The commutative diagram allows to find the kernel of A; — A,.

@ N-similitudes < N-isogenies
("] (P : Al i A2 = (Mz,H/N) C (Ml,H)

Isogeny = epimorphism (with finite kernel) <& monomorphism (=inclusion) of modules (with finite cokernel)

Ker(P = Al [Mz] C Al [N] (RecaIIMl = HOm(Al,Eo))

Aj[My] = {P € Ay(k), p(P) = 0 V¢ € My}
Ker ¢ =~ F(M;/M,) sodegp = #M;/M, (R commutative)

Equivalence practical if N smooth, the N-torsion on E is accessible, and the action of M1 on A
is effective



Similitudes to isogenies: the general case

@ Find a smooth similitude (M,, Hy) — (My,Hy)
@ Clapoti(s): it suffice to build two N1, N»-similitudes with Ny A N, =1 (or small)

‘& There are unimodular Hermitian R-modules (M, Hy;) such that no N-similitude R8 < M exist
for any N, c.f. the arithmetic obstructions in [Kirschmer, Narbonne, Ritzenthaler, R. 2021]

@ Solution: lookat Rt & M x R

‘@ Conductor gap: a N-isogeny E‘g — E x A (with the product polarisations) inducing a non trivial
isogeny Ey — E satisfy
feg, IN

Isogeny to similitude:
o ¢:A; — A, aN-isogeny of kernel K
o A, = F(M,) with effective action
o M, :={y € My, y(K) =0},H, = H/N
Needs efficient DLPs in A [N ] to compute M,

@ The action of M, on A; descends to an effective action on A,
(via isogeny division, at least in nice cases)



Modules to abelian varieties
@ R™ - R" - M — 0 presentation of M
0 0> Ao Ej — EJ co-presentation of A = J-(M)

Example: I = (&, B), with syzygys of rank 1: uax + v = 0
R->@0"R2 @A [CR o Ey—»E < E-E,

e Ejg— E2,P — (aP, BP) has kernel Eg[I], so the image is isomorphic to E;
o E; - E(z) is also given by the kernel ofE(z, — Ey, (P,Q) = uP +vQ

Module to explicit abelian variety:
@ Try to find a nice N-similitude (M, Hy;) = (RS, GB‘lg:lHR)
o Convertto E‘E - Aum

Abelian variety to module:

@ Find 7 morphisms ¢; : A — E whose kernels intersect trivially
Example: a double path E; — E!
@ Find the R-lattice of relations on the ¢;
Find relations by testing on points of smooth order. Each relation reduces the tentative module M 4. Use the principal

polarisation on A as a stop criterion (pairings).
o A< Ej — Ej givesM,
~ DamienRobert  Fromidealstomodules forisogeny based cryptography  19/62
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Cryptographic applications?

@ Clapotis: CLass group Action in POlynomial Time via Sesquilinear forms [Page-R. 2023]

@ Original motivation: “new” Module-KLPT algorithmfor M = I &I C R @ R
Via an algebraic embedding B* C GU, to reduce to quaternionic KLPT



Cryptographic applications?

@ Clapotis: CLass group Action in POlynomial Time via Sesquilinear forms [Page-R. 2023]

@ Original motivation: “new” Module-KLPT algorithmfor M = I &I C R @ R
Via an algebraic embedding B* C GU, to reduce to quaternionic KLPT

@ Clapoti: bypass the module equivalence of category by just using Kani... again...

Meme: Culprit
@ New isogeny algorithm
@ Isogeny based cryptography

@ Kani's lemma



Cryptographic applications!
Help needed! Any other interesting cryptographic application of modules?

Hypothesis: we can extend all our algorithmic tools and security assumptions from dimension 1 to
dimension g.
Security assumption: Module-Inversion. Given A, it is hard to recover (some?) module information

M = HOmR(A,Eo).

This talk: three (potential) examples:

@ SQISurf: short signatures for oriented isogenies (dimension 2)
Philosophy: apply supersingular tools to oriented isogenies via dimension 2

@ Noisy-CSIDH: Module Isogeny Key Exchange. Combining torsion noise and oriented commutative
group action for key exchange (dimension 1 and 2)
Philosophy: combine supersingular-like graph properties with commutative group actions

@ ®-MIKE: Module Isogeny Key Exchange?. Higher dimensional version of CSIDH; Supersingular key
exchange without any torsion information (dimension 1, 2 and 4)
New tool! Tensor product of abelian varieties and

T Workin progress!  ‘@¢E

2Name courtesy of Luca De Feo
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The isogeny graph of oriented isogenies in higher dimension

@ M torsion free of rank g: M =~ R8I @I AssumeR maximal for simplicity
o A~EST xE

o #CI(R) isomorphism classes of non-polarised R-oriented abelian varieties R-isogenous to E‘g

@ Polarisations add supersingular like graph complexity if ¢ > 1 (EndR(E‘g) = Mg(R))
@ Universal group action:I - (M, Hp;) = (IM,Hp/NI)) C (M,Hyp;) (Linvertible)
o [-A=A;:=A/A[l]

Intuition: multiplication by [1] = multiplication by [I]

Multiple orbits; linked together by oriented isogenies (which are not multiplication by [1])



Example: rational supersingular abelian surfaces

° EO/IFP supersingular, R = EndIFp(E) = Z[\/—_p] (or its maximal order)

@ g = 2:graph of supersingular abelian surfaces isogeneous to E% over IFp and IFp—rationaI
isogenies

@ Universal group action from CI(R)

o Conjecture: = p3/2

o If¢ = [[splitsin R, A[¢] = A[l] ® A[[] = action by [and |
and { + 1 (?) other oriented {-isogenies.

nodes (= #supersingular curves x # CI(R))



Weil's restriction of supersingular elliptic curves
EO/IFp supersingular, R = End]Fp (E) = Z[‘/—_p] (or its maximal order)
o If Ei/Isz, Weil restriction W]sz/]FpEi is a p.p. abelian surface over ]Fp (which is neither a Jacobian
or product of curves over IF,). And the Weil restriction of an N-isogeny ¢>/1sz :E; - Ej,isan
[, -rational isogeny between rational the abelian surfaces A} — A, A; = Wsz/]FpEi
= If E;isisogeneous to E, A; is isogeneous to E(z) = W]sz/IF,,EO
° Hom]Fp(W]sz/]FpEl,W]sz/]FpEz) = Hom]sz(W]sz/]FpEl ®F, Isz,EZ) =
Hom]sz(El ® E{,Ey) = Hom]sz(El,Ez) () Homez(El,Ez)”

@ So the dimension 2 supersingular graph over ]Fp contains, via the Weil restriction, the

supersingular graph of elliptic curves over IF_ (with E collapsed with E7)

14

= Convenient way to obtain [, -rational isogenies in dimension 2
= Module-Inversion in dimension 2 (heuristically) at least as hard as the supersingular isogeny path

problem.
FromM = Hom]Fp (W[sz/[FpE, Eg), we recover a ratioan| N-isogeny E3 — W]sz/]FpE, which gives over ]sz an

isogeny Eg — E x EY from which we extract an isogeny Eq — E.

@ Weil restriction from the module point of view: If¢/]Fp2 : Eq — Ejisrepresented by 1/Oy : I, — I, see § 4 for how to
find the module representation ¥'/R : M, — M of W 2/]Fp¢
P
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SQISurf: Short signatures for oriented isogenies on abelian surfaces

o ¢;:Ey—E;
@ Recovering I from (E, E;) < recovering the module R @ I associated to E x E;
Quantum subexponential via [Kuperberg]. N.B.: E x E is doubly oriented via (P, Q) — (P, —Q)!
= SQISign like protocol in dimension2 (‘& not SQISign2d!)

E()XEO&)E()XEI

l‘Pcom l‘l’cm

resp

@ Soundness: check that the response is not R-backtracking through the challenge
We want an R-endomorphism on Ey x E; which does not come from R!

@ ZK:depends on how we compute the response

@ Needs a generalised ModuleToIsogeny for the response



Noisy-CSIDH Noisy group action key exchange
@ Commutative group action on a supersingular like graph

= Mask the torsion in a SIDH-like key exchange by using this commutative group action (like
M-SIDH but using [I] rather than [#])

= Hide the commutative group action in a CSIDH-like key exchange by adding a SIDH-like torsion

exchange
Ag b A, s (A, [a] o $u(Ag[NB])
lél’b ’ ltP'h l%’
Abl # Aﬂl/bl L) A“2/b1
l“’] ) lw] l“’]
(Ap,y, [6] 0 @y (AgINAD) 2 A, — 5 4,

o ¢,:oriented N 4-isogeny; ¢,: oriented Ng-isogeny
@ Speed up trick: do a standard SIDH key exchange over Isz, take Weil restriction to IF'p, apply
group action of CI(Z[ ,/—p]) in dimension 2

o Size:p = 4A4;J(A,,):3 log, (p); torsion on deterministic R-basis: 4 log, (p) (or 3 log, p using
pairings?)
Total: 6 IOg2 p=241 (vs3.5 ]og2 p = 14A for SIDH)



Direct sums and pushforwards

(AllAl) =4 (Ml,Hl)and (Az,/\z) =4 (Mz,Hz)
Product polarisations: (A x A, A xA,) & (M & My, H; & Hy)

Pushforwards:
o Ifgy : Ag = Ajand ¢, : Ag — A, correspondto iy : My — Mand ¢, : M — M,, their
pushforward A1, corresponds to the fiber product My xs My
o Ifpy : Ag = Ay, ¢y : Ay > Ay areisogenies, Py : My = M, ¢, : My < Mare
monomorphisms, and the fiber product My X1 M is just the intersection My N M, C M

Ag —» A4 =3 M+— M,
4 ] T
Ay —» Ap M, <— M;NM,

[*] 471 2A0 d A]lKl = Ker¢1 = I(M/Ml) :AO[Ml]
) (Pz IAO - Az,Kz = Ker¢2 = I(M/Mz) = Ao[Mz]
0 P1p: Ag = A1, Kip = Ky + Ky = F(M/M; N M) = Ag[M; N M,]



Tensor product of abelian varieties

Assumptions: R commutative, My, M, R-modules with far, A far, = 1.
(Ex: My or M, projective. N.B: if My, M, projectives, M ® g M is too)

Definition ((Co)tensor product)

Under our assumptions, My ®g M is torsion free and we define A; ®g, A, as F(M; ®g My) J

o (M; ®g My)Y =~ MY ®r My
@ So H; ®g Hj is unimodular Hermitian if Hy, H; are
o Andift; : My — Mj isa Ny-similitude and 1, : My — My is a Np-similitude,
1 ®r Py : My g My — M] ®g M) isa Ny N,-similitude
@ Tensor product of isogenies: ¢1 ® ¢ : A} ®, Ay > A; ®g, Ay
® - @, - is not effective

Example
o EO ®E0 A = A
o E;®p, A =1 Aiflinversible ideal




Symmetric monoidal actions

Definition (The module monoidal (co)-action)
o If Miis a projective module, the actionby Miis M - A = M ®g A := (M) ®F, A
o Ifp: Ay —» AjyisaN-isogeny, M Qg ¢ : M ®gr Ay » M ®p A, is a N-isogeny.
o If : My — M isaN-similitude, ) ®g A : M ®g A — M, ®p A is a N-isogeny.

Theorem (Effectivity of the symmetric monoidal action)

The symmetric monoidal action M - A = M ®pg A from projective R-modules to abelian varieties
corresponds to the canonical copower action construction on categories enriched in a closed monoidal
category? (in particular it does not depend on the base point Ey).

It is effective.

9This is just a fancy way of saying that Homg (M ®x A1, A,) = Homg (M, Homg (A,, Aq)).
y

Group action analogy: If G O X (principal homogeneous space), fixing a point x; € X transfers the group structure of G on X.
But the group multiplication may only be effective on G.

Group action framework: one way function G — X with some compatibility with the group structure.

In our case, ® is only effective on the module side, not the abelian side, but we can still transfer partially the monoidial structure via

the monoidal action.



Symmetric monoidal actions for key exchange

Example (The action by ideals)
("] M'E0=M®RE0 ’iAM=j‘:(M)

o [ ®g M =~ IM when ILis inversible (or simplyfI AfM =1),s0l - A :=1 ®p Arecovers the
usual CSIDH action

Proposition (CSIDH as a tensor product)
ifIy, I invertible, I; ® I =~ I1I,, so ® gives the CSIDH key exchange:

Ey > E, =15 -Eg

l |

E,,=I-Ey — Ep g1, = Ej, ®  Ef, =1i1x - Eg

o If N(I;) A N(I,) = 1, the diagram above is also a pushforward because 11, = Iy N I,

@ Monoidal action on rank 1 projective modules = class group action

® Subexponential quantum attacks (Kuperberg)



Symmetric monoidal actions for key exchange

Proposition (Higher dimensional CSIDH via the monoidal action)

AO’\/\/W\/W\N\r)Alel-AO

¢ ¢

AZ =M2'A0 ANy A12 = (Ml ®RM2) 'AO

Ifd|m AU = go, ranle = gll rankMz = gz, then d]m A12 = gOgng'

Example (Monoidal action by rank 2 modules: Ay = E, g1 = $» = 2)

M,; projective module of rank 2 & E(Z) —> A; apath:

7 SN

| H

Ay > A @ Ay

Common secret: the dimension 4 abelian variety A; ®g, A




Symmetric monoidal actions for key exchange

Proposition (Higher dimensional CSIDH via the monoidal action)

AO'\/VWVW\NV)Alel.AO

¢ ¢

A2 =M2'A0 2% A12 = (M; ®g M>) 'AO

Ifd|m AO = go, l‘anle = gll rankMz = g2, then d]m A12 = gOgng'

® Acting by rank g projective modules increase the dimensionif g > 1

©® Protects (hopefully!) from Kuperberg

@ Security: Action-DDH < Action-CDH < Action-Inversion

@ Action-Inversion ~ Module-Inversion
Indeed, if M = Homg (A, Eg), then M - Eq = F:(M)

Recall that, thanks to Weil's restriction, Module-Inversion on supersingular abelian surfaces over ]Fp is at least as hard as

solving the supersingular isogeny path problem over ]sz

@ Action-CDH: Hope for exponential quantum security when g > 1



Computing the symmetric monoidal action

M; projective of rank g, Ay = M; - Eg

We want to compute M7 - A, for an R-oriented A, (with effective orientation)

General idea: look at how we construct A; = M - E from E;, and apply the same recipe replacing
EO by Az.

The smooth case:

@ Suppose we can construct a smooth similitude RS C M (by duality, this is equivalent to
constructing a smooth isogeny Eg — Ay), this gives us a smooth similitude A‘g - M; ®r A;

@ Via the orientation, we can transpose the kernel of E% — A tothe kernel ong - M; ®r A,.
The codomain gives us M| @ Ay

@ Similar to the usual way the CSIDH action is computed

The general case:
o Ifinstead Aq is computed via Clapoti(s), splitting an appropriate endomorphism on Egl
@ Then we can compute M; - A, by splitting an appropriate endomorphism on A‘gl

® Needs to work in dimension 2¢1 >
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Computing the symmetric monoidal action: the smooth case

RS ¢—— M, =S E‘g—»Al

M§ <— M; ®g M, A — Ay ®p, Ay =M - A,

Proposition (Computing projective tensor products: the smooth case)

le% - Ay & My < RE, wecancompute Ay ®g, A as the quotient of A; = E‘g ®k, Az given by
the kernel K C A‘g induced by M; ® My = RE ® M,:if My is generated by (1, ..., m,,), and
m; = (Déil,...,lxig) S Rg thenK = Ag[ml ®M2,...,mn ®M2] and

(@
AS[m; ® M,] = Ker A3 —— 7 — Ay

Corollary (Computing the action in practice)

o IfAqisthe quotientong byEg[ml, m,, ], where
E$[m,] = Ker(ES — Eg, (P, ..., P ) — Y a;P;)

o Then Ay ®g, A, is the quotient ofA‘ég byA [m1 ® My, ..., m, ® M,], where
AS[m; ® My] = Ker(A3 — Ay, (Py, ..., Pg) = Y ayP))

° AndifE‘E — Aq isa N-isogeny, A‘g — Ay ®, Ay isaN-isogeny




Computing the symmetric monoidal action: the smooth case
Commutative diagram:

R81 @y R82 &— M, ® R$2 o E§' ®p, E5? ~ E'? — Ay ®p E§? ~ AT
Rgl ®R M2 — Ml ®R Mz E‘gl ®E0 A2 = Agl _— Al ®E0 Az

Pairing analogy: ®EO = categorified bilinear map
Assume we don't know how to compute e(P+, P5) for general Py, P,, but we know e(P, P,).Thenif P; = mP, we can
compute e(P, P,) = e(Py, Py)™

Here we use that E‘g ®k, Ay = A‘g and our known path E‘g - Ajq.

Monoidal actions for isogenies
o M| & M; - RE @A‘g - M; ®r Ay - M; ®r A, =recover it via the isogeny
factorisation: AS[M; ®g My] C A;[Mi ®r M>]
e If Ay — A, then we recover M; ®g Ay, — M; ®g Aj via isogeny division:

A5 —— My ®r A

| l

A’Zg E— M1 ®r A’2



Computing the symmetric monoidal action: the general case

g \ \ g
= > A > ES
A} — A1 ®p Ay — A3

Proposition (Computing projective tensor products: the general case)

Assume A is constructed from E via Clapoti(s), i.e. constructing a Ny and N»-similitude R8 < My, and
then splitting the induced N1 N5-endomorphism 7y : Eg - Eg. So 7y is given by an explicit matrix in

My (R).

Theny ®g, 1d 4, is the same matrix acting as an endomorphism Ag - A‘g via the R-orientation, and
splitting this N1 N -endomorphism gives Ay ®  Ay.




®-MIKE

Ey ——— E4

! ¢

Ey ~~> Wiz g E1 ®k, Wiz, E>

@ Start with our good old friend EO/IFP supersingular  (with p e.g. the SQISign2d prime)

@ Alice and Bob compute (smooth or not) isogenies over ]szi Ey = Eq,Ey = E; (no need for
coprime degrees!)

@ Theysendj(Eq),j(Ey): no torsion information!

@ Validation: check that E; is supersingular

@ The common key is the dimension 4 ppav A1, := W]Fg/]FpEl ®F, W]F%/]FPEZ

Alice can compute it by converting her isogeny E) — E; to the module map representing
2 . .
Ej= WE%/EPEO - W]F%/]FpEl and then applying the tensor product construction to WE%/EPEZ'

The smooth case requires a dimension 4 isogeny, and the non smooth case requires splitting a dimension 4 endomorphism,

so a dimension 8 isogeny...

o Size:p = 2A,j(E;) = ZIogZ(p) = 4: 64B. Very compact!
@ NIKE. PKE a la EIGamal/SiGamal

Need good dimension 4 modular invariants to represent A1, (e.g. suitable symmetric
polynomials in the theta constants?)
Security? Action-CDH on supersingular abelian surfaces coming from the Weil restriction of elliptic curves

o8 &



®-MIKE

Eg —— E;

| ¢

Ey ~~ Wez 5 E1 ®k, Wiz g, E>

Example of parameters:
o p=u2t—1.Exp=>5-2248 _1,

o Alice and Bob each compute a 2°-isogeny from E over ]sz

@ Then the common key then requires computing a 2°-isogeny in dimension 4 over IFp

@ Unfortunately, for the dimension 4 isogeny, the theta null point will only be defined over ]sz, ¢
our known isogeny formulas will require to work over ]sz for the dimension 4 isogeny too

@ Open problem: adapt the theta formulas to work over ]Fp
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Torsion free f.p. R-modules
@ In both cases: rank 1 torsion free modules = ideals

Oriented case (R is a Bass ring)
oM=LeoeLo -l
e RCO(;)cO,) C--C O(Ig)
o detM =1I; - I -+ - I invertible R-ideal

o Conductorof M:fps := [Ry : R]
N.B.: M is projective over Spec R[1/fa]

@ The isomorphism class of M only depend on (Ry, ..., R,) and det M
@ Example:ifall Ij are invertiblein R (& O(Ij) =R),

M:Rg—l@Il.[z.....Ig

Supersingular case
o M=~R3ifg>1



Level structure

o M —» M/ainduces Ala] & A

oY: M, - M =¢: A - A
o ¢ mod a:M,/aM, — M /aM; o Aq[a] — Ay[a] Ala](k) = Hom >, (M/a, Ey(k))

Oriented case:
o Aplal (k) =~ M/aM as R-modules (ifa prime to p)
@ The Dieudonné module of A ;[p™] inherits a R-module structure which is isomorphic to M /p™ M (?)

@ If M torsion R-module, deg (M) = #M



Differentials (oriented case)

e IfA = F(M),Lie(A) = Homz(M, Lie(Ey)) = Homg,,,(M/p, Lie Eg)

@ Action on tangent space: i : My - My & ¢ : Ay = M;.Then
d(P 8 L|e<A1> = L]e(Az) = HOmR(Ml, Lle(Eo)) - HOmR(Mz, Lle(Eo))
o Since N'A/k = Homy(Lie(A), k), by duality, we get: o* A, - 1A,

@ If E elliptic curve, choice of short Weierstrass equation < choice of global differential wg (via
> =x3+ax + b~ wg =dx/y)

@ Fixing an equation of Eg fixes W,
Equivalently, fixing an element in Lie(E) since Lie(Ey) = Hom(Q!(E,), k) is of dimension 1 over k

@ Propagating this choice through our isogenies J<(I = R) fix equations for Ej (normalised
isogenies).

@ This allows to keep track of equations of E (and not work up to isomorphisms)

@ Two normalised isogenies ¢, ¢, : Eg — Ejinduce the same equation on Ejiff ¢y, 9, : I - R
induce the same map Lie(Eq) — Lie(E}), soin particularif ¢; = ¢ mod p

@ “Differentials = p-level structure”: recall that D (A[p]) = HlDR(A) and that the Frobenius
filtration on A[p] corresponds to the Hodge filtration on H11)R (A) (up to a Frobenius twist)

@ Sodifferentials are a convenient way to keep track of p-level structure
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Torsion modules

Proposition (Finite group schemes represented by modules)

A finite group scheme X is induced by a torsion module M iff X is R-embeddable: X < A (A = JF:(My)),
equivalently X < E‘g

Proof.

Since X is finite, A — B := A/Xis an isogeny. By the antiequivalence this is represented by a module map Mp < M 4 and we
let Mx = M4 /Mgp.Since Fis exact, X = F(Myx).

N.B.: My encodes both X and an isomorphism class of R-embedding to an abelian variety, we will implicitly work with this

class. O

Proposition (Maps induced by modules)

Amorphism X — Y is induced by a module map My — My iff there exist embeddings X — Ay,
Y < Ay suchthat X — Yliftsto Ax — Ay iffforany embeddings X — Ay, Y < Ay, with
Ay = F(My) and M, projective, X — Y liftsto Ax — Ay

Proof.

If X - Ylifts, then Ay — Ay isinduced by MAY — MAX' My is a quotient of MAX and My a quotient ofMAy.The map
MAY - MAX — M factors through My — M since the image of X isin Y and Fis exact. Finally, if X — Y is induced by
My — My, the map MAY — My — My liftsto MAY - MAX when MAY is projective. O
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Kani’s lemma from the module point of view

] lpl : (Mo,Ho) d (Ml,Hl),l/Ji . (Mz,Hz) d (Mlz,le):Nl-similitudes
(] IPZ : (Mo,Ho) s (Mz,Hz),llle : (M]/HZ) d (Mlz,le):Nz—similitudes

—¥2
N; + Ny-similitude

@ Then¥ = ( l/;; $,1> : (MO @MlleO ®H12) s (Ml ﬂ)Mz,Hl @Hz) isa
2

@ Bonus: if the module action is effective, we can recover the kernel of @ = F(¥) even if
N;i AN, #1



SIDH from the module point of view
o Eo/F 5 supersingular, Oy = End(Ey)
@ [, Ip left Op-ideals of reduced norms N4, Ng, Njp ANp =1

@ SIDH:
Og +— I, ES Ey —— E4
T T L
Ig «—IyNIp Ep —— Eup

@ Bob publish (the image by F) of I[g/N 4 — Oy/N4
@ Alice intersect this with [4 tofind 4 N Iz/N4 — [4/N 4 and recover (the image by J) of
IA N IB g IB

More precisely:
@ AliceknowsI4 /N4 — Og/N 4, ie, Eg[Ng]l = E5[N4]
@ Pushing this through Bob's isomorphism Eg[N 4] =~ Eg[N 4] she obtains I, /N4 — Ig/N4,
ie. Eg[Ng] = E4[Nal
@ This factors through (I4 N Ig) /Ny, i.e.through E sg[N 4], so the kernel of the map above gives
the kernelof Eg — E 4

Eg[Naol — EA[N4]

!

Eg[Nal — E4B[N4l
~ DamienRobert  Fromidealstomodules forisogeny based cryptography /62



SlGamal from the module point of view

(Eg, Pg) — (Ep, Pp)

l |

(Er,, Py) — (Eq2,P12)

@ Fixapoint Py € Ey[N]
¥ :1/N - R/N & Ej[N] — E;[N], and this gives a point P € E;[N] as the image ¢(Pg)

We can then keep track of various point images

We can also keep track of equations through differentials
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Ascending and descending isogenies

@ R C SofconductorfR=Z+fS,f =[S:R],f=fS
@ Ey — Eg canonical ascending isogeny of degree f
] (f,HR/f) C (R,HR) C (S,fXHR) @ES g EO g ES (NR<S) = 1/f)

Kernel of ascending isogeny: Eg[f] = Egl[f, VAR]
R/f = S/finduces Eg[f] - Eg[f]

0 S = Hom(Eg, Ey) viaEs % Eg — E,
@ Kernel of descending isogeny: Eg[R] C Eg[f],induced by S/f - S/R

VA5
VAR = fAs: Eq - Es —> Es — Eg
o Ifa € S,a71 : aR N R — S gives another descending isogeny Es - E,

S+——5 &  Eg—> Eg
T J= [
R +— aRNR Ey — E,



Conductor square
R——S

Lo

R/f — S/f

@ Excision:SpecR = Spec S ]_[Specs/f SpecR/f

@ [Milnor]: M projective on R & Mg projective on S +Mf projective on R/f +
an isomorphism Mg /f = M¢ ®g; S/f

@ Invertible ideal Iz & invertibleideal Ig +S/f =~ Ig/f

Isogeny interpretation:
o Ir C Rinvertible » Ey — Ej , I C Sinvertible & Eg — Ej

ES — EIS

L

Ey — Ep,

@ Isomorphism Ig/f = S/f < isomorphism Eg[f] = E;_[f]

@ Encodes the descending isogeny Els - EIR as the image of Eg[R] in EIS

@ Since S/R =~ R/fas R-modules, an isomorphism S/f = I5/f is the same as a surjection
Is/§f - R/f which extends (via the base change - ® S)toaniso Ig/f =~ S/f

@ This corresponds to Eq[f] < Els [f] (i.e., a cyclic R-stable kernel K in Els [f 1) such that the
action of S on K spans the whole of E;_[f].
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Forgetting orientations

o E (primitively) R-oriented, Oy = End(E)
e M — M':= M ®g O corresponds to forgetting the orientation (M torsion free):
Ext}{ (M, Ep) = Ext})0 (M', Ey) as abelian varieties

@ Conversely for an Op-module M’, an R-orientation on Ay, corresponds to finding an R-module
M suchthatM' = M @y Oq

@ This is a question of non commutative descent, a special case of comonadic descent

@ A morphism Ale - AM:2 of R-oriented abelian varieties is oriented iff the map M; — M}
descendsto M, — M;



Weil’s restriction from the module point of view
° EO/]Fp supersingular with Frobenius orientation, R = E“de(Eo)r Op = Endg ,(Eg)
P
o Weil’s restriction:A/]sz - W]F,,z/]FpA/IFP
o IfA & M/Oy, then Wy z/leA is represented by the module
P
M = Hom]sz(W]sz/]FpA/ EO) = Hom]sz (A @AY, EO) =
Hom]Fp2 (A Ep & Hom]sz (A Ep)" =M e M7
@ Since A @ A7 descends to Wy 2/]FpA over F,, itis represented by a canonical R-module N such
P
thatt M' = M & M7 = N ®g O, (by our result on forgetting the orientation).

@ The Frobenius Galois action ¢ acts on the left and right on M & M7

@ Unraveling® the Morita equivalence between R and O, we get that N is the submodule where
these two actions commute

@ Abelian variety interpretation: on the supersingular side, M" = Homg _ (Wg 2/]FPA, Ep) while
p P
on the oriented side, N = Hom]Fp(W]F z/IFpA' Ep)
P

o Thisis indeed the submodule of rational morphisms in Homg , (Wg z/lF,.A’ Ey). ie., which
P v
commute with o

3With help by Aurel Page!



Various other module constructions
Base change adjunction:
o M- M =M ®g O has for adjoint N » Homg (R, N'):

Homp(M ®p Oy, N') = Homg (M, Homg(R,N"))

@ This sends an abelian variety A’ of dimension g to an R-oriented abelian variety A of
dimension 2g (Not clear how to get a polarisation on A from one on A”)

@ If X R-oriented, Hom(A’, X) ~ Homy (A, X)

Internal Hom:
@ If R commutative, like our (co)tensor product construction A ®E0 A,, we can define an internal
(co)hom construction Homg (A, A3)
e IfA; =M, - Epand A, = M, - E, with My, M, projective, then
Homg (A, Aj) := Homg (M, My) - Eg
@ The ®g -1 Homp, adjunction inducesa Homg — ®g  adjunction
@ Can we exploit this in isogeny based cryptography?

Change of base point:
@ Eganother primitively R-oriented curve isogeneous to E
o If] := Homg(Ej, Eg) = I, Lisinversible
e IfHomg(A, Eg) = M, then Homg (A, E)) = 7'M
o SoM — I~'M encodes the change of base point Ey E{, in the antiequivalences of category
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Non principal polarisations

o Mtorsionfree, V=MQ®; Q K=R®7Q
@ H K-hermitian formon V/
@ R-orthogonal: M* := {v € V,H(-,v) C R}

@ H induces an isomorphism M# ~ MV,m” — H(, m”)

o Hisintegral on M* & M#* c M

@ We then obtain a polarisation on MV: MY =~ M# c M

o This gives a polarisation A : A — AV with kernel J=(M/M#)
The polarisation nA corresponds to H /n

@ Principal polarisation: M = M#



Classifying polarisations

e (M, Hy,) principally polarised
o Example: M = ®I;, Hy = ®H],

@ Rosatti involution:a € EndR M) — at (the adjoint morphism)

Proposition (Polarisations as totally real positive endomorphisms)
All other polarisations on M are of the form
Hu('/ ) = HM(“'I )
fora € Endg (M) such that
o aisrealat = a
@ w s totally positive: H, is positive definite

And H,, is principal iff & is inversible.




Isotropic kernels and N-isogenies

(M4, Hpz,) unimodular R-Hermitian, V = M; ®7 Q
M, C M induces a N-similitude iff M = NM,
Indeed in this case Hy;, /N is unimodular on M,

We have #M; /M, = #MZ” /Mf. In fact, if My is projective,

ME/ME ~ MY /MY =~ Extk(M;/Mj, R) = Homg (M, /M,, Frac(R)/R)

So (for R commutative), M, C M induces a N-similitude if'fHM1 mod N = 0on M, x My,
and #Ml/MZ = Ng

@ This corresponds to A [M,] being isotropic of degree N¥, i.e. A1 [M,] being maximal isotropic
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Sesquilinear Weil pairing

@ PolarisationA : A » AY & MY — Minducedby HonMV (A = F(M))

o Hinduces:
H modN:MVY/NxMV/N - R/N

o MY/N = Homg,\ (M/N,R/N), N Afy =1

Because the flat locus of M contains Spec R/N

e x,y € MV/Nthus correspondtox,y : Eg[N] — A[N]

@ Fixa point Py € Eg[N], then x(Py), y(PO) € A[N],N /\fR =1

o Sesquilinear pairing [Stange 2024]: P > ¢%; (PO,P) =& (PO,lX(Po)) =% (PO,PO)”‘
induces an isomorphism R/NR =~ EO[N](k) =

° e%I?NA(x(PO),y(PO)) e yfIR corresponds via this isomorphism toH(x,y) € R/N

N-sesquilinear pairings < Hermitian forms modulo N
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Non R-backtracking isogenies
Non (partially) backtracking isogeny:
@ ¢ : A — B N-isogeny is non partially backtracking (nbt) & Ker ¢ of rank g
o ¢ : A1 > Ay, ¢y i Ay > Az nbt then ¢, o ¢ nbtiff Ker g, N Ker gy = 0
o If ¢, o ¢y isnbt, ¢y, P, is nbt
o If¢ : A - BnbtN-isogeny,and N = [ ;, ¢ uniquely decomposes as ¢ = [ ] ¢;, with ¢; a
{;-isogeny

Non R-backtracking isogeny:  Assume all degrees prime to the conductor of R
@ ¢ : A — Bisnon R-backtracking iff it is nbt and does not come from the action of an ideal I
@ If ¢is nbt but comes from I, ¢ = ¢, o ¢, then ¢p; comes from I;

o If ¢ nbt, it suffices to check that some subgroup Ker ¢[£°] is not induced by an ideal to know
that ¢ is not R-backtracking

Combined with the following lemma, this gives a way to check that the response is not R-backtracking
through the challenge for SQISurf:

Lemma

P1: A1 = Ay Py 1 Ay = Az P31 A3 > Ay Py 1 Ay — Assuchthat gy o ¢y, P3 o P and
¢4 o Pz arenbt. Then py o P3 o Py o ¢y is b-nbt foreach € | # Ker ¢, A #Ker ¢3, i.e. the €-Sylow of its
kernel is of rank g




Conclusion: the module equivalence of category

@ Module equivalence of category: more natural than the ideal one.
Clear distinction of objects and morphisms

@ Many algorithmic operations in dimension 1 (e.g., double path to Ej) come from the module
interpretation

@ Generalizes to higher dimension
@ Keep track of level structure and sesquilinear pairings
@ Unified framework to handle oriented and supersingular case (still modules, but different rings)

= Forgetting the orientation or Weil restrictions purely at the module level

@ New cryptographic protocols?

@ Exploit further the tensor category structure on (R — mod, @, ®), the internal (co)hom
structure Homg (Aq, Ap) and the Homg, — ®g, adjunction?



The symmetric monoidal action framework

Theorem (Base point free version of the antiequivalence of category)

There is a faithful effective symmetric monoidal (co)-action (given by the canonical copower construction)
from projective R-modules to abelian varieties R-isogeneous to a product of R-oriented elliptic curves. It
extends to an action of Hermitian projective modules to polarised abelian varieties.

IfE is any primitively oriented curve, the action is free with image abelian varieties “horizontally”
isogeneous to E‘g (meaning that Hompg (A, E) is projective) and with the same R /pR representation on
their tangent space as for E‘g .

@ Let R be the maximal order of Z[ ,/[—p], EO/IFP be any curve R-oriented, and Oy = End(E;)
Via Weil's restriction, we can recast the supersingular isogeny path problem Ey — E/Isz toa
rank 2 module action inversion between Ey and Wy 2/]FVE'

P

@ Conversely, abelian surfaces that are Weil restriction corresponds to R-modules M of rank 2 such
that M ®g Oy = M’ @ M’ for a right O-ideal M’, with the decomposition induced by the
polarisation

@ We can extend the action to incorporate level structure (which we represent as a morphism
M /nM to some explicit torsion module)

@ We could probably reformulate most of supersingular isogeny based cryptography in terms of
this monoidal action. This somewhat unify the oriented and supersingular case, the difference
between the two being whether we apply rank 1 or rank 2 module actions.



Thereisa . wer construction)
from projective We can act on Super5|ngU|ar iptic curves. It
extendsto a . L

IfEq is any abelian varieties over IFP by

isogeneo

their ta Hermitian Z[./—p]-modules!

Supersingular curves over
IFP are given by an action
of rank 1 from E; while the y the
ones over Isz are given
by an action of rank 2!

this monoidal acti difference

between the two being
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